
Combinatorial Constructions of Ordered

Orthogonal Arrays & Ordered Covering Arrays

by

Tamar Krikorian

Bachelor of Mathematics, University of Waterloo, 2006

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Applied Mathematics

Toronto, Ontario, Canada, 2011

c�Tamar Krikorian 2011

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

iii

Combinatorial Constructions of Ordered Orthogonal Arrays & Ordered Covering Arrays

Master of Science 2011

Tamar Krikorian

Applied Mathematics

Ryerson University

In this thesis, we consider combinatorial objects called ordered orthogonal arrays, which are related

to orthogonal arrays and Latin squares. We also introduce a new combinatorial object called ordered

covering arrays, which generalize covering arrays. We adapt existing combinatorial methods to the

construction of these objects, as well as developing new ones. We discuss the applications of ordered

orthogonal arrays and ordered covering arrays to quasi-Monte Carlo integration through the construction

of point sets called (t,m, s)-nets and a new object we call (t,m, s)-covering nets.

v

Acknowledgements

First are foremost, I would like to like to express my sincere gratitude to my supervisor, Dr. Peter

Danziger, for his guidance, critical feedback, great ideas and continuous support throughout my thesis. I

would also like to thank Dr. Brett Stevens and Dr. Katrin Rohlf, for their assistance with certain areas

in my thesis. For their time, suggestions and positive feedback, I would like to thank the examining

committee; Dr. Peter Danziger, Dr. Dejan Delic, Dr. Anthony Bonato and Dr. Jean-Paul Pascal. To

my parents, Gretta Ayoub and Harout Krikorian, I cannot thank you enough. You have always stood

by me in everything that I do, always providing me with your encouragement and support. This thesis

would never have existed without you, and I dedicate my thesis to you. To my love, Baker Saleh, thank

you for your continuous love, support and patience, and for always believing in me. And finally, I would

like to thank Ryerson University, the Department of Mathematics, and the Yeates School of Graduate

Studies, for giving me the opportunity to write this thesis, and to work with my supervisor, along with

providing me with financial support.

vii

Contents

1 Introduction 1

1.1 Latin Squares, Orthogonal Arrays, Covering Arrays and Ordered Orthogonal Arrays . . . 1

1.2 Overview of Thesis . 2

2 Background on Related Combinatorial Objects 3

2.1 Latin Squares and Orthogonal Arrays . 3

2.2 Covering Arrays . 7

2.2.1 Introduction to Covering Arrays . 7

2.2.2 Recursive and Roux Constructions . 10

2.2.3 Algorithms . 16

2.3 Ordered Orthogonal Arrays and (t,m,s)-Nets . 17

2.3.1 Introduction to Ordered Orthogonal Arrays . 17

2.3.2 (t,m,s)-Nets and their Application . 18

3 Constructions for Ordered Orthogonal Arrays 23

3.1 The Interaction Graph . 23

3.2 Further Constructions for OOAs . 28

4 Ordered Covering Arrays 39

4.1 Introduction to Ordered Covering Arrays . 39

4.2 Recursive and Roux Constructions . 41

4.3 Further Constructions for OCAs . 45

4.4 (t,m,s)-Covering Nets . 46

5 Applications of OOAs and OCAs to Numerical Methods 51

5.1 Distinct (t,m,s)-Nets from a Single OOA . 51

5.2 Integrals that Fluctuate in Certain Dimensions . 54

5.3 Integrals that Fluctuate in Specific Intervals . 55

6 Conclusion 59

ix

Chapter 1

Introduction

Latin squares, orthogonal arrays, ordered orthogonal arrays and covering arrays are all related combi-

natorial objects that have been studied extensively [17]. They each have different applications, many in

the fields of statistics as test suites and in certain areas within mathematics and computer science, such

as coding theory and cryptography.

The main contributions of this thesis are the development of new constructions for ordered orthogonal

arrays and the introduction of a new combinatorial object called ordered covering arrays, along with

related constructions. We also discuss the application of both these objects to quasi-Monte Carlo methods

of numerical integration through the construction of point sets called (t,m, s)-nets and a new object we

call (t,m, s)-covering nets.

In Section 1.1, we begin by introducing the main combinatorial objects that will be discussed in this

thesis, formal definitions will follow in Chapter 2. We also briefly discuss some applications. In Section

1.2, we give an overview of the thesis.

1.1 Latin Squares, Orthogonal Arrays, Covering Arrays and

Ordered Orthogonal Arrays

A Latin square of order n is an n×n array filled with n different symbols, in such a way that each symbol

occurs exactly once in each row and exactly once in each column. Latin squares were first introduced

by Euler [20] in 1782. These objects are well studied and have applications to experimental designs,

scheduling, graph theory, error correcting codes and cryptography [25].

Orthogonal arrays are combinatorial structures which are closely related to Latin squares and are

essential in statistics in designing experiments and are also very useful in computer science and cryp-

tography [23]. For positive integers λ, t, k and v, an orthogonal array, denoted OAλ(t, k, v) is a λvt × k

array with entries from an alphabet of size v, such that every t-tuple appears exactly λ times within

every set of t columns. Orthogonal arrays do not exist for all parameters λ, t, k and v, which brings us

to our next object.

1

1.2. OVERVIEW OF THESIS

A covering array, which has applications in areas such as software [12, 22], hardware [22], circuits

[36], new materials [10] and genetics [37] testing, extends the notion of an orthogonal array. A covering

array, denoted CAλ(t, k, v), is similar to an orthogonal array, the only difference is that in a covering

array each t-tuple occurs at least λ times, whereas in an orthogonal array, each t-tuple occurs exactly λ

times. By relaxing the condition on the number of occurrences of each t-tuple from exactly λ times to

at least λ times, allows covering arrays to exist for every integer set of parameter values. The problem

now becomes how close we can get to an optimal covering array.

Ordered orthogonal arrays which were introduced independently by Lawrence [24] and Mullen and

Schmid [30], generalize orthogonal arrays by imposing balance conditions on certain sets of columns.

Point sets called (t,m, s)-nets, which were first introduced by Niederreiter [31] in 1987, are equivalent

to a parametric subclass of ordered orthogonal arrays as shown in [24, 30]. A (t,m, s)-net is a set of

points which satisfies strong uniformity properties with regards to their distribution in the s-dimensional

unit cube and are useful in approximating the value of multi-dimensional integrals through quasi-Monte

Carlo integration [32].

1.2 Overview of Thesis

In Chapter 2, we begin by providing the necessary background on Latin squares, orthogonal arrays and

covering arrays. We describe existing recursive and Roux constructions for covering arrays. We then

discuss another object called ordered orthogonal arrays (OOA), and describe their equivalence to point

sets called (t,m, s)-nets. We also briefly discuss their application to quasi-Monte Carlo integration.

In Chapter 3, we introduce a new homomorphism mapping ordered orthogonal arrays to orthogonal

arrays, and also develop new theorems and constructions for OOAs. In Chapter 4, we introduce a

new combinatorial object called an ordered covering array (OCA), and adapt existing recursive and

Roux constructions for covering arrays to construct OCAs, as well as developing new theorems and

constructions for this new object. We also introduce another new object called a (t,m, s)-covering net,

which is similar to a (t,m, s)-net, and we discuss their equivalence to OCAs. In Chapter 5, we describe

a method of constructing distinct (t,m, s)-nets from a single OOA, and we also discuss other useful

applications of OOAs and OCAs in creating point sets used to numerically approximate the values of

certain types of multi-dimensional integrals. Finally, in Chapter 6, we conclude by summarizing the

main results presented in this thesis, and highlighting some possibilities for future work in this area.

2

Chapter 2

Background on Related

Combinatorial Objects

In this chapter, we define Latin squares, orthogonal arrays, covering arrays, ordered orthogonal arrays

and (t,m, s)-nets, and provide some background on these objects, as well as discussing some basic

constructions.

2.1 Latin Squares and Orthogonal Arrays

Definition 2.1.1. A Latin square of side n is an n × n array in which each cell contains a single

element from an n-set S, such that each element of S occurs exactly once in each row and each column.

The order of the Latin square is the value n.

Definition 2.1.2. Two Latin squares of order n, L1= [aij] and L2= [bij], on the same symbol set

S are orthogonal if every element in S × S occurs exactly once among the n2 pairs (aij , bij) , where

1 ≤ i, j ≤ n. We say that L1 and L2 are two mutually orthogonal latin squares (MOLS) of order

n.

Example 2.1.3. The following arrays are 2 MOLS of order 3:

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

By superimposing one Latin square on the other, all 9 possible ordered pairs occur exactly once.

A set of s Latin squares of order n, L1, ..., Ls, are mutually orthogonal Latin squares if Li and Lj are

orthogonal for all 1 ≤ i < j ≤ s. There exists at most n− 1 mutually orthogonal Latin squares of order

n. At present, no set of n − 1 MOLS of order n is known for integers other than prime powers [5]. In

1782, Euler conjectured that no pair of MOLS exist for n ≡ 2 (mod4) [20]. In 1900, Tarry proved that

3

2.1. LATIN SQUARES AND ORTHOGONAL ARRAYS

no pair of MOLS of order 6 exist [39]. In 1960, Bose, Shrikhande and Parker proved Euler’s conjecture

to be false for all n ≥ 10 [6].

A set of mutually orthogonal Latin squares is equivalent to a parametric subclass of another combi-

natorial structure called an orthogonal array.

Definition 2.1.4. For positive integers λ, t, k and v, where 2 ≤ t ≤ k, an orthogonal array

OAλ(N ; t, k, v) is an N × k array A with entries from an alphabet of v symbols, where N = λvt,

such that in every N × t subarray, every t-tuple occurs exactly λ times as a row.

In an OAλ(N ; t, k, v), t denotes the strength of the array, k is the number of columns and v is the

alphabet size. When λ is not specified, its value is one. Note that the parameter N is not required and

can be dropped, hence, it is followed by a semi-colon rather than a comma.

Example 2.1.5. An example of an orthogonal array with strength 2, 4 columns and alphabet size 3;

OA(9; 2, 4, 3):

OA(9; 2, 4, 3)

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

Every pair (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2) is covered exactly once within

every 2 columns of the array.

The existence of k MOLS of order n is equivalent to an orthogonal array of strength two, k + 2 columns

and alphabet size n, namely OA(2, k + 2, n). In the construction, each row of the OA corresponds to a

particular cell in each of the Latin squares [1].

Orthogonal arrays with equal strength and number of columns always exist, as stated in the following

theorem.

Theorem 2.1.6. For all positive integers λ, t and v, there exists an OAλ(t, t, v).

Proof. List each of the vt possible t-tuples λ times. (There are vt permutations of a row of length t,

where each of the t positions has v choices.) Therefore each t-tuple appears λ times in this vt × t array,

which is thus an OAλ(t, t, v).

In the following theorem, a multiplicative construction is used to create strength two orthogonal

arrays with a larger alphabet size.

4

2.1. LATIN SQUARES AND ORTHOGONAL ARRAYS

Theorem 2.1.7. (MacNeish, [17]) If there exists an OA(2, k1, v1) and an OA(2, k2, v2), then there exists

an OA(2,min(k1, k2), v1v2).

Proof. Let A = (aij) be an OA(N1; 2, k1, v1) and B = (bij) be an OA(N2; 2, k2, v2). Let k = min(k1, k2).

For 1 ≤ i ≤ N1N2 and 1 ≤ j ≤ k, form an N1N2 × k array C by setting:

Ci,j =

(a� i

N2
�,j , bi mod N2,j) for i (modN2) �= 0,

(a� i

N2
�,j , bN2,j) for i (modN2) = 0.

The result is an OA(2, k, v1v2). For an array A, with entry set V1, where v1 = |V1| and array B with

entry set V2, where v2 = |V2|, we construct an OA(N1N2; 2,min(k1, k2), v1v2) with entry set V1 × V2

by taking each entry from min(k1, k2) columns of array A, and pairing them with the entries from the

corresponding min(k1, k2) columns of array B. The resulting array is an OA(N1N2; 2,min(k1, k2), v1v2).

This construction is shown in the figure below:

(a11, b11) (a12, b12) · · · (a1k, b1k)

(a11, b21) (a12, b22) · · · (a1k, b2k)
...

(a11, bN21
) (a12, bN22

) · · · (a1k, bN2k
)

(a21, b11) (a22, b12) · · · (a2k, b1k)

(a21, b21) (a22, b22) · · · (a2k, b2k)
...

(a21, bN21
) (a22, bN22

) · · · (a2k, bN2k
)

...

(aN11
, b11) (aN12

, b12) · · · (aN1k
, b1k)

(aN11
, b21) (aN12

, b22) · · · (aN1k
, b2k)

...

(aN11
, bN21

) (aN12
, bN22

) · · · (aN1k
, bN2k

)

Example 2.1.8. We will construct an OA(36; 2, 2, 6) from OA(4; 2, 3, 2) and OA(9; 2, 2, 3).

Let A be an OA(4; 2, 3, 2) and B be an OA(9; 2, 2, 3):

OA(4; 2, 3, 2)

0 0 1

0 1 0

1 0 0

1 1 1

OA(9; 2, 2, 3)

0 0

0 1

0 2

1 0

1 1

1 2

2 0

2 1

2 2

5

2.1. LATIN SQUARES AND ORTHOGONAL ARRAYS

We take each entry in the first min(2,3) = 2 columns of each row of A, and pair them with the

corresponding entries of each row of B. We get the following 72 pairs, where the first value from each

pair has alphabet size 2 and the second value from each pair has alphabet size 3:

(0, 0) (0, 0)

(0, 0) (0, 1)

(0, 0) (0, 2)

(0, 1) (0, 0)

(0, 1) (0, 1)

(0, 1) (0, 2)

(0, 2) (0, 0)

(0, 2) (0, 1)

(0, 2) (0, 2)

(0, 0) (1, 0)

(0, 0) (1, 1)

(0, 0) (1, 2)

(0, 1) (1, 0)

(0, 1) (1, 1)

(0, 1) (1, 2)

(0, 2) (1, 0)

(0, 2) (1, 1)

(0, 2) (1, 2)

(1, 0) (0, 0)

(1, 0) (0, 1)

(1, 0) (0, 2)

(1, 1) (0, 0)

(1, 1) (0, 1)

(1, 1) (0, 2)

(1, 2) (0, 0)

(1, 2) (0, 1)

(1, 2) (0, 2)

(1, 0) (1, 0)

(1, 0) (1, 1)

(1, 0) (1, 2)

(1, 1) (1, 0)

(1, 1) (1, 1)

(1, 1) (1, 2)

(1, 2) (1, 0)

(1, 2) (1, 1)

(1, 2) (1, 2)

We can always translate the above pairs from alphabet size 2 × 3 to alphabet size 6, using the following

translation:

(0,0) → 0

(0,1) → 1

(0,2) → 2

(1,0) → 3

(1,1) → 4

(1,2) → 5

Substituting our new alphabet into the pairs of the previous array gives us an OA(36; 2, 2, 6):

6

2.2. COVERING ARRAYS

OA(36; 2, 2, 6)
0 0

0 1

0 2

1 0

1 1

1 2

2 0

2 1

2 2

0 3

0 4

0 5

1 3

1 4

1 5

2 3

2 4

2 5

3 0

3 1

3 2

4 0

4 1

4 2

5 0

5 1

5 2

3 3

3 4

3 5

4 3

4 4

4 5

5 3

5 4

5 5

2.2 Covering Arrays

2.2.1 Introduction to Covering Arrays

A combinatorial object called a covering array extends the notion of an orthogonal array, and has

applications in areas such as software [12, 22], hardware [22], circuits [36], new materials [10] and

genetics [37] testing. A covering array is very similar to an orthogonal array, the only difference is that

in a covering array each t-tuple occurs at least λ times, whereas in an orthogonal array, each t-tuple

occurs exactly λ times. For more information on covering arrays, see the surveys [16, 21].

