
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2010

Fault Detection For ASIC Design Reliability On
Resistive Delay Faults And Strength-Based Soft-
Errors
Mohammad R.S. Javaheri
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and
dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Javaheri, Mohammad R.S., "Fault Detection For ASIC Design Reliability On Resistive Delay Faults And Strength-Based Soft-Errors"
(2010). Theses and dissertations. Paper 1488.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1488?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1488&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

FAULT DETECTION FOR ASIC DESIGN

RELIABILITY ON RESISTIVE DELAY FAULTS AND

STRENGTH-BASED SOFT-ERRORS

By

Mohammad Reza Samadpour Javaheri

Master of Applied Science

Electrical and Computer Engineering

Ryerson University, Toronto, Canada, 2006

Bachelor of Computer Engineering

Azad University of Tehran, Iran, 1997

A Dissertation

Presented to Ryerson University

In partial fulfillment of the

Requirements for the degree of

Doctorate of Philosophy

In the program of

 Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

© Mohammad Reza Samadpour Javaheri 2010

 iii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Signature

 iii

ABSTRACT
Thesis Title:

Fault Detection for ASIC Design Reliability on Resistive Delay Faults and Strength-Based

Soft-Errors

Mohammad Reza Samadpour Javaheri

Electrical and Computer Engineering, Doctorate of Philosophy

Ryerson University 2010

Thesis Directed by:

Dr. Reza Sedaghat

Electrical and Computer Engineering Department

Ryerson University

Soft-errors (SEs) and delay faults (DFs) frequently occur in modern high-density, high-speed,

low-power VLSI circuits. Therefore, SE hardened design and DF testing are essential. This thesis

introduces two novel methods for soft-error detection and delay fault propagation in nanometre

technology. A new idea is proposed to propagate those delay faults that are not causing logic failure

at the site of the defect, but the delay makes the circuit more prone to soft-errors that manifest the

effect of delay faults. This approach propagates the fault from the fault location by mapping a nine-

valued voltage model on top of a five-valued voltage model to convert delay faults to static faults.

This original idea reduces the complexity of delay fault propagation. This thesis introduces an

original approach toward soft-error detection based on the strength violation in the circuit. This

research shows that transient pulses of less than threshold voltage will cause soft-errors without

altering the logic value at the strike location. This method will increase the Soft-Error Rates (SER)

for all existing methods if strength-based Soft-Error detection will be considered. The offered

approach uses a novel coding system that carries both logic and strength which applies to certain

logic functions that are sensitive to strength variations. A wide range of soft-errors are the result of

strength violation in switch-level that have never been investigated before.

 iii

ACKNOWLEDGEMENT

I am heartily thankful to my advisor, Dr. Reza Sedaghat, whose encouragement, guidance

and support from the initial to the final stage of my research enabled me to achieve my goals.

Also, I offer my regards and blessings to all of those who supported me in any respect during the

completion of the PhD.

I would like to thank my family for their support. Above all, I cannot express my full gratitude to

my parents, who patiently advised me throughout my life.

I dedicate this thesis to my mother and my deceased father.

 iv

TABLE OF CONTENTS

ABSTRACT .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

NOMENCLATURE ... xiv

CHAPTER 1 INTRODUCTION ... 1

1.1. Problem Statement.. 2

1.2. The Method.. 2

1.3. The Outcomes .. 4

1.4. Summary of Contributions .. 5

1.5. Organization of Thesis .. 8

CHAPTER 2 STATE OF THE ART REVIEW .. 9

2.1. Overview .. 9

2.2. Resistive Delay Faults ... 10

2.3. Resistive Short and Open Delay Faults ... 10

2.4. Soft-Errors ... 13

2.5. Soft-Error Faults ... 14

2.5.1. Alpha Particles .. 16

2.5.2. Cosmic Rays .. 17

2.5.3. Thermal Neutrons ... 17

CHAPTER 3 RESISTIVE SHORT AND OPEN DELAY FAULT 20

3.1. Dynamic Effect of Resistive Faults on Output Voltage 21

 v

3.1.1. Switch-Level Fault Modeling ... 21

3.1.2. Propagation Delay and Output Voltage .. 24

3.2. A Quick Review of Fault Propagation in Transistor-Level 27

3.2.1. Connection Node ... 29

3.2.2. Circuit Graph Model .. 30

3.3. Delay Propagation of Resistive Faults in Deep Sub-Microns 31

3.3.1. Arithmetic Equation of the Circuit .. 33

3.3.2. Delay Propagation ... 35

CHAPTER 4 DELAY FAULT MANIFESTS SOFT-ERRORS 41

4.1. The Importance of Delay Faults and Soft-Errors 41

4.2. Soft Delay Phenomenon .. 42

4.3. Fault Modeling .. 45

4.4. Active Transition Delay Model .. 46

4.5. Inactive Transition Delay Model .. 46

CHAPTER 5 STRENGTH VIOLATION EFFECT ON SOFT-ERROR 47

5.1 Strength Violation ... 47

5.2 Soft-Error Detection Coding Model .. 53

5.3 Verilog Strength Rules and Functions ... 56

5.3.1 PMOS Function ... 58

5.3.2 NMOS Function .. 59

5.3.3 C Function ... 61

CHAPTER 6 SOFT-ERROR INJECTION TECHNIQUE 64

6.1. Soft-Error Injection .. 64

6.1.1. Pulse Injection at Gate Input ... 65

 vi

6.1.2. Pulse Injection at the Gate of Transistor .. 66

6.1.3. Pulse Injection at the Drain of Transistor .. 66

6.2. Soft-Error Injection Examples .. 67

6.2.1. Injection at the Input of 2-Input NAND Gate .. 67

6.2.2. Injection at Gate .. 69

6.2.3. Injection at Drain .. 71

CHAPTER 7 SIMULATION RESULTS ... 74

7.1 Data Acquisition .. 74

7.2 Data Processing ... 75

7.3 Main Simulation Program .. 76

7.4 Simulation Result for all ISCAS85 Benchmark.. 78

7.5 Simulation Summary .. 79

CHAPTER 8 FPGA –BASE EMULATION FOR SOFT-ERROR 83

8.1 Implementation of Switch-Level Functions .. 83

8.1.1 Implementation of NMOS Function .. 84

8.1.2 Implementation of PMOS Function .. 84

8.1.3 Implementation of C Function ... 85

8.2 Switch-Level Implementation of Gates ... 86

8.2.1 NAND3 Implementation in FPGA ... 87

8.2.1 AND3 Implementation in FPGA .. 88

8.2.2 NOR3 Implementation in FPGA.. 89

8.2.2 OR3 Implementation in FPGA .. 90

8.2.3 BUFFER Implementation in FPGA .. 91

8.2.4 Inverter Implementation in FPGA .. 91

 vii

8.3 Emulator Architecture .. 92

8.3.1 Core Unit (CU) .. 93

8.3.2 Soft-Error Injection Unit (SIU) .. 95

8.3.3 Observation Unit (OU).. 98

8.3.4 Soft-Error Coverage Calculation Unit (SCCU) .. 99

CHAPTER 9 EXPERIMENTAL RESULTS ... 101

9.1 Resistive Delay Fault Simulation ... 101

9.2 Experimental Result for Soft-Error Detection ... 105

9.2.1 Customized MATLAB Simulation Environment 106

9.2.1.1 Parser Class ... 106

9.2.1.2 Converter Class ... 108

9.2.1.3 Main Class ... 108

9.2.1.4 Analyzer Class ... 109

9.2.2 Switch-level Emulation ... 109

CHAPTER 10 CONCLUSION AND FUTURE WORK .. 113

10.1 Resistive Delay Faults ... 114

10.2 Delay Faults and Soft-Errors ... 115

10.3 Strength Variation Effect on Soft-Error Detection 116

10.4 Future Work .. 117

PUBLICATIONS .. 118

Referred Journals: ... 118

Submitted Referred Journals: ... 119

Referred Conferences: ... 120

REFERENCES .. 121

 viii

APPENDIX .. 130

 ix

LIST OF TABLES

Table 1 CMOS behaviour lookup table, Multi-Valued Logic 5

Table 2 Connection node equivalent value lookup table, Multi-Valued Logic 5

Table 3 Mapping MVL9 and MVL5

Table 4 CMOS behaviour lookup table, Multi-Valued Logic 9

Table 5 Connection node equivalent value lookup table, Multi-Valued Logic 9

Table 6 Logic and strength coding for CMOS

Table 7 C17 gate net-list before and after modification

Table 8 C17 fault types and relevant SER

Table 9 C432 fault types and relevant SER

Table 10 C499 fault types and relevant SER

Table 11 C880 fault types and relevant SER

Table 12 C1908 fault types and relevant SER

Table 13 C2670 fault types and relevant SER

Table 14 C3540 fault types and relevant SER

Table 15 C5315 fault types and relevant SER

Table 16 C6288 fault types and relevant SER

Table 17 C7552 fault types and relevant SER

Table 18 Simulation result for ISCAS’85 benchmarks

Table 19 65 nm - VOUT v/s tPLH, I1I2I3 = 000, tPLH in μs, VOUT in volt

Table 20 Fault coverage simulation results for resistive short delay fault

Table 21 Benchmark Synthesis CPU Time

 x

Table 22 Emulation vs. Simulation

 xi

LIST OF FIGURES

Figure 1 Thesis contribution diagram

Figure 2 Switch-Level view of resistive fault in CMOS

Figure 3 Transistor level circuit for 3-input NOR Gate

Figure 4 PMOS and NMOS transistors as voltage controlled resistance

Figure 5 Switch-level representation for 3-input NOR Gate

Figure 6 N-channel and P-channel transistors

Figure 7 Connection node

Figure 8 (a) NOT gate circuit with (b) its related graph

Figure 9 Logic change in MVL9

Figure 10 (a) Transistor level of three-input NOR gate and (b) Arithmetic model

Figure 11 (a) Transistor level of two-input NOR gate and (b) Arithmetic model

Figure 12 Propagation delay (a) of a buffer in the normal operation

Figure 13 Propagation delay (b) of a buffer due to the particle strike during the transition

Figure 14 CMOS circuit to show the soft delay phenomenon

Figure 15 Stray capacitance illustration in NOR gate

Figure 16 SEU effects (Q, (W/L), (τα, τβ))

Figure 17 Strength violation simulation in NOR gate

Figure 18 H-Spice simulation result for two-input NOR gate

Figure 19 (a) CMOS transistor (b) CMOS function (c) Node (d) C function

Figure 20 Functional representation of a NOT gate

Figure 21 PMOS Function flowchart

Figure 22 NMOS Function flowchart

 xii

Figure 23 C Function flowchart

Figure 24 SEU ‘00001’ injected at the input of 2-input NAND gate

Figure 25 SEU ‘01010’ injected at the input of 2-input NAND gate

Figure 26 SEU ‘00001’ injected at the Gate of 2-input NAND gate

Figure 27 SEU ‘01010’ injected at the Gate of 2-input NAND gate

Figure 28 SEU ‘00001’ injected at the Drain of 2-input NAND gate

Figure 29 SEU ‘01010’ injected at the Drain of 2-input NAND gate

Figure 30 SER versus Fault type

Figure 31 SER changes based on fault type for Logic 0

Figure 32 SER changes based on fault type for Logic 1

Figure 33 SER changes based on fault type for Logic Unknown

Figure 34 SER graph for ISCAS’85 benchmarks

Figure 35 Implementation of NMOS

Figure 36 Implementation of PMOS

Figure 37 Implementation of switch-level 3-input NAND gate

Figure 38 Implementation of switch-level 3-input AND gate

Figure 39 Implementation of switch-level 3-input NOR gate

Figure 40 Implementation of switch-level 3-input OR gate

Figure 41 Implementation of switch-level Buffer gate

Figure 42 Implementation of switch-level Inverter gate

Figure 43 Emulation Architecture

Figure 44 Propagation of transient pulse from switch-level part to gate-level part

Figure 45 65nm - Output voltage v/s Propagation delay; Resistive shorts for I1I2I3 = 000

 xiii

Figure 46 Simulation Flow Diagram

Figure 47 Emulation speed-up for ISCAS‘85 benchmark

Figure 48 FPGA-Base Soft-Error Fault Detection Coverage for strength violation

 xiv

NOMENCLATURE

ASER Accelerated Soft Error Rate

BPSG Borophosphosilicate glass

CMOS Complementary Metal-Oxide Semiconductor

CRAM Chalcogenide Random Access Memory

CU Core Unit

DF Delay Fault

DSF Delay Fault Simulation

DTPG Deterministic Test Pattern Generator

FC Fault Coverage

FM Fault Memory

FPGA Field Programmable Gate Array

GD Gold Device

HDL Hardware Description Language

IDM Input Data Memory

LFSR Linear Feedback Shift Register

MAC Memory Address Counter

MVL5 Multi-Valued Logic 5

MVL9 Multi-Valued Logic 9

OU Observation Unit

SCCU Soft-error Coverage Calculation Unit

SE Soft Error

http://en.wikipedia.org/wiki/Borophosphosilicate_glass�

 xv

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SIU Soft-error Injection Unit

SOC System On Chip

SRAM Static Random Access Memory

TPC Test Pattern Counter

VLSI Very Large Scale IC

 1

CHAPTER 1

INTRODUCTION

 Soft errors caused by ionizing radiation have emerged as a major concern for current

generation of CMOS technologies and the trend is expected to get worse. A method is invented

to detect soft-errors cause by transient strikes less than threshold voltage. The novel aspect of

proposed approach proves that a significant amount of soft-errors are the result of strength

violation in a circuit that never been investigated nor realized by exiting methods. More

specifically an algorithm is designed to detect soft-errors at the switch-level caused by current

spikes which can affect the driving strength. The offered approach uses a novel coding system to

be applied in certain functions that are sensitive to strength variations. It is able to detect even the

slight changes in signal strength caused by both cosmic rays and alpha particle from package

contamination. Most soft-error detection techniques sense the logic changes in the circuit while

this method proves that a wide range of soft-errors are the result of strength violation in switch-

level. Experimental results illustrate the importance of accurate simulation methods and stress

the effect of driving strength changes in switch-level for soft-error detection in today’s

technology

 2

1.1. Problem Statement

In nanometer technologies, circuits are increasingly sensitive to various kinds of

perturbations. Alpha particles and atmospheric neutrons induce single-event upsets (SEU) that

affect memory cells, latches, and flip-flops. In addition, single-event transients (SET) can be

initiated in the combinational logic and captured by the latches and flip-flops associated with the

logic outputs. Designers cannot control the sources of soft-errors, but their effects can be

mitigated through soft-error detection techniques. This thesis presents a unique strength-based

soft-error detection method targeting soft-errors caused by transient pulses of magnitude less

than logic threshold. All existing soft-error detection models are based on transient pulses greater

than threshold voltage that are able to alter the logic value in the circuit. In this thesis, the

transient pulses less than threshold voltage are considered as strength-based soft-errors and are

referred to as Strength Violation (SV).

On the hand, other in advanced technologies, an increasing proportion of defects manifest

themselves as small delay faults. This thesis describes a technique to propagate delay faults

caused by resistive bridging in the circuit. Most of today’s advanced delay fault algorithms are

able to propagate those delay faults which create logic or glitch faults. Here, those delay faults

that are not causing logic failure are propagated, but the delay makes the circuit more prone to

soft-errors that manifest the effect of delay faults.

1.2. The Method

A novel soft-error detection concept is used, which assumes that voltage fluctuations smaller

than logic threshold can eventually result in soft-errors. Advanced switch-level models were

 3

designed to not only mimic important characteristics of transistor-level circuits i.e. bidirectional

signal flow, driving strength variations and node capacitances, but also to use driving strengths to

model strength violation. The resulting switch-level models eliminate the complexity associated

with state-of-the-art transistor level simulators while achieving the desired amount of accuracy

and faster simulation. The aim of this thesis is to interpret various parameters used in these

strength-based switch models in order to find an efficient way of injecting transients into

complex logic circuits. This method injects transient errors at the gates and drains of all the

switches inside a given circuit. A detailed fault model is devised to cover different categories of

soft-errors based on the magnitude of the injected voltage pulse. An emulation system is

implemented to create detailed profiles of each transient error type injected into switch-level

implementations of ISCAS’85 benchmarks. The collected data are used to calculate the SER and

the results are analysed to show the effectiveness and accuracy of the strength-based detection

method. Furthermore, the transient-equivalence technique is applied to minimize the number of

injected error types and, thus speed-up the detection process as well as overcome resource

overhead.

The proposed method of propagating delay faults caused by resistive bridging defects in the

circuit has a revolutionary approach in advanced CMOS testing methodology. When a physical

defect leads to excessive delays on signals instead of altering the logic function of the circuit, it

is no longer a static defect. Such unknown and unpredictable defect behaviour makes it very

difficult to analyze a fault. The dynamic nature of such faults disturbs the timing of the logic

propagation. The relation between the logic propagation delay and its eventual effect on the

circuit output voltage is determined by performing a switch-level analysis on CMOS primitive

 4

gates. Consequently, the voltage, which is carrying a timing disturbance, should be propagated to

the primary output. As the delay size is relatively small, the voltage changes do not cause a

logical problem at the gate output making it difficult to trace it to the output. To resolve this

problem, a nine-valued voltage model is used on top of a five-valued voltage model to propagate

faulty signals. Those faults that are causing logical faults in a nine-valued voltage model are still

delay faults in a five-valued voltage model. Dynamic behaviours of resistive defects tend to

delay the correct logic state propagation at the gate output. Various factors can contribute to the

delay, such as certain fault locations with respect to the input vector the gate is subjected to,

defect resistance of the fault, and the technology variation. In most cases, faults in a five-valued

voltage model only disturb the logic propagation time without adversely affecting the functional

output. As a result, the output voltage fluctuates between ranges of intermediate voltage value.

However, the disturbance of the propagation time can greatly affect the functional output in a

nine-valued voltage model. By reducing feature sizes, resistive fault occurrences are expected to

increase. Hence, their effects on the logic voltage-levels in static CMOS primitive gates can be

determined subject to 65nm, 45nm and 32nm technologies.

1.3. The Outcomes

This research proves that a wide range of soft-errors are the result of strength violation in

switch-level. The experimental results reported for ISCAS’85 benchmarks show an average rate

between ‘0.7’ and ‘0.88’. The presented work goes beyond the normal logic change based on

soft-error detection techniques currently used and towards the design of more precise and

efficient soft-error detection algorithms. The emulation-based soft-error detection achieved

significant speed-up of the order of 106 as compared to a customized simulation-based method.

 5

On the other hand, a Fault Coverage (FC) of 37% to 100% has been achieved for resistive

short delay faults on several ISCAS’85 and ISCAS’89 benchmark circuits. The number of

switches and injected files and, eventually, the delay fault coverage have been calculated using

the proposed method. The fault coverage reported above has been obtained for those resistive

faults that are not causing logic faults on the site of defect.

Software simulation and hardware emulation were implemented to evaluate and maintain the

proposed methods. Although there are no comparable publications in the area of deep submicron,

it is clear that the results presented here indicate noteworthy fault coverage and CPU time.

1.4. Summary of Contributions

This thesis focuses on resistive delay faults and soft-error detection in advanced

nanotechnology. The first part of this thesis is geared toward resistive short and open delay fault

detection. As the soft-errors manifest the effect of delay faults in the first part, the second part of

this thesis focuses on soft-error detection. The overall research contributions of this thesis are

summarised as follows:

• A novel idea is proposed to propagate those delay faults that are not causing logic failure at

the location of defect, but the delay makes the circuit more prone to soft-errors as they

manifest the effect of delay faults. This algorithm can be implemented for varied

 6

applications, i.e. switch level min-max mode grading of robust/non-robust delay test vectors

and analysis of dynamic hazards for delay fault diagnosis for general switch-level circuits.

• An arithmetic algorithm is created capable of addressing all possible physical problems in

switch-level for CMOS technology-based circuits of any size. This algorithm is capable of

propagating delay faults to the primary output. Even when the delay size is relatively small,

the algorithm maps a MVL9 on top of a MVL5 in order to propagate those delays that are not

causing logical failure at the fault location.

• A novel approach was invented to detect soft-errors based on strength violation in the circuit. For

strength-based soft-error detection, a novel coding system and logic functions were developed

that are sensitive to strength variations. This approach proves that a wide range of soft-errors are

the result of strength violation in switch-level and have never been investigated before.

• Delay Fault Simulation (DFS) software was also developed to inject faults into the circuit

and measure the fault coverage. The effect of non-logical delay faults on soft-errors was

proven to show how delay faults manifest soft-errors.

• A soft-error model for strength violation is presented. This model enables the detection of

soft-errors due to transient pulses of magnitude less than logic threshold. Soft-errors are

classified into 23 different types based on the logic level and strength level of the injected

voltage pulse.

• A new architecture was designed to enable the implementation of the proposed switch-level

model on the field-programmable gate array. The emulation system was designed to create

 7

detailed profiles of each transient error type injected into the switch-level implementations of

ISCAS’85 benchmarks.

• The effectiveness and accuracy of the strength-based detection method was measured by

running simulation/emulation for the proposed theory on soft-error detection. The speed-up

of 106 was achieved by FPGA-based emulation as compared to simulation-based detection

methods.

Figure 1 shows the thesis contribution in a glance.

Figure 1 - Thesis contribution diagram.

