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Abstract

A FINITE ELEMENT FORMULATION OF ACTIVE

CONSTRAINED-LAYER FUNCTIONALLY GRADED BEAM

© Ry Long, 2010

Master of Applied Science

in the Program of

Mechanical Engineering

Ryerson University

Active constrained-layer damping (ACLD) treatment is the combination of passive and

active features in the control of structural vibrations. A three-layer structure that consists

of a functionally graded (FG) host beam, with a bonded viscoelastic layer and a constrain-

ing piezoelectric fiber-reinforce composite (PFRC) laminate is modeled and analyzed. The

assumptions for modeling the system are the application of Timoshenko beam theory for

the host beam and PFRC laminate, and a higher-order beam theory for the viscoelastic

layer. The formulation is assumed to have field variables that are expressed as polynomials

through the thickness of the structure and linear interpolation across the span. The extended

Hamilton’s principle is utilized to determine the system equations of motion, which are then

solved using the Newmark time-integration scheme. Many support conditions such as fully-

and partially-clamped cantilevered, partially clamped-clamped and simply-supported are

analyzed. The effects of ply angle orientation, as well as FG properties, are also carefully

examined.
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Chapter 1

Introductions

1.1 Background

Recent advances in design and manufacturing of composite structures have significantly en-

hanced their use in various applications including aerospace, automotive and civil industries.

Machines and structures subjected to dynamic loading experience vibration, which, if unat-

tended, could cause serious problems, lead to energy loss, material fatigue, noise and other

failures. In order to achieve the best design with desirable performance, it is necessary to

control the vibration, especially for lightweight structures. The successful reduction of vibra-

tion and noise will cause the structures to operate under lower stress levels, offering better

performance and longer life.

A considerable amount of research has been done over the years with regard to the mod-

eling and control of lightweight composite structures. The methods to overcome structural

instability and to eliminate noise due to vibration include the isolation of the system from the

source of vibration, the redesign of the system, the attachment of masses, and the applications

of damping treatments to the structure [1]. This thesis is about the addition of damping,

which is typically the most appropriate method of suppressing vibration of randomly excited

structures that are governed by resonant modes [1]. Generally, for thin-walled structures such

as beams, cylinders, and plates, layers of materials are added to dissipate more energy. There

are distinctively two structural types of damping treatments, free-layer (unconstrained) and

constrained layer damping (CLD) treatments. Free-layer damping treatments only refer

to passive damping treatments, while CLD treatments consists of both passive and active

damping treatments, also known as passive constrained layer damping (PCLD) and active

constrained layer damping (ACLD), respectively [1].

Unconstrained damping methods consist of the bonding of a passive viscoelastic layer to

the outer surface of the host structure (Figure 1.1a). The viscoelastic layer is considered
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passive due to its inability to respond to the system. It is subjected to both direct and shear

strain caused by its damping layer, resulting in energy dissipation. Damping treatments

based on employing direct strain should attach the damping layer furthest from the neutral

axis since this location experiences the longest direct strains.

If a second layer, a so-called constraining layer, is bonded to the damping layer (vis-

coelastic material), the multi-layered beam is known as a passive constrained layer damped

(PCLD) treatment as depicted in Figure 1.1b. The attachment of the constraining layer in-

duces increased considerable shear stresses to the damping layer. Typically, the constraining

layer in PCLD is made of an elastic material. PCLD treatments have been widely used to

solve vibration problems in automotive, computer hardware, military, and aerospace indus-

try [1]. These vibration solutions have led to many applications such as inlet guide vanes of

jet engines, helicopter cabins, exhaust stacks, satellite structures, equipment panels, antenna

structures, truss systems, and space stations, etc. [7].

Figure 1.1: Layer damping treatments: (a) free or unconstrained layer damping; (b) passive
constrained layer damping (PCLD); (c) active constrained layer damping (ACLD).
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Conversely, if an active element in the form of a piezoelectric material is attached to

the passive viscoelastic material, it is known as an active constrained layer damped (ACLD)

treatment. ACLD treatment is illustrated in Figure 1.1c. Here a sensor senses the vibrations

of the structure and drives the piezoelectric actuator through a control system, enhancing

the shear in the viscoelastic material. ACLD treatments are superior to PCLD treatments

since they facilitate the control of low-frequency modes [1]. Additionally, ACLD treatments

have the ability to adapt to changing environment in the structure. As a result of this

adaptability, these structures are also considered as ‘smart’ or ‘intelligent’ structures.

1.1.1 Classical Three-Layer Theory

The classical theory is a commonly used theory for the analysis of a composite beams that

focuses on the behavior of each individual layer. The assumptions which support the classical

three-layer theory [2, 3, 4] are:

1. the host beam and the constraining layer deform as Euler-Bernoulli beams, that is,

plane cross sections remain plane and perpendicular to the deflection curve of the

deformed beam,

2. the viscoelastic core behaves as a Timoshenko beam,

3. the axial displacement field in each layer is linear through the thickness and the trans-

verse displacement is constant throughout the thickness,

4. the core supports only shear load,

5. perfect bonding exists at the interfaces and no slip occurs between the layers,

6. in-plane inertia effects are ignored,

7. small-displacement theory is applicable.

To improve the model, shear and longitudinal energy contributions of the core will be con-

sidered as well as shear deformation in the top and bottom layers. To capture the shear

contributions, the formulation in this thesis is based on a higher order beam theory for the

core and Euler-Bernoulli and Timoshenko beam theory for the top and bottom layers.

1.2 Research Objectives

In the past, research has been done on the vibration analysis of an ACLD beam where

the structure consisted of an elastic host beam as the base, a viscoelastic damping layer
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as the core and piezoelectric layer on top [6, 8]. A functionally graded (FG) host beam

and a piezoelectric fiber reinforced composite (PFRC) top layer were adopted by Mirosh-

nichenko [3]. The present work extends the model of an active constrained layer damping

treatment with more representations of the FG host beam and PFRC top layer developed by

Miroshnichenko. In Ref. [3], the author modeled the beam using the quasi-2D finite element

formulation, whereas the present work uses a more simplified finite element formulation with

the same quasi-2D concept. Additionally, it was assumed in Ref. [3] that the longitudinal

displacement of both the host beam and core layer can be represented as cubic functions in

the thickness coordinate, while their transverse displacements were quadratic functions. The

longitudinal displacement of the top layer was modeled as a linear function in the thickness

coordinate and the transverse displacement was constant. In this thesis, however, both the

host beam and top layer are modeled using both Euler-Bernoulli and Timoshenko beam

theories. The new modeling of the viscoelastic core follows the formulation of a higher-oder

beam theory wherein the transverse and axial displacements are interpolated linearly and

cubicly in the thickness coordinate, respectively.

The objective of this thesis is to analyze the ACLD beam using the proposed simplified

quasi-2D formulation and compare it to the classical theory. The ACLD beam consists of

a FG host beam, a viscoelastic core, and a PFRC top layer. Also, the effects of different

representations of the FG beam with respect to Young’s Modulus, Poisson’s ratio, and density

are investigated. The numerical simulations are performed in MATLAB.

1.3 Thesis Outline

This thesis is composed of 6 chapters.

Chapters 1 and 2 encompass background information, research objective, literature re-

view, material concepts and properties of FGM, viscoelastic material, and PFRC laminates.

In Chapter 3, the mathematical formulation of the ACLD beam consisting of an FG

beam using the simplified quasi-2D beam model is presented. Included in this are the system

descriptions, kinematic assumptions, and constitutive equations for each layer.

Chapter 4 discusses the process of developing a finite element model. The extended

Hamilton’s principle is used to derive the dimensional equations of motion, which are solved

using the Newmark time-integration method.

In chapter 5, simulation results are presented, and concluding remarks and suggestions

for the future work are discussed in Chapter 6.
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Chapter 2

Literature Review

2.1 Active Constrained-Layer Damping ACLD

Active constrained-layer damping treatments (ACLD) have been examined to enhance the

damping aptitude of the classical passive constrained-layer damping treatments (PCLD).

Stanway et al. [1] discussed the progression from PCLD to ACLD, where a piezoelectric

layer acts as the constraining layer. ACLD treatments greatly increase performance by

enabling vibration control at low frequencies. With this advancement from PCLD to ACLD,

vibration can now be controlled at both the high modes and low modes due to the passive

and active elements, respectively. The elements of ACLD work in tandem in such a way

that the active elements allow structures to adapt to changing environment and the passive

elements provide a fail-safe mechanism. The active element consists of an actuator, usually

in the form of a piezoelectric layer, which increases the beam’s deformation. This, therefore,

enhances the damping capability of the viscoelastic layer [1, 8, 9, 10].

Many researchers have been investigating the applications of ACLD treatments and their

advantages in vibration control. Balamurugan and Narayanan [8] examined the development

of a beam finite element model that has been partially covered with the ACLD treatment.

Gao et al. [9] analyzed a simply-supported beam with enhanced self-sensing constrained-

layer (ECLD) treatments. The effect of edge element stiffness in ECLD on the sensing ability,

loss factor and modal frequencies of the system were examined. The ECLD consisted of edge

elements that were connected to both the host structure and piezoelectric layer for the pur-

pose of transmissibility between the sensor and actuator. In [1], Stanway et al. highlighted

practical applications of ACLD. They presented various actuator and sensor configurations

that have been investigated by other researchers and also discussed the development of some

modeling and control techniques. Trindade et al. [10] described numerous hybrid damping

treatments, geometric configurations, modeling approaches and control algorithms of beams
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used in the literature. They also performed a thorough comparative analysis regarding the

different hybrid active-passive damping configurations of other literature.

2.2 Piezoelectric Element as Actuator and Sensor

The piezoelectric element has both direct and inverse effects that enable its use as an actuator

or a sensor. The direct effect is defined as the generation of an electric charge in proportion

to an applied force, and the inverse effect induces an expansion or contraction under an

applied electric field. Hence, a simplified ACLD configuration is developed with the benefit

of the dual nature of the piezoelectric element as a self-sensing actuator [1, 9, 10].

A distinctive configuration that was examined by both Stanway et al. [1] and Trindade

et al. [10], comprised of an elastic beam, a viscoelastic core, and a piezoelectric actuator as

the constraining layer with a sensor that was bonded to the treatment. This thesis employs

an ACLD arrangement that is similar to this configuration (presented in both Refs. [1] and

[10]), where an accelerometer is used to measure the tip velocity of the beam and then fed

into the controller of the system. The controller then sends a signal to excite the piezoelectric

actuator. A schematic of the configuration is shown in Figure 2.1.

Figure 2.1: ACLD Actuator Sensor Configuration.

2.3 Materials

The present three-layer system consists of a host beam that is made of functionally graded

material (FGM), with a bonded constraining viscoelastic layer and a piezoelectric fiber-

reinforced composite (PFRC) that covers the viscoelastic layer. Each material and its prop-

erties are described in the following subsections.
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2.3.1 Functionally Graded Material (FGM) Beam

Functionally graded materials (FGMs) consist of two or more material components whose

relative volume fractions and microstructures are engineered to have gradually varying prop-

erties. FGMs are not like laminates which have sudden transition in material properties

across the interface between distinct materials. This abrupt change in material properties

can result in delamination due to large interlaminar stresses, and the initiation and propa-

gation of cracks because of large plastic deformation at the interfaces [12]. FGMs are able

overcome these adverse effects since they are engineered to have a smooth spatial variation

of material properties.

During the past decade a large amount of research has been done to analyze the be-

havior of FGMs. For example, Amarani et al. [13] presented a free vibration analysis on

a cantilevered sandwich beam with a functionally graded (FG) core. The Young’s modu-

lus, Poisson’s ratio, and density varied in the thickness following the power-law or rule of

mixture technique. The element-free Galerkin method and standard Galerkin formulation

for two dimensional elasticity problems were considered. Rahmani et al. [14] also studied

the free vibration of sandwiched beams with a flexible functionally graded syntactic core. A

new model based on high-order sandwich panel theory was implemented. The formulations

consisted of the classical beam theory for the face sheets and an elasticity theory for the FG

core. It was concluded that increasing the inhomogeneity of the core led to higher natural

frequencies of the beam modes.

Apetre et al. [15] performed an impact response of a sandwich beam with functionally

graded core. The variation of the Young’s modulus of the core was represented by a polyno-

mial in the thickness coordinate, but the Poisson’s ratio was kept constant. A combination

of Fourier analysis and Galerkin method was used to solve the system governing equations.

The core thicknesses of the FG core were chosen such that the flexural stiffness of the sand-

wich beam were equal to that of the beam with a homogeneous core. The results indicate

that functionally graded cores can be used effectively to mitigate or avoid impact damage in

sandwich structures.

Ray and Sachade [12] derived the exact solution for the static analysis of FG plates

integrated with a PFRC layer. The Young’s modulus of the FG plate was assumed to vary

exponentially across the thickness of the plate, while the Poisson’s ratio was constant over

the domain of the plate. The through-the-thickness behavior of the plates revealed bending-

extension coupling in the FG plates even if the PFRC layer is not subjected to an applied

voltage.

In this thesis, the Poisson’s ratio ρ, density ν, and Young’s modulus E vary throughout

the thickness of the beam. Two different functions of FGMs are investigated: power-law
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functions (P-FGM), and exponential functions (E-FGM). In Ref. [17], the E-FGM function

and P-FGM function are respectively interpreted as:

G(z) = G2e
λ(z+h) (2.1)

where the functional material gradient is given as λ =
1

2h
ln(G1/G2), and

G(z) = f(z)G1 + [1− f(z)]G2 (2.2)

The volume fraction obeying the power-law is:

f(z) =

(
z + h

2h

)p
(2.3)

where p is the material parameter and 2h is the thickness of the plate or beam. G1 and G2

are the specified material property at the bottom (z = −h) and top surfaces (z = h) of the

FGM plate or beam, respectively.

2.3.2 Viscoelastic Material

Viscoelastic materials are often incorporated into light/flexible structures to reduce struc-

tural vibrations and noise. There are numerous techniques associated with incorporating vis-

coelastic materials into structures. A viscoelastic solid has a weak frequency dependence on

its dynamic properties over an extensive frequency range [18]. The Golla-Hughes-McTavish

(GHM) model is a method used for time-domain analysis of viscoelastic analysis of viscoelas-

tic structures [8]. In Ref. [19], the Prony series method, a classical time-based technique

for fitting creep or relaxation data in the form of exponential functions, is compared to a

fractional derivative model. The fractional derivative model is another time-domain method

which is based on fractional calculus. It is not commonly used in commercial finite element

software such as ANSYS, which employs the Prony series method. The reason for this is

most likely due to the increased mathematical difficulty even though it is a better viscoelastic

modeling technique.

This thesis uses a four-parameter fractional derivative model to analyze the ACLD beam.

Over the last two decades, the concept of fractional derivative has become an extremely

effective device to describe the weak frequency dependence of most viscoelastic materials

[18]. Galucio et al. [18] showed that the complex modulus of a one-dimensional model can

be written as:

σ(t) + τα
dτσ(t)

dtα
= E0ε(t) + ταE∞

dαε(t)

dtα
(2.4)
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where σ and ε are the stress and the strain, E0 and E∞ are the relaxed and instantaneous

elastic moduli, and τ is the relaxation time. A Fourier transformation of Eq. 2.4 yields the

elastic complex modulus:

E∗(ω) =
σ∗(ω)

ε∗(ω)
=
E0 + E∞(iωτ)α

1 + (iωτ)α
(2.5)

where ω∗ and ε∗ are the Fourier transforms of σ(t) and ε(t), respectively; E0 = E∗(ω → 0)

represents the static modulus of elasticity; E∞ = E∗(ω → ∞) is the dynamic modulus; τ

is the relaxation time; and α is the fractional derivative order. To fulfill the second law of

thermodynamics, the conditions 0 < α < 1, τ > 0 and E∞ > E0 must hold.

2.3.3 Piezoelectric Fiber-Reinforced Composite (PFRC)

Piezoelectric materials have been extensively used as sensors and/or actuators and when

merged into a high-performance lightweight smart structure, they actively control vibration.

Piezoelectric sensors and/or actuators are either mounted on or embedded in the structure,

enabling them to have self-controlling and self-monitoring capabilities. Even though piezo-

electric materials play a major role in achieving active damping in structures, they possess

low control authority because their monolithic piezoelectric stress/strain constants are quite

small in magnitude [20]. Since the active damping of these structures are dependent on the

piezoelectric stress/strain constants, modifications to these properties are desirous in order

to improve their damping characteristics. Piezoelectric composites are effective in improving

flexural vibration control if their fibers are longitudinally oriented to execute a bending mode

of actuators. The fibers are subjected to a constant electric field in the direction transverse

to the fiber direction, wherein the electric field is assumed to be the same for both the fibers

and the matrix [20, 12]. The schematic diagram of a lamina made of PFRC is shown in

Figure 2.2.
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Figure 2.2: Schematic diagram of a lamina made of PFRC [20].

Investigations that include the implementation of PFRCs in the high-performance lightweight

structures were performed by Mallik and Ray [20], and Ray and Sachade [12]. The former

showed that the effective piezoelectric coefficient becomes significantly larger than the cor-

responding coefficient of the piezoelectric material of the fiber. The authors were able to

determine the effectiveness based on a specific fiber volume fraction by using a microme-

chanical analysis. In Ref. [12], Ray and Sachade derived the exact solutions for the static

analysis of FG plates integrated with a layer of PFRC material. They showed that the acti-

vated PFRC layer was more effective in controlling the deformations of the FG plates when

the layer was attached to the surface of the FG plate the minimum stiffness rather than that

with the maximum stiffness.

The inverse and direct constitutive equations of the PFRC material with respect to plane

co-ordinates (xyz) are given as [21]:

{σ}k = [Q̄]k {ε}k − [ē]Tk {E}k
{D}k = [ē]k {ε}k − [d̄]Tk {E}k (2.6)

where k is the ply order in the laminate. {D}, {E}, {ε} and {σ} are the electric displace-

ment, electric field, strain and stress vectors, [Q̄], [ē] and [d̄] are the elastic, piezoelectric and

permittivity constant matrices, respectively.
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Chapter 3

Theoretical Formulation

3.1 System Description

The system being analyzed is a rectangular three-layered composite beam. The host beam

is made of FGM with through-the-thickness varying material properties (Young’s modulus,

Poisson’s ratio, and density). The FGM beam is bonded to a viscoelastic material whose

other side is bonded to a PFRC laminate layer. Figure 3.1 is a schematic of the ACLD beam

arrangement where a sensor measures the tip velocity, which is then fed through the controller

to obtain a voltage that is applied to the PFRC laminate. The bottom layer, represented by

the host beam which is an FGM beam, is identified by the subscript b. The core layer, made

of viscoelastic material, is distinguished by the subscript c. The top layer, representing the

PFRC laminate, is identified by the subscript t with n number of plies. Each PFRC ply has

unidirectional fibers aligned at an angle θ with respect to the reference axis. The geometric

parameters of the ACLD beam are the length of the beam L, width of the beam b, thickness

of the bottom layer (host beam) 2hb, thickness of the core layer (viscoelastic layer) 2hc, and

thickness of the top layer (PFRC laminate) 2ht. Each layer has its own axes where zb, zc,

and zt are zero at the midsurface of each layer. The material properties of the ith layer are

density ρi, Young’s Modulus Ei, and Poisson’s ratio νi. Perfect bonding is assumed at each

interface where the adhesive material is thin with infinite stiffness.

11



Figure 3.1: Schematic of ACLD beam.