It has been estimated that at least 50% of the cost of developing a new piece of software is attributed

7

2.2. COVERING ARRAYS

to testing, and the testing costs for hardware systems are even higher [22]. Interaction test suites is the

main application of covering arrays [12, 16, 22]. In software testing, software systems are built using

components. Therefore, unexpected interactions among these components can lead to system faults.

If we were to apply exhaustive testing, then for a system with 5 components, each with 20 potential

configurations, we have a total of 205 = 3,200,000 potential interactions, and we therefore would require a

total of 3,200,000 tests. So exhaustive testing becomes infeasible for larger systems. Instead, we can use

interaction testing to reduce the number of tests. Covering arrays can be used to generate interaction

test suites. By using a covering array as our test suite, we guarantee that we have tested all t-way

interactions at least once (or if λ > 1, then at least λ times). Each component in the system is called a

factor, and the possible configurations of the component are called values or levels. In this context, we

are concerned with minimizing the number of rows of a covering array which translates to the number

of test cases in our test suite.

Definition 2.2.1. For positive integers λ, t, k and v, a covering array CAλ(N ; t, k, v) is an N × k

array, A, with entries from an alphabet with v symbols, such that in every N × t subarray, consisting of t

columns of A, every t-tuple occurs at least λ times as a row. The parameter N is the size of the array; t

is the strength of coverage of interactions; k is the number of factors; v is the number of values for each

factor and λ is the index. The size of a covering array is the covering array number CANλ(t, k, v)

and it is the minimum integer N for which a CAλ(N ; t, k, v) exists. The covering array is optimal if

it contains the minimum possible number of rows.

Remark 2.2.2. Although the covering array number is defined as the minimum integer N for which a

CA(N ; t, k, v) exists, we do not always know the value of this parameter N which gives us an optimal

covering array for parameters λ, t, k and v.

Note that the parameter N , from a CAλ(N ; t, k, v), is not required and can be dropped. Therefore

it is followed by a semi-colon, rather than a comma.

Example 2.2.3. A covering array with pairwise coverage, 5 factors and alphabet size 2 with values 0

and 1; CA(6; 2, 5, 2):

CA(6; 2, 5, 2)

1 1 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Within every 2 columns of the array, all 4 pairs (0,0), (0,1), (1,0) and (1,1) are covered at least

once. For example, the pair (0,0) is covered 3 times within every 2 columns, while the other 3 pairs

(0,1), (1,0) and (1,1) are covered exactly once. The minimum number of rows required to cover all 4

pairs within every 2 columns of the 5 factors of the array is size N = 6.

8

2.2. COVERING ARRAYS

Mixed covering arrays are a generalization of covering arrays that allows for different alphabet sizes

in different columns of the array. This is a more realistic approach to interaction testing, since it allows

different factors to have a different number of values. These objects are discussed in [29].

Definition 2.2.4. For positive integers λ, t, k and v1, v2, ..., vk, a mixed covering array

MCAλ(N ; t, k, (v1, v2, ..., vk)) is an N × k array in which the entries of the ith column arise from

an alphabet of size vi, and the rows of each N × t sub-array cover all t-tuples of the t columns at least λ

times.

Example 2.2.5. A mixed covering array with strength 2, 3 factors and alphabet sizes 2, 3 and 2 for

each factor, respectively; MCA(2, 3, (2, 3, 2)):

MCA(2, 3, (2, 3, 2))

0 0 0

0 1 1

0 2 0

1 0 1

1 1 0

1 2 1

All 6 pairs formed from two factors with values of alphabet sizes 2 and 3 are covered between factors 1

and 2, and 2 and 3. All 4 pairs formed from two factors, each with values of alphabet size 2, are covered

at least once between factors 1 and 3.

The excess graph which is an important concept for covering designs [17], can also be applied to

covering arrays [18]. The graph shows those values that appear in the array more than λ times.

Definition 2.2.6. The excess graph of a CAλ(2, k, v), is a graph on kv vertices, where each value of

each of the k factors is represented by a vertex, such that two vertices are connected by an edge if the

pair it represents appears more than λ times in the array.

Remark 2.2.7. In the above definition, we defined the excess graph only for strength two covering

arrays. This can be generalized to any strength t, but for any t > 2, we will have a hypergraph.

Example 2.2.8. Below is a CA(2, 4, 2) and its excess graph:

CA(2, 4, 2)

1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 � � � �

� � � �
Values

Factors

1

0

1 2 3 4

In the CA(2, 4, 2), the pair (0,0) appears twice within every 2 columns of the array, while all other

pairs appear exactly once within every 2 columns. Therefore, the corresponding excess graph has an edge

connecting every two factors with value 0, since these pairs appear twice in the array.

9

2.2. COVERING ARRAYS

The classical covering array problem of minimizing the size of the array as well as other generalizations

of the problem (such as extending/reducing covering arrays and forbidden configurations) have been

studied extensively, and many constructions and algorithms have been developed in order to construct

these arrays efficiently [8, 9, 13]. We review some standard CA constructions which we will adapt to

construct OCAs.

2.2.2 Recursive and Roux Constructions

For covering arrays of strength 2, a blocksize recursive construction can be used to create covering arrays

with a larger number of factors [16]:

Theorem 2.2.9. (Colbourn, [16]) If a CA(N ; 2, k, v) and a CA(M ; 2, l, v) both exist, then a CA(N +

M ; 2, kl, v) exists.

Proof. Let A = (aij) be a CA(N ; 2, k, v) and let B = (bij) be a CA(M ; 2, l, v). For 1 ≤ f ≤ l and

1 ≤ g ≤ k, form an (N +M)× kl array C = (ci,j) = A⊗B by setting:

ci,(f−1)k+g =

ai,g for 1 ≤ i ≤ N,

bi−N,f for N + 1 ≤ i ≤ N +M.

The result is a CA(N + M ; 2, kl, v). The construction of A ⊗ B is shown in the figure below where

there are k copies of B being added to l copies of A. Any two columns of the CA(N +M ; 2, kl, v) with

different indices mod k, will have all pairs covered from A. For any two columns with the same index

mod k, all pairs formed from two columns of A will be of the form xx for x ∈ V , where V represents the

alphabet set of size v. The remaining pairs are covered from the columns of B which were added below.

a11 a12 · · · a1k a11 a12 · · · a1k · · · a11 a12 · · · a1k

a21 a22 · · · a2k a21 a22 · · · a2k · · · a21 a22 · · · a2k
...

... · · ·
...

aN1 aN2 · · · aNk aN1 aN2 · · · aNk · · · aN1 aN2 · · · aNk

b11 b11 · · · b11 b12 b12 · · · b12 · · · b1l b1l · · · b1l

b21 b21 · · · b21 b22 b22 · · · b22 · · · b2l b2l · · · b2l
...

... · · ·
...

bM1 bM1 · · · bM1 bM2 bM2 · · · bM2 · · · bMl bMl · · · bMl

Remark 2.2.10. If an array has r constant rows, then the resulting array will have r duplicated rows. So

before the construction, the constant rows can be removed in order for the resulting array to be optimal.

Example 2.2.11. We will construct a CA(11; 2, 20, 2) from a CA(5; 2, 4, 2) and a CA(6; 2, 5, 2).

10

2.2. COVERING ARRAYS

CA(2, 4, 2)

1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

CA(2, 5, 2)

1 1 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

We place 5 copies of a CA(2, 4, 2) beside each other, and under the first copy of the CA(2, 4, 2),

we place 4 copies of column 1 of a CA(2, 5, 2) beside each other, and under the second copy of the

CA(2, 4, 2), we place 4 copies of column 2 of the CA(2, 5, 2), and we do this till the last (5th) copy of

the CA(2, 4, 2), under which we place 4 copies of column 5 of the CA(2, 5, 2). The resulting array has 4

× 5 = 20 columns, and a total of 5 + 6 = 11 rows. The result is a CA(11; 2, 20, 2) since each pair of

columns whose indices are the same mod 4 will have all pairs covered by the CA(11; 2, 20, 2) and those

that are not indexed by the same value mod 4 will have all pairs covered by the CA(5; 2, 4, 2). The

construction is shown in the figure below:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

The above CA(11; 2, 20, 2) is not optimal. By removing the constant row of ones from the CA(2, 5, 2)

before applying the construction, results in a CA(10; 2, 20, 2), which is optimal:

CA(10; 2, 20, 2)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

11

2.2. COVERING ARRAYS

For covering arrays of strength 3, Roux-type constructions can be used to create covering arrays

with a larger number of factors. In [38], a theorem from Roux’s Ph.D. dissertation [35] is presented, we

provide a sketch of the proof:

Theorem 2.2.12. (Roux, [35, 38]) CAN(3, 2k, 2) ≤ CAN(3, k, 2) + CAN(2, k, 2).

Proof. To construct a CA(3, 2k, 2), we begin by placing two CA(N1; 3, k, 2)’s side by side. We now

have an N1 × 2k array. For any three columns whose indices are all different modulo k, all triples are

covered. But for a selection of two columns that have the same value modulo k, and a third column

with a different value, all triples will not be covered. Only triples where the two same columns have

the same values are covered, which are triples of the form aaa, aab, bba and bbb, for an alphabet set

{a, b}. To the bottom of the new array, we add a CA(N2; 2, k, 2) and its bit complement, side by side.

Now, for any three columns, which contain two columns that have the same value modulo k, we will get

the remaining triplets aba, abb, baa and bab, from the CA(2, k, 2) and its bit complement. The resulting

array is a CA(N1 +N2; 3, 2k, 2). This construction is shown in the figure below:

CA(3, k, 2) CA(3, k, 2)

CA(2, k, 2) Bit Complement

of CA(2, k, 2)

Example 2.2.13. We will construct a CA(3, 6, 2) from a CA(3, 3, 2). We begin by placing two

CA(3, 3, 2)’s side by side:

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 1 1

We construct a CA(2, 3, 2) and its bit complement:

CA(2, 3, 2) Complement

1 1 1

1 0 0

0 1 0

0 0 1

0 0 0

0 1 1

1 0 1

1 1 0

12

2.2. COVERING ARRAYS

We add the CA(2, 3, 2) and its bit compliment side by side, to the bottom of the two CA(3, 3, 2)’s

that were placed side by side, in order to get a CA(3, 6, 2):

CA(3, 6, 2)

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 1 1

1 1 1 0 0 0

1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

−→

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 1 1

1 1 1 0 0 0

1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

Chateauneuf and Kreher [11] have generalized the above theorem for all alphabet size v:

Theorem 2.2.14. (Chateauneuf and Kreher, [11]) CAN(3, 2k, v) ≤ CAN(3, k, v)+(v−1)CAN(2, k, v).

Proof. As per Theorem 2.2.12, we begin by placing two CA(N1; 3, k, v)’s side by side. For any three

columns whose indices are all different modulo k, all triples are covered. But for a selection of two

columns that have the same value modulo k, and a third column with a different value, all triples will

not be covered, only triples of the form aax will be covered for a, x ∈ V , where V represents the alphabet

set of size v. Let C be a CA(N2; 2, k, v) and let π be a cyclic permutation of the v symbols. Then for all

1 ≤ i ≤ v−1, we append N2 rows consisting of C and πi(C) placed side by side, below the CA(3, k, v)’s.

Now, for any three columns that contain two columns with the same value modulo k, the remaining

triplets will be covered from the columns in arrays C and πi(C). The construction is shown in the figure

below:

CA(3, k, v) CA(3, k, v)

C = CA(2, k, v) π1(C)

C π2(C)

...
...

C πv−1(C)

Example 2.2.15. We will construct a CA(3, 6, 3) from a CA(3, 3, 3). We begin by placing two

CA(3, 3, 3)’s side by side:

13

2.2. COVERING ARRAYS

0 0 0 0 0 0

0 0 1 0 0 1

0 0 2 0 0 2

0 1 0 0 1 0

0 1 1 0 1 1

0 1 2 0 1 2

0 2 0 0 2 0

0 2 1 0 2 1

0 2 2 0 2 2

1 0 0 1 0 0

1 0 1 1 0 1

1 0 2 1 0 2

1 1 0 1 1 0

1 1 1 1 1 1

1 1 2 1 1 2

1 2 0 1 2 0

1 2 1 1 2 1

1 2 2 1 2 2

2 0 0 2 0 0

2 0 1 2 0 1

2 0 2 2 0 2

2 1 0 2 1 0

2 1 1 2 1 1

2 1 2 2 1 2

2 2 0 2 2 0

2 2 1 2 2 1

2 2 2 2 2 2

We construct a CA(2, 3, 3), call it C, and v − 1 = 3− 1 = 2 cyclic permutations of it:

C π1(C) = (012) π2(C) = (021)

0 0 0

0 1 1

0 2 2

1 0 1

1 1 2

1 2 0

2 0 2

2 1 0

2 2 1

1 1 1

1 2 2

1 0 0

2 1 2

2 2 0

2 0 1

0 1 0

0 2 1

0 0 2

2 2 2

2 0 0

2 1 1

0 2 0

0 0 1

0 1 2

1 2 1

1 0 2

1 1 0

To the bottom of the two CA(3, 3, 3)’s that were placed side by side, we add two copies of the original

CA(2, 3, 3), one under the other, and beside each of them, we place one of the permuted CA(2, 3, 3)’s.

This results in a CA(3, 6, 3):

14

2.2. COVERING ARRAYS

CA(3, 6, 3)

0 0 0 0 0 0

0 0 1 0 0 1

0 0 2 0 0 2

0 1 0 0 1 0

0 1 1 0 1 1

0 1 2 0 1 2

0 2 0 0 2 0

0 2 1 0 2 1

0 2 2 0 2 2

1 0 0 1 0 0

1 0 1 1 0 1

1 0 2 1 0 2

1 1 0 1 1 0

1 1 1 1 1 1

1 1 2 1 1 2

1 2 0 1 2 0

1 2 1 1 2 1

1 2 2 1 2 2

2 0 0 2 0 0

2 0 1 2 0 1

2 0 2 2 0 2

2 1 0 2 1 0

2 1 1 2 1 1

2 1 2 2 1 2

2 2 0 2 2 0

2 2 1 2 2 1

2 2 2 2 2 2

0 0 0 1 1 1

0 1 1 1 2 2

0 2 2 1 0 0

1 0 1 2 1 2

1 1 2 2 2 0

1 2 0 2 0 1

2 0 2 0 1 0

2 1 0 0 2 1

2 2 1 0 0 2

0 0 0 2 2 2

0 1 1 2 0 0

0 2 2 2 1 1

1 0 1 0 2 0

1 1 2 0 0 1

1 2 0 0 1 2

2 0 2 1 2 1

2 1 0 1 0 2

2 2 1 1 1 0

−→

0 0 0 0 0 0

0 0 1 0 0 1

0 0 2 0 0 2

0 1 0 0 1 0

0 1 1 0 1 1

0 1 2 0 1 2

0 2 0 0 2 0

0 2 1 0 2 1

0 2 2 0 2 2

1 0 0 1 0 0

1 0 1 1 0 1

1 0 2 1 0 2

1 1 0 1 1 0

1 1 1 1 1 1

1 1 2 1 1 2

1 2 0 1 2 0

1 2 1 1 2 1

1 2 2 1 2 2

2 0 0 2 0 0

2 0 1 2 0 1

2 0 2 2 0 2

2 1 0 2 1 0

2 1 1 2 1 1

2 1 2 2 1 2

2 2 0 2 2 0

2 2 1 2 2 1

2 2 2 2 2 2

0 0 0 1 1 1

0 1 1 1 2 2

0 2 2 1 0 0

1 0 1 2 1 2

1 1 2 2 2 0

1 2 0 2 0 1

2 0 2 0 1 0

2 1 0 0 2 1

2 2 1 0 0 2

0 0 0 2 2 2

0 1 1 2 0 0

0 2 2 2 1 1

1 0 1 0 2 0

1 1 2 0 0 1

1 2 0 0 1 2

2 0 2 1 2 1

2 1 0 1 0 2

2 2 1 1 1 0

Cohen, Colbourn and Ling [15] generalized this further to allow the number of factors to be multiplied

by l ≥ 2 rather than l = 2. This is called the k-ary Roux construction.