 8

1.5. Organization of Thesis

 The chapters of the thesis are organized as follows: Chapter 1 introduces the thesis and its

contributions. Chapter 2 discusses the state-of-the-art of soft-errors and resistive delay faults.

Chapter 3 explains the novel idea proposed for resistive delay faults. This chapter also describes

the dynamic effect of resistive faults on propagation delay and output voltage in nanometre

technology. Chapter 4 demonstrates the effect of delay faults on soft-errors and proves how

delay faults manifest soft-errors. Chapter 5 opens a new domain in soft-error detection science

by introducing a strength-based soft-error. This chapter also presents a novel switch-level model

for soft-error detection. Chapter 6 discusses soft-error injection techniques in the different

locations of the circuit. The simulation results are presented in Chapter 7. Chapter 8 explains the

emulation architecture used for strength-based soft-error detection on FPGA. Chapter 9 presents

the experimental results obtained for the ISCAS benchmark series. Chapter 10 concludes this

thesis and discusses the future prospects of this research, ending with a list of cited publications

and references.

 9

CHAPTER 2

STATE OF THE ART REVIEW

 This chapter is undertaking a literature review on Resistive Delay Faults and Soft-errors, and

will discuss roots of defects and their impacts on the circuit for each area separately. This chapter

is also discussing the latest related research studies and their solutions for Resistive Delay Faults

and Soft-Errors.

2.1. Overview

Present testing techniques for VLSI circuits face many exciting and complex challenges. In

the era of large systems embedded in a single system-on-chip (SOC) and fabricated in

continuously shrinking technologies, it is important to ensure correct behaviour of the whole

system. Electronic design and test engineers have to deal with these complex and heterogeneous

systems (digital, mixed-signal, memory), but few have the possibility to study the whole field in

a detailed manner. In high-density, high-speed and low-power VLSIs, soft-errors (SEs) and delay

faults (DFs) occur frequently. Therefore, SE hardened design and DF testing are essential. This

 10

thesis proposes two revolutionary fault detection methods for the most critical VLSI testing areas

of “Resistive Delay Faults” and “Soft-Errors”.

2.2. Resistive Delay Faults

The need for testing timing defects is further expected to grow with the current design trend

towards deep submicron devices. After a long period of the prevailing belief that high stuck-at

fault coverage is sufficient to guarantee high quality of shipped products, industry is now forced

to rethink other types of testing. Delay testing has been a topic of extensive research both in

industry and in academia for more than a decade. As a result, several delay fault models and

numerous testing methodologies have been proposed. Delay Fault Testing for VLSI Circuits

presents a selection of existing delay testing research results combining introductory material

with state-of-the-art techniques that address some of the current problems in delay testing. Delay

Fault Testing for VLSI Circuits covers some basic topics such as fault modeling and test

application schemes for detecting delay defects.

2.3. Resistive Short and Open Delay Faults

CMOS fabrication of digital integrated circuits includes defects that cannot be represented

using conventional idealistic stuck-at or bridging fault models. Unfortunately, such defects

represent a significant percentage of faults in complex digital circuits. A fault occurs when two

nodes are unintentionally connected together without resistance. In reality, parasitic resistance

“R”, capacitance “C”, and inductance “L” are always associated with the defects in very large-

 11

scale integration circuits [7][8]. Due to various deep submicron effects, a circuit may fail to

operate at the desired clock frequency. Timing failure analysis is a technique used to locate the

source of timing failures. The resolution and the hit rate of the candidates, which are reported by

the delay-fault diagnosis process, will determine the efficiency of timing failure analysis. The

resolution is defined as the ratio of the number of real fault sites to the total number of the

reported candidates. Unfortunately, even the most recently published delay-fault diagnosis

methodologies suffer from poor resolution or low scalability. In [9] the authors have introduced a

method for resistive open and bridging faults. They have mentioned that their “result accounts

only for logical conditions and the actual coverage value can be computed once the transistor-

level analysis has been performed.” However, this thesis presents a new idea to propagate those

delay faults that are not causing logical conditions, but lower the frequency of operations and

also increase the soft-error rates in CMOS technology.

In another recent publication [10], the testability of small delays due to resistive opens are

analyzed considering the process variations. A statistical methodology to estimate the fault

coverage of these defects is proposed. Using the proposed methodology, the Statistical Fault

Coverage (SFC) of resistive opens producing small delays is evaluated for some ISCAS

benchmark circuits. The authors mention “SFCs higher than 50% are obtained for the circuits

C432, C499 and C1908. One of the reasons for these values may be the small delay is

propagated through all the possible paths starting from open location. This propagation is

limited by the MAX function. SFCs lower than 50% is obtained for the circuits C2670 and

C3540.”

When a physical defect leads to excessive delays on signals instead of altering the logic

function of the circuit, it is no longer a static defect. Such unknown and unpredictable defect

 12

behaviours make it very difficult to analyze a fault. The dynamic nature of such faults disturbs

the timing of the logic propagation. In this approach, the timing failures, which are caused by

short and open resistive faults inside the gates, will affect the level of the voltage at the gate

output. The relation between the logic propagation delay and its eventual effect on the circuit

output voltage is determined by performing a switch-level analysis on CMOS primitive gates.

Consequently, the voltage, which is carrying timing disturbance, should be propagated to the

primary output. As the delay size is relatively small, the voltage changes do not cause a logical

problem at the gate output making it difficult to trace it to the output. To resolve this problem, a

nine-valued voltage model is used on top of a five-valued voltage model to propagate faulty

signals. The main concept is that those faults that cause logical faults in a nine-valued voltage

model are still delay faults in a five-valued voltage model. Dynamic behaviours of resistive

defects tend to delay the correct logic state propagation at the gate output.

Figure 2 - Switch-Level view of resistive fault in CMOS.

Various factors can contribute to the delay such as certain fault locations with respect to the

input vector the gate is subjected to, defect resistance of the fault, and the technology variation.

Rsh

A n1

B n0

VDD

Rsh

A

n1

n0

VDD

 13

In most cases, faults in a five-valued voltage model only disturb the logic propagation time

without adversely affecting the functional output. As a result, the output voltage fluctuates

between ranges of intermediate voltage value. However, the disturbance of the propagation time

can greatly affect the functional output in a nine-valued voltage model. Figure 2 illustrates

resistive faults in CMOS circuits where nodes n0 and n1 are connected through the resistor Rsh

which is a resistive short defect.

2.4. Soft-Errors

Although gate-level modeling is the most common approach to study the impact of SETs

through simulation, it is difficult to accurately predict their effects [1], as the gate-level

description does not represent the actual characteristics of VLSI design [2]. Secondly, it is

difficult to capture the complex analog behavior of the propagation of transients at gate level [3]

since many internal nodes sensitive to particle radiation are not accessible at gate-level. On the

other hand, electrical level simulation is very time-consuming and is not feasible for complex

designs. The switch-level is an abstraction level between the gate level and the electrical level

and offers many advantages. By operating directly on the transistor network, switch-level

simulators can reliably model many important phenomena in MOS circuits, such as bidirectional

signal propagation, charge-sharing and variations in driving strengths. Most of the switch-level

models used thus far neglect the stray capacitance associated with the transistor nodes [1][4]. In

this work, switch-level models are used which take into account bidirectional signal propagation,

variations in driving strengths due to different levels of voltages induced by transient pulses, and

the effects of node capacitances. This makes these advanced switch-level models more realistic

 14

and closer to actual transistor behavior. Current soft-error modeling methods are based on the

assumption that an SET may propagate to the next stage only if the voltage generated by a

particle strike at a node is more than VDD/2, i.e., if the voltage change at node crosses the logical

threshold [5]. Previous research shows that transient pulses which do not have sufficient strength

(amplitude) to alter the logic state of the node can cause another effect called a soft delay. A soft

delay introduces inherent delays in the combinational logic by changing the driving strength of

the signal and can ultimately result in the latching of wrong data at the output [6]. Thus, voltage

pulses of smaller amplitude as compared to logic threshold cannot be neglected. This research

shows that some of the voltage pulses less than logic threshold can propagate through different

transistor stages depending on the location of the struck node, input values and the charge

strength of the node capacitance, and can finally cause a logic change at the output. The

amplitude of the voltage pulse (indicating the amount of voltage generated by the injected charge

due to particle strike) is modeled using driving strengths based on a 5-bit coding system. Using

this approach in advanced switch-level models, the effects of the transient injection location on

the soft-error rate, the accuracy of the results, and the speed of simulation are analyzed. This

leads to the conclusion that the best results in terms of soft-error rate, accuracy and speed of

simulation will be achieved if strength-based soft-error detection is used.

2.5. Soft-Error Faults

Radiation-induced soft-errors are an increasingly important reliability issue in integrated

circuit technologies. A bit error is called a soft-error if the data is corrupted but the device itself

is not damaged. In contrast, a permanent device failure is called a hard error. While the number

 15

of bits that are sensitive to soft-errors tends to grow, the soft-error probability per bit stays

constant or increases. Therefore, the trend at system level is for an increase in the soft-error rate

(SER) [8]. The development of advanced methodologies to characterize and improve the SER of

nanometre technologies is, therefore, essential to assure product reliability.

Soft-errors due to alpha particle radiation are common in integrated circuits, particularly in

latches and memory elements. This source is not limited to cosmic rays. On-chip solder bumps

produce alpha particles as they contain lead. Hence, storage nodes are subjected to more

probable single-event upsets (soft-errors) due to alpha particles than in the past. This may cause

the storage node to flip and corrupt its contents. These charged particles can come directly from

radioactive materials and cosmic rays or indirectly as a result of high-energy particle interaction

with the semiconductor. As the result, a pulse of current with a usual duration of 5-500 ps may

charge or discharge a circuit node. The collected charge may be strong enough to alter the data

state of a node [12] as well as the node strength. If the node is driven, as in the case of static

CMOS, the node may recover quickly. If it is a domino node, a register, latch, SRAM, CRAM or

any other type of memory cell, the wrong value may persist until the node is written again.

Today's deep sub-micron devices are already very susceptible to errors induced by neutrons

and alpha particles. Shrinking geometries are making the problem increasingly worse with each

new generation of technology. Previous generations of 5 V CMOS technology had noise margins

of a couple of volts, while newer nanometre technologies have only a few tenths of a volt noise

margin [13][14]. Since soft-errors may occur at any time, the conventional post-manufacturing

test approach is not useful for measuring SER. Characterization testing and on-line testing are

employed instead [15]. Under the non-accelerated characterization test methodology, the test

http://www.patentstorm.us/patents/6785847/description.html�
http://www.patentstorm.us/patents/6785847/description.html�

 16

vectors are either applied to a single IC for billions of device-hours (impractical to implement),

or to many such devices for a comparatively shorter period, which could incur a significantly

high cost. An alternative is to irradiate the device to increase the soft-error probability followed

by measuring the accelerated soft-error rate (ASER) [16]. However, the SER-ASER conversion

is inaccurate [17] and poorly understood for combinational logic. Acceleration by lowering

supply voltage is also reported [18]. Soft-error causes can be classified in three major groups as

follows:

2.5.1. Alpha Particles

The alpha particles are emitted by traces of radioactive elements (such as thorium and

uranium) present in the packaging materials of the device. These alpha particles manage to

penetrate the die and generate a high density of holes and electrons in its substrate, which

creates an imbalance in the device's electrical potential distribution that causes stored data to be

corrupted.

The alpha particles emitted by the device package can have energies of up to 8 MeV. It takes

about 3.6 eV to generate an electron-hole pair in the substrate, so an 8 MeV alpha particle can

generate 2.5 million electron-hole pairs within 2-3 microns of the alpha particle track.

The potential well of a memory cell that contains a “0” is filled with electrons (inversion

mode), while that of a memory cell that contains a “1” is devoid of electrons (depletion mode).

When an alpha particle hits the substrate and generates holes and electrons, the holes will be

pulled toward the substrate supply while the electrons will be pulled towards the potential well.

 17

An empty well can fill up with enough electrons (assuming that enough electron-hole pairs were

generated by the alpha particle) to have its stored information reversed from”1” to “0”. Cells

that already have electron-filled wells in the first place are not affected by alpha particles.

2.5.2. Cosmic Rays

Once the electronics industry determined how to control package contaminants, it became

clear that other causes were also at work. James F. Ziegler led a program of work at IBM which

culminated in the publication of a number of papers [19] demonstrating that cosmic rays also

could cause soft-errors. Indeed, in modern devices, cosmic rays may be the predominant cause.

Although the primary particle of the cosmic ray does not generally reach the earth's surface, it

creates a shower of energetic secondary particles. At the earth's surface, approximately 95% of

the particles capable of causing soft-errors are energetic neutrons with the remainder composed

of protons and pions [20]. This flux of energetic neutrons is typically referred to as "cosmic

rays" in soft-error literature. Neutrons are uncharged and cannot disturb a circuit on their own

but undergo neutron capture by the nucleus of an atom in a chip. This process may result in the

production of charged secondaries, such as alpha particles and oxygen nuclei, which can then

cause soft-errors.

2.5.3. Thermal Neutrons

Neutrons that have lost kinetic energy until they are in thermal equilibrium with their

surroundings are an important cause of soft-errors for some circuits. At low energies, many

neutron capture reactions become much more probable and result in fission of certain materials

http://en.wikipedia.org/wiki/Neutron_capture�

 18

creating charged secondaries as fission-byproducts. For some circuits, the capture of a thermal

neutron by the nucleus of the B-10 isotope of boron is particularly important. This nuclear

reaction is an efficient producer of an alpha particle, Li-7 nucleus and gamma ray. Either of the

charged particles (alpha or Li-7) may cause a soft-error if produced in very close proximity,

approximately 5 micrometers, to a critical circuit node. The capture cross section for B-11 is 6

orders of magnitude smaller and does not contribute to soft-errors [21].

Boron has been used in Borophosphosilicate glass (BPSG), the insulator in the

interconnection layers of integrated circuits, particularly in the lowest one. The inclusion of

boron lowers the melt temperature of the glass providing better reflow and planarization

characteristics. In this application, the glass is formulated with a boron content of 4% to 5% by

weight. Naturally occurring boron is 20% B-10 with the remainder the B-11 isotope. Soft-errors

are caused by the high level of B-10 in this critical lower layer of some older integrated circuit

processes. Boron-11, used at low concentrations as a p-type dopant, does not contribute to soft-

errors. Integrated circuit manufacturers eliminated borated dielectrics by the 150nm process

node, largely due to this problem.

This thesis presents a novel approach for increasing the accuracy of soft-errors detection by

switch-level analysis of a circuit for Single Event Upset (SEU). Unlike existing methods that

focus on bit flipping, this method proves that current charges resulting from radiation can affect

the driving strength and eventually lead to data corruption in the switch-level, referred to here as

“strength violation”. The relation between logic and strength propagation and its eventual effect

on the circuit output voltage is determined by performing a switch-level analysis on the circuit.

An advanced coding system is applied that is able to inject the fault in switch-level and detect

http://en.wikipedia.org/wiki/Borophosphosilicate_glass�

 19

soft-errors even if the impulse duration time is relatively small and not able to be detected with

most conventional methods.

As explained above, this chapter was discussing the latest related research studies and their

solutions for Resistive Delay Faults and Soft-Errors. Most of today’s advanced delay fault

algorithms are able to propagate those delay faults which create logic or glitch faults. Next

chapter will offer an accurate model to propagate delay faults that are not causing logic failure.

 20

CHAPTER 3

RESISTIVE SHORT AND OPEN DELAY FAULT

In advanced technologies, an increasing proportion of defects manifest themselves as small

delay faults. Most of today’s advanced delay fault algorithms are able to propagate those delay

faults which create logic or glitch faults. An algorithm is proposed for circuit fault diagnosis in

deep sub-micron technology to propagate the actual timing faults as well as those delay faults

that eventually create logic faults to the primary outputs. Unlike the backtrack algorithm that

predicts the fault site by tracing the syndrome at a faulty output back into the circuit, this

approach propagates the fault from the fault site by mapping a nine-valued voltage model on top

of a five-valued voltage model. In such a forward approach, accuracy is greatly increased since

all composite syndromes at all faulty outputs are considered simultaneously. As a result, the

proposed approach is applicable even when the delay size is relatively small. Experimental

results show that the number of fault candidates produced by this approach is considerable.

 21

3.1. Dynamic Effect of Resistive Faults on Output Voltage

It is assumed that existing bridging fault models [22][23] describe shorts between logical

nodes with a short resistance of 0 Ω. Many studies regarding the delay defect synthesis have

been conducted in gate–level fault modeling [24] and fault diagnosis [25]. Generally, the voltage

degradation caused by resistive physical defects is accounted for as intermediate node voltage

[26]. There has been little focus on the area of propagation of the additional delay to the circuit

output. This section discusses how to calculate the voltage changes at gate output that cause a

delay rather than a logic fault. Later in this thesis this delay will be propagated to the output.

3.1.1. Switch-Level Fault Modeling

The switch-level delay fault described in [27], involves the simulations based on fixed

capacitive load. For a precise analysis, parasitic resulting from the MOSFET are included for

delay estimation due to resistive faults [28]. For 32nm technology, the NMOS and PMOS on-

resistance values are calculated using equation (2.1) and equation (2.2). These formulas are

explained in [28].

𝑅𝑅𝑂𝑂𝑂𝑂 = 𝑅𝑅𝑁𝑁 = 𝑉𝑉𝐷𝐷𝐷𝐷
𝐾𝐾𝑁𝑁
′ × 𝑊𝑊

2𝐿𝐿
(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇)2

 (2.1)

𝑅𝑅𝑂𝑂𝑂𝑂 = 𝑅𝑅𝑃𝑃 = 𝑉𝑉𝐷𝐷𝐷𝐷
𝐾𝐾𝑃𝑃
′ × 𝑊𝑊

2𝐿𝐿
(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇)2

 (2.2)

Figure 3 shows the transistor-level circuit for NOR gate. A MOSFET is modeled as a 3-terminal

device that acts as a voltage controlled resistance, RON as shown in Figure 4 [29].

 22

Some of variables and definitions will be used in this chapter are brought as follows:

tP Total propagation delay
tPHL High-to-low propagation time
tPLH Low-to-high propagation time
R´N Equivalent switching resistance in the NMOS network
R´P Equivalent switching resistance in the PMOS network
R´ Equivalent circuit resistance including resistive elements from

NMOS and PMOS sides respectively
nP Number of active or ON PMOS
nN Number of active or ON NMOS
N nP+ nN
CLOAD Load capacitance

Figure 3 - Transistor level circuit for 3-input NOR Gate.

At the gate-level, faults can only be injected or diagnosed on input and output pins. Variable

quantities as follows: n (number of gate inputs), defect resistance (resistive short value (RSH) and

resistive open value (RO)), load capacitance, input combinations and the fault locations.

I1

VDD

Q1

O

S1

D1

I2 Q2
S2

D2

I3 Q3
S3

D3

I1 Q4
S4

D4
I2 Q5

S5

D5

I3 Q6
S6

D6

 23

Figure 4 - PMOS and NMOS transistors as voltage controlled resistance.

Figure 5 illustrates the switch-level structure for the 3-input NOR gate. Equation (2.2) shows

the relation of RON with transistor aspect ratio (W/L), operating voltage (VDD) and

transconductance (K’) [29][30]. Basic concepts of electric circuit analysis are applied for

obtaining circuit timing. According to the structure of any CMOS level logic gate, equivalent

digital models can be derived by solving the parameters resulting from their serial/parallel

connections of PMOS/NMOS or NMOS/PMOS transistor in a gate circuit [30].

Figure 5 - Switch-level representation for 3-input NOR Gate.

VIN RON

RN1

O

D4

 S4

D5 G5

RN2

D6 G6

RN3

 I3

 I2

D1

 S1

RP1

D2

RP2

D3

 S3

RP3

VDD

 I1

G1

S2 I2

G2

 I3

G3

G4

 S5
 I1
 S6 C

Cp1

Cp2

Cp3

CN1

CN2
 CN3

 24

Referring to Figure 5, the transistors on the PMOS side of the circuit are represented by their

ON-resistances, RPi (For 1 ≤ i ≤ n). For instance, PMOS1 transistor is R P1 and NMOS1 is RN1.

The PMOS transistor capacitances are symbolized as CPi and for NMOS as CNi (1 ≤ i ≤ n).

Further conventions for transistor resistances are done in the same manner. The load capacitance

value for a MOSFET can be calculated by combining the oxide and junction capacitance values

for each transistor in a gate circuit.

3.1.2. Propagation Delay and Output Voltage

Delay estimation for resistive faults in a 3-input NOR gate is presented in the following

subsections. For the all high input cases (for example, I1I2I3 = 111), NMOS transistors are on

and PMOS are off. The NMOS side of any gate consists either of a parallel connection of NMOS

or a serial connection of NMOS. For n number of NMOS transistors in a logic gate, the high-to-

low propagation delay-time for this gate is shown in equation (2.3).

1
𝑅𝑅𝑁𝑁
′ = 0.7 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃
 × 1

𝑛𝑛
 (2.3)

Substituting the value for R’N, from equation (2.3) in equation (2.1) is shown in equation (2.4).

