
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

High performance computing for linear acoustic
wave simulation
Fouad Butt
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Theory and Algorithms Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Butt, Fouad, "High performance computing for linear acoustic wave simulation" (2011). Theses and dissertations. Paper 591.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/591?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

HIGH PERFORMANCE COMPUTING FOR

LINEAR ACOUSTIC WAVE SIMULATION

by

Fouad Butt

BSc., Ryerson University, Toronto, Ontario, 2009

A thesis

presented to Ryerson University

in partial fulfilment of the

requirements for the degree of

Master of Science

in the program of Computer Science

Ryerson University

August 2011

Toronto, Ontario, Canada, 2011

c©Fouad Butt 2011

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals
for the purpose of scholarly research.

Signed:

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose
of scholarly research.

Signed:

iii

iv

Abstract

Parallel computing techniques are applied to a linear acoustic wave model to
reduce execution time. Three parallel computing models are developed to parallelize
computations. The fork-and-join, SPMD and SIMT models define the execution of
parallel computations. The precision and efficiency of the linear acoustic wave model
are improved through substantial speedups in all implementations.

Furthermore, axisymmetric properties of certain acoustic fields lead to a reduction
in the spatio-temporal complexity of those acoustic fields by removing redundant
computations. The same linear acoustic wave model is also modified and extended
to describe wave propagation across multiple media instead of only a single medium.

The developed implementations are integrated into a particularly useful package
for high performance simulation of two- or three-dimensional linear acoustic fields
generated by realistic sources in various fluid media.

v

vi

Acknowledgements

I would like to first extend my gratitude towards my supervisors Dr. Abdolreza
Abhari and Dr. Jahan Tavakkoli. Without their invaluable insight and continuous
assistance, this work would not have been possible.

Funding for this work was provided partly by the research account of Dr. Ab-
dolreza Abhari from the Department of Computer Science at Ryerson University.
Financial support was also provided through a scholarship from the Department of
Computer Science at Ryerson University.

Additional monetary support was also obtained through positions as a Graduate
Assistant and as an exam invigilator for various courses at Ryerson University within
the Department of Computer Science.

Partial funding was also provided by the Natural Sciences and Engineering Re-
search Council (NSERC) Discovery Grant and Ryerson Research Start-up Funds that
were awarded to Dr. Jahan Tavakkoli who is a faculty member of the Department of
Physics at Ryerson University.

This work was also made possible by the facilities provided by the Shared Hierar-
chical Academic Research Computing Network (SHARCNET)[1], Réseau Québéc de
Calcul de Haute Performance (RQCHP)[2] and Compute/Calcul Canada[3].

I would also like to thank Mosa Alhamami and Negar Zohouri from the Depart-
ment of Physics for their diligence and helpfulness in testing some of the implemented
algorithms.

Additionally, I would like to thank John Nickolls of NVIDIA for allotting time to
clarify certain aspects of the Tesla unified computing architecture.

Lastly, and perhaps most importantly, I must acknowledge the unending support
from my family but especially my parents to whom I dedicate this work.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 5
1.2 Objectives and Scope . 6
1.3 Thesis Contributions . 7
1.4 Outline . 8

2 Background 11
2.1 An Introduction to Linear Acoustics 12

2.1.1 Diffraction in Linear Acoustics 12
2.1.2 The Linear Acoustic Wave Model by Ocheltree and Frizzell . . 14

2.2 Bioheat Transfer Equation . 17
2.3 An Introduction to Performance Enhancement Methods 18

2.3.1 Computer Architectures . 19
2.3.2 Data-level Parallelism . 21

2.4 Open Multi-Processing . 23
2.5 Single Program Multiple Data Computation 24
2.6 Graphics Processing Units . 26

2.6.1 Computational Intensity . 26
2.6.2 Tesla Unified Computing Architecture 27
2.6.3 Thread Warps . 29
2.6.4 Parallel Computing on The Tesla Architecture 30
2.6.5 Compute Unified Device Architecture 32

2.6.5.1 Kernels . 32
2.6.5.2 Threads . 33

2.7 Literature Review . 35
2.7.1 Applications of Multithreading and Cluster Computing 35
2.7.2 General-Purpose Computing on Graphics Processing Units . . 40
2.7.3 Applications of Graphics Processing Units 42

3 Parallel Computing Models, Algorithms and a Multi-layer Linear
Acoustic Model 45
3.1 Sequential Computation . 46

ix

3.2 Reducing Redundancies . 48
3.3 Workload Definition and Decomposition 49
3.4 Fork-and-join Model and Algorithm 51
3.5 SPMD Model and Algorithm . 53
3.6 SIMT Model and Algorithm . 56

3.6.1 Device and Host Code Separation 57
3.6.2 Calculation Volume Mapping 59

3.7 Multi-layer Linear Acoustic Model . 61
3.8 Summary . 65

4 Parallelized Implementations, Multi-layer Simulation and The LATS
Software Package 67
4.1 Performance Metrics . 69
4.2 Multithreaded and Cluster Computing 70
4.3 Graphics Processing Units . 74
4.4 Multi-layer Simulation . 80
4.5 Linear Acoustic and Temperature Simulator 83
4.6 Configuration . 84
4.7 Create Intensity Field . 86

4.7.1 Setup annular array . 89
4.8 Apply BHTE . 90
4.9 Plots . 93
4.10 Summary . 96

5 Concluding Remarks 97
5.1 Future Work . 99

Bibliography 101

x

List of Tables

4.1 Relevant simulation parameters and their respective values∗ for each
of the three experiments. 68

4.2 Sequential, multithreaded and cluster computation times with their
respective Karp-Flatt metric values for 8 and 64∗ threads without
quarter-field computation. 72

4.3 Sequential, multithreaded and cluster computation times with their
respective Karp-Flatt metric values for 8 and 64∗ threads with quarter-
field computation. 74

4.4 Sequential and GPU computation times with their respective Karp-
Flatt metric values. 77

xi

xii

List of Figures

1.1 An illustration of the acoustic field or the calculation volume in front
of the acoustic source. 4

2.1 A geometric illustration of an arbitrarily-shaped acoustic source vi-
brating into a homogeneous, isotropic, non-dissipative medium. The
figure is adapted from [4]. 13

2.2 Figure 2.2a depicts the simulation parameters in Equation (2.2). Fig-
ure 2.2b describes the coordinate system for a single element in the
acoustic source. In Figure 2.2b, a single element is composed of smaller
sub-elements. 16

2.3 OpenMP thread creation and merging 23
2.4 The Tesla graphics processing unit (GPU) architecture 28
2.5 Two-dimensional and three-dimensional views of the logical organiza-

tion of threads, blocks and grids in the CUDA programming model. . 34

3.1 Axial-symmetric workload division 48
3.2 Distribution of workload in the FJ model. 51
3.3 Distribution of workload through multi-processing and multithreading

in the SPMD model. 54
3.4 Device-host or GPU-central processing unit (CPU) code separation in

the single instruction-multiple thread (SIMT) model. 58
3.5 Division of points in a single plane of the calculation volume 60
3.6 Geometric depiction of simulation with two adjacent media 64
3.7 Steps involved in multi-layer computations with the considered linear

acoustic model . 65

4.1 Sequential, multithreaded and cluster computation times for step sizes
and element sizes of 0.5, 0.2 and 0.1 without quarter-field computation
enabled. 73

4.2 Sequential, multithreaded and cluster computation times for step sizes
and element sizes of 0.5, 0.2 and 0.1 with quarter-field computation
enabled. 75

4.3 A comparison between the GPU execution times and the execution
times of the other implementations. 76

xiii

4.4 A comparison of peak intensity values observed with the single layer
model and the multi-layer model at varying frequencies and a fixed
interface location. 82

4.5 Plots depicting interface locations and the peak intensity values ob-
served at those interface locations. 82

4.6 An empty (4.6a) and complete (4.6b) configuration page in the simu-
lation GUI. 85

4.7 Default parameter values on the Create intensity field page and notifi-
cation when simulation is complete. 89

4.8 Annular array setup dialog box with sample values for the phase angles
and amplitudes of 7 annuli. 90

4.9 Default parameter values on the Apply bioheat transfer equation (BHTE)
page and notification when simulation is complete. 93

4.10 Plotting features . 94
4.11 X-Z plane colour map plotting explanation 95

xiv

List of Algorithms

1 Sequential field computation . 47
2 Field computation in the FJ model . 52
3 Field computation in the SPMD model 55
4 Field computation kernel in the SIMT model 58

xv

xvi

Acronyms

ANL Argonne National Laboratory. 37
API application programming interface. 6, 23, 24,

38, 41
APP Accelerated Parallel Processing. 41
ASMP Asymmetric Multi-Processing. 20

BHTE bioheat transfer equation. xiv, 17, 18, 83, 87,
88, 90–93, 95

BID block ID. 34, 59

CPU central processing unit. xiii, 1, 2, 5, 19, 20,
24, 26, 27, 29, 32, 37, 41, 43, 44, 50, 52, 54,
57, 58, 66, 67, 71, 72, 74, 84, 96–98

CTA cooperative thread array. 30–32, 59
CUDA Compute Unified Device Architecture. 11, 30,

32, 34, 41, 43, 46, 56, 59, 60, 66, 75, 76
CW continuous wave. 14, 16

DRAM Dynamic Random Access Memory. 28, 45, 59,
75, 77, 100

EPEX Environment for Parallel EXecution. 25

FBA flux balance analysis. 37
FJ Fork-and-join. 46, 50–53
FLOPS FLoating point OPerations per Second. 26
FSB front-side bus. 20

GDDR3 Graphics Double Data Rate 3. 75
GLSL Open Graphics Library (OpenGL) Shading

Language. 43

xvii

GPR gene-protein-reaction. 37
GPU graphics processing unit. xiii, 1, 2, 8, 11, 22,

26–29, 31–33, 35, 40, 41, 43, 44, 46, 56–59, 66,
67, 74–80, 83, 85, 96, 98–100

GUI Graphical User Interace. 8, 35, 83–85

HDD hard disk drive. 55, 100
HIFU High Intensity Focused Ultrasound. 5, 96
HPC high performance computing. 37, 38, 61, 67,

70, 76, 80, 96, 97, 100

ICC Intel C/C++ Compiler. 71
IPC inter-process communication. 6, 49, 51, 53, 55
ISL Interactive Shading Language. 40
ITC inter-thread communication. 6

KZK Khokhlov-Zabolotskaya-Kuznetsov. 42, 100

LATS Linear Acoustic and Temperature Simulator.
5, 8, 9, 17, 83, 99

MAD multiply-add unit. 29
MIMD multiple instruction-multiple data. 19–21
MISD multiple instruction-single data. 19
MP multi-processor. 25
MPI message passing interface. xviii, 38, 39
MT multi-threaded issue unit. 29

NSERC Natural Sciences and Engineering Research
Council. vii

NUMA non-uniform memory access. 20

OpenCL Open Computing Language. 32, 41, 43
OpenGL Open Graphics Library. xvii, 40, 43
OpenMP Open Multi-Processing. 11, 22–24, 26, 38, 52,

53, 97
OpenMPI Open message passing interface (MPI). 38, 53
ORB orthogonal recursive bisection. 39, 49

xviii

PARC Palo Alto Research Institute. 26
PCIe Peripheral Component Interconnect Express.

26, 75
PDE Partial Differential Equation. 43
POSIX Portable Operating System Interface for Unix.

24
PVM Parallel Virtual Machine. 35
PW pulsed wave. 14

RAM Random Access Memory. 55, 71
ROC radius of curvature. 16
ROP Raster Operation Processor. 28, 29
RQCHP Réseau Québéc de Calcul de Haute Perfor-

mance. vii, 70, 71, 76

SDK Software Development Kit. 41
SFU special function unit. 29
SHARCNET Shared Hierarchical Academic Research Com-

puting Network. vii, 76
SIMD single instruction-multiple data. 19–21, 40
SIMT single instruction-multiple thread. xiii, 22,

29–31, 47, 56–59, 66, 67
SISD single instruction-single data. 19
SM Streaming Multi-processor. 28, 29, 31, 32, 75,

79, 80, 98
SMC streaming processor controller. 29, 31
SMP Symmetric Multi-processing. 19, 20, 50, 52,

53, 67, 97, 98
SMT Symmetric Multi-threading. 38
SP Streaming Processor. 29, 30, 32, 75
SPMD single process-multiple data. 11, 22, 24–26,

35, 46, 50, 51, 53–55, 67
SSH Secure Shell. 76

TID thread ID. 21, 22, 31, 33, 59
TPC Texture/Processor Cluster. 28, 29

xix

UMA uniform memory access. 20

VM virtual machine. 25

xx

Chapter 1

Introduction

Processing units with multiple cores are now common due to advances in technology.

CPUs composed of multiple cores provide an indication of a trend in performance

enhancement towards greater throughput as opposed to faster processor clock cycle

speed [5, 6]. The trend sways away from extracting performance in a single stream of

instructions by maximizing instruction-level parallelism. Instead, multiple core archi-

tectures address the issue of execution speed by increasing throughput and executing

multiple instruction streams simultaneously.

Aside from CPUs with multiple cores, the development of GPUs and their applica-

tion to areas outside of graphics provides an alternative means to increasing execution

speed. Pivotal to the engineering decisions in the design of the GPU is the allocation

of the area on a GPU chip to hundreds of simple execution units as opposed to fewer

complex execution units found in CPUs. Multiple execution units in the GPUs are

also controlled by a single control unit, such that a single instruction is issued to

many execution units simultaneously. Cache memory in a GPU is also limited when

compared to cache memory on a CPU. The reason for these features in the design

of GPUs is rooted in the nature of graphics where greater throughput is desired for

1

multiple highly independent operations that may be performed in parallel.

Both CPUs and GPUs rely on the concept of threads as a unit of parallel execution.

Threads are a unit of execution that require fewer resources than processes as a large

portion of execution state information is shared across all threads. Multiple threads

and multiple processes in a parallel computing model are the units of execution to

realize the full utility of computer architectures with multiple cores, which execute

multiple instruction streams concurrently.

A study of applications of parallel computing provides an indication of the large

body of research related to leveraging the computational capabilities of parallel com-

puting architectures to enhance the performance of scientific applications. Such appli-

cations typically adopt parallel programming models to develop implementations on

parallel computing architectures. Parallel execution models describe the method of

execution and the program structure followed by algorithms implemented on parallel

computing architectures such as multi-core CPUs and GPUs.

In terms of forms of parallelism, data-level parallelism is present in an algorithm if

the computation of the algorithm for one set of inputs is independent of the computa-

tion of the same algorithm for another set of inputs [7]. Such an algorithm is deemed

to exhibit data-level parallelism, which may be exploited with parallel computing

models to reduce the execution time.

The purpose of the current work is to study the extent of performance enhance-

ments drawn from parallel computing models on two types of computer architectures

within the context of a highly data-parallel linear acoustic wave simulation algo-

rithm. The two types of computer architectures include traditional CPUs and newer

GPUs. The linear acoustic wave model that is simulated is developed by Ocheltree

and Frizzell in [8] and is selected for two reasons: (i) the model is relatively simple

to understand; and (ii) parallel computing models are hypothesized to produce large

2

speedups.

It is instructive to describe the simulation process of the linear acoustic wave

model by first introducing some general terminology in the field of acoustics.

As waves propagate, they sometimes exhibit a phenomenon known as diffraction,

which is the distortion of the wave pattern as the waves propagate past an obstacle.

In the case of the current model, the waves are diffracted as they travel from an

acoustic source.

The physical acoustic source is composed of piezoelectric material, which, when

excited with an electric current, vibrates rapidly to generate mechanical waves [9].

Because an acoustic source converts electrical energy into mechanical energy, it is

also referred to as a transducer, which generally includes any device that converts

one form of energy into another [9]. Of course, in the context of the current work,

the terms transducer and acoustic source are interchangeable and shall refer only to

piezoelectric crystals that generate acoustic waves.

The function of the linear acoustic wave model is to describe the wave propagation

patterns observed when an acoustic source of arbitrary shape vibrates and generates

mechanical waves. The patterns are observed in a medium, such as water or tissue,

as the mechanical waves propagate through that medium. The type of medium also

affects the pattern of wave propagation that is observed.

A subset of the values provided as input to the linear acoustic wave model is a set

of coordinates in three-dimensional space and the output produced is the intensity at

those coordinates. When the intensity values at multiple points are computed within

a three-dimensional rectangular prism in front of the acoustic source, the rectangular

prism forms what is called the acoustic field or the calculation volume as depicted in

Figure 1.1.

3

acoustic field

or

calculation

volume

z limits

y
 l
im

it
s

x
lim

itsx

y

z
(0,0,0)

Figure 1.1: An illustration of the acoustic field or the calculation volume in front of the
acoustic source.

Simulation of the linear acoustic wave model to produce a single intensity value

involves an integration over the surface area of the acoustic source. The acoustic

source may be considered as composed of several infinitesimal points. Consequently,

two general factors contribute significantly to the spatio-temporal complexity of the

linear acoustic wave model:

1. The first factor is the computational workload of integrating over the surface

area of the acoustic source to obtain the intensity value at a single point in the

calculation volume. This is because of the number of points in the composition

of the acoustic source.

2. The second factor is due to multiple integrations over the surface area of the

acoustic source to obtain multiple intensity values at multiple points in the

calculation volume.

Both factors are adjustable and controlled. The number of points that compose the

4

acoustic source and the number of points in the calculation volume may be increased

to improve the accuracy of the simulation results.

Increasing precision in this manner results in a greater computational workload

and increased execution time. However, the numerical integration of a point in the

acoustic field is independent of that same numerical integration for another point

in the acoustic field. Thus, the algorithm exhibits data-level parallelism such that

computations of intensity values at different points in the calculation volume can be

performed independently.

1.1 Motivation

The linear acoustic wave simulation considered in the current work requires more than

six hours to compute the acoustic field generated by an acoustic source if points are

computed sequentially on an Intel Xeon E5462 2.8 GHz quad-core CPU. Evaluation of

the model results in the identification of inherent data-level parallelism in the simula-

tion process. It is hypothesized that speedups equal to the number of execution units

in the parallel computing architecture are possible. There is minor synchronization

overhead and no communication between threads or processes.

Due to the impractical length of execution time and the potentially large reduc-

tions in execution speed, parallel execution models and architectures are sought to

enhance the performance of the linear acoustic wave simulation.

Furthermore, Linear Acoustic and Temperature Simulator (LATS) [10] is devel-

oped as a software package for the simulation and visualization of acoustic wave pat-

terns. LATS will be useful in the development of transducers in ultrasound devices

that find diagnostic and therapeutic applications in biomedical fields.

For example, High Intensity Focused Ultrasound (HIFU) is an ultrasound treat-

5

ment modality that is particularly useful for operating on tumours through non-

invasive surgery [11, 12]. By creating a focused ultrasound beam with a region of

high intensity at the focal spot, lesions may be created at the location of the tumour

underneath the skin to essentially “cook” the tumour without damaging skin tissue

through invasive surgery [11, 12].