3.2 FGM Beam (Bottom Layer)

3.2.1 Kinematic Assumptions

The FGM beam has an axial displacement that is linearly interpolated across the beam

thickness and a through-the-thickness independent transverse displacement represented by

ūb and w̄b, respectively. The displacement vector of the FGM beam d̄b is written as:

d̄b =

{
ūb(x, zb, t)

w̄b(x, zb, t)

}
=

{
ub(x, t)− zbφb(x, t)

wb(x, t)

}
(3.1)

This kinematic assumption captures Euler-Bernoulli beam theory if, φb(x, t) = ∂wb(x,t)
∂x

.

The reference point is taken at the geometric midpoint of the FGM beam. Defining a new

vector uTb = {ub wb φb} gives the following expansion of d̄b:

d̄b =

[
1 0 −zb
0 1 0

]
ub

wb

φb

 ≡ [Zb]ub (3.2)

Using linear strain-displacement relations gives the following:
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ε̄b =


εx(x, zb, t)

γxz(x, zb, t)


b

=


∂ūb
∂x

∂ūb
∂zb

+
∂w̄b
∂x

 =


∂ub
∂x

(x, t)− zb
∂φb
∂x

(x, t)

−φb(x, t) +
∂wb
∂x

(x, t)

 (3.3)

Note that for Euler-Bernoulli beam theory, γxz = ∂ūb
∂zb

+ ∂w̄b
∂x

= 0. The strain vector ε̄b can

be written in matrix notation as:

ε̄b =

{
εx

γxz

}
b

=

[
1 −zb 0 0

0 0 −1 1

]
[Db]


ub

wb

φb

 ≡ [Z̃b][Db]ub (3.4)

where the derivative operator matrix [Db] is given as:

[Db] =



∂

∂x
0 0

0 0
∂

∂x
0 0 1

0
∂

∂x
0


3.2.2 Constitutive Equations

With respect to an orthotropic FGM where the principal material properties coincide with

both x and z axes, the 2-dimensional stress-strain constitutive relations are:
σx

σz

τxz


b

=

 c11(z) c13(z) 0

c11(z) c33(z) 0

0 0 c55(z)




εx

εz

γxz


b

(3.5)

where σx and σz are the normal stresses in the x and z directions, respectively, γxz is the

shear stress in the xz-plane and cij are elastic constants of the material. With the assumption

that stress in the z direction is zero (i.e. σz = 0), then εz = −c11

c33

εx and introducing c̄11 =

(c11 −
c13

2

c33

), the reduced constitutive relation is written as:

σ̄b =

{
σx

τxz

}
b

=

[
c̄11(z) 0

0 c55(z)

]{
εx

γxz

}
b

≡ [Qb(z)] ε̄b (3.6)
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For varying Young’s modulus, the elasticity matrix may be written as:

[Qb(z)] = Eb(z) [ξb] =
Eb(z)

(1 + νb)(1− 2νb)

[
1− νb 0

0 (1− 2νb)/2

]
(3.7)

where Eb(z) is the elastic function that varies throughout the thickness and [ξb] is the co-

efficient matrix. The isotropic elasticity matrix is related to the Young’s modulus Eb and

Poisson’s ratio νb and is under plane strain assumption. νb can either be constant or vary

along z (i.e. νb = νb(z)).

Depending on the application, the FGM beam may have its Young’s modulus, Pois-

son’s ratio, and/or density varying continuously in the thickness direction, along the z-axis

(i.e. E = E(z), ν = ν(z), ρ = ρ(z)). The formulation for two types of volume fraction

methods: 1) power-law FGM (P-FGM) and 2) exponential FGM (E-FGM) may be written

as:

1) In P-FGM the volume fraction is assumed to obey the power-law function:

f(z) =

(
z + h

2h

)p
(3.8)

where p is the material parameter and 2h is the thickness of the layer. The rule of mixture

is applied with the volume fraction f(z) to determine the effective material property.

G(z) = f(z)G0
b + [1− f(z)]G1

b (3.9)

2) In E-FGM the volume fraction obeys the exponential function:

G(z) = G0
be
λ(z+h) (3.10)

with λ =
1

2h
ln

(
G1
b

G0
b

)
(3.11)

where G(z) represents any varying property (i.e. G(z) = E = E(z), G(z) = ν = ν(z), or

G(z) = ρ = ρ(z)). G0
b and G1

b represent the corresponding material properties at the bottom

and top surfaces of the FGM beam, respectively, and λ is a parameter that describes the

inhomogeneity of the FGM beam throughout the thickness.

Thus, from Eqs. 3.9 and 3.10, the FGM elasticity, Poisson ratio and density equations

for both P-FGM and E-FGM become:

1) P-FGM

Eb(z) =

(
z + h

2h

)p
E0
b +

[
1−

(
z + h

2h

)p]
E1
b (3.12)
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νb(z) =

(
z + h

2h

)p
ν0
b +

[
1−

(
z + h

2h

)p]
ν1
b (3.13)

ρb(z) =

(
z + h

2h

)p
ρ0
b +

[
1−

(
z + h

2h

)p]
ρ1
b (3.14)

2) E-FGM

Eb(z) = E0
b e

1
2h

ln

(
E1
b

E0
b

)
(z+h)

(3.15)

νb(z) = ν0
b e

1
2h

ln

(
ν1b
ν0
b

)
(z+h)

(3.16)

ρb(z) = ρ0
be

1
2h

ln

(
ρ1b
ρ0
b

)
(z+h)

(3.17)

3.2.3 Variational Formulation using Hamilton’s principle

The equation of motion is derived by utilizing the extended Hamilton’s principle:∫
t

(δT − δU + δW )dt = 0 (3.18)

where δT (= δTb + δTc + δTt) and δU (= δUb + δUc + δUt) are the variations of the kinetic

energy and strain energy, respectively. δW is the virtual work done by external forces on

the system.

3.2.3.1 Kinetic Energy

The first variation of kinetic energy for the FGM beam is:

δTb =

∫
v

ρbδd̄
T
b

¨̄dbdv (3.19)

Substituting for d̄b from Eq. 3.2 yields:

δTb = ρb

∫
x

∫
y

δuTb [Ib] übdydx

= ρbb

∫
x

δuTb [Ib] übdx (3.20)

where ρb is either constant or varying (i.e. ρb = ρb(z)) with respect to P-FGM method (Eq.

15



3.14) or E-FGM method (Eq. 3.17). For a constant density, the inertia matrix [Ib] becomes:

[Ib] =

∫
z

(
[Zb]

T [Zb]
)
dz =

∫
z

 1 0 −zb
0 1 0

−zb 0 z2
b

 dz
If the density is varying through the thickness, it must be integrated with the inertia matrix

with respect to z (i.e.
∫
z
ρb [Zb]

T [Zb] dz).

3.2.3.2 Strain Energy

The variational strain energy for the FGM beam is:

δUb =

∫
v

δε̄Tb σ̄bdv (3.21)

Substituting for σ̄b from Eq. 3.6 yields:

δUb =

∫
v

δε̄Tb [Qb(z)]ε̄bdv (3.22)

where Qb(z) varies according to P-FGM or E-FGM method, Eq. 3.12 and Eq. 3.15, respec-

tively. Substituting for ε̄b from Eq. 3.4, yields:

δUb = b

∫
x

δub
T [Db]

T [Cb] [Db] ubdx (3.23)

where the stiffness matrix [Cb] is written as:

[Cb] =

∫
z

([
Z̃b

]T
[Qb]

[
Z̃b

])
dz

3.3 Viscoelastic layer (Core Layer)

3.3.1 Kinematic Assumptions

Different from the FGM beam layer kinematics, the viscoelastic layer kinematics have ax-

ial and transverse displacements that are interpolated through the thickness by cubic and

quadratic polynomial functions, respectively. The displacement vector d̄c is characterized as:
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d̄c =

{
ūc(x, zc, t)

w̄c(x, zc, t)

}
=

{
C1(ub(x, t)− hbφb(x, t)) + C2uc2 + C3uc3 + C4(ut(x, t) + htφt(x, t))

E1wb(x, t) + E2wc(x, t) + E3wt(x, t)

}
(3.24)

where uc2 = ūc(x, zc = −hc
3
, t), uc3 = ūc(x, zc = hc

3
, t),

C1 = − 9

16h3
c

(
z3
c − hcz2

c −
1

9
h2
czc +

1

9
h3
c

)
, C2 =

27

16h3
c

(
z3
c −

1

3
hcz

2
c − h2

czc +
1

3
h3
c

)
,

C3 = − 27

16h3
c

(
z3
c +

1

3
hcz

2
c − h2

czc −
1

3
h3
c

)
, C4 =

9

16h3
c

(
z3
c + hcz

2
c −

1

9
h2
czc −

1

9
h3
c

)
,

(3.25)

E1 =
zc(zc − hc)

2h2
c

, E2 =
h2
c − z2

c

h2
c

, and E3 =
zc(zc + hc)

2h2
c

.

The relation is further expanded with a new vector uTc = {ub wb φb uc2 uc3 wc ut wt φt} as:

d̄c =

[
C1 0 −hbC1 C2 C3 0 C4 0 htC4

0 E1 0 0 0 E2 0 E3 0

]



ub

wb

φb

uc2

uc3

wc

ut

wt

φt



≡ [Zc] uc (3.26)

Using linear strain-displacement relations gives the following:

ε̄c =


εx

εz

γxz


c

=



∂ūc
∂x

∂w̄c
∂zc

∂ūc
∂zc

+
∂w̄c
∂x


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=



C1
∂ub
∂x
− hbC1

∂φb
∂x

+ C2
∂uc2
∂x

+ C3
∂uc3
∂x

+ C4
∂ut
∂x

+ htC4
∂φb
∂x

∂E1

∂zc
wb +

∂E2

∂zc
wc +

∂E3

∂zc
wt

∂C1

∂zc
ub − hb

∂C1

∂zc
φb +

∂C2

∂zc
uc2 +

∂C3

∂zc
uc3 +

∂C4

∂zc
ut + ht

∂C4

∂x
φb + E1

∂wb
∂x

+ E2
∂wc
∂x

+ E3
∂wt
∂x


(3.27)

The strain vector ε̄c =


εx

εz

γxz


c

takes the following compact matrix notation:

ε̄c =
[
Z̃c

]
[Dc]



ub

wb

φb

uc2

uc3

wc

ut

wt

φt



≡
[
Z̃c

]
[Dc] uc (3.28)

where
[
Z̃c

]
and the derivative operator matrix [Dc] are given as::

[
Z̃c

]
=
[

[Z̃c1] [Z̃c2]
]

where [
Z̃c1

]
=


C1 −hbC1 C2 C3 C4 htC4 0 0 0

0 0 0 0 0 0
∂E1

∂zc

∂E2

∂zc

∂E3

∂zc
0 0 0 0 0 0 0 0 0


and

[
Z̃c2

]
=


0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
∂C1

∂zc
−hb

∂C1

∂zc

∂C2

∂zc

∂C3

∂zc

∂C4

∂zc
ht
∂C4

∂zc
E1 E2 E3


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[Dc] =



∂

∂x
0 0 0 0 0 0 0 0

0 0
∂

∂x
0 0 0 0 0 0

0 0 0
∂

∂x
0 0 0 0 0

0 0 0 0
∂

∂x
0 0 0 0

0 0 0 0 0 0
∂

∂x
0 0

0 0 0 0 0 0 0 0
∂

∂x
0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0
∂

∂x
0 0 0 0 0 0 0

0 0 0 0 0
∂

∂x
0 0 0

0 0 0 0 0 0 0
∂

∂x
0


3.3.2 Constitutive Equations

3.3.2.1 Elastic Properties

The 2-dimensional stress-strain constitutive relation is:
σx

σz

τxz


c

=

 c11 c13 0

c11 c33 0

0 0 c55




εx

εz

γxz


c

≡ [Qc] ε̄c (3.29)

where σx and σz are the normal stresses in the x and z directions, respectively, γxz is the

shear stress in the xz-plane and cij are elastic constants of the material. For an isotropic

material and under plane strain assumption, the elasticity matrix can be written as:

[Qc] = Ec [ξc] (3.30)
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where

[ξc] =
1

(1 + νc)(1− 2νc)

 1− νc νc 0

νc 1− νc 0

0 0 (1− 2νc)/2

 (3.31)

3.3.2.2 Viscoelastic Properties

The mechanical behavior of the viscoelastic material at any given time depends on the current

state of stress and strain as well as on the full history of the material. Following Galucio

et al. [18], the constitutive relation can be mathematically described by a two-dimensional

constitutive equation as:

σ̄c(t) + τα
dασ̄c(t)

dtα
= E0 [ξc] ε̄c(t) + ταE∞ [ξc]

dαε̄c(t)

dtα
(3.32)

where [ξc] is the same as Eq. 3.31, which assumes a plane strain condition, E0 and E∞ are

the relaxed and non-relaxed elastic moduli, τ is the relaxation time, and α is the fractional

derivative order (0 < α < 1). The fractional operator
dα

dtα
is approximated by the Grünwald

definition by finite difference as:

dαf(t)

dtα
≈ ∆t−α

Nt∑
j=0

Aj+1f(t− j∆t) (3.33)

where ∆t =
t

N
is the time step increment, Nt is the total number of terms where Nt < N ,

and Aj+1 are the Grünwald coefficients given by the recurrence formula:

Aj+1 =
j − α− 1

j
Aj =

j∏
p=1

p− α− 1

p
(3.34)

The anelastic strain ˜̄εc at a specific time t can be written as:

˜̄εc(t) = ε̄c(t)− [ξc]
−1 σ̄c
E∞

(3.35)

This allows the constitutive equation, Eq. 3.32 to be rewritten as:

˜̄εc(t) + τα
dα˜̄εc(t)
dtα

=
E∞ − E0

E∞
ε̄c(t) (3.36)

This change in variable simplifies the equation by reducing the number of fraction derivative

terms from two to one. Employing the Grünwald approximation from Eq. 3.33 and noting
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that A1 = 1, Galucio at al. [18] showed that Eq. 3.35 gives the following form:

˜̄εc(t) = (1− η)
E∞ − E0

E∞
ε̄c(t)− η

Nt∑
j=1

(
j∏

p=1

p− α− 1

p

)˜̄εc(t)(t− j∆t) (3.37)

where η =
τα

τα + ∆tα
is a dimensionless constant.

A contrived anelastic displacement vector {ũc(t)} is expressed such that the anelastic

strain can be written as: ˜̄εc(t) =
[
Z̃c

]
[Dc] ũc(t) (3.38)

Substituting ε̄c(t) from Eq. 3.28 and ˜̄εc(t) from Eq. 3.38 at a specific time t into Eq.

3.37, the anelastic displacement becomes:

ũc(t) = (1− η)
E∞ − E0

E∞
uc(t)− η

Nt∑
j=1

(
j∏

p=1

p− α− 1

p

)
ũc(t− j∆t) (3.39)

Isolating σ̄c(t) from Eq. 3.35 yields:

σ̄c(t) = E∞ [ξc]
(
ε̄c(t)− ˜̄εc(t)) (3.40)

Now, replacing ˜̄εc(t) in Eq. 3.37 yields an updated expression of σ̄c(t) at a given time t:

σ̄c(t) = E0 [ξc]

[(
1 + η

E∞ − E0

E0

)
ε̄c(t) + η

E∞
E0

Nt∑
j=1

(
j∏

p=1

p− α− 1

p

)˜̄εc(t− j∆t)] (3.41)

Note that for an elastic material, η = 0 and E0 = Ec resulting in the reduction of Eq. 3.41 to:

σ̄c(t) = E0 [ξc] ε̄c(t) ≡ [Qc] ε̄c(t). The constitutive relation for the viscoelastic core becomes:

σ̄c(t) = [Qc]

[(
1 + η

E∞ − E0

E0

)
ε̄c(t) + η

E∞
E0

Nt∑
j=1

(
j∏

p=1

p− α− 1

pp

)˜̄εc(t− j∆t)] (3.42)

3.3.3 Variational Formulation using Hamilton’s principle

3.3.3.1 Kinetic Energy

The variation of kinetic energy for the viscoelastic layer is:

δTc =

∫
v

ρcδd̄
T
c

¨̄dcdv (3.43)
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Substituting for d̄c from Eq. 3.26 yields:

δTc = ρc

∫
x

∫
y

δuTc [Ic] ücdydx

= ρcb

∫
x

δuTc [Ic] ücdx (3.44)

where the inertia matrix [Ic] is expressed as:

[Ic] =

∫
z

(
[Zc]

T [Zc]
)
dz

3.3.3.2 Strain Energy

The variational strain energy for the viscoelastic core at a given time t is:

δUc =

∫
v

δε̄Tc σ̄
T
c dv (3.45)

Substituting for σ̄c from Eq. 3.42 yields:

δUc =

∫
v

δε̄Tc [Qc]ε̄cdv +

∫
v

δε̄Tc [Q̃c]ε̄cdv

+ η
E∞
E0

Nt∑
j=1

(
j∏

p=1

p− α− 1

p

)
×
∫
v

δε̄Tc [Qc ]̃ε̄c(t− j∆t)dv (3.46)

where [Q̃c] = η
E∞ − E0

E0

[Qc].

The total viscoelastic strain energy can be rewritten as:

δUc = δŪc + δŨc + δW̃c (3.47)

where δŪc is the variation of the elastic strain energy, δŨc represents the variation of the

anelastic strain energy, and δW̃c is the virtual work done by the induced for in the viscoelastic

layer. The variation of the elastic strain energy δŪc is determined by substituting the strain

vector ε̄c from Eq. 3.28 into the strain energy equation:

δŪc = b

∫
x

δuTc [Dc]
T [Cc] [Dc] ucdx (3.48)

22



where the elastic stiffness matrix [Cc] is written as:

[Cc] =

∫
z

([
Z̃c

]T
[Qc]

[
Z̃c

])
dz

Correspondingly, the variation of the anelastic strain energy δ ˜̄U c is written as:

δ ˜̄U c = b

∫
x

δuTc [Dc]
T
[
C̃c

]
[Dc] ucdx (3.49)

where the anelastic stiffness matrix
[
C̃c

]
is expressed as:

[
C̃c

]
= η

E∞ − E0

E0

[Cc]

Finally, the virtual work δW̃c is given as:

δW̃c = η
E∞
E0

Nt∑
j=1

(
j∏

p=1

p− α− 1

p

)
× b
∫
x

δuc
T [Dc]

T [Cc] [Dc] ũc(t− j∆t)dx (3.50)

3.4 PFRC Laminate (Top Layer)

The piezoelectric fiber-reinforced composite (PFRC) is identified with the subscript t for the

top layer. The PFRC layer acts as an actuator for the ACLD beam.

3.4.1 Kinematic Assumptions

3.4.1.1 Mechanical Field Assumptions

Similar to the FGM beam bottom layer, the axial displacement is linearly interpolated in the

thickness coordinate and the transverse displacement is constant. The displacement vector

d̄t (includes both the axial ūt and transverse w̄t displacement) is written as:

d̄t =

{
ūt(x, zt, t)

w̄t(x, zt, t)

}
=

{
ut(x, t)− ztφt(x, t)

wt(x, t)

}
(3.51)

The reference point is taken at the geometric midpoint of the ply assembly or PFRC layer.