𝐾𝐾𝑁𝑁′ 𝑊𝑊
2𝐿𝐿 (𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇)2

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
=

0.7𝑛𝑛 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃

(𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇)2

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
=

0.7𝑛𝑛 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 2𝐿𝐿
𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐾𝐾𝑁𝑁′ × 𝑊𝑊

 25

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 − 2𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇
2

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
= 𝑛𝑛𝑋𝑋𝑁𝑁 (2.4)

Where:

𝑋𝑋𝑁𝑁 = 0.7𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ×2𝐿𝐿
𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 ×𝐾𝐾𝑁𝑁

′ ×𝑊𝑊
 (2.5)

Therefore, for a serial NMOS combination

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇
2

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
= 𝑛𝑛𝑋𝑋𝑁𝑁 + 2𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 (2.6)

And for a parallel NMOS connection,

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇
2

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
= 𝑋𝑋𝑁𝑁

𝑛𝑛
+ 2𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 (2.7)

Rearranging equation (2.6) to fit the quadratic relation format can have two roots, as shown

below,

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂2 − (𝑛𝑛𝑋𝑋𝑁𝑁 + 2𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇) × 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇2 = 0 (2.8)

Reorganizing equation (2.7) makes it a quadratic equation format equation (2.9).

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂2 − �𝑋𝑋𝑁𝑁
𝑛𝑛

+ 2𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇� × 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇2 = 0 (2.9)

 26

Replacing the actual values of XN, n and VTHN into the equations (2.8) and (2.9), the voltage

level at the output (VOUT) of a NOR gate is obtained. On the contrary, the propagation delay

value for all low input cases will be completely influenced by the PMOS transistors, unlike the

all high input case. For the all low input case (for example, I1I2I3 = 000), PMOS transistors are

on and NMOS are off. The low-to-high propagation delay-time for this gate in serial/parallel

PMOS are:

Serial PMOS connection:

𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 = 0.7𝑅𝑅𝑃𝑃′ × 𝑛𝑛 × 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (2.10)

 Parallel PMOS connection:

𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 = 0.7(𝑅𝑅𝑃𝑃′ 𝑛𝑛⁄) × 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (2.11)

A mixed input case (for example, I1I2I3 = 001,010,100,110,101 etc.) is a combination of

NMOS and PMOS transistors that are on and the rest are off. For this particular category, the

numbers of “on” PMOS and “on” NMOS transistors affect the combined delay at the gate output.

A calculation of propagation delay from MOSFETs activities both on PMOS and NMOS sides is

presented. The variable n has different values for PMOS and NMOS in this case. Identical

numbers of active PMOS are termed as nP and identical number of active NMOS as nN. For

instance, when a primitive gate consists of serially linked PMOS and a parallel formation of

NMOS the total propagation delay at the output of that gate can be represented as:

𝑡𝑡𝑃𝑃 = 0.7𝑅𝑅′ × 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑡𝑡𝑃𝑃 = 0.7(𝑛𝑛𝑃𝑃𝑅𝑅𝑃𝑃′ + 𝑅𝑅𝑁𝑁′ 𝑛𝑛𝑁𝑁⁄) × 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (2.12)

 27

Alternatively, a parallel PMOS connection with a serial NMOS connection is regarded in the

following equation:

𝑡𝑡𝑃𝑃 = 0.7𝑅𝑅′ × 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑡𝑡𝑃𝑃 = 0.7(𝑛𝑛𝑁𝑁𝑅𝑅𝑁𝑁′ + 𝑅𝑅𝑃𝑃′ 𝑛𝑛𝑃𝑃⁄) × 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (2.13)

Output voltage value for all low input and mixed input cases can also be derived in a similar

manner.

Actual or static bridging faults have a nominal resistance value mainly in the range of 0 to

500Ω. This problem has been previously analyzed by choosing a fixed resistance value or by

applying a locally exhaustive test set at the bridge location [31]. Transistor-level bridging faults

can occur internally (intra-gate) or externally (inter-grate). This thesis focuses on the intra-gate

bridging faults, which occur inside the transistor level circuit of a gate.

3.2. A Quick Review of Fault Propagation in Transistor-Level

In previous research, [32] a novel fault synthesis algorithm for modelling CMOS circuits

with an arithmetic solution for circuit verification and fault synthesis was introduced. This new

approach is capable of simulating multiple fault injections into the circuit and speeds up switch-

level simulation. Another advantage of this algorithm is its application in the mapping of single

and multiple faults from switch-level to gate-level as well as its function as a multi-level model.

A unique method to propagate delayed signals that are created by resistive short and open faults

 28

is presented. This method converts a circuit to a graph, finds its arithmetic equation, and

eventually, synthesizes faults and generates the outputs

Table 1 - CMOS behaviour lookup table, Multi-Valued Logic 5.

Gate Source Drain P (G, S) Drain N (G, S)
L L L Z
L H H Z
L Z Z Z
L 1 1 Z
L 0 0 Z
L U U Z
H L Z L
H H Z H
H Z Z Z
H 1 Z 1
H 0 Z 0
H U Z U
Z L U U
Z H U U
Z Z U U
Z 1 U U
Z 0 U U
Z U U U
1 L Z L
1 H Z H
1 Z Z Z
1 1 Z 1
1 0 Z 0
1 U Z U
0 L L Z
0 H H Z
0 Z Z Z
0 1 1 Z
0 0 0 Z
0 U U Z
U L U U
U H U U
U Z U U
U 1 U U
U 0 U U
U U U U

In CMOS technology, [33] the basic components at switch-level are transistors. N-channel

and P-channel transistors (Figure 5) can receive different logical values on their pins. These

 29

logical values are “L”, “H”, “1”, “0”, “Z”, and “U” [8][34][35]. Logic value “L” is weak 0, “H”

is weak 1 and “1” or Forcing 1 represents power source. “0” or Forcing 0 represents ground; “Z”

represents the state of an isolated or floating connector and may be interpreted as the high

impedance. And, finally, “U” represents an intermediate voltage level occurring when “0” and

“1” signals are applied simultaneously to a connector and may be interpreted as an unknown

signal. Table 1 displays all the possible states of a transistor in a digital circuit in a five-valued

voltage model. Later, this look-up table will be used to find the output of the functions.

Figure 5 - N-channel and P-channel transistors.

3.2.1. Connection Node

A connection node, shown in Figure 7, is where two or more signals meet each other [36][37]

and generate a network. In Figure 7, for example, the drain of a P-channel transistor is connected

to the drain of an N-channel transistor each with its own logical value. The outcome is a

dominant value for this connection. For instance, if the drain of the P-channel transistor has the

value “1” and the drain of the N-channel transistor has the value “Z”, then the dominant value

“1” is considered the connection node, which is symbolized as “∇“. Table 2 shows the dominant

logic value for connection nodes in a five-valued voltage model.

G

S

D
P-Channel G

D

S

N-Channel

 30

Figure 7 - Connection node.

Table 2 - Connection node equivalent value lookup table, Multi-Valued Logic 5.

∇ L H Z 1 0
L L U L 1 0
H U H H 1 0
Z L H Z 1 0
1 1 1 1 1 U
0 0 0 0 U 0

3.2.2. Circuit Graph Model

With an increase in circuit size, it becomes increasingly difficult to analyse and observe

circuit behaviour particularly in the presence of a fault [38][39][40][41][42]. In the algorithm

presented here, a graph model converts a transistor level model to a graph and is independent of

circuit complexity. This graph model simplifies the use of the algorithm and fault injection

[32][43][44]. In the graph model, nodes represent a transistor or a connection and the edges

represent wires. Also, transistors are not considered as switches, but they are considered as

functions with input parameters and a returning value. This feature makes it possible to replace

the whole circuit with an arithmetic function. 0 (a) shows a NOT gate circuit with (b) its related

A

VDD

G
S

D

P1

Gnd

G
D

S

Y

Connection Node (∇)

G
D S N2

N1 A

B

 31

graph. In this graph “P” represents a P-type transistor, “N” represents an N-type transistor, and

“∇“shows a connection node. “A” is the primary input signal, and “Y” is the primary output

signal, “1” represents Power source and “0” represents ground. “P” and “N” are transistors with

“G”, “S” and “D” edges that represent gate, source and drain, respectively, for transistors. The

arithmetic equation related to the graph and its functionality is described in detail in [31].

Figure 8 - (a) NOT gate circuit with (b) its related graph.

3.3. Delay Propagation of Resistive Faults in Deep Sub-Microns

Many multiple delay fault based diagnosis methods have been published [45][46][47].

Dastidar and Touba [45] proposed an approach for multiple delay-fault diagnosis based on static

timing information. Authors in [46] investigated the effectiveness of n-detection tests to diagnose

failure responses caused by multiple stuck-at and bridging faults. The approach presented here is

capable of diagnosing multiple delay faults as well as static faults in switch-level and is more

accurate and applicable even with a relatively small delay size.

Y

(b)

A

G
S

D

P-Channel

G
D

S
N-Channel

Y

(a)

A

1

B
 ∇

A
0

N
G

S
D

P
G

S

D

 32

The presented approach uses two models of IEEE Standard 1164-1993: Multi-valued Logic

Systems MVL5 and MVL9. Although it is extremely difficult to propagate any fault in a digital

circuit when there are no logical changes in signals, this method is able to propagate a delay in

MVL5 using a MVL9. Most other algorithms are able to propagate a timing disturbance as soon

as there is a logical failure in circuit functionality. However, if there are no logical failures, these

methods are useless. To solve this problem, a MVL9 is used on top of a MVL5.

Table 3 - Mapping MVL9 and MVL5.

The voltage level in MVL5 has been divided into several levels of voltage based on Verilog

strengths for upper and lower boundaries for each logical section in MVL5. In this method logic

value ‘‘1” in MVL5 can be mapped to (1 and H) in MVL9 if the signal is strong 1 as per

calculation in Section 2.1, or mapped to X if the value is considered to be weak 1. On the other

hand, the value of ‘‘0” in MVL5 can be mapped to (0 and L) in MVL9 if the signal is strong 0 as

per calculation in Section 2.1 , or W if the value is considered to be weak 0. Table 3 maps logic

values from MVL9 to MVL5 and vice versa. As shown in this table logic 0 and 1 in MVL5 are

Nine-valued voltage model Five-valued voltage model
1

1 H
X
X H

U U

W L
W

0 L
0

 33

mapped to three different logics in MVL9 based on the equivalent voltage coverage. The upper

boundary of W and lower boundary of X in MVL9 are mapped to L and H in MVL5

accordingly.

Consequently, the logic value ‘‘H” in MVL5 will be mapped to ‘‘X” for all medium (1) and

small (1)1 signals in MVL9 as per Section 2, and the logic value ‘‘L” in MVL5 will be mapped

to ‘‘L” for all medium (0) and small (0)1 signals in MVL9 as per Section 2. Finally, U or un-

initialized signal will be considered the same in both models. As explained in Section 2, in the

case of a slow-to-rise or slow-to-fall delay due to a resistive open or short fault in circuit the

output voltage of the gate will be affected accordingly. This change is not sufficiently significant

to affect a logic change in MVL5 but may change the logic in MVL9. As explained above, this

model maps logic values from MVL9 to MVL5 and vice versa.

3.3.1. Arithmetic Equation of the Circuit

The algorithm uses the behaviour of CMOS transistors in digital circuits [48] and describes

the circuit in an arithmetic equation. An equation is defined and describes circuit behaviour in

detail according to all possible input combinations. In this arithmetic model, each transistor is

considered a function such as “P” and “N”. Each function has two arguments as inputs and a

returning logical value that is considered for Drain. P (G, S) and N (G, S) are the syntaxes for the

functions. The “P” function is used for P-type transistors, and the “N” function is used for N-type

transistors. The first argument or “G” is the value of Gate, and the second argument or “S” is the

 34

value of Source for each transistor. The result of the function will be calculated with the logic

value at the drain. The value of each function can be derived from a lookup Table 4 in MVL9.

Table 4 - CMOS behaviour lookup table, Multi-Valued Logic 9.

Gate Source Drain P (G, S) Drain N (G, S)

Gate Source Drain P (G, S) Drain N (G, S)
L L W Z

0 L L Z

L H X Z

0 H H Z
L Z Z Z

0 Z Z Z

L 1 1 Z

0 1 1 Z
L 0 L Z

0 0 0 Z

L U U Z

0 U U Z
L X X Z

0 X X Z

L W W Z

0 W W Z
H L Z W

U L U U

H H Z X

U H U U
H Z Z Z

U Z U U

H 1 Z H

U 1 U U
H 0 Z L

U 0 U U

H U Z U

U U U U
H X Z X

U X U U

H W Z W

U W U U
Z L U U

X L W W

Z H U U

X H W X
Z Z U U

X Z W Z

Z 1 U U

X 1 W H
Z 0 U U

X 0 W L

Z U U U

X U W U
Z X U U

X X W X

Z W U U

X W W W
1 L Z L

W L W X

1 H Z H

W H X X
1 Z Z Z

W Z Z X

1 1 Z 1

W 1 H X
1 0 Z 0

W 0 L X

1 U Z U

W U U X
1 X Z X

W X X X

1 W Z W

W W W X

For example, given the logical values G = L and S = 1, according to Table 4, these functions

will be P (L, 1) = 1 and N (L, 1) = Z. Equation (2.14) is an arithmetic evaluation for the graph in

Figure 8 (b).

Y = P (G, S) ∇ N (G, S) (2.14)

 35

In Figure 8 (b), the drain of a P-channel transistor is connected to the drain of an N-channel

transistor, each with its own logical value. The outcome is a dominant value for this connection.

For instance, if the drain of the P-channel transistor has the value “1” and the drain of N-channel

transistor has the value “Z”, then the dominant value “1” is considered for this node and

symbolized as “∇“. Table 5 shows the dominant logic value for the connection node in MVL9.

Table 5 - Connection node equivalent value lookup table, Multi-Valued Logic 9.

∇ U X 0 1 Z W L H -
U U U U U U U U U U
X U X X X X X X X X
0 U X 0 X 0 0 0 0 X
1 U X X 1 1 1 1 1 X
Z U X 0 1 Z W L H X
W U X 0 1 W W W W X
L U X 0 1 L W L W X
H U X 0 1 H W W H X
- U X X X X X X X X

3.3.2. Delay Propagation

The actual delay, which is the result of a resistive short or open fault in digital circuit, will

change the voltage that has to pass through a path to the output. To illustrate how this algorithm

works, several examples are presented. Figure 9 shows two three-input NOR gates connected to

each other. Assume there is a delay at output of “NOR” gate “L” which is caused by a 5 KΩ

resistor between drain D3 and VDD. According to the result that will be discussed later in the

simulation result chapter, for 65nm technology, the output voltage of slow-to-rise is 0.85 V for a

delay of 0.19 µs.

 36

Figure 9 - Logic change in MVL9.

This value is considered as “H” signal in MVL9 instead of “1”. This signal must pass

through a three-input “NOR” gate using the circuit’s arithmetic equation. Figure 10 (a) shows the

transistor level of a three-input NOR gate and (b) shows the arithmetic model of the circuit. As

explained earlier, the output of the circuit “Y” can be calculated by equation (2.15) as follows:

Y = P3 (G, P2 (G, P1 (G, S))) ∇ (N1 (G, S) ∇ N2 (G, S) ∇ N3 (G, S)) (2.15)

Equation (2.16) represents equation (2.15) after replacing actual signals for gate “G” and source

“S”.

Y = P3 (C, P2 (B, P1 (A, 1))) ∇ (N1 (A, 0) ∇ N2 (B, 0) ∇ N3 (C, 0)) (2.16)

The delayed signal “H”, which is caused by a resistive short fault in “NOR” gate “L” is

considered as input signal “A” in the above equation.

A

B

Y

1 H L 0

C

L
R

 37

Figure 10 - (a) Transistor level of three-input NOR gate and (b) Arithmetic model.

To propagate this signal to the “Y” output, input “B” and “C” must have the value of “0”.

The result is shown in equation (2.17).

Y = P3 (0, P2 (0, P1 (H, 1))) ∇ (N1 (H, 0) ∇ N2 (0, 0) ∇ N3 (0, 0)) (2.17)

Values of function “P” and “N” can be derived from lookup Table 4. The value of connection

node “∇“ is taken from lookup Table 5 and the final value for “Y” will be equal to “L”.

A

B

Y

VDD

P1

N3

P2

N2

Gnd

B A

(a)

C P3

C N1

P2(G, S)

P1(G, S)

N1(G, S) N3(G, S)

A

A

B

C

1

0

∇ Y

0

∇

(b)

P3(G, S)

C

B 0

N2(G, S)

 38

All steps are shown as follows:

P1 (H, 1) = Z

P2 (0, Z) = Z

N1 (H, 0) ∇ N2 (0, 0) ∇ N3 (0, 0) = L ∇ Z ∇ Z = L

Y = P3 (0, Z) ∇ L = Z ∇ L = L

As shown in Figure 9, when the logic value for signal A changes from “1” to “H” in MVL9

as the result of a resistive fault in the circuit, the logic value for output “Y” changes from “0” to

“L”. This change at output represents a delay of 0.37 µs. At the same time, in MVL5 signal “A”

and “Y” remains the same value “1” and “0” regardless of presenting a delay fault in the circuit.

Figure 11 - (a) Transistor level of two-input NOR gate and (b) Arithmetic model.

As mentioned earlier, this arithmetic algorithm can be applied to circuits with multiple

delays. These delays may affect each other at the output or one delay may compensate for

(a)

A

B

Y

VDD

P1

N2

P2

N1

Gnd

B A

(b)

P2(G, S)

P1(G, S)

N1(G, S) N2(G, S)

A

A

B

B

1

0

∇ Y

0

∇

 39

another one and vanish through several stages. Sometimes two or more delays may combine and

affect a logical failure in MVL5.

A further example is given in Figure 11, where (a) shows the transistor level of a two-input

NOR gate and (b) shows the arithmetic model of the circuit. Using the algorithm, the output of

the circuit “Y” can be calculated with equation (2.18) as follows:

Y = P2 (G, P1 (G, S)) ∇ (N1 (G, S) ∇ N2 (G, S)) (2.18)

Equation (2.19) represents equation (2.18) after replacing actual signals for gate “G” and source

“S”.

Y = P2 (B, P1 (A, 1)) ∇ (N1 (A, 0) ∇ N2 (B, 0)) (2.19)

The delayed signal “X” is caused by a resistive short fault considered as input signal “A” in

the above equation. To propagate this signal to the “Y” output, input “B” must have the value of

“0”. The result is shown in equation (2.20).

Y = P2 (0, P1 (X, 1)) ∇ (N1 (X, 0) ∇ N2 (0, 0)) (2.20)

Values of function “P” and “N” can be derived from lookup Table 4. The value of connection

node “∇“ must be taken from lookup Table 5 and the final value for “Y” will be equal to “L”.

 40

All steps are shown as follows:

P1 (H, 1) = W

N1 (H, 0) ∇ N2 (0, 0) = L ∇ Z = L

Y = P2 (0, W) ∇ L = W ∇ L = W

When the logic value for signal A in MVL9 changes from “1” to “X” as a result of the

resistive fault in the circuit, the logic value for output “Y” will change from “0” to “W”. This

change at output represents a delay of 0.44 µs. At the same time, in MVL5 model signal “A” and

“Y” remains in the same logic value “1” and “0” regardless of presenting a delay fault in the

circuit.

The objective of the above chapter was to propagate the resistive delay fault with developing

a very accurate model that can convert the timing disturbance to logic defect in five value logic

model using a nine value logic model. This model carries the error from a timing domain to a

voltage domain. The resistive delay faults can make circuit less immune against external

radiations. The effect of radiations on a circuit with resistive bridging defect will be discussed in

next chapter.

 41

CHAPTER 4

DELAY FAULT MANIFESTS SOFT-ERRORS

The traditional test model of VLSI design being questioned by increasing delay fault

manifestations has become even further challenged as a result of unpredictable soft-errors.

Consequent probabilistic fault manifestations shift the focus to fault resilience mechanisms and

tradeoffs of false alarms vs. escapes. This chapter shows how delay faults can increase the Soft-

Error Rate in the circuit.

4.1. The Importance of Delay Faults and Soft-Errors

The continuous shrinking of VLSI devices and the fast increase in chip clock rates raise the

challenging problem of ensuring that designs are meeting performance and reliability

specifications. It has been widely observed that chips are increasingly susceptible to delay

defects and soft-errors, both more difficult to deal with using a manufacturing test compared to

traditional stuck-at faults. These potential reliability problems are becoming increasingly critical

due to the aggressive technology scaling and design style. Additional test resources mitigate

 42

these problems only to a limited extent, while incurring a much larger testing cost, a quite

unpalatable trade-off from a test economics point of view. The solution to these challenges

necessitates the incorporation of reliability-oriented design techniques and economic models that

guide their applications in product development.

Although extensive work has been conducted on fault tolerance circuitry design, little

research has been proposed to address the issue of concurrent handling of delay defects and soft-

errors. The challenge of this problem stems from the need for integrating diversified fault-

tolerance schemes in a low cost and coherent manner. For example, these faults may either

generate noise at the input of a flip-flop or directly corrupt its internal node signal. Hence an

appropriate fault-tolerance scheme needs to simultaneously address distinct fault behaviours.

Moreover, such a scheme must differ from traditional schemes in the sense that it should not

incur any timing pressure which essentially tampers with the delay fault tolerance capability.