Hartman [21, 22] showed that a similar Roux type construction for 2k factors holds for covering

arrays of strength 4:

Theorem 2.2.16. (Hartman, [21, 22])

CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) + CAN(2, k, v2).

15

2.2. COVERING ARRAYS

2.2.3 Algorithms

Much effort has gone into refining algorithms to construct covering arrays. Some objectives of these

algorithms include the size of the test suite, execution time to generate the test suite, consistency

of the test suites generated and accommodation of seeds and constraints imposed by the tester [13].

Completeness of coverage is a primary goal. The objective of creating the smallest possible test suite

which covers all t-way interactions is important since every additional test case adds to the cost of testing,

but no single algorithm provides the most optimal test suite for every possible input. Good performance

in the average case and worst-case guarantee on test suite size are also important. The efficiency of

the construction of the test suite is essential in order to reduce the time spent constructing it. Also,

predictability of the test suites size and structure is important, because a method might create different

test suite sizes at different execution times. There are many different approaches to these algorithms,

including algebraic and combinatorial constructions, computational methods and greedy algorithms.

A recursive construction based on orthogonal arrays called TConfig was developed by Williams and

Probert [33, 34]. Their method provides a worst-case guarantee on test suite size that is optimal up to

a constant factor. But it does not provide for seeds or avoids, and often generates test suites that are

much larger than required (especially for mixed-level covering arrays).

Computational search techniques such as tabu search, simulated annealing and hill climbing take a

covering array through a series of transformations, computing the cost of a change and accepting the

change according to an acceptance criterion. Hill climbing and tabu search produce the smallest test

suites, and they provide for seeds. But they fail to produce a worst-case guarantee on test suite size, and

they take longer to construct. Simulated annealing currently appears to be the best method available

for minimizing the size of the test suite [14].

Greedy algorithms address seeding and constraints, and are fast and relatively accurate at generating

test suites. For pairwise testing, greedy algorithms have been well studied [7, 8, 9, 12]. The AETG, Test

Case Generator (TCG), In-Parameter-Order (IPO) algorithms and Deterministic Density Algorithm

(DDA) use greedy techniques. For AETG and TCG algorithms, each test suite is built one test at a

time, and for each subsequent test to be added, many are created and the best is then chosen [12]. The

algorithms are greedy in determining which value to add to each factor of each test based on the local

optimum. Unlike the other greedy algorithms, the IPO algorithm does not generate a test suite one row

at a time, instead it generates one factor at a time using a greedy strategy. They do not usually produce

the smallest test suites, but they are able to treat a wide variety of parameters and incorporate additional

requirements such as the addition of levels to factors. The DDA constructs one row of a covering array

at a time based on a steepest ascent approach. Factors are dynamically fixed one at a time in an order

based on density. New rows are continually generated until all t-tuples have been covered. The DDA is

particularly important, as it generates covering arrays with a logarithmic guarantee on the size of the

solution as a function of the number of factors k, thus providing bounds on N in terms of k. In addition,

computational results show that DDA often provides better solutions than other algorithms in its class

[13].

16

2.3. ORDERED ORTHOGONAL ARRAYS AND (T,M,S)-NETS

2.3 Ordered Orthogonal Arrays and (t,m,s)-Nets

2.3.1 Introduction to Ordered Orthogonal Arrays

A combinatorial object called an ordered orthogonal array (OOA) generalizes orthogonal arrays by

imposing balance conditions on certain sets of columns. In order to define OOAs, we first need to define

a left-justified set:

Definition 2.3.1. Given positive integers s and l, and an array with sl columns, labelled {(i, j) : 1 ≤

i ≤ s, 1 ≤ j ≤ l}, a set T of columns is left-justified if (i, j) ∈ T with j > 1, then (i, j − 1) ∈ T .

Definition 2.3.2. Given positive integers λ, t, s, l and v, where l ≤ t ≤ sl, an ordered orthogonal

array OOAλ(t, s, l, v) is a λvt × sl array A, with columns indexed by ordered pairs (i, j) and with

elements from an alphabet V of size v, with the property that every left-justified set T of t columns has

the OA property: in the subarray obtained by restricting to columns lying in T , each t-tuple over V

occurs exactly λ times as a row.

In an OOAλ(t, s, l, v), t denotes the strength of the array, s is the number of parts it contains, l is

the number of columns in each part, and v is the alphabet size. In the above definition, we restrict the

value of the parameter l, such that l ≤ t. We note that we can have an OOAλ(t, s, l, v) with l > t, but

as a result, columns (t+ 1) to l of each of the s parts will never interact with any other columns in the

array, since they can never belong to a left-justified set of t columns.

Given integers (t, s, l, v), we call them admissible if they satisfy the necessary conditions for the

existence of an OOAλ(t, s, l, v). If (t, s, l, v) is an admissible set then l ≤ t ≤ sl.

Remark 2.3.3. When l = 1, an OOAλ(t, s, 1, v) is just an OAλ(t, s, v).

Example 2.3.4. The following is an OOA(3, 3, 3, 2):

OOA(3, 3, 3, 2)

0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0

0 1 0 0 1 0 1 1 0

0 1 1 1 1 0 0 1 0

1 0 0 0 0 1 1 0 1

1 0 1 1 0 1 0 0 1

1 1 0 0 1 1 0 1 1

1 1 1 1 1 1 1 1 1

This OOA of strength t = 3 has a total of sl = 9 columns, and it is divided into 3 parts, where each

part contains 3 columns. Within each part, all 3-tuples formed from the values of 0 and 1 are covered

exactly once, since the 3 columns within each part form a left-justified set. The first columns of each

part also form a left-justified set, which covers all 3-tuples. The first two columns of one part along with

the first column of another part form a left-justified set of 3 columns which covers all 3-tuples.

17

2.3. ORDERED ORTHOGONAL ARRAYS AND (T,M,S)-NETS

The following simple theorems show some important results for ordered orthogonal arrays:

Theorem 2.3.5. An OOAλ(sl, s, l, v) is equivalent to an OAλ(sl, sl, v).

Proof. Since an OOAλ(sl, s, l, v) has strength sl, and the OOA has a total of sl columns, there exists

only one left-justified set of sl columns which is the set of all columns of the OOA. An array with sl

columns and strength, in which all sl-tuples are covered λ times is just an OAλ(sl, sl, v).

Corollary 2.3.6. For all positive integers λ, s, l and v, there exists an OOAλ(sl, s, l, v).

Proof. From Theorem 2.3.5, we know that an OOAλ(sl, s, l, v) is equivalent to an OAλ(sl, sl, v). From

Theorem 2.1.6, we know that that an OAλ(sl, sl, v) always exists for positive integers λ, s, l and v.

Corollary 2.3.7. For all positive integers λ, t and v, there exists an OOAλ(t, 2, t, v).

Proof. From Theorem 2.1.6, we know that there exists an OAλ(t, t, v) for all positive integers λ, t and v.

We form an OOAλ(t, 2, t, v) by placing OAλ(t, t, v) in the first part of the OOA, and then reversing the

order of each of the entries of each row of OAλ(t, t, v) for the second part of the OOA. So for 1 ≤ j ≤ t,

the jth column of the first part of the OOA, will be the (t − j + 1) column of the second part. This

construction works since j + t − j + 1 = t + 1 > t, thus every left-justified set of t columns of the

OOAλ(t, 2, t, v) is constructed from a distinct set of t columns which satisfy the OA property.

2.3.2 (t,m,s)-Nets and their Application

Point sets called (t,m, s)-nets are related to OOAs. A (t,m, s)-net is a set of points in R
s, which satisfy

strong uniformity properties with regard to their distribution in the s-dimensional unit cube. They were

first introduced by Niederreiter [31] in 1987.

Definition 2.3.8. [31] For integers s ≥ 1 and b ≥ 2, an elementary interval in base b is an interval

of the form E =
�s

i=1[
ai

bdi
, ai+1

bdi
), where ai and di are non-negative integers such that 0 ≤ ai < bdi for

1 ≤ i ≤ s.

Definition 2.3.9. [31] For integers 0 ≤ t ≤ m, s ≥ 1 and b ≥ 2, a (t,m,s)-net in base b is a point set

of bm points in the s-dimensional hypercube [0, 1)s such that every elementary interval in base b having

volume bt−m contains exactly bt points.

Usually the points of a (t,m, s)-net are shifted by a small positive value, � ∈ R, in all s-dimensions,

in order for them to lie in the intervals and not on the boundaries of the intervals. For example, a point

(0, 0) that lies in a (t,m, 2)-net is actually (0 + �, 0 + �).

Example 2.3.10. A (0,2,2)-net in base 2 has a total of bm = 22 = 4 points, each point is 2-dimensional,

and there is exactly bt = 20 = 1 point in every elementary interval of volume bt−m = 20−2 = 1
4 . A set of

points of a (0,2,2)-net in base 2 are: {(0, 0), (14 ,
1
2), (

1
2 ,

1
4), (

3
4 ,

3
4)}+ (�, �)

These 4 points are shown in the figure below, together with all 12 possible elementary intervals of

volume 1
4 :

18

2.3. ORDERED ORTHOGONAL ARRAYS AND (T,M,S)-NETS

0 1
4

2
4

3
4 1

1

0

1
4

2
4

3
4

1

1 0

1
4

2
4

3
4

1

1
4

2
4

3
4 1

For a (t,m, s)-net in base b, if s and b are fixed, then a larger value for m− t will result in a smaller

volume for the elementary interval bt−m. Decreasing the volume of the elementary interval results in

better uniformity properties for the net. A larger value for m− t can be achieved by decreasing the value

of t. Constructing (t,m, s)-nets with parameter t as close to zero as possible is preferred [27], since this

results in better equidistribution properties for the net. In particular, if the value of the parameter t is

zero, then there will be exactly b0 = 1 point in every elementary interval of volume bt−m.

There are many methods that have been developed for the construction of (t,m, s)-nets. The most

common methods include direct constructions using properties of finite fields [31, 32], coding theoretic

constructions [28] and one which characterizes them using orthogonal arrays [31] and ordered orthogonal

arrays [24, 30]. This thesis deals with the latter construction.

The following theorem states the equivalence between a (0, 2, s)-net in base b and mutually orthogonal

Latin squares:

Theorem 2.3.11. [31] Let s ≥ 2 and b ≥ 2 be integers. There there exists a (0, 2, s)-net in base b if

and only if there exists s− 2 MOLS of order b. (More generally, a (t, t+2, s)-net in base b is equivalent

to an OAbt(2, s, b).)

The following is a corollary of Theorem 2.1.7, used to construct larger nets:

Corollary 2.3.12. [27] If there exists a (0, 2, s1)-net in base b1 and a (0, 2, s2)-net in base b2, then there

exists a (0, 2,min(s1, s2))-net in base b1b2.

Proof. If a (0, 2, s1)-net in base b1 and a (0, 2, s2)-net in base b2 exist, then an OA(2, s1, b1) and an

OA(2, s2, b2) exist. From Theorem 2.1.7, since both OAs exist, then an OA(2,min(s1, s2), b1b2) exists,

which is equivalent to a (0, 2,min(s1, s2))-net in base (b1b2).

A more general and different equivalence was proposed by Lawrence [24] and Mullen and Schmid [30]

independently, which equate (t,m, s)-nets to a parametric subclass of ordered orthogonal arrays:

Theorem 2.3.13. [24, 30] There exists a (t,m, s)-net in base b if and only if there exists an OOAbt(m−

t, s,m− t, b).

The left-justified sets of an OOA are equivalent to the elementary intervals of its corresponding

(t,m, s)-net.

19

2.3. ORDERED ORTHOGONAL ARRAYS AND (T,M,S)-NETS

Remark 2.3.14. The parameter t from (t,m, s)-nets is not that of an OOA(t, s, l, v). Both are standard

usages within their domain. In cases of possible confusion, when using both objects at the same time, we

will refer to the strength of the OOA by the parameter u.

A (t,m, s)-net in base b can be constructed from an OOA by translating each row in the OOA to a

point in the (t,m, s)-net. This is done by first placing a decimal point before each part of each row of

the OOA, so that each point has s coordinates corresponding to the s parts of the OOA. We then take

the decimal expansion in base b for each point, in order to translate them to points in an s-dimensional

hypercube, [0, 1)s. We give the following simple example to demonstrate this.

Example 2.3.15. [27] We will construct a (0,2,2)-net in base 2 from an OOA(2, 2, 2, 2).

OOA(2, 2, 2, 2)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

We take the values of each row in each part, and put a decimal point to their left, to form 4 points of

2-dimensions each. For example, the second row of the OOA is 0 1 | 1 1, where the first 2 numbers are

from the first part, and the next 2 numbers are from the second part. By placing decimal points before

the entries for each part, and interpreting as binary real numbers, we get .01 and .11. Therefore the

point corresponding to the second row of the OOA is (.01,.11). By following the same process, we get

the following 4 points for all 4 rows: (.00,.00), (.01,.11), (.10,.10), (.11,.01).

We can translate the values .00, .01, .10 and .11 from binary to their decimal expansion in base 2:

Binary Decimal

.00 (0 ∗ 2−1) + (0 ∗ 2−2) = 0

.01 (0 ∗ 2−1) + (1 ∗ 2−2) = 1
4

.10 (1 ∗ 2−1) + (0 ∗ 2−2) = 1
2

.11 (1 ∗ 2−1) + (1 ∗ 2−2) = 3
4

And by substituting the above points into our original 4 points, yields the following (0,2,2)-net in

base 2 (after adding a small positive value � to each coordinate): {(0, 0), (14 ,
3
4), (

2
4 ,

2
4), (

3
4 ,

1
4)}+ (�, �)

This is shown in the graph below:

0

1
4

2
4

3
4

1

1
4

2
4

3
4 1

20

2.3. ORDERED ORTHOGONAL ARRAYS AND (T,M,S)-NETS

In this example, the two columns of the first part of the OOA(2, 2, 2, 2) correspond to the following

elementary intervals in the (0,2,2)-net base 2:

0 1
4

2
4

3
4 1

1

The two columns of the second part of the OOA(2, 2, 2, 2) correspond to the following elementary

intervals in the (0,2,2)-net base 2:

0

1
4

2
4

3
4

1

1

And the first columns of each part of the OOA(2, 2, 2, 2) correspond to the following elementary

intervals in the (0,2,2)-net base 2:

0

2
4

1

2
4 1

(t,m, s)-nets were defined by Niederreiter [31] in the context of quasi-Monte Carlo methods of nu-

merical integration. Numeric quadrature methods such as Simpson’s rule and trapezoidal rule are highly

effective in approximating the value of a low dimensional integral. However, these classical methods are

impractical for multi-dimensional integrals since the number of function evaluations grow exponentially

as the number of dimensions increase. The Monte Carlo (MC) method is commonly used in computing

integrals of multiple dimensions. This method uses randomly distributed points in order to approximate

the integral. However, truly random, or pseudorandom, sequences tend to cluster together, which means

certain areas are over represented while others are under represented. The amount of clustering in a

21

2.3. ORDERED ORTHOGONAL ARRAYS AND (T,M,S)-NETS

sequence can be measured by the discrepancy. A low discrepancy sequence is a sequence of points that

fills the area more uniformly than uncorrelated random points. Quasi-Monte Carlo (QMC) integration

operates the same way as Monte Carlo integration but it uses a sequence of low discrepancy points called

quasi-random points as opposed to pseudorandom points to approximate the value of the integral. The

efficiency of the quasi-Monte Carlo integration method depends on the discrepancy or lack of clustering

of the quasi-random points that are used. There are different methods that can be used to construct such

a set of quasi-random points, with (t,m, s)-nets [32] being one of the most powerful and effective known

constructions for these low discrepancy point sets in the s-dimensional unit cube. For more information

on low discrepancy, see [31].