Establishing a new vector uTt = {ut wt φt} gives the following expansion of d̄t:
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d̄t =

[
1 0 −zt
0 1 0

]
ut

wt

φt

 ≡ [Zt]ut (3.52)

The linear strain-displacement relations are:

ε̄t =


εx(x, zt, t)

γxz(x, zt, t)


t

=


∂ūt
∂x

∂ūt
∂zt

+
∂w̄t
∂x

 =


∂ut
∂x

(x, t)− zt
∂φt
∂x

(x, t)

−φt(x, t) +
∂wt
∂x

(x, t)

 (3.53)

The strain vector ε̄t can be written in the following form as:

ε̄t =

{
εx

γxz

}
t

=


∂ut
∂x

(x, t)

−φt(x, t) +
∂wt
∂x

(x, t)

− zt


∂φt
∂x

(x, t)

0

 (3.54)

=

{
ε0x

γ0
xz

}
t

+ zt

{
κx

κxz

}
t

≡ ε0 + ztκ

Hence,

ε̄t = [1 zt]

{
ε0

κ

}
t

= [1 zt]

[
D0
t

D1
t

]
ut (3.55)

where the derivative operator matrices [D0
t ] and [D1

t ] are given as:

[
D0
t

]
=

 ∂

∂x
0 0

0 0
∂

∂x

 [
D1
t

]
=

 0
∂

∂x
1

0 0 0


3.4.1.2 Electrical Field Assumptions

Two assumptions are made with respect to the electrostatic field in the PFRC laminate. The

first assumption is that the electrical potential variable ψt is linear throughout the thickness

of the top layer and is written as:

ψt(x, zt, t) = ψ0(x, t) + zt
∂ψt(x, zt, t)

∂zt
(3.56)

where ψ0 and
∂ψt
∂zt

are the electric potential and its gradient at the mid-plane of the PFRC

laminate, respectively.
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The second assumption is that the axial component of the electrical field (i.e. Ex = 0) is

negligible since the contribution to the electromechanical energy is insignificant compared to

the transverse displacement. In addition, the voltage is assumed to be uniformly distributed

along the z direction (thickness) because the PFRC laminate is thin.

The transverse constant electrical field Ez can then be expressed as:

Ez = −∂ψt
∂zt

= −V
ht

(3.57)

where V is the applied voltage and ht is the PFRC laminate thickness.

3.4.2 Constitutive Equations

The piezoelectric fibers in the PFRC are continuous and unidirectional and subjected to a

constant electric field transverse to the fibers. The matrix and fibers have identical electric

field. Further, the matrix is not piezolectrically active [20].

3.4.2.1 Mechanical Properties

The piezoelectric fibers are isotropic and lie in the transverse 1-2 plane. The constitutive

relation for the kth ply of the PFRC in the principal 1-2-3 directions is given as:

σ1

σ2

σ3

τ23

τ13

τ12


k

=



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


k



ε1

ε2

ε3

γ23

γ13

γ12


k

−



0 0 e31

0 0 e31

0 0 e31

0 e15 0

e15 0 0

0 0 0


k


E1

E2

E3


k

(3.58)

where i, j = 1, 2, 3, σi and τij are the normal and shear stress, and εi and γij are the normal

and shear strain components. Also, cij’s are the effective elastic coefficients determined from

the micromechanical analysis at constant electric field [20]. The constants eij represent the

piezoelectric coefficients and Ei is the electric field.

The 1-2-3 coordinate system is transformed to a global xyz system via a counterclockwise

rotation by an angle θ about the z axis using the mechanical component of the transformation
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matrix:

[T ] =



cos2θ sin2θ 0 0 0 2sinθcosθ

sin2θ cos2θ 0 0 0 −2sinθcosθ

0 0 1 0 0 0

0 0 0 cosθ −sinθ 0

0 0 0 sinθ cosθ 0

−sinθcosθ sinθcosθ 0 0 0 cos2θ − sin2θ


(3.59)

Likewise, for the electro-mechanical component in Eq. 3.58, the transformation matrix is:

[T ]e =

 cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (3.60)

Therefore, the stress-strain relation for the mechanical portion with respect to the global

coordinate system is:

σx

σy

σz

τyz

τxz

τxy



m

k

= [T ]−1
k [Ct]k[R][T ]k[R]−1



εx

εy

εz

γyz

γxz

γxy


k

≡ [Qt]k



εx

εy

εz

γyz

γxz

γxy


k

(3.61)

where Reuter matrix [R] is utilized to attribute the relationship between the tensor shear

strain ε and the engineering shear strain γ shown as follows:

[R] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


where σx, σx, and σx are the normal stresses in the x, y, and z directions, respectively; τxz and

τyz are the transverse shear stresses and τxy is the in-plane shear stress. The corresponding
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stains are εx, εy, εz, γyz, γxz, and γxy. The stiffness matrix from Eq. 3.58 [Ct]k is written as:

[Ct]k =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


k

Similarly, the stress and electric field relation of Eq. 3.58 is transformed through the following

expression: 

σx

σy

σz

τyz

τxz

τxy



e

k

= [T ]−1
k [ε]Tk [T ]ek


Ex

Ey

Ez


k

≡ [e]Tk


Ex

Ey

Ez


k

(3.62)

where the piezoelectric coefficient matrix [e]Tk is the transpose of [e]k and is expressed as:

[e]Tk =

 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0


k

The final constitutive relation is derived following the work by Sun and Huang [21]. The

stress and strain about the x direction are assumed to be zero (i.e. σz = εz = 0) since the

thickness of the PFRC layer is negligible. Applying these changes, the updated constitutive

equation is expressed as:

σx

σy

τyz

τxz

τxy


k

=


Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66


k



εx

εy

γyz

γxz

γxy


k

−


0 0 ē31

0 0 ē31

−ē25 ē15 0

ē15 ē25 0

0 0 0


k


Ex

Ey

Ez


k

(3.63)
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where ē31 = e31, ē15 = e15(cos2θ − sin2θ) and ē25 = −2e15sinθcosθ, and

Q̄11 = c11cos
4θ + 2c12sin

2θcos2θ + c22sin
4θ + 4c66sin

2θcos2θ

Q̄12 = c11sin
2θcos2θ + c12(sin4θ + cos4θ) + c22sin

2θcos2θ − 4c66sin
2θcos2θ

Q̄16 =
[
c11cos

2θ + c12(sin2θ − cos2θ)− c22sin
2θ + 2c66(sin2θ − cos2θ)

]
sinθcosθ

Q̄22 = c11sin
4θ + 2c12sin

2θcos2θ + c22cos
4θ + 4c66sin

2θcos2θ

Q̄26 =
[
c11sin

2θ − c12(sin2θ − cos2θ)− c22cos
2θ − 2c66(sin2θ − cos2θ)

]
sinθcosθ

Q̄44 = c44cos
2θ + c55sin

2θ

Q̄45 = −c44sinθcosθ + c55sinθcosθ

Q̄55 = c44sin
2θ + c55cos

2θ

Q̄66 = c11sin
2θcos2θ − 2c12sin

2θcos2θ + c22sin
2θcos2θ + c66(sin4θ − 2sin2θcos2θ + coss4θ)

Assuming also that σy = τyz = τxy = 0 albeit εy 6= γyz 6= γxy 6= 0, and noting that

Ex = Ey = 0 because the piezoelectric fibers are polarized only through the thickness, the

final constitutive equation is reduced to:

{σ̄t}k =

{
σx

τxz

}
k

=

[
Q̄11 0

0 ksQ̄55

]
k

{
εx

γxz

}
k

−

{
ē31Ez

0

}
k

≡
[
Q̄t

]
k
{εt}k −

{
ē31Ez

0

}
k

(3.64)

where,

Q̃11 = Q̄11 +
Q̄16Q̄26 − Q̄12Q̄66

Q̄22Q̄66 − Q̄2
26

Q̄12 +
Q̄12Q̄26 − Q̄16Q̄22

Q̄22Q̄66 − Q̄2
26

Q̄16,

Q̃55 = Q̄55 −
Q̄2

45

Q̄44

, ẽ31 =

(
1− Q̄16Q̄26 − Q̄12Q̄66

Q̄22Q̄66 − Q̄2
26

)
ē31,

and ks = 5/6 is the shear correction factor.

3.4.2.2 Electrical Properties

The direct piezoelectric effect would be considered when one wants to model a self-sensing

actuator. For completeness, the electrical displacement field Di is given by [22] and is
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expressed in the 1-2-3 principle directions as:


D1

D2

D3


k

=

 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0


k



ε1

ε2

ε3

γ23

γ13

γ12


k

+

 d11 0 0

0 d22 0

0 0 d33


k


0

0

Ez


k

(3.65)

where the coefficients dij are the components of the dielectric permittivity tensor at constant

strain.

The permittivity constant matrix [dk] =

 d11 0 0

0 d22 0

0 0 d33


k

is transformed to determine

the modified electrical displacement relation in the xyz coordinate system as follows:


Dx

Dy

Dz


m

e

= [T ]−1
k [e]Tk [T ]ek



εx

εy

εz

γyz

γxz

γxy


k

+ [T ]−1
k [d]Tk [T ]ek


0

0

Ez


k

≡ [ē]k



εx

εy

εz

γyz

γxz

γxy


k

+ [d̄]k


0

0

Ez


k

(3.66)

With the assumption that εz = 0, the constitutive electrical displacement relation is updated

to:


Dx

Dy

Dz


k

=

 0 0 0 −ē25 e15 0

0 0 0 e15 ē25 0

e31 e31 0 0 0 0


k



εx

εy

γyz

γxz

γxy


k

+

 d̄11 d̄12 0

d̄12 d̄22 0

0 0 d̄33


k


0

0

Ez


k

(3.67)
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where d̄11 = d11cos
2θ + d22sin

2θ, d̄12 = (d22 − d11)sinθcosθ, d̄22 = d11sin
2θ + d22cos

2θ, and

d̄33 = d33. Assuming also that dkx = Dk
y = 0, the z direction electrical displacement field Dk

z

reduces to:

Dk
z = ē31εx + ē31εy + d̄33E

k
z (3.68)

The enforcement of the condition σy = γyz = γxy = 0 from beam theory further reduces the

constitutive relation to:

Dk
z = ẽ31εx + d̃33E

k
z (3.69)

where d̃33 =
Q̄66ē

2
31

Q̄22Q̄66 − Q̄2
26

+ d̄33.

3.4.2.3 Laminate Stiffness Matrix ABD

Applying the classical laminate theory (CLT) [23, 24], the resultant laminate stiffness matrix

ABD can be determined. The force and moment resultants in the x coordinate are first

determined with respect to the reference plane, at the middle of the laminate. The geometry

of a laminate with n layers is shown in Figure 3.2.

Figure 3.2: Geometry of an n-layered laminate. [23]

The resultant forces and moments acting on the laminate are determined by integrating

the stresses and moments of the stresses at each ply through the thickness of the laminate
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[23, 24]. The normal force resultant Nx and shear force resultant Nxz as well as the bending

moment resultant Mx and the twisting moment resultant Mxz are shown below:

{
Nx

Nxz

}
=

ht∫
−ht

{
σx

τxz

}
dz =

n∑
k=1

zk∫
zk−1

{
σx

τxz

}
k

dz (3.70)

{
Mx

Mxz

}
=

ht∫
−ht

{
σx

τxz

}
zdz =

n∑
k=1

zk∫
zk−1

{
σx

τxz

}
k

zdz (3.71)

where the stress resultants Nx, Nxz are depicted as force per unit length and the moment

resultants Mx, Mxz are depicted as moment per unit length in the x direction.

Taking the stiffness matrix from Eq. 3.64 and the strain vector from Eq. 3.55, the force

and moment resultants can be expressed in the following matrix form [23, 24]:{
Nx

Nxz

}
=

[
A11 A12

A12 A22

]{
ε0x

γ0
xz

}
+

[
B11 B12

B12 B22

]{
κx

κxz

}
−

{
Nx

0

}t

(3.72)

{
Mx

Mxz

}
=

[
B11 B12

B12 B22

]{
ε0x

γ0
xz

}
+

[
D11 D12

D12 D22

]{
κx

κxz

}
−

{
Mx

0

}t

(3.73)

where

Aij =
n∑
k=1

(
Q̃tij

)
k

(zk − zk−1)

Bij =
1

2

n∑
k=1

(
Q̃tij

)
k

(z2
k − z2

k−1) (3.74)

Dij =
1

3

n∑
k=1

(
Q̃tij

)
k

(z3
k − z3

k−1)

and

N t
x =

n∑
k=1

(ẽ31Ez)k (zk − zk−1)

M t
x =

1

2

n∑
k=1

(ẽ31Ez)k (z2
k − z2

k−1) (3.75)

(3.76)
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The laminate stiffness matrices so-called ABD matrix includes the extensional stiffnesses

Aij, the coupling stiffnesses Bij, and the bending stiffness Dij. N
t
x and M t

x are components

of the electrical stress resultant.

3.4.3 Variational Formulation using Hamilton’s principle

3.4.3.1 Kinetic Energy

Analogous to the FGM beam and viscoelastic layer, the variation of kinetic energy for the

PFRC laminate is:

δTt =

∫
v

ρtδd̄
T
t

¨̄dtdv (3.77)

Substituting for d̄t from Eq. 3.52 yields:

δTt = ρt

∫
x

∫
y

δuTt [It] ütdydx

= ρtb

∫
x

δuTt [It] ütdx (3.78)

where [It] is expressed as:

[It] =
n∑
k=1

∫
zk

(
[Zt]

T [Zt]
)
dz =

n∑
k=1

∫
zk

 1 0 −zt
0 1 0

−zt 0 z2
t

 dz
3.4.3.2 Strain Energy

The total variational strain energy for the PFRC laminate is described as:

δUt = δUM
t + δWE

t (3.79)

where UM
t represents the mechanical strain energy and WE

t is the work done by the electrical

force created from the applied electric filed Ez.

The variation of the total mechanical strain energy for the PFRC laminate is as follows:

δUM
t =

∫
v

δε̄Tt σ̄tdv (3.80)

Using the stress-strain relation of each ply in the lamina {σ̄t}k =
[
Q̃t

]
k
ε̄t from Eq. 3.64, the
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variational mechanical strain can be expanded as:

δUt =

∫
x

∫
y

n∑
k=1

zk∫
zk−1

δε̄Tt

[
Q̃t

]
k
δε̄tdzdydx (3.81)

Substituting the strain vector from Eq. 3.55 into the above strain energy equation gives:

δUt =

∫
x

∫
y

n∑
k=1

zk∫
zk−1

{
δε0

δκ

}T

t

[
Q̃t ztQ̃t

ztQ̃t z2
t Q̃t

]
k

{
ε0

κ

}
t

dzdydx

≡ b

∫
x

{
δε0

δκ

}
t

[
A B

B D

]{
ε0

κ

}
t

dx (3.82)

where the ABD laminate stiffness matrices are found using Eq. 3.74 and gives:

A =

[
A11 A12

A12 A22

]
, B =

[
B11 B12

B12 B22

]
, D =

[
D11 D12

D12 D22

]
.

The final expression of the variational mechanical strain energy is found by substituting{
ε0

κ

}
t

=

[
D0
t

D1
t

]
ut from Eq. 3.55 shown below:

δUM
t = b

∫
x

δuTt

[
D0
t

D1
t

]T [
A B

B D

][
D0
t

D1
t

]
utdx (3.83)

The construction of the actuator is found by applying an electric field to the PFRC lam-

inate, where the electric field is found via a simple proportional-derivative (PD) controller.

This electric field is determined by the PD controllers’ derivative constant [25]. A velocity

feedback control gain is used to signal the actuator.

Considering the electrical portion of the strain energy, the virtual work δWE
t of the PFRC

can be written as:

δWE
t = −

∫
v

δε̄Tt Ēdv +

∫
v

ĒT
[
d̄
]T
k
δĒdv

 ≡ −∫
v

δε̄Tt Ēdv (3.84)

where Ē = {0 0 Ez}T . The variation of the electrical field is δĒ = 0 as the electrical field

Ē is known. The mechanical portion of the virtual work is determined in the same manner

as the electrical electrical part. Doing so, by replacing ε̄t with Eq. 3.55 and substituting
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[ē]Tk Ē =
{
ẽ31Ez

}
k

from Eq. 3.64 to the previous virtual work expression yields:

δŴt = −b
∫
x

δuTt

[
D0
t

D1
t

]T 
N t
x

0

M t
x

0

 dx (3.85)

where the electrical field resultants N t
x and M t

x are determined from Eq. 3.75.
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Chapter 4

Finite Element Modeling

As mentioned in Chapter 1, the bottom FGM beam and top PFRC laminate are modeled

using either Euler-Bernoulli beam theory or Timoshenko beam theory. The kinematics of

these theories involve a linear axial displacement and a constant transverse displacement.

The kinematics of the viscoelastic layer is expressed using quadratic and cubic interpolations

in the transverse and axial displacements, respectively. This section presents the finite

element formulation of the ACLD beam with the bottom FGM beam and top PFRC laminate

represented as Timoshenko beams. The schematic of a representative finite element of the

ACLD beam is shown in Figure 4.1.

The through-the-thickness variations of the displacements are defined using five locations

along the entire thickness of the system: one for the bottom FGM beam, three for the

viscoelastic core, and one for the top PFRC layer. These five locations are used to capture

the field variables for each layer. Three nodes are defined along the span of the beam

to allow for a quadratic interpolation of the transverse displacement field variable due to

Timoshenko’s beam theory. Nodes 1 and 3 have the same five locations through-the-thickness

displacements, while node 2 has only the transverse displacement of each layer.

The bottom FGM beam and top PFRC laminate are represented as Timoshenko beams.

The axial displacements is interpolated with a linear function and the transverse displace-

ments with a quadratic function. For the viscoelastic core, the axial displacement is repre-

sented by a cubic function, and the transverse displacement is interpolated with a quadratic

function. The mixed interpolations prevent the occurrence of shear-locking.

The global displacement vector of an element can be written as:

uTe = {ub wb φb uc2 uc3 wc ut wt φt} (4.1)

where ui and wi are the axial and transverse displacement magnitudes, respectively, evaluated
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Figure 4.1: Finite element model of ACLD beam.

at i = b, c, and t for bottom, core, and top layers, respectively. Also uc2 and uc3 are the two

intermediate nodes in the core thickness.

From the finite element schematic, it is established that both the first and third nodes

each contains 9 degrees of freedom (DOF), and the middle node has 3 DOF, resulting in a

total elemental DOF of 21. The element displacement vector qe can be expressed as:

qTe = {ub1 wb1 φb1 uc2,1 uc3,1 wc1 ut1 wt1 φt1 ...

...wb2 wc2 wt2 ...

... ub3 wb3 φb3 uc2,3 uc3,3 wc3 ut3 wt3 φt3} (4.2)

where the subscripts bj, cj, and tj represents the bottom, core, and top layer, respectively

with j = 1...3 signifying the node numbers.

Note that if the top and bottom layers were Euler-Bernoulli beams, then φ =
∂w

∂x
and

there would only be two element nodes along the span of the beam because the axial dis-

placement is interpolated by linear functions and the Hermite cubic polynomial is used for

the transverse displacement.
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4.1 Shape Functions

The axial displacement u and slope φ field variables are interpolated along the span of the

structure by a linear function, and transverse displacement field variable w by a quadratic

function. These are:

Linear Shape Functions

N1ξ =
1− ξ

2
and N2ξ =

ξ + 1

2
for − 1 ≤ ξ ≤ 1 (4.3)

Quadratic Shape Functions

N3ξ =
ξ2 − ξ

2
N4ξ = 1− ξ2 N5ξ =

ξ2 + ξ

2
for − 1 ≤ ξ ≤ 1 (4.4)

4.1.1 FGM Beam (Bottom Layer)

From chapter 3, further expansion of Eq. 3.21, the kinetic energy becomes:

δTb = b

∫
x

ρbδu
T
b übdx+ b

∫
x

ρbδw
T
b ẅbdx+ αb

∫
x

ρbδφ
T
b φ̈bdx (4.5)

The boolean variable α is 1 for Timoshenko beam theory and 0 for Euler-Bernoulli beam

theory. Also, there is no shear in Euler-Bernoulli beam theory (i.e. γxz = 0), hence φb(x, t) =
∂wb
∂x

(x, t).