4.2. Soft Delay Phenomenon

When a highly energetic particle strikes at a sensitive node of a semiconductor device, the

electron-hole pairs are created in the track of the particle. The electron-hole pairs drift when they

are generated in the depletion region. This movement of electrons and holes toward an opposite

electric field in the depletion region causes charges to be collected at the opposite sides of the

depletion region. A current pulse with duration of a few hundred picoseconds is generated due to

the movement of charges. This pulse can have positive or negative magnitude depending on

whether the particle hit an off NMOS-transistor or off PMOS-transistor. This current pulse is

 43

represented by an equivalent current source between the drain and the substrate of the transistor

[49][50]. In the following context, only the positive current pulses are considered.

The active transition scenario of the soft delay phenomenon is as follows. In CMOS circuits

during the rising phase of a transition, the NMOS transistor goes to OFF state and the PMOS

goes to ON state. As soon as the NMOS transistor turns off and the p-n junction builds up

between the drain and the substrate of the NMOS transistor, it becomes sensitive to a particle hit.

If the particle hit on this sensitive node occurs during the signal transition, the current generated

due to the hit can pull down the signal to the opposite logic level causing longer transition time.

This longer transition of the signal at the node can have a delay effect at the output of the

succeeding gate(s). This effect is called soft delay [51] due to its nature.

Figure 12 - Propagation delay (a) of a buffer in the normal operation.

Figure 12 shows the normal operation of a buffer between its input (blue line) and output

(green line) signal. The intermediate node (red line) is the sensitive node within the buffer. The

 44

arrow marked (a) in Figure 12 shows the propagation delay of 595 ps. between input and output

of the buffer.

Figure 13 - Propagation delay (b) of a buffer due to the particle strike during the transition.

Figure 13 shows the effect of the particle hit during the transition of the sensitive node which

introduces extra propagation delay. This will results in a new delay of 1003 ps. as shown in the

arrow marked (b).

To illustrate the active transition scenario in CMOS logic circuits, the circuit in Figure 14 is

used as a reference circuit. The gate delays are shown inside the gates. The transistor level

diagram of inverter I1 shows an SEU sensitive node. Node, Ā , is sensitive to a particle hit as

soon as NMOS-transistor of inverter I1 goes off and the reverse junction builds up between the

output (Ā) and the substrate of NMOS-transistor. The current source, ISEU, represents the particle

hit as a positive current pulse at the node Ā.

 45

Figure 14 - CMOS circuit to show the soft delay phenomenon.

4.3. Fault Modeling

As mentioned earlier, in CMOS circuits, SEUs are modeled by injecting a current pulse at the

sensitive node. This pulse has rapid rise time and gradual fall time. The shape of the pulse can be

approximated by the following equation [52].

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) ∝ 𝑄𝑄
𝑇𝑇

 . �𝑡𝑡
𝑇𝑇

 . 𝑒𝑒𝑒𝑒𝑒𝑒�
−𝑡𝑡
𝑇𝑇 � (3.1)

Where Q is the charge collected due to the particle strike and T is the time constant for the

charge collection process. T depends on the CMOS process technology used for the device and it

decreases as technology scales down. The following subsections describe fault models for two

soft delay scenarios.

100ps
200ps A

A

ISEU . Current Source

SEU
Sensitive node

Ā

Ā

B

I2

I1 I3

 46

4.4. Active Transition Delay Model

In Figure 14, the inverters I1, I2, and I3 are unit size inverters, and the AND gate was

constructed using minimum size transistor with equal rise and fall time delays. The inverter I3

provides capacitive load for the output of AND gate. A current source is used to inject error at

node Ā with ISEU of equation (3.1). The pulse is injected during the output rise time of I1,

specifically when A < VTHN and Ā > VDD/2, where VTHN is the threshold of NMOS transistor and

VDD is the power supply voltage. At this time, the output of I1, Ā, is sensitive to particle hit.

4.5. Inactive Transition Delay Model

The current pulse produced by a particle strike results in a logic pulse at the output node of

the affected gate. To model the logic fault, the circuit of Figure 14 is used, but this time the fault

is injected when gates of the circuit are at steady state. Both of the inputs were assumed to be

low so that a current source can be used at the output of the I1 to temporarily flip the node Ā.

The width of the logic pulse produced at the output of the AND gate is measured at VDD/2.

 How the delay faults can affect Soft-Error Rate was discussed in detail in this chapter by

explaining a fault model and terms of active and inactive transition delay models. Next chapter is

introducing a new invention in soft-error detection for transient pulses less than threshold

voltage.

 47

CHAPTER 5

STRENGTH VIOLATION EFFECT ON SOFT-

ERROR

The SET in the circuit might lead to a current depletion in the circuit that can affect the

strength of the signal and eventually origin a Soft-Error in the circuit. The strength violation as

the result of SET were not been investigated in previous studies. In this chapter the concept of

strength violation will be discussed in detail. A strength-based Soft-Error detection model has

been developed which uses several rules and function.

5.1 Strength Violation

The occurrence of radiation strikes are generally distributed uniformly in space and time. To

better explain this phenomenon, consider a 2-input NOR gate (Figure 14) driving a parasitic

capacitance CP (interconnect and fan-out) at its output. When all connected transistors to a node

are off, the node retains its previous value. This is caused by the charge stored on the stray

 48

capacitance CT associated with the node (after a long decay time, CT will be discharged, but

usually circuits are operated sufficiently fast so that decay times can be considered infinite) [8].

The total capacitance at output of the gate is given in equation (4.1).

CT = CU (W/L) + CP (4.1)

In this equation W/L is the size of a single NMOS transistor in the NOR gate. CU is the unit

output capacitance including NMOS and PMOS obtained by dividing the output capacitance of

the NOR gate by the size of the NMOS transistor in the NOR [36][53].

Figure 15 - Stray capacitance illustration in NOR gate.

The magnitude and duration of output voltage VOUT will determine how an SEU propagates

through gates in the transitive fan-out of the NOR gate to the primary outputs latches. For an

accurate calculation of output voltage, resistive analysis of NMOS and PMOS ON-resistance

values are calculated using [27] and are shown in equations (4.2) and (4.3).

RN = VDD / (KNW (VDD - VTHN) 2 / 2L) (4.2)

N2

P1 A

P2

N1 A

B

B

CU CP

CT

VOut

 49

RN = VDD / (KPW (VDD - VTHP) 2 / 2L) (4.3)

Where VDD is operating voltage, KN and KP are transconductance parameter of a MOSFET,

and VTHN and VTHP are threshold voltages for NMOS and PMOS accordingly. When all inputs

for 2-input NOR gate in 0 are high (A = 1 and B = 1), NMOS transistors are on and PMOS are

off. The NMOS side of the gate consists of parallel connections of NMOS transistors. In this

condition, the high-to-low propagation time will be calculated from equation (4.4) as per [27].

1 / RN = (0.7 CT / tPHL) * 1/n (4.4)

In equation (4.4), tPHL is high-to-low propagation time and n is the number of gate input.

Substituting the value of RN in 4.4 with equation (4.2) and then re-arranging it is shown in

equation (4.5).

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 − 2𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇
2

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
= 𝑛𝑛𝑋𝑋𝑁𝑁 (4.5)

Where XN is:

𝑋𝑋𝑁𝑁 = 0.7𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ×2𝐿𝐿
𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 ×𝐾𝐾𝑁𝑁

′ ×𝑊𝑊
 (4.6)

The voltage VOUT (t) following a particle strike is given in the following differential

equations for a serial NMOS combination.

VOUT + V2
THN / VOUT = n XN + 2VTHN (4.7)

Similarly, for a parallel NMOS connection,

 50

VOUT + V2
THN / VOUT = XN / n + 2VTHN (4.8)

Equation (4.7) must be rearranged to fit the quadratic relation format shown in (4.9).

V2
OUT – (nXN + 2VTHN) VOUT + V2

THN = 0 (4.9)

Reorganizing equation (4.8) will result in equation (4.10).

V2OUT – (XN / n+ 2VTHN) VOUT + V2THN = 0 (4.10)

Replacing the actual values of XN, n and VTHN into the equations (4.9) and (4.10), the voltage

level at the output VOUT of a NOR gate is obtained. In contrast, the propagation delay value for

all low input cases will be completely influenced by the PMOS transistors, unlike the all high

input case. For the all low input case (for example, I1I2 = 00), PMOS transistors are on and

NMOS are off. The IDS [54] for PMOS transistors are calculated using equation (4.11).

IDS = (Wρn Cοχ) [(VGS - VTHN) VDS – V2
DS/2] (4.11)

On the other hand, NMOS transistors are more susceptible to strength violation than PMOS.

The drain of a PMOS transistor collects holes. This results in a rise in drain voltage if the

transistor is in the OFF-state. However, the drain collection current and, consequently, the

collected charge Qcoll are in general much smaller than for an NMOS transistor. This is due to the

fact that holes have a lower mobility than electrons and also due to charge sharing between the

drain junction and the junction formed by the n-well and the p-substrate [55].

 51

The magnitude and duration of a pulse will determine how a SEU propagates through gates

in the transitive fan-out of the gate to the primary outputs/latches/flip-flop. The charge deposition

due to a particle strike at N (where P and N networks connect) is modeled by a double

exponential current pulse Iin at the site of the particle strike [36][56].

𝐼𝐼𝑖𝑖𝑖𝑖 = 𝑄𝑄
�𝜏𝜏𝛼𝛼−𝜏𝜏𝛽𝛽 �

�𝑒𝑒−
𝑡𝑡
𝜏𝜏𝛼𝛼 − 𝑒𝑒

− 𝑡𝑡
𝜏𝜏𝛽𝛽 � (4.12)

In equation (4.12), Q is the charge (positive or negative) deposited as a result of the particle

strike, τα is the collection time constant of the junction, and τβ is the ion-track establishment time

constant. τα and τβ are constants that depend on several process-related factors. SEU effects are

shown in Figure 16. This figure shows that one strike with a constant charge and duration has

higher impact when the transistor dimension shrinks.

Figure 16 - SEU effects (Q, (W/L), (τα, τβ)).

 52

The following example shows the data corruption as a result of strength violation as

previously discussed. Figure 17 illustrates the simulation of a single-event upset using a current

source at the drain of P2 transistor which violates the driving strength of the drain for duration of

5 ns to simulate the strength violation. This current course is able to generate different single

even upsets in circuit to simulate a strike for soft-errors. In this simulation, both values A and B

are equal to one (A = 1 and B = 1), the amplitude of voltage pulse generated due to a particle will

induce an electric charge at the point of injection. As a result, the value of unknown X will be

stored on flip-flop instead of original value 1. The simulation result of the circuit in Figure 17 is

shown in Figure 18 using H-Spice tool.

Figure 17 - Strength violation simulation in NOR gate.

The top wave in Figure 18 represents a “Strike Pulse” and the middle wave of the graph

represents the driving current stimulation at the drain of PMOS transistor, which is a strength

violation. Strength violation is referred to a term that strength of a signal changes without

N2

P1 A

Corruption

P2

N1 A

B

B

CT

 53

changing of its logic. This signal shows that the complex analog behaviour of the signal can

change the strength within the “High 1” range. The bottom signal in the graph shows an

unknown value for the output of NOR gate which is connected to a memory element in the

circuit.

Figure 18 - H-Spice simulation result for two-input NOR gate.

5.2 Soft-Error Detection Coding Model

The switch-level models used in this thesis are based on Verilog switch models and take into

consideration seven driving strength levels [35] and four logic values (0,1,U,Z). This multiple-

 54

level, logic-strength modeling resolves combinations of signals into known or unknown values

and thus represents the behaviour of hardware with maximum precision. In switch-level models,

an NMOS (PMOS) may be in three different states: It is ON when its gate terminal takes the

value 1 (0 for PMOS). It is OFF when its gate terminal takes the value 0 (1 for PMOS), and it is

in the unknown state when its gate terminal takes the value Z or U [36].

Table 6 - Logic and strength coding for CMOS.

Logic Strength Logic Strength Node
Name Name Code Code N

0 Supply 00 111 00111
0 Strong 00 110 00110
0 Pull 00 101 00101
0 Large 00 100 00100
0 Weak 00 011 00011
0 Medium 00 010 00010
0 Small 00 001 00001
1 Supply 01 111 01111
1 Strong 01 110 01110
1 Pull 01 101 01101
1 Large 01 100 01100
1 Weak 01 011 01011
1 Medium 01 010 01010
1 Small 01 001 01001
U Supply 11 111 11111
U Strong 11 110 11110
U Pull 11 101 11101
U Large 11 100 11100
U Weak 11 011 11011
U Medium 11 010 11010
U Small 11 001 11001
X Don’t care 10 000 10000
Z High Z xx 000 xx000

As mentioned earlier, voltage strength refers to the amplitude of voltage pulse generated due

to particle induced electric charge at the point of injection. Voltage levels are mapped to different

 55

signal strength levels. The highest strength level is called “supply” and is denoted by “111”.

When the circuit is working normally (in the absence of any particle strike), all signals are

assumed to have strength level “111”. A strike at any point can inject voltage pulse amplitude

varying from “strong” to “high impedance”. High impedance is represented by state code

“xx000”. The logic states and level of strength based on a 5-bit coding system are shown in

 Table 6.

In this table, “Logic Names” are “0”, “1”,”U” unknown, “X” don’t care and “Z” for high

impedance. Each “Logic” has a different strength from “Supply” to “Small”. “Logic Code” and

“Strength Code” are the 2-bit and 3-bit coding representation of “Logic” and “Strength”

accordingly. Finally, “Node N” is a 5-bit coding system which includes both the logic and

strength value of the node.

Each transistor in a circuit is connected to three nodes. Figure 19 (a) in which “D” denotes

the node or net connecting the “Drain” and “G” and “S” are used for “Gate” and “Source”

accordingly.

Figure 19 - (a) CMOS transistor (b) CMOS function (c) Node (d) C function.

(b)

G S

D

 CMOS

D

D

O C

(d)

D

D

O

(c) (a)

D

S

G

 56

To calculate the drain output signal based on the gate and source input signals, NMOS and

PMOS functions have been developed for N-channel and P-channel transistors. Figure 19 (b) is a

symbolic representation of the function.

Figure 20 - Functional representation of a NOT gate.

Connection nodes in the circuit are where signals meet each other and are shown in Figure 19

(c). Furthermore, Figure 19 (d) is a symbolic representation of a connection node and Function

C, which will be explained in detail in this section. Figure 20 shows a functional representation

of a NOT gate. The initial idea is taken from previous publication [57].

5.3 Verilog Strength Rules and Functions

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass

gates, resistive MOS devices, dynamic MOS, charge sharing, and other technology dependent

network configurations by allowing scalar net signal values to have a full range of unknown

values and different levels of strength or combinations of levels of strength. This multiple level

logic strength modeling resolves combinations of signals into known or unknown values to

represent the behavior of hardware with maximum accuracy. The switch-level models are based

G S

 D

G S

O

 P

 C

 N

D

 57

on the 5-bit coding model shown in Table 6. In these switch-level models, an NMOS or PMOS

may be in three different states: It ON when its gate terminal takes the value 1 (0 for PMOS),

OFF when its gate terminal takes the value 0 (1 for PMOS), and in the unknown state when its

gate terminal takes the value Z or U. The highest strength level is called “supply” and is denoted

by “111”. In the absence of any transient pulse, all signals are assumed to have strength level

“111”. A strike at any point can inject voltage pulse amplitude varying from “strong” to “Z”.

Based on the 5-bit coding system, the functionality of NMOS and PMOS switches can be

summarized in the following rules:

Rule 1: When a switch is OFF, it passes state code “10000” (don’t care) to the drain, which

indicates that the transistor does not take part in resolving the state of the output at the

connection node.

Rule 2: When a switch is ON, it passes the state code of the source to the drain.

Rule 3: When the gate has unknown logic or high impedance state, the drain gets unknown

state.

Based on these three rules, switch-level functions named PMOS Function and NMOS

Function are developed to represent PMOS and NMOS switches respectively.

To resolve the signals of different strength levels and logic levels at the connection nodes

(meeting points of two or more switches), another function called C Function, based on Verilog

strength resolution rules, is developed. When all switches connected to a node are OFF, the node

retains its previous value caused by the charge stored on the stray capacitance associated with the

node; otherwise, the signal with larger strength level passes through. If the signals at the node are

of the same strength level but different logic level, the output state of the node is unknown.

 58

5.3.1 PMOS Function

Figure 21 shows the flow diagram for PMOS Function representing PMOS switch. “Drain

Logic” represents the logic level of signal at drain while “Drain Strength” represents the strength

level for signal at drain of PMOS switch. Similarly, “Gate Logic” and “Gate Strength” signify

the logic level and strength level for signal at gate and “Source Logic” and “Source Strength”

represent logic level and strength level of signal at source of PMOS switch.

Figure 21 - PMOS Function flowchart.

When the logic level of signal at gate is “01” and strength level is greater than “000” (i.e. the

signal is at logic 1 and strength level higher than high impedance), PMOS switch is turned off.

Therefore, drain gets state code “10000” which signifies “don’t care” state indicating that PMOS

Gate Logic = ‘01’
AND

Gate Strength > ‘000’

PMOS

Gate Logic = ‘00’
AND

Gate Strength > ‘000’

Drain Logic = ‘10’
Drain Strength = ‘000’

Drain Logic = Source Logic
Drain Strength = Source Strength

Drain Logic = ‘11’
Drain Strength = Source Strength

Return

Yes No

Yes No

Gate Logic = ‘11’
OR

Gate Strength > ‘000’

 59

switch does not let any signal pass through. When logic level of signal at gate of PMOS switch is

“00” with strength level higher than “000”, PMOS switch is turned ON. Signal from source

passes on to the drain, which means “Drain Strength” and “Drain Logic” become equal to

“Source Strength” and “Source Logic” respectively. Furthermore, if gate of PMOS is connected

to a signal of strength level “000” (high impedance) or a signal of logic “11” (unknown), then

“Drain Logic” is “11” and “Drain Strength” becomes equal to “Source Strength”.

Pseudo-code for PMOS function

If gate_logic is “1” and gate_strength is greater than “Z”

Drain_logic = don’t care

Drain_strength = “Z”

Else if gate_logic is “0” and gate_strength is greater than “Z”

Drain_logic = source_logic

Drain_strength = source_strength

Else if gate_logic is “Unknown” or gate_strength is “Z”

Drain_logic = Unknown

Drain_strength = source_strength

5.3.2 NMOS Function

Figure 22 shows the flow diagram for Function N based on the above mentioned Verilog

rules. “Drain Logic” represents logic level of signal at drain while “Drain Strength” represents

strength level for signal at drain of NMOS switch. Similarly, “Gate Logic” and “Gate Strength”

 60

signify logic level and strength level for signal at gate and “Source Logic” and “Source Strength”

represent logic level and strength level of signal at source of NMOS switch.

Figure 22 - NMOS Function flowchart.

When the logic value at the gate is “00” and strength level is greater than “000” (the signal is

at logic level “0”and strength level higher than high impedance), the NMOS switch is turned

off. Therefore, the drain gets state code “10000”, which signifies “don’t care” state indicating

that NMOS switch does not let any signal pass through. When logic level is “01” with strength

level higher than “000”, NMOS switch is turned on and thus signal from the source passes on to

the drain (“Drain Strength” and “Drain Logic” become equal to “Source Strength” and “Source

Gate Logic = ‘00’
AND

Gate Strength > ‘000’

NMOS

Gate Logic = ‘01’
AND

Gate Strength > ‘000’

Drain Logic = ‘10’
Drain Strength = ‘000’

Drain Logic = Source Logic
Drain Strength = Source Strength

Drain Logic = ‘11’
Drain Strength = Source Strength

Return

Yes No

Yes No

Gate Logic = ‘11’
OR

Gate Strength > ‘000’

 61

Logic” respectively). If gate of NMOS is connected to a signal of strength level “000” or a signal

of logic level “11”, the “Drain logic” is “11” and “Drain Strength” becomes equal to “Source

Strength”.

Pseudo-code for NMOS function

If gate_logic is “0” and gate_strength is greater than “Z”

Drain_logic = don’t care

Drain_strength = “Z”

Else if gate_logic is “1” and gate_strength is greater than “Z”

Drain_logic = source_logic

Drain_strength = source_strength

Else if gate_logic is “Unknown” or gate_strength is “Z”

Drain_logic = Unknown

Drain_strength = source_strength

5.3.3 C Function

Figure 23 shows the flow diagram of C Function which represents a connection node with

signals “S1” and “S2” incident on it. The strength level for “S1” is indicated by “Strength S1”

and logic level is indicated by “Logic S1”. Similarly, strength level and logic level of “S2” are

indicated by “Strength S2” and “Logic S2” respectively. If one of the signals is “10000” (i.e. the

switch corresponding to that signal is off), then the other signal passes through the node. If both

the signals are “10000”, this indicates that both the switches attached to the node are turned off.

In this case, the resolved signal is “10000”. If the two signals have the same logic level but

 62

different strength levels, then the signal with higher strength level passes. On the other hand, if

the signals have the same strength level but different logic levels, then the resolved signal has

“unknown logic” and strength level is the same as the strength level of signals incident on the

node.

Figure 23 - C Function flowchart.

In nanometer technology circuits, node capacitances are small, so capacitor charge strength is

taken as “small” and its logic value is taken from the resolved signal at the node. This idea is

based on the fact that the values stored in the capacitance unit are weak values as they result

from small charges [35].