1.2 Objectives and Scope

Primarily, the aim of the current work is to enhance the performance of the linear

acoustic wave model presented by Ocheltree and Frizzell in [8] by developing parallel

computing models that adopt different execution models on two types of parallel

computing architectures. While it is known that parallel computation will definitely

yield certain benefits, the extent of these benefits utilizing different parallel execution

models and architectures is not known.

In the current work, synchronization of threads is present in the multithreaded

and cluster computing implementations but automatically handled by the application

programming interface (API) for multithreading. No inter-process communication

(IPC) or inter-thread communication (ITC) is utilized in any of the implementations

as sharing of information between threads and processes is not necessary due to

the nature of the linear acoustic wave simulation. Because no communication is

required and synchronization is handled by the API, the various communication and

synchronization models are beyond the scope of the current work.

Memory models are mentioned briefly as each parallel computing architecture

herein features a different memory model. However, the focus of the work remains

the reduction of execution speed of linear acoustic wave simulation.

In the study of wave propagation, there are linear and nonlinear acoustic wave

6

models. Two main approaches may be described for linear acoustic wave models:

direct numerical computation and convolution-based. The linear acoustic wave model

in the current work fits in the category of direct numerical computation approaches.

Furthermore, while other linear acoustic wave models exist, the physical aspects

of modelling wave propagation are limited to the model by Ocheltree and Frizzell in

[8].

1.3 Thesis Contributions

To improve the execution speed of linear acoustic wave simulation, implementations

relying on parallel computation are developed. The acoustic field is decomposed and

the integrations of sets of points are executed in parallel to enhance the performance

of the simulation. The major contributions of this work can be summarized as the

following:

Reduced computations

For acoustic sources that produce axisymmetric acoustic fields, redundant com-

putations are removed by computing only one quarter of the acoustic field and

copying the intensity values at those points and filling the remaining three quar-

ters of the acoustic field with those intensity values. The process is termed

quarter-field computation.

Three parallel computing models

The problem of impractical execution times for linear acoustic wave simulation

is addressed with three implementations that rely on parallel computing. As

far as is known, the model by Ocheltree and Frizzell [8] has not been previously

enhanced with parallel computing. Each implementation results in marked per-

7

formance improvement in terms of reductions in execution times.

Multi-layer simulation

Preliminary results are also developed for multiple layer simulations through an

extension of the same linear acoustic wave model.

LATS software package

A Graphical User Interace (GUI) is also developed in MATLAB to configure

and execute the linear acoustic wave simulation and visualize the results. The

inclusion of the multithreaded implementation results in a complete software

package termed LATS.

1.4 Outline

Chapter 2 develops the background for the current work beginning with an explana-

tion of the physical concepts underlying linear acoustic wave models, which is followed

by a description of the particular linear acoustic wave model considered for perfor-

mance enhancement.

Delving into performance enhancement, the discussion continues in Chapter 2

with an introduction to basic computer architectures and data-level parallelism, which

leads into research efforts undertaken by researchers to exploit parallelism utilizing

multithreading, cluster computers and GPUs as part of the literature review.

The adoption of parallel computation models for linear acoustic wave simulation

is described in Chapter 3. The single layer linear acoustic wave propagation model

by Ocheltree Frizzell [8] is extended to multiple layers in this work. The multi-layer

model is presented in Chapter 3.

Implementations and the associated results from the linear acoustic wave simula-

8

tion on different parallel computing architectures using different parallel programming

models are presented in Chapter 4. Also in Chapter 4, is the implementation of the

multi-layer linear acoustic wave propagation model and a description of the LATS

software package. Chapter 5 concludes this work and presents possible avenues for

future research.

9

10

Chapter 2

Background

Section 2.1.1 in this chapter presents a discussion of fundamental developments in

the study of diffraction in linear acoustics. Subsequently, a detailed description of

the linear acoustic wave propagation model considered for performance enhancement

is presented in Section 2.1.2 and features of the model are considered for perfor-

mance enhancement. Section 2.3 defines basic computer architectures and data-level

parallelism. Open Multi-Processing (OpenMP) and the single process-multiple data

(SPMD) parallel computing model are explained in Sections 2.4 and 2.5.

GPUs are discussed in Section 2.6. Subsections 2.6.1-2.6.5 describe a metric known

as computational intensity [13], the Tesla GPU hardware architecture and finally the

Compute Unified Device Architecture (CUDA) abstraction of the GPU hardware.

The chapter is concluded with Section 2.7, which contains efforts by other researchers

that relate to the current work.

11

2.1 An Introduction to Linear Acoustics

The field of acoustics pertains to the study of mechanical waves in various types of

media, which may include solids, liquids or gases. In the present work, mechanical

waves propagate as longitudinal waves and are confined to the case of fluid media.

Furthermore, various types of wave phenomena, while applicable to other types of

waves (electromagnetic, for instance), are henceforth considered in the context of

mechanical waves. Therefore, in the current work, the terms wave and mechanical

wave are interchangeable.

A particular phenomenon, known as diffraction, is observed when a wave continues

to propagate through an aperture or encounters a change in media. The formation of

the diffraction pattern is described by the Rayleigh diffraction integral [4]. Sommer-

feld applied a Green’s function approach to the Rayleigh diffraction integral, which

results in the Rayleigh-Sommerfeld integral [4].

2.1.1 Diffraction in Linear Acoustics

The Laplace transform of the velocity potential at a point P situated in a homoge-

neous, isotropic, non-dissipative medium for a piston source with a uniform velocity

distribution vibrating in an infinitely rigid baffle is described as [4]:

Φ(r, s) =

∫
S

Vn(r0, s)e
−sR/c

2πR
dS, (2.1)

where the integration is performed over the surface area S of the transducer, Vn

is the particle velocity normal to the transducer surface, R is the distance from a

spatial point P to an infinitesimal surface element dS on the transducer in the plane

z = 0 and c is the speed of sound in the medium. r and r0 describe the distance

12

from a point P to the origin and the distance from an infinitesimal surface element

dS to the origin, respectively. The variable s refers to the complex angular frequency

resulting from the application of the Laplace transform. A geometric illustration of

this type of acoustic source model as adapted from [4] is presented in Figure 2.1.

R

S

v
n

dS

x

y

z P (x,y,z)

r
0

r

Figure 2.1: A geometric illustration of an arbitrarily-shaped acoustic source vibrating into
a homogeneous, isotropic, non-dissipative medium. The figure is adapted from [4].

Equation (2.1) is in the frequency domain and is a commonly applied form of the

Rayleigh-Sommerfeld diffraction integral. Noted by Harris in [4], Fresnel was the first

to elaborate on the application of Huygens principle to approximate the Rayleigh-

Sommerfeld diffraction integral. In consequence of the Fresnel-Huygens principle,

a physical interpretation of the Rayleigh-Sommerfeld diffraction integral is that of

a source composed of infinitely many points, each producing a wavelet shaped as a

sphere. The field at any point may then be calculated by superimposing the waveform

contribution from each point source [4]. Analysis by Helmholtz and Kirchoff led to the

mathematical expression of the Helmholtz-Kirchoff integral, sometimes also known as

the Fresnel-Kirchoff integral, which is a generalized form of the Rayleigh-Sommerfeld

diffraction integral [4].

13

The Rayleigh-Sommerfeld diffraction integral is an analytical solution to model

plane wave propagation and the associated diffractive effects in a given medium.

Numerical expressions of the integral for square and rectangular sources [8, 14] and

circular sources [15] are derived through various approximations.

2.1.2 The Linear Acoustic Wave Model by Ocheltree and
Frizzell

The work presented by Stepanishen in [14] is a pulsed wave (PW), time-domain

model for acoustic wave propagation. In contrast, the model developed by Ocheltree

and Frizzell is a continuous wave (CW), frequency-domain model for acoustic wave

propagation. In contrast to a PW model, waves in a CW model maintain a constant

amplitude and frequency.

Ocheltree and Frizzell begin with the Rayleigh-Sommerfeld integral and arrive at

an expression for the CW pressure amplitude p0 at a point in three dimensions by en-

forcing appropriate boundary conditions and applying the Fraunhofer approximation

[8]. The method followed by the authors is outlined in this section.

Equation (2.1) is approximated by Ocheltree and Frizzell in [8]. Simulation of the

acoustic field is largely based on computation of the approximate expression for the

sound pressure amplitude, p0, at a point P that is a certain distance from the trans-

ducer. The researchers divide the acoustic source into several incremental rectangular

areas explaining that when the size of each element composing the acoustic source

is small, relative to the distance R from the observation point P , the Fraunhofer

approximation may be applied.

The transducer is then represented as an array of elements of width ∆w and height

∆h. The approximation holds true for each element in the array of elements that form

14

the transducer. Summation of the individual complex pressures results in the sound

pressure amplitude for a given point. The sound pressure amplitude due to an array

of N rectangular elements is represented by the following equation [8]:

p0 = jρc∆w∆h
λ

∑N
n=1

un exp(−(α+jk)R)
R

sinc
(
kx′

n∆w
2R

)
sinc

(
ky′

n∆h
2R

)
, (2.2)

where j =
√
−1, un is the velocity amplitude in meters per second (m/s), λ is the

wavelength in meters (m), α is the attenuation coefficient in decibels per centimeter

megahertz (dB/(cm·MHz)), k is the wave number (2π/λ), ρ is the density of the

medium in kilograms per meters cubed (kg/m3), c is the speed of sound in the medium

in meters per second (m/s). The quantity ρc is known as the characteristic acoustic

impedance and normally expressed in the units of Newton seconds per meter cubed

((N·s)/m3) [9].

As mentioned previously, R is the distance from an element of the acoustic source

to a point P in the acoustic field. According to Ocheltree and Frizzell, the Fraun-

hofer approximation permits the inclusion of only the first two terms of a binomial

expansion of R, which is defined in [8] as:

R =
√
z2 + (x− xn)2 + (y − yn)2. (2.3)

The authors also define x′n as x− xn and y′n as y − yn and redefine R in [8] as:

R =
√
z2 + (x′n)2 + (y′n)2. (2.4)

Figure 2.2a depicts a geometrical interpretation of the simulation parameters for a

convex circular source. Depicted in Figure 2.2b x0 and y0 form a secondary coordinate

system, the origin of which, is situated at the center of an element n at (xn, yn). The

15

direction of x0 follows the edge of the element with width ∆w, while the direction of y0

lies along the edge of that element with height ∆h. R is defined as the distance from

the center of an element to the point of measurement. The radius of curvature (ROC)

defines the location of the focal spot by adjusting the curvature of the transducer.

z limits

y
 l
im

it
s

x
lim

itsx

y

z
(0,0,0) focal spot

radius of curvature

P (x,y,z)
R

dS
calculation

volumeu
n

(a) Geometrical illustration of the linear acoustic wave
model described by (2.2). The illustration is based on
the linear acoustic wave model described by Ocheltree
and Frizzell in [8].

dx
0

dy
0

(x
n
,y
n
)

x
0

y
0

Δw

Δh

(b) A single square
element [8].

Figure 2.2: Figure 2.2a depicts the simulation parameters in Equation (2.2). Figure 2.2b
describes the coordinate system for a single element in the acoustic source. In Figure 2.2b,
a single element is composed of smaller sub-elements.

Since the desired metric is time-averaged intensity (W/m2), a conversion from

pressure (Pa) must be performed by applying the following equation:

Ī =
(p0)2

(2ρc)
. (2.5)

The equation is valid for a plane CW acoustic wave, where p0 is the pressure

amplitude computed by Equation 2.2, ρ is the medium density in kilograms per

meters cubed (kg/m3), c is the speed of sound in the medium in meters per second

(m/s) and ρc is known as the acoustic impedance in Newton seconds per meter cubed

((N·s)/m3) [9]. Rectangles of width ∆w and height ∆h become larger and fewer in

number at further distances along the Z axis according to the following equation [8]:

16

∆w ≤
√

4λz

F
. (2.6)

Here, F is an experimentally determined factor (set to 20, in most cases), z is the

distance along the Z axis and λ is wavelength. An identical expression is applied for

∆h.

Three other simplifications, highlighted by Equations (2.7) to (2.9), lead to dou-

ble integrals that are evaluated by applying the Fourier transform to produce the

approximate expression for the pressure amplitude in Equation (2.2) [8].

cos

(
k(∆w2 + ∆h2)

8R

)
≈ 1, (2.7)√

(x′ + ∆w/2)2 + (y′ + ∆h/2)2 + (z′)2√
(x′)2 + (y′)2 + (z′)2

≈ 1, (2.8)

exp (α(x′∆w + y′∆h)/2R) ≈ 1. (2.9)

2.2 Bioheat Transfer Equation

A component of LATS is the capability to simulate the effects of heat in tissue media.

The temperature simulation process relies heavily on the application of the numerical

model developed by Pennes in [16].

Pennes introduces a numerical model which describes heat transport and tem-

perature rise in biological media such as tissue through blood perfusion [16]. The

differential equation developed by Pennes is known as the BHTE and is defined in

[16] as:

17

ρC
∂T

∂t
= K∇2T −WbCb(T − Tb) +Q. (2.10)

The parameters of the BHTE are given as follows:

ρ - tissue mass density in (kg/m3)

C - tissue specific heat capacity in Joules per kilogram degree Celsius (J/(kg ·◦C))

T - tissue temperature in degrees Celsius (◦C)

K - tissue thermal conductivity in Watts per meter degree Celsius (W/(m ·◦C))

∇ - spatial Laplacian operator

Wb - blood perfusion rate in kilograms per meter cubed second (kg/(m3· s))

Cb - blood specific heat capacity in Joules per kilogram degree Celsius (J/(kg ·◦C))

Tb - blood temperature in degrees Celsius (◦C)

Q - heat production rate per unit volume in Watts per meter cubed (W/m3)

2.3 An Introduction to Performance Enhancement

Methods

There are many facets to performance enhancement. Depending on the features of a

given algorithm, its performance may be improved in terms of memory consumption

or execution time. In the case of a distributed algorithm, it may be enhanced by

reducing network latency or increasing throughput. Increasing the scalability of such

an algorithm may yield further benefits.

The direction undertaken in the present work is to reduce the execution time of

the algorithm that computes the acoustic field generated by an arbitrarily-shaped

18

acoustic source. Pursuit of this goal begins with a discussion of a broad classifi-

cation of computer architectures, which establishes the background for the parallel

programming models presented thereafter.

2.3.1 Computer Architectures

Flynn discusses a taxonomy that broadly encompasses all computer architectures

according to the number of data and instruction streams: single instruction-single

data (SISD); single instruction-multiple data (SIMD); multiple instruction-single data

(MISD); and multiple instruction-multiple data (MIMD) [17]. A single instruction

stream needs only one CPU to process the stream, which, coupled with a single data

stream proceeds with sequential execution. With multiple data streams, it is possible

to access different areas of memory simultaneously. If multiple CPUs are available,

multiple instruction streams can be processed simultaneously. SIMD is a technique

to apply a single instruction across multiple data. For example, a SIMD capable

processor can perform vector addition in one clock cycle, since each component of the

vector is a different data stream and addition is the single instruction. A common

exemplary implementation of a vector processor is the XP-M by Cray. It should be

noted that SIMD processes instructions synchronously, in lockstep [7, p. 32].

None of the architectures are mutually exclusive. Varying levels of abstraction

lead to a mixture of architectures. For instance, in a modern CPU with multiple

cores, each core may execute instructions in an SIMD manner. If that core supports

pipelined execution, multiple SIMD instructions may be executed simultaneously and

at that level, it is following MIMD execution.

In terms of memory organization, modern CPUs are generally based on the Sym-

metric Multi-processing (SMP) architecture. In SMP, a number of processors share

19

a memory uniformly over a common front-side bus (FSB) and each CPU is identi-

cal [7, p. 45]. With the advent of multiple logical cores on one chip, expensive dual

socket motherboards are no longer necessary to reap the benefits of multiprocessing.

Memory access in SMP architectures is one advantage over of distributed memory

architectures. Because each processor has access to a single global memory space, the

cost of accessing a particular memory location is the same for all processors. This

is representative of uniform memory access (UMA). The disadvantage, however, is

that the scalability of such a system is adversely affected when memory contention

increases as the number of processors is increased [7, p. 46].

Conversely, SMP systems that employ non-uniform memory access (NUMA) have

local memory banks, which can be accessed more quickly than non-local or remote

memory banks of the other CPUs [7, pp. 46-47]. This can be advantageous if the

affinity of a process is set to one processor to exploit locality of reference. NUMA

memory architectures also have the added benefit of better scalability when compared

to UMA in UMA systems. Also, a distinction between SMP and MIMD is that while

MIMD architectures can have a distributed or shared memory model, SMP generally

refers to a system with a single shared memory space.

There also exist Asymmetric Multi-Processing (ASMP) systems, in which each

CPU or core is confined to perform a specific set of tasks. For instance, one processor

might be responsible only for graphics processing. An example of an ASMP system

is the Cell microprocessor, designed by IBM and funded by Sony Corporation [18].

The type of computer architecture and the type of memory model affect the design

and implementation of the parallel programming model in software. Consider, for

instance, the operation of vector addition. On an SIMD system, the operation may

be performed in parallel with SIMD instructions. Each SIMD instruction would

add a number of vector components until all components are summed. In contrast,

20

on an MIMD system incapable of executing SIMD instructions, a large vector sum

may be parallelized with multiple threads, where each thread is assigned a fixed

number of components to add. Having identified several hardware architectures, it is

important to identify the type of parallelism in the algorithm to match the hardware

architectures with appropriate parallel computation models.

2.3.2 Data-level Parallelism

When a single task is executed repeatedly and depends largely on input data to obtain

matching output data, data-level parallelism may be exploited to reduce execution

time [7, p. 50]. The input data forms the workload for the task and is distributed

over a number of execution units, which may include fibers, threads or processes or

combinations of these methods of execution. In contrast, task-level parallelism may

be identified as individual but different tasks that may be executed simultaneously

[7, p. 50]. In particular, data-parallel applications concurrently operate on a dis-

tributed set of data, while task-parallel applications distribute multiple unique tasks

for simultaneous execution. For instance, consider the following program listings:

Listing 2.3.1: Data-level parallelism

1
...

2 f o r (i = 0 ; i < N; i++)
3 {
4 func (T[i]) ;
5 }

6
...

Listing 2.3.2: Task-level parallelism

1
...

2 independantFunc1 () ;
3 independantFunc2 () ;

4
...

In Listing 2.3.2, privatization of the iteration variable i to multiple threads permits

the allocation of chunks of iterations to different threads or processes based on their

thread ID (TID) or process ID. Copies of the same variable i would exist in separate

memory locations available to each thread.