The difference in using quasi-random versus pseudorandom numbers to approximate the value of an

integral affects the convergence rate of the integral. The convergence rate measures how quickly the

error decreases with the number of simulations. For MC integration, the convergence rate is O(1√
N
),

where N is the number of simulations [32]. While for QMC integration, the rate of convergence can be

a lot faster, with a rate of O(1
N
) for optimal cases [4, 27].

Example 2.3.16. We will numerically approximate the value of the integral
� π

0
(
� π

0
sin(xy)dy)dx, using

Monte Carlo and quasi-Monte Carlo integration, and compare the results to the exact value of the integral.

The exact value of
� π

0
(
� π

0
sin(xy)dy)dx is 2.90068.

For the quasi-Monte Carlo method, we use an OOA(2, 2, 2, 10) to construct a (0,2,2)-net in base 10,

to numerically approximate the value of the integral. Using the hundred points from a (0,2,2)-net in base

10, gives us an approximation of 2.86097, which differs from the exact value by 1.34%.

For the Monte Carlo method, keeping the number of points used the same as in the QMC evaluation

above, we use one hundred random numbers generated through MATLAB, to numerically approximate

the value of the integral. This gives us a different approximation each time, depending on the value

of the random numbers generated. Using one hundred points each time, some of the different values

approximated for the integral were 2.4171, 2.3379 and 3.3159, which differ from the exact value by

16.67%, 19.4% and 14.31%, respectively. Therefore, by using the same number of points for both methods,

each approximation in the MC method is a lot worse than that computed through the QMC method.

22

Chapter 3

Constructions for Ordered

Orthogonal Arrays

Most known constructions for ordered orthogonal arrays involve methods from areas such as coding

theory and finite projective geometry [2, 3]. In this chapter, we construct ordered orthogonal arrays

from orthogonal arrays by developing a homomorphism between the two objects, and we also provide

new combinatorial constructions based on recursive and multiplicative methods.

3.1 The Interaction Graph

We can construct an OOA from the columns of an OA using the following theorem:

Theorem 3.1.1. If there exists an OA(t, k, v), and integers s ≥ 2, l ≤ t, such that:

k ≥

st
2 if t is even and l > t

2

� t
2�s+ 1 if t is odd and l > � t

2�

sl if l ≤ � t
2�,

then there exists an OOA(t, s, l, v).

Proof. For the first case where t is even and l > t
2 : We place t

2 distinct columns from the OA to the

beginning of each part of the OOA, this uses t
2s columns from the OA. We complete all remaining

columns of the new OOA by putting the column that was placed in the t
2 − (i − 1)th position of the

(j + 1) mod s part in the t
2 + ith position of the jth part, where 1 ≤ i ≤ t

2 and 1 ≤ j ≤ s. We note that
t
2 − (i− 1) + t

2 + i = t+ 1 > t, so these columns never interact.

For the second case where t is odd and l > � t
2�: We place � t

2� distinct columns from the OA to the

beginning of each part of the OOA, this uses � t
2�s columns from the OA. Then we fix a new column

from the OA to the (� t
2�+1)th position of each part of the OOA. We complete all remaining columns of

23

3.1. THE INTERACTION GRAPH

the new OOA by putting the column that was placed in the � t
2�− (i− 1)th position of the (j+1) mod s

part in the � t
2� + (i + 1)th position of the jth part, where 1 ≤ i ≤ � t

2� and 1 ≤ j ≤ s. We note that

� t
2� − (i− 1) + � t

2�+ i+ 1 = � t
2�+ � t

2�+ 2 = t− 1 + 2 > t, so these columns never interact.

For the third case where l ≤ � t
2�: We place l distinct columns from the OA in each part of the

OOA, this uses sl columns from the OA. In the resulting OOA, all columns are distinct, therefore any

left-justified set of t columns will interact.

Example 3.1.2. We will use an OA(4, 8, v) to construct an OOA(4, 4, 4, v), using the construction

given in the above theorem.

Our OOA has l = 4 ⇒ l > � t
2� = 2. Following Theorem 3.1.1, since our strength t = 4 is even, the

minimum number of columns required for our OA is: k =st
2 =

(4)(4)
2 = 8. So the smallest OA we can use

to construct an OOA(4,4,4,v) is an OA(4,8,v).

Let the 8 columns of an OA(4, 8, v) be labelled 1 to 8: [1 2 3 4 5 6 7 8]

We fix 2 distinct columns from the OA to the beginning of each part of the OOA:

[1 2 * * | 3 4 * * | 5 6 * * | 7 8 * *]

We fill the remaining two columns of the first part of the OOA using the first two columns of the

second part of the OOA. We place the 2− (i− 1)th column from the second part in the 2+ ith position of

the first part, where 1 ≤ i ≤ 2. Therefore, we place the second column from the second part of the OOA

in the third position of the first part of the OOA. We place the first column from the second part of the

OOA in the fourth position of the the first part of the OOA. We get the following array:

[1 2 4 3 | 3 4 * * | 5 6 * * | 7 8 * *]

We repeat this for the remaining six columns of the OOA to get the following OOA(4,4,4,v):

[1 2 4 3 | 3 4 6 5 | 5 6 8 7 | 7 8 2 1].

Note that the mapping of the columns described in the construction of Theorem 3.1.1 above is

actually a graph homomorphism, we now generalize this notion. We will describe a graph homomorphism

mapping the columns of an OOA, which preserves the OOA property. We begin by defining a graph

homomorphism:

Definition 3.1.3. A graph homomorphism from a graph G = (V,E) to a graph G� = (V �, E�), is a

mapping f from V to V � such that if uv ∈ E then f(u)f(v) ∈ E�.

The idea of using a graph to model interaction patterns has been studied in the context of covering

arrays [19]. We apply this notion to ordered orthogonal arrays by introducing a new graph called an

interaction graph which characterizes the interaction properties of an OOA. In an OOA(t, s, l, v), we say

that two columns can interact with each other if it is possible to form a left-justified set of t columns

containing both columns.

Definition 3.1.4. The interaction graph of an OOA(t, s, l, v) is a graph which has a vertex for each

column of the OOA and an edge between two columns if they can interact with each other to form a

t-tuple as part of a left-justified set.

24

3.1. THE INTERACTION GRAPH

It is easy to see that the interaction graph characterizes the left-justified property: any set of t

columns of the OOA form a left-justified set if and only if the corresponding nodes in the graph form a

clique. Note that a graph homomorphism can never map an interacting set of vertices together as this

would form a loop and the original graph has no loops.

The interaction graph of an OOA has a particular form. To represent this, we place the columns of

each part vertically above one another, with the bottom node representing the first column of that part,

and the top node representing the last column of that part. An interaction graph of an OOA(t, s, l, v) is

shown in the figure below. The node representing column j of part i of the OOA is represented by vij .

� �
� �
...

...

� �
...

�

· · · �
�

�
�
�

✦✦✦✦✦✦✦✦

❅
❅

❅

✑
✑
✑

✑✑

❛❛❛❛❛❛❛❛

◗
◗

◗
◗◗

v11

v12

v
1l

v21

v22

v
2l

vs1

vs2

vsl

The interaction graph of an OOA is completely determined by the parameters of the OOA and exists

for all admissible values of the parameters independently of the existence of the OOA. We denote such

an interaction graph by I(t, s, l).

The following theorem describes the homomorphism:

Theorem 3.1.5. If there exists an OOA(t, s, l, v) and a graph homomorphism from I(t, s�, l�) to the

interaction graph of the OOA(t, s, l, v), then the OOA(t, s�, l�, v) exists.

Proof. Let A be an OOA(t, s, l, v) and H be the interaction graph of A. To create an OOA(t, s�, l�, v),

say B, we let G be an I(t, s�, l�). Let f : G −→ H be a graph homomorphism. For 1 ≤ i ≤ s�l�, we

place column f(i) from A as the ith column of B. Suppose c1, . . . , ct is a left-justified set of columns

in B, so the nodes corresponding to them form a clique in G. Since f is a homomorphism, the nodes

corresponding to f(c1), . . . , f(ct) form a clique in H, and since A is an OOA, all pairs from this set of

columns are covered exactly once in the rows of A, which are now also the rows of B.

The interaction graph of an OA(t, k, v) is Kk, which leads to the following corollary:

Corollary 3.1.6. If there exists an OA(t, k, v) and a graph homomorphism mapping I(t, s, l) to Kk,

then an OOA(t, s, l, v) exists.

Note that Theorem 3.1.1 is an example of the above corollary.

Example 3.1.7. This example maps the 16 columns of an OOA(4, 4, 4, v) to the 8 columns of an

OA(4, 8, v). Let the 16 columns of an OOA(4, 4, 4, v) be labelled 1 to 16.

OOA(4, 4, 4, v): [1 2 3 4 | 5 6 7 8 | 9 10 11 12 | 13 14 15 16]

Below is the corresponding OOA(4, 4, 4, v) graph:

25

3.1. THE INTERACTION GRAPH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

�
�

�
�

✟✟✟✟✟✟✟✟

✏✏✏✏✏✏✏✏✏✏✏✏

✁
✁
✁
✁
✁
✁
✁
✁

✑
✑
✑

✑
✑
✑

✑
✑

✑
✑
✑

✑

❅
❅

❅
❅

�
�

�
�

✟✟✟✟✟✟✟✟

❆
❆

❆
❆
❆

❆
❆
❆

✁
✁
✁
✁
✁
✁
✁
✁

❍❍❍❍❍❍❍❍

❅
❅

❅
❅

�
�
�

�

❆
❆
❆
❆

❆
❆
❆

❆

✁
✁
✁
✁
✁
✁
✁
✁

❅
❅

❅
❅

❍❍❍❍❍❍❍❍

������������

❆
❆

❆
❆
❆

❆
❆
❆

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

We start by mapping the fourth columns of each part (the top row of nodes) to the first columns of

a different part (the bottom row of nodes), since the fourth columns will never interact with the first

columns of a different part (since strength t=4):

Mapping:

4 → 5

8 → 9

12 → 13

16 → 1 �

�

�

�

�

�

�

�

�

�

�

�

1

2

3

4
5

6

7

8
9

10

11

12
13

14

15

16

�
�
�

�

✟✟✟✟✟✟✟✟

✏✏✏✏✏✏✏✏✏✏✏✏

✁
✁
✁
✁
✁
✁
✁
✁

✑
✑
✑

✑
✑
✑

✑
✑
✑

✑
✑
✑

❅
❅

❅
❅

�
�

�
�

✟✟✟✟✟✟✟✟

❆
❆
❆

❆
❆
❆

❆
❆

✁
✁
✁
✁
✁
✁
✁
✁

❍❍❍❍❍❍❍❍

❅
❅

❅
❅

�
�
�

�

❆
❆

❆
❆
❆

❆
❆
❆

✁
✁
✁
✁
✁
✁
✁
✁

❅
❅

❅
❅

❍❍❍❍❍❍❍❍

������������

❆
❆
❆

❆
❆
❆

❆
❆

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

We map the third columns of each part to the second columns of a different part (but it cannot get

mapped to the same part its fourth column was mapped to), since the third columns will never interact

with the second columns of another part (since strength t=4):

Mapping:

3 → 10

7 → 14

11 → 2

15 → 6 �

�

�

�

�

�

�

�

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

�
�
�

�

✟✟✟✟✟✟✟✟

✏✏✏✏✏✏✏✏✏✏✏✏

❅
❅

❅
❅

�
�

�
�

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

❅
❅

❅
❅

�
�

�
�

❅
❅

❅
❅

❍❍❍❍❍❍❍❍

������������

We need to map the second columns of each part to a column, but they cannot be mapped to any

of the first columns of the parts because they interact with them. So we need to introduce four new

nodes to the graph, which represent columns w, x, y, z. Each of the second columns gets mapped to one

of w, x, y, z:

26

3.1. THE INTERACTION GRAPH

Mapping:

2, 11 → w

6, 15 → x

3, 10 → y

7, 14 → z � � � � � � � �w x y z

1 2
34

5 6
78

9 10
1112

13 14
1516

The above graph is a K8, and it also represents an OA(4, 8, v). Each node in the graph represents a

column of the OA, so we require a total of 8 columns to construct our OOA(4, 4, 4, v). If we label the

first 4 nodes of the OA with the letters a, b, c, d, then the columns of our OA are: a, b, c, d, w, x, y, z.

The 16 columns of the OOA (labelled 1 to 16) are mapped as follows to the 8 columns of the OA

(labelled a, b, c, d, w, x, y, z):

Mapping:

1 → a

2 → w

3 → y

4 → b

5 → b

6 → x

7 → z

8 → c

9 → c

10 → y

11 → w

12 → d

13 → d

14 → z

15 → x

16 → a � � � � � � � �a b c d w x y z

1 2
34

5 6
78

9 10
1112

13 14
1516

So the columns of the OOA(4, 4, 4, v) are: [a w y b | b x z c | c y w d | d z x a].

We can generalize this example in the following theorem:

Theorem 3.1.8. For s > t
2 , if t is even and there exists an OA(t, t

2s, v), then there exists an

OOA(t, s, t, v), and if t is odd and there exists an OA(t, � t
2�s+1, v), then there exists an OOA(t, s, t, v).

Proof. We first consider the case when t is even:

Let A be an OA(t, t
2s, v) and H be the interaction graph of A, which is just a K t

2
s. To create

an OOA(t, s, t, v), say B, we let G be an I(t, s, t). By Theorem 3.1.5, if there exists a graph

homomorphism from G to H, then B exists. Hence, we need to give a graph homomorphism

mapping the vertices from G to the vertices in H. For 1 ≤ i ≤ s, 1 ≤ j ≤ t, let wi,j be the

vertices of G and let U = {u1, ..., u� t

2
�s} be the vertices of H. For 1 ≤ i ≤ s, we define the

following homomorphism f mapping the vertices of each column of G to the vertices in H, where

all arithmetic is mod
�

� t
2�s

�

:

27

3.2. FURTHER CONSTRUCTIONS FOR OOAS

f(wi,j) =

u(i+1)+(s+1)(t−j) for � t
2� < j ≤ t,

ui+s(j−1) for 1 ≤ j ≤ � t
2�.