Two Input Signals:
S1 and S2

Logic = ‘11’
Strength S1

Yes No

Yes

Strength S1 = Strength S2 Strength S1 > Strength S2

Logic S1 = Logic S2

S1 = ‘10000’

S2 = ‘10000’
No

No Yes

Yes

Yes

No

No

Logic = S1
Strength = S1

Logic = S2
Strength = S2

 63

Pseudo-code for C Function (connection node)

If one of the incoming signals is “don’t care”

Second signal passes through

Else if both incoming signals have same logic values

If strength is different

Signal with larger strength passes through

Else if strength is same

Result is same as incoming signals

Else if both signals have different logic values

If strength is same

Result is unknown logic and incoming strength

Else if strength is different

Signal with larger strength passes through

In this chapter the offered approach used a novel coding system to be applied in certain

functions that are sensitive to strength variations. It was able to detect even the slight changes in

signal strength caused by both cosmic rays and alpha particle from package contamination. Most

soft-error detection techniques sense the logic changes in the circuit while this method proves

that a wide range of soft-errors are the result of strength violation in switch-level. Next chapter is

introducing Soft-Error injection techniques in three main locations in circuits.

 64

CHAPTER 6

SOFT-ERROR INJECTION TECHNIQUE

The location of Soft-Error injection is playing a very important role in Soft-Error detection.

This chapter will develop and analyse the Soft-Error techniques for the three locations of the

Gate input, the Gate of a transistor and the Drain of a transistor.

6.1. Soft-Error Injection

To evaluate the error resilience of the schemes, soft-error injection was conducted during the

execution-driven simulation. The choice of error injection location plays an important role in

evaluating the effectiveness and accuracy of any error detection mechanism. All switch-level

simulation-based soft-error detection methods devised so far inject current pulses at the internal

nodes of the circuit assuming that internal nodes represent the drains of the transistors connected

to the nodes [58]. FPGA-based soft-error emulation systems described in existing literature [59]

focus on injection of transients at the inputs of gates. For soft-error detection techniques based on

injection of bit-flip error models, transistor gate or input of a gate can be used as point of

 65

injection without any loss of accuracy. However, the work presented in this thesis is not based on

normal bit-flip based soft-error model. Rather, it uses a detailed soft-error model based on 23

different types of soft-errors resulting from voltage pulses of different logic and strength levels.

The switch-level models used in this research may lead to miscalculated error coverage if the

location of transient injection is not selected appropriately. In this section, theoretical analysis of

the switch-level models is carried out to explain the effect of transient injection location on error

coverage. The three possible alternatives for transient injection are injection at the input of a

gate, injection at the gate of a switch, and injection at the drain of a switch. These three choices

are analyzed by taking switch-level 2-input NAND gate as an example. The analysis shows that

drain is the most appropriate and accurate choice for the injection of strength-based transient

errors.

6.1.1. Pulse Injection at Gate Input

The injection position and size of the gate are the major control parameters for a simulated

injection-mould. Once the injection parameters (gate size and gate position) are given, the

product performance (deformation) can be accurately predicted by the abductive network

developed. In most of the error injection techniques used so far, errors are injected at the inputs

of gate-level circuit. This can lead to inaccurate results as injection at the input of one gate

corresponds to injection of the same error at more than one location at switch-level. For example,

if an error is injected at the input of an inverter, it gets injected at gates of two transistors which

is equivalent to multiple bit-flips. This may lead to inaccurate error coverage calculations for

single bit-flip based soft-error detection as each error may get counted twice.

 66

6.1.2. Pulse Injection at the Gate of Transistor

One of the alternatives to avoid the above miscalculations is to use the gate of a switch as the

location for error injection. For the presented strength-based switch-level soft-error detection

method, transient injection at the gate of the switch poses another problem. The propagation of a

transient pulse injected at the gate of the switch-level model of any gate is a function of input

vector “V”, logic level of the signals incident at the node to which the switch is connected “Lin”

and the state of other switches connected to that node “Tstate”. This can be represented as:

Pg (SETprop) = f (V, Lin, Tstate)

Pg (SETprop) is probability of Single Event Transient (SET) induced pulse injected at gate to

be transmitted to output. Lin is logic level of signals incident on the resolving node and Tstate is

state of the next MOS switch ON or OFF.

6.1.3. Pulse Injection at the Drain of Transistor

Previous research shows that when radiation strikes a node inside the circuit, it generates voltage

pulse at the drain of the struck transistor [60]. Therefore, considering the drain of a switch as a

transient injection location is quite a relevant option. This technique is closer to transistor level

circuits as in this case the injected pulse participates in resolving the final output of the node.

Moreover, in Nanometre technology CMOS devices, the most sensitive areas are the depletion

regions at the transistor drain [61]. The propagation of an SET-induced pulse injected at the drain

 67

takes into account the effect of input vector “V”, logic level and strength level of the signals

incident at the node to which the switch is connected (Lin, Sin,) and the state of other switches

connected to that node “Tstate” and the storage strength of node capacitance “Scap” as indicated by

the following equation:

Pd (SETprop) = f (V, Lin, Sin, Scap, Tstate)

Pd (SETprop) is the probability of SET-induced pulse injected at the drain to be transmitted to

output. Scap is the storage strength of node capacitance and Sin is the strength of signals incident

on the resolving node.

6.2. Soft-Error Injection Examples

In the following, some examples are brought to further clarify the above theoretical analysis.

The propagation of transient pulses will be discussed step-by-step with a 2-input NAND gate for

different transient injection locations.

6.2.1. Injection at the Input of 2-Input NAND Gate

For example, when transient pulse “00001” is applied at one of the inputs of 2-input NAND

gate at switch-level, it affects two switches at the same time as shown in Figure 24. Let the

values of the two node capacitances C1 and C2 be “01001” and both the inputs of NAND gate be

“High=01111” at the time of transient injection. The injection of transient at input “A” switches

on the P1 transistor and turns off the N1 transistor. As N1 is turned off, it does not participate in

 68

signal resolution. As a result, the signal “01111” coming from the P1 reaches the primary output

Y. For a NAND gate, when both inputs are high, the output should be “Low” but introduction of

signal strength variations at two different switches at the same time results in logic change at the

output. This logic-flip may result in a soft-error if it gets latched. The soft-error emulation

technique presented in this thesis is based on a single bit-flip model, but injection at input of a

CMOS gate is equivalent to multiple bit-flips. The C node in the figure represents the C

Function.

Figure 24 - SEU “00001” injected at the input of 2-input NAND gate.

In another example, the value of “01010” will be injected at the input of switch-level NAND

gate. Transistor P1 is off and N1 is switched on as shown in Figure 25. Since both NMOS N1

and N2 are switched on, signal “00111” reaches the node. Since both the PMOS are switched

A = 01111

B = 01111
C1= 01001

C2 = 01001

A = 01111

B = 01111

SE = 00001

01111 01111

01111

C

C

10000

01111
C Out = 01111

P1 P2

N1

N2

SE = 00001

 69

off, the primary output depends completely on the signal coming from NMOS network and the

output capacitance value. The two values will collide at node C and the outcome value will be

calculated using C Function. The signal stored in capacitance C2 is “01001”, which has a lower

strength level than “00111” coming from NMOS network. The value of primary output changes

to “00111”. Thus, the logic value of the output flips as the actual output is supposed to be

“01111” for a NAND gate.

Figure 25 - SEU “01010” injected at the input of 2-input NAND gate.

6.2.2. Injection at Gate

In this example, again the value of “00001” will be injected at the gate of one of the switches,

for example, P1 shown in Figure 26. Transient “00001” injected at gate G1 of transistor P1

A = 00111

B = 01111
C1= 01001

C2 = 01001

A = 00111

B = 01111

SE = 01010

10000 10000

10000

C

C

00111

00111
C Out = 00111

P1 P2

N1

N2

SE = 01010

 70

results in switching on the P1. If both the inputs of the gate are “High” at the time of transient

injection, then both NMOS are on. Therefore, at node C, two signals of the same strength but

opposite logic values meet (signal “00111” coming from NMOS network and signal “01111”

coming from P1 due to injected transient). As per the switch-level functions, this results in a

signal of unknown logic at the primary output. Therefore, the output of NAND gate turns out to

be “11111” which results in a soft-error.

Figure 26 - SEU “00001” injected at the Gate of 2-input NAND gate.

In the second example as shown in Figure 27, transient pulse “01010” injected at the gate of

P1 transistor does not affect the primary output as the gate treats it as “00111”. This turns off

PMOS P1. Since NMOS N1 is in off state, the NMOS network does not participate in signal

A = 01111

B = 01111
C1= 01001

C2 = 01001

A = 01111

B = 01111

SE = 00001

01111 10000

01111

C

C

00111

11111
C Out = 11111

P1 P2

N1

N2

 71

resolution at the node. Hence, due to the effect of the injected transient, the signal stored in node

capacitance C2 passes to the primary output. As the node capacitance is assumed to be “01001”,

it does not result in any error as the logic value is the same as the non-faulty output. Thus, in this

case, the injected transient does not cause an error.

Figure 27 - SEU “01010” injected at the Gate of 2-input NAND gate.

6.2.3. Injection at Drain

In the following example, transient “00001” will be injected at the drain of P1 transistor as

shown in Figure 28. In this case, the injected transient pulse gets masked by a higher strength

signal “00111” coming from the NMOS network. Therefore, no logic change occurs at the

A = 00111

B = 01111
C1= 01001

C2 = 01001

A = 00111

B = 01111

SE = 01010

10000 10000

10000

C

C

10000

10000
C Out = 01001

P1 P2

N1

N2

 72

primary output of the gate. This shows that injection at the drain takes into account the effect of

logical masking in combinational logic.

Figure 28 - SEU “00001” injected at the Drain of 2-input NAND gate

Figure 29 - SEU “01010” injected at the Drain of 2-input NAND gate.

A = 01111

B = 01111
C1= 01001

C2 = 01001

A = 01111

B = 01111

SE = 00001

00001 10000

00001

C

C

00111

00111
C Out = 00111

P1 P2

N1

N2

A = 00111

B = 01111
C1= 01001

C2 = 01001

A = 00111

B = 01111

SE = 01010

01010 10000

01010

C

C

10000

01010
C Out = 01010

P1 P2

N1

N2

 73

When transient pulse “01010” is injected at the drain of P1 transistor, it passes on to the

primary output without getting masked. All details are shown in Figure 29.

 In order to apply and test the efficiency of new invented model for strength-based soft-error

detection that was explained in detail in chapters 5 and 6, soft-error simulation software was

developed in MathLab environment. The soft-error simulation software and its simulation result

will be discussed in following chapter.

 74

CHAPTER 7

SIMULATION RESULTS

The simulation environment was generated using MATLAB in order to first convert the

ISCAS’85 Verilog gate-level net-lists into switch-level circuit based on the advanced Switch-

level model explained earlier. A simulation system was designed to allow injection of soft-errors

at gate inputs, drain and gate in switch-level. The simulator functions are divided into different

levels that will be explained in detail in this chapter.

7.1 Data Acquisition

Data acquisition is the first level of simulation involving loading the net-list gate-level in a

Verilog format. This file will be loaded as a text file. Simulation test vectors can be produced

either by a random test vector generation such as a Linear Feedback Shift Register (LFSR), or

Deterministic Test Pattern Generator (DTPG). In both case, users can determine the number of

 75

applied test vectors. This thesis uses test set compaction algorithms for combinational circuits

based on [62].

7.2 Data Processing

At this stage, the text files and the specified type of test vectors achieved from the previous

level are loaded into the program. At the beginning, the scripts will code the gate types and

organize the net-list gate-level into different categories, such as inputs, outputs, the gate types

and their connections (in /out). The gate-level net-list at this stage is entirely coded in numeric

form for data processing purposes. The coded gate-level net-list is processed for modifications in

the links between the gates so that the links’ addresses correspond to increasing numbers without

any gaps. For example, Table 7 shows C17 gate-level net-list fragmentation.

As evident through the links that connect the gates, there are some missing link numbers in

C17 before modification. These numbers are reorganized in Table 7 for C17 after modification.

The maximum link indexes in C17 before modification is 23 and after modification 11.

The elimination of these gaps is useful for programming and for reducing the arrays size as

they are linked to an array that stores the logic/strength value of the link at different stages of the

simulation. Eventually, the gate-level net-list data will be converted to a switch-level net-list.

Every gate is converted to switch-level. The functions used to replace the gate-level are the

PMOS function, NMOS function and Function C explained earlier.

 76

Table 7 - C17 gate net-list before and after modification.

C17 before modification C17 After modification

// Verilog // Verilog
// c17 // c17
// Ninputs 5 // Ninputs 5
// Noutputs 2 // Noutputs 2
// NtotalGates 6 // NtotalGates 6
// NAND2 6 // NAND2 6
module C17
(N1,N2,N3,N6,N7,N22,N23);

module C17
(N1,N2,N3,N4,N5,N10,N11);

input N1,N2,N3,N6,N7; input N1,N2,N3,N4,N5;
output N22,N23; output N10,N11;
wire N10,N11,N16,N19; wire N6,N7,N8,N9;
nand NAND2_1 (N10, N1, N3); nand NAND2_1 (N6, N1, N3);
nand NAND2_2 (N11, N3, N6); nand NAND2_2 (N7, N3, N4);
nand NAND2_3 (N16, N2, N11); nand NAND2_3 (N8, N2, N7);
nand NAND2_4 (N19, N11, N7); nand NAND2_4 (N9, N7, N5);
nand NAND2_5 (N22, N10, N16); nand NAND2_5 (N10, N6, N8);
nand NAND2_6 (N23, N16, N19); nand NAND2_6 (N11, N8, N9);
endmodule endmodule

7.3 Main Simulation Program

The main program in the simulation process can determine the number of sites for soft-error

injection or simply decide the location of the injected faults. A mapping array allows the user to

inject the fault at a specific location as well as the desired fault type. Table 8 shows all 23 types

of fault for C17 benchmark. When it comes to inject the fault type “00111”, the simulator takes

into consideration the calculated value at the injected site before injecting the fault. If the

calculated value of the fault free circuit at this specific location is equal to “00111”, then the

program will simply flip the bit of the logic fault type and the fault becomes “01111”.

 77

Table 8 - C17 fault types and relevant SER.

c17 Logic Strength Faults SER
1 01 111 77 1
2 00 000 129 0.958333
3 00 001 144 1
4 00 010 253 0.75
5 00 011 253 0.75
6 00 100 253 0.75
7 00 101 253 0.75
8 00 110 253 0.75
9 01 000 129 0.958333

10 01 001 211 0.916667
11 01 010 290 0.708333
12 01 011 290 0.708333
13 01 100 290 0.708333
14 01 101 290 0.708333
15 01 110 290 0.708333
16 11 000 129 0.958333
17 11 001 110 1
18 11 010 110 1
19 11 011 110 1
20 11 100 110 1
21 11 101 110 1
22 11 110 110 1
23 11 111 57 1

Total 4251 0.873188

In Table 8, fault types refer to all logic and strength level combinations. For each fault type, a

number of faults have been injected as shown in this table. There are 77 fault locations for the

first fault type and in total 4251 faults are injected for C17 in switch-level model.

This method incorporates a feature in the simulator that breaks the loop cycle of the test

vectors when the fault is detected. This feature allows the number of applied test vectors and the

 78

simulation time to be reduced. Eventually, SER is calculated for each fault type and the average

of SER = 0.8731 is achieved for C17.

7.4 Simulation Result for all ISCAS85 Benchmark

The simulation result for C432 (27-channel interrupt controller) is shown in Table 9. The

result for all ISCAS85 benchmarks can be found in Appendix section at the end of this thesis.

Table 9 - C432 fault types and relevant SER.

c432 Logic Strength Faults SER
1 01 111 5846 1
2 00 000 11501 0.920759
3 00 001 11663 0.970424
4 00 010 22229 0.722098
5 00 011 22229 0.722098
6 00 100 22229 0.722098
7 00 101 22229 0.722098
8 00 110 22229 0.722098
9 01 000 11501 0.920759

10 01 001 16980 0.864397
11 01 010 25457 0.657366
12 01 011 25457 0.657366
13 01 100 25457 0.657366
14 01 101 25457 0.657366
15 01 110 25457 0.657366
16 11 000 11501 0.920759
17 11 001 6623 0.979353
18 11 010 6623 0.979353
19 11 011 6623 0.979353
20 11 100 6623 0.979353
21 11 101 6623 0.979353
22 11 110 6623 0.979353
23 11 111 2573 1

Total 349733 0.842197

 79

7.5 Simulation Summary

The study of simulation results for all circuits shows that they all follow the same pattern for

the soft-error rate for different fault types. This fact is presented in Figure 30.

Figure 30 - SER versus Fault type.

As seen in this chart, the rate is higher for fault type “1” and “2” then drops until fault type

“4”. It stays the same until the logic change in fault type “9” and so on. The most important point

in Figure 30 is the rate coverage for benchmark C6288 was lower than others as expected. For a

more detailed investigation of SER behaviour based on different logic, error types are divided

into three major groups for logic “0”, logic “1” and logic “Unknown”. As illustrated in Figure

31, fault types 2 - 8 are considered in logic “0” and soft-error rates are shown for all benchmark

circuits.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

So
ft

 E
rr

or
 R

at
e

Fault Type

c17 c432 c499 c880 c1908

c2670 c3540 c5315 c6288 c7552

 80

Figure 31 - SER changes based on fault type for Logic 0.

Similarly, fault types 9 - 15 as well as fault type 1 are considered in logic “1” as presented in

Figure 32. Comparing the results in Figure 31 and Figure 32 shows that both logics follow the

same pattern in terms of coverage for different circuits.

Figure 32 - SER changes based on fault type for Logic 1.

0

0.2

0.4

0.6

0.8

1

So
ft

 E
rr

or
 R

at
e

Logic 0

2 3 4 to 8

0

0.2

0.4

0.6

0.8

1

c17 c432 c499 c880 c1908 c2670 c3540 c5315 c6288 c7552

So
ft

 E
rr

or
 R

at
e

Logic 1

1 9 10 11 to 15

 81

Finally, the third group of fault types is Logic = “11” which is considered as “Logic

Unknown”. These faults range from 16 to 23. The soft-error rates for all benchmarks for “Logic

Unknown” are shown in Figure 33.

Figure 33 - SER changes based on fault type for Logic Unknown.

The overall average SER achieved from simulation for all ISCAS’85 benchmarks including

the total number of faults injected as well as number of sites and test vectors are shown in Table

18.

Table 18 - Simulation result for ISCAS’85 benchmarks.

Circuits Total injected
Faults

Number of Sites Number of Test
Vectors

SER

C17 4021 48 12 0.87
C432 334687 1792 27 0.85
C499 1386383 4360 52 0.83
C880 391794 3604 16 0.87
C1908 3281154 6892 106 0.88
C2670 3040179 11336 44 0.81
C3540 6113154 15008 84 0.87
C5315 4458895 22524 37 0.87
C6288 5777985 24368 12 0.3
C7552 10569314 30800 73 0.86

0

0.2

0.4

0.6

0.8

1

So
ft

 E
rr

or
 R

at
e

Logic Unknown

16 17 to 22 23

 82

The graph in Figure 34 displays the simulation results for soft-error rate in Table 18. Soft-

error detection rates based on strength violation in switch-level for most ISCAS’85 benchmarks

are above 0.8.

Figure 34 - SER graph for ISCAS’85 benchmarks.

The simulation result that has been achieved in this chapter is proving that a wide range of

soft-errors are due to strength violation in circuit. However the simulation time for very large

circuits are too long, so the entire idea was implemented in hardware base emulation which will

be discuss in next chapter.

0

0.2

0.4

0.6

0.8

1

C17 C432 C499 C880 C1908 C2670 C3540 C5315 C6288 C7552

SER

 83

CHAPTER 8

FPGA –BASE EMULATION FOR SOFT-ERROR

FPGA-Base Emulation of the model discussed in the previous sections will be implemented

in this chapter. The gate-level component has been used to implement the switch-level behaviour

of the circuit. This emulation is an advanced extension of [67]. These switch-level components

will be described as follows:

8.1 Implementation of Switch-Level Functions

• Component N: is functionally equivalent to the NMOS switch

• Component P: is functionally equivalent to the PMOS switch

• Component NVSS: represents the NMOS switch with its source connected to VSS

• Component PVDD: represents the PMOS switch with its source connected to VDD

• Cap_unit: represents the stray capacitance associated with each node in a switch-level circuit

• Res_unit: resolves the signals based on Function C described in previous section

 84

8.1.1 Implementation of NMOS Function

Figure 35 shows the implementation of NMOS function using “NVSS”. For NVSS, the source is

permanently connected to “0” (GND); therefore, for this component, source was not included on

primary ports. Signal “Sel” is a two bit signal that consists of Sel1 and Sel2. Whenever the

“Sel1” or “Sel2” signal goes high, the error will be injected to the Gate or Drain accordingly.

Figure 35 - Implementation of NMOS.

8.1.2 Implementation of PMOS Function

Component P was implemented in the same manner for PMOS function using PVDD. Figure

36 shows the internal details of component P. It contains gate-level implementation of PMOS

function along with two multiplexer units to inject the error into the gate or drain. For PVDD, the

source is permanently connected to “1” (VDD); therefore, for this component, source was not

included on primary ports.

Sel1

NVSS

S

D

G

Sel

Error

NFunc

S

D

Error

Sel2

G

Error

 85

Figure 36 - Implementation of PMOS.