The displacement vector from Eq. 3.2 uTb = {ub wb φb} can be expanded as:

ub = [Nb]qe (4.6)

where

[Nb] =

N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0 0 0 0 0

0 N3ξ 0 0 0 0 0 0 0 N4ξ 0 0 0 N5ξ 0 0 0 0 0 0 0

0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0 0 0


Subsequently, by substituting Eq. 4.9 into Eq. 3.21, the variation of the kinetic energy of

the FGM beam is written as:

δTb = b

1∫
−1

ρb(δq
T
e [Nb]

T [Ib][Nb]q̈e)|J(ξ)|dξ = δqTe [Mb]
eq̈e (4.7)
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where [Mb]
e = b

1∫
−1

ρb([Nb]
T [Ib][Nb])|J(ξ)|dξ is the mass matrix of the FGM beam.

The absolute value of the Jacobian, denoted by |J(ξ)|, is used to transform the integration

of the variables along the x-axis from the global coordinate x (i.e. x1 to x2) to the local

coordinate ξ (i.e. − 1 to 1). The Jacobian was determined to be |J(ξ)| = Le
2

in this specific

case.

The same procedure is followed in the formulation of the stiffness matrix by substituting

ub from Eq. 4.6 into Eq. 3.24, expressing the variational strain energy as:

δUb = b

1∫
−1

(δqTe [Bb]
T [Cb][Bb]qe)|J(ξ)|dξ = δqTe [Kb]

eqe (4.8)

where the stiffness matrix of the FGM beam is

[Kb]
e = b

1∫
−1

([Bb]
T [Cb][Bb])|J(ξ)|dξ, [Bb] = [Db][Nb], and

[Cb] =
∫
z

([
Z̃b

]T [
Q̄b

] [
Z̃b

])
.

4.1.2 Viscoelastic Layer (Core)

In shape function matrix notation, the displacement vector from Eq. 3.26,

uTc = {ub wb φb uc2 uc3 wc ut wt φt} can be expressed as:

uc = [Nc]qe (4.9)

where

[Nc] =



N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0 0 0 0 0

0 N3ξ 0 0 0 0 0 0 0 N4ξ 0 0 0 N5ξ 0 0 0 0 0 0 0

0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0 0 0

0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0 0

0 0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0

0 0 0 0 0 N3ξ 0 0 0 0 N4ξ 0 0 0 0 0 0 N5ξ 0 0 0

0 0 0 0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0

0 0 0 0 0 0 0 N3ξ 0 0 0 N4ξ 0 0 0 0 0 0 0 N5ξ 0

0 0 0 0 0 0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ


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In a similar manner, the anelastic displacement vector ũc(t) can be expressed as:

ũc ≡ [Nc]q̃e (4.10)

Substituting Eq. 4.10 at a give time t into Eq. 3.39, q̃e(t) can be expressed as:

q̃c(t) = (1− η)
E∞ − E0

E∞
q̄e(t)− η

Nt∑
j=1

(
j∏

p=1

p− α− 1

p

)
q̃e(t− j∆t) (4.11)

Furthermore, by substituting uc from Eq. 4.9 into Eq. 3.44, the variational kinetic energy

of the viscoelastic core can be expressed, in its final form, as:

δTc = ρcb

1∫
−1

(
δqTe [Nc]

T [Ic][Nc]q̈e
)
|J(ξ)|dξ = δqTe [Mc]

eq̈e (4.12)

where [Mc]
e = ρcb

1∫
−1

(
[Nc]

T [Ic][Nc]
)
|J(ξ)|dξ is the viscoelastic core’s mass matrix and |J(ξ)|

is the Jacobian.

Next, substituting uc from Eq. 4.9 into Eq. 3.48, the variational strain energy yields:

δŪc = b

1∫
−1

(
δqTe [Bc]

T [Cc][Bc]qe
)
|J(ξ)|dξ = δqTe [Kc]

eqe (4.13)

where the viscoelastic layer’s stiffness matrix is [Kc]
e = b

1∫
−1

(
[Bc]

T [Cc][Bc]
)
|J(ξ)|dξ, and

[Bc] = [Dc][Nc].

The variation of the anelastic strain energy is similarly established by replacing uc in Eq.

3.49 with Eq. 4.9, yielding:

δ ˜̄U c = b

1∫
−1

(
δqTe [Bc]

T [C̃c][Bc]qe

)
|J(ξ)|dξ = δqTe [K̃c]

eqe (4.14)

where the anelastic portion of the viscoelastic core’s stiffness matrix is

[K̃c]
e = b

1∫
−1

(
[Bc]

T [C̃c][Bc]
)
|J(ξ)|dξ. Recall that the anelastic stiffness is a factor of the
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elastic stiffness, [K̃c]
e = η

E∞ − E0

E0

[Kc]
e from Eq. 3.49.

Finally, taking ũc from Eq. 4.10 and substituting into Eq. 3.50 gives the final form of

the variation of work δW̃c as:

δW̃c = η
E∞
E0

Nt∑
j=1

(
j∏

p=1

p− α− 1

p

)
× b

1∫
−1

({
δqTe
}

[Bc]
T [Cc] [Bc] {q̃e(t− j∆t)}

)
|J(ξ)|dξ

= δqTe F̃
e
c (4.15)

where the excited force in the viscoelastic layer is:

F̃ e
c = η

E∞
E0

[Kc]
e

Nt∑
j=1

(
j∏

p=1

p− α− 1

p

)
× q̃e(t− j∆t)

4.2 PRFC Laminate (Top Layer)

The PFRC laminate displacement vector is uTt = {ut wt φt}. It can be further expanded to:

ut = [Nt]qe (4.16)

where

[Nt] =

 0 0 0 0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0

0 0 0 0 0 0 0 N3ξ 0 0 0 N4ξ 0 0 0 0 0 0 0 N5ξ 0

0 0 0 0 0 0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ


Subsequently, by substituting Eq. 4.16 into Eq. 3.78, the variation of the kinetic energy of

the FGM beam is written as:

δTt = b

1∫
−1

ρt(δq
T
e [Nt]

T [It][Nt]q̈e)|J(ξ)|dξ = δqTe [Mt]
eq̈e (4.17)

where [Mt]
e = b

1∫
−1

ρt([Nt]
T [It][Nt])|J(ξ)|dξ is the mass matrix of the PFRC laminate, [It] =

∑n
k=1

∫ zk
zk−1

 1 0 −zt
0 1 0

−zt 0 z2
t

 dz, and the Jacobian |J(ξ)| = Le
2

.

Lastly, by substituting ut from Eq. 4.16 into Eq. 3.81 and Eq. ??, produces the following

40



the variational strain energy δUp and virtual work δŴp in the PFRC laminate:

δUt = b

1∫
−1

(δqTe [Bt]
T

[
A B

B D

]
[Bt]qe)|J(ξ)|dξ = δqTe [Kt]

eqe (4.18)

δŴt = −b
1∫

−1

δqTe [Bt]
T


N t
x

0

M t
x

0

 |J(ξ)|dξ = δqTe F̂
e
t (4.19)

where the stiffness matrix is [Kt]
e = b

∫ 1

−1
([Bt]

T

[
A B

B D

]
[Bt])|J(ξ)|dξ, and [Bb] = [Db][Nb]

and the excited force in the PRFC laminate is

F̂ e
t = −b

∫ 1

−1
δqTe [Bt]

T


N t
x

0

M t
x

0

 |J(ξ)|dξ with [Bt] =

[
D0
t

D1
t

]
[Nt] .

4.3 External Force

The ACLD beam not only experiences work done from the viscoelastic core and PRFC

laminate, but also encounters work done by an external force Fe, which is applied at a given

position ζf in a certain element, formulated as:

δWe = δqTe Fe

1∫
−1

[N ]TMT δ(ζ − ζf )dζ (4.20)

where

[N ] =



N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0 0 0 0 0

0 N3ξ 0 0 0 0 0 0 0 N4ξ 0 0 0 N5ξ 0 0 0 0 0 0 0

0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0 0 0

0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0 0

0 0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0 0 0

0 0 0 0 0 N3ξ 0 0 0 0 N4ξ 0 0 0 0 0 0 N5ξ 0 0 0

0 0 0 0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ 0 0

0 0 0 0 0 0 0 N3ξ 0 0 0 N4ξ 0 0 0 0 0 0 0 N5ξ 0

0 0 0 0 0 0 0 0 N1ξ 0 0 0 0 0 0 0 0 0 0 0 N2ξ


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and M = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0] is a Boolean mapping

vector that shows the vertical displacement for wt in the last node.

4.4 Equation of Motion

The extended Hamilton’s principle from Eq.3.18 is utilized to form the element governing

equation of motion at a given time t as:

([Mb]
e + [Mc]

e + [Mp]
e) q̈e(t) +

(
[Kb]

e + [Kc]
e + [K̃c]

e + [Kp]
e
)
qe(t) = Fe(t) + F̃ e

c (t) + F̂ e
t (t)

(4.21)

Note that the modified loading in the viscoelastic core F̃ e
c is negative on the right-hand-

side of the above governing equation. The global system governing equations of motion

are obtained by employing standard finite element method assembling techniques [39]. The

global system governing equations of motion can be simplified as:

[M]q̈(t) + [K + K̃]q(t) = F(t) + F̃(t) + F̂(t) (4.22)

where [M], [K+K̃], F, F̃, and F̂ symbolize the global mass matrix, stiffness matrix, external

force vector, viscoelastic force vector, and electrical force vector, respectively.

4.5 Time Integration

The Newmark time-integration method [18, 31, 39] is employed to solve the global system

governing equations of motion, Eq. 4.22. In order to incorporate the viscoelastic property

of the core through fractional derivative, the classical Newmark algorithm is modified to

have a new parameter for the storage of the anelastic displacement history. To ensure that

the system is unconditionally stable, the Newmark parameters, β = 1/4 and γ = 1/2, were

employed. Appendix A contains the Matlab code that was used to simulate the three-layered

model.
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Chapter 5

Numerical Simulation

5.1 Formulation Comparison with Literature

In order to verify the current formulation, three simulations are performed and their results

are compared to those in the literature. First, the work by Amarani et al. [13] on the free

vibration analysis of a sandwich beam with a functionally graded (FG) core is revisited using

the present formulation. The next simulation validates the viscoelastic property modeling

of the ACLD beam. It requires modifying the current formulation and comparing it to

the study by Galucio et al. [18] where the dynamic analysis of a sandwich beam with a

viscoelastic core was investigated. Lastly, the dynamic analysis of a cantilever beam with

a piezoelectric top layer from Bekuit et al. [6] is considered. Note that Quasi-2D Euler-

Bernoulli (Q2DE) denotes the ACLD beam formulation where both the top and bottom

layers are modeled as Euler-Bernoulli beams and the core is modeled via a higher-order beam

theory. Similarly, quasi-2D Timoshenko (Q2DT) denotes the ACLD beam formulation where

the core is modeled by a higher-order theory and the top and bottom layers as Timoshenko

beams, as described in chapter 3.

5.1.1 Sandwich Beam with FG core

The current formulation is modified to study the free vibration analysis of a sandwich beam

with FG core such as that by Amirani et al. [13]. The sandwich beam schematic is shown

in Figure 5.1, wherein the beam consists of a FG core, composed of aluminum (metal) and

zirconia (ceramic), and face sheets that are made of steel alloy. Two boundary conditions

are analyzed, namely, fully- and partially- clamped cantilever. The fully-clamped boundary

condition is the case when all three layers are fixed at one end. The partially-clamped case

is when only the face sheets are fixed. Their properties are tabulated in Table 5.1. The
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geometrical properties of the beam are length L = 1000 mm, face sheet thickness hf = 3

mm, and core thickness hc = 14 mm.

Figure 5.1: Schematic of a fully-clamped sandwich beam with FG core.

Table 5.1: Material properties of sandwich beam with FG core.

Property
Face sheets FG Core

Steel Aluminum Zirconia
E (GPa) 210 70 151

ν 0.3 0.3 0.3
ρ (kg/m3) 7860 2700 5700

Following Amirani et al. [13] rule of mixtures technique, also known as power-law func-

tionally graded material (P-FGM) in Ref. [17], the first 10 natural frequencies are found

using the present quasi-2D formulation. The natural frequencies of the sandwich beam with

a P-FGM core for fully- and partially- clamped cantilevered boundary conditions are repro-

duced in Table 5.2. A total of 100 elements along the length of the beam are used to produce

the results for the quasi-2D formulations.
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Table 5.2: First 10 natural frequencies of sandwich beam with a P-FGM (p = 1) core.

Frequency(Hz)

fully-clamped cantilevered partially-clamped cantilevered

Mode Classical Ref.[13] Q2DE Q2DT Ref.[13] Q2DE Q2DT

1 18.53 18.32 18.73 18.73 18.31 18.71 18.71

2 115.83 114.66 117.10 117.07 114.65 116.96 116.95

3 322.87 320.57 326.54 326.43 320.57 326.21 326.12

4 628.62 626.81 636.17 635.83 626.80 635.59 635.29

5 1030.60 1033.70 1043.84 1043.04 1033.50 1043.00 1042.23

6 1285.29 1290.10 1320.60 1320.42 1290.10 1315.17 1314.83

7 1524.33 1539.60 1545.43 1543.79 1539.00 1544.33 1542.70

8 2104.77 2143.70 2136.27 2133.29 2142.10 2134.92 2131.90

9 2766.44 2844.00 2811.29 2806.29 2840.50 2809.70 2804.58

10 3503.64 3640.00 3565.12 3557.33 3633.40 3563.29 3555.24

Amirani et al. [13] used the element free Galerkin (EFG) method in their formulation and

reported frequencies that are slightly higher than those of the classical method from modes 5

to 10. A slight difference is observed between the fully- and partially- clamped cases for both

Q2DE and Q2DT, wherein the partially-clamped case continuously has smaller frequencies

as expected. Generally, the Q2DT reports smaller frequencies than the Q2DE. Again this is

intuitive, since the Timoshenko beam theory is more flexible than the Euler-Bernoulli beam

theory. A comparison between Ref. [13] and the quasi-2D frequencies shows that the latter

are smaller for the last few modes.

Further, to compare the effects of the different distribution functions, the core is al-

tered to be exponentially functionally graded material (E-FGM) following the formulation

of Ref. [17]. The material properties remained the same for zirconia and aluminum, as

previously shown in Table 5.1. In order to properly compare the two distributions, the

P-FGM and E-FGM method should yeild equivalent average material properties, where

Gavg = 1
2h

∫ h
−hG(z)dz. The average values were Eavg ≈ 105 GPa, νavg ≈ 0.3, ρavg ≈ 4015

kg/m3. For P-FGM to obtain these values, the constant p in the formulation was set to

0.78. The first 10 natural frequencies of the sandwich beam with a P-FGM (p = 0.78) and

E-FGM core for fully-clamped and partially-clamped cantilevered boundary conditions are

tabulated in Table 5.3. The natural frequencies for both P-FGM and E-FGM distributions

have insignificant differences for both the fully- and partially- clamped cantilevered cases.
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Table 5.3: Fully-clamped cantilevered natural frequencies of sandwich beam with a P-FGM
(p = 0.78) and E-FGM core for Eavg ≈ 105 GPa, νavg ≈ 0.3, ρavg ≈ 4015 kg/m3.

Frequency(Hz)

Classical Q2DE Q2DT

Mode Homogeneous P-FGM E-FGM Homogeneous P-FGM E-FGM Homogeneous P-FGM E-FGM

1 18.71 18.70 18.71 18.91 18.90 18.92 18.91 18.90 18.90

2 116.93 116.88 116.90 118.20 118.13 118.15 118.19 118.10 118.12

3 325.89 325.75 325.80 329.57 329.37 329.42 329.54 329.26 329.30

4 634.32 634.06 634.15 641.94 641.55 641.61 641.84 641.21 641.27

5 1039.62 1039.24 1039.37 1053.06 1052.41 1052.46 1052.82 1051.60 1051.65

6 1283.28 1284.84 1284.48 1317.65 1319.52 1319.02 1317.58 1319.35 1318.86

7 1537.08 1536.60 1536.77 1558.62 1557.65 1557.64 1558.14 1555.98 1555.99

8 2121.45 2120.92 2121.12 2153.77 2152.44 2152.31 2152.91 2149.41 2149.30

9 2787.05 2786.53 2786.74 2833.22 2831.51 2831.17 2831.80 2826.45 2826.14

10 3527.96 3527.55 3527.75 3591.41 3589.34 3588.68 3589.23 3581.44 3580.82

Table 5.4: Partially-clamped cantilevered natural frequencies of sandwich beam with a P-
FGM (p = 0.78) and E-FGM core for Eavg ≈ 105 GPa, νavg ≈ 0.3, ρavg ≈ 4015 kg/m3.

Frequency(Hz)

Q2DE Q2DT

Mode Homogeneous P-FGM E-FGM Homogeneous P-FGM E-FGM

1 18.89 18.88 18.90 18.89 18.88 18.88

2 118.08 118.00 118.02 118.07 117.98 118.00

3 329.23 329.05 329.09 329.24 328.97 329.00

4 641.64 641.00 641.06 641.33 640.70 640.76

5 1052.88 1051.61 1051.67 1052.07 1050.83 1050.89

6 1312.69 1314.36 1313.90 1312.33 1314.03 1313.57

7 1558.87 1556.61 1556.61 1557.14 1554.96 1554.97

8 2154.88 2151.18 2151.06 2151.66 2148.10 2148.00

9 2835.75 2830.03 2829.70 2830.30 2824.84 2824.54

10 3596.03 3587.64 3586.99 3587.44 3579.49 3578.88

For the fully-clamped cantilevered condition in Table 5.3, there is very little difference

between the natural frequencies of the homogeneous, P-FGM and E-FGM core distributions.

The natural frequencies for the partially-clamped cantilevered case as tabulated in Table

5.4 and they are generally identical to those of the homogeneous, P-FGM and E-FGM core.

For the last mode, however, there are greater differences in the homogeneous and FGM
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frequencies compared to the fully-clamped case. The difference in values show that the

quasi-2D formulation is better able to capture the effect of the unconstrained core.

5.1.2 Visco-Aluminum Sandwich Beam

The example by Galucio et al. [18] is used to demonstrate the effectiveness of the present

quasi-2D formulation for a sandwich beam with a viscoelastic core. The viscoelastic core is

sandwiched between two aluminum layers. The beam is clamped at one end and a triangular

impulse transverse load is applied at the free end, as depicted in Figure 5.2. The geometric

parameters of the beam are: length L = 200 mm, width b = 10 mm, thickness of top and

bottom face sheets hf = 1 mm and thickness of core hc = 0.2 mm. The parameters of the

fractional derivative model are: α = 0.7915 and τ = 1.4052 × 10−2 ms. The mechanical

properties of the elastic aluminum faces and the viscoelastic core are tablulated in Table 5.5.

The time step and number of terms in the Grünwald series (taken from the example) are ∆t

= 0.25 ms and N = 1000, respectively.

Figure 5.2: Visco-aluminum sandwich beam.

Table 5.5: Material properties of visco-aluminum sandwich beam.

Face sheets Core
Property Aluminum Property ISD112 (at 27◦C)

E (GPa) 70.3
E0 (MPa) 1.5
E∞ (MPa) 69.9495

ν 0.345 ν 0.5
ρ (kg/m3) 2690 ρ (kg/m3) 1600

The transverse displacement of the beam’s tip under fully-clamped cantilevered boundary

condition is shown in Figure 5.3. The present quasi-2D formulation (Q2DE and Q2DT) with
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constant transverse displacement w in the host (bottom) beam yields the highest peak-to-

peak amplitude. A trend is observed where the formulation with higher degrees of freedom

(DOF) yields smaller phase shifts than that for smaller DOF. The present quasi-2D formu-

lation and the quasi-2D with varying w have smaller phase shifts than the classical response.