We now consider the case when t is odd:

This case is similar to the even case, except that we modify the mapping f to add the case where

j = � t
2�. Let A be an OA(t, � t

2�s+ 1, v), with interaction graph H with vertices U ∪ {u∞}, where

U is the same as in the even case. The same mapping f , as in the even case above, still applies,

we add the extra case, f(wi,� t

2
�) = u∞ for 1 ≤ i ≤ s.

3.2 Further Constructions for OOAs

In this section, we will be constructing an OOA(sl + t�, s, l + l�, v) from an OOA(sl, s, l, v) and an

OOA(t�, s, l�, v). For admissible parameter sets (sl, s, l, v), (t�, s, l�, v) and (sl + t�, s, l + l�, v), we first

explain some of the terms which will be using in the following lemma and theorem.

• � sl+t�

l+l�
� is the maximum number of full parts, each of (l+ l�) columns, formed from an (sl+ t�)-tuple

in an OOA(sl + t�, s, l + l�, v).

• sl+ t� − � sl+t�

l+l�
�(l+ l�) is the number of columns remaining in an (sl+ t�)-tuple, after removing all

complete parts of (l + l�) columns.

• � sl+t�

l+l�
�l� is the number of sl� columns that is used to form all complete parts of (l+ l�) columns of

an (sl + t�)-tuple in an OOA(sl + t�, s, l + l�, v). The strength t� must be at least as large as this

number, otherwise certain interactions will not be covered in the the corresponding (sl+ t�)-tuple.

Therefore, the condition t� ≥ � sl+t�

l+l�
�l� must hold.

We now proceed with the lemma:

Lemma 3.2.1. Let (sl, s, l, v), (t�, s, l�, v) and (sl + t�, s, l + l�, v) be admissible parameter sets, and

t� < sl�, then the following three conditions must hold:

1. sl + t� − � sl+t�

l+l�
�(l + l�) ≥ l

2. sl+t�

l+l�
/∈ Z

3. s ≤ � sl+t�

l+l�
�+ 1

Proof. 1. sl + t� − � sl+t�

l+l�
�(l + l�) ≥ l

If an OOA(sl+ t�, s, l+ l�, v) exists, then the condition t� ≥ � sl+t�

l+l�
�l� must be satisfied. Assume by

contradiction that sl + t� − � sl+t�

l+l�
�(l + l�) < l and t� ≥ � sl+t�

l+l�
�l�. We take two cases:

28

3.2. FURTHER CONSTRUCTIONS FOR OOAS

Case 1: t� = � sl+t�

l+l�
�l�

sl + t� − � sl+t�

l+l�
�(l + l�) < l ⇒ sl + t� − � sl+t�

l+l�
�l − � sl+t�

l+l�
�l� − l < 0.

Substituting t� in place of � sl+t�

l+l�
�l� gives sl + t� − � sl+t�

l+l�
�l − t� − l < 0

⇒ sl − � sl+t�

l+l�
�l − l < 0 ⇒ s− � sl+t�

l+l�
� − 1 < 0 ⇒ s < � sl+t�

l+l�
�+ 1 ⇒ s ≤ � sl+t�

l+l�
�.

s = � sl+t�

l+l�
� ⇒ t� = sl�, which is not possible since t� < sl�.

So s < � sl+t�

l+l�
� ⇒ sl� < � sl+t�

l+l�
�l�, and since t� = � sl+t�

l+l�
�l� ⇒ sl� < t�, which can never be true

since in general t� ≤ sl�.

Case 2: t� > � sl+t�

l+l�
�l�

⇒ t� − � sl+t�

l+l�
�l� > 0, adding sl − � sl+t�

l+l�
�l − l to both sides:

sl + t� − � sl+t�

l+l�
�l − � sl+t�

l+l�
�l� − l > sl − � sl+t�

l+l�
�l − l,

and from our assumption, we have:

0 > sl + t� − � sl+t�

l+l�
�(l + l�)− l > sl − � sl+t�

l+l�
�l − l,

⇒ 0 > sl − � sl+t�

l+l�
�l − l ⇒ 0 > s− � sl+t�

l+l�
� − 1 ⇒ s < � sl+t�

l+l�
�+ 1 ⇒ s ≤ � sl+t�

l+l�
�.

If s = � sl+t�

l+l�
� ⇒ t� > sl�, which can never be true since in general t� ≤ sl�.

So s < � sl+t�

l+l�
� ⇒ sl� < � sl+t�

l+l�
�l� < t� ⇒ sl� < t�, which can never be true since t� ≤ sl�.

So our initial assumption is false and sl + t� − � sl+t�

l+l�
�(l + l�) ≥ l.

2. sl+t�

l+l�
/∈ Z

Assume by contradiction that sl+t�

l+l�
∈ Z.

⇒ � sl+t�

l+l�
� = sl+t�

l+l�

Substituting this into condition 1: sl + t� − � sl+t�

l+l�
�(l + l�) ≥ l, yields:

sl + t� − sl+t�

l+l�
(l + l�) ≥ l

⇒ sl + t� − (sl + t�) ≥ l ⇒ 0 ≥ l, which cannot be true.

So our initial assumption is false and sl+t�

l+l�
/∈ Z.

3. s ≤ � sl+t�

l+l�
�+ 1

Assume by contradiction that s > � sl+t�

l+l�
�+ 1.

From condition 1, we have sl + t� − � sl+t�

l+l�
�(l + l�) ≥ l. We take 2 cases:

Case 1: sl + t� − � sl+t�

l+l�
�(l + l�) = l

s > � sl+t�

l+l�
�+ 1 ⇒ sl > � sl+t�

l+l�
�l + l ⇒ sl − � sl+t�

l+l�
�l − l > 0.

Add t� − � sl+t�

l+l�
�l� to both sides:

sl + t� − � sl+t�

l+l�
�l − � sl+t�

l+l�
�l� − l > t� − � sl+t�

l+l�
�l�

From our assumption, we know that sl+ t� − � sl+t�

l+l�
�(l+ l�)− l = 0, substituting this into the

left hand side of the above inequality yields:

0 > t� − � sl+t�

l+l�
�l� ⇒ t� < � sl+t�

l+l�
�l�.

29

3.2. FURTHER CONSTRUCTIONS FOR OOAS

If an OOA(sl + t�, s, l + l�, v) exists, then the condition t� ≥ � sl+t�

l+l�
�l� must be satisfied, but

we just showed that t� < � sl+t�

l+l�
�l�.

Case 2: sl + t� − � sl+t�

l+l�
�(l + l�) > l

s > � sl+t�

l+l�
�+ 1 ⇒ sl > � sl+t�

l+l�
�l + l ⇒ sl − � sl+t�

l+l�
�l − l > 0.

Add t� − � sl+t�

l+l�
�l� to both sides:

sl + t� − � sl+t�

l+l�
�l − � sl+t�

l+l�
�l� − l > t� − � sl+t�

l+l�
�l�

Rearranging the above equation, we get:

� sl+t�

l+l�
�l� + (sl + t� − � sl+t�

l+l�
�l − � sl+t�

l+l�
�l� − l) > t�.

This means that all the columns from l� from all the parts that were used to make an (sl+ t�)-

tuple has strength larger than t�, therefore they cannot form an OOA(sl+ t�, s, l+ l�, v) since

there are left-justified sets which do not have the OA property.

So our initial assumption is false and s ≤ � sl+t�

l+l�
�+ 1.

Theorem 3.2.2. For positive integers s, l and v, if there exists an OOA(t�, s, l�, v), then there exists an

OOA(sl + t�, s, l + l�, v).

Proof. By Theorem 2.3.6, there exists an OOA(sl, s, l, v). We first give an outline for the construction

of the OOA(sl + t�, s, l + l�, v): For 1 ≤ i ≤ s, 1 ≤ j ≤ l, and 1 ≤ k ≤ N , let A = (aijk) be an

OOA(N ; sl, s, l, v) where i represents the part, j represents the column within a part, and k represents

the row of the OOA. Similarly, for 1 ≤ i ≤ s, 1 ≤ j ≤ l�, and 1 ≤ k ≤ M , let B = (bijk) be an

OOA(M ; t�, s, l�, v). For 1 ≤ i ≤ s and 1 ≤ k ≤ NM , form an NM × (sl + sl�) array C = (cijk) by

setting:

ci,j,k =

ai,j,� k

M
� for 1 ≤ j ≤ l,

bi,j−l,k mod M for l + 1 ≤ j ≤ l + l�, k (modM) �= 0,

bi,j−l,M for l + 1 ≤ j ≤ l + l�, k (modM) = 0.

Each part of the final OOA is created by concatenating a left hand piece from A and a right hand

piece from B. We are adding all M rows of array B to M copies of each row of A, for each part i,

where 1 ≤ i ≤ s. Note that the construction of an OOA(sl + t�, s, l + l�, v) must always begin with

an OOA(sl, s, l, v), which is equivalent to an orthogonal array OA(sl, sl, v) by Theorem 2.3.5. The

construction for an OOA(sl + t�, s, l + l�, v) is shown in the figure below:

30

3.2. FURTHER CONSTRUCTIONS FOR OOAS

a111 a121 · · · a1l1 b111 b121 · · · b1l�1 · · · as11 as21 · · · asl1 bs11 bs21 · · · bsl�1

a111 a121 · · · a1l1 b112 b122 · · · b1l�2 · · · as11 as21 · · · asl1 bs12 bs22 · · · bsl�2
... · · ·

...

a111 a121 · · · a1l1 b11M b12M · · · b1l�M · · · as11 as21 · · · asl1 bs1M bs2M · · · bsl�M

a112 a122 · · · a1l2 b111 b121 · · · b1l�1 · · · as12 as22 · · · asl2 bs11 bs21 · · · bsl�1

a112 a122 · · · a1l2 b112 b122 · · · b1l�2 · · · as12 as22 · · · asl2 bs12 bs22 · · · bsl�2
... · · ·

...

a112 a122 · · · a1l2 b11M b12M · · · b1l�M · · · as12 as22 · · · asl2 bs1M bs2M · · · bsl�M
...

...
...

a11N a12N · · · a1lN b111 b121 · · · b1l�1 · · · as1N as2N · · · aslN bs11 bs21 · · · bsl�1

a11N a12N · · · a1lN b112 b122 · · · b1l�2 · · · as1N as2N · · · aslN bs12 bs22 · · · bsl�2
... · · ·

...

a11N a12N · · · a1lN b11M b12M · · · b1l�M · · · as1N as2N · · · aslN bs1M bs2M · · · bsl�M

In choosing an (sl + t�)-tuple, the first l columns in each part come from A, and we thus know that

the first l columns in a part are covered properly by the OA property within each left-justified set in A.

For each l-tuple on the left of a part, from A, we have a complete copy of B, thus every (l+ l�)-tuple is

covered within a part. It remains to show that every (sl + t�)-tuple is covered across left-justified sets.

We take two cases:

1. t� = sl�:

If t� = sl�, then the OOA(sl, s, l, v) and the OOA(sl�, s, l�, v) are both equivalent to orthogonal

arrays, which cover all sl and sl� tuples within every set of l and l� columns respectively. From

Theorem 2.3.5, we know that an OOA(sl, s, l, v) and an OOA(sl�, s, l�, v) are equivalent to an

OA(sl, sl, v) and an OA(sl�, sl�, v) respectively. This construction creates every (sl + sl�)-tuple,

which is equivalent to an OA(sl + sl�, sl + sl�, v).

2. t� < sl�:

When t� < sl�, the conditions of Lemma 3.2.1 will hold, in particular the three properties. In

general, we must have � sl+t�

l+l�
� ≤ s, since � sl+t�

l+l�
� tells us how many complete parts we have, each

filled with l + l� columns, and we can never have more than s parts. From the third property of

Lemma 3.2.1, we know that � sl+t�

l+l�
� ≥ s − 1. Combining these two conditions, gives us s − 1 ≤

� sl+t�

l+l�
� ≤ s. Therefore we have two cases, either � sl+t�

l+l�
� = s or � sl+t�

l+l�
� = s − 1. Thus, every

left-justified set of sl + t� columns either has entries from all parts, or all but one part. We need

to show that for both cases, every left-justified set of sl + t� columns covers all (sl + t�)-tuples:

(a) If � sl+t�

l+l�
� = s, then an (sl+t�)-tuple is formed using all s parts of the OOA. The (sl+t�)-tuple

must consist of at least l columns from each part, since sl + t� > sl for t� ≥ 1. Therefore,

we are left with choosing t� columns from the right hand side of sl� columns. We know that

any left-justified set of t� columns will interact since these are the left-justified sets of the

OOA(t�, s, l�, v).

31

3.2. FURTHER CONSTRUCTIONS FOR OOAS

(b) If � sl+t�

l+l�
� = s − 1, we can only have one leftover part since � sl+t�

l+l�
� + 1 = s. From the first

property of Lemma 3.2.1, we know that sl + t� − � sl+t�

l+l�
�(l + l�) ≥ l, which means that from

our leftover part, we must still use at least l columns to form our (sl+ t�)-tuple. So from the

OOA(sl, s, l, v), we are always using all sl columns in our (sl + t�)-tuple since we can never

have an (sl + t�)-tuple with less than l columns in one part. We are left with choosing t�

columns from the right hand side of sl� columns. We know that any left-justified set of t�

columns will interact since these are the left-justified sets of the OOA(t�, s, l�, v).

Example 3.2.3. We will construct an OOA(7, 3, 3, 2) from an OOA(3, 3, 1, 2) and an OOA(4, 3, 2, 2).