21

For instance, a thread with TID 0 may be assigned the range from 0 to 24 of N,

while the thread with TID 1 may be assigned the range from 25 to 49 of N. Exe-

cuted concurrently, the 2 threads would complete 50 iterations in approximately the

same time span of 25 iterations. Note the distinction from the task-level parallelism

in Listing 2.3.2, where independantFunc1() and independantFunc2() may be ex-

ecuted simultaneously but are unique and different functions. However, unique but

identical copies of func() are executed in Listing 2.3.2 and each copy operates on a

separate chunk of the shared array T.

Parallelism in the linear acoustic wave model of Ocheltree and Frizzell [8], arises

from the computation of the real and imaginary components of the complex pressure

in Equation (2.2). The computation of intensity at a point P involves a summation

of each pressure component, real and imaginary, over points that compose the surface

area of the acoustic source. Identical computations are executed for another point P ′

and only the inputs are varied.

In essence, it is possible to simultaneously compute the intensity values of multiple

points in the calculation volume. Or, numerous computations of the summation in

Equation (2.2) may be performed concurrently, while only the coordinates of the point

P , provided as input for each summation, is varied.

Because only the input data is varied and identical copies of the algorithm may

be executed simultaneously, the algorithm exhibits data-level parallelism. Multiple

existing parallel programming models may be adopted to exploit data-level parallelism

in a given algorithm. Herein, the data-level parallelism in the algorithm is exploited

with a fork-and-join model via OpenMP; with a SPMD model on a cluster and an

SIMT model on a GPU.

22

2.4 Open Multi-Processing

OpenMP is an API developed to support parallel computing through multiple lightweight

processes [19, 20]. Currently, it is deployed for a few base languages: FORTRAN, C

and C++ [19] and consists of a set of compiler directives, runtime library routines and

environment variables. Together, these components form a tool-set that is accessible

to the programmer, provided an implementation exists for the selected base language

and compiler support is available. Typically, OpenMP preprocessor directives are

defined using the following syntactical convention in C [19]:

Listing 2.4.3: Syntax of OpenMP preprocessor directives
1 #pragma omp d i r e c t i v e−name [c l a u s e [[,] c l a u s e] . . .] new−l i n e

Initially, an OpenMP program is enclosed completely inside an implicit parallel

region. Only one thread—the initial thread—executes the sequential code of the pro-

gram. When a parallel construct is encountered, the initial thread spawns a team of

threads, each of which, will execute the code in the parallel construct, while the ini-

tial thread declares itself the master thread. An illustration of the OpenMP execution

model is provided in Figure 2.3.

Parallel Region

A B

Master thread

Master thread

Initial thread

Slave thread 2

Slave thread 1

Slave thread 3

Figure 2.3: OpenMP thread creation and merging

An implicit barrier is placed at the end of a parallel construct that, when encoun-

23

tered, suspends parallel execution and returns control to the master thread, which

continues execution from point B, which marks the end of the parallel construct.

Multithreading is achieved through utilization of the OpenMP API, which pro-

vides an implementation of threads as light-weight processes. On Linux systems,

threads are implemented in OpenMP as Portable Operating System Interface for

Unix (POSIX) threads [19].

By default, OpenMP creates one thread for each logical or physical CPU that it

detects [19]. However, the affinity of the created threads is not guaranteed. In other

words, thread migration may occur as the threads complete execution and spawn on

a different physical core or if the operating system decides to balance workload by

offloading a thread to another physical core.

Applications of OpenMP for performance enhancements are common in the liter-

ature and some examples are provided in Section 2.7.1.

2.5 Single Program Multiple Data Computation

First proposed by Frederica Darema, in a SPMD parallel computation model instruc-

tions execute simultaneously but asynchronously on multiple data [21].

In an early paper, Darema et al. describe the SPMD model with SPMD imple-

mentations of various numerical calculation algorithms [22]. The authors contrast

the SPMD model to a fork-and-join model, where a single process begins execu-

tion and multiple processes are spawned as necessary thereafter. Execution in the

SPMD model proceeds with all processes executing from the beginning, together co-

ordinating to operate on one problem [22]. A benefit of this approach is the reduced

overhead which the fork-and-join model suffers from when spawning and ending pro-

cesses when encountering and leaving parallel regions [22].

24

The researchers implement SPMD parallel solutions for 2 problems. The first

problem relates to fluid dynamics. Numerical computation is utilized to obtain solu-

tions to three-dimensional Navier-Stokes equations with the ARC3D fluid dynamics

program developed by Ames Research, NASA [22]. Specifically, the time-dependant

flow at the surface of the intersection of a sphere and a cylinder is simulated for

performance analysis [22]. The second problem is related to molecular dynamics.

A program that simulates the physical behaviour of molecules is selected for perfor-

mance enhancement for a particular problem. The problem consists of a simulation of

a system of 1372 particles in an aluminum face-centered cube. After parallelization,

the performance of the simulation is assessed [22].

For the simulations, Environment for Parallel EXecution (EPEX) runs in a virtual

machine (VM) environment on a 2-way multi-processor (MP) IBM S/3081 machine.

In terms of overhead, the authors note the problematic nature of short parallel sections

in the fluid dynamics problem, which impede performance as processes are queued at

synchronization points [22]. To reduce the overhead of parallelization, longer sections

of parallel computations should consume a majority of the computation time. A

combination of lengthy and short parallel sections may not necessarily have a large

overhead, as is the case for the fluid dynamics problem studied by Darema et al., where

80% of the computation time is spent in the lengthy parallel loop section [22]. The

speedup achieved by the researchers is nearly 2 with 2 processes and approximately

3.7 with 4 processes [22]. A 2-3% distance from the limit of 2 for the 2 process run is

attributed to certain features of the VM operating system [22].

Though highly applicable to exploiting data-level parallelism, in a more recent

piece, Darema stresses the generality of the model with the ability to execute multiple

unique instruction streams [21]. Also, while SPMD is ordinarily implemented across

a distributed memory system using message passing for synchronization and data-

25

sharing, examples of SPMD-type implementations on systems with a shared memory

model also exist [23, 24, 25].

Barbara Chapman describes the SPMD approach with OpenMP as an explicit

decomposition of computation and data [26, pp. 200-201]. In particular, a program

which employs OpenMP to implement the SPMD model, features a large parallel

region the length of the entire program. Thereafter, work-sharing constructs and

synchronization clauses define boundaries within which the threads operate. Chap-

man notes that while the approach is more involved programmatically, it can also

result in better scalability than simple for-loop parallelism [26, p. 200].

2.6 Graphics Processing Units

Significant research efforts were undertaken at the University of North Carolina, Uni-

versity of Utah and Xerox Palo Alto Research Institute (PARC) between the 1970s

and 1980s particularly within the field of computer graphics, which fuelled the devel-

opment of modern GPUs [27].

2.6.1 Computational Intensity

The demand for realistic 3D graphics manifests itself in GPUs theoretically capable of

delivering greater than 1250 billion FLoating point OPerations per Second (FLOPS)

for single precision operations in 2009 [28]. Additionally, GPUs feature high memory

bandwidths exceeding 170 GB/s [28]. Comparatively, top-end CPUs are only capable

of slightly greater than 125 GFLOPS for single precision operations and have memory

bandwidths of approximately 35 GB/s [28].

The bandwidth of a Peripheral Component Interconnect Express (PCIe) (gener-

ation 3) slot—one type of interconnection between the CPU and GPU—is only 16

26

GB/s [29]. The interconnect bottleneck gives rise to a quantitative description of

applications that are most suitable for GPU computations.

Buck et al. broaden the definition of arithmetic intensity defined by Dally et al.

in [30] and develop the notion of computational intensity [13]. A general pattern is

recognized for GPU applications, where a certain number of records are transferred

to the GPU memory space, a number of computations are performed and the records

are transferred back over the interconnect to the CPU memory space [13].

The authors describe computational intensity as a ratio, E/T , where E is the

ratio between the execution time of an algorithm on a GPU operating on a single

record and T is the transfer time associated with uploading that single record to the

GPU and downloading it when computations are complete [13].

From this definition, it is observed that applications best suited for GPUs should

enable a high computational intensity. Computations that perform few floating point

operations but require a large number of transfers with a heavy bandwidth usage may

not perform well when implemented on GPUs.

A potential bottleneck for GPU computations is the interconnect between the

CPU and GPU memory spaces. Computational intensity, as defined by Buck et al.

[13], emphasizes that the benefit of GPU computations should outweigh the drawback

of transferring records to and from the GPU memory space over the interconnect [13].

2.6.2 Tesla Unified Computing Architecture

There are, of course, marked underlying differences between a GPU and a CPU

that account for the ability of GPUs to provide greater throughput than CPUs [28].

Modern GPUs feature a hierarchical organization of processors that provide the means

through which a GPU achieves high throughput with multiple threads. Lindholm et

27

al. provide an explanation of the Tesla unified computing architecture [31], which is

utilized in the GPU experiments in the current work.

The following discussion about the Tesla architecture draws all important points

from the work by Lindholm et al. in [31]. An illustration of the Tesla architecture is

provided in Figure 2.4.

At the top of the hierarchy, the GPU consists of an array of independent execu-

tion units called Texture/Processor Clusters (TPCs) connected to Raster Operation

Processors (ROPs), which perform memory operations on the Dynamic Random Ac-

cess Memory (DRAM) chips. Separate work distribution units disseminate compute

workloads to the TPCs.

Figure 2.4: The Tesla GPU architecture with each TPCs containing two SMs. The figure
is originally from [31].

28

The host interface unit bridges the communication gap between the GPU and the

CPU. Part of its responsibilities include context switching, collecting data from system

memory and also responding to commands from the CPU. Compute workloads are

distributed via a round-robin scheme to the TPCs. A streaming processor controller

(SMC), a texture unit and two SMs form a TPC.

Continuing down the logical hierarchy of processors, the main functional units in

a TPC are the SMs. Each SM consists of an instruction cache, a multi-threaded issue

unit (MT), a constant memory cache, eight Streaming Processors (SPs), two special

function units (SFUs) and a 16 kB portion of shared memory that is accessible to all

SPs in the SM.

Each SP contains one fused multiply-add unit (MAD) for floating-point operations

such as addition, multiplication and addition-multiplication. Furthermore, each SM is

also capable of performing operations with integers and also comparison and conver-

sion operations. Eight MADs units are contained in one SM (one in each SP), which

also contains two SFUs. Each SFU handles the computation of special functions such

as transcendental functions. Four floating point multipliers are also contained in each

SFU. The texture unit is also utilized as another execution unit, while the SMC unit

and ROP unit support load and store operations from and to external memory.

2.6.3 Thread Warps

Each SM contains a SIMT instruction issue unit that performs administrative tasks

on groups of 32 threads called warps, a term which originates from the practice of

weaving [31]. A pool of 24 warps (24 warps× 32 threads = 768 threads) is managed

by each SM.

Each thread is capable of branching and executing a separate code path. The

29

SIMT instruction issue unit first selects a warp from the pool that is ready to execute.

Having identified such a warp, the SIMT instruction issue unit issues that instruction

but only to those threads that are active within that warp. Each thread is distributed

to each SP core where each thread has an instruction address and a register state.

When a warp of 32 threads follow the same code path during execution, full

efficiency is realized. Divergence within a warp is handled by disabling threads that

do not follow the same code path. Having completed execution of the divergent

path, the execution converges by activating all threads and continuing on the same

code path. Divergence of code paths only occurs between threads of the same warp.

There are no inter-warp dependencies and, as such, threads of different warps execute

independently.

Thread divergence and warps may be treated, for the most part, transparently

by the programmers. It is not necessary to adhere to the limitation that warps of

32 threads should converge. To maximize performance, however, such considerations

should be aligned with the design of GPU-based applications.

2.6.4 Parallel Computing on The Tesla Architecture

The researchers then proceed to provide a description of how parallel computing is

handled in the Tesla architecture noting certain features such as synchronization,

communication and cooperation that are not heavily relied upon in graphics pro-

gramming models but often required in general purpose computing. Management

of numerous parallel threads with cooperative capabilities led to the development of

cooperative threads arrays (CTAs). In CUDA, CTAs are known as thread blocks.

Threads in a CTA all execute the same program concurrently but also coopera-

tively, synchronizing and communicating if necessary. In the Tesla architecture, each

30

CTA may consist of anywhere between 1 and 512 threads, each of which, has a unique

TID. CTAs may also be “shaped” as desired into one-, two- or three-dimensional ar-

rays.

The SMs in the GPU execute a maximum of eight CTA at a time. The number

of CTA per SM varies and depends on the resources required by each CTA and the

resources available in the SM. These resources include the number of threads, registers

and the amount of shared memory required by a CTA. If the required resources are

available, the SMC creates a CTA, assigning to each thread in the CTA a unique

TID. Once a CTA is assigned to a SM, it executes that CTA in an SIMT fashion,

processing one 32-thread warp at a time.

A collection of CTAs is organized into a grid where each CTA has a unique ID and

also a grid ID. To enhance portability of executable binaries across GPUs with any

number of processors, the execution of each CTA in a grid is independent of other

CTAs in the same grid. Multiple grids constitute sequential steps of execution. For

instance, two dependant instructions are represented as two grids composed of one or

more CTAs. When each CTA independently completes processing the first grid, the

second (dependant) grid is executed.

At the level of threads, the TID is utilized to selectively assign portions of the

workload. Effectively, a summation of those portions is then processed by a single

CTA, which is identified by the CTA’s ID. Sequential steps in the application are

represented by a progression, over time, through multiple grids, which, together, are

assigned the entire computational workload.

It should be noted that much of the complexity of the GPU architecture is hidden

from the developer whose task is limited to creating an application for only one

thread, the results from which are indexed by the TID, the CTA ID or a combination

of both. The application is designed to transparently execute on an architecture with

31

any number of SMs and SPs. The mixture of inter-thread cooperation per CTA and

independent execution of each CTA leads to a highly scalable parallel computing

architecture.

2.6.5 Compute Unified Device Architecture

Nvidia introduced CUDA in November 2006 [28]. It extends the C programming

language with syntactical conventions designed specifically for stream computing on

GPUs. Support for Open Computing Language (OpenCL) and DirectCompute is also

available for programming CUDA-enabled GPUs and a specialized implementation for

Fortran is provided with CUDA Fortran. Further discussion of semantic conventions

in CUDA is presented next as CUDA is utilized for the development of the GPU

implementation of the linear acoustic wave model in the present work.

In general, the system with the CPU is referred to as the host, since the device

containing the GPU is hosted by that system [28]. The kernel may only be called

by the host and executed on the device. Furthermore, the terms block and CTA are

inter-changeable, both referring to a collection of threads, the dimensions of which,

are under developer control.

2.6.5.1 Kernels

At the center of the programming model for GPUs is the concept of kernels. The

invocation of a kernel is not too different from the invocation of a function in C.

The subtle differences lie in the syntactical and semantic conventions. Syntactically,

a kernel launch involves wrapping the execution parameters in triple angle brackets

and any remaining parameters are specified in a manner not unlike a standard C

function call. Code comprising a kernel resembles that of an ordinary single-threaded

32

program. As an example, consider the following segment of code:

Listing 2.6.4: Kernel launch syntax

1 i n t otherParameter = 19 ;
2 dim3 b locks (64 , 64 , 1) ;
3 dim3 threads (32 , 4 , 4) ;
4
5 tes tKerne l <<<blocks , threads >>>(otherParameter) ;

In Listing 2.6.4, the kernel identifier is testKernel. The execution parameters are

specified within the triple angle brackets and establish the logical layout of threads

prior to launching the kernel. otherParameter is a simple integer parameter passed

to the kernel function testKernel and loaded into the global memory of the device.

2.6.5.2 Threads

Threads on a GPU are organized hierarchically with logical formations of multiple

threads that aid in development but also scalability. At the bottom of the hierarchy is

a single lightweight thread. A composition of multiple threads forms a logical thread

block that may be either 2-dimensional or 3-dimensional. That is, a block of threads

may have a certain length, a width and also a height. Illustrations of this hierarchy

are provided in Figures 2.5a and 2.5b.

Special built-in variables provide access to the logical hierarchy of threads. The

threadIdx is a device-only built-in variable and contains the TID of the current

thread. For instance, in a block of dimensions 16 × 8, inspecting the value of

threadIdx.x from the first thread would yield a value of zero. Subsequent threads

would yield value of 1, 2, 3 until the last thread, where the value of threadIdx.x

would be 15. In this particular case, every block would contain threads with IDs in

the X-dimension in the range of 0 and 15 inclusive. Note that threadIdx.y would

yield values in the range of 0 and 7 inclusive such that each thread in a block may

33

blockIdx.x

threadIdx.x

th
re
a
d
Id
x
.y

Grid

b
lo
c
k
Id
x
.y

(a) Top-down view

th
re
a
d
Id
x
.z

threadIdx.y

threadI
dx.x

blockIdx.y
blockIdx

.x

(b) Perspective view from top and side

Figure 2.5: Two-dimensional and three-dimensional views of the logical organization of
threads, blocks and grids in the CUDA programming model. The built-in variables blockIdx
and threadIdx are provided by CUDA to address blocks and threads, respectively.

be uniquely identified with two-dimensional Cartesian coordinates (x, y). An addi-

tional observation is that there is no Z-coordinate, since the block was declared as

two-dimensional with 16× 8 threads.

At the grid level, each block is identified by a unique block ID (BID), the value of

which, is stored in the device-only built-in variable blockIdx. Suppose a grid with

dimensions of 8× 4 blocks. In the X-dimension, the values of blockIdx.x would lie

in the range of 0 to 7 inclusive. For the Y-dimension, the values of blockIdx.y would

be between 0 and 3 inclusive. A block of threads in a block with BID coordinates

34

(1, 1) querying the value of the blockIdx.x variable would each observe a value of 1.

2.7 Literature Review

The following subsections contain applications that leverage the parallel computing

capabilities of multiple threads, cluster computers and GPUs similar to the work

performed here. Section 2.7.1 contains works related to multithreading and cluster

computing, while Section 2.7.3 contains applications that rely on GPUs.

2.7.1 Applications of Multithreading and Cluster Computing

The linear acoustic wave propagation model by Odegaard et al. is computationally

intensive [32]. Therefore, Epasinghe develops a parallelized computation model in

[33] that implements the same model to improve its performance.

In Epasinghe’s approach, the computation domain consists of the volume of points

at which intensity values are computed. The throughput of the computations is im-

proved by decomposing the computation domain over a number of processes using the

Parallel Virtual Machine (PVM) software. Behaving as middleware, PVM resides on

each node and, to the application, provides a set of library routines for message pass-

ing and process spawning while transparently integrating heterogeneous architectures.

Communication between nodes is supported with a message passing library of func-

tions, which is linked to the executable at compile-time. The simulation software is

also interfaced with MATLAB through a GUI to simplify usage for non-programmers.

The algorithm developed by Epasinghe is similar to an SPMD model, though tech-

nically, it is not exactly an SPMD model because not all processes are independently

executed on a number of nodes. Instead, in Epasinghe’s implementation, a master

process begins execution and several child processes are spawned, which then handle

35

the workload assigned to them by the master process. In this regard, the execution

model followed by Epasinghe is closer to a fork-and-join model.