For example, the classical method has 8 DOF, while the present quasi-2D formulation with

constant w has 20 DOF and 21 DOF for Q2DE and Q2DT, respectively. In Ref. [3], the

quasi-2D with varying w had 52 DOF. Note that the classical formulation is based on the

classical three-layer theory from Section 1.1.1.

Figure 5.3: Dynamic response of visco-aluminum sandwich beam.
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5.1.2.1 Visco-FGM Sandwich Beam

Here, the viscoelastic core sandwich beam is changed from an aluminum homogeneous mate-

rial to a zirconia-aluminum functionally graded (FG) material. The geometry and boundary

condition of the system remain the same as the visco-aluminum sandwich beam case in Sec-

tion 5.1.2. Also, the same properties for zirconia and aluminum used in Section 5.1.1 are also

used in this section, as shown in Table 5.1. The top and bottom surfaces of each FG layer

consist of either 100% alumuminum and/or 100% zirconia with the following approximate

average properties: Eavg ≈ 105 GPa, νavg ≈ 0.3, ρavg ≈ 4015 kg/m3. The first configura-

tion consists of 100% zirconia (ceramic) material at the outer surfaces and 100% aluminum

(metal) material at the inner surfaces of the top and bottom layers ((zirconia/aluminum)S).

Conversely, the second configuration consists of 100% aluminum (metal) material at the

outer surfaces and 100% zirconia (ceramic) material at the inner surfaces of the top and

bottom layers ((aluminum/zirconia)S). The schematics of these configurations are shown in

Figures 5.4 and 5.5.

Figure 5.4: Visco-E-FGM sandwich beam with (zirconia/aluminum)S orientation.

Figure 5.5: Visco-P-FGM (p = 0.78) sandwich beam with (aluminum/zirconia)S orientation.
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The response of both the E-FGM and P-FGM representations for the (zirconia/aluminum)S

and (aluminum/zirconia)S orientations are shown in Figures 5.6 and 5.7, and Figures 5.8 and

5.9, respectively. With respect to the (zirconia/aluminum)S configuration, the P-FGM repre-

sentation results in smaller transverse displacements than the E-FGM representation. This is

however different for the (aluminum/zirconia)S orientation where the P-FGM representation

produces higher transverse displacements than the E-FGM representation.

Figure 5.10 depicts a plot of all the Q2DT responses from the previous plots as well as

the homogeneous representation of the top and bottom layers. The responses with the highest

transverse displacement are those for the E-FGM representation for the (aluminum/zirconia)S

orientation and those for the P-FGM representation for the (zirconia/aluminum)S orienta-

tion. Both responses result in similar transverse displacement with a slight phase shift.

The smallest displacement occurs for the P-FGM with (aluminum/zirconia)S configuration

and E-FGM with (zirconia/aluminum)s orientation. Based on these results, the use of the

P-FGM distribution in a FG layer demands that the material with the highest modulus of

elasticity contact the core layer in order to obtain the least amount of vibration. Conversely,

using the E-FGM distribution requires that the material with the lowest elastic modulus

contact the core to have the smallest amount of vibration.
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Figure 5.6: Visco-E-FGM sandwich beam with (zirconia/aluminum)S orientation.

Figure 5.7: Visco-P-FGM (p = 1.28) sandwich beam with (zirconia/aluminum)S orientation.
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Figure 5.8: Visco-E-FGM sandwich beam with (aluminum/zirconia)S orientation.

Figure 5.9: Visco-P-FGM sandwich beam with (aluminum/zirconia)s orientation.
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Figure 5.10: Visco sandwich beam comparison with homogeneous and FG characteristics.

5.1.3 Cantilevered Beam with Viscoelastic Core and Piezoelectric

Constraining Layer

To further verify the accuracy of the present quasi-2D formulation, the work by Bekuit et al.

[6] is reproduced and compared. The model consists of an isotropic host beam, a viscoelastic

core, and a piezoelectric constraining layer. Figure 5.11 depicts the beam schematic and the

triangular impulse load that is applied at the free end.

Figure 5.11: Cantilevered beam with viscoelastic core and piezoelectric constraining layer.

The geometric characteristics of the beam are: length L = 300 mm, width b = 15
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mm, thickness of host layer hb = 3 mm, thickness of piezoelectric layer ht = 1 mm, and

thickness of core hc = 0.2 mm and hc = 1.0 mm. The number of terms in the Grünwald

approximation of the fractional derivative are N = 1000 and the time step is taken as ∆t =

0.001 s. The mechanical and electrical properties of the active constraining layer (PZT5H),

and the mechanical properties of the host beam (steel) and the viscoelastic core (ISD112)

are tabulated in Table 5.6.

Table 5.6: Mechanical properties and piezoelectric characteristics of the cantilever beam.

Constraining Layer Core Host Beam
Characteristic PZT5H Property ISD112 Property Steel

c11, c13, c33, c66 (GPa) 126, 84.1, 117, 23 E0 (MPa) 1.5 E (GPa) 200
e31, e33 (C/m2) -6.5, 23.3 E∞ (MPa) 69.9495 ν 0.34
d33 (F/m) 1.3x10−8 ν 0.5 ρ (kg/m3) 7850
ρ (kg/m3) 7500 ρ (kg/m3) 1600

The passive damping tip displacement and the active-passive damping tip displacement

and voltage are obtained for the present Q2DE and Q2DT formulations. Figure 5.12 plots

the response of the Q2DE, Q2DT, Ref. [6], and classical method for a core thickness of hc

= 0.2 mm. The first subplot, (a), depicts the tip deflection of the passively damped beam.

The dynamic responses for Q2DE and Ref. [6] are identical while the Q2DT results in a

slight phase shift from the two responses. All of the responses have the same amplitudes,

but the conventional has an obvious phase shift from the three quasi-2D formulations. The

introduction of active damping with a gain Kv = 100 V/(m/s) is depicted in the last two

subplots, (b) and (c). As a result of this active actuation, the attenuation time of the beam

has been reduced. The response amplitude of the classical method did not reduce by as

much as the quasi-2D formulations. Further, Figure 5.13 depicts the response with each

method with a thicker core, hc = 1 mm. The response amplitude of the classical formulation

is continuously higher than those with the quasi-2D formulations. A possible explanation

for this is that the quasi-2D formulations dissipate more energy since they better model the

shear deformation of the core.
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(a)

(b)

(c)

Figure 5.12: Tip deflections and control voltage with a PZT5H constraining layer for hc =
0.2 mm. (a) Passive damping tip deflection. (b) Active-passive damping tip deflection. (c)
Active-passive damping control voltage.
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(a)

(b)

(c)

Figure 5.13: Tip deflections and control voltage with a PZT5H constraining layer for hc =
1.0 mm. (a) Passive damping tip deflection. (b) Active-passive damping tip deflection. (c)
Active-passive damping control voltage.
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5.2 Parametric Study

A parametric study of the current quasi-2D formulation is performed to determine the effect

of laminate stacking sequence (in the PFRC laminate) and the FG material properties of the

host beam. The varying parameters include the ply angle θ of the PFRC and the Young’s

modulus in the FG host beam. Variations in the Poisson’s ratio and densities for both the

metal and ceramic materials for the FG beam do not show any significant change to the

response of the system. A schematic of the 3-layer system which comprises a FG host beam,

viscoelastic core, and PFRC laminate constraining layer, as well as the triangular impulse

load is depicted in Figure 5.14. Throughout the parametric study, the beam is consistently

meshed into 6 finite elements along the span.

Figure 5.14: Beam with viscoelastic core and PFRC laminate constraining layer.

The geometric characteristics of the composite beam are: length L = 250 mm, width

b = 15 mm, thickness of host layer hb = 3 mm, thickness of PFRC layer ht = 0.75 mm

(0.1875 mm ply x 4 plies), thickness of viscoelastic core hc = 0.25 mm. The mechanical and

piezoelectric properties of the constraining layer, core, and host beam are given in Table

5.7. The effective coefficients of the PFRC used in this study were predicted utilizing the

micromechanical analysis performed by Mallik and Ray [12] with a 40% volume fraction.

Table 5.7: Mechanical properties and piezoelectric characteristics of the cantilever beam.

Constraining Layer Core Host Beam
Characteristic PZT5H/EPOXY Property ISD112 Property Steel

c11, c12, c22, c44, c55 (GPa) 32.6, 4.3, 7.2, 1.05, 1.29 E0 (MPa) 1.5 E (GPa) 200
e31 (C/m2) -6.76 E∞ (MPa) 69.9495 ν 0.34
d33 (F/m) 10.64x10−9 ν 0.5 ρ (kg/m3) 7850
ρ (kg/m3) 3640 ρ (kg/m3) 1600
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Four types of boundary conditions are examined in each subsection: fully-clamped can-

tilever, partially-clamped cantilever, partially clamped-clamped, and simply-supported. The

study is partitioned into two sections; the first is to study the effect of ply orientation in

the PFRC laminate and the second is to examine the effect of the change in the elastic

modulus of the metal and ceramic values for the FG host beam. A basic velocity feedback

is implemented to control the vibration, as described in Chapter 2.

Throughout this study, two methods of the quasi-2D are examined; Q2DE and Q2DT. As

mentioned previously, quasi-2D Euler-Bernoulli (Q2DE) denotes the formulation where both

the top and bottom layers are modeled as Euler-Bernoulli beams and the core is modeled

using a higher-order theory. The quasi-2D Timoshenko (Q2DT), on the other hand, is the

formulation where the top and bottom layers are modeled as Timoshenko beams.

5.2.1 Effect of Ply Orientation

To examine the effect of ply orientation on the dynamic response of the beam, the host beam

remains homogeneous and isotropic with a constant elastic modulus and the number of plies

in the constraining layer are fixed. A four-ply PFRC laminate with a stacking sequence of

[θ1/θ2]S is employed. The angles θ1 and θ2 are the fiber angles relative to the +x axis of

each layer.

5.2.1.1 Fully-clamped Cantilevered Beam Case

The fully-clamped cantilevered beam is fully supported at the left end and free at the right

as shown in Figure 5.15.

Figure 5.15: Fully-clamped cantilevered beam with ACLD treatment.

The gain that is chosen to best represent the effects of the beam vibration is Kv = 350
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V/(m/s). This gain is suitable since the resulting actuation voltage is not in the breakdown

voltage range, typically about 200 volts for most piezoelectric ceramics. An observation

time of 0.5 seconds is selected for the beam response under impulse loading. The triangular

impulse load is applied at the tip of the beam and is depicted in Figure 5.14. The time step

is ∆t = 0.001 s with the number of terms in the Grünwald approximation resulting in N =

1000.

The response of four different ply stacking sequences (0◦4, [0◦/90◦]S, [45◦/ − 45◦]S, and

[30◦/60◦]S) are determined for uncontrolled tip deflection and controlled tip deflection and

actuation voltage. Figure 5.16 shows plots for uncontrolled transverse displacement of the

tip node for passive damping. Figures 5.17 and 5.18 depict the response of the controlled tip

deflection as well as its corresponding actuation voltage for each respective ply arrangement.

With respect to passive damping, Figure 5.16, the [45◦/ − 45◦]S and [30◦/60◦]S PFRC

stacking arrangements experience the largest peak-to-peak amplitude of vibration. Since

the 0◦4 arrangement is the stiffest, it experiences the smallest peak-to-peak amplitude of

vibration. This is expected since the stiffer constraining layer causes more shear in the core.

With the application of active damping, the beam shows significant reduction in peak-

to-peak amplitude. Comparing the uncontrolled and controlled responses, Figures 5.16 and

5.17, the best controlled PFRC arrangement is the [0◦/90◦]S PFRC. The control advantage

is due to the contribution of 90◦ plies that increase the flexibility of the beam, enabling the

constraining layer to be more suitable for active control. This ply angle induced flexibility can

also be seen for the [45◦/− 45◦]S and [30◦/60◦]S PFRC arrangements as their responses are

significantly damp when actively controlled. Although the 0◦4 arrangement has the smallest

peak-to-peak amplitude of passive vibration, it did not damp as much as the other three

arrangements due to its stiff nature.

The actuator voltage responses in Figure 5.18 resembles the controlled deflection re-

sponses in Figure 5.17 because of their linear relationship to the response velocity. Note that

the magnitudes of the voltage are well below the breakdown voltage of 200 V.
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(a) (b)

(c) (d)

Figure 5.16: Effect of ply orientation on the tip transverse displacement for uncontrolled-
passive damping of fully-clamped cantilevered beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/ − 45◦]S ,
(d) [30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.17: Effect of ply orientation on the tip transverse displacement for controlled-active-
passive damping of fully-clamped cantilevered beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/ − 45◦]S ,
(d) [30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.18: Effect of ply orientation on the actuator voltage for controlled-active-passive
damping of fully-clamped cantilevered beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/ − 45◦]S , (d)
[30◦/60◦]S .
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5.2.1.2 Partially-clamped Cantilevered Beam Case

A partially-clamped cantilevered beam is partially-clamped at the left end and free at the

right end as depicted in Figure 5.19. The clamped component is the host beam whereas the

viscoelastic and PFRC layers are unconstrained.

Figure 5.19: Partially-clamped cantilevered beam with ACLD treatment.

Similar to the fully-clamped cantilevered beam case, the gain (Kv = 350 V/(m/s)) and

geometric parameters remain the same. The simulation time is also unchanged at 0.5 sec-

onds. With respect to ply arrangements and stiffness, the same observations are made and

are depicted in Figures 5.20, 5.21, and 5.22. The major difference between the fully- and

partially- clamped cantilevered cases arises in the peak-to-peak amplitudes of vibration. It

is apparent that the partially-clamped case results in higher vibration amplitudes than the

fully-clamped case due to the increased flexibility. A comparison between the fully- and

partially- clamped cantilevered responses is further demonstrated and discussed in the next

subsection.
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(a) (b)

(c) (d)

Figure 5.20: Effect of ply orientation on the tip transverse displacement for uncontrolled-
passive damping of partially-clamped cantilevered beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/−45◦]S ,
(d) [30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.21: Effect of ply orientation on the tip transverse displacement for controlled-active-
passive damping of partially-clamped cantilevered beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/−45◦]S ,
(d) [30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.22: Effect of ply orientation on the actuation voltage for controlled-active-passive
damping of partially-clamped cantilevered beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/ − 45◦]S , (d)
[30◦/60◦]S .
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5.2.1.3 Comparison of Fully- and Partially- Clamped Cantilevered with Classi-

cal Method

Figures 5.23, 5.24, and 5.25 depict a comparison of the fully- and partially- clamped can-

tilevered as well as the classical responses for uncontrolled and controlled damping. It is

observed from the uncontrolled damping tip displacement responses in Figure 5.23 that the

classical and Q2DT fully-clamped cantilevered cases have very similar responses, with a small

phase shift from one another. The 0◦4 ply arrangement has partially-clamped cantilevered

responses that are higher in amplitude and has a lagging phase shift from the classical and

fully-clamped cases. The differences are possibly due to the stiffness of the 0◦4 PFRC. The

[0◦/90◦]S PFRC, perhaps due to its reduced stiffness, has a smaller amplitude difference (

the partially-clamped amplitude to the classical and fully-clamped cantilevered amplitudes)

than the the 0◦4 PFRC. On the other hand, the [45◦/−45◦]S and [30◦/60◦]S PFRC’s resulted

in very similar responses for all three (classical, partially- and fully- clamped cantilever)

methods, due to its moderate flexibility.

Now, with the introduction of a 350 V/(m/s) gain controller, the response is controlled

and dampens according to its stiffness (see Figure 5.24). For all four ply arrangements, the

Q2DT fully-clamped cantilevered response results in the least amount of vibration compared

to the partially-clamped cantilevered and classical method. The [0◦/90◦]S PFRC gives the

best control. Also, the 0◦4 PFRC is the only arrangement with its partially-clamped can-

tilevered amplitude of vibration greater than that of the classical method. Due to the high

stiffness of the 0◦4 PFRC, the partially-clamped cantilevered (unconstrained PFRC) does not

have as much control as those that are more flexible.

With respect to the voltage actuation, Figure 5.25, its response resembles that of the

controlled deflection response, as indicated in Figure 5.24, due to their linear relationship.
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(a) (b)

(c) (d)

Figure 5.23: Comparison of tip transverse displacements for uncontrolled-passive fully- and
partially- clamped cantilevered beams. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/− 45◦]S , (d) [30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.24: Comparison of tip transverse displacements for controlled-active-passive fully-
and partially- clamped cantilevered beams. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/ − 45◦]S , (d)
[30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.25: Comparison of actuation voltages for controlled-active-passive fully- and
partially- clamped cantilevered beams. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/− 45◦]S , (d) [30◦/60◦]S .
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5.2.1.4 Partially Clamped-clamped Beam Case

In order to take advantage of the actuation of the PRFC laminate, the host beam is the only

component that is clamped at each end. The triangular impulse load, as seen in the second

part of Figure 5.14, is applied in the transverse direction to the middle upper node of the

top PFRC layer (shared between elements 3 and 4), as depicted in Figure 5.26.

Figure 5.26: Partially clamped-clamped beam with ACLD treatment.

The same gain as in both the cantilevered beam cases, Kv = 350 V/(m/s), is utilized

in this instance. All parameter specifications remain the same except for the host beam

thickness and the time period, which is reduced to hb = 2.0 mm from 3.0 mm and 0.25

seconds from 0.5 seconds, respectively. Note that the parameter modifications were made

solely for the enhancement of the presentation. As a result of the boundary conditions, the

response for the partially clamped-clamped should have higher frequency of vibration as well

as smaller transverse displacement compared to the cantilevered beam cases.

The deflection of interest is that of the middle node of the ACLD beam in the transverse

direction. The passive and active-passive damping responses are depicted in Figures 5.27

and 5.28, respectively. Figure 5.29 is the actuator voltage plots that complement the dis-

placement responses. As in the cantilevered beam cases, the same PFRC arrangements are

analyzed. The partially clamped-clamped beam case exhibits the same response pattern as

the cantilevered beam examples. The passive 0◦4 PFRC response in Figure 5.27 results in the

best damping, which follows the same reasoning as the fully-clamped cantilevered beam case.

Further, the [0◦/90◦]S PFRC is found to be the most controlled among the active-passive

damping response. This is due to the enhancement of actuation control in a more flexible

PFRC laminate, as depicted in Figure 5.28. The [45◦/ − 45◦]S PFRC plot shows the worst

damping response, since the flexibility of the PFRC laminate is not increased in the bending

direction. The actuation voltage responses, seen in Figure 5.29, are directly proportional to
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the derivative of the controlled damping responses in Figure 5.28.

(a) (b)

(c) (d)

Figure 5.27: Effect of ply orientation on the mid-point transverse displacement for
uncontrolled-passive damping of partially (bottom) clamped-clamped beam. (a) 0◦4, (b)
[0◦/90◦]S , (c) [45◦/− 45◦]S , (d) [30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.28: Effect of ply orientation on the mid-point transverse displacement for controlled-
active-passive damping of partially (bottom) clamped-clamped beam. (a) 0◦4, (b) [0◦/90◦]S , (c)
[45◦/− 45◦]S , (d) [30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.29: Effect of ply orientation on the actuation voltage for controlled-active-passive
damping of partially (bottom) clamped-clamped beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/− 45◦]S ,
(d) [30◦/60◦]S .