OOA(3, 3, 1, 2)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

OOA(4, 3, 2, 2)

0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 1 1 1

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 1 1

0 1 1 1 0 0

1 0 0 0 0 1

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 1 1 0

1 1 0 0 1 1

1 1 0 1 0 0

1 1 1 0 1 0

1 1 1 1 0 1

We start with the OOA(sl, s, l, v) = OOA(3, 3, 1, 2). For all 3 parts of the OOA, we place 16 copies

of each value in every row under each other, and besides them we place all the values of the 16 rows of

the corresponding part of the OOA(4, 3, 2, 2). This gives us a total of 8 × 16 = 128 rows. The resulting

array is an OOA(7, 3, 3, 2):

32

3.2. FURTHER CONSTRUCTIONS FOR OOAS

OOA(7, 3, 3, 2)
0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 1

0 0 0 0 1 1 0 1 1

0 0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 0 1 0 1 1 0 0 0

0 1 0 0 0 0 0 0 1

0 1 0 0 0 1 0 1 1

0 1 0 0 1 0 0 0 0

0 1 0 0 1 1 0 1 0

0 1 1 0 0 0 0 1 1

0 1 1 0 0 1 0 0 0

0 1 1 0 1 0 0 1 0

0 1 1 0 1 1 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1 0

0 0 0 0 1 0 1 0 1

0 0 0 0 1 1 1 1 1

0 0 1 0 0 0 1 1 0

0 0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1 1

0 0 1 0 1 1 1 0 0

0 1 0 0 0 0 1 0 1

0 1 0 0 0 1 1 1 1

0 1 0 0 1 0 1 0 0

0 1 0 0 1 1 1 1 0

0 1 1 0 0 0 1 1 1

0 1 1 0 0 1 1 0 0

0 1 1 0 1 0 1 1 0

0 1 1 0 1 1 1 0 1

1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0

1 0 0 0 1 0 0 0 1

1 0 0 0 1 1 0 1 1

1 0 1 0 0 0 0 1 0

1 0 1 0 0 1 0 0 1

1 0 1 0 1 0 0 1 1

1 0 1 0 1 1 0 0 0

1 1 0 0 0 0 0 0 1

1 1 0 0 0 1 0 1 1

1 1 0 0 1 0 0 0 0

1 1 0 0 1 1 0 1 0

1 1 1 0 0 0 0 1 1

1 1 1 0 0 1 0 0 0

1 1 1 0 1 0 0 1 0

1 1 1 0 1 1 0 0 1

1 0 0 0 0 0 1 0 0

1 0 0 0 0 1 1 1 0

1 0 0 0 1 0 1 0 1

1 0 0 0 1 1 1 1 1

1 0 1 0 0 0 1 1 0

1 0 1 0 0 1 1 0 1

0 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 1 0

0 0 0 1 1 0 0 0 1

33

3.2. FURTHER CONSTRUCTIONS FOR OOAS

OOA(7, 3, 3, 2) continued:

0 0 0 1 1 1 0 1 1

0 0 1 1 0 0 0 1 0

0 0 1 1 0 1 0 0 1

0 0 1 1 1 0 0 1 1

0 0 1 1 1 1 0 0 0

0 1 0 1 0 0 0 0 1

0 1 0 1 0 1 0 1 1

0 1 0 1 1 0 0 0 0

0 1 0 1 1 1 0 1 0

0 1 1 1 0 0 0 1 1

0 1 1 1 0 1 0 0 0

0 1 1 1 1 0 0 1 0

0 1 1 1 1 1 0 0 1

0 0 0 1 0 0 1 0 0

0 0 0 1 0 1 1 1 0

0 0 0 1 1 0 1 0 1

0 0 0 1 1 1 1 1 1

0 0 1 1 0 0 1 1 0

0 0 1 1 0 1 1 0 1

0 0 1 1 1 0 1 1 1

0 0 1 1 1 1 1 0 0

0 1 0 1 0 0 1 0 1

0 1 0 1 0 1 1 1 1

0 1 0 1 1 0 1 0 0

0 1 0 1 1 1 1 1 0

0 1 1 1 0 0 1 1 1

0 1 1 1 0 1 1 0 0

0 1 1 1 1 0 1 1 0

0 1 1 1 1 1 1 0 1

1 0 1 0 1 0 1 1 1

1 0 1 0 1 1 1 0 0

1 1 0 0 0 0 1 0 1

1 1 0 0 0 1 1 1 1

1 1 0 0 1 0 1 0 0

1 1 0 0 1 1 1 1 0

1 1 1 0 0 0 1 1 1

1 1 1 0 0 1 1 0 0

1 1 1 0 1 0 1 1 0

1 1 1 0 1 1 1 0 1

1 0 0 1 0 0 0 0 0

1 0 0 1 0 1 0 1 0

1 0 0 1 1 0 0 0 1

1 0 0 1 1 1 0 1 1

1 0 1 1 0 0 0 1 0

1 0 1 1 0 1 0 0 1

1 0 1 1 1 0 0 1 1

1 0 1 1 1 1 0 0 0

1 1 0 1 0 0 0 0 1

1 1 0 1 0 1 0 1 1

1 1 0 1 1 0 0 0 0

1 1 0 1 1 1 0 1 0

1 1 1 1 0 0 0 1 1

1 1 1 1 0 1 0 0 0

1 1 1 1 1 0 0 1 0

1 1 1 1 1 1 0 0 1

1 0 0 1 0 0 1 0 0

1 0 0 1 0 1 1 1 0

34

3.2. FURTHER CONSTRUCTIONS FOR OOAS

OOA(7, 3, 3, 2) continued:

1 0 0 1 1 0 1 0 1

1 0 0 1 1 1 1 1 1

1 0 1 1 0 0 1 1 0

1 0 1 1 0 1 1 0 1

1 0 1 1 1 0 1 1 1

1 0 1 1 1 1 1 0 0

1 1 0 1 0 0 1 0 1

1 1 0 1 0 1 1 1 1

1 1 0 1 1 0 1 0 0

1 1 0 1 1 1 1 1 0

1 1 1 1 0 0 1 1 1

1 1 1 1 0 1 1 0 0

1 1 1 1 1 0 1 1 0

1 1 1 1 1 1 1 0 1

We can use the same basic construction to obtain different sets of parameters. Instead of having

strength sl+ t�, our OOA will have a smaller strength of just l+ l�. But, since the same number of rows

will be constructed, now with a smaller tuple to cover, our OOA will have an index λ > 1. So, we are

essentially giving up some of the strength of the OOA in exchange for a larger number of occurrences of

each of the smaller tuples.

Theorem 3.2.4. For positive integers s, l and v, if there exists an OOA(t�, s, l�, v), then there exists an

OOAλ(l + l�, s, l + l�, v), where λ = vsl+t�−l−l� .

Proof. We follow the same construction outlined in the proof of Theorem 3.2.2. By Theorem 2.3.6, there

exists an OOA(sl, s, l, v). Let A be an OOA(sl, s, l, v) and B an OOA(t�, s, l�, v). Each part of the final

OOA is created by concatenating a left hand piece from A and a right hand piece from B. The first

l columns in each part come from A, and we thus know that the first l columns in a part are covered

properly by the orthogonal array property of the left-justified sets in A. For each l-tuple on the left of a

part, from A, we have a complete copy of B, thus every (l + l�)-tuple is covered within a part. To find

out the number of occurrences, λ, for each (l + l�)-tuple, we count the number of rows in each array, A

and B, multiply them together, and equate it to the number of rows in an OOAλ(l + l�, s, l + l�, v). We

then solve for λ, to get vslvt
�

= λvl+l� ⇒ λ = vsl+t�−l−l� .

It remains to show that every (l+ l�)-tuple is covered λ times across all left-justified sets formed from

more than one part of the OOA. To form an (l + l�)-tuple from the new OOA, there will always be at

least l columns from A in the (l+ l�)-tuple. So we take two cases for the choice of the number of columns

from A.

1. If there is exactly l columns from A in the (l + l�)-tuple, then there must be exactly l� columns

from B, in the (l + l�)-tuple. Since arrays A and B both satisfy the OA property within every

left-justified set of l and l� columns respectively, then every (l+ l�)-tuple will be covered within the

new OOA.

2. If there is more than l columns from A in the (l+ l�)-tuple, then there will be less than l� columns

from B, in the (l + l�)-tuple. We can pick at most sl columns from A, since A has a total of sl

35

3.2. FURTHER CONSTRUCTIONS FOR OOAS

columns. Since array A has strength sl, we know that we can choose up to sl columns from A and

they will always satisfy the OA property. We are now left with less than l� columns to be chosen

from B. These must also satisfy the OA property, since every left-justified set of t� ≥ l� columns

of B satisfy the OA property. So every (l + l�)-tuple will be covered within the new OOA.

The number of times each (l + l�)-tuple appears follows exactly from the calculation of λ above.

The following corollary is a direct result of Theorem 3.2.4, taking l = 1 and allowing the array to

have a positive index λ.

Corollary 3.2.5. For positive integers s and v, if there exists an OOAλ1
(t, s, l, v), then there exists an

OOAλ2
(l + 1, s, l + 1, v), where λ2 = λ1v

s+t−l−1.

Proof. By Theorem 2.1.6, there exists an OA(s, s, v). The multiplicative construction of Theorem 3.2.4,

using an OA(s, s, v) (≡ OOA(s, s, 1, v)) and an OOAλ1
(t, s, l, v) gives us an OOAλ2

(l + 1, s, l + 1, v).

Since the OOA used in the construction has a subscript λ1, it affects the number of times each (l + 1)-

tuple is repeated in the OOAλ2
(l + 1, s, l + 1, v). To find the value of λ2, we count the number of rows

in the OA(s, s, v) and the OOAλ1
(t, s, l, v), multiply them together, and equate it the number of rows

in the OOAλ2
(l + 1, s, l + 1, v). We then solve for λ2 in vsλ1v

t = λ2v
l+1 ⇒ λ2 = λ1v

s+t−l−1.

Corollary 3.2.5 can be interpreted in terms of (t,m, s)-nets, where bs copies of (t1,m1, s)-net base b

are joined together to create a larger (t,m, s)-net in base b in an s-dimensional hypercube:

Corollary 3.2.6. If there exists a (t,m, s)-net in base b, then there exists a (t+ s− 1,m+ s, s)-net in

base b.

Proof. By Theorem 2.3.13, a (t1,m1, s)-net base b is equivalent to an OOAbt1 (m1 − t1, s,m1 − t1, b).

By Theorem 3.2.5, if there exists an OOAbt1 (m1 − t1, s,m1 − t1, b), then there exists an OOAλ(m1 −

t1 + 1, s,m1 − t1 + 1, b), where λ = bt1+s−1. We now translate the last OOA back to a (t,m, s)-net in

base b, say (t2,m2, s)-net base b. From Theorem 2.3.13, we get the two equations bt2 = bt1+s−1 and

m2− t2 = m1− t1+1. Solving for t2 and m2, gives us t2 = t1+ s−1 and m2 = m1+ s. Substituting the

values for t2 and m2 back into the (t2,m2, s)-net base b, gives us a (t1 + s− 1,m1 + s, s)-net base b.

Example 3.2.7. We will construct a (2,5,3)-net base 2 from a (0,2,3)-net base 2. We start with an

OOA(2, 3, 2, 2) which is equivalent to a (0,2,3)-net base 2 . We will construct an OOA4(3, 3, 3, 2) (which

is equivalent to a (2,5,3)-net base 2), using an OA(3, 3, 2) and an OOA(2, 3, 2, 2).

36

3.2. FURTHER CONSTRUCTIONS FOR OOAS

OA(3, 3, 2)

0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1

OOA(2, 3, 2, 2)

0 0 0 0 1 0

0 1 1 0 0 1

1 0 0 1 0 0

1 1 1 1 1 1

OOA4(3, 3, 3, 2)
0 0 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 1

0 1 0 0 0 1 0 0 0

0 1 1 0 1 1 0 1 1

1 0 0 0 0 0 0 1 0

1 0 1 0 1 0 0 0 1

1 1 0 0 0 1 0 0 0

1 1 1 0 1 1 0 1 1

0 0 0 1 0 0 0 1 0

0 0 1 1 1 0 0 0 1

0 1 0 1 0 1 0 0 0

0 1 1 1 1 1 0 1 1

1 0 0 1 0 0 0 1 0

1 0 1 1 1 0 0 0 1

1 1 0 1 0 1 0 0 0

1 1 1 1 1 1 0 1 1

0 0 0 0 0 0 1 1 0

0 0 1 0 1 0 1 0 1

0 1 0 0 0 1 1 0 0

0 1 1 0 1 1 1 1 1

1 0 0 0 0 0 1 1 0

1 0 1 0 1 0 1 0 1

1 1 0 0 0 1 1 0 0

1 1 1 0 1 1 1 1 1

0 0 0 1 0 0 1 1 0

0 0 1 1 1 0 1 0 1

0 1 0 1 0 1 1 0 0

0 1 1 1 1 1 1 1 1

1 0 0 1 0 0 1 1 0

1 0 1 1 1 0 1 0 1

1 1 0 1 0 1 1 0 0

1 1 1 1 1 1 1 1 1

From the above OOA(2, 3, 2, 2), the corresponding (0,2,3)-net base 2 consists of the following 4 points:

{(0, 0, 2
4), (

1
4 ,

2
4 ,

1
4), (

2
4 ,

1
4 , 0), (

3
4 ,

3
4 ,

3
4)}

From our new OOA4(3, 3, 3, 2), the corresponding (2,5,3)-net base 2 consists of the following 32

points:

{(0, 0, 2
8), (

1
8 ,

2
8 ,

1
8), (

2
8 ,

1
8 , 0), (

3
8 ,

3
8 ,

3
8), (

4
8 , 0,

2
8), (

5
8 ,

2
8 ,

1
8), (

6
8 ,

1
8 , 0), (

7
8 ,

3
8 ,

3
8), (0,

4
8 ,

2
8), (

1
8 ,

6
8 ,

1
8), (

2
8 ,

5
8 , 0),

(38 ,
7
8 ,

3
8), (

4
8 ,

4
8 ,

2
8), (

5
8 ,

6
8 ,

1
8), (

6
8 ,

5
8 , 0), (

7
8 ,

7
8 ,

3
8), (0, 0,

6
8), (

1
8 ,

2
8 ,

5
8), (

2
8 ,

1
8 ,

4
8), (

3
8 ,

3
8 ,

7
8), (

4
8 , 0,

6
8), (

5
8 ,

2
8 ,

5
8),

(68 ,
1
8 ,

4
8), (

7
8 ,

3
8 ,

7
8), (0,

4
8 ,

6
8), (

1
8 ,

6
8 ,

5
8), (

2
8 ,

5
8 ,

4
8), (

3
8 ,

7
8 ,

7
8), (

4
8 ,

4
8 ,

6
8), (

5
8 ,

6
8 ,

5
8), (

6
8 ,

5
8 ,

4
8), (

7
8 ,

7
8 ,

7
8)}

In terms of (t,m, s)-net point sets, through this OOA construction, we have joined eight copies of a

(0,2,3)-net base 2 to form a (2,5,3)-net base 2. The corresponding (t,m, s)-net construction is as follows:

We add one cube to the right of the original, one directly above the original and one directly above the

new cube that was added to the right. We now have four cubes, we make this eight cubes by adding one

cube directly behind each of the four cubes. We now have a total of 32 points and 8 intervals, with 4

37

3.2. FURTHER CONSTRUCTIONS FOR OOAS

points/interval, which translates to a (2,5,3)-net base 2. The manner in which the eight cubes are placed

altogether is shown in the figure below:

✟✟✟✟

✟✟✟✟

✟✟✟✟

✟✟✟✟

✟✟✟✟

Eight cubes, each representing a (0,2,3)-net base 2, joined to form a (2,5,3)-net base 2.

38

Chapter 4

Ordered Covering Arrays

In this chapter, we introduce a new combinatorial object called an ordered covering array (OCA), which

generalizes covering arrays by imposing balance conditions on certain sets of columns. We discuss

several constructions for these objects, using similar recursive and Roux constructions described for

covering arrays in Section 2.2.2. We will also look at other theorems, homomorphisms, and multiplicative

constructions for OCAs.

4.1 Introduction to Ordered Covering Arrays

Ordered covering arrays have the same relationship to ordered orthogonal arrays as covering arrays have

to orthogonal arrays. OCAs relax the exact condition for coverage, just as covering arrays do, so rather

than covering t-tuples exactly λ times, we are covering them at least λ times.

In practice, there may exist factors in a test suite that will never interact with each other [19]. So

the covering array for such a problem should avoid the t-wise interactions of those factors, but should

still cover all the allowable interactions of the test suite. For example, when testing a series of servers

represented by network nodes, there is a main hub of servers in the centre, connecting some network

nodes to each other, so all nodes within the hub interact with each other. Each network node in the hub,

is then connected to its own sub-network of servers, which interact with each other. One way to test such

a network is to choose servers within each sub-network and test that they are interconnected (through

the hub). For example, from the figure below, we may require Server 1 under hub Node A to interact

with Server 2 under hub Node B. This pattern of interconnections between the network nodes/servers

can result in the testing of left-justified sets, by allowing certain interactions and restricting others,

therefore the interaction test suite can be represented using an ordered covering array.