For the simulations, the parallel algorithm is tested on IBM RS6000 supercom-

puters. Furthermore, the load distribution is assumed to be perfect with each node

receiving an equal number of points to compute. If the speedup achieved when the

algorithm is executed on a certain number of nodes n is defined as Sn, Epasinghe

defines efficiency as Sn/n. The results from Epasinghe’s study indicate near-perfect

efficiency when the number of nodes is small. For instance, the efficiency achieved

with 2 nodes is approximately 96%, whereas with 30 nodes it is only slightly greater

than 68%. Since the efficiency of the algorithm is affected by the number of nodes

and worsens when the number of nodes is increased, the algorithm does not scale

well.

Near the same approximate time period and independent of the work by Odegaard

et al., Jensen proposes a model that utilizes the impulse response method but which

can also handle inhomogeneous media [34].

Though the spatial impulse response method is generally less computationally

intensive than direct numerical solutions of the Rayleigh diffraction integral, it still

benefits from cluster computing approaches to increase efficiency. Jensen presents

exactly this approach in [35], though details of the computational model are vague.

For the simulations, the pulse-echo response for 2000 emissions is computed and the

emissions are partitioned by assigning each to a separate file [35]. The computations

are performed on a 32-node Linux cluster with MATLAB 6.5 and the total time for the

computations is 391 hours [35]. Jensen remarks that ordinarily such computations

would complete in approximately 12512 hours, indicating a speedup of exactly 32

from the original computation model.

Aside from applications within the field of acoustics and ultrasonics, cluster com-

36

puting and high performance computing (HPC) are also widely applicable in other

areas.

Henry, Xia and Stevens discuss the utility of HPC approaches to simulate var-

ious genome-scale metabolic models [36]. Comprehensive data pertaining to enzy-

matic processes are used to arrive at conclusions about whole-cell behaviour through

genome-scale metabolic models [36].

Flux balance analysis (FBA) is a pivotal technique in a genome-scale metabolic

model, which simulates the organism’s metabolism within set boundary conditions

[36]. As described by Henry, Xia and Stevens, FBA consists of 3 main components:

a list of reactions; a set of gene-protein-reaction (GPR) mappings; and an objective

function describing the growth behaviour of small molecules.

As an application of HPC, Henry, Xia and Stevens implement parallel gene knock-

out simulation algorithms on the BlueGene/P supercomputer situated at Argonne

National Laboratory (ANL), which has a total of 163,840 processors [36]. Generally,

gene knockout simulation involves multiple parameter sweeps on the order of 1010

[36]. Given the complexity of the problem space, HPC is particularly attractive in

reducing the computation time to perform the parameter sweeps.

Two types of parallelism are identified resulting in 2 different algorithms. The

first algorithm exploits fine-grained parallelism with high communication overhead,

whereas the second algorithm applies coarse-grained parallelism with minimal or no

communication overhead. The large number of CPUs in the BlueGene/P supercom-

puter also provides a means to test the scalability of their algorithms [36]. It is shown

that the scalability of the coarse-grained algorithm is better in relation to the scala-

bility of the fine-grained algorithm [36]. As a test of the coarse-grained approach, the

authors performed a simulation on 65,536 processors, which completed in 2.7 hours

simulating 18,243,776,054 quadruple knockouts [36].

37

In another application of HPC, Fortmeier and Bücker discuss the parallelization of

an algorithm for re-initializing level-set functions [37]. Level-set functions are useful

in dividing a domain into sub-domains and in the work by Fortmeier Bücker, they are

applied to study the 2-phase nature of an oil drop in water in an HPC setting [37].

Instead, the authors propose discretizing the flow and the level-set function uti-

lizing an unstructured grid composed of a set of vertices. The process is parallelized

by dividing the set of vertices into multiple subsets [37]. The domain of vertices is

thus decomposed into multiple sub-domains.

Division of the workload then involves submitting a subset of numerous vertices

to a process [37]. Each process then leverages the multiplicity of cores by dividing

that subset into further subsets to be processed by multiple threads. Three separate

double-nested for-loops are parallelized in this manner. The Open MPI (OpenMPI)

is utilized to disperse chunks of the iterations to processes, while the OpenMP API

handles further division of those chunks to multiple threads. In this sense, a hybrid

approach is followed, exploiting multiple levels of parallelism [37].

The results, as noted by Fortmeier and Bücker, highlight the importance of the

interconnect speed and bandwidth for OpenMPI applications, where processors con-

nected by an older interconnect technology produced longer runtimes than those con-

nected with faster interconnects [37]. Furthermore, the authors note greater speedups

with OpenMP enabled to decompose the previously sectioned domain. Contrary to

expectations however, enabling Symmetric Multi-threading (SMT) on the processors

and doubling the number of threads from 8 to 16, actually results in decreased per-

formance [37]. A shortage of hardware execution contexts, increased contention for

resources over a shared memory bus are two possible reasons that may attributed to

for the decreased performance.

Reumann et al. find another application of HPC in their simulation of the electro-

38

mechanical behaviour of ventricles in the human heart [38]. Applying a model de-

veloped by Tusscher et al. in [39], Reumann et al. follow a domain decomposition

strategy to enhance the performance of the simulations on the BlueGene/L supercom-

puter. The three-dimensional dataset consisting of over 32 million active ventricular

elements is decomposed into binary trees [38] by utilizing an orthogonal recursive

bisection (ORB) algorithm described in [40].

Sub-volumes, of number 2n, are created and each sub-volume is mapped to a pro-

cessor. Since the BlueGene/L supercomputer is structured in a binary arrangement

consisting of 2n partitions, the mapping process is simplified [38]. The number of

processors ranges from 512 to 16,384. Standard non-blocking MPI functions serve

the role of facilitating communication between processes [38].

A load balance metric is also described by the authors as the number of tissue

elements versus the number of non-tissue elements, bearing in mind that non-tissue

elements are not computed. It is this metric that supports the domain decomposition

based on the computational load imposed by tissue elements, since only tissue ele-

ments require computation and non-tissue elements do not require any computation

[38].

The lowest load balance tested is 1:1, where the number of tissue elements equals

the number of non-tissue elements, while the highest load balance ratio tested is 1:100,

which indicates that for one non-tissue element there are one hundred tissue elements

which are computed [38].

The results from their study indicate near-linear speedup in all cases [38]. That

is, as the number of processors is doubled, the speedup is nearly proportional to the

number of processors. However, as the number of processors is increased, the load

balance metric indicates a decrease in the total runtime of the algorithm but also

a decrease in the load balance, where a smaller portion of the total runtime elapses

39

for actual computation time [38]. Furthermore, the load balance for the average

communication time remains somewhat constant for all processor settings [38]. This

indicates that while the speedup is nearly-linear, the computational load is not evenly

spread across all processors.

2.7.2 General-Purpose Computing on Graphics Processing
Units

Application of GPUs to a problem domain outside of graphics requires a mapping of

that problem domain to a graphics domain. The inputs also have to be transformed

into a graphics representation such as vertices or fragments. An example is the

general problem of matrix multiplication that may be mapped to the graphics-related

operation of a dot product between multiple vectors.

Peercy et al. present an abstraction of the OpenGL architecture as an SIMD

system [41]. OpenGL is treated as a form of assembly language, on top of which a

customized shading language is implemented. Though the work by the authors is

far removed programmable hardware, they note the PixelFlow architecture [42] as an

early example of interactive programmable shading [41].

Certain instructions in the Interactive Shading Language (ISL) are transformed

to OpenGL commands that operate in an SIMD manner at the pixel level. Utilizing

this approach, the researchers develop a complete RenderMan shading language im-

plementation atop their custom ISL. Peercy et al. demonstrate the degree to which

fragment and vertex shaders may be customized and the possibility of generalizing

processing on GPUs.

Another example of general-purpose computing on GPUs is provided by Krüger

and Westermann [43]. The authors discuss an implementation of linear algebra op-

40

erators on the GPU [43]. An important development in the work by Krüger and

Westermann is the mapping of the problem domain of matrix operations and rep-

resentations to that of graphics operations and representations. Matrices are repre-

sented by texture maps in the GPU, while shader programs are designed to handles

matrix arithmetic operations.

Thompson, Hahn and Oskin also utilize GPUs for general purpose applications

involving large vectors but also develop a framework to simplify the utilization of

GPUs for general purpose computing [44]. For performance analysis, the authors also

compute matrix multiplications and solve the 3-satisfiability problem.

Realization of these and other general applications have led to further develop-

ment of languages and runtime environments to facilitate the programmability of

GPUs enlarging their scope from graphics processing to stream processing. Today,

several frameworks, supporting a variety of languages, exist that permit developers to

access the computational facilities provided by GPUs but also other stream processing

devices. Notable frameworks and APIs include BrookGPU [13], Nvidia’s CUDA [28],

Microsoft’s DirectCompute [45] and AMD’s Accelerated Parallel Processing (APP)

Software Development Kit (SDK) [46].

In general, variations of the C language are implemented in each of the frame-

works and APIs, with features tailored specifically for stream computing applications.

CUDA C, for instance, introduces a triple-angle bracket syntax for kernel calls in C.

In 2008, the OpenCL [47] was introduced as a means to standardize software that

executes on architecturally varying systems composed of CPUs, GPUs and other pro-

cessing units. Support for OpenCL is included in the APP SDK and CUDA, though

CUDA C is utilized for the implementations in this work.

41

2.7.3 Applications of Graphics Processing Units

As opposed to linear wave propagation models, the authors in [48] describe the com-

putational complexity of modelling nonlinear pressure fields citing the work in [49],

which was computed on a CRAY Y-MP4D/464 system. With reference to the non-

linear numerical computation model developed by Lee in [50], the underlying reasons

for the increased computation complexity may be attributed to three general factors:

(i) additional terms associated with physical phenomena must be computed. In

particular, the model developed by Lee contains additional terms for nonlinearity,

diffraction, and absorption; (ii) minute changes in pressure created during wave prop-

agation cause compression and rarefraction. This results in an increase in temperature

and introduces a region in which the wave propagates at a faster speed. In regions of

rarefraction, the wave propagates at a slower speed. Variations in the speed of prop-

agating waves, introduces harmonics or frequencies other than the driving frequency.

A unique field must be generated for each harmonic that is considered requiring multi-

ple computations of the entire calculation volume; and (iii) spatial complexity, which

is increased when computations are performed in three-dimensional space.

The nonlinear numerical computation technique developed by Lee in [50] solves

the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, which is discussed in [51].

Zemp, Tavakkoli and Cobbold discuss another numerical computation method in

[52], which relies on a second-order operator splitting technique previously developed

by Tavakkoli et al. in [53].

Further discussion of nonlinear acoustics is beyond the scope of this work and is

only presented here briefly to emphasize the complexity associated with modelling

nonlinear wave propagation. A benefit of the nonlinear approach is that the precision

of wave propagation is higher than that of linear wave propagation models [51]. An-

42

other characteristic of certain nonlinear models is that they also exhibit a high degree

of data-level parallelism. Given the added complexity and data-level parallelism in-

herent in these nonlinear models, the capabilities of GPUs are particularly attractive

for improving their performance.

An example of a GPU implementation of a nonlinear ultrasound model is provided

by Karamalis, Wein and Navab in [54]. The algorithms developed by Karamalis, Wein

and Navab synthesize B-mode ultrasound images [54].

The authors utilize finite difference numerical solutions for the Westervelt Partial

Differential Equation (PDE) to model wave propagation. Included in the equation are

terms to account for thermal attenuation and nonlinearity [54]. The general concept

underlying the finite difference method is the evaluation of the Westervelt PDE at

various sampling points in a two-dimensional grid.

The computation of the finite difference equations is performed on the GPU with

code written in C++, OpenGL and OpenGL Shading Language (GLSL). The GPU

utilized for the experiments is an Nvidia GeForce GTX 280 and the authors note po-

tential performance improvements that may be possible with another implementation

written in CUDA C or OpenCL.

The remaining steps to process the image are performed on the CPU as they are

less computationally intensive [54]. Two image datasets are simulated. The fetus

dataset and the phantom dataset required 55 minutes and 78 minutes, respectively,

to complete generation of radio frequency data on the GPU with 20482 points and 192

scan lines [54]. Comparatively, image formation on CPU only required 19 seconds

for the fetus dataset and 24 seconds for the phantom dataset [54]. The authors

note that similar computations required 32 hours to complete utilizing the simulation

framework developed by Pinton et al. in [55].

Another example is provided by Michéa and Komatitsch in the evaluation of the

43

performance of solving the seismic wave equation using finite difference methods in the

time domain on GPUs [56]. Single-GPU testing is performed on an Nvidia GeForce

8800 GTX GPU, while tests on multiple GPUs are performed on a GPU cluster

consisting of multiple Tesla S1070 servers.

The researchers perform two experiments to test the scalability of their approach

on multiple GPUs. In the first experiment, the total workload across all GPU is in-

creased but the workload per GPU remains equal. In the second experiment, the total

workload remains constant and as the number of GPUs is increased, the workload

handled by each GPU decreases. The first experiment is a test of “weak scaling” and

the second experiment is a test of “strong scaling” as defined by the authors [56].

Results from the study by Michéa and Komatitsch indicate that speedup remains

constant in the case of weak scaling since the workload per GPU is constant and high

enough to hide the effects of high latency operations on the GPU [56]. Conversely, the

effect of strong scaling is that speedup no longer remains constant as the number of

GPUs is increased [56]. As the number of GPUs is increased, the workload per GPU

is decreased and the effects of high latency operations and parallelization overhead

become more apparent. The overall speedup from their work ranges between 20 and

60 when utilizing either a single GPU or multiple GPUs as opposed to a CPU.

44

Chapter 3

Parallel Computing Models,
Algorithms and a Multi-layer
Linear Acoustic Model

As part of the contribution of this work, the focus now shifts to enhancing the per-

formance of the algorithm developed by Ocheltree and Frizzell [8] with particular

emphasis on reducing the total execution time of linear acoustic wave simulation.

Where a trade-off between memory and execution speed is required, execution

speed is favoured. Exchanging higher spatial complexity for a reduction in temporal

complexity is considered viable given that the spatial requirements are low and costs

of both volatile and non-volatile storage are not expensive. Usage of faster but more

limited volatile memory (for instance, DRAM) is also favoured as memory chips of

these type continue to increase in read and write speeds and transfer bandwidth.

This chapter first describes the sequential method of computation in Section 3.1.

Section 3.2 presents a method for reducing redundant computations for axisymmetric

acoustic fields. The workload that is subjected to parallel computation is defined in

Section 3.3. Subsequent sections present details pertaining to three parallel computing

models that are developed in this work to enhance the performance of linear acoustic

wave simulation.

45

The Fork-and-join (FJ) model for parallel computation of the workload is de-

scribed in Section 3.4, while the extension of that same model manifests itself in the

SPMD model, which is described in Section 3.5.

Section 3.6 contains a description of the last parallel computation model, which is

designed for GPUs. Subsections 3.6.1-3.7 describe the separation of device and host

code and the method by which CUDA entities are mapped to the acoustic field in the

numerical model.

Additionally, in this work, the linear acoustic wave propagation model by Ochel-

tree and Frizzell [8] is augmented to model wave propagation across multiple media

or multiple layers. The multi-layer model is described in Section 3.7 and a summary

of the chapter is presented in Section 3.8.

3.1 Sequential Computation

The general form of the sequential algorithm for field computation is presented in

Algorithm 1. Algorithm 1 is a means to compute the intensity values at multiple

points in the acoustic field utilizing Equation (2.2) in Section 2.1.2.

Computation of the acoustic field proceeds along the X-axis of the calculation

volume, followed by the Y-axis before proceeding to the next X-Y plane in the Z-axis.

The computation sequence is summarized in Algorithm 1 with 3 major for-loops that

process data for each point in the acoustic field.

Three factors may be identified as having a direct effect on the temporal complex-

ity of Algorithm 1: the number of points in the calculation volume, the number of

elements in the composition of the acoustic source and the number of sub-elements

in each element. Each of these factors is directly mapped to one of the 5 for-loops

in Algorithm 1, where an increase or decrease in execution speed is related to the

46

Algorithm 1: Sequential field computation

for k ← startz to endz do1

for l← starty to endy do2

for i← startx to endx do3

for element← 1 to Ne do4

collect element parameters;5

calculate number of sub-elements;6

for subelement← 1 to Nsubelements do7

calculate real field contribution Fr;8

calculate imaginary field contribution Fi;9

Cr ← Cr + Fr;10

Ci ← Ci + Fi;11

end12

end13

field[i,j,k] ← Cr
2 + Ci

2;14

end15

end16

end17

number of iterations of each for-loop. Nx, Ny and Nz increase as the dimensions of

the calculation volume are increased or as the step sizes Sn in the X, Y or Z directions

are decreased.

The number of elements, Ne, increases as the element size is decreased or, as the

size of the acoustic source is increased and Ne remains constant. Note that while Nx,

Ny and Nz are static parameters along with the number of elements (Ne), the number

of sub-elements (Nsubelements) is dynamic and changes as the angle and distance from

the observation point varies. This effect manifests itself in Equation (2.6) where

the width of a single sub-element is affected by the the Z-distance indicated by the

variable z.

Each parallel computing model described in this chapter essentially “peels” the

three for-loops in Algorithm 1 that start between lines 1 and 3. The core of Algorithm

1 is between lines 4 and 14. In the SIMT parallel computing model, the core of

47

Identify quarter-field Compute quarter-field Propagate quarter-field

Figure 3.1: Axial-symmetric workload division

Algorithm 1 is exposed and computed directly by each unit of execution.

3.2 Reducing Redundancies

Further speedup in computation may be realized by reducing the number of redundant

calculations in the acoustic field, which is axisymmetric around the Z-axis. That is,

the intensity value at (x, y, z) is equal to the intensity values at (−x,−y, z), (−x, y, z)

and (x,−y, z). The equality of these values asserts that computation of only one of

these values is sufficient to obtain the other three.

Consequently, only one quarter of the calculation volume requires computation

and is aptly termed quarter-field computation. The process is illustrated in Figure 3.1.

Both circular and rectangular acoustic sources may benefit from this optimization, as

both these source shapes produce acoustic fields with reflective symmetry along the

X and Y axes. However, only acoustic fields emanating from circular sources exhibit

rotational symmetry about the Z axis. That is, at a certain radial distance r from

the origin, all intensity values are equal in an acoustic field generated by a circular

source.

A restriction with quarter-field computation is that the calculation volume lie

directly in front of the acoustic source, where startn and endn values for X and Y

axes cover an equal number of points around the origin. Or, startn = −(endn) for

48

the X-axis and also the Y-axis, though the ratio Nx/Ny need not be 1. That is, the

volume may be a rectangular prism situated directly in front of the acoustic source.