74



5.2.1.5 Simply-supported Beam Case

The configuration of the simply-supported boundary condition consists of the support of two

corner nodes, each at the ends of the beam, as depicted in Figure 5.30. These support are

constrained in both the axial and transverse displacements.

Figure 5.30: Simply-supported beam with ACLD treatment.

Similar to the partially clamped-clamped beam case, the gain, host beam thickness,

and observation time period are Kv = 350 V/(m/s), hb = 2.0 mm, and t = 0.25 seconds,

respectively. Also, the same triangular impulse load is applied to the middle node in the

transverse direction.

Figures 5.31, 5.32, and 5.33 illustrate the uncontrolled-passive damping, active-passive

damping, and actuator voltage of the simply-supported beam, respectively. The deflection

of the simply-supported beam is observed to be much higher than the partially clamped-

clamped beam (almost 1.5 times). This observation is plausible and it is attributed to the

increased flexibility of the beam.

The same four PFRC arrangements are examined as in the previous cases. Similar to

the other cases, the passive 0◦4 PFRC arrangement in Figure 5.31 shows the fastest damping

while the [45◦/− 45◦]S and [30◦/60◦]S PFRC’s have very slow attenuation rates due to their

lower stiffnesses. Also, from Figure 5.32, the controlled-active-passive response that has the

best damping response is, once again, the [0◦/90◦]S PFRC.
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(a) (b)

(c) (d)

Figure 5.31: Effect of ply orientation on the mid-point transverse displacement for
uncontrolled-passive damping of simply-supported beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/−45◦]S ,
(d) [30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.32: Effect of ply orientation on the mid-point transverse displacement for controlled-
active-passive damping of simply-supported beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/− 45◦]S , (d)
[30◦/60◦]S .
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(a) (b)

(c) (d)

Figure 5.33: Effect of ply orientation on the actuation voltage for controlled-active-passive
damping of simply-supported beam. (a) 0◦4, (b) [0◦/90◦]S , (c) [45◦/− 45◦]S , (d) [30◦/60◦]S .
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5.2.2 Effect of FGM Properties

In order to study the effect of the functionally graded (FG) property in the host beam, all

of the plies in the PFRC laminate are set to θ = 0◦. The material properties of the FGM

beam are assumed to change continuously throughout the thickness of the beam, according

to the volume fraction of the constituent materials based on the function. In this study, the

Young’s modulus, E, is analyzed under the power-law function and exponential function.

The average stiffness of the host beam either increases or decreases by varying the Young’s

modulus. The average modulus of elasticity is represented as Eavg = 1
2h

∫ h
−hE(z)dz, where

E(z) is either the power-law function, Equation 3.9, or exponential function, Equation 3.10.

The constituents are metal and ceramic material, wherein the Young’s modulus of each are

denoted by EM and EC , respectively. The top of the host beam has 100% metal composition

and the bottom has 100% ceramic composition. Note that only the elastic modulus is

analyzed since previous analysis in section 5.2 indicated that the effects of changes in the

density and Poisson’s ratio are neglible.

Throughout this investigation, all material properties and parameters of the top PFRC,

viscoelastic core, and host beam remain the same as that used in Table 5.7, with the excep-

tion of the host beam’s Young’s modulus. The beam problems remain the same, with the

parameter specifications as depicted Figure 5.14. Also, the gain remains the same as the

previous subsection, Kv = 350 V/(m/s).

Three scenarios are investigated to study the effect of the FG property in the host beam:

(i) the effect of change in average elastic moduli, (ii) the effect of varying constituents moduli

for fixed average elastic moduli, and (iii) the effect of exchange in the metal to ceramic and

ceramic to metal elastic moduli.

The first analysis is performed by fixing the ceramic elastic modulus, EC , and altering

the metal elastic modulus, EM , in order to have average elastic moduli, Eavg, of 200 GPa,

230 GPa, and 260 GPa. The variation of Young’s modulus with respect to the change in the

average elastic modulus is tabulated in Table 5.8.

Table 5.8: Variation of Young’s modulus with respect to change in average elastic modulus.

Host Beam Elastic Modulus (GPa)

EM EC ∆E
Eavg

(p) P-FGM E-FGM
a 260 151 109 1.2 200.55 200.59
b 333 151 182 1.3 230.13 230.13
c 412 151 261 1.39 260.26 260.03
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Next, Eavg is fixed to 200 GPa while both the ceramic and metal elastic moduli change

accordingly. In order to obtain an elastic modulus average of 200 GPa, the ceramic and

metal elastic moduli were discretely chosen to fit the Eavg relation. The change in elastic

modulus ∆E, from metal to ceramic, continually increases as seen in Table 5.9. The metal

and ceramic Young’s moduli from the table experiences variations similar to those in Figure

5.34. The P-FGM and E-FGM distributions intersect at the middle of the beam thickness

because the Eavg’s are the same.

Table 5.9: Variation of Young’s modulus with respect to fixed average elastic modulus
(EM > EC).

Host Beam Elastic Modulus (GPa)

EM EC ∆E
Eavg

(p) P-FGM E-FGM
a 260 151 109 1.2 200.55 200.59
b 352 100 252 1.52 200 200.24
c 436 70 366 1.815 200.02 200.09

Figure 5.34: Variation of Young’s modulus in a P-FGM and E-FGM beam for EM > EC .

Finally, the previous data with fixed average elastic moduli are used to exchange the

metal to ceramic and ceramic to metal elastic moduli. This exchange demonstrates the

effect of selecting the constituents of the FG beam and their placements, either on the top

or bottom of the host beam. Table 5.10 shows the values used when exchanging the metal

to ceramic and ceramic to metal elastic moduli. The elastic moduli for EM < EC exhibits

variations that are similar to those in Figure 5.35.
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Table 5.10: Exchange of ceramic and metal Young’s modulus with respect to fixed average
elastic modulus (EM < EC).

Host Beam Elastic Modulus (GPa)

EM EC ∆E
Eavg

(p) P-FGM E-FGM
a 151 260 109 0.82 200.11 200.59
b 100 352 252 0.66 200.19 200.24
c 70 436 366 0.555 200.63 200.09

Figure 5.35: Variation of Young’s modulus in a P-FGM and E-FGM beam for EM > EC .

Figure 5.36 includes the combination of Figures 5.34 and 5.35. By alternating the elastic

moduli of the metal and ceramic constituents for the P-FGM and E-FGM functions, they

exhibit nearly exact slopes. Since the formulas for both FGM distributions are different,

they will not match exactly, but are very close. The reason for this is because the average

values were forced to be the same.
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(a) (b)

Figure 5.36: Variation of Young’s modulus in a (a) P-FGM (EM < EC) and E-FGM
(EM > EC) and (b) E-FGM (EM < EC) and P-FGM (EM > EC) beam.
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5.2.2.1 Fully- and Partially- Clamped Cantilevered Beam Cases

The fully- and partially- clamped cantilevered beam problems remain the same as the pa-

rameter specifications mentioned in section 5.2.1 and in Figures 5.15 and 5.19. For each

scenario, the dynamic response for both fully- and partially- clamped cantilevered boundary

conditions are depicted in: (i) Figures 5.37, 5.38 and 5.39; (ii) Figures 5.40, 5.41 and 5.42;

and (iii) Figure 5.43.

(i) Effect of change in average elastic moduli:

Figures 5.37 and 5.38 correspond to the transverse displacement response in the uncontrolled-

passive and controlled-active-passive damping states, respectively. Figure 5.39 is the actu-

ation voltage response with a gain of Kv = 350 V/(m/s) applied to the composite beam.

Within these figures, parts (a), (b), and (c) are the responses for Eavg of 200 GPa, 230

GPa, and 260 GPa, respectively. Comparing the fully- and partially- clamped cantilevered

responses, it is evident that the partially-clamped response has greater transverse displace-

ment than the fully-clamped response due to its flexibility, since only the host beam is

constrained. Consistently, the Q2DT E-FGM has the lowest peak-to-peak amplitude, fol-

lowed by the homogeneous, and then by the Q2DT P-FGM response. With increasing Eavg,

the Q2DT E-FGM decreases in transverse displacement, resulting in better damping capa-

bilities than the Q2DT P-FGM and homogeneous responses. Furthermore, the frequency of

the response increases with increasing Eavg.

For both passive and active-passive damping, Figures 5.37 and 5.38, as Eavg increases, the

Q2DT P-FGM gradually increases in peak-to-peak amplitude and becomes more out of phase

with the Q2DT E-FGM and homogeneous responses. For the fully-clamped cantilevered case,

as Eavg increases, the Q2DT E-FGM gradually becomes more in-phase with the homogeneous

response. For the fully-clamped case, however, as Eavg increases, the partially-clamped

Q2DT E-FGM gradually becomes more out of phase with the homogeneous response. The

actuator voltage responses in Figure 5.39 are proportional to the rate of deflection responses

in Figure 5.38.
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(1a) (2a)

(1b) (2b)

(1c) (2c)

Figure 5.37: Effect of change in average elastic modulus on the tip transverse displacement
for uncontrolled-passive damping of (1a),(1b),(1c) fully-clamped and (2a),(2b),(2c) partially-
clamped cantilevered beam.
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(1a) (2a)

(1b) (2b)

(1c) (2c)

Figure 5.38: Effect of change in average elastic modulus on the tip transverse displacement for
controlled-active-passive damping of (1a),(1b),(1c) fully-clamped and (2a),(2b),(2c) partially-
clamped cantilevered beam.
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(1a) (2a)

(1b) (2b)

(1c) (2c)

Figure 5.39: Effect of change in average elastic modulus on the actuation voltage for
controlled-active-passive damping of (1a),(1b),(1c) fully-clamped and (2a),(2b),(2c) partially-
clamped cantilevered beam.
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(ii) Effect of varying constituents moduli for fixed average elastic moduli:

Figures 5.40 and 5.41 represent the uncontrolled-passive and controlled-active-passive

tip displacement responses with Eavg of 200 GPa, respectively. Both tip displacements

follow the same trend and observations. Figure 5.42 is the actuation voltage response of

the controlled-active-passive damping, which is proportional to the displacement response.

For each part (a), (b), and (c), the ∆E’s are 109 GPa, 252 GPa, and 366 GPa, respectively

(as shown in Table 5.9). The increase in ∆E could be advantageous or disadvantageous

depending on the chosen FG function. For example, as ∆E increases, the Q2DT P-FGM

response increases in peak-to-peak amplitude of vibration, while the Q2DT E-FGM response

decreases in amplitude of vibration.

87



(1a) (2a)

(1b) (2b)

(1c) (2c)

Figure 5.40: Effect of varying constituents moduli for fixed average elastic modulus on the
tip transverse displacement for uncontrolled-passive damping of (1a),(1b),(1c) fully-clamped
and (2a),(2b),(2c) partially-clamped cantilevered beam.
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(1a) (2a)

(1b) (2b)

(1c) (2c)

Figure 5.41: Effect of varying constituents moduli for fixed average elastic modulus on the tip
transverse displacement for controlled-active-passive damping of (1a),(1b),(1c) fully-clamped
and (2a),(2b),(2c) partially-clamped cantilevered beam.
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(1a) (2a)

(1b) (2b)

(1c) (2c)

Figure 5.42: Effect of varying constituents moduli for fixed average elastic modulus on
the actuation voltage for controlled-active-passive damping of (1a),(1b),(1c) fully-clamped and
(2a),(2b),(2c) partially-clamped cantilevered beam.
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(iii) Effect of exchange in the metal to ceramic and ceramic to metal elastic moduli:

Figure 5.43 is the uncontrolled-passive damping response for the exchange of metal to

ceramic and ceramic to metal elastic moduli. Part (a) for both the fully- and partially-

clamped cantilevered responses show that at a low ∆E of 109 GPa, the responses match

almost exactly for both Q2DT E-FGM and P-FGM. However, in part (b), only the Q2DT

E-FGM (EM > EC) and Q2DT P-FGM (EM < EC) match when ∆E is increased to 252 GPa.

The Q2DT P-FGM (EM > EC) and Q2DT E-FGM (EM < EC) result in the same amplitude

of vibration, but an apparent phase shift from each other. Furthermore, the phase shift shown

in part (b) becomes larger in part (c). Also, in part (c) the responses that used to match do

not match anymore, especially for the partially-clamped case, where there is a slight phase

shift. As ∆E increases, the Q2DT P-FGM (EM > EC) and Q2DT E-FGM (EM < EC)

responses continue to increase in amplitude in comparison to the homogeneous response.

On the other hand, as ∆E increases, the Q2DT E-FGM (EM > EC) and Q2DT P-FGM

(EM < EC) responses decrease in amplitude in comparison to the homogeneous response.

In order to obtain the least amount of vibration, either the Q2DT E-FGM (EM > EC) or

Q2DT P-FGM (EM < EC) responses should be used. For example, should the exponential

function be used to represent a FG beam, the top elastic modulus must be greater than the

bottom. For a power-law function FG beam, the top elastic modulus should be less than the

bottom.
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(1a) (2a)

(1b) (2b)

(1c) (2c)

Figure 5.43: Effect of exchange in metal and ceramic elastic moduli on the tip transverse dis-
placement for uncontrolled-passive damping of (1a),(1b),(1c) fully-clamped and (2a),(2b),(2c)
partially-clamped cantilevered beam.
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5.2.2.2 Partially Clamped-clamped Beam Case

A clamped-clamped ACLD beam that is constrained only at the host beam is shown in

Figure 5.26 in Section 5.2.1. The same parameters are used in this section. Also, the same

response sequence is repeated as in the previous case, for the three scenarios, which includes

the response due to passive damping, active-passive damping, and control voltage.

(i) Effect of change in average elastic moduli:

Figures 5.44, 5.45 and 5.46 depict the passive damped, active-passive damped, and control

voltage responses, respectively. As the average elastic modulus Eavg increases, the same

pattern is observed as the cantilevered cases, wherein, the Q2DT P-FGM response increases,

while the Q2DT E-FGM response decreases in its peak-to-peak amplitudes of vibration

relative to the homogeneous response. The frequency of vibration also increases as the Eavg

increases. A careful observation of the Q2DT E-FGM responses shows improved damping

with higher Eavg. These patterns are the same for all three responses (passive, active-passive,

and control voltage).
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(a)

(b)

(c)

Figure 5.44: Effect of change in average elastic modulus on the mid-point transverse dis-
placement for uncontrolled-passive damping of partially clamped-clamped beam. (a),(b),(c)
Eavg = 200 GPa, 230 GPa, and 260 GPa.
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(a)

(b)

(c)

Figure 5.45: Effect of change in average elastic modulus on the mid-point transverse displace-
ment for controlled-active-passive damping of partially clamped-clamped beam. (a),(b),(c)
Eavg = 200 GPa, 230 GPa, and 260 GPa.
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(a)

(b)

(c)

Figure 5.46: Effect of change in average elastic modulus on the actuation voltage for
controlled-active-passive damping of partially clamped-clamped beam. (a),(b),(c) Eavg = 200
GPa, 230 GPa, and 260 GPa.

96



(ii) Effect of varying constituents moduli for fixed average elastic modulus:

The passive and active-passive tip displacement responses are depicted in Figures 5.47

and 5.48 with Eavg, respectively. Each response within these figures, (a), (b), and (c) has

Eavg of 200 GPa, but with different EM and EC values. Figure 5.49 is the actuation voltage

response of the active-passive damping, which is proportional to the displacement response.

For part (a) of all the responses, the Q2DT E-FGM and homogeneous response almost match

exactly, while the Q2DT P-FGM response has a slight phase shift from the two. As the ∆E

increases in part (b), the responses are out of phase from each other. Also, the Q2DT

E-FGM response decreased in transverse displacement, while the Q2DT P-FGM response

increased in transverse displacement compared to part (a). Furthermore, in part (c), the

same observation from part (b) is seen, but with more decrease and increase in transverse

displacement, for the E-FGM and P-FGM responses, respectively. From Figure 5.48, the

response that has the best damping capabilities is the Q2DT E-FGM in part (c), this has

the biggest ∆E.
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(a)

(b)

(c)

Figure 5.47: Effect of varying constituents moduli for fixed average elastic modulus on
the mid-point transverse displacement for uncontrolled-passive damping of partially clamped-
clamped beam. (a),(b),(c) Eavg = 200 GPa for all.
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(a)

(b)

(c)

Figure 5.48: Effect of varying constituents moduli for fixed average elastic modulus on the
mid-point transverse displacement for controlled-active-passive damping of partially clamped-
clamped beam. (a),(b),(c) Eavg = 200 GPa for all.
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(a)

(b)

(c)

Figure 5.49: Effect of varying constituents moduli for fixed average elastic modulus on the
actuation voltage for controlled-active-passive damping of partially clamped-clamped beam.
(a),(b),(c) Eavg = 200 GPa for all.

100



(iii) Effect of exchange in the metal to ceramic and ceramic to metal elastic moduli:

The uncontrolled-passive damping responses for the exchange of metal to ceramic and

ceramic to metal elastic moduli are depicted in Figure 5.50. The same observations are made

from the cantilevered problems. The first plot, with ∆E = 109 GPa, part (a), has responses

that almost corroborate perfectly for both the Q2DT E-FGM and P-FGM responses. With

respect to part (b), two responses with the smallest transverse displacement (Q2DT E-FGM

(EM > EC) and Q2DT P-FGM (EM < EC)) match each other. The two responses with the

largest transverse displacement (Q2DT P-FGM (EM > EC) and Q2DT E-FGM (EM < EC))

result in the same peak-to-peak amplitude, but have different phase shift. A larger phase

shift for both the smaller and larger displacement responses are seen from part (b) to part (c).

As ∆E increases, the Q2DT P-FGM (EM > EC) and Q2DT E-FGM (EM < EC) responses

continue to increase in amplitude, while the Q2DT E-FGM (EM > EC) and Q2DT P-FGM

(EM < EC) responses decrease in amplitude in comparison to the homogeneous response.

The responses that have the best damping capabilities are the Q2DT E-FGM (EM > EC)

and Q2DT P-FGM (EM < EC) responses.
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(a)

(b)

(c)

Figure 5.50: Effect of exchange in metal and ceramic elastic moduli on the mid-point
transverse displacement for uncontrolled-passive damping of partially clamped-clamped beam.
(a),(b),(c) Eavg = 200 GPa for all.
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5.2.2.3 Simply-supported Beam Case

The same simply-supported beam depicted in Figure 5.30 and its parameters from Section

5.2.1 are utilized in this section.

(i) Effect of change in the average elastic modulus:

Figures 5.51 and 5.52 depict the responses of the beam when it is passively and actively

damped, respectively. Figure 5.53 shows the actuator voltage response when the system

gain is Kv = 350 V/(m/s) as indicated in the previous sections. The plot for part (a) has

responses that are almost exact with extremely small phase shifts. Just like the other beam

cases, as Eavg increases, the Q2DT E-FGM response becomes more damped, decreasing

in transverse displacement, whereas, the Q2DT P-FGM response increases in transverse

displacement. However, the progression in transverse displacement is not as prominent as

in the other beam cases. Also, as Eavg increases, the responses slowly become more out of

phase with each other. An observation between the Eavg’s from parts (a) to (c) shows that

the final amplitudes are generally the same. The responses with a higher Eavg start with

a smaller amplitude than that of a lower Eavg, but both dampen to the same amplitude.

The actuation voltage is proportional to the active-passive deflection. Also, as observed

for previous cases, the frequency of vibration increases as Eavg increases. In comparison to

the partially clamped-clamped beam case, the simply-supported beam experiences higher

amplitudes of vibration, but reduced frequency.