8.1.3 Implementation of C Function

Each node in the circuit is represented either by Res_unit or by a combination of Res_unit

and a Cap_unit. The Res_unit is used to resolve two incoming signals and generate the dominant

signal. It was implemented as a 5-bit comparator which generates the output signal based on the

C Function described in Chapter 4. The Cap_unit is equivalent to the stray capacitance

associated with the node. The output of Res_unit is fed to the Cap_unit after reducing its strength

to “001.” This idea is based on the stray capacitance behaviour that the values stored in the

Cap_unit are “weak” values as they result from small charges [35]. The output of the Res_unit

will be “10000,” if all the switches connected to a node are OFF. In this case, the Cap_unit

retains its previous value. The Cap_unit contains a memory element to store the previous value.

Due to the presence of the memory element, the overall implementation of any combinational

logic circuit becomes sequential. For a better understanding of the C function, the

implementation of some of the Gates will be described below.

PFunc

S

D

G
Error

Sel2

PVDD

S

D

G

Sel

Error

Error

Sel1

 86

8.2 Switch-Level Implementation of Gates

Traditional FPGA-based fault emulation approaches are done at gate-level by means of

hardware description language (HDL) modifications. Faults modeled at gate-level are not as

realistic as switch-level faults because in real hardware, circuit outputs are computed by the

switching of transistors. FPGA-based switch-level fault emulation has already been proposed in

[63] to improve the accuracy of the fault model and to improve the emulation speed compared to

software fault simulators. In this thesis, a similar approach is presented to implement the novel

idea of detecting soft-errors caused by the strength violation on FPGA in switch-level discussed

in previous chapters. To achieve this resolution, components N, P, PVDD, NVSS, Res_unit and

Cap_unit are combined to form a switch-level structure for different logic gates. These switch-

level structures are further combined to form switch-level implementations ISCAS’85

benchmark circuits. The process of combining the gate components to form larger benchmarks

was automated by writing a script in MATLAB. In this section, switch-level implementations of

basic logic gates used in this research are presented.

Switch-level implementations of all gates were constructed using the same approach. These

gates were further combined to form switch-level implementations ISCAS‘85 benchmark

circuits. The process of combining the gate components to form larger benchmarks was

automated by writing a script in MATLAB.

 87

8.2.1 NAND3 Implementation in FPGA

Figure 37 shows how components N, PVDD, NVSS, Res_unit and Cap_unit are combined to

form a switch-level structure for 3- input NAND gate.

Figure 37 - Implementation of switch-level 3-input NAND gate.

C

C

C

P1 P3

N1

N2

C

P2

N3

C

Res-unit

PVDD G

Error Sel

PVDD G

Error Sel

Res-unit

PVDD G

Error Sel

Res-unit Res-unit

Cap-unit

N Error
G

Sel

Res-unit

Res-unit

Cap-unit

Cap-unit

NVSS Error
G

Sel

N Error
G

Sel

 88

8.2.1 AND3 Implementation in FPGA

The Figure 38 shows the implementation of a three input AND gate in FPGA.

Figure 38 - Implementation of switch-level 3-input AND gate.

C

C

P1 P3

N1

N2

C

P2

N3

C

P4

N4

C C

Res-unit

PVDD G

Error Sel

PVDD G

Error Sel

Res-unit

PVDD G

Error Sel

Res-unit
Res-unit

Cap-unit
N Error

G
Sel

Res-unit

Res-unit

Cap-unit

Cap-unit

NVSS Error
G

Sel

N Error
G

Sel

Res-unit

PVDD

Error Sel

Error Sel

NVSS

 89

8.2.2 NOR3 Implementation in FPGA

The Figure 39 shows the implementation of a three input NOR gate in FPGA.

Figure 39 - Implementation of switch-level 3-input NOR gate.

P1

P2

C

P3

C

N2

C

N3 N1

C C

PVDD G

Error Sel

NVSS NVSS NVSS

Error Sel Error Sel Error Sel

Res-unit

Res-unit

Res-unit Res-unit

Cap-unit

G G G

P

Res-unit Cap-unit

Error
G

Sel

P

Res-unit Cap-unit

Error
G

Sel

 90

8.2.2 OR3 Implementation in FPGA

The Figure 40 shows the implementation of a three input OR gate in FPGA.

Figure 40 - Implementation of switch-level 3-input OR gate.

P4

N4

C

P1

P2

C

P3

C

N2

C

N3 N1

C C

Res-unit

Cap-unit

Res-unit

PVDD

Error Sel

Error Sel

NVSS

PVDD G

Error Sel

NVSS NVSS NVSS

Error Sel Error Sel Error Sel

Res-unit

Res-unit

Res-unit

G G G

P

Res-unit Cap-unit

Error
G

Sel

P

Res-unit Cap-unit

Error
G

Sel

 91

8.2.3 BUFFER Implementation in FPGA

The Figure 41 shows the implementation of a BUFFER gate in FPGA.

Figure 41 - Implementation of switch-level Buffer gate.

8.2.4 Inverter Implementation in FPGA

The Figure 42 shows the implementation of an Inverter gate in FPGA.

Figure 42 - Implementation of switch-level Inverter gate.

P2

N2

C C

P1

N1

C

Res-unit

Cap-unit

Res-unit

PVDD

Error Sel

Error Sel

NVSS

Res-unit

PVDD

Error Sel

Error Sel

NVSS

P2

N2

C C Res-unit

Cap-unit

Res-unit

PVDD

Error Sel

Error Sel

NVSS

 92

8.3 Emulator Architecture

The block diagram of the proposed emulation system is shown in Figure 43. This block

diagram consists of core unit (CU), soft-error injection unit (SIU), observation unit (OU) and the

soft-error coverage calculation unit (SCCU).

Figure 43 - Emulation Architecture.

IDM

FM DUTfaulty

GD

Observation Unit

FC

TPC

SIU

Pulse
Injector

Shift Register
(Nf flip-flops)

16-bit
Register

Logic OR
Unit

CU Error Profile Storage
Memories

MAC

SCCU

Vector

Error

Err-Cnt

Vector-Cnt

All-vectors-done mem-address
Error
Profile

All-locations-done

OU

 93

For a given Device Under Test (DUT) with “n” primary inputs and “m” primary outputs, Nf

will be the number of selected soft-error locations. The descriptions of all the modules in the

architecture block diagram are as follows:

SIU: Soft-Error Injection Unit, FM: Fault Memory, IDM: Input Data Memory, TPC: Test

Pattern Counter, GD: Golden Device (fault-free gate-level circuit), MAC: Memory Address

Counter, SCCU: Soft-Error Coverage Calculation Unit, FC: Fault Counter, CU: Core Unit

8.3.1 Core Unit (CU)

Core unit is where the device under test will be implemented with the proposed

methodology. The fault-free gate-level implementation of the DUT is considered as golden

device (GD). The block which is indicated by DUTfaulty is a hybrid version of DUT implemented

by partitioning the circuit into gate and switch-level. It is obvious that purely switch-level

implementation of any circuit using any switch-level models consumes much more resources

than the gate-level implementation. The circuit under test is partitioned using an unbalanced

partitioning structure so that faults are injected only in a small sub-circuit. Therefore, the size of

the switch-level partition was decided on the basis of the available FPGA resources. The main

idea was to minimize the number of switch-level partitions and hence reduce the number of

reconfiguration files needed to emulate the complete circuit. This resulted in an overall reduction

in run-time. Benchmarks C17, C432, C499 and C880 were implemented entirely at switch-level

whereas the remaining benchmarks were too big to fit into the FPGA. The size of the switch-

level partition for these benchmarks was fixed to cover approximately 2180 soft-error locations

(Nf) and the circuits were implemented using hybrid representation consisting of switch-level

 94

and gate-level partitions. To convert the number of gates corresponding to these soft-error

locations into switch-level and generate the DUTfaulty component code, a script was written in

MATLAB.

 (a) Hybrid representation

 (b) Gate-level Representation

Figure 44 - Propagation of transient pulse from switch-level part to gate-level part.

The switch-level partition is based on the switch-level models on [68]. Figure 44 (a) shows

hybrid representation of circuit which is shown in Figure 44 (b). As the signals are 5-bit signals,

the inputs and outputs of gate-level partition were 5-bit consisting of 2-bit logic and 3-bit

strength part. To resolve the 2-bit logic part, dual-railed logic with three-valued logic signals

5
5

5
5

Res-unit

PVDD G

Error Sel

PVDD G

Error Sel

Res-unit Res-unit

Cap-unit

N Error
G

Sel

Res-unit Cap-unit

NVSS Error
G

Sel

 95

were used based on [40]. “00” was used to represent “0”, “01” for “1” and “11” for “Unknown”

logic. The presented work is based on the idea of signal strength variations; therefore, the

strength part of the incoming signal to the gate partition was preserved and transmitted further.

One of the objectives of the proposed approach is to estimate the soft-error coverage

achieved by the soft-error detection method based on the concept of strength scaling for voltage

pulses. The selection of primary input values plays an important role in the final results as

randomly picked can result in lower soft-error coverage. To resolve this issue, Input Data

Memory (IDM) has been considered to store the test patterns for the DUT. To maximize the

error coverage for this approach, the primary input values generated by Compaction Algorithm

[62] were selected for all ISCAS‘85 benchmarks. These inputs are commonly used for detection

of permanent faults, but in this work they are being applied for the soft-error detection. The

inputs are stored in memory before starting the experimentation. Each bit of an input data is

converted into its equivalent 5-bit code before applying it to the switch-level circuit. Bit “0” is

replaced by “00111” which represents logic “0” with highest strength “111” and bit “1” is

replaced by “01111.” For the golden device circuit (gate-level), the input values are applied

without conversion. Fault Memory (FM) stores the 5-bit codes of transient error types obtained

after applying the concept of transient equivalence.

8.3.2 Soft-Error Injection Unit (SIU)

Traditional fault emulation approaches require dedicated fault injection circuitry and control

pins to activate and deactivate faults in the circuit [69][70][71]. This not only adds hardware cost

 96

but also design complexity. Field Programmable Gate Array (FPGA) device has been utilized as

an efficient platform for hardware fault emulation because of its re-configurability and the close

representation of the real runtime environment [72]. FPGA-based fault injection can be achieved

by reconfiguring the FPGA with faulty configuration [73][74][75]. In these types of approaches,

faulty configuration bit-streams are generated either from Hardware Description Language

(HDL) description or from direct bit-stream modification. For fault injection in HDL, bit-streams

generated from HDL require long synthesis and routing time. As for direct bit-stream

modification methods, there is no need for re-synthesis and routing time because faults are

injected directly into the bit-streams. In general, FPGA-based error injection techniques can be

classified into two categories: Instrumentation-based techniques and Reconfiguration-based

techniques [67]. In Instrumentation-based techniques, an error-injection unit is synthesized into

an FPGA along with the circuit to be tested. The main advantage of these techniques is that no

reconfiguration is required during the experiments. In Reconfiguration-based techniques, no

error injection hardware is used. Instead, the FPGA is reconfigured every time a new error is

injected. The main advantage of these techniques is that there is no hardware overhead. On the

other hand, there is a significant amount of time-overhead due to reconfiguration.

In [63] an injection technique using the concept of mask-chain is used to inject SEU-faults.

Similarly, in [64] a scan-chain based technique is used for fault injection. Both these methods are

unsuitable for error injection into combinational logic since the scan-chain method requires extra

hardware in the form of flip-flops for this purpose. In this work, a shift-register based error

injection technique is used to inject transient errors into combinational logic. A detailed fault

model is created to represent transient pulses of different magnitudes. All transient pulses are

 97

represented as a 5-bit state code as explained in Section 3. This fault model can be used to

analyze the effect of voltage pulses of different magnitudes which usually pass undetected when

a bit-flip model is used .The SIU consists of a pulse generator circuit which generates a pulse of

Nclk clock cycles’ duration to activate error injection at the first selected location.

The output of the pulse generator is applied to a shift-register consisting of Nf flip-flops

where Nf is the number of soft-error locations. The pulse is shifted every Nclk clock cycles until

all soft-error locations are covered. Test Pattern Counter (TPC) is incremented by one whenever

transient injection at all locations is completed. It starts from 0 and goes to (V-1) where V is the

number of test patterns for any given benchmark. In Nanometre technologies, the capacitance

associated with a node is very small; therefore, a small amount of charge deposited by a radiation

strike can result in relatively large voltage disturbances. As mentioned in [65], the voltage swing

associated with SETs in 5 volt CMOS technologies is about 14% greater than the normal voltage

swing of the node, and thus its impact is very limited in terms of both magnitude and duration.

On the other hand, for 3.3 volt technology, the voltage disturbance becomes 21% larger than

normal swing. Thus the restoration of charge at the struck node takes a longer time. This shows

that the duration of the injected voltage pulse grows with technology scaling and may become

comparable with the propagation delay of the gates in modern technologies. This may become a

critical issue as the voltage pulse may spread throughout the circuit easily. Therefore, in this

thesis, the injected transient pulse is assumed to be wide enough to propagate through a logic

circuit. The fault counter increment by one after every test run, which consists of application of

V test patterns, is to be a given DUT.

 98

Fault counter counts from 0 to 7 as the number of applied error types is 8 (obtained after

applying transient equivalence). In this method, single error injections are used, i.e. only one

error is present at any given time. This assumption is relevant because in real circuits the time

gap between any two soft-errors is relatively large. In most of the error injection techniques used

so far, errors are injected at the inputs of a gate-level circuit [59]. This can lead to wrong results

as injection at the input of one gate corresponds to injection of the same error at more than one

location at switch-level. For example, if an error is injected at the input of an inverter, it gets

injected at the gate of two transistors which is equivalent to multiple bit-flips. This may lead to

wrong soft-error coverage calculations as each error may get counted twice. One of the methods

to avoid this situation is to use the gate of a switch as the location for error injection.

8.3.3 Observation Unit (OU)

Fast fault detection and recovery can be realized by clock synchronized duplicated systems,

which have fast fault detection and recovery features with optimal time diversity. A duplication

technique is commonly used to observe the effect of injected faults in processors [66]. This

technique can be used in FPGA-based error detection as well [67]. In this technique, a faulty

circuit and a fault-free circuit are both implemented on the FPGA, and the outputs of both are

compared every Nclk clock cycles to observe the effect of the injected fault. The major drawback

of duplication technique is high degree of hardware overhead. On the other hand, scan-chain

based observation techniques are quite slow due to a trade-off between speed and observability

in these techniques. For example, to observe the internal register values at each clock cycle,

 99

requires shifting out all the internal values at every clock cycle which is apparently very time-

consuming [64]. In this thesis, a technique similar to the duplication method is used, but

hardware overhead is reduced by a significant amount. Since the fault-free (gate-level) circuit is

much smaller as compared to a faulty (hybrid) circuit, overhead is less than 100 % (unlike the

duplication method). The observation unit receives the outputs of the golden device and DUTfaulty

and compares their 2-bit logic parts. The output of the observation unit goes high if the results do

not match indicating the detection of an error.

8.3.4 Soft-Error Coverage Calculation Unit (SCCU)

SCCU consists of a 16-bit register, error profile storage memories, and Memory Address

Counter (MAC) and an “OR” unit. There are 8 error profile storage memories each

corresponding to one transient error type. The depth of each memory changes according to the

number of the soft-error locations and the width is fixed at 16. All memories are initialized to 0

before starting the experiment. Each stored bit in a particular memory indicates the detection

status of a particular error type at a particular location. Each bit corresponds to one soft-error

location (LSB corresponds to detection status of transient injected at the first location). After

every (Nclk*16) clock cycles, the data from register are fed to the “OR” unit. The other input to

the “OR” unit consists of the data read from the soft-error coverage storage memory. The result

of the “OR” operation is written back to the memory. This process is carried out for each error

type. MAC unit generates the address of memory where data are to be written or read from. At

the end of the experiment, each error profile storage memory contains the detailed profile of one

 100

transient error type. The stored profile indicates the detection status (“0” for “not detected” and

“1” for “detected”) of the corresponding error injected at all the soft-error locations. This

detailed profile is used to calculate the soft-error coverage for individual error types as well as

the overall soft-error coverage for a given DUT. The collected data can be used to find out the

locations inside a given circuit which are most susceptible to soft-errors. There is no runtime

communication with any external host involved in this method as the data can be retrieved at the

end of experiments. This also contributes to making the emulation faster.

As the FPGA are designed to implement the circuit at gate-level, it is not possible to

implement the circuit in switch-level. The creative idea in this chapter made it possible to

implement the circuit in switch-level on FPGA by creating some component and define the

whole architecture for emulation. The experimental result for both emulation and simulation and

the speed up of emulation are all brought in next chapter.

 101

CHAPTER 9

EXPERIMENTAL RESULTS

This chapter will discuss the experimental result achieved for resistive delay faults followed

by the simulation and emulation results for soft-errors detections. This chapter also explain the

architecture of Mathlab simulation more in detail.

9.1 Resistive Delay Fault Simulation

Simulation results were obtained in two phases. In the first phase, the dynamic effect of

resistive faults and the calculation of output voltage was obtained using Cadence Spectra based

on the method presented in Chapter 2 for all primary gates; for example, all the resistive values

for 3-input NOR gate mentioned in Table 19. The experiment was completed for all CMOS gates

at transistor level. In the second phase, Delay Fault Simulation (DFS) software was developed

and run on several ISCAS’85 and ISCAS’89 benchmark circuits. This application has three main

subroutines that were explained in Chapter 2. The first subroutine converts the circuit to a net-list

 102

to generate the circuit graph. The second part will convert the graph to arithmetic functions. This

software is able to convert a whole circuit to a graph and then convert the graph to an arithmetic

model. Eventually, the last subroutine will generate and inject random faults by replacing faulty

functions in the arithmetic equation. Although this arithmetic model is able to simulate various

faults, testing on delay faults was achieved in 65nm technology for the purposes of this thesis.

The experimental result for further technologies will be obtained based on the availability of

technology.

Table 19 - 65nm - VOUT v/s tPLH, I1I2I3 = 000, tPLH in μs, VOUT in volt.

 D3 to VDD D2 to VDD D1 to VDD

RS (Ω) tPLH VOUT tPLH VOUT tPLH VOUT

15K 0.25 0.83 0.27 0.82 0.25 0.82
10K 0.22 0.83 0.23 0.83 0.24 0.82
5K 0.19 0.85 0.22 0.83 0.23 0.81
1K 0.15 0.98 0.17 0.88 0.23 0.83

As explained earlier in Chapter 2, while injecting a resistive short or open fault in the circuit

within a gate, the RC model of the circuit is needed to calculate the voltage charge at the gate

output. In this experiment, a range of resistive faults was considered, including 1k, 5k, 10k and

15k. Figure 45 illustrates three types of faults injected into a 3-input NOR gate subjected to an all

zero input vector. All three faults have different orientations for their data labels in order to

differentiate them from the other fault lines.

The resistive short between PMOS drain, D3 and power has lower delay value for 5KΩ defect

resistance compared to the same configuration for D2 to power. Similarly, the delay caused due

 103

to 5KΩ defect resistance for the short fault D1 to VDD is the highest among all three short fault Di

to VDD faults shown in Table 19.

Figure 45 - 65nm , Output voltage v/s Propagation delay; Resistive shorts for I1I2I3 = 000.

 The closer the fault location to the power source, the higher will be the delay induced into the

system due to the resistive effect of the fault. On the other hand, the delay sizes for the same spot

with different resistance sizes are almost the same. Table 19 shows all delays and related output

voltage for a 3-input NOR gate with resistive faults between drain D1 through D3 and VDD in

65nm technology. Table 19 illustrates that the delay size tPLH and the voltage output VOUT for

different resistor sizes RS are almost the same.

To apply MVL9 in simulation software, the voltage range between VDD and Ground is

divided into intervals to represent one of the logic levels at MVL9. Eventually, the voltage

values generated based on the injected fault and input values (as explained in Table 19) will be

assigned a logic value in that interval. For instance, the logic value for fault D3 to VDD in Table

19 is considered as X (forcing unknown) in MVL9.

 104

Finally, to complete this simulation pseudo-random input test sets are obtained from gate-

level test generation tools. As expected, results indicate that gate-level test vector sets detect

fewer switch-level faults. In this case, switch-level fault coverage was less than gate-level fault

coverage. This result confirms the fact that switching-fault simulation can be a better design

verification tool inasmuch as a larger test set would be required to achieve switch-level fault

coverage similar to the gate-level fault coverage. Any possible switch-level faults that are

undetected for the gate-level test set could be detected by the larger switch-level test set. Fault

Coverage (FC) simulation results for resistive short delay faults are shown in Table 20, where

several ISCAS’85 and ISCAS’89 benchmark circuits have been used. The number of switches

and injected files, and, eventually, the delay fault coverage were calculated using the proposed

method.

Table 20 - Fault coverage simulation results for resistive short delay fault.

Circuit # of Switches # of Faults Delay Propagation (%FC)

C17 24 30 100

C2670 6212 1247 62

C7552 18802 2667 58

S27 66 70 98

S298 582 463 63

S1238 2662 1054 51

S13207 30984 4705 43

S38417 85912 9816 37

Test simulation results can be achieved for different technologies and a larger variety of

resistors based on the technology.