Redundancies can still be reduced with off-axis calculations by sectioning that

part of the calculation volume that is directly in front of the transducer. Quarterfield-

computation is then performed on only that portion and the leftover portion is com-

puted normally to complete computation of the calculation volume. The results

provided here however, impose the former restrictions and quarter-field computation

is only performed on an on-axis calculation volume.

3.3 Workload Definition and Decomposition

To distribute the workload, the workload decomposition technique applied in the

present work is similar to the technique followed by Reumann et al. [38] to the extent

that the three-dimensional workload is mapped to multiple processors.

Contrary to the ORB algorithm in the work by Reumann et al., no binary trees

are formed in the workload decomposition process in the current work and no IPC

is required to compute points within the same neighbourhood. Rather, the workload

decomposition herein is a one-step process for the multithreaded implementation and

a two-step process in the cluster implementation owing to the hybrid nature of that

approach. In the multithreaded approach, the workload is simply divided over the

number of threads, while in the cluster approach the workload is first divided over

the number of processors and, in the second step, segmented further over the number

of threads per processor.

The model detailed by Ocheltree and Frizzell [8] involves point-by-point compu-

tation of a certain calculation volume, which consists of varying intensity values and

forms the acoustic field. The acoustic source is composed of several rectangular ele-

49

ments, which are, themselves, composed of smaller sub-elements. Each point in the

finite calculation volume involves integration over the surface of an arbitrarily-shaped

source. Thus, the computation of the entire calculation volume or acoustic field is

considered the workload and the volume of the workload is described by the number

of points in the calculation volume. The number of points over a certain interval is

defined as:

Nn =

⌊
(startn − endn)

Sn
+ 1

⌋
, (3.1)

where n specifies the direction (X, Y or Z), startn is the starting point of the

interval, endn is the end point of the interval and Sn is the step size in the direction

of X, Y or Z. The size of the workload for one plane parallel to the X-Y axes is then

Wxy = Nx · Ny. Similar calculations may be performed for the X-Z and Y-Z axes,

while the total size of the workload is defined by T = Nx ·Ny ·Nz.

Given the workload characterization of the linear acoustic simulation model, the

data-level parallelism inherent in the computations is exploited via a workload de-

composition strategy.

In the descriptions that follow, three models for parallel computing are outlined.

The first model utilizes multiple threads to efficiently harness CPU resources. The

utility of this approach is particularly apparent when the physical CPU consists of

multiple logical or physical cores in an SMP arrangement.

An extension of the FJ model is realized in the SPMD model where multiple

CPUs in a distributed memory architecture may be utilized with multiple processes

that each execute multiple threads to further divide the workload across multiple

cores in a shared memory architecture.

50

x

y

z

T

T/N
t

Threads

Figure 3.2: Distribution of workload in the FJ model.

3.4 Fork-and-join Model and Algorithm

The coarse-grained approach by Henry, Xia and Stevens [36] is adapted in the present

work to develop the FJ and SPMD models. Their fine-grained algorithm follows a

master-slave model and requires communication between processes, while in their

coarse-grained algorithm, each slave determines its own workload and no IPC is re-

quired. The coarse-grained algorithm is found to be highly scalable up to 65,536

processors and a similar approach is applied in the current FJ and SPMD models,

which do not require any IPC and so, have no communication or synchronization

overhead.

The FJ model utilizes as threads as the units of execution. The total workload T is

divided by the number of available threads at different points on the Z-axis. Selection

of the Z-axis for workload distribution is to elicit the largest possible portion of the

workload and assign it to a thread. An example of the workload decomposition in

the FJ model is provided in Figure 3.2, where four threads are assigned to multiple

contiguous X-Y planes or a chunk of the total workload T .

The left side of Figure 3.2 indicates the units of execution, which in this case

51

includes only threads. The right side of Figure 3.2 displays the workload per unit of

execution for that level of workload decomposition. In this case, the total workload

T is divided over the number of threads Nt.

In Algorithm 1, for-loop parallelism is exploited utilizing OpenMP by assigning

to each available thread a portion of the number of points along the Z-axis. Hence,

the range of the iterative variables startz and endz is shortened to Nz/Nt, where Nt

is the number of threads. It is worth noting that efficient utilization of all logical or

physical CPU cores should ensure that Nt | Nz, which means that Nt divides Nz or

Nt cot k = Nz for some integer k where the symbol · always denotes multiplication.

Naturally, as threads share the same address space, the iterative variable is private

to each thread. Algorithm 2 describes the parallel computation in the FJ model. Note

that the for-loop on line 1 is parallelized.

Algorithm 2: Field computation in the FJ model

for k ← startz to endz do in parallel1

for l← starty to endy do2

for i← startx to endx do3

for element← 1 to Ne do4

collect element parameters;5

calculate number of sub-elements;6

for subelement← 1 to Nsubelements do7

calculate real field contribution Fr;8

calculate imaginary field contribution Fi;9

Cr ← Cr + Fr;10

Ci ← Ci + Fi;11

end12

end13

field[i,j,k] ← Cr
2 + Ci

2;14

end15

end16

end17

The FJ model is simple and with multi-core SMP provides a viable technique to

52

achieve improved performance by exploiting data-level parallelism. However, since

SMP systems share a common memory bus in a shared memory architecture, the

scalability of such systems enforces a limit to the maximum performance that can be

gained on such systems.

To overcome this performance barrier the FJ model is augmented with a multi-

process approach in another parallel computing model designed for better perfor-

mance on clusters.

3.5 SPMD Model and Algorithm

Fortmeier and Bücker apply a second level of parallelism providing an extension

to the coarse-grained parallelism with multiple OpenMP threads through OpenMPI

[37]. A similar hybrid approach is followed in the present work with the exception

of utilizing OpenMPI for IPC. Instead, each process is assigned a fixed portion of

the total workload, which is segmented and dispersed to multiple threads through

OpenMP and requires no IPC.

The lack of any dependencies between the calculation of any two points in the cal-

culation volume permits the computation of the acoustic field to occur over separate

processes and memory spaces without any IPC. Without any IPC, the scheduling of

each process is simplified and restrictions in terms of scalability are limited to the

space in which each process executes.

The units of execution in the SPMD model are threads and processes. Multiple

levels of parallelism are applied by first dividing the total workload along the Z-axis

as in the FJ model. In the case of the SPMD model however, each sectioned workload

is assigned to a process instead of a thread. An illustration of the distribution of the

workload is provided in Figure 3.3, where the number of processors and threads is

53

x

y

z T

T/N
p

(T/N
p
)/N

t

Processes

Threads

Figure 3.3: Distribution of workload through multi-processing and multithreading in the
SPMD model.

four.

The left side of Figure 3.3 indicates the units of execution, which in this case

includes threads and processes. The right side of Figure 3.3 displays the workload

per unit of execution for that level of workload decomposition. In this case, the total

workload T is divided over the number of processes Np, which is then further divided

by the number of threads Nt.

Thus, the assigned workload for a process is Wp = T/Np, where the Np is the

number of processors. The utility of each CPU is enhanced by further dividing the

assigned workload at different points along the Y-axis instead of the Z-axis. Each

thread is then assigned a smaller workload, the size of which, is calculated as below:

Wt =
T

Np ·Nt

. (3.2)

54

Note, once again, that while any total number of points T would compute with

this approach, an even distribution of the workload requires that Np | Nz and Nt | Ny.

The parallel computation in the SPMD model is exemplified in Algorithm 3. The

for-loops on lines 1 and 2 are computed in parallel by first assigning a range of

iterations of the for-loop on line 1 to a process. Secondly, the process spawns multiple

threads and assigns each thread a range of iterations of the for-loop on line 2.

Algorithm 3: Field computation in the SPMD model

for k ← startz to endz do in parallel1

for j ← starty to endy do in parallel2

for i← startx to endx do3

for element← 1 to Ne do4

collect element parameters;5

calculate number of sub-elements;6

for subelement← 1 to Nsubelements do7

calculate real field contribution Fr;8

calculate imaginary field contribution Fi;9

Cr ← Cr + Fr;10

Ci ← Ci + Fi;11

end12

end13

field[i,j,k] ← Cr
2 + Ci

2;14

end15

end16

end17

In a cluster computer, allocation for jobs is usually performed based on the number

of nodes that are required for a particular job. A node consists of a number of

processor cores, a certain amount of Random Access Memory (RAM) and some hard

disk drive (HDD) space. In a distributed memory architecture, the memory space of

each node is independent of the memory space of any other node.

Since the type of parallelism in the cluster computing model is coarse-grained–

that is, without any IPC–an immediate allocation of a large number of resources is

55

not required.

Consider a case where Np is set to 8. That is, the number of processors or cores is

set to 8. In a system with 2 processors or cores per node, this requires an allocation

of 4 nodes. Each process is submitted as a separate job and computation proceeds

asynchronously and independent of other processes on separate nodes. The results

are then collected after each job is completed.

3.6 SIMT Model and Algorithm

The GPU-based SIMT model for parallelized simulation of linear acoustic wave prop-

agation is a culmination of the previous multithreaded and cluster models for exploit-

ing parallelism in the sequential algorithm. The SIMT model also extends the work

presented by myself and others in [57]. As mentioned at the start of the chapter,

various factors affect the temporal complexity of the sequential algorithm. Of these

factors, the for-loops that iterate over the X, Y and Z axes are major contributors to

the computation workload.

A realization that is not difficult to arrive at is that, with enough resources,

the computation workload may be continuously divided and assigned to multiple

execution units until the computation of each point in the calculation volume occurs

simultaneously. With that level of parallelization, the only limiting factor is the time

required for sequential processing of a single point. It is precisely this concept that

underlies the SIMT programming model.

In the SIMT model, extraneous for-loops for each of the X, Y and Z dimensions

are removed and only the code pertaining to the computation of a single point is

exposed. The core code is all that is necessary to compute the entire acoustic field.

Due to the design of GPUs and CUDA, modifications to the sequential algorithm

56

code are required as part of the modification of the sequential algorithm to an SIMT

parallel computing model.

3.6.1 Device and Host Code Separation

The SIMT model of the sequential algorithm divides the sequential algorithm code

into host and device components. Code designated for the host executes on the CPU

and occupies the main memory space accessible to the CPU. Device code includes all

code that executes on the GPU within the confines of GPU memory. Though such

a division of code exists, there exists only one executable, which begins execution on

the host and prepares the GPU prior to device code execution on the GPU.

Initially, the sequential algorithm code executes completely on a host system. As

part of the SIMT model, all variables required exclusively for the computation of a

single point in the calculation volume are identified. These variables are removed

from the host code and declared in device code since they are required for acoustic

field computations. The separation between device and host code is presented in

Figure 3.4

With variable storage implemented in the device code, the core execution code of

the sequential algorithm is identified. The core execution code is only that code that is

necessary to obtain a single intensity value given certain X, Y and Z coordinates of one

point. In the sequential algorithm, the three for-loops that iterate over coordinates in

the X, Y and Z axes are not necessary in the SIMT model because the core execution

code outputs only a single intensity value at one point in the acoustic field.

A single kernel consists of a single stream of instructions and with multiple copies

of that kernel executing simultaneously, multiple instruction streams exist. In this

sense, the SIMT model benefits from the paradigm of stream computing exploiting

57

Collect simulation parameters

Define GPU parameters for block size and number of blocks

Kernel code executed concurrently and asynchronously multiple

times by multiple threads

Intensity values stored in GPU memory

Load simulation parameters into GPU memory

Intensity values collected from GPU memory

Intensity values written to plaintext files

CPU GPU

blockIdx and threadIdx built-in variables used to map each thread to

a unique point P in three-dimensional space

Figure 3.4: Device-host or GPU-CPU code separation in the SIMT model.

Algorithm 4: Field computation kernel in the SIMT model

xBlocksPerPlane ← Nx / blockDim.x;1

i ← blockDim.x * (blockIdx.x % xBlocksPerPlane) + threadIdx.x;2

j ← blockDim.x * blockIdx.y + threadIdx.y;3

k ← (int)(blockIdx.x / xBlocksPerPlane;4

for element← 1 to Ne do5

collect element parameters;6

calculate number of sub-elements;7

for subelement← 1 to Nsubelements do8

calculate real field contribution Fr;9

calculate imaginary field contribution Fi;10

Cr ← Cr + Fr;11

Ci ← Ci + Fi;12

end13

end14

field[i,j,k] ← Cr
2 + Ci

2;15

data-level parallelism inherent in the original sequential algorithm.

When the core execution code is provided a different set of X, Y and Z coordinates,

it outputs the intensity value at a point with exactly those coordinates. In this

manner, when multiple copies of identical core execution code or multiple copies of

58

the kernel are executed simultaneously and each copy operates on a different point,

intensity values composing the entire acoustic field may be computed. The kernel

algorithm for the implementation of the sequential algorithm on the GPU is presented

in Algorithm 4.

The variables i, j and k are dependant on the built-in variables blockIdx and

threadIdx. Due to this dependency, the combination of the variables results in a

unique three-dimensional index in the field array on line 15.

3.6.2 Calculation Volume Mapping

Another modification involves the transformation of the calculation volume in a man-

ner such that points in the calculation volume become functions of the built-in vari-

ables in CUDA. Because the sequential algorithm is initially implemented such that

computations are performed for a three-dimensional acoustic field and stored in a

one-dimensional array, a similar strategy is applied in the implementation of the

sequential algorithm on the GPU.

In host code, memory for the acoustic field is first allocated as a one-dimensional

array in DRAM on the GPU, the scope of which, is global. For an acoustic field with

64 points in X, Y and Z dimensions, this requires the dynamic allocation of 262144

floating point values in GPU memory. Pivotal to the SIMT model is then mapping

the input values and output locations to TIDs and BIDs such that each thread is

assigned a unique input value and output location. This mapping is explained in

multiple steps.

Because CUDA CTAs or simply, blocks, are either two-dimensional planes or

three-dimensional cuboids, a natural mapping to the input points in the calculation

volume is formed. A geometrical division of the workload is developed to establish a

59

N
R

N
R

N
R

N
R

N
g

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

N
r

Figure 3.5: Division of points in a single plane of the calculation volume

relationship between input points in the calculation volume and CUDA blocks and

threads.

There are, of course, several methods of dividing points in the calculation volume.

Herein, a single plane of the calculation is first considered. A single plane is composed

of a certain number of points, defined by Ng, that are arranged in a large rectangular

grid with equal spacing between all points. Suppose the large grid of points is then

divided with horizontal lines with equal spacing between each line.

A hierarchy is then formed with the large grid composed of a number of smaller

rectangles or rectangular strips, which are themselves composed of a certain number

of points NR. The large grid is then further divided with vertical lines and equal

horizontal spacing between each line. Instead of rectangles, each with a certain num-

ber of points NR, smaller rectangles now compose the grid. Each of these smaller

rectangles, or tiles, which are not necessarily squares, contains a certain number of

points Nr. Also, note that Nr < NR < Ng. Figure 3.5 illustrates the division of a

single plane with the described method.

With the representation of a single plane of points depicted in Figure 3.5, the

logical formation of blocks of threads is simplified when a single tile is considered

equivalent to a single block in CUDA. Each block has a unique ID accessed with the

blockIdx.x and blockIdx.y variables. Note that the block in the upper-left has a

60

blockIdx.x value of 0 and a blockIdx.y value of 0. Index values increase to the

right and to the bottom for the blockIdx.x and blockIdx.y variables, respectively.

Index values are also always positive and never negative but may be zero.

Contained in each block is a set of points, and, similar to the equivalence between

tiles and blocks, a relationship is formed between points and threads. Each thread is

addressed with a unique combination of the threadIdx.x and threadIdx.y variables.

The combination of both variables describes a point in a coordinate system where

numbering begins at (0, 0) in the upper-left corner of a block and increases to the

right and to the bottom. Like block index values, thread index values may be zero

and are always positive.

3.7 Multi-layer Linear Acoustic Model

The model described by Ocheltree and Frizzell simulates wave propagation in a single

homogeneous medium. A final development in the current work includes an exten-

sion of the linear acoustic model to multiple layers, a technique that becomes viable

following the development of the previous HPC models.

Two different homogeneous media with varying medium properties are separated

by an interface. Consider, for instance, a tissue sample submerged in water. As

acoustic waves propagate through the water medium, they encounter an interface, a

plane at which the water and tissue media are separated. At this point the waves

exhibit phenomena that include diffraction, refraction and reflection. The pattern of

wave propagation in the second tissue medium is changed after propagating past the

interface between two different media due to variations in the physical properties of

the medium through which the wave is propagating. That is, differences in the speed

of sound in the medium, the density of the medium and attenuation in the medium

61

affect the pattern of wave propagation that is observed as the wave travels beyond

the interface.

Imaginary and real components of sound pressure, p0, are computed prior to com-

putation of the intensity values in the acoustic field. Subsequently, the imaginary and

real sound pressure components of pressure are converted to time-averaged intensity

at a point P as described in Section 2.1.2.

The extension of the linear acoustic model to multiple layers relies on collect-

ing the particle velocity phase values and particle velocity amplitude values at each

point in a single X-Y plane located at the interface between two media. Instead of

calculating time-averaged intensity at each point in the interface plane, the real and

imaginary components are utilized to compute the particle velocity phase and particle

velocity amplitude of the waves at those points. Particle velocity phase, in radians,

is calculated with the following equation:

pv = arctan(i/R) (3.3)

and particle velocity amplitude, in Pascals, is obtained with the following equation:

va =
√
R2 + i2. (3.4)

In both equations, i is the imaginary and R is the real component of the complex

pressure quantity p0 defined by Equation (2.2) in Section 2.1.2.

With reference to the elements that compose an acoustic source described in Sec-

tion 2.1.2, the output of each element is a wave with a certain particle velocity phase

and a certain particle velocity amplitude.

Initially, the particle velocity phase of all elements in the acoustic source is zero

radians, an indication that, given a completely flat acoustic source, waves produced

62

by each element are in-phase. A curved acoustic source naturally produces waves that

are not necessarily in-phase despite zero values for particle velocity phase for each

element in the acoustic source. The phase alignment is affected by the curvature of

the acoustic source. Particle velocity amplitudes for all elements are equal reflecting

a uniform velocity distribution over the surface of the acoustic source. The output

power of the acoustic source is also related to the particle velocity amplitude of each

element. Higher particle velocity amplitudes result in greater intensity values in the

acoustic field.

A virtual acoustic source is introduced at exactly that location where the interface

between two media exists. It is important to distinguish between the physical and

virtual acoustic sources. The physical acoustic source is an actual acoustic source

in that it is equivalent to a physical transducer with certain physical properties and

marks the actual source for the propagation of acoustic waves. In contrast, a virtual

acoustic source does not physically exist. The notion of a virtual source is introduced

to account for certain effects that result due to a transition between two media.

The effects of acoustic waves propagating through another medium are accounted for

beginning at the location of the interface between the two media.