103



(a)

(b)

(c)

Figure 5.51: Effect of change in average elastic modulus on the mid-point transverse dis-
placement for uncontrolled-passive damping of simply-supported beam. (a),(b),(c) Eavg = 200
GPa, 230 GPa, and 260 GPa.
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(a)

(b)

(c)

Figure 5.52: Effect of change in average elastic modulus on the mid-point transverse dis-
placement for controlled-active-passive damping of simply-supported beam. (a),(b),(c) Eavg =
200 GPa, 230 GPa, and 260 GPa.
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(a)

(b)

(c)

Figure 5.53: Effect of change in average elastic modulus on the actuation voltage for
controlled-active-passive damping of simply-supported beam. (a),(b),(c) Eavg = 200 GPa,
230 GPa, and 260 GPa.
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(ii) Effect of varying constituents moduli for fixed average elastic modulus:

Figures 5.54 and 5.55 depict the passive and active-passive tip displacement responses

when Eavg = 200 GPa. The active-passive actuation voltage response is shown in Figure

5.56. As ∆E increases, the Q2DT E-FGM response progressively dampens, where the best

damping is observed at part (c) Figure 5.55 , ∆E = 366 GPa. Due to the nature of the

power-law function, as ∆E increases, the Q2DT P-FGM response gradually increases in

amplitude. Unlike the other beam cases, the simply-supported case has passive and active-

passive tip displacement responses that do not follow the same pattern. For parts (b) and

(c), the passive-damped beams generally have responses that are in phase to one another,

but for the active-passive damped scenarios, the Q2DT P-FGM responses do not damp as

well as the Q2DT E-FGM responses. Also, the active-passive damping responses become

out-of-phase from one another. The actuation voltage produces the same pattern as the

active-passive response because they are directly proportional to each other.
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(a)

(b)

(c)

Figure 5.54: Effect of varying constituents moduli for fixed average elastic modulus on the
mid-point transverse displacement for uncontrolled-passive damping of simply-supported beam.
(a),(b),(c) Eavg = 200 GPa for all.
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(a)

(b)

(c)

Figure 5.55: Effect of varying constituents moduli for fixed average elastic modulus on the
mid-point transverse displacement for controlled-active-passive damping of simply-supported
beam. (a),(b),(c) Eavg = 200 GPa for all.

109



(a)

(b)

(c)

Figure 5.56: Effect of varying constituents moduli for fixed average elastic modulus on the
actuation voltage for controlled-active-passive damping of simply-supported beam. (a),(b),(c)
Eavg = 200 GPa for all.
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(iii) Effect of exchange in the metal to ceramic and ceramic to metal elastic moduli:

Figure 5.57 depicts the response for the passive damping of the exchange of metal to ce-

ramic and ceramic to metal elastic moduli. Similar observations are made from the partially

clamped-clamped problem. A comparison between the two (partially clamped-clamped and

simply-supported) shows that the simply-supported response has lower frequency and larger

peak-to-peak amplitude of vibration than the partially clamped-clamped case. In part (a)

of Figure 5.57, the Q2DT E-FGM (EM > EC) and Q2DT P-FGM (EM < EC) responses

as well as the Q2DT P-FGM (EM > EC) and Q2DT E-FGM (EM < EC) responses match

perfectly. The Q2DT E-FGM (EM > EC) and Q2DT P-FGM (EM < EC) responses are

exactly in phase with the homogeneous response, but have slightly smaller transverse dis-

placement. With increasing ∆E, the responses that matched in part (a) no longer match

in parts (b) and (c); they experience larger phase shifts. Also, for parts (b) and (c), there

are no responses that are in phase with the homogeneous response. The Q2DT E-FGM

(EM > EC) and Q2DT P-FGM (EM < EC) responses at the highest ∆E in part (c) result

in the best damping capabilities.
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(a)

(b)

(c)

Figure 5.57: Effect of exchange in metal and ceramic elastic moduli on the mid-point trans-
verse displacement for uncontrolled-passive damping of simply-supported beam. (a),(b),(c)
Eavg = 200 GPa for all.
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Chapter 6

Summary, Conclusions and

Recommendations

A quasi-2D finite element formulation is presented in the previous chapters for the vibration

analysis of a functionally graded (FG) host beam with an active-passive constraining layer

damping (ACLD) treatment. The ACLD treatment is composed of a viscoelastic layer

that passively damps the structure and a piezoelectric fiber-reinforced composite (PFRC)

laminate that actively constrains the layer.

The PFRC laminate acts as the actuator of the system through a velocity feedback

control system. The PFRC laminate consists of four plies that are oriented at an angle

θ in the reference plane of the system. The ABD constitutive matrix, which relates force

and moment resultants with strains and curvatures, is determined through the use of the

classical lamination theory (CLT). The host beam is taken to have a Young’s modulus that is

varying along the thickness of the beam, while the Poisson’s ratio and density are constant

throughout the beam. The viscoelastic material time-dependent behavior is described by

utilizing a four-parameter fractional derivative model.

The formulation of the three-layer beam system is developed as a quasi-2D Euler Bernoulli

(Q2DE) and quasi-2D Timoshenko (Q2DT). The Q2DE is a model whereby the top PFRC

laminate and bottom host beam follow the Euler-Bernoulli beam hypotheses and the vis-

coelastic core follows a higher-order beam theory. Similarly, the Q2DT is a model where the

top PFRC laminate and bottom host beam are formulated as Timoshenko beams and the

viscoelastic core remains based on a higher-order beam theory. The deformation kinematics

of the top constraining layer and bottom host beam are such that the axial displacements

are linear in the thickness coordinate and transverse displacements are constant. In the

viscoelastic core, the axial displacement varies cubically, while the transverse displacement

varies quadratically. Although this model has a smaller amount of degrees of freedom (DOF)
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than the previous work done by Ref. [3], it is highly accurate. The present quasi-2D formu-

lation is significantly simplified while maintaining the same level of accuracy.

Three examples from the literature are utilized to determine the efficiency of this cur-

rent formulation: a sandwich beam with functionally graded (FG) core, a visco-aluminum

sandwich beam and a cantilevered beam with viscoelastic core and piezoelectric constrain-

ing layer. Throughout the parametric study, the active-passive constraining layer continu-

ously showed superior damping capabilities over the passive damping. Four boundary con-

ditions were analyzed: fully-clamped cantilevered, partially-clamped cantilevered, partially

clamped-clamped and simply-supported beams. Two studies were performed to examine the

effect of ply orientation and the effect of FGM properties.

During the effect of ply orientation analysis, it was observed that the passively damped

fully-clamped cantilevered beam with a stacking sequence of 0◦4 resulted in the best damping

rate because its stiffness causes the greatest shear deformation of the viscoelastic core. In the

active-passive scenario, however, this stiffness works against the active control effort of the

actuator; hence, the [0◦/90◦]S is better complemented and provides the best attenuation rate.

For the partially-clamped cantilevered beam case, active-passive damping has a very slow

attenuation rate compared to the fully-clamped cantilevered beam. In the partially clamped-

clamped case, the vibration pattern was similar to the clamped cantilevered cases, but with

smaller amplitude and higher frequency. The simply-supported beam responses have larger

amplitude and lower frequency compared to the partially clamped-clamped responses.

In the study of the effect of FGM properties on the host beam, three scenarios were

examined: (i) the effect of change in average elastic moduli, (ii) the effect of varying con-

stituents moduli for fixed average elastic moduli, and (iii) the effect of exchange in the metal

to ceramic and ceramic to metal elastic moduli. It was observed that all four boundary

conditions yielded the same response patterns, but with different ranges in actuation.

In the first scenario, with increasing Eavg, the Q2DT E-FGM response slightly decreased

in transverse displacement and the Q2DT P-FGM displacement scarcely changed. Also, as

Eavg increased, the frequency of each response increased. Out of the four beam cases, the

simply-supported beam yielded the most uniform displacement for all formulation responses

(Q2DT E-FGM, P-FGM, and homogeneous).

With respect to part (ii) of the FGM analysis such that the average Young’s moduli

Eavg were fixed to 200 GPa, as ∆E increased, the transverse displacement of the Q2DT E-

FGM response gradually decreased while the Q2DT P-FGM response increased. The Q2DT

E-FGM response with the largest ∆E yielded the best damping rate.

For part (iii), as ∆E increased, the Q2DT E-FGM (EM > EC) and P-FGM (EM < EC)

responses gradually decreased as the Q2DT P-FGM (EM > EC) and E-FGM (EM < EC)
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responses increased. At the largest ∆E, the response that yielded the smallest peak-to-peak

amplitude of vibration was the Q2DT E-FGM (EM > EC) response followed very closely

by the P-FGM (EM < EC) response. These observations suggest that, for a host beam

with 100% metal composition at the top and 100% ceramic composition at the bottom of

the beam, using the E-FGM distribution demands that the material with the highest elastic

modulus (EM when EM > EC) be placed at the top of the host beam to obtain the least

amount of vibration. Also, the use of the P-FGM distribution in a FG host beam requires

that the material with the lowest elastic modulus (EM when EM < EC) should be situated

at the top of the beam in order to obtain the best damping.

Even though the current study is quite thorough, there is always room for improvement,

such as the utilization of other materials to enhance the structure. Further extension of this

work could possibly aid in the solution to noise and vibration problems. Future investigations

may include:

1. The present formulation can progress to include the concept of plates and/or shells. A

quasi-3D finite element model such as that seen in Ref. [9] can be utilized.

2. The use of different viscoelastic models can be examined. This thesis uses the four-

parameter fractional derivative model which could not be directly replicated using

commercial finite element software such as ANSYS which employs the Prony series

method to represent viscoelastic material.

3. The viscoelastic constraining layer could incorporate an FG property where its elastic

modulus varies throughout the thickness. The effectiveness of the active constraining

layer might be improved since it would be bonded to the surface of the passive vis-

coelastic layer where there will be less stiffness and, thus, increase the actuation of the

beam.

4. The presence of imperfect bonding can be explored.

5. The current formulation can be verified experimentally by performing vibration simu-

lation tests.
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Appendix A

Appendix

A.1 MATLAB Codes

The following MATLAB code was used to find response of an active constrained-layer damped

(ACLD) functionally-graded (FG) beam under a triangular impulse load.

1 function FE New Timoshenko PFRC Visco FGM Beam Numinteg
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−− By Ry Long −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % Purpose:
6 % Code to perform FEM on an ACLD FG beam with a viscoelastic core
7 % and a top PFRC laminate.
8 % Formulation:
9 % Top and bottom layers are represented as Timoshenko beams.

10 % Core layer is represented using a higher order beam theory.
11 % Elemental displacement vector:
12 % q eˆT = [uo t1 w t1 phi t1 u3 c1 u2 c1 wo c1 uo b1 w b1 phi b1
13 % ...w t2 wo c2 w b2...
14 % uo t3 w t3 phi t3 u3 c3 u2 c3 wo c3 uo b3 w b3 phi b3]
15 % Geometric considerations:
16 % The thickness of each layer is analyzed as 2H (ie. 2HC is
17 % the core thickness)
18 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 clear all
21 syms xi zT zB zC c13 c23 c33 cs sn
22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−INPUT DATA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 %−−−−TIME PARAMETERS−−−−
26 Spoints = 1000;
27 Stime = 1;
28 DT = Stime/Spoints;
29 Kv = 0;
30 %−−−−BEAM GEOMETRIC PARAMETERS (DIMENSIONS)−−−−
31 LB = 250e−3; % length of beam
32 WB = 15e−3; % width of beam
33 HT = (0.75e−3)/2; % height of top layer
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34 HB = (2e−3)/2; % height of bottom beam
35 HC = (0.25e−3)/2; % height of core
36 %−−−−AREA−−−−
37 AT = WB*(2*HT); % top layer cross−sectional area
38 AB = WB*(2*HB); % bottom beam cross−sectional area
39 AC = WB*(2*HC); % core cross−sectional area
40 %−−−−MOMENT OF INERTIA−−−−
41 IT = (WB*(2*HT)ˆ3)/12; % top layer moment of interia
42 IB = (WB*(2*HB)ˆ3)/12; % bottom beam moment of inertia
43 IC = (WB*(2*HC)ˆ3)/12; % core moment of inertia
44 %−−−−TOP LAYER MATERIAL PROPERTIES (PFRC)−−−−
45 %−−−−PZT5H and epoxy combined properties of fiber−reinforce matrix−−−−
46 kC = 5/6; % shape factor
47 rhoT = 3640; % density of PFRC
48 % mechanical characteristics to match the one layer
49 c11 = 32.6e9; c12 = 4.3e9; c22 = 7.2e9; % mechanical characteristics
50 c44 = 1.05e9; c55 = 1.29e9; c66 = c55;
51 e31 = −6.76; % electric constant
52 V = 100; % initial value of voltage
53 Ez = V/(2*HT); % electric field
54 ply = 4; % number of plies in the laminate
55 if ply == 1
56 theta = [0];
57 zk = [HT];
58 elseif ply == 2
59 %theta = [pi/2 pi/2]; % symmetric cross−ply laminate
60 theta = [0 0];
61 %theta = [0 pi/2];
62 zk = [0 HT];
63 elseif ply == 3
64 theta = [0 0 0]; % symmetric cross−ply laminate
65 %theta = [0 pi 0];
66 zk = [−HT/3 HT/3 HT];
67 elseif ply == 4
68 theta = [0 0 0 0]; % symmetric cross−ply laminate
69 %theta = [0 pi/2 pi/2 0];
70 %theta = [pi/4 −pi/4 −pi/4 pi/4];
71 %theta = [pi/6 pi/3 pi/3 pi/6];
72 zk = [−HT/2 0 HT/2 HT];
73 elseif ply == 6
74 %theta = [0 0 0 0 0 0]; % symmetric cross−ply laminate
75 %theta = [0 pi/2 −pi/2 −pi/2 pi/2 0];
76 %theta = [0 pi/4 pi/2 pi/3 pi/6 pi];
77 theta = [0 pi/4 −pi/4 −pi/4 pi/4 0];
78 zk = [−HT*2/3 −HT/3 0 HT/3 HT*2/3 HT];
79 end
80 %−−−−constitutive equations−−−−
81 A11 = 0; A55 = 0; B11 = 0; D11 = 0; Nx = 0; Mx = 0;
82 zk0 = −HT;
83 for k = 1:ply
84 %−−−−mechanical−−−−
85 % constitutive relation of the k layer in the laminate
86 Ct = [c11 c12 c13 0 0 0;c12 c22 c23 0 0 0;c13 c23 c33 0 0 0;...
87 0 0 0 c44 0 0;0 0 0 0 c55 0;0 0 0 0 0 c66];
88 R = [1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0;...
89 0 0 0 2 0 0;0 0 0 0 2 0;0 0 0 0 0 2];
90 % transformation matrix from principal to global coordinates through a
91 % counterclockwise rotation Theta about z−axis
92 T = [csˆ2 snˆ2 0 0 0 2*cs*sn;snˆ2 csˆ2 0 0 0 −2*sn*cs;...
93 0 0 1 0 0 0;0 0 0 cs −sn 0;0 0 0 sn cs 0;...
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94 −sn*cs sn*cs 0 0 0csˆ2−snˆ2];
95 Qt = simple(Tˆ(−1)*Ct*R*T*Rˆ(−1));
96 Qt = subs(Qt,(csˆ2+snˆ2),1); % cos(Theta)ˆ2+sin(Theta)ˆ2=1
97 Qt = subs(Qt,{cs,sn},{cos(theta(k)),sin(theta(k))});
98 % transformed stiffness constants
99 Q11 = Qt(1,1); Q12 = Qt(1,2); Q16 = Qt(1,6); Q22 = Qt(2,2);

100 Q26 = Qt(2,6); Q44 = Qt(4,4); Q45 = Qt(4,5); Q55 = Qt(5,5);
101 Q66 = Qt(6,6);
102 % transformed and reduced stiffness constants
103 % effective young's modulus
104 Q 11 = Q11 + (Q16*Q26−Q12*Q66)/(Q22*Q66−Q26ˆ2)*Q12...
105 + (Q12*Q26−Q16*Q22)/(Q22*Q66−Q26ˆ2)*Q16;
106 % effective shear modulus
107 Q 55 = Q55 − Q45ˆ2/Q44;
108 % transformed reduced constitutive matrix
109 Qt k = eval([Q 11 0;0 kC*Q 55]);
110 %−−−−−−−−−−−−electrical−−−−−−−−−−−−−
111 e 31 = eval((1−(Q12*Q66−Q16*Q26)/(Q22*Q66−Q26ˆ2))*e31);
112 % Determination of resultant stiffness matrices
113 A11 = A11 + Q 11*(zk(k)−zk0);
114 A55 = A55 + Q 55*(zk(k)−zk0);
115 B11 = B11 + Q 11*(zk(k)ˆ2−zk0ˆ2);
116 D11 = D11 + Q 11*(zk(k)ˆ3−zk0ˆ3);
117 Nx = Nx + (e 31*Ez)*(zk(k)−zk0);
118 Mx = Mx + (e 31*Ez)*(zk(k)ˆ2−zk0ˆ2);
119 zk0 = zk(k);
120 end
121 B11 = B11/2;
122 D11 = D11/3;
123 Mx = Mx/2;
124 % ABD matrix of the piezolaminate
125 ABD11 = subs([A11 B11; B11 D11]);
126 ABD55 = subs([A55 0; 0 A55]);
127 % resultant electric force stiffness vector
128 NM = [Nx Mx]
129 %−−−−−−−−−−−−−−−−−−FGM CONSTITUENTS−−−−−−−−−−−−−−−−−−−−−
130 ymM = 100e9; % young's modulus of aluminum
131 %nuM = 0.3; % poisson's ratio of aluminum
132 %rhoM = 2700; % density of aluminum
133 ymC = 352e9; % young's modulus of zirconia
134 %nuC = 0.3; % poisson's ratio of zirconia
135 %rhoC = 5700; % density of zirconia
136 %−−−−BOTTOM BEAM MATERIAL PROPERTIES (P−FGM)−−−−
137 p = 0.66;
138 ym B = (ymM−ymC)*(0.5+zB/(2*HB))ˆp + ymC;
139 %nu B = (nuM−nuC)*(0.5+zB/(2*HB))ˆp + nuC;
140 %rho B = (rhoM−rhoC)*(0.5+zB/(2*HB))ˆp + rhoC;
141 %−−−−BOTTOM BEAM MATERIAL PROPERTIES (E−FGM)−−−−
142 %lambda ym = 1/(2*HB)*log(ymC/ymM);
143 %lambda nu = 1/(2*HB)*log(nuC/nuM);
144 %lambda rho = 1/(2*HB)*log(rhoC/rhoM);
145 %ym B = ymM*exp(lambda ym*(zB+HB));
146 %ym B = 200e9; %ymM*exp(lambda ym*(zB+HB));
147 nu B = 0.3; %nuM*exp(lambda nu*(zB+HB));
148 rho B = 7800; %rhoM*exp(lambda rho*(zB+HB));
149 sm B = ym B/2/(1+nu B); % beam shear modulus
150 %−−−−BOTTOM BEAM MATERIAL PROPERTIES (ELASTIC)−−−−
151 %ymB = 70.3e9; % beam Young's modulus
152 %nuB = 0.345; % beam poisson's ratio
153 %rhoB = 2690; % beam density
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154 %smB = ymB/2/(1+nuB); % beam shear modulus
155 %−−−−VISCOELASTIC CORE MATERIAL PROPERTIES−−−−
156 Ece = 1.5e6; % elastic Young's modulus of core layer
157 nuC = 0.499; % poisson's ratio of core layer
158 E0 = Ece; % relaxed Young's modulus of core
159 Einf = 69.9495e6; % nonrelaxed Young's modulus of core
160 rhoC = 1600; % density of core layer
161 ymC = E0/((1+nuC)*(1−2*nuC))*subs([1−nuC nuC; nuC 1−nuC]);
162 smC = E0/(2*(1+nuC));
163 TAUc = 1.4052e−5; % constant for anelastic properties
164 ALPHAc = 0.7915;
165 ETAc = TAUcˆALPHAc/(TAUcˆALPHAc + DTˆALPHAc);
166