39

4.1. INTRODUCTION TO ORDERED COVERING ARRAYS

�

�

�

�

�
�

�
�

�

❅
❅

❅
❅

❅

✑
✑

✑
✑✑

◗
◗

◗
◗◗

◗
◗

◗
◗◗

✑
✑

✑
✑✑

� �
�

� �
� ��

�

��
�

1
A

B
2

✖✕
✗✔

✖✕
✗✔

Definition 4.1.1. For positive integers λ, t, s, l and v, where l ≤ t ≤ sl, an ordered covering array

OCAλ(N ; t, s, l, v) is an N × sl array, A, with entries from an alphabet of size v, such that in every

left-justified set of t columns, every t-tuple occurs at least λ times as a row. The ordered covering

array number OCANλ(t, s, l, v) is the minimum integer N for which an OCAλ(N ; t, s, l, v) exists.

In the above definition, we restrict the value of the parameter l, such that l ≤ t. We note that we

can have an OCAλ(t, s, l, v) with l > t, but as a result, columns (t + 1) to l of each of the s parts will

never interact with any other columns in the array, since they can never belong to a left-justified set of

t columns.

In Section 2.3.1, we defined admissible parameter sets for OOAs. They are defined in the same way

for OCAs: Given integers (t, s, l, v), we call them admissible if they satisfy the necessary conditions for

the existence of an OCA(t, s, l, v). If (t, s, l, v) is an admissible set, then l ≤ t ≤ sl.

Example 4.1.2. The following is an OCA(5; 2, 4, 2, 2):

1 0 1 0 1 0 1 0

1 1 0 1 0 0 0 0

0 0 1 1 0 1 0 1

0 1 0 0 1 1 0 0

0 0 0 0 0 0 1 1

Each pair (0,0), (0,1), (1,0), (1,1) is covered at least once within every left-justified set of 2 columns.

For example, columns 1 of parts 3 and 4 form a left-justified set, so each pair must be covered at least

once. The pairs (0,1), (1,0) and (1,1) are covered exactly once, while (0,0) is covered twice.

Mixed covering arrays allow different alphabet sizes in different columns of the array, as described

in Section 2.2.1. Similarly, we can define a mixed ordered covering array to vary the alphabet size of

different columns of the array:

Definition 4.1.3. For positive integers λ, t, s, l and v1,1, ..., vs,l, a mixed ordered covering array

MOCAλ(N ; t, s, l, (v1,1, ..., v1,l, ..., vs,1, ..., vs,l)) is an N × sl array, where vi,j is the alphabet size for the

jth column of the ith part of the OCA for 1 ≤ i ≤ s, 1 ≤ j ≤ l, and every left-justified set of t columns

covers all t-tuples at least λ times.

40

4.2. RECURSIVE AND ROUX CONSTRUCTIONS

Example 4.1.4. The following array is a MOCA(6; 2, 2, 2, (2, 2, 3, 2)):

0 0 0 0

0 1 1 0

0 ∗ 2 0

1 0 0 1

1 1 1 1

1 ∗ 2 1

The first, second and fourth columns have alphabet size two, while the third column has alphabet size

three. All left-justified sets of two columns cover all pairs at least once. For example, the first columns

of each part cover all six pairs formed from the alphabets of size two and three, while the two columns

in the first part of the array cover all four pairs (at least once) formed from the alphabets of size two.

There are two “do not care” positions which are denoted by the symbol *.

Note that we cannot have mixed ordered orthogonal arrays because by allowing the alphabet size of

different columns to vary, we will force repeated t-tuples for some other columns.

4.2 Recursive and Roux Constructions

For ordered covering arrays of strength two, the same recursive construction for strength two covering

arrays (as discussed in Section 2.2.2), can be applied to an OCA and a CA to create an array with a

larger number of parts.

Theorem 4.2.1. If an OCA(N ; 2, s, l, v) and a CA(M ; 2, k, v) both exist, then an

OCA(N +M ; 2, sk, l, v) exists.

Proof. We use a similar method as in the proof of Theorem 2.2.9 [16]. We place k copies of the

OCA(2, s, l, v) side by side. Under the first copy of the OCA, we place the first column of the CA

under the first columns of each part. We repeat this for all k columns, so that under the first columns

of the parts of the ith copy of the OCA, we place the ith column of the CA, for 1 ≤ i ≤ k. The result

is an OCA(N +M ; 2, sk, l, v). For any left-justified set of two columns of the OCA(N +M ; 2, sk, l, v),

that are either from the same part, or from different parts with different indices mod s, all pairs will

be covered from the OCA(N ; 2, s, l, v). For any left-justified set of two columns of the OCA(N +

M ; 2, sk, l, v), that are from different parts, with the same index mod s, all pairs from the two columns

of the OCA(N ; 2, s, l, v) will be of the form xx for x ∈ V , where V represents the alphabet set of size

v. The remaining pairs are covered from the columns of the CA(M ; 2, k, v) which were added below.

If l = 2, in the (N + 1) to (N + M) rows of the resulting OCA, the second columns of each part can

be considered “don not care” positions, because the second columns do not interact with each other (or

with the first columns of different parts). Their interactions with the first columns of the same part have

already been covered in the first N rows (since we placed k copies of the OCA side by side).

41

4.2. RECURSIVE AND ROUX CONSTRUCTIONS

We note that in the above theorem, even if an OOA and an OA are used in the construction, in place

of an OCA and a CA, this construction will always result in some pairs being repeated within every

left-justified set of two columns, so the resulting array will always be an OCA.

Example 4.2.2. We will construct an OCA(2, 6, 2, 2) from an OOA(2, 2, 2, 2) and an OA(2, 3, 2):

OOA(2, 2, 2, 2) OA(2, 3, 2)

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1

0 0 0

0 1 1

1 0 1

1 1 0

We place 3 copies of the OOA(2, 2, 2, 2) side by side. Under the first columns of the two parts of the

first copy, we place the first column of the OA. We repeat this for the second and third columns of the

OA:

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0

1 0 0 1 1 0 0 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0

0 0 1 1 1 1

1 1 0 0 1 1

1 1 1 1 0 0

Note that the second columns of the 5th to 8th rows of the above array are “do not care” positions,

which we will denote by the symbol *. The resulting array is an OCA(2, 6, 2, 2):

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0

1 0 0 1 1 0 0 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1

0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗

0 ∗ 0 ∗ 1 ∗ 1 ∗ 1 ∗ 1 ∗

1 ∗ 1 ∗ 0 ∗ 0 ∗ 1 ∗ 1 ∗

1 ∗ 1 ∗ 1 ∗ 1 ∗ 0 ∗ 0 ∗

By choosing zeros for the * positions of the fifth row, we will get a repeated constant row of zeros. So

we can remove the fifth row from the OCA, which gives us the following optimal OCA(2, 6, 2, 2):

42

4.2. RECURSIVE AND ROUX CONSTRUCTIONS

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0

1 0 0 1 1 0 0 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1

0 ∗ 0 ∗ 1 ∗ 1 ∗ 1 ∗ 1 ∗

1 ∗ 1 ∗ 0 ∗ 0 ∗ 1 ∗ 1 ∗

1 ∗ 1 ∗ 1 ∗ 1 ∗ 0 ∗ 0 ∗

For ordered covering arrays of strength 3, a Roux-type construction, similar to Theorem 2.2.12, can

be applied to OCAs to construct an OCA with a larger number of parts.

Theorem 4.2.3. OCAN(3, 2s, l, 2) ≤ OCAN(3, s, l, 2) +OCAN(2, s,m, 2), where m = 2 for 2 ≤ l ≤ 3

and m = 1 for l = 1.

Proof. We use a similar method as in the Roux construction of Theorem 2.2.12 [35, 38]. To construct

an OCA(3, 2s, l, 2), we place two OCA(N1; 3, s, l, 2)’s side by side. For any three columns that form a

left-justified set, that either have all three columns from one copy of the OCA, or have columns from

both copies, but with no two columns that have the same column and part index, all triples are covered.

But for a selection which contains two columns that have the same column and part index, all triples will

not be covered, only triples of the form aaa, aab, bba and bbb will be covered for an alphabet set {a, b}.

Therefore, to the bottom of the new array, we add an OCA(N2; 2, s,m, 2), and its bit complement, side

by side, left aligning the parts with the parts of the above array, where m = 2 for l = 2 or l = 3 and

m = 1 for l = 1. Now, for any three columns that form a left-justified set which contains two columns

that have the same column and part index, we will get the remaining triplets aba, abb, baa and bab, from

the OCA(N2; 2, s,m, 2) and bit complement that we added. For the OCA(3, s, l, 2), if l = 3, then in

the (N1 + 1) to (N1 + N2) rows of the resulting OCA, the third columns of each part will be “do not

care” positions, since the interaction for all 3 columns within the same part have already been covered

in the first N1 rows of that part, and the third columns of any part of the OCA will not interact with

any columns from a different part.

Example 4.2.4. We will construct an OCA(3, 4, 3, 2) from an OOA(3, 2, 3, 2) and an OOA(2, 2, 2, 2).

We begin by placing two OOA(3, 2, 3, 2)’s side by side:

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 1 1 0 0

1 0 0 0 0 1 1 0 0 0 0 1

1 0 1 1 0 1 1 0 1 1 0 1

1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1

43

4.2. RECURSIVE AND ROUX CONSTRUCTIONS

We construct an OOA(2, 2, 2, 2) and its bit complement:

OOA(2, 2, 2, 2) Complement

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1

1 1 1 1

1 0 0 1

0 1 1 0

0 0 0 0

We add the OOA(2, 2, 2, 2) and its bit compliment side by side, to the bottom of the two

OOA(3, 2, 3, 2)’s that were placed side by side, in order to get an OCA(3, 4, 3, 2):

OCA(3, 4, 3, 2)

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 1 1 0 0

1 0 0 0 0 1 1 0 0 0 0 1

1 0 1 1 0 1 1 0 1 1 0 1

1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

1 1 1 1 0 0 0 0

−→

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 1 1 0 0

1 0 0 0 0 1 1 0 0 0 0 1

1 0 1 1 0 1 1 0 1 1 0 1

1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 ∗ 0 0 ∗ 1 1 ∗ 1 1 ∗

0 1 ∗ 1 0 ∗ 1 0 ∗ 0 1 ∗

1 0 ∗ 0 1 ∗ 0 1 ∗ 1 0 ∗

1 1 ∗ 1 1 ∗ 0 0 ∗ 0 0 ∗

As per covering arrays, this can be generalised for all v:

Theorem 4.2.5. OCAN(3, 2s, l, v) ≤ OCAN(3, s, l, v) + (v − 1)OCAN(2, s,m, v), where m = 2 for

2 ≤ l ≤ 3 and m = 1 for l = 1.

Proof. We follow a similar construction as in the proof of Theorem 2.2.14 [11]. We begin by placing two

OCA(N1; 3, s, l, v)’s side by side. For any three columns that form a left-justified set, that either have all

three columns from one copy of the OCA, or have columns from both copies, but with no two columns

that have the same column and part index, all triples are covered. But for a selection which contains

two columns that have the same column and part index, all triples will not be covered, only triples of

the form aax will be covered for a, x ∈ V , where V represents the alphabet set of size v. Let C be an

OCA(N2; 2, s,m, v) where m = 2 for 2 ≤ l ≤ 3 and m = 1 for l = 1. Let π be a cyclic permutation of

the v symbols. For each 1 ≤ i ≤ v − 1, we append N2 rows consisting of C and πi(C) placed side by

side, below the OCA(3, s, l, v)’s, left aligning the parts of C and πi(C) with the corresponding parts of

the first and second copies of the OCA(3, s, l, v) respectively. Now, for any three columns that form a

left-justified set which contains two columns that have the same column and part index, we will get the

remaining triplets which have different alphabets in the first 2 columns, from the columns in arrays C

and πi(C) that we added. The construction is shown in the figure below:

44

4.3. FURTHER CONSTRUCTIONS FOR OCAS

OCA(3, s, l, v) OCA(3, s, l, v)

C = OCA(2, s,m, v) π1(C)

C π2(C)

...
...

C πv−1(C)

For an OCA(3, s, l, v), if l = 3, then in the (N1 + 1) to (N1 + N2) rows of the resulting OCA, the

third columns of each part will be “do not care” positions.

See Example 2.2.15 for a similar Roux construction to the one described above, being applied to

covering arrays.

4.3 Further Constructions for OCAs

The same theorems and proofs we used to construct ordered orthogonal arrays in Sections 3.1 and 3.2

can be applied to ordered covering arrays.

OCAs can be constructed using the columns of a CA:

Theorem 4.3.1. If there exists a CA(t, k, v), and integers s ≥ 2, l ≤ t, such that:

k ≥

st
2 if t is even and l > t

2 ,

� t
2�s+ 1 if t is odd and l > � t

2�,

sl if l ≤ � t
2�,

then there exists an OCA(t, s, l, v).

Proof. This follows from the proof of Theorem 3.1.1.

The interaction graph (Definition 3.1.4) also applies to OCAs. The homomorphisms described in

Theorem 3.1.5 and Corollary 3.1.6 still hold, but they generally will not result in an optimal OCA

because the number of edges in the excess graph blows up through the construction. For example, if we

use the columns of a CA(6; 2, 4, 2), which has twelve edges in its corresponding excess graph, to construct

an OCA(6; 2, 4, 2, 2), by mapping the columns of the OCA to the CA, then the resulting OCA will have

a total of twenty edges in its excess graph. By other methods, we can construct an OCA(5; 2, 4, 2, 2)

which has only ten edges in its excess graph (and one less row). However, OCAs can be constructed

from other OCAs following the same construction as in Theorem 3.2.2:

Theorem 4.3.2. For positive integers s, l and v, if there exists an OCA(t�, s, l�, v), then there exists an

OCA(sl + t�, s, l + l�, v).

45

4.4. (T,M,S)-COVERING NETS

As in Theorem 3.2.4, we can use the same construction to obtain different sets of parameters. Instead

of having strength sl+ t�, the strength of the OCA will be l+ l�, and the array will have an index λ > 1.

Theorem 4.3.3. For positive integers s, l and v, if there exists an OCA(t�, s, l�, v), then there exists an

OCAλ(l + l�, s, l + l�, v), where λ = vsl+t�−l−l� .

As in Corollary 4.3.4, the following is a direct result of Theorem 4.3.3, taking l = 1 and allowing the

array to have a positive index λ:

Corollary 4.3.4. For positive integers s and v, if there exists an OCAλ1
(t, s, l, v), then there exists an

OCAλ2
(l + 1, s, l + 1, v), where λ2 = λ1v

s+t−l−1.

4.4 (t,m,s)-Covering Nets

We have seen how to construct (t,m, s)-nets from orthogonal arrays and ordered orthogonal arrays.

Theorem 2.3.13 describes the equivalence between (t,m, s)-nets and parametric subclasses of ordered

orthogonal arrays by stating that a (t,m, s)-net in base b exists if and only if an OOAbt(m− t, s,m− t, b)

exists. But for certain parameters where such an OOA does not exist, we can instead use an OCA to

construct an object similar to a (t,m, s)-net which we will introduce as a (t,m, s)-covering net.

For example, from Theorem 2.3.13, a (0,2,4)-net in base 2 is equivalent to an OOA(2, 4, 2, 2).

From Theorem 3.1.1, we know that in order for an OOA(2, 4, 2, 2) to exist, we need an OA(2, 4, 2),

which we know does not exist since there do not exist two MOLS of order 2 [20]. So instead of us-

ing an OOA(2, 4, 2, 2) to construct the (0,2,4)-net in base 2, we can use an OCA(2, 4, 2, 2), since an

OCA(2, 4, 2, 2) exists, with the most optimal one having 5 rows. We follow the exact same construction

as if it were an OOA, and instead of having 4 points in our net, we will have a total of 5 points. Also,

instead of having exactly one point in every elementary interval of volume 1
4 , we now have at least one

point in every such interval. In this example, in one 4-dimensional unit hypercube, there will be one

elementary interval of volume 1
4 , which has two points in it, while the other three elementary intervals

will have exactly one point in them. So four out of five points will still be uniformly distributed, and

therefore they will still have a low discrepancy.