The geometric setup for multi-layer linear acoustic simulation is illustrated in

Figure 3.6. The development of the virtual source begins with the identification of

the last X-Y plane in the first medium. The last X-Y plane is the X-Y plane with the

highest Z-coordinates that are still within the confine of the first medium. Or, the

last X-Y plane is furthest from the physical acoustic source but belongs within the

first medium. Particle velocity phases and particle velocity amplitudes are collected

for each point in the last X-Y plane.

Depending on the difference between acoustic impedances of two media at the

63

z limits

y
 li

m
it

s

x li
m

its

min max

m
in

m
ax

m
in

m
a

x

x

y

z
focal spot

radius of curvature

(0,0,0)

P (x,y,z)

R

dS
calculation

volume 1u
n

calculation

volume 2

virtual

source

Figure 3.6: Geometric depiction of simulation with two adjacent media

interface, a certain portion of the wave is reflected back into the originating medium

while the remaining portion is transmitted into the next medium. To account for the

portion of the wave that is transmitted, the following correction factor is applied to

all particle velocity amplitude values obtained from the last X-Y plane [9, p. 54]:

Corrected va = va ·
2Z02 cos θi

Z02 cos θi + Z01 cos θt
(3.5)

where Z01 and Z02 are the acoustic impedances of the first and second media,

respectively, θi is the angle of the incident wave and θt is the angle of the transmitted

wave. va refers to the particle velocity amplitude at a certain point in the last X-Y

plane. In the multi-layer experiments, the angle of the incident and transmitted waves

are assumed to be 0 radians, which removes any effects of the angle of incidence and

transmission at the cost of simplifying the simulation process. It is clear that only

a difference between the acoustic impedances of two different media will produce a

correction factor with a value other than 1. When multi-layer simulation is performed

for two identical media, the correction factor is always 1.

A flat rectangular virtual source geometry is then generated such that the number

64

Compute intensity values for

all points in the first medium

using physical acoustic source

Compute intensity values for

all points in the second medium

using virtual acoustic source

Compute phase velocity and velocity

amplitude values for all points in the

last X-Y plane in the first medium

Apply transmission correction

factor to velocity amplitude values

Generate geometry for physical

acoustic source

Generate geometry for virtual

acoustic source

1 4

5

63

2

Figure 3.7: Steps involved in multi-layer computations with the considered linear acoustic
model

of elements in the virtual source equals the number of points in the last X-Y plane.

Each point in the last X-Y plane is associated with an element in the virtual source.

For an element associated with a certain point in the last X-Y plane, the particle

velocity phase and corrected particle velocity amplitude at that point are stored as

part of the 16 properties that describe that element.

The general steps involved in the computation of wave propagation across multiple

layers are summarized in Figure 3.7. The virtual source, the last X-Y plane and the

interface are all situated at identical locations. The simulation is then repeated with

waves propagating from the virtual source into another medium or a secondary layer

with attributes that are potentially different than those of the first layer.

3.8 Summary

An important aspect of developing any parallel computing model is the definition and

division of the workload over a number of execution units. Thus, it is presented first

in this chapter for each parallel programming model.

The workload is defined as the number of points in the acoustic field that must be

computed. In the multithreading model, the total number of points is divided over

a number of threads. The cluster computing model extends this workload division

65

by utilizing multiple processes with multiple threads. The total number of points is

divided over a number of processes and each process divides the workload further over

a number of threads to maximize the utility of each multi-core CPU. In this sense,

the workload division in the cluster computing model is hierarchical.

Workload division in the SIMT model is performed by assigning a single block of

threads to a section of points in a single plane in the calculation volume. Each thread

handles the computation of a single point. Mapping between threads and points

is achieved by utilizing the blockIdx and threadIdx built-in variables in CUDA.

Multiple blocks combined are assigned all the points in the calculation volume. This

type of mapping provides the flexibility of mapping calculation volumes of different

sizes to threads on the GPU.

Finally, a model for multi-layer linear acoustic wave propagation is presented.

Multi-layer wave propagation involves the collection of information related to the

state of waves at multiple points in a single X-Y plane that divides two homogeneous

media. The state of the waves at this point is utilized to create a virtual acoustic

source, which essentially “continues” the pattern of wave propagation into a second

layer by repeating the simulation described by Algorithm 1.

66

Chapter 4

Parallelized Implementations,
Multi-layer Simulation and The
LATS Software Package

Following an explanation of the metrics utilized to assess performance in Section 4.1,

the results achieved with the HPC implementations are presented in this chapter.

The first multithreaded implementation is based on the fork-and-join model pre-

sented in Section 3.4 and is targeted towards a single multithreaded SMP processor

and operates in a shared memory environment. The second implementation lever-

ages the capabilities of clusters as a HPC approach utilizing multiple threads and

processes. The SPMD model described in Section 3.5 is implemented on cluster com-

puters by extending the first multithreaded implementation with a cluster of multiple

CPUs in a distributed memory environment. Results from the multithreaded and

cluster computing implementation are presented and discussed in Section 4.2. The

implementations and results are also given in [57].

The third and last GPU implementation follows the SIMT parallel programming

model discussed in Section 3.6 to exploit the massively parallel design of GPUs.

Results of the GPU-based implementation are presented in Section 4.3.

Furthermore, an extension from a single medium to multiple media of the linear

67

Table 4.1: Relevant simulation
parameters and their respective
values∗ for each of the three exper-
iments.

Experiment number

Parameter One Two Three

startx -17.5 -12.7 -12.75
endx 17.5 12.7 12.75
starty -15.75 -12.7 -12.75
endy 15.75 12.7 12.75
startz 4.5 5.0 5.0
endz 36 30.4 30.5
Sx,y,z 0.5 0.2 0.1
esize 0.5 0.2 0.1
espace 0.5 0.2 0.1
tsize 10 10 10
F 20 20 20
∗ Aside from the parameter F ,

which is unitless, all parameter
values are in millimeters.

acoustic wave propagation model by Ocheltree and Frizzell [8] is described in Section

4.4. Preliminary results from the multi-layer linear acoustic wave propagation model

are presented in Section 4.4.

For the experiments, all physical parameters such as frequency, the type of medium

and the size of the acoustic source are identical, except for the dimensions of the

calculation volume, which are adjusted to simplify performance assessment. The

varied parameters are illustrated in Table 4.1 and defined in Sections 3.3 and 4.1.

For instance, Nx, Ny, Nz are kept equal to produce a cubic volume. Furthermore,

to ensure that in Equation (3.2), Wt ∈ Z, the number of points in X, Y and Z are

set to 64 each for the first experiment; 128 each for the second experiment; and 256

each for the third experiment. The step sizes in the X, Y and Z directions are set to

0.5 mm for the first experiment, 0.2 mm for the second experiment and 0.1 mm for

68

the third experiment. Similarly, the elements sizes for the acoustic source are set to

0.5, 0.2 and 0.1 mm for the first, second and third experiments, respectively. Note,

however, that there is no relationship between the step sizes and the element sizes.

The equivalence of the numbers is simply a matter of convenience and an indication

of the progressive increase in the precision and efficiency of the computations.

The number of threads and processors (Nt and Np, respectively) are both set to

8 for all experiments. For example, in the first experiment with the cluster imple-

mentation, T = 64 · 64 · 64 = 262144 points and Np ·Nt = 8 · 8 = 64 threads. Hence,

Wt from Equation (3.2) is equal to 512 points. Subsequent to the computation of

the total acoustic field, each process stores only that portion of the intensity field

assigned to it in a separate file.

4.1 Performance Metrics

A certain metric is defined as efficiency to reflect a relative improvement (or de-

cline) in the precision of the linear acoustic wave simulation over a certain length of

computation time:

E =
Pp/tp
Ps/ts

, (4.1)

where P indicates the precision and P = 1/(Sn + esize). The variable esize

refers to the width and height in millimeters of each square element, while t is the

computation time. The subscripts p and s indicate respective values for a parallel

implementation and the sequential implementation. For fixed values of precision,

Equation (4.1) is essentially a measure of the relative computation times of a parallel

implementation and the sequential implementation. That is, E = ts/tp, which is

69

simply the speedup (as defined in [58]) in computation time achieved when parallel

computation is applied compared to the execution time of the sequential implemen-

tation of the algorithm.

Tables 4.2 and 4.3 also contain values for the Karp-Flatt (K-F) metric, defined in

[59] as:

e =
1/E − 1/Np

1− 1/Np

. (4.2)

The K-F metric provides a measure of parallelization where problem sizes or

datasets may increase in size [59], marking it as an amenable metric for algorithms

that exhibit data-level parallelism. The value of e provides an indication of the ef-

fect of different workload or input sizes in a parallelized implementation. Note that

if efficiency, E, exceeds the number of processors, Np, the K-F metric, e, becomes

negative. When E = Np, the value of e is zero and when E < Np, the value of e is

positive.

4.2 Multithreaded and Cluster Computing

RQCHP is a network for HPC solutions for researchers in Quebec, Canada. It en-

compasses five different institutions of higher learning within Quebec: Université de

Montréal, Université de Sherbrooke, Concordia University, École polytechnique de

Montréal and Bishop’s University. RQCHP also collaborates with Compute Canada,

an umbrella organization that enables access to several HPC initiatives for researchers

throughout Canada.

The cluster utilized for the purposes of conducting the experiments with the mul-

tithreaded and cluster computing implementations is named Mammoth-Serial II and

70

features 308 nodes, each with 2 Intel Xeon E5462 quad-core CPUs. It is accessed

through the RQCHP [2].

In total, there are 2464 cores, 5.6 TB of RAM and 75.2 TB of disk space. The op-

erating system installed on the cluster is a variant of Linux known as CentOS version

5. The compiler utilized for the compilation and optimization of the sequential algo-

rithm is the Intel C/C++ Compiler (ICC) version 10.1. The simulation parameters

utilized for each of the three experiments are outlined in Table 4.1.

The results for the computation times utilizing multiple threads and multiple pro-

cesses with multiple threads in a cluster are presented in Table 4.2 and Table 4.3 and

Figures 4.1 and 4.2. Table 4.2 summarizes the total computation times for the sequen-

tial, multithreaded and cluster implementations of the model without the application

of quarter-field computation. With a precision of 1 mm−1, the multithreaded imple-

mentation has a speedup that nearly equals the number of threads, Nt, which is 8.

In the remaining two cases, however, the speedup slightly exceeds the total number

of threads. There are multiple reasons that may have given rise to this phenomenon.

An explanation for this behaviour may stem from the nature of the CPUs and

their caches. Particularly, the CPUs utilized for the simulations belong to the family

of server processors featuring 32 kB of L1 instruction caches and 32 kB of L1 data

caches for each physical core [60]. The Intel Xeon E5462 also contains two 6 MB

L2 caches, a total of 12 MB of L2 cache available to each physical core [60]. Given

the repetitive nature of the algorithm, the availability of large and fast L1 and L2

caches can provide the added performance benefits necessary for speedup beyond the

number of available threads.

Since there is no thread affinity, a thread may complete execution on one core and

spawn on another core. In many cases, this is detrimental as thread creation adds

71

Table 4.2: Sequential, multithreaded and cluster com-
putation times with their respective Karp-Flatt metric
values for 8 and 64∗ threads without quarter-field com-
putation.

Sequential Multithreaded

P (mm−1) Time (s) Time (s) E K-F metric

1 14.96 2.09 7.16 1.68E-02
2.5 705.76 83.84 8.42 -7.09E-03

5 22356.91 2657.78 8.41 -6.99E-03

Sequential Cluster

P (mm−1) Time (s) Time (s) E K-F metric

1 14.96 0.43 34.79 1.33E-02
2.5 705.76 10.70 65.96 -4.71E-04

5 22356.91 332.95 67.15 -7.44E-04
∗ 8 processes (on separate CPUs) with 8 threads each

produces a total number of 64 threads, though they are
executing asynchronously.

unnecessary overhead and the locality of the cache is changed. However, data-level

parallelism suggests that any thread may benefit from the instruction cache of any

other thread when identical instructions are being executed by all threads. Thus,

a secondary indication of the non-linear speedup may be a direct product of the

inherent nature of data-level parallelism, where identical instructions are executed

over a varied dataset on the CPU.

For the cluster implementation, the speedup exceeding the total number of threads

is likely due to the reasons described previously but also perhaps because of the

averaged calculations. To explain further, 8 processors are utilized for the cluster

implementation and 8 jobs were submitted to the cluster. Each job subsequently

runs asynchronously, perhaps finishing at different times dependant on when each job

is executed.

72

 0.1

 1

 10

 100

 1000

 10000

 100000

0.5/0.5 0.2/0.2 0.1/0.1

T
ot

al
 ti

m
e

(s
)

Step size/Element size (mm)

seq
mul
clu

Figure 4.1: Sequential, multithreaded and cluster computation times for step sizes and
element sizes of 0.5, 0.2 and 0.1 without quarter-field computation enabled.

However, the computation time for a single job is an indication of the total com-

putation time for 8 jobs, were they executed synchronously on 8 processors. Thus,

an average of the computation times for each job provides a metric for estimating

the runtime of the algorithm executed synchronously on 8 processors. This averaging

process may then introduce marginal differences in the computation times for the

cluster implementation.

From Table 4.2, a few important points may be discerned regarding the K-F metric

values. Firstly, all values are nearly zero, which indicates that the algorithm exhibits

a high degree of parallelism. A second point to note is that in all cases, the values for

the K-F metric decrease as the workload is increased by increasing the precision of the

simulations. This indicates that the workload for the first experiment is small enough

that the overhead of parallelization becomes noticeable. In the second and third

experiments, the workload is high enough that benefit of parallelization outweighs

the costs associated with overhead.

73

Table 4.3: Sequential, multithreaded and cluster com-
putation times with their respective Karp-Flatt metric
values for 8 and 64∗ threads with quarter-field compu-
tation.

Sequential Multithreaded

P (mm−1) Time (s) Time (s) E K-F metric

1 3.9 0.8 4.88 9.16E-02
2.5 175.61 21.1 8.32 -5.54E-03

5 5919.85 663.71 8.92 -1.47E-02

Sequential Cluster

P (mm−1) Time (s) Time (s) E K-F metric

1 3.9 0.27 14.44 5.45E-02
2.5 175.61 2.82 62.27 4.40E-04

5 5919.85 83.20 71.15 -1.60E-03
∗ 8 processes (on separate CPUs) with 8 threads each

produces a total number of 64 threads, though they are
executing asynchronously.

Table 4.3 signifies that applying quarter-field computation results in a further en-

hancement to the degree of optimization, where computation times are nearly 4 times

shorter in most cases, while the same degree of precision and accuracy is maintained.

Note however, that for a precision of 1 mm−1 the threads complete execution too

quickly and the speedup is below the theoretical threshold. This indicates that the

overhead due to thread creation, thread migration and context switching is greater

than the resultant performance benefits.

4.3 Graphics Processing Units

The simulation parameters for the GPU experiments are identical to those utilized for

the previous experiments. Experimentation begins with a low precision calculation

volume with Nx, Ny and Nz all equal to 64 points. For all experiments with the GPU

74

 0.1

 1

 10

 100

 1000

 10000

0.5/0.5 0.2/0.2 0.1/0.1

T
ot

al
 ti

m
e

(s
)

Step size/Element size (mm)

seq
mul
clu

Figure 4.2: Sequential, multithreaded and cluster computation times for step sizes and
element sizes of 0.5, 0.2 and 0.1 with quarter-field computation enabled.

implementation, quarter-field computation is enabled, halving the number of points

that lie along the X and Y axes.

It should be noted that while the number of points in the calculation volume

is progressively increased, the physical dimensions of the calculation volume remain

approximately the same as indicated in Table 4.1. While maintaining approximately

the same physical dimensions, the number of points is adjusted by increasing the

precision, Pp and Ps, of the sequential and GPU-based implementations, respectively.

The element size, esize, and the step sizes, Sn, are progressively decreased.

The GPU utilized for the experiment is a Tesla T10 processor by Nvidia with

CUDA compute capability version 1.3. The GPU consists of 30 SMs, each with 8 SPs

for a total of 240 scalar processors or CUDA cores. The memory consists of 4 GB

of 512-bit Graphics Double Data Rate 3 (GDDR3) DRAM capable of a maximum

bandwidth of 102 GB/s. The device-host interface is a PCIe x16 connection with a

75

 0.1

 1

 10

 100

 1000

 10000

0.5/0.5 0.2/0.2 0.1/0.1

T
ot

al
 ti

m
e

(s
)

Step size/Element size (mm)

seq
mul
clu

gpu

Figure 4.3: A comparison between the GPU execution times and the execution times of
the other implementations.

maximum bandwidth of 16 GB/s.

The GPU is located on a single rack along with three other GPUs of identical

type, which is itself a part of a larger server consisting of multiple racks designed

for GPU computing. The GPU server is accessed through an Secure Shell (SSH)

client and is part of SHARCNET. SHARCNET is a consortium of 19 universities

and affiliates in southern Ontario that provide access to multiple clusters of HPC

servers, which are interconnected with a high-speed wide-area network [1]. A primary

goal of SHARCNET is to enable and support academic research. SHARCNET, with

RQCHP, are two of seven consortia that provide access to HPC infrastructure across

Canada. The seven consortia collectively operate under the umbrella organization

known as Compute Canada.

In terms of the CUDA parameters, the length and width of each block is set

to 16 threads. Each block contains 256 threads, which provides a natural mapping

between points in the calculation volume and the threads in each block. The total

76

Table 4.4: Sequential and GPU computation times
with their respective Karp-Flatt metric values.

Sequential GPU

P (mm−1) Time (s) Time (s) E K-F metric

1 3.9 0.36 10.83 8.85E-02
2.5 175.61 1.80 97.56 6.11E-03
5 5919.85 32.12 184.30 1.26E-03

number of blocks in the grid varies per experiment. As described in Section 3.6.2,

the GPU representation of the calculation volume involves the adjacent placement

of all planes from left to right. Each plane is divided horizontally and vertically

into blocks to create an equal number of points within each block. The number

of blocks along the X direction of the grid is computed with the following formula:

npx / blockDim.x * npz. For the number of blocks in the Y direction of the grid,

the following formula is applied: npy / blockDim.y.

Since the execution times when parameters values are stored in either constant or

shared memory are identical, either type of memory storage is suitable for comparison

to the other implementations.

Because shared memory is located on-chip as opposed to being located off-chip

in DRAM, parameter values are stored in shared memory to produce the execution

times depicted in Figure 4.3 and Table 4.4.

Note that in the case where step sizes and element size equal 0.5 mm, the perfor-

mance of the GPU implementation is worse than the cluster implementation. With

that level of precision, the overhead of configuring the GPU and the inability to hide

the effects of high latency operations outweighs the benefits of GPU computation.

Despite an execution time marginally slower than the cluster implementation in the

77

case when the precision is set to 1 mm−1, the GPU implementation still outperforms

all implementations in the remaining two cases.