167 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
168 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−FINITE ELEMENT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
169 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
170 numElem = 6; % number of elements
171 NDOF = 9; % number of nodal degrees of freedom
172 GDOF = NDOF*(numElem+1)+3*numElem; % global degrees of freedom
173 Le = LB/numElem; % length of an element
174 %−−−−NUMERICAL INTEGRATION USING TWO POINTS−−−−
175 ngpts = 2;
176 gpts = zeros(2,1); gwts = zeros(2,1);
177 gpts(1) = 0.57725026918962; gwts(1) = 1.0;
178 gpts(2) = −gpts(1); gwts(2) = 1.0;
179 Jacobian = Le/2;
180 %−−−−SHAPE(INTERPOLATION) FUNCTIONS−−−−
181 N1 = (1−xi)/2; N2 = (xi+1)/2;
182 N3 = (xiˆ2−xi)/2; N4 = (1−xiˆ2);
183 N5 = (xiˆ2+xi)/2;
184 dN1dx = diff(N1,xi)/abs(Jacobian); dN2dx = diff(N2,xi)/abs(Jacobian);
185 dN3dx = diff(N3,xi)/abs(Jacobian); dN4dx = diff(N4,xi)/abs(Jacobian);
186 dN5dx = diff(N5,xi)/abs(Jacobian);
187 %−−−−CONSTANTS−−−−
188 c1 = −(9/(16*HCˆ3))*(zC+HC/3)*(zC−HC/3)*(zC−HC);
189 c2 = (27/(16*HCˆ3))*(zC+HC)*(zC−HC/3)*(zC−HC);
190 c3 = −(27/(16*HCˆ3))*(zC+HC)*(zC+HC/3)*(zC−HC);
191 c4 = (9/(16*HCˆ3))*(zC+HC)*(zC+HC/3)*(zC−HC/3);
192 b1 = zC*(zC−HC)/(2*HCˆ2);
193 b2 = (HCˆ2−zCˆ2)/HCˆ2;
194 b3 = zC*(zC+HC)/(2*HCˆ2);
195

196 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
197 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−MASS MATRICES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
198 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
199 eMxT = zeros(21); eMxB = zeros(21); eMxC = zeros(21);
200 for i = 1:ngpts
201 %−−−−PRFC TOP LAYER−−−−
202 NtmpT = subs([N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0 0 0;...
203 0 N3 0 0 0 0 0 0 0 N4 0 0 0 N5 0 0 0 0 0 0 0;...
204 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0]);
205 LtmpT = subs([1 0 −zT; 0 1 0; −zT 0 zTˆ2]);
206 BmxT = LtmpT*NtmpT;
207 TmxT = eval(int(rhoT*WB*transpose(NtmpT)*BmxT,zT,−HT,HT));
208 eMxT = eMxT + Jacobian*gwts(i)*subs(TmxT,xi,gpts(i))
209 %−−−−FGM BOTTOM LAYER−−−−
210 NtmpB = subs([0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0;...
211 0 0 0 0 0 0 0 N3 0 0 0 N4 0 0 0 0 0 0 0 N5 0;...
212 0 0 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2]);
213 LtmpB = subs([1 0 −zB; 0 1 0; −zB 0 zBˆ2]);
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214 BmxB = LtmpB*NtmpB;
215 TmxB = eval(int(WB*transpose(NtmpB)*rho B*BmxB,zB,−HB,HB));
216 eMxB = eMxB + Jacobian*gwts(i)*subs(TmxB,xi,gpts(i))
217 %−−−−VISCOELASTIC CORE LAYER−−−−
218 UCconstMx = subs([c4 c4*HT c3 c2 c1 −c1*HB]);
219 UCvectMx = subs([N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0 0 0;...
220 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0;...
221 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0;...
222 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0;...
223 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0;...
224 0 0 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2]);
225 UC = UCconstMx*UCvectMx;
226 WCconstMx = subs([b3 b2 b1]);
227 WCvectMx = subs([0 N3 0 0 0 0 0 0 0 N4 0 0 0 N5 0 0 0 0 0 0 0;...
228 0 0 0 0 0 N3 0 0 0 0 N4 0 0 0 0 0 0 N5 0 0 0;...
229 0 0 0 0 0 0 0 N3 0 0 0 N4 0 0 0 0 0 0 0 N5 0]);
230 WC = WCconstMx*WCvectMx;
231 NtmpC = subs([UC; WC]);
232 TmxC = eval(int(rhoC*WB*transpose(NtmpC)*NtmpC,zC,−HC,HC));
233 eMxC = eMxC + Jacobian*gwts(i)*subs(TmxC,xi,gpts(i))
234 end
235 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
236 %−−−−−−−−−−−−−−−−−−−−−−−−−−STIFFNESS MATRICES−−−−−−−−−−−−−−−−−−−−−−−−−−−−
237 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
238 eKxTB = zeros(21); eKxTS = zeros(21); eKxBB = zeros(21);
239 eKxBS = zeros(21); eKxCB = zeros(21); eKxCS = zeros(21);
240 eFxT = zeros(21,1);
241 for i = 1:ngpts
242 %−−−−PFRC TOP LAYER−−−−
243 %−−−−BENDING−−−−
244 NtmpTB = subs([dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx 0 0 0 0 0 0 0 0;...
245 0 0 −dN1dx 0 0 0 0 0 0 0 0 0 0 0 −dN2dx 0 0 0 0 0 0]);
246 TkxTB = WB*transpose(NtmpTB)*ABD11*NtmpTB;
247 eKxTB = eKxTB + Jacobian*gwts(i)*subs(TkxTB,xi,gpts(i));
248 %−−−−SHEAR−−−−
249 NtmpTS = subs([0 dN3dx −N1 0 0 0 0 0 0 dN4dx 0 0 0 dN5dx −N2 0 0 0 0 0 0]);...
250 TkxTS = WB*transpose(NtmpTS)*A55*NtmpTS;
251 eKxTS = eKxTS + Jacobian*gwts(i)*subs(TkxTS,xi,gpts(i));
252 %−−−−TOTAL TOP ELASTIC STIFFNESS MATRIX−−−−
253 eKxTe = eKxTB + eKxTS;
254 %−−−−FGM BOTTOM LAYER−−−−
255 %−−−−BENDING−−−−
256 NtmpBB = subs([0 0 0 0 0 0 dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx 0 0;...
257 0 0 0 0 0 0 0 0 dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx]);
258 LtmpBB = subs([1 −zB]);
259 BmxBB = LtmpBB*NtmpBB;
260 TkxBB = eval(int(WB*transpose(BmxBB)*ym B*BmxBB,zB,−HB,HB));
261 eKxBB = eKxBB + Jacobian*gwts(i)*subs(TkxBB,xi,gpts(i));
262 %−−−−SHEAR−−−−
263 NtmpBS = subs([0 0 0 0 0 0 0 dN3dx 0 0 0 dN4dx 0 0 0 0 0 0 0 dN5dx 0;...
264 0 0 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2]);
265 LtmpBS = subs([1 −1]);
266 BmxBS = LtmpBS*NtmpBS;
267 TkxBS = eval(int(kC*WB*transpose(BmxBS)*sm B*BmxBS,zB,−HB,HB));
268 eKxBS = eKxBS + Jacobian*gwts(i)*subs(TkxBS,xi,gpts(i));
269 %−−−−TOTAL BOTTOM ELASTIC STIFFNESS MATRIX−−−−
270 eKxBe = eKxBB + eKxBS;
271 %−−−−VISCOELASTIC CORE LAYER−−−−
272 %−−−−BENDING (x−direction)−−−−
273 UCconstKx = subs([c4 c4*HT c3 c2 c1 −c1*HB]);
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274 dUCvectdxKx = subs([dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx 0 0 0 0 0 0 0 0;...
275 0 0 dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx 0 0 0 0 0 0;...
276 0 0 0 dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx 0 0 0 0 0;...
277 0 0 0 0 dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx 0 0 0 0;...
278 0 0 0 0 0 0 dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx 0 0;...
279 0 0 0 0 0 0 0 0 dN1dx 0 0 0 0 0 0 0 0 0 0 0 dN2dx]);
280 dUCdx = UCconstKx*dUCvectdxKx;
281 %−−−−BENDING (z−direction)−−−−
282 dWCconstdzCKx = subs([diff(b1,zC) diff(b2,zC) diff(b3,zC)]);
283 WCvectKx = subs([0 N3 0 0 0 0 0 0 0 N4 0 0 0 N5 0 0 0 0 0 0 0;...
284 0 0 0 0 0 N3 0 0 0 0 N4 0 0 0 0 0 0 N5 0 0 0;...
285 0 0 0 0 0 0 0 N3 0 0 0 N4 0 0 0 0 0 0 0 N5 0]);
286 dWCdzC = dWCconstdzCKx*WCvectKx;
287 NtmpCB = subs([dUCdx; dWCdzC]);
288 TkxCB = eval(int(WB*transpose(NtmpCB)*ymC*NtmpCB,zC,−HC,HC));
289 eKxCB = eKxCB + Jacobian*gwts(i)*subs(TkxCB,xi,gpts(i));
290 %−−−−SHEAR (xz−direction)−−−−
291 WCconstKx = subs([b1 b2 b3]);
292 dWCvectdxKx = subs([0 dN3dx 0 0 0 0 0 0 0 dN4dx 0 0 0 dN5dx 0 0 0 0 0 0 0;...
293 0 0 0 0 0 dN3dx 0 0 0 0 dN4dx 0 0 0 0 0 0 dN5dx 0 0 0;...
294 0 0 0 0 0 0 0 dN3dx 0 0 0 dN4dx 0 0 0 0 0 0 0 dN5dx 0]);
295 dWCdx = WCconstKx*dWCvectdxKx;
296 dUCconstdzCKx = subs([diff(c4,zC) diff(c4,zC)*HT diff(c3,zC) ...
297 diff(c2,zC) diff(c1,zC) −diff(c1,zC)*HB]);
298 UCvectKx = subs([N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0 0 0;...
299 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0;...
300 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0;...
301 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0 0 0;...
302 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2 0 0;...
303 0 0 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 0 0 N2]);
304 dUCdzC = dUCconstdzCKx*UCvectKx;
305 BmxCS = dWCdx + dUCdzC;
306 TkxCS = eval(int(WB*transpose(BmxCS)*smC*BmxCS,zC,−HC,HC));
307 eKxCS = eKxCS + Jacobian*gwts(i)*subs(TkxCS,xi,gpts(i));
308 %−−−−TOTAL CORE ELASTIC STIFFNESS MATRIX−−−−
309 eKxCe = eKxCB + eKxCS;
310 %−−−−ANELASTIC STIFFNESS MATRIX−−−−
311 eKxCa = ETAc*((Einf−E0)/(E0))*eKxCe;
312

313 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
314 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−WORK DONE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
315 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
316 %−−−−CONSERVATIVE FORCE FROM PFRC LAMINATE−−−−
317 TFxT = eval(int(WB*transpose(NtmpTB)*transpose(NM),zT,−HT,HT));
318 eFxT = eFxT + Jacobian*gwts(i)*subs(TFxT,xi,gpts(i));
319 end
320

321 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
322 %−−−−−−−−−−−−−−−−−−−−−−−−GLOBAL MATRIX ASSEMBLY−−−−−−−−−−−−−−−−−−−−−−−−−−
323 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
324 Mx = zeros(GDOF); % initialize global mass matrix
325 Kx = zeros(GDOF); % initialize global elastic stiffness matrix
326 KxC = zeros(GDOF); % initialize global anelastic stiffness matrix
327 FxT = zeros(GDOF,1);
328 for i=1:numElem
329 sdof = (NDOF+3)*(i−1)+1;
330 for j=1:NDOF*2+3
331 for k=1:NDOF*2+3
332 Mx(sdof+j−1,sdof+k−1) = Mx(sdof+j−1,sdof+k−1) +...
333 eMxB(j,k) + eMxT(j,k) + eMxC(j,k);
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334 Kx(sdof+j−1,sdof+k−1) = Kx(sdof+j−1,sdof+k−1) +...
335 eKxTe(j,k) + eKxBe(j,k) +...
336 eKxCe(j,k)+ eKxCa(j,k) ;
337 KxC(sdof+j−1,sdof+k−1) = KxC(sdof+j−1,sdof+k−1) + eKxCe(j,k);
338 FxT(sdof+j−1,1) = FxT(sdof+j−1,1) + eFxT(j,1);
339 end
340 end
341 end
342

343 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
344 %−−−−−−−−−−−−−−−−−−−−−−−−−BOUNDARY CONDITIONS−−−−−−−−−−−−−−−−−−−−−−−−−−−−
345 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
346 %FULLY CLAMPED CANTILEVER
347 Mx(:,1:NDOF)=[]; Mx(1:NDOF,:)=[]; % delete cols 1−9 & rows 1−9
348 Kx(:,1:NDOF)=[]; Kx(1:NDOF,:)=[]; % delete cols 1−9 & rows 1−9
349 KxC(:,1:NDOF)=[]; KxC(1:NDOF,:)=[]; % delete cols 1−9 & rows 1−9
350 FxT(1:NDOF,:)=[];
351 dfreqs = eig(Kx,Mx);
352 dfreqs = sort(sqrt(dfreqs));
353 [m,n] = size(dfreqs);
354 if m > 10
355 m = 10;
356 end
357 fprintf(1,' Natural frequencies \n');
358 fprintf(1,' Mode rad/s Hz\n');
359

360 for i = 1:m
361 fprintf(1,'%5d %13.9e %13.9e \n',i,dfreqs(i),dfreqs(i)/2/pi);
362 end
363

364 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
365 %−−−−−−−−−−−−−−−−−−−−−−−NEWMARK TIME INTEGRATION−−−−−−−−−−−−−−−−−−−−−−−−−
366 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
367 %−−−−Newmark time parameters−−−−
368 Ga = zeros(1,(NDOF+3)*numElem); % control gain
369 Ga((NDOF+3)*numElem − 1) = Kv; % control gain on tip displacement
370

371 GAMMAc = 0.5;
372 BETAc = 0.25*(0.5+GAMMAc)ˆ2;
373

374 displ = zeros(Spoints+1,1); % displacement of interest
375 dvolt = zeros(Spoints+1,1);
376 %−−−−Initialize displacement, velocity and acceleration at t=0−−−−
377 dtime = zeros(Spoints+1,1);
378 Fext = zeros((NDOF+3)*numElem,1);
379 qe = zeros((NDOF+3)*numElem,1); % elastic displacement
380 qa = zeros((NDOF+3)*numElem,1); % anelastic displacement
381 qvel = zeros((NDOF+3)*numElem,1);
382 qaccel = zeros((NDOF+3)*numElem,1);
383 %−−−−Calculate initial acceleration−−−−
384 qaccel = inv(Mx)*(Fext−Kx*qe);
385 qa = (1−ETAc)*((Einf − E0)/Einf)*qe;
386

387 %−−−−stores matrix of the anelastic displacement history−−−−
388 Qa = zeros((NDOF+3)*numElem,Spoints);
389 Qa(:,1) = qa; % stores initial qa vector as
390 A = zeros(Spoints,1); % a column in the Qa matrix
391 A(1) = 1.0;
392

393 for k = 1:Spoints % counts number of sample points
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394 dtime(k+1) = dtime(k) + DT;
395 ttime = dtime(k+1);
396 %−−−−Conservative force from the external load(Impluse)−−−−
397 if ttime ≤ 2e−3
398 Fext((NDOF+3)*numElem − 7,1) = 500*ttime;
399 elseif ttime ≤ 4e−3
400 Fext((NDOF+3)*numElem − 7,1) = 2−500*ttime;
401 else
402 Fext((NDOF+3)*numElem − 7,1) = 0;
403 end
404 %−−−−Predict displacement and velocity−−−−
405 qpred = qe + DT*qvel + (GAMMAc − BETAc)*DTˆ2*qaccel;
406 qvelpred = qvel + 2*(GAMMAc − BETAc)*DT*qaccel;
407 %−−−−Calculate the modified loading in the viscoelastic core−−−−
408 sum = 0;
409 for j = 1:Spoints−1
410 A(j+1) = ((j−ALPHAc−1)/j)*A(j);
411 if(k+1−j)>0 % truncation condition
412 sum = sum + A(j+1)*Qa(:,k+1−j);
413 else
414 break
415 end
416 end
417 %−−−−Calculate the anelastic force−−−−
418 FxC = −ETAc*(Einf/E0)*KxC*sum; % load in core
419 %−−−−Calculate residual−−−−
420 R = Fext + FxC − FxT*Ga*qvelpred − Kx*qpred; % forms residual
421 %−−−−Evaluate acceleration by solving linear system−−−−
422 qaccel = inv(Mx + 0.5*FxT*Ga*DT + BETAc*DTˆ2*Kx)*R;
423 %−−−−Corrects/updates displacement and velocity−−−−
424 qe = qpred + BETAc*DTˆ2*qaccel;
425 qvel = qvelpred + GAMMAc*DT*qaccel;
426 %−−−−Evaluate and store the anelastic displacement history−−−−
427 qa = (1−ETAc)*((Einf−E0)/Einf)*qe−ETAc*sum;
428 %−−−−Store every qa vector as a column in Qa matrix−−−−
429 Qa(:,k+1) = qa;
430 %−−−Determine displacement at tip of beam−−−−
431 displ(k+1) = qe((NDOF+3)*numElem − 1)*1e3;% tip displacement
432 dvolt(k+1) = Ga*qvel;
433 end
434

435 clear qe qvel qaccel qpred qvelpred Qa Ga FxC A R
436

437 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
438 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−RESULTS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
439 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
440 T = [0:DT:Spoints*DT];
441 %−−−−Plot transverse displacement node w2 in the last element−−−−
442 figure;plot(T(1:1:Spoints),10*displ(1:1:Spoints),'−b')
443 xlabel('Time (s)');ylabel('Tip Deflection (x 0.1 mm)');
444 legend('Q2DT with varying E (P−FGM)',1);
445 %legend('Q2DT with constant E (200 GPa)',1);
446 %title('[0ˆo/0ˆo/0ˆo/0ˆo]');
447 %title('[0ˆo/90ˆo/90ˆo/0ˆo]');
448 %title('[45ˆo/−45ˆo/−45ˆo/45ˆo]');
449 %title('[30ˆo/60ˆo/60ˆo/30ˆo]');
450 title('E M = 352 GPa, E C = 100 GPa');
451

452 %−−−−Plot voltage at node w2 in the last element−−−−
453 figure;plot(T(1:1:Spoints),dvolt(1:1:Spoints),'−r')
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454 xlabel('Time (s)');ylabel('Control Voltage (V)');
455 %legend('Q2DT fully−clamped cantilevered',1);
456 %legend('Q2DT with varying E (P−FGM)',1);
457 %legend('Q2DT with constant E (200 GPa)',1);
458 %title('[0ˆo/0ˆo/0ˆo/0ˆo]');
459 %title('[0ˆo/90ˆo/90ˆo/0ˆo]');
460 %title('[45ˆo/−45ˆo/−45ˆo/45ˆo]');
461 %title('[30ˆo/60ˆo/60ˆo/30ˆo]');
462 title('E M = 436 GPa, E C = 70 GPa');
463 hold on
464

465 return
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