CPU time and memory requirements depend on both the number of nodes and the number

and order of the Boolean variables in the circuit function. Therefore, the analysis of very large

 105

circuits requires embedding variable ordering and partitioning strategies into the analyzer. The

simulation ran on a Pentium 4 system (3.0 GHz, RAM =1 GB, OS = Windows XP). Table 21

shows the CPU time based on this system. The unit of measurement is second.

Table 21 - Benchmarks Synthesis CPU Time.

Circuit # of Switches CPU time(s)

C17 24 <1

C2670 6212 753

C7552 18802 1235

S27 66 <1

S298 582 585

S1238 2662 938

S13207 30984 2620

S38417 85912 5390

Although currently there is no similar research publication to compare in deep submicron, the

method presented here has a noticeable fault coverage and CPU time.

9.2 Experimental Result for Soft-Error Detection

The emulation result for strength violation effect on soft-error detection is presented in this

section. The experimental result is divided into main parts. First part of experiment is the

implementation of proposed methodology for soft-errors in customized MATLAB simulation.

The second part of the experiment was carried on XC5VFX130T-2FF1738 Xilinx FPGA using

ML510 embedded system development board. The transient errors based on the previously

explained strength scaling technique were injected into ISCAS‘85 benchmark series for two part

 106

of experiment. To compare the amount of speed-up achieved by the presented emulation method

with simulation techniques, two sets of experiments were carried out.

9.2.1 Customized MATLAB Simulation Environment

Instead of using state-of-the-art simulators like Modelsim and Xilinx ISIM, a customized

simulation environment was created using MATLAB which was discussed fully in Chapter 6.

MATLAB based simulation is relatively faster than other simulators as it is optimized for high

speed applications. For example, transient injection into C499 with 52 primary input values

achieved a speed-up of 6.0 for MATLAB based simulation as compared to simulation using

ISIM. Both simulations were run on the same computer and timings were calculated based on

CPU time. In this technique, switch-level circuits were created using C Function, PMOS

Function and NMOS Function. Simulations were run for different specifications by varying the

number of soft-error locations, number of primary input values, and number of injected transient

errors. Simulation results were processed to calculate the soft-error coverage, and the total

elapsed time was recorded for each benchmark circuit. MATLAB simulation structure is shown

in Figure 46 which consists of several classes. The definition of each class is described as

follows:

9.2.1.1 Parser Class

Parser class in Figure 46 takes the gate-level net-list of the circuit under test as input as well

as the set of test vectors in a text format. These text files are parsed into a data structure.

 107

Figure 46 - Simulation Flow Diagram.

PARSER
CLASS

Circuit
Net-List

Test
Vectors

CONVERTER
CLASS

MAIN
CLASS

Control
Unit 3
(nTV)

Control
Unit 2
(nIF)

Control
Unit 1
(nTF)

Detected = 1

ANALYZER
CLASS

=TV

=IF

=TF

Fault Free Faulty

Start

 init

 +1

 init

 +1

 init

Yes

Yes

Yes

No

No

No

End

nTVused

 108

9.2.1.2 Converter Class

In Figure 46 converter class will code and convert the input data structures, which are

coming from parser into the switch-level model of the circuit under test.

9.2.1.3 Main Class

Main class is the main program where the modeled circuit is loaded to be processed for

simulation. The parameters of the simulation are controlled mainly by the following blocks:

• Control Unit 1: Control unit 1 controls and injects the fault type, where “nTF” is the total

number of faults.

• Control Unit 2: Control unit 2 selects the injection location, where “nIF” is the total

number of locations.

• Control Unit 3: Control unit 3 controls the test vectors, where “nTV” is the total number

of test vectors.

These blocks are incremented or initialized by the conditional status of the output of main

class. The main program ejects the test vectors when a fault is detected in order to minimize the

number of iterations for fault detections. nTVused represents the number of used test vectors to

detect the specific fault type at the specific location

 109

9.2.1.4 Analyzer Class

Analyzer class processes the output of the simulation and prepares the results for analysis.

The arrays generated by this module allow the user to locate the detected faults as well as their

corresponding test patterns. These are provided as statistical results as they can indicate the weak

location of the circuit and the corresponding test vectors when a fault is detected.

9.2.2 Switch-level Emulation

In this set of experiments, the presented emulation architecture was evaluated by injecting

transient pulses into ISCAS‘85 benchmark suite. Different test runs were performed by varying

the input parameters. To observe the effect of transient equivalence on emulation time, the

emulation time for all 23 types of transient errors was injected into the switch-level of all

benchmarks for one input value and then the number of transients was reduced to 8. The

emulation times for both test runs were compared to evaluate the speed-up achieved by applying

the concept of transient equivalence. An average speed-up of 2.875 was achieved in emulation

time by using transient equivalence. This also resulted in lower memory utilization as only 2192

bytes of memory were used to store error profiles instead of 6302 bytes. This amounted to almost

65% reduction of size of error profile storage memory.

Table 22 shows the comparison between simulation-time for MATLAB based simulations

and FPGA-based technique. Emulation time includes the time required for error injection as well

 110

as the processing time needed to create the profiles of each error type. The proposed emulation

technique showed an average speed-up of the order of 106 as compared to simulation. The

timings given in the table are based on the injection of transient errors after applying the concept

of equivalence in simulation as well as emulation using one input value for comparison. As the

size of the circuit increased, the amount of speed-up achieved also increased. For example, for

C17 the magnitude of speed-up achieved was of the order of 104 while for the biggest benchmark

c7552, it was 106.

Table 22 - Emulation vs. Simulation.

Circuits Total injected
Faults

Simulation
Time(s)

Emulation
Time(s)

Speed-Up

C17 1639 0.3945 6E-06 65750
C432 132479 481.19 0.0007 687412
C499 533853 4360.01 0.0014 1406435
C880 157849 2844.35 0.0018 1580198

C1908 1112537 7075.6 0.0033 2144122
C2670 1121814 19208.96 0.0054 3557216
C3540 2018866 34002.08 0.0072 4722511
C5315 1555919 76739.59 0.0108 7105518
C6288 2517877 125404.19 0.0138 9087260
C7552 3456606 143917.16 0.0148 9724133

Figure 47 shows that the growth of speed-up achieved by emulation with the circuit size was

almost linear. The complete switch-level circuits of some of the benchmarks were too large to fit

into the FPGA. The emulation time for these circuits is calculated using equation (8.1).

TEM = 8 x Nclk x Nloc x Ntest (8.1)

 111

Where Nclk is the number of clock cycles needed to process one location for one input value

for any given benchmark, Nloc is the number of soft-error locations. Ntest is the number of test

patterns. The multiplication factor 8 indicates the total number of error types. As equation (8.1)

shows, emulation time is independent of the number of inputs and outputs of the circuit as all

data are processed in parallel.

Figure 47 - Emulation speed-up for ISCAS‘85 benchmark.

This makes the presented emulation technique suitable for even complex circuits. Emulation

time (TEM) is purely based on the time required to inject transient pulses, process and extract

soft-error coverage data from a given configuration of the circuit. It does not include the

synthesis time and reconfiguration time for different reconfiguration files needed to cover all the

transient error locations in larger circuits.

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

C1
7

C4
32

C4
99

C8
80

C1
90

8

C2
67

0

C3
54

0

C5
31

5

C6
28

8

C7
55

2

Speed-Up

 112

Figure 48 shows the soft-error fault detection coverage obtained by presenting a strength-

scaling based soft-error detection method using gate and drain as transient injection location. An

average coverage of about 0.7 - 0.88 was achieved for injection at gate and drain which further

solidifies the presented idea about soft-errors resulting due to transient pulses of strength lesser

than logic threshold.

Figure 48 - FPGA-Base Soft-Error Fault Detection Coverage for Strength Violation.

As expected, benchmark C6288 showed lesser soft-error coverage than other benchmarks.

The major reason for this deviation was that C6288 is a 16x16 multiplier, and most of the

transient errors get logically masked by the other no-faulty inputs. The number of soft-error

locations is twice of the number transistors in the circuit as transient errors were injected at each

gate and drain of the switch-level circuit.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C1
7

C4
32

C4
99

C8
80

C1
90

8

C2
67

0

C3
54

0

C5
31

5

C6
28

8

C7
55

2

FDC

 113

CHAPTER 10

CONCLUSION AND FUTURE WORK

This thesis presents the analysis, design and implementation of fault detection in Nanometre

Technology. An algorithm was proposed for circuit fault diagnosis in deep sub-micron technology to

propagate the delay faults that lead to logic faults at primary outputs. This approach propagates the

fault from the fault site by mapping a nine-valued voltage model on top of a five-valued voltage

model. As the soft-errors manifest the effect of delay faults, an algorithm was proposed to detect

soft-errors at the switch-level caused by current spikes which can affect the driving strength. It also

presented the analysis, design and implementation of strength violation effect on soft-errors for the

first time. The offered approach uses a novel coding system to be applied in certain functions that are

sensitive to strength variations. Most soft-error detection techniques sense the logic changes in the

circuit whereas this approach proved that a wide range of soft-errors are actually the result of

strength violations at switch-level.

 114

10.1 Resistive Delay Faults

This research showed that some of the delay faults are the result of resistive open and short

defects in the circuit. These defects are inevitable during the fabrication stage. It was proven that

some of the resistive short and open defects are not causing permanent stock-at-fault problems;

however, they may delay the signal at the switch-level and eventually generate a logic fault at the

output of the circuit that latches on a memory element. A switch-level algorithm was presented

for delay faults, and its applicability to robust delay fault testing was demonstrated. This

algorithm can be implemented for varied applications, i.e. switch-level min-max mode grading

of robust/non-robust delay test vectors and analysis of dynamic hazards for delay fault diagnosis

for general switch-level circuits. These applications will be explored in future research.

The proposed algorithm for resistive delay faults was implemented in two phases for

diagnosing and propagating gate-delay faults in deep sub-micron technology.

In phase one the circuit converted to a resistive model, and the accurate time and voltage

disturbance at gate output were calculated.

In phase two, the gate-delay fault is propagated to the primary output using a powerful

arithmetic model of the circuit in transistor level. Even when the delay size is relatively small,

the algorithm maps a MVL9 on top of a MVL5 in order to propagate those delays that are not

causing logical failure.

 115

To implement these two phases, Cadence tools were used for accurate testing of time and

voltage disturbances in the circuit. Delay Fault Simulation (DSF) software was also developed to

inject faults into the circuit and measure the fault coverage.

10.2 Delay Faults and Soft-Errors

The continuous shrinking of VLSI devices and the fast increase in chip clock rates raise the

challenging problem of ensuring that designs are meeting performance and reliability

specifications. It has been widely observed that chips are increasingly susceptible to delay

defects and soft-errors, both more difficult to deal with using a manufacturing test compared to

traditional stuck-at faults. These potential reliability problems are becoming increasingly critical

due to the aggressive technology scaling and design style. Additional test resources mitigate

these problems only to a limited extent, while incurring a much larger testing cost, a quite

unpalatable trade-off from a test economics point of view. The solution to these challenges

necessitates the incorporation of reliability-oriented design techniques and economic models that

guide their applications in product development.

Although extensive work has been conducted on fault tolerance circuitry design, little

research has been proposed to address the issue of concurrent handling of delay defects and soft-

errors. The challenge of this problem stems from the need for integrating diversified fault-

tolerance schemes in a low cost and coherent manner. For example, these faults may either

generate noise at the input of a flip-flop or directly corrupt its internal node signal. Hence, an

appropriate fault-tolerance scheme needs to simultaneously address distinct fault behaviours.

 116

Moreover, such a scheme must differ from traditional schemes in the sense that it should not

incur any timing pressure which essentially tampers with the delay fault-tolerance capability.

10.3 Strength Variation Effect on Soft-Error Detection

A novel concept of soft-errors resulting from voltage pulses of different magnitudes for

transient injection on soft-error and accuracy of simulation/emulation was presented. As

expected, a high rate was achieved from switch-level analysis of soft-errors in the circuit. This

research proves that a wide range of soft-errors are the result of strength violation in switch-

level. Simulation results show an average rate between ‘0.7’ and ‘0.88’. The presented work has

allowed the authors to think beyond the normal logic change based on soft-error detection

techniques currently used and has opened a door towards the design of more precise and efficient

soft-error detection algorithms.

The proposed emulation technique opens a new research area in the field of soft-error

detection. It uses a new fault model based on soft-errors produced by induced voltage pulses of

variable magnitudes. Some of the other contributions of this paper can be described as follows:

This research presents a novel soft-error model based on signal strength variations at switch-

level. The switch-level emulation system uses a novel soft-error detection which can detect soft-

errors resulting due to transient pulses of variable strengths. An innovative soft-error coverage

 117

calculation method is presented which does not require communication with any external device,

and hence results in the faster processing of collected data.

The data collected from different sets of experiments conducted on ISCAS‘85 benchmarks

circuits’ show speed-up of 2.875 in emulation and memory saving of about 65%. FPGA-based

emulation using the proposed method is about 106 times faster than simulation-based soft-error

detection.

10.4 Future Work

As this thesis is devoted to a pioneering work in the field of resistive delay faults and

strength-based soft-error simulation and emulation, it has a lot of potential for future research.

The resistive delay fault detection technique can be further extended by applying Verilog

strength for MVL5 and MVL9 for higher accuracy. On the other hand, strength-based soft-error

detection has been discussed for the first time in this research and can be used as an accuracy

technique for all the existing soft-error detection or soft-error rate calculation methods. It can

also be applied for sequential circuits like ISCAS’89 benchmark as an extension to this research.

 Furthermore the speed of emulation can be improved by exploring sensitivity of internal

nodes to all 23 types of transient errors presented in this research. This is an interesting area of

research and may result in reducing the number of transient injection locations by eliminating

redundant nodes and lowering the area overhead. Although this research is based on the single

bit-flip model, the technique can be extended to multi bit-flip soft-error models.

 118

PUBLICATIONS

Referred Journals:

1. Reza Javaheri, Reza Sedaghat, Prabhleen K. Kalkat, “Switch-level soft error emulation for

SET-induced pulses of variable strengths”, Microelectronics Journal Elsevier, (Accepted 14

June 2010. Available online 9 July 2010

2. Reza Javaheri, Reza Sedaghat, “Strength Violation Effect on Soft-Error Detection in Sub-

micron Technology” International Journal of Microelectronics Reliability, Science Direct,

Elsevier, Volume 50, Issue 7, pp. 971-977, 2010

3. Reza Javaheri, R. Sedaghat, "Multi-valued Logic Mapping of Resistive Short and Open

Delay Fault Testing in Deep Sub-Micron”, International Journal of Microelectronics

Reliability Elsevier, Volume 49, Issue 2, pp. 178–185, February 2009

4. Reza Javaheri, R. Sedaghat, Leo Kant, Jason Zalev, “Verification and Fault Synthesis

Algorithm at Switch-Level”, Journal of Microprocessors and Microsystems, Science Direct,

Elsevier, Volume 30, Issue 4, pp. 199-208, June 2006

 119

5. Reza Javaheri, R. Sedaghat, “Bi-directional Switch-Level Verification and Multiple Fault

Synthesis Algorithm”, WSEAS Transactions on Circuit and Systems, pp. 88-101, June 2006

6. R. Sedaghat, M. Kunchwar, R. Abedi, Reza Javaheri, “Transistor-level to Gate-level

Comprehensive Fault Synthesis for n Input Primitive Gates”. International Journal of

Microelectronics Reliability, Science Direct, Elsevier, Volume 46, Issue 12, pp. 2149-2158,

December 2006

Submitted Referred Journals:

7. Reza Javaheri, Reza Sedaghat, “Switch-Level Emulation of Strength Violation Effect on

Soft-Error Detection in Nanotechnology”, IEEE Transactions on Computers (TC).

(Submitted 2010)

8. Reza Javaheri, Reza Sedaghat, Prabhleen K. Kalkat, J. M. Chikhe, “Soft-error Detection

using Reconfigurable Hardware at Switch-Level for SET-Induced Pulses of Variable

Strengths’ International Journal of Microelectronics Reliability, Science Direct, Elsevier,

(Second revision, 2010)

 120

9. Reza Javaheri, Reza Sedaghat, Prabhleen K. Kalkat, ‘Strength Violation Effect on Soft-

Error Detection in Switch-Level’, ACM Transactions on Design Automation of Electronic

Systems, (Submitted, 2010)

Referred Conferences:

10. Reza Javaheri, R. Sedaghat, ‘Dynamic Strength Scaling for Delay Fault Propagation in

Nanometer Technologies’ IEEE 14th International CSI Computer Conference (CSICC), pp.

95-99, December 2009

11. Prabhleen K. Kalkat, Reza Sedaghat, Jalal Mohammad Chikhe, Reza Javaheri, ‘Soft-Error

Injection using Advanced Switch-Level Models for Combinational Logic in Nanometer

Technologies’ IEEE 21st International Conference on Microelectronics (ICM), Published in

the 21st Conference Proceedings, pp. 326-329, December 2009

12. Reza Javaheri, R. Sedaghat, "A Novel Delay Fault Testing Methodology for Resistive

Faults in Deep Sub-micron Technologies ", Springer Verlag, International CSI Computer

Conference (CSICC), pp. 177-182, November 2008

 121

REFERENCES

[1] Almukhaizim, S., Feng Shi, Love, E., Makris, Y., “Soft-Error Tolerance and Mitigation

in Asynchronous Burst-Mode Circuits” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Volume: 17 , Issue: 7, pp.869 – 882, 2009

[2] Munteanu, D., Autran, J.-L., “Modeling and Simulation of Single-Event Effects in Digital

Devices and ICs “, IEEE Transactions on Nuclear Science, Volume: 55 , Issue: 4,

pp.1854 – 1878, 2008

[3] Kim, S., Iyer, R. K., “Impact of Device Level Faults in a Digital Avionic Processor”,

Proc. AIAA/IEEE 8th Digital Avionics Systems Conference (DASC), pp.428-436, Oct

17-20, 1988

[4] Sanyal, A., Ganeshpure, K., Kundu, S., “An Improved Soft-Error Rate Measurement

Technique “, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems Volume: 28 , Issue: 4, pp.596 – 600, 2009

[5] Gilson I. Wirth, Michele G. Vieira, Egas H. Neto , Fernanda Lima

Kastensmid,”Modeling the sensitivity of CMOS circuits to radiation induced single event

transients”, Microelectronics Reliability 48, pp.29–36, 2008.

[6] Balkaran S. Gill, Chris Papachristou, Francis G. Wolff, “Soft Delay Error Effects in

CMOS Combinational Circuits”, Proceedings of the 22nd IEEE VLSI Test Symposium,

2004

[7] N. Weste and K. Eshraghian, Principles of CMOS VLSIDesign, Addison-Wesley, 1993

[8] Abramovici M., Breuer, M.A., and Friedman, A.D., “Digital System Testing and Testable

Design”, Revised edition IEEE Press, 1995

 122

[9] Favalli, M., Metra, C., “Testing Resistive Opens and Bridging Faults Through Pulse

Propagation” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Volume: 28 , Issue: 6, pp.915 – 925, 2009

[10] Garcia-Gervacio, J.L., Champac, V., Detectability analysis of small delays due to

resistive opens considering process variations”, 15th IEEE International On-Line Testing

Symposium, pp.195 – 197, 2009

[11] Heijmen, T., Nieuwland, A, “Soft-Error Rate Testing of Deep-Submicron Integrated

Circuits “. Eleventh IEEE European Digital Object Identifier, pp. 247 – 252, 2006

[12] C. M. Hsieh, P. C. Murley, and R. R. O’Brien, “Dynamics of charge collection from

alpha-particle tracks in integrated circuits,” in Proc. IRPS, pp.38-42, 1981

[13] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the effect

of technology trends on the soft-error rate of combinational logic,” in Proc. Int’l conf.

Dependable Systems and Networks, pp. 389-398, 2002

[14] H. T. Nguyen, and Y. Yagil, “A systematic approach to SER estimation and solutions,” in

Proc. 41st Annual Int’l Reliability Physics Symposium, pp. 60-70, 2003

[15] I. Polian, J. P. Hayes, S. Kundu, and B. Becker, “Transient fault characterization in

dynamic noisy environments,” in Proc. Int’l Test Conf., pp. 40.1-40.10 , 2005

[16] Sanyal, Alodeep, Ganeshpure, Kunal, Kundu, Sandip, “On Accelerating Soft-Error

Detection by Targeted Pattern Generation”, ISQED '07. 8th International Symposium,

pp. 723 – 728, 26-28 March 2007

[17] H. Kobayashi, H. Usuki, K. shiraishi, H. Hiroo Tsuchiya, N. Kawamoto, G. Merchant,

and J. Kase, “Comparison between neutron-induced system-SER and accelerated-SER in

SRAMs,” in Proc. Int’l Reliability Phys. Symp., pp. 288-293, 2004

http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/srchabstract.jsp?tp=&arnumber=1628182&queryText%3DSoft-Error+Rate+Testing+of+Deep-Submicron+Integrated+Circuits%26openedRefinements%3D*%26searchField%3DSearch+All�
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/srchabstract.jsp?tp=&arnumber=1628182&queryText%3DSoft-Error+Rate+Testing+of+Deep-Submicron+Integrated+Circuits%26openedRefinements%3D*%26searchField%3DSearch+All�
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/mostRecentIssue.jsp?punumber=10839�
http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/xpl/RecentCon.jsp?punumber=4148982�
http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/xpl/RecentCon.jsp?punumber=4148982�

 123

[18] N. Seifert, X. Zhu, and L. W. Massengill, “Impact of scaling on soft-error rates in

commercial microprocessors,” IEEE Trans. On Nuclear Science, Vol. 49, No. 6, pp.