The speedup achieved with the GPU implementation is higher than that of the

other implementations. The Tesla GPU utilized for the experiments contains 30

streaming multi-processors with 8 scalar processors each resulting in a total of 240

scalar processors. Given that switching between threads has zero overhead in the

GPU, a perfect speedup would equal the number of scalar processors or, the maximum

speedup is 240. The actual speedup achieved is below this limit in all experiments.

It may be observed, however, that speedup increases as the precision of the acous-

tic source and the calculation volume is increased. Two sets of factors may be at-

tributed to the progressive increase in speedup observed in the GPU implementation.

The first set is the association between a decrease in the element size of the acoustic

source and the increase in the arithmetic intensity of the field computation for a single

point in the calculation volume. As the size of each element is decreased, the number

of elements increases and therefore, a greater number of elements, each with multiple

sub-elements, must be processed to compute to the intensity value at a point in the

calculation volume. Consequently, the arithmetic intensity, or, the execution time of

a single thread on the GPU is increased.

The second set is the relationship between the number of points in the calculation

volume and the number of threads spawned to compute the intensity values at those

points. Another reason for an increased speedup in the third experiment is due to a

high number of points in the calculation volume. This is due to the design of GPUs

as high throughput devices.

In the first experiment, the total number of threads equals: Nz · Nx/2 · Ny/2 =

64 · 32 · 32 = 65536 threads. The total number of threads in the third experiment is

calculated similarly and equals: 256 · 128 · 128 = 4194304 threads. The number of

78

threads in the third experiment is 64 times greater than that in the first experiment,

which provides a workload great enough to hide the time required for high latency

operations.

Recall from Section 2.6.3 that a warp of 32 threads is executed at once by any single

SM. When a high latency operation, such as a fetch from global memory, is issued, the

SM switches to another warp of 32 threads that are ready for execution. The ability

of the GPU to hide high latency operations is thus dependant on the availability of

a high volume of threads, which is exactly the case in the third experiment where

4194304 threads are spawned, one for each point in the calculation volume.

A third factor that affects performance on the GPU is known as occupancy [61,

pp. 44-46], a metric that defines the number of thread blocks that occupy each SM.

The number of threads per block, registers used by each thread and the amount of

shared memory required by each block limit the maximum number of blocks that

may occupy each SM. As a result, the number of active warps per SM is also limited.

Physically, the maximum number of active warps per SM is 32. The number of

registers required by each thread in the GPU implementation is 32. With 256 threads

per block, the number of active warps is limited to 16 active warps per SM in the

following manner:

256 threads / block

32 threads / warp
= 8 active warps / SM (4.3)

16384 registers available / SM

256 threads / block · 32 registers / thread
= 2 active thread blocks / SM (4.4)

8 active warps / SM · 2 active thread blocks = 16 active warps / SM. (4.5)

Increasing the number of threads per block to 512 only reduces the number of

79

active thread blocks to one due to the requirement of 32 registers per thread. A block

with 512 threads thus results in an identical number of 16 active warps per SM. Given

that the maximum number of active warps supported by the Tesla architecture is 32,

the occupancy in the current GPU implementation is limited to 50% according to the

following equation:

16 active warps per SM

32 maximum active warps per SM
× 100% = 50%. (4.6)

A low occupancy is not necessarily indicative of poor performance as it results in

a greater number of registers available to each thread block assigned to a SM [61,

pg. 47]. However, in the GPU implementation, the effects of low occupancy are more

apparent in the first and second experiments than the the third experiment. This is

because the number of threads in the first and second experiments is insufficient to

hide high latency operations in the kernel.

4.4 Multi-layer Simulation

The speedups achieved with any of the HPC implementations lend themselves to the

possibility of increasing the complexity of the simulation process. Such a possibility

is explored when the simulation process for a single homogeneous layer is extended to

multiple homogeneous layers by collecting information related to certain properties

of the propagating wave at an interface plane separating two layers or two media.

It should be noted that the results presented and discussed are preliminary but

support the plausibility of a multi-layer extension of the single layer model. To test

the validity of the multi-layer model, the acoustic fields generated with the single

layer and multi-layer models are compared. For the single layer medium, a material

80

with properties similar to that of tissue is utilized. Two layers are utilized for the

multi-layer model, the properties of which, are identical to the properties of the single

layer tissue medium. It is instructive to imagine a block of tissue for the single layer

model and introducing a slice parallel to the X-Y plane at a certain location along

the Z-axis. The X, Y and Z limits are -5 to +5 mm, -5 to +5 mm and +15 to +45

mm respectively.

A concave acoustic source is focused such that the geometrical focal spot is located

in the second layer of the multi-layer model such that waves propagate through the

first layer and through the interface into the second medium to create a region of high

intensity near the focal spot. The highest intensity value that is observed is called

the peak intensity value. Figure 3.6 illustrates the experimental setup. The location

of the interface plane is fixed at 18.6 mm, transducer geometry remains constant and

only the center frequency is adjusted for each test.

The effects of multi-layer wave propagation on the peak intensity values at the

acoustic focal spot are studied and the results, for different center frequencies, are

depicted in Figure 4.4. The disparity between peak intensity values continues to

increase until a frequency of 6 MHz, at which point the difference stabilizes and

begins to steadily decrease. With minor exceptions for frequencies at and below 0.25

MHz, the peak intensity values in the multi-layer model are generally less than the

peak intensity values produced with the single layer model.

Despite the inequalities between the peak intensity values produced with the sin-

gle layer and multi-layer models, the shape of the resultant line plots in Figure 4.4

indicates a strong correlation between the two sets of values.

The location of the interface plane also affects the peak intensity value that is then

81

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8 9 10

P
ea

k
in

te
ns

ity
 (

W
/c

m
2)

Frequency (MHz)

Single layer
Multi-layer

Figure 4.4: A comparison of peak intensity values observed with the single layer model
and the multi-layer model at varying frequencies and a fixed interface location.

 0

 2

 4

 6

 8

 10

 12

 14

 15 20 25 30 35 40 45

In
te

ns
ity

 (
W

/c
m

2)

Z-axis (mm)

Single layer
Interface locations

(a) Axial profile along the Z-axis of intensity val-
ues produced with a 4 MHz center frequency.

 12

 12.5

 13

 13.5

 14

 14.5

 15

 15.5

 14 16 18 20 22 24 26 28

P
ea

k
in

te
ns

ity
 (

W
/c

m
2)

Interface location (mm)

Multi-layer
Single-layer

(b) Peak intensity values observed in the second
layer with varied interface locations.

Figure 4.5: Plots depicting interface locations and the peak intensity values observed at
those interface locations. The interface locations in 4.5a are selected based on the presence
or lack of intensity at a particular point on the Z-axis.

observed in the medium into which the wave propagates. In the second experiment,

multiple tests are performed by placing the interface at 8 locations along the Z-axis.

The interface locations are determined based on whether or not a crest or a trough

is observed at that point in the axial profile along the Z-axis, as illustrated in Figure

82

4.5a. The axial profile is produced utilizing the single-layer model with X, Y and Z

limits identical to those defined in the previous experiment.

The interface locations corresponding to the first 8 crests and troughs in Figure

4.5a are: 15.6, 16.6, 18, 19.2, 21, 22.8, 25.2 and 27.6 mm. The results, depicted in

Figure 4.5b, indicate that the location of the interface produces discernible effects on

the peak intensity value observed in the second layer.

Multiple reasons may account for this phenomenon, which include the increasing

effects of attenuation as distance is increased, the angle phase velocity of the waves at

certain locations along the Z-axis and also the power of the signal at those locations.

In actual physical scenarios, the location of the interface between two identical media

should not produce any differences in the peak intensity observed in the second layer.

Thus, further study is required to assess and improve the current multi-layer model.

4.5 Linear Acoustic and Temperature Simulator

Features of LATS are presented here. Though the cluster computing and GPU imple-

mentations are not accessible through the LATS software package, the multithreaded

implementation is accessible and the number of threads may be configured prior to

executing any simulations.

LATS also contains functionality for viewing the acoustic fields generated following

the simulation process. The features of LATS are organized in the following sections

in the sequence that a user would proceed through the GUI.

For instance, the user must first configure LATS, then input simulation parameters

for acoustic field simulation and may only then proceed to view the acoustic field.

The additional step of applying the BHTE [16] described in Section 2.2 is optional

but may be utilized to study the effects of heat absorption and temperature rise in

83

tissue media.

4.6 Configuration

First-time users of the simulation GUI must begin at the configuration page as de-

picted in Figure 4.6a. The functionality of this page is outlined below:

- Location of simulation programs must point to the folder where the sup-

porting programs for the simulation are situated. This is where programs, which

the simulation is dependent upon, are contained. These include field 2008,

bhte 2008, etc.

- Location of saved output files points to the directory which will be used for

writing to any output files that are produced as a result of the simulations.

- Output filenames’ prefix is a string of characters that will act as a prefix

to any of files that are created as output. For instance, a prefix of crystal will

produce crystal.mat and crystal field.mat in the output directory. Note that the

prefix string must contain only valid filename characters, which is dependent

on the filesystem.

- Computation configuration selects a method for the computations. Se-

quential utilizes one thread and is comparably slower than the Multi-threaded

computations. In multi-threaded computations, multiple threads are initiated

to compute the calculation volume or the acoustic field, thus yielding faster

results on architectures that support multi-threading. The number of threads

are defined in the Number of threads field. Note that, in general, this value

should be equal to the number of logical or physical cores available on the CPU.

84

(a) New configuration (b) Finished configuration

Figure 4.6: An empty (4.6a) and complete (4.6b) configuration page in the simulation
GUI.

The disabled options of Cluster and GPU are included for completeness and

to provide an indication of features that may be included in the future.

The Browse... buttons permit navigation to the desired directories for each of

the parameters. Clicking on the Apply settings button loads the values from each

parameter into the program and enables the Save settings and Create intensity field

buttons.

Clicking on Save settings saves the configuration settings to a file named sim-

config.mat and subsequent runs of the simulation GUI will no longer require re-

configuration of the settings.

With configuration completed, the page should appear as in Figure 4.6b and

clicking on the Create intensity field button moves to the next page in the simulation

GUI.

85

4.7 Create Intensity Field

The parameters on this page describe properties of the medium and the transducer

along with dimensions of the calculation volume. The following is an explanation of

each parameter on Create intensity field page.

- Total acoustic power is the rate at which the transducer does work and is

measured in Watts (W). For computations, this field is always set to 1 W.

A linear relationship between intensity (W/cm2) and power (W) is applied

through the Acoustic output power field on the Plots page. For example, if

the Acoustic output power is set to 2 W, the plotted intensity values will be

twice as high when compared with intensity values plotted at 1 W.

- Center frequency is measured in megahertz (MHz) and describes the fre-

quency of the ultrasonic waves’ propagation.

- Integration factor is a unitless constant utilized in the calculation of the

Rayleigh diffraction integral.

- Element size is a measurement, in millimeters (mm), of the size of each element

in the group of elements that form the transducer geometry.

- Element spacing describes, in millimeters (mm), the amount of space to in-

clude between each element in the group of elements that form the transducer

geometry.

- Transducer size in x describes, in millimeters (mm), the physical size of the

transducer in the x-direction.

- Transducer size in y describes, in millimeters (mm), the physical size of the

transducer in the y-direction.

86

- Curvature radius describes, in millimeters (mm), the location of the focal spot

relative to the center of the transducer. The location is varied by manipulating

the curvature of the transducer.

- Speed of sound in meters per second (m/s), is the speed at which sound

travels in the given medium.

- Density in kilograms per cubic meter (kg/m3), is the density of the medium.

- Attenuation coefficient is input in decibels per centimeter megahertz (dB/cm·MHz)

and is a given value describing the loss in the medium due to attenuation. The

default value of 0.1560 is ideal for skin. Note that the values for the attenuation

coefficient under the Create intensity field tab and the Apply BHTE tab are in-

dependent. The attenuation coefficient used for intensity field calculations must

have a correction factor applied to it prior to running the field simulation if the

waves propagate through 2 different mediums. The proper attenuation coeffi-

cient for intensity field simulations may be arrived at by utilizing the following

weighted formulation:

α =
L1

L1 + L2

αac1 +
L2

L1 + L2

αac2

where L1 and L2 denote the lengths along the Z-axis of medium 1 and medium

2, respectively. αac1 is the actual attenuation coefficient of medium 1 and αac2

is the actual attenuation coefficient of medium 2. For simulations with only 1

layer, it is apparent that α = αac1 = αac2.

- Attenuation frequency dependency is a fixed unitless value that must be

between 1 and 2 (inclusive). The default value of 1 is ideal for skin. With n

defined as the frequency dependency, the calculation of attenuation is based on

87

the following equation:

Attenuation = α · fn

where α is the attenuation coefficient described previously and f is the

center frequency.

Note that the value for attenuation under the Create Intensity Field tab will

be different from the value for attenuation calculated under the Apply BHTE

tab only if intensity computations are performed for a two layer medium. This

is due to the utilization of the weighted average equation for obtaining α for

intensity field computations and not utilizing a weighted average for α for BHTE

computations. When intensity field computations are performed for a single

layer, values for the attenuation coefficients under both the Create Intensity

Field and Apply BHTE tabs are equal, since no weighted average is applied for

either attenuation coefficient.

- Step sizes x, y and z describe the level of detail with which the computation

proceeds over the given volume. Each step size is specified in millimeters (mm).

- x, y and z limits construct the extents of the calculation volume, which

is a rectangular cuboid or a box shape. The minimum and maximum limits

are relative to the center of the transducer, which is placed at (0, 0, 0). The

limits are specified in millimeters (mm). If it is desired to include the focal

spot in the calculation volume, it is recommended to set the minimum and

maximum z-limits such that they include the curvature radius. For example,

the default curvature radius of 10 mm is contained within the default minimum

and maximum z-limits of 6 mm and 10 mm, respectively.

- Hole or no hole describes a characteristic of the transducer to be created with

88

(a) Intensity field parameters (b) Notification of simulation com-
pletion

Figure 4.7: Default parameter values on the Create intensity field page and notification
when simulation is complete.

a certain circular region that has no power. The radius of the hole, created from

the center of transducer, is specified in millimeters (mm).

Clicking on the Apply settings button, produces a plot of the inputted transducer

geometry and clicking on Run simulation begins computation of the intensity field.

Partial results can be viewed in the Matlab command window and a notification

dialog box pops up when the computation is complete (Figure 4.7b).

4.7.1 Setup annular array

Under the Create Intensity Field tab, an annular geometry must be selected for the

Geometry type parameter to enable the simulation of a phased array transducer.

Clicking the Setup annular array... button displays the annular array setup dialog

box depicted in Figure 4.8, where the phase angles are set to 0 and the amplitudes

are distributed evenly to represent a non-phased transducer with uniform velocity

distribution.

89

Figure 4.8: Annular array setup dialog box with sample values for the phase angles and
amplitudes of 7 annuli.

Examples of values for phase angles and amplitudes in radians and Watts, re-

spectively, are also indicated and may be adjusted as desired for each annulus. The

annuli are numbered from 1 to n, where n is the number of annuli set initially in the

Number of annuli parameter in the Create Intensity Field tab. A1 refers to the

inner-most annulus and the labelling proceeds outwards from there. The maximum

number of annuli is 7 and the minimum is 2.

Upon completion of phase angle and amplitude entry, clicking on the button la-

belled Done, completes the annular array setup process.

4.8 Apply BHTE

Following the creation of the intensity field, the Apply BHTE and Plots tabs are

enabled. The application of BHTE to the generated intensity field is optional but

enables viewing of temperature maps and thermal dosage plots under the Plots tab.

The parameters for BHTE are outlined below and depicted visually in Figure 4.9a:

- Skin temperature is the temperature of the skin and is measured in degrees

Celsius (◦C).

- Initial body temperature is the temperature of the body and is measured

in degrees Celsius (◦C).

- Blood temperature is the temperature of the blood before heat is applied. It

90

is measured in degrees Celsius (◦C).

- Tissue thermal conductivity expresses the how well the tissue conducts heat

and is measured in watts per meter per degrees Celsius (W/m/◦C).

- Blood specific heat capacity is the heat required to create a difference in

temperature in a certain quantity of blood. The unit for this quantity is joules

per kilogram per degrees Celsius (J/kg/◦C)

- Blood perfusion rate is the rate of blood flow through a certain volume over

a period of time. It is described by the unit kilograms per cubic meter per

second (kg/m3/s).

- Attenuation coefficient is input in decibels per centimeter megahertz (dB/cm·MHz)

and is a given value describing the loss in the medium due to attenuation. The

default value of 0.1560 is ideal for skin. Note that the values for the attenuation

coefficient under the Create intensity field tab and the Apply BHTE tab are

independent. The attenuation coefficient used for BHTE calculations must not

have a correction factor applied to it.

- Attenuation frequency dependency is a fixed unitless value that must be

between 1 and 2 (inclusive). The default value of 1 is ideal for skin. With n

defined as the frequency dependency, the calculation of attenuation is based on

the following equation:

Attenuation = α · fn

where α is the attenuation coefficient described previously and f is the

center frequency utilized for intensity field computations.

Note that the value for attenuation under the Create Intensity Field tab will

91

be different from the value for attenuation calculated under the Apply BHTE

tab only if intensity computations are performed for a two layer medium. This

is due to the utilization of the weighted average equation for obtaining α for

intensity field computations and not utilizing a weighted average for α for BHTE

computations. When intensity field computations are performed for a single

layer, values for the attenuation coefficients under both the Create Intensity

Field and Apply BHTE tabs are equal, since no weighted average is applied for

either attenuation coefficient.

- Calculation time increment (s) describes the time interval (in seconds (s))

at which the BHTE sampling is performed.

- Display time increment (s) specifies the time interval (in seconds (s)) at

which to produce the temperature maps and thermal dosage plots.

- Sonication ON time is the amount of time that heat is applied and is indicated

in seconds (s).

- Sonication OFF time is the amount of time that heat is not applied and is

indicated in seconds (s).

- Total time is the total of Sonication ON and Sonication OFF times in seconds

(s). This value is automatically updated as a convenience to the user. It cannot

be set manually.

- Total acoustic power affects the intensity of the heat application and is mea-

sured in Watts (W).

- Save final temperatures indicates whether or not the final temperature ma-

trix is saved for each BHTE sample point.

92

(a) BHTE parameters (b) Notification of simulation com-
pletion

Figure 4.9: Default parameter values on the Apply BHTE page and notification when
simulation is complete.

- Save accumulated dosage indicates whether or not the accumulated dosage

matrix is saved for each BHTE sample point.

4.9 Plots

The Plots tab is enabled after an intensity field is created under the Create Intensity

Field tab. However, the BHTE plots can be viewed only after BHTE simulation is

performed under the Apply BHTE tab.