3100-3106, 2002

[19] Ziegler, J. F. and W. A. Lanford, "Effect of Cosmic Rays on Computer Memories",

Science, 206, 776, 1979

[20] J.F. Ziegler, “Terrestrial cosmic rays”, IBM Journal of Research and Development, Vol.

40, no. 1, pp. 19-40, Jan 1996

[21] R. Baumann, T. Hossain, S. Murata, H. Kitagawa, “Boron compounds as a dominant

source of alpha particles in semiconductor devices”, IRPS Proceedings, pp. 297-302,

1995

[22] I. Polian, P. Engelke, B. Becker., “Efficient bridging fault simulation of sequential

circuits based on multi-valued logics”, International Symposium on Multi-Valued Logic,

pp. 216–222, 2002

[23] Prithviraj Banerjee and Jacob A. Abraham., “A multivalued algebra for modeling

physical failures in MOS VLSI circuits”, IEEE Trans. on CAD, pp. 312–321, 1985

[24] Thomas M. Storey and Wojciech Ma., “CMOS Bridging Fault Detection”, Int’l Test

Conference, pp. 842 – 851, 1990

[25] James Chien-Mo Li, E.J. McCluskey, “Diagnosis of resistive-open and stuck-open

defects in digital CMOS ICs”, Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on Volume 24, Issue 11, pp. 1748 – 1759, Nov. 2005

[26] Renovell, M., Azais, F., Bertrand, Y. “Improving defect detection in static-voltage

testing”, Design & Test of Computers, IEEE Volume 19, Issue 6, pp. 83 – 89, Nov.-Dec.

2002

 124

[27] R. Sedaghat, M. Kunchwar, R. Abedi, R. Javaheri, “Transistor-level to Gate-level

Comprehensive Fault Synthesis for n Input Primitive Gates”, Journal of Microelectronics

Reliability, Volume 46, Issue 12, pp. 2149-2158, December 2006

[28] M. Kunchwar, R. Sedaghat, “Dynamic Behavior of Resistive Faults in Nanometer

Technology” Microelectronics Reliability, Volume 47, Issue 12, pp. 2141-2146,

December 2007

[29] Marcello Dalpasso, Michele Favalli, Piero Olivio, Bruno Riccò. “Parametric Bridging

Fault Characterization for the Fault Simulation of Library-Based IC’s”, ITC, pp. 486-495,

1992

[30] R. Jacob Baker. “CMOS Circuit Design, Layout, and Simulation”, Second Edition, IEEE

Press 2005

[31] Polian, I., Engelke, P., Becker, B., Kundu, S., Galliere, J.-M. and Renovell, M., Resistive

“Bridge fault model evolution from conventional to ultra deep submicron”, VTS,

Proceedings. 23rd IEEE, pp. 343 – 348, May 2005

[32] M. Reza Javaheri, R. Sedaghat, Leo Kant, Jason Zalev, “Verification and Fault Synthesis

Algorithm at Switch-Level”, Journal of Microprocessors and Microsystems, Science

Direct, Elsevier, Volume 30, Issue 4, pp. 199- 208, 6 June 2006

[33] Kohyama, S., and Sate, T., “CMOS technologies for VLSI circuits”, IEEE Conf. on

VLSI, pp. 24-25, 1981

[34] Krishnaswamy, V., Casas, J., Tetzlaff, T., “A Switch Level Fault Simulation

Environment”, Design Automation Conference Proceedings. 37th (2000), pp. 780-785,

2000

 125

[35] Verilog Hardware Descriptor Language Reference Manual (LRM) DRAFT, IEEE 1364,

April 1995

[36] Dahlgren, P., Liden, P., “Efficient modeling of switch-level networks containing

undetermined logic node states”, Proceedings IEEE/ACM International Conference on

CAD. pp. 746–752, 1993

[37] Bryant, R.E., “A switch-level model and simulator for MOS digital systems”, IEEE

Transactions Computers C-33 2, pp. 160–177, 1984

[38] Al-Khalili, D., N-Rozon, C., B. Show, D., “Fault security analysis of CMOS VLSI

circuits using defect-injectable VHDL models”, Elsevier Integration, the VLSI journal

32, pp. 77–97, 2002

[39] Leveugle, R., “A low-cost hardware approach to dependability validation of IPs”, IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 242–249,

2001

[40] Cheng, K.T., Huang S.Y., and Dai, W.J., “Fault emulation: a new methodology for fault

grading”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 18 – 10, pp. 1487–1495, 1999

[41] Benso, A., Rebaudengo, M., Impagliazzo, L., Marmo, P., “Fault-list collapsing for fault

injection experiments, RAMS'98”, Annual Reliability and Maintainability Symposium,

pp. 383–388, 1998

[42] Johnson, B.W., “Design and analysis of fault-tolerant digital systems”, Addison –Wesley,

Chapter 2, 1989

 126

[43] Antoni, L., Leveugle, R., Feher, B., “Using run-time reconfiguration for fault injection in

hardware prototypes”, IEEE International Symposium on Defect and Fault Tolerance in

VLSI Systems, pp. 405–413, 2000

[44] Leveugle, R., “Fault Injection in VHDL descriptions and emulation”, IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 414–419, 2000

[45] J. G. Dastidar, and N. A. Touba., “A Systematic Approach for Diagnosing Multiple

Delay Faults”, in Proc. of the IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, pp. 211-216, 1998

[46] Z Wang, K. -H. Tsai, M. Marek-Sadowska and J. Rajski., “An Efficient and Effective

Methodology on the Multiple Fault Diagnosis”, In proc. of the International Test

Conference, pp. 329-338, 2003

[47] Z. Wang, M. Marek-Sadowska, K. -H. Tsai, and J. Rajski., “Multiple fault diagnosis

using n-detection tests”, In Proc. Of the 21st International Conference on Computer

Design, pp. 198 – 201, October 2003

[48] Alt, J., Mahlstedt, U., “Simulation of non-classical faults on the gate level fault

modeling”, Institute fur Theoretische Elektrotechnik Universitat Hannover, Germany,

11th VLSI Test Symposium, pp. 351 – 354, April 1993

[49] L. Anghel and M. Nicolaidis., “Cost reduction and evaluation of a temporary faults

detecting technique”, Design Automation and Test in Europe Conference and Exhibition,

pp. 591–598, 2000

[50] P. Hazucha, K. Johansson, and C. Svensson., “Neutron induced soft errors in cmos

memories under reduced bias”, IEEE Transactions on Nuclear Science, 45(6) pp. 2921–

2928, 1998

 127

[51] Gill, B.S., Papachristou, C., Wolff, F.G., “Soft Delay Error Effects in CMOS

Combinational Circuits”, VLSI Test Symposium Proceedings. 22nd IEEE Digital Object

Identifier, pp. 325 – 330, 2004

[52] P. Shivkumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. “Modeling the effects

of technology trends on the soft error rate of combinational logic”, Dependable Systems

and Networks, Proceedings International, pp. 389–398, 2002

[53] A. Dharchoudhury, S. M. Kang, H. Cha, J. H. Patel, “Fast timing simulation of transient

faults in digital circuits”, in Proc. Int. Conf. Computer-Aided Design, San Jose, CA, pp.

719–726, 1994

[54] Neil Weste, David Harris : “CMOS VLSI Design”, A Circuits and Systems Perspective,

Addison Wesley, ISBN: 0-321-14901-7

[55] Tino Heijmen and Bram Kruseman, “Alpha-particle-induced SER of embedded SRAMs

affected by variations in process parameters and by the use of process options”, Science

Direct, Solid State Electronics, No. 49, pp. 1783-1790, 2005

[56] Quming Zhou, Mohanram, K., “Gate sizing to radiation harden combinational logic”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on

Volume 25, Issue 1, pp. 155 - 166 Jan. 2006

[57] Reza Javaheri, Reza Sedaghat, “Dynamic Strength Scaling for Delay Fault Propagation in

Nanometer Technologies” 14th International CSI Computer Conference (CSICC), pp. 95

– 99, 2009

[58] Dahlgren P, Liden P, "A switch-level algorithm for simulation of transients in

combinational logic," 25th International Symposium on Fault-Tolerant Computing,

FTCS-25. Digest of Papers, vol., no., pp. 207-216, June 1995

 128

[59] S. Kundu, M.D.T. Lewis, I. Polian, B. Becker.” A soft error emulation system for logic

circuits”, Conference on Design of Circuits and Integrated Systems, Page: 137, 2005

[60] Dodd P.E, Sexton F.W, Hash G.L, Shaneyfelt M.R, Draper B.L, Farino A.J, Flores R.S,

"Impact of technology trends on SEU in CMOS SRAMs," IEEE Transactions on Nuclear

Science , vol.43, no.6, pp. 2797-2804, December 1996

[61] K. J. Hass, J. W. Gambles, “Single event transients in deep submicron CMOS”, IEEE

42nd Midwest Symposium on Circuits and Systems, vol. 1, pp. 122-125, 1999

[62] Hamzaoglu, I. Patel, J.H. “Test set compaction algorithms for combinational circuits”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on

Volume 19, Issue 8, pp. 957 – 963 Aug. 2000

[63] Ejlali A, Miremadi SG, “FPGA-based fault injection into switch-level models”, Journal

of Microprocessors and Microsystems, Elsevier Science, 28(5–6): pp. 317–27, April

2004

[64] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, “Exploiting

circuit emulation for fast hardness valuation”, IEEE Transactions Nuclear Science 48. pp.

2210–2216, 2001

[65] K. J. Hass, J. W. Gambles, “Single event transients in deep submicron CMOS”, IEEE

42nd Midwest Symposium on Circuits and Systems, pp. 122-125, 1999

[66] Carreira J, Madeira H, Silva J, Xception, “Software fault injection and monitoring in

processor functional units”. In Conference on dependable computing for critical

applications (DCCA-5), pp. 135–149, September 1995

 129

[67] Prabhleen Kalkat, Reza Sedaghat “Switch-Level Soft-error emulator of single event

transient-induced pulses of variable strength”, Master of science thesis report, Ryerson

University, 2010

[68] Peter Ming-Han Lee, Reza Sedaghat, “FPGA-based switch-level fault emulation using

module-based dynamic partial reconfiguration” Microelectronics Reliability

Volume 48, Issue 10, Pages 1724-1733, October 2008

[69] Hwang SA, Hong JH. “Sequential circuit fault simulation using logic emulation”, IEEE

Trans Computer-Aided Design Integrated Circ Syst. 17(8), pp. 724–36, 1998

[70] Madeira H, Rela M, Silva JG. “A general purpose pin-level fault injector”, In

Proceedings of first European dependable computing conference, pp. 199–216, 1994

[71] Chakraborty TJ, Chiang CH. “A novel fault injection method for system verification

based on FPGA boundary scan architecture”, In Proceedings of international test

conference, pp. 923–929, 2002

[72] Burgun L, Reblewski F, Fenelon G, Barbier J, Lepape O. “Serial fault emulation”, In

Proceedings of the 33rd IEEE design automation conference, pp. 801–806, 1996

[73] Antoni L, Leveugle R, Feher B. “Using run-time reconfiguration for fault injection

applications”, IEEE Trans Instrum Measurement, 52(5) pp. 1468–73, 2003

[74] Leveugle R. “Towards modeling for dependability of complex integrated circuits”, IEEE

international on-line testing workshop, pp. 194-198, 1999

[75] Antoni L, Leveugle R, Feher B. “Using run-time reconfiguration for fault injection in

hardware prototypes” In: Proceedings of the 17th IEEE international symposium on

defect and fault tolerance in VLSI systems, pp. 245-253, 2003

 130

APPENDIX

The simulation results for all ISCAS’85 benchmarks are shown in the following tables.

Simulation result for C17 circuit:

Table 8 - C17 fault types and relevant SER.

c17 Logic Strength Faults SER
1 01 111 77 1
2 00 000 129 0.958333
3 00 001 144 1
4 00 010 253 0.75
5 00 011 253 0.75
6 00 100 253 0.75
7 00 101 253 0.75
8 00 110 253 0.75
9 01 000 129 0.958333

10 01 001 211 0.916667
11 01 010 290 0.708333
12 01 011 290 0.708333
13 01 100 290 0.708333
14 01 101 290 0.708333
15 01 110 290 0.708333
16 11 000 129 0.958333
17 11 001 110 1
18 11 010 110 1
19 11 011 110 1
20 11 100 110 1
21 11 101 110 1
22 11 110 110 1
23 11 111 57 1

Total 4251 0.873188

 131

Simulation result for C432, 27-channel interrupt controller circuit:

Table 9 - C432 fault types and relevant SER.

c432 Logic Strength Faults SER
1 01 111 5846 1
2 00 000 11501 0.920759
3 00 001 11663 0.970424
4 00 010 22229 0.722098
5 00 011 22229 0.722098
6 00 100 22229 0.722098
7 00 101 22229 0.722098
8 00 110 22229 0.722098
9 01 000 11501 0.920759

10 01 001 16980 0.864397
11 01 010 25457 0.657366
12 01 011 25457 0.657366
13 01 100 25457 0.657366
14 01 101 25457 0.657366
15 01 110 25457 0.657366
16 11 000 11501 0.920759
17 11 001 6623 0.979353
18 11 010 6623 0.979353
19 11 011 6623 0.979353
20 11 100 6623 0.979353
21 11 101 6623 0.979353
22 11 110 6623 0.979353
23 11 111 2573 1

Total 349733 0.842197

 132

Simulation result for C499, 32-Bit Single-Error-Correcting Circuit:

Table 10 - C499 fault types and relevant SER.

c499 Logic Strength Faults SER
1 01 111 21901 0.987385
2 00 000 43189 0.923853
3 00 001 50366 0.933945
4 00 010 96178 0.692661
5 00 011 96178 0.692661
6 00 100 96178 0.692661
7 00 101 96178 0.692661
8 00 110 96178 0.692661
9 01 000 43189 0.923853

10 01 001 66245 0.863532
11 01 010 106227 0.655275
12 01 011 106227 0.655275
13 01 100 106227 0.655275
14 01 101 106227 0.655275
15 01 110 106227 0.655275
16 11 000 43189 0.923853
17 11 001 27295 0.970872
18 11 010 27295 0.970872
19 11 011 27295 0.970872
20 11 100 27295 0.970872
21 11 101 27295 0.970872
22 11 110 27295 0.970872
23 11 111 8779 1

Total 1452653 0.831362

 133

Simulation result for C880, 8-Bit ALU circuit:

Table 11 - C880 fault types and relevant SER.

c880 Logic Strength Faults SER
1 01 111 7560 1
2 00 000 13251 0.963097
3 00 001 16115 0.987791
4 00 010 26165 0.743896
5 00 011 26165 0.743896
6 00 100 26165 0.743896
7 00 101 26165 0.743896
8 00 110 26165 0.743896
9 01 000 13251 0.963097

10 01 001 17693 0.949778
11 01 010 27351 0.720866
12 01 011 27351 0.720866
13 01 100 27351 0.720866
14 01 101 27351 0.720866
15 01 110 27351 0.720866
16 11 000 13251 0.963097
17 11 001 9364 1
18 11 010 9364 1
19 11 011 9364 1
20 11 100 9364 1
21 11 101 9364 1
22 11 110 9364 1
23 11 111 4484 1

Total 409369 0.876116

 134

Simulation result for C1908, 16-bit SEC/DED circuit:

Table 12 - C1908 fault types and relevant SER.

c1908 Logic Strength Faults SER
1 01 111 37142 1
2 00 000 77397 0.98462
3 00 001 83892 0.999565
4 00 010 250241 0.748549
5 00 011 250241 0.748549
6 00 100 250241 0.748549
7 00 101 250241 0.748549
8 00 110 250241 0.748549
9 01 000 77397 0.98462

10 01 001 118821 0.972867
11 01 010 271284 0.734185
12 01 011 271284 0.734185
13 01 100 271284 0.734185
14 01 101 271284 0.734185
15 01 110 271284 0.734185
16 11 000 77397 0.98462
17 11 001 50464 0.99971
18 11 010 50464 0.99971
19 11 011 50464 0.99971
20 11 100 50464 0.99971
21 11 101 50464 0.99971
22 11 110 50464 0.99971
23 11 111 18038 1

Total 3400493 0.88427

 135

Simulation result for C2670, 12-bit ALU and controller circuit:

Table 13 - C2670 fault types and relevant SER.

c2670 Logic Strength Faults SER
1 01 111 49834 0.965949
2 00 000 98043 0.893613
3 00 001 99000 0.926694
4 00 010 220673 0.642025
5 00 011 220673 0.642025
6 00 100 220673 0.642025
7 00 101 220673 0.642025
8 00 110 220673 0.642025
9 01 000 98043 0.893613

10 01 001 119505 0.886909
11 01 010 235582 0.621736
12 01 011 235582 0.621736
13 01 100 235582 0.621736
14 01 101 235582 0.621736
15 01 110 235582 0.621736
16 11 000 98043 0.893613
17 11 001 43349 0.987032
18 11 010 43349 0.987032
19 11 011 43349 0.987032
20 11 100 43349 0.987032
21 11 101 43349 0.987032
22 11 110 43349 0.987032
23 11 111 16393 0.998412

Total 3120230 0.813035

 136

Simulation result for C3540, 8-bit ALU circuit:

Table 14 - C3540 fault types and relevant SER.

c3540 Logic Strength Faults SER
1 01 111 71106 0.997401
2 00 000 159815 0.967217
3 00 001 153856 0.988606
4 00 010 462045 0.733076
5 00 011 462045 0.733076
6 00 100 462045 0.733076
7 00 101 462045 0.733076
8 00 110 462045 0.733076
9 01 000 159815 0.967217

10 01 001 202785 0.954091
11 01 010 495211 0.715219
12 01 011 495211 0.715219
13 01 100 495211 0.715219
14 01 101 495211 0.715219
15 01 110 495211 0.715219
16 11 000 159815 0.967217
17 11 001 66316 0.996269
18 11 010 66316 0.996269
19 11 011 66316 0.996269
20 11 100 66316 0.996269
21 11 101 66316 0.996269
22 11 110 66316 0.996269
23 11 111 21786 0.999933

Total 6113154 0.872207

 137

Simulation result for C5315, 9-bit ALU circuit:

Table 15 - C5315 fault types and relevant SER.

c5315 Logic Strength Faults SER
1 01 111 62361 0.999911
2 00 000 122924 0.973983
3 00 001 131314 0.996404
4 00 010 316691 0.745383
5 00 011 316691 0.745383
6 00 100 316691 0.745383
7 00 101 316691 0.745383
8 00 110 316691 0.745383
9 01 000 122924 0.973983

10 01 001 165391 0.96022
11 01 010 337962 0.726292
12 01 011 337962 0.726292
13 01 100 337962 0.726292
14 01 101 337962 0.726292
15 01 110 337962 0.726292
16 11 000 122924 0.973983
17 11 001 71091 0.999512
18 11 010 71091 0.999512
19 11 011 71091 0.999512
20 11 100 71091 0.999512
21 11 101 71091 0.999512
22 11 110 71091 0.999512
23 11 111 31246 1

Total 4458895 0.879736

 138

Simulation result for C6288, 16x16 multiplier circuit:

Table 16 - C6288 fault types and relevant SER.

c6288 Logic Strength Faults SER
1 01 111 206543 0.452499
2 00 000 216597 0.4114
3 00 001 280814 0.217254
4 00 010 320058 0.083728
5 00 011 320058 0.083728
6 00 100 320058 0.083728
7 00 101 320058 0.083728
8 00 110 320058 0.083728
9 01 000 216597 0.4114

10 01 001 293572 0.176225
11 01 010 311360 0.111811
12 01 011 311360 0.111811
13 01 100 311360 0.111811
14 01 101 311360 0.111811
15 01 110 311360 0.111811
16 11 000 216597 0.4114
17 11 001 183609 0.519279
18 11 010 183609 0.519279
19 11 011 183609 0.519279
20 11 100 183609 0.519279
21 11 101 183609 0.519279
22 11 110 183609 0.519279
23 11 111 88521 0.813474

Total 5777985 0.303783

 139

Simulation result for C7552, 32-bit adder/comparator circuit:

Table 17 - C7552 fault types and relevant SER.

c7552 Logic Strength Faults SER
1 01 111 115280 0.992078
2 00 000 258998 0.959578
3 00 001 261368 0.972662
4 00 010 800793 0.716071
5 00 011 800793 0.716071
6 00 100 800793 0.716071
7 00 101 800793 0.716071
8 00 110 800793 0.716071
9 01 000 258998 0.959578

10 01 001 342041 0.945747
11 01 010 845400 0.703961
12 01 011 845400 0.703961
13 01 100 845400 0.703961
14 01 101 845400 0.703961
15 01 110 845400 0.703961
16 11 000 258998 0.959578
17 11 001 131984 0.989253
18 11 010 131984 0.989253
19 11 011 131984 0.989253
20 11 100 131984 0.989253
21 11 101 131984 0.989253
22 11 110 131984 0.989253
23 11 111 50762 0.998019

Total 10569314 0.861866

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2010

	Fault Detection For ASIC Design Reliability On Resistive Delay Faults And Strength-Based Soft-Errors
	Mohammad R.S. Javaheri
	Recommended Citation