The Acoustic output power parameter is measured in Watts (W). Through

multiplication by the intensity values in the intensity field, this parameter scales the

intensity values higher or lower. That is, a peak intensity of 40 W/cm2 would become

400 W/cm2, if the Acoustic output power was set to 10 W.

The intensity field plots can be viewed by clicking on the View intensity field

button. Clicking on the View temperature map and/or View thermal dosage buttons

produces temperature maps and/or thermal dosage plots, respectively. The sampling

93

(a) Intensity field plots

(b) Intensity field parameters (c) Single temperature map after 1
time interval

(d) Thermal dosage at 1 time inter-
val

(e) Contour plot at 1 time interval

Figure 4.10: Plotting features

94

x

y

z
(0,0,0)

y

hi
gh

er
lo

w
er

X-Z planes

Figure 4.11: X-Z plane colour map plotting explanation

interval for these plots is set through the Display time increment (s) parameter

under the Apply BHTE tab.

Manipulation of the sliders under each plot (Figure 4.10a) adjusts the plane from

which the plotting data is extracted. As an example, consider the colour-mapped plot

in the second row and first column from the top-left. Adjusting the slider to the right

increases the Y-axis value and the plot is updated with a slice of the X-Z plane at

that point on the Y-axis. Adjusting the slider to the left decreases the Y-axis value

and updates the plot accordingly. An illustration of this is indicated in Figure 4.11.

Note that adjusting the Y-axis in this plot affects the intensity profile of the X-axis

along the Z-axis in the plot situated at the first row and first column.

Having performed BHTE computations, there are 3 types of plots available for

viewing the effects: contour, temperature map and thermal dosage and each type may

be viewed by clicking on the appropriate button under the Plots tab. The contour

plots present outlines that mark a major change in temperature in the field, while

the temperature maps provide a smoothed display of temperature variations across a

95

plane in the calculation volume. Lastly, if the region is heated to a high temperature

over an interval of time, the thermal dosage plots depict, in 3D, a lesion that would

result from HIFU treatment.

4.10 Summary

This chapter presented the results achieved through the implementation of the parallel

computing models described in Chapter 3. Performance enhancements equal to the

total number of threads are realized in the first two implementations on CPUs.

In the third implementation on GPUs, the importance of a sizeable workload is

highlighted when speedups far below the number of cores in the GPU are observed in

the first two experiments. In the third experiment, the number of points in calculation

volume are 64 times greater than in the first experiment and 8 times greater than

in the second experiment. Because the number of points is equal to the number

of threads in the GPU implementation, the computational workload in the third

experiment is high and sufficient to hide high latency operations on the GPU.

The HPC implementations of the linear acoustic wave model described by Ochel-

tree and Frizzell [8] lead to the realization of a multi-layer extension to the same linear

acoustic wave model. Though the results do not quite match what is expected based

on single layer simulations, the preliminary findings are promising in the development

of a more accurate multi-layer linear acoustic wave simulation model.

96

Chapter 5

Concluding Remarks

In this work, the performance of a linear acoustic simulation model is enhanced in

terms of precision and efficiency.

The sequential algorithm is studied and data-level parallelism inherent in the al-

gorithm is exploited with multiple HPC approaches that each offer certain advantages

and disadvantages.

With multiple OpenMP threads, the linear acoustic simulation exploits the full

capabilities of the multi-core architectures prevalent today. Provided a C compiler

supporting OpenMP threads exists for that platform, an added benefit of this ap-

proach is its portability as it is capable of executing on both single and multiple core

CPUs. However, OpenMP’s limitation to SMP architectures restrains the coarse-

grained data-level parallelism inherent in the model in terms of the efficiency and

precision that may be realized.

A hybrid distributed approach is thus developed with multiple threads but also

multiple processes. With local memory available to each CPU that runs one process,

a particular advantage of this approach is its scalability. As the number of points is

increased in the calculation volume, so too is the spatial and temporal complexity of

97

the algorithm as more points in the calculation volume must be computed.

By reducing the number of points that each process must compute, a distributed

memory approach reduces the spatial complexity of the algorithm per process. This

is precisely the case when, for a fixed number of points, the number of processes to

compute those points is increased in implementation that relies on cluster computing.

Each process computes fewer points and the local spatial complexity of the algorithm

per process is reduced. Multiple threads spawned by each process further exploit the

data-level parallelism. However, the threads on one physical CPU operate with SMP

and all threads share a local memory.

In the final approach, the sequential algorithm is implemented to exploit the

parallel computation capabilities of GPUs. Owing to the design of GPU architectures,

millions of lightweight threads may be spawned. The performance achieved with the

GPU implementation provides an indication of the specificity of their application to

parallel computing. The number of registers, the amount of shared memory and other

physical hardware limitations impose restrictions on the types of problems that will

benefit most from implementation on a GPU.

While the lack of any dependencies between calculations of points in the acoustic

model is highly amenable to GPU implementation, the algorithm to compute a single

point requires 32 registers, which limits the occupancy in each SM as the registers in

each SM must be shared by all active threads. Thus, a high workload, in terms of

the number of points, is required to spawn millions of threads to hide the effects of

high latency operations. The highest speedup of 185.45 is achieved with the heaviest

workload on the GPU and lower speedups are realized with smaller workloads.

With super-scalar architectures coupled with large and fast CPU caches, the

speedups realized in certain cases are beyond theoretical limits, which suggests that

the speedup is at most equal to the number of processors. The axisymmetric prop-

98

erties of the acoustic field lead to quarter-field computation, which results in fur-

ther performance benefits through a 75% reduction in the number of computations.

Compared to the baseline sequential algorithm with quarter-field computation, the

multithreaded, cluster and GPU implementations with quarter-field computation are,

in cases with the maximum workload, 9, 71 and 185 times faster with 8, 64 and 240

cores, respectively.

The enhanced performance of linear acoustic field simulation provides an avenue

for further increasing the complexity of the linear acoustic model. A multi-layer

linear acoustic model is developed as an extension of the single layer linear acoustic

model. Peak intensity values observed at varied frequencies with the single layer

model and the multi-layer model, coupled with the effects of interface location on the

peak intensity values indicate disparities between the validated single layer model and

the multi-layer model. However, the preliminary results demonstrate the plausibility

of a realistic multi-layer model.

5.1 Future Work

The execution speed of the algorithm may be improved further through the usage of

multiple GPUs without requiring any synchronization between GPUs. Also, connec-

tivity between LATS and the cluster computing and GPU implementations is possible

through the development of a separate module that handles communication between

a client that is running LATS and a server that will execute the linear acoustic wave

simulation.

Certain improvements in the parallel implementations may potentially lead to

further enhancements in certain aspects of performance that were not considered in

the current work. Memory usage, for instance, may be improved with an increased

99

usage of HDD space as opposed to DRAM in both the multithreaded and cluster

implementations. Disk usage was minimized in the current work since accesses to the

disk are slower than accesses to DRAM.

The scalability of all HPC approaches are limited in terms of the number of ele-

ments that compose the acoustic source since, prior to computation, all elements are

first stored into memory. Potential improvements in the scalability of the algorithm

are possible but would likely reduce execution speed if HDD storage is utilized instead

of system memory.

The results from the multi-layer model implementation indicate that, while dis-

parities exist when compared to the single layer model, subject to further study, the

multi-layer model may produce results that reflect the reality of wave propagation

across multiple media with better accuracy.

The current work also naturally lends itself to applications of HPC approaches

to nonlinear acoustic wave propagation models such as NLP, which is developed in

[52] and the KZK equation which is described in [51]. Such approaches are greatly

warranted given the additional complexity of such models as mentioned in Section

2.7.3.

GPU approaches, in particular, may present challenges given the resource intensive

nature of nonlinear acoustic wave models and the restrictions on resources in the

GPU. With technological developments, future GPU devices will be more flexible

though even with current devices parallel computing models for nonlinear acoustic

wave propagation are likely possible.

As the scalability of grid computing platforms continues to improve [62], such

platforms provide additional means of realizing performance gains on a greater scale.

100

Bibliography

[1] SHARCNET. Shared Hierarchical Academic Research Computing Network.
http://www.sharcnet.ca. [Online; accessed 19-August-2011].

[2] RQCHP. Réseau Québéc de Calcul de Haute Performance. http://www.rqchp.
ca. [Online; accessed 19-August-2011].

[3] Compute/Calcul Canada. Compute/Calcul Canada. https://computecanada.
org/. [Online; accessed 19-August-2011].

[4] G. R. Harris. Review of Transient Field Theory for a Baffled Planar Piston.
Journal of the Acoustical Society of America, 70(1):10–20, 1981.

[5] R. Merritt. Cpu designers debate multi-core future. http://www.eetimes.com/
showArticle.jhtml?articleID=206105179, February 2008. [Online; accessed
19-August-2011].

[6] P. Dvorak. The processor future is multicore. Machine Design, 80(5):74–80,
2008.

[7] W. Gropp, K. Kennedy, L. Torczon, A. White, J. Dongarra, I. Foster, and G. C.
Fox. The Sourcebook of Parallel Computing (The Morgan Kaufmann Series in
Computer Architecture and Design). Morgan Kaufmann, November 2002.

[8] K. B. Ocheltree and L. A. Frizzell. Sound field calculation for rectangular
sources. IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
36(2):242–248, 1989.

[9] R. S. C. Cobbold. Foundations of Biomedical Ultrasound. Oxford University
Press, Toronto, 2006.

[10] F. Butt. Linear Acoustic and Temperature Simulator (LATS) User Guide, 1.4
edition, 2011.

[11] G. ter Haar and C. Coussios. High intensity focused ultrasound: Physical prin-
ciples and devices. International Journal of Hyperthermia, 23(2):89–104, 2007.

101

[12] J. Tavakkoli and N. T. Sanghvi. Ultrasound-guided HIFU and Thermal Abla-
tion. In V. Frenkel, editor, Therapeutic Ultrasound: Mechanisms to Applications,
pages 137–161. Nova Science Publishers, Hauppauge, NY, January 2011.

[13] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for GPUs: Stream computing on graphics hardware. In ACM
Transactions on Graphics, volume 23, pages 777–786, 2004.

[14] P. R. Stepanishen. The Time-Dependent Force and Radiation Impedance on a
Piston in a Rigid Infinite Planar Baffle. The Journal of the Acoustical Society of
America, 49(3B):841–849, March 1971 1971.

[15] J. Zemanek. Beam Behavior within the Nearfield of a Vibrating Piston. Journal
of the Acoustical Society of America, 49(1 pt 2):181–191, 1971.

[16] H. H. Pennes. Analysis of tissue and arterial blood temperatures in the resting
human forearm. J.Appl.Physiol., 1(2):93–122, 1948.

[17] M. J. Flynn. Some Computer Organizations and Their Effectiveness. Computers,
IEEE Transactions on, C-21; C-21(9):948–960, 1972. ID: 1.

[18] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to The Cell Multiprocessor. IBM J.Res.Dev., 2005.

[19] OpenMP C and C++ Application Program Interface Version 3.0. http://www.
openmp.org/mp-documents/spec30.pdf, 2008. [Online; accessed 19-August-
2011].

[20] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-
memory programming. Computational Science & Engineering, IEEE, 5(1):46–55,
1998. ID: 1.

[21] F. Darema. The SPMD Model : Past, Present and Future, volume 2131 of Recent
Advances in Parallel Virtual Machine and Message Passing Interface, pages 1–1.
Springer Berlin / Heidelberg, 2001.

[22] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister. A single-program-
multiple-data computational model for EPEX/FORTRAN. Parallel Computing,
7(1):11–24, 1988.

[23] T. H Weng, S. W Huang, W. W. Ro, and K. C Li. Implementing FFT using
SPMD style of OpenMP. In Proceeding - 6th International Conference on Net-
worked Computing and Advanced Information Management, NCM 2010, pages
91–96, 2010.

102

[24] G. Krawezik, G. Alléon, and F. Cappello. SPMD OpenMP versus MPI on a IBM
SMP for 3 kernels of the NAS benchmarks, volume 2327 LNCS of Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). 2002.

[25] Z. Liu, B. Chapman, T. H Weng, and O. Hernandez. Improving the performance
of OpenMP by array privatization, volume 2716 of Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). 2003.

[26] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and Engineering Computation). The
MIT Press, 2007.

[27] D. Blythe. Rise of the graphics processor. Proceedings of the IEEE, 96(5):761–
778, 2008.

[28] Nvidia Corporation. NVIDIA CUDA Programming Guide. http://developer.
nvidia.com/nvidia-gpu-computing-documentation, 2010. [Online; accessed
19-August-2011].

[29] J. Ajanovic. PCI Express* (PCIe*) 3.0 Accelerator Features, 2008.
http://www.intel.com/technology/pciexpress/devnet/resources.htm.

[30] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju,
M. Erez, N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi. Merrimac: Su-
percomputing with Streams. In Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, SC ’03, page 35, New York, NY, USA, 2003. ACM.

[31] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA tesla: A unified
graphics and computing architecture. IEEE Micro, 28(2):39–55, 2008.

[32] L. Odegaard, S. Holm, F. Teigen, and T. Kleveland. Acoustic field simulation
for arbitrarily shaped transducers in a stratified medium. In Proceedings of the
IEEE Ultrasonics Symposium, volume 3, pages 1535–1538, 1994.

[33] K. Epasinghe. Simulation and Visualization of Ultrasound Fields. Master’s
thesis, University of Oslo, 1997.

[34] J. A. Jensen. A model for the propagation and scattering of ultrasound in tissue.
Journal of the Acoustical Society of America, 89(1):182–190, 1991.

[35] J. A. Jensen. Simulation of advanced ultrasound systems using field II. In 2004
2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano,
volume 1, pages 636–639, 2004.

103

[36] C. S. Henry, F. Xia, and R. Stevens. Application of high-performance comput-
ing to the reconstruction, analysis, and optimization of genome-scale metabolic
models. Journal of Physics: Conference Series, 180(1), 2009.

[37] O. Fortmeier and H. M. Bücker. Hybrid distributed-/shared-memory paralleliza-
tion for re-initializing level set functions. pages 114–121, 2010.

[38] M. Reumann, B. G. Fitch, A. Rayshubskiy, D. U. Keller, G. Seemann, O. Dossel,
M. C. Pitman, and J. J. Rice. Strong scaling and speedup to 16,384 processors
in cardiac electro-mechanical simulations. Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, 2009.

[39] K. H. W. J. Ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov. A model
for human ventricular tissue. American Journal of Physiology - Heart and Cir-
culatory Physiology, 286(4 55-4):H1573–H1589, 2004.

[40] L. Nyland, J. Prins, R. H. Yun, J. Hermans, H. C Kum, and L. Wang. Achieving
scalable parallel molecular dynamics using dynamic spatial domain decomposi-
tion techniques. Journal of Parallel and Distributed Computing, 47(2):125–138,
1997.

[41] M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar. Interactive multi-pass pro-
grammable shading. In Proceedings of the ACM SIGGRAPH Conference on
Computer Graphics, pages 425–432, 2000.

[42] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: high-speed rendering using image
composition. Computer Graphics (ACM), 26(2):231–240, 1992.

[43] J. Krüger and R. Westermann. Linear algebra operators for GPU implementation
of numerical algorithms. In ACM Transactions on Graphics, volume 22, pages
908–916, 2003.

[44] C. J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architectures
for general-purpose computing: a framework and analysis. In Proceedings of the
35th annual ACM/IEEE international symposium on Microarchitecture, MICRO
35, pages 306–317, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[45] C. Walbourn. DirectCompute, 14 July 2010 2010. http://blogs.msdn.com/
b/chuckw/archive/2010/07/14/directcompute.aspx.

[46] AMD. AMD Accelerated Parallel Processing OpenCL Programming
Guide (v1.3c), 2011. http://developer.amd.com/sdks/AMDAPPSDK
/documentation/Pages/default.aspx.

[47] Khronos OpenCL Working Group. The OpenCL Specification Version 1.0, 2009.
http://www.khronos.org/registry/cl/.

104

[48] O. A. Kaya, A. Şahin, and D. Kaleci. Pressure field of rectangular transducers
at finite amplitude in three dimensions. Ultrasound in Medicine and Biology,
32(2):271–280, 2006.

[49] A. C. Baker, A. M. Berg, A. Sahin, and J. N. Tjotta. The nonlinear pressure field
of plane, rectangular apertures: Experimental and theoretical results. Journal
of the Acoustical Society of America, 97(6):3510–3517, 1995.

[50] Y. Lee. Numerical Solution of the KZK Equation for Pulsed Finite Sound Beams
in Thermoviscous Fluids. PhD thesis, University of Texas at Austin, 1993.

[51] M. F. Hamilton and D. T. Blackstock. Nonlinear Acoustics. Academic Press,
United States of America, 1st edition, 1998.

[52] R. J. Zemp, J. Tavakkoli, and R. S. C. Cobbold. Modeling of nonlinear ultrasound
propagation in tissue from array transducers. Journal of the Acoustical Society
of America, 113(1):139–152, 2003.

[53] J. Tavakkoli, D. Cathignol, R. Souchon, and O. A. Sapozhnikov. Modeling of
pulsed finite-amplitude focused sound beams in time domain. Journal of the
Acoustical Society of America, 104(4):2061–2072, 1998.

[54] A. Karamalis, W. Wein, and N. Navab. Fast ultrasound image simulation us-
ing the Westervelt equation, volume 6361 LNCS of Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). 2010.

[55] G. F. Pinton, J. Dahl, S. Rosenzweig, and G. E. Trahey. A heterogeneous nonlin-
ear attenuating full- wave model of ultrasound. IEEE transactions on ultrasonics,
ferroelectrics, and frequency control, 56(3):474–488, 2009.

[56] D. Michéa and D. Komatitsch. Accelerating a three-dimensional finite-difference
wave propagation code using GPU graphics cards. Geophysical Journal Interna-
tional, 182(1):389–402, 2010.

[57] F. Butt, A. Abhari, and J. Tavakkoli. An Application of High Performance
Computing to Improve Linear Acoustic Simulation. In 14th Communications
and Networking Simulation Symposium (CNS11), Proceedings of the 2011 Spring
Simulation Multiconference, SpringSim’11, pages 71–78, Boston, MA, USA, April
4-7 2011. SCS/ACM.

[58] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. AFIPS Conference Proceedings, 30:483–485, 1967.

[59] A. H. Karp and H. P. Flatt. Measuring parallel processor performance. Com-
munications of the ACM, 33(5):539–543, 1990.

105

[60] Intel Corporation. Quad-Core Intel Xeon Processor 5400 Series: Datasheet.
http://www.intel.com/Assets/en_US/PDF/datasheet/318589.pdf, 2008.
[Online; accessed 19-August-2011].

[61] Nvidia Corporation. CUDA C Best Practices Guide. http://developer.

nvidia.com/nvidia-gpu-computing-documentation, 2010. [Online; accessed
19-August-2011].

[62] F. Butt, S. S. Bokhari, A. Abhari, and A. Ferworn. Scalable Resource Discovery
Through Distributed Search. International Journal of Distributed and Parallel
Systems, September 2011. In Press.

106

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	High performance computing for linear acoustic wave simulation
	Fouad Butt
	Recommended Citation