We now give a formal definition of a (t,m, s)-covering net in base b:

Definition 4.4.1. For integers 0 ≤ t ≤ m, s ≥ 1 and b ≥ 2, a (t,m,s)-covering net in base b is a

point set of at least bm points in the s-dimensional hypercube [0, 1)s such that every elementary interval

in base b having volume bt−m contains at least bt points.

Just as the points of a (t,m, s)-net are shifted by a small positive value, � ∈ R, in all s-dimensions,

in order for them to lie in the intervals and not on the boundaries of the intervals, the same applies for

(t,m, s)-covering nets.

A (t,m, s)-covering net has the same relationship to an OCA as a (t,m, s)-net has to an OOA.

We can use the same construction described in section 2.3.2, to construct (t,m, s)-covering nets from

OCAs. A (t,m, s)-covering net in base b can be constructed from an OCA by translating each row in

46

4.4. (T,M,S)-COVERING NETS

the OCA to a point in the (t,m, s)-covering net. This is done by first placing a decimal point before

each part of each row of the OCA, so that each point has s coordinates corresponding to the s parts

of the OCA. We then take the decimal expansion in base b for each point, in order to translate them

to points in an s-dimensional hypercube, [0, 1)s, which results in the set of points for the corresponding

(t,m, s)-covering net. This process can be reversed to construct an OCA from a (t,m, s)-covering net.

Therefore the left-justified sets of an OCA are equivalent to the elementary intervals of its corresponding

(t,m, s)-covering net, in the same way as in Theorem 2.3.13, and as a result, a (t,m, s)-covering net in

base b is equivalent to an OCAλ(m− t, s,m− t, b).

Example 4.4.2. A (0,2,4)-covering net in base 2 has at least bm = 22 = 4 points, each point is 4-

dimensional, and there is at least bt = 20 = 1 point in every elementary interval of volume bt−m =

20−2 = 1
4 . We will construct a (0,2,4)-covering net in base 2 from an OCA(2,4,2,2):

OCA(2, 4, 2, 2)

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 1

0 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 0

We use the same construction described in Section 2.3.2. The points corresponding to the OCA in bi-

nary form are: (.11, .11, .11, .11), (.10, .00, .00, .01), (.01, .10, .00, .00), (.00, .01, .10, .00), (.00, .00, .01, .10).

The following table translates these values from binary to decimal:

Binary Decimal

.00 (0 ∗ 2−1) + (0 ∗ 2−2) = 0

.01 (0 ∗ 2−1) + (1 ∗ 2−2) = 1
4

.10 (1 ∗ 2−1) + (0 ∗ 2−2) = 1
2

.11 (1 ∗ 2−1) + (1 ∗ 2−2) = 3
4

And substituting the decimal values back into our binary points, gives us the points of our (0,2,4)-

covering net in base 2: {(34 ,
3
4 ,

3
4 ,

3
4), (

2
4 , 0, 0,

1
4), (

1
4 ,

2
4 , 0, 0), (0,

1
4 ,

2
4 , 0), (0, 0,

1
4 ,

2
4)}+ (�, �).

If an OOA(t, s, l, v) does not exist, then by keeping the values of t, s and l the same, the closest OOA

would be an OOA(t, s, l, v�), where v� is the smallest integer, larger than v, such that an OOA(t, s, l, v�)

exists. This would introduce at least (v�)t − vt more rows. So instead of using an OOA with a larger

alphabet size, we can use an OCA(t, s, l, v), which always exists, and will result in a smaller number of

extra rows. For example, an OOA(2, 2, 4, 2) does not exist, and by using an OOA(2, 2, 4, 3), which exists,

we will have five rows more than the number of rows in an OOA(2, 2, 4, 2) (if it existed). So instead, we

can use an OCA(2, 2, 4, 2), where an optimal OCA(2, 2, 4, 2) has five rows, which is only one row more

than an OOA(2, 2, 4, 2) would have if it existed.

47

4.4. (T,M,S)-COVERING NETS

Example 4.4.3. We will use a (0,2,4)-covering net in base 6, which is equivalent to an OCA(2, 4, 2, 6),

to numerically approximate the value of the integral
� 1

0

� 1

0

� 1

0

� 1

0
wxyz dzdydxdw. (An OOA(2, 4, 2, 6)

does not exist, therefore the corresponding (0,2,4)-net in base 6 does not exist.)

First, we compute the exact value of the integral:

� 1

0

� 1

0

� 1

0

� 1

0

wxyz dzdydxdw =

� 1

0

� 1

0

� 1

0

wxy

2
dydxdw =

� 1

0

� 1

0

wx

4
dxdw =

� 1

0

w

8
dw =

1

16
.

The most optimal OCA(2, 4, 2, 6) has 37 rows, we use the following OCA(37; 2, 4, 2, 6) for our (0,2,4)-

covering net in base 6:

OOA(37; 2, 4, 2, 6)
0 0 0 0 4 0 0 4

0 1 1 0 5 1 1 5

0 4 2 0 2 2 4 2

0 5 3 0 3 3 5 3

0 2 4 0 0 4 2 0

0 3 5 0 1 5 3 1

1 5 0 1 1 0 5 1

1 4 1 1 0 1 4 0

1 0 2 1 5 2 0 5

1 1 3 1 4 3 1 4

1 3 4 1 2 4 3 2

1 2 5 1 3 5 2 3

2 3 0 2 5 0 3 5

2 2 1 2 4 1 2 4

2 5 2 2 0 2 5 0

2 4 3 2 1 3 4 1

2 0 4 2 3 4 0 3

2 1 5 2 2 5 1 2

3 4 0 3 3 0 4 3

3 5 1 3 2 1 5 2

3 3 2 3 4 2 3 4

3 2 3 3 5 3 2 5

3 1 4 3 1 4 1 1

3 0 5 3 0 5 0 0

4 1 0 4 0 0 1 0

4 3 1 4 3 1 3 3

4 2 2 4 1 2 2 1

4 0 3 4 2 3 0 2

4 4 4 4 4 4 4 4

4 5 5 4 5 5 5 5

5 2 0 5 2 0 2 2

5 0 1 5 1 1 0 1

5 1 2 5 3 2 1 3

5 3 3 5 0 3 3 0

5 5 4 5 5 4 5 5

5 5 5 5 4 5 5 4

The corresponding points in the (0,2,4)-covering net in base 6 are:

{(0, 0, 24
36 ,

4
36), (

1
36 ,

6
36 ,

31
36 ,

11
36), (

4
36 ,

12
36 ,

14
36 ,

26
36), (

5
36 ,

18
36 ,

21
36 ,

33
36), (

2
36 ,

24
36 ,

4
36 ,

12
36), (

3
36 ,

30
36 ,

11
36 ,

19
36),

(1136 ,
1
36 ,

6
36 ,

31
36), (

10
36 ,

7
36 ,

1
36 ,

24
36), (

6
36 ,

13
36 ,

32
36 ,

5
36), (

7
36 ,

19
36 ,

27
36 ,

10
36), (

9
36 ,

25
36 ,

16
36 ,

20
36), (

8
36 ,

31
36 ,

23
36 ,

15
36),

(1536 ,
2
36 ,

30
36 ,

23
36), (

14
36 ,

8
36 ,

25
36 ,

16
36), (

17
36 ,

14
36 ,

2
36 ,

30
36), (

16
36 ,

20
36 ,

9
36 ,

25
36), (

12
36 ,

26
36 ,

22
36 ,

3
36), (

13
36 ,

32
36 ,

17
36 ,

8
36),

48

4.4. (T,M,S)-COVERING NETS

(2236 ,
3
36 ,

18
36 ,

27
36), (

23
36 ,

9
36 ,

13
36 ,

32
36), (

21
36 ,

15
36 ,

26
36 ,

22
36), (

20
36 ,

21
36 ,

33
36 ,

17
36), (

19
36 ,

27
36 ,

10
36 ,

7
36), (

18
36 ,

33
36 ,

5
36 , 0),

(2536 ,
4
36 , 0,

6
36), (

27
36 ,

10
36 ,

19
36 ,

21
36), (

26
36 ,

16
36 ,

8
36 ,

13
36), (

24
36 ,

22
36 ,

15
36 ,

2
36), (

28
36 ,

28
36 ,

28
36 ,

28
36), (

29
36 ,

34
36 ,

35
36 ,

35
36),

(3236 ,
5
36 ,

12
36 ,

14
36), (

30
36 ,

11
36 ,

7
36 ,

1
36), (

31
36 ,

17
36 ,

20
36 ,

9
36), (

33
36 ,

23
36 ,

3
36 ,

18
36), (

35
36 ,

29
36 ,

34
36 ,

35
36), (

35
36 ,

35
36 ,

29
36 ,

34
36),

(3436 ,
35
36 ,

35
36 ,

28
36)}+ (�, �).

Using the above (0,2,4)-covering net in base 6, to approximate the value of the integral using QMC

integration, gives us an approximation of 0.1102.

In the next example, we compare the values obtained from approximating an integral using a (t,m, s)-

net constructed from an OOA versus (t,m, s)-covering nets constructed from OCAs, where the OOAs

and OCAs have the same parameter values for t, s and l.

Example 4.4.4. We will numerically approximate the value of the integral
� π

0
(
� 1

0
ysin(200x)dy)dx,

using a (0,2,2)-net in base 4 and using a (0,2,2)-covering net in base 4.

The exact value of the integral is computed as follows:

� π

0

(

� 1

0

ysin(200x)dy)dx =

� π

0

y2

2
sin(200x)|10dx =

� π

0

1

2
sin(200x)dx = −

1

400
cos(200x)|π0

= −
1

400
+

1

400
= 0.

For our (0,2,2)-net in base 4, we use the following OOA(16; 2, 2, 2, 4):

OOA(16; 2, 2, 2, 4)
0 0 0 0

0 1 1 0

0 2 2 0

0 3 3 0

1 0 0 1

1 1 1 1

1 2 2 1

1 3 3 1

2 0 0 2

2 1 1 2

2 2 2 2

2 3 3 2

3 0 0 3

3 1 1 3

3 2 2 3

3 3 3 3

Using the corresponding (0,2,2)-net in base 4 to approximate the value of the integral using QMC

integration gives us an approximation of -0.3928.

For our (0,2,2)-covering net in base 4, we use an OCA(2,2,2,4). The most optimal OCA is just

an OOA(16; 2, 2, 2, 4), therefore we use an OCA(17; 2, 2, 2, 4) to construct the (0,2,2)-covering net in

base 4. Such an OCA has one repeated row, and depending on which row is repeated, the value of the

49

4.4. (T,M,S)-COVERING NETS

approximation will be different. The table below shows the value of the approximation obtained when

using the OOA(16; 2, 2, 2, 4) above, along with the extra row specified.

Extra Row Integral Approximation using Extra Row

00|00 -0.3695

01|10 -0.3233

02|20 -0.3695

03|30 -0.5081

10|01 -0.3695

11|11 -0.3117

12|21 -0.3695

13|31 -0.5196

20|02 -0.3695

21|12 -0.3002

22|22 -0.3695

23|23 -0.5312

30|03 -0.3695

31|13 -0.2886

32|23 -0.3694

33|33 -0.5427

The numerical approximations obtained using an OCA(17; 2, 2, 2, 4) to construct a (0,2,2)-covering

net in base 4, range from -0.2886 to -0.5427, whereas the approximation obtained using an

OOA(16; 2, 2, 2, 4) is -0.3928. Taking an average of all sixteen different approximations obtained in

the table above gives us -0.3926.

In Corollary 4.3.4, we are constructing one OCA from another one. This can now be interpreted in

terms of (t,m, s)-covering nets, since we have an equivalence between (t,m, s)-covering nets and OCAs.

Corollary 4.4.5. If there exists a (t,m, s)-covering net in base b, then there exists a (t+s−1,m+s, s)-

covering net in base b.

Proof. A (t1,m1, s)-covering net base b is equivalent to an OCAbt1 (m1 − t1, s,m1 − t1, b). By Theorem

4.3.4, if there exists an OCAbt1 (m1−t1, s,m1−t1, b), then there exists an OCAλ(m1−t1+1, s,m1−t1+

1, b), where λ = bt1+s−1. By translating the OCAλ(m1−t1+1, s,m1−t1+1, b) back to a (t,m, s)-covering

net, gives us a (t1 + s− 1,m1 + s, s)-covering net base b.

By relaxing the condition for the number of points in every elementary interval of a (t,m, s)-covering

net, from exactly to at least such a number of points, allows us to introduce a mixed alphabet size for

the base of the net. Instead of constructing such a net using an OCA, we can instead use a MOCA, as

we will see in Section 5.2.

50

Chapter 5

Applications of OOAs and OCAs to

Numerical Methods

This chapter, outlining the applications of OOAs and OCAs to numerical integration, is not the main

focus of our thesis, but we would like to demonstrate how these objects may be useful in evaluating certain

multi-dimensional integrals. We have seen how OOAs and OCAs can be used to construct (t,m, s)-nets

and (t,m, s)-covering nets respectively, which are useful as low discrepancy points for quasi-Monte Carlo

integration. In this chapter, we consider further useful applications of these combinatorial objects.

5.1 Distinct (t,m,s)-Nets from a Single OOA

In Monte Carlo integration, randomly distributed points are used to numerically approximate the value

of an integral. In standard MC integration, one common technique is to evaluate the integral at N

pseudorandom points, repeat this k times, and then take an average of the k approximations, resulting in

kN function evaluations in total. While quasi-random sequences generally have much better convergence

than pseudorandom sequences, they do not have the flexibility of repetition. In this section, we will

describe a method of generating multiple distinct (t,m, s)-nets from an OOA, in order to have a larger

set of points to numerically approximate the value of the integral. Taking an average of a larger number

of function evaluations can improve the approximation of the integral.

We have shown an equivalence between (t,m, s)-nets in base b and parametric subclasses of OOAs.

But following the construction described in Section 2.3.2, a single OOA will always give us the same set

of points for our (t,m, s)-net. A new set of points would require a distinct OOA, which translates to a

distinct corresponding (t,m, s)-net. By using two different sets of quasi-random points with the same

parameter values for t,m, s and b, we may get different values when approximating an integral depending

on the value of these points and the integral we are approximating. Therefore, being able to generate

different sets of random points from the same OOA using the same method of construction would be

useful in numerically approximating the value of an integral. One way of achieving this is by permuting

51

5.1. DISTINCT (T,M,S)-NETS FROM A SINGLE OOA

the values of the alphabet of the OOA to form another OOA which is isomorphic to the original one.

This also applies to OCAs.

Example 5.1.1. We will use an OOA(2, 2, 2, 4) to construct (0,2,2)-nets in base 4 to numerically

approximate the value of the following integral:
� π

0
(
� 1

0
ysin(200x)dy)dx.

First, we will compute the exact value of the integral, so we know what to compare our result to:

� π

0

(

� 1

0

ysin(200x)dy)dx =

� π

0

y2

2
sin(200x)|10dx =

� π

0

1

2
sin(200x)dx = −

1

400
cos(200x)|π0

= −
1

400
+

1

400
= 0.

We start with an OOA(2, 2, 2, 4), call it A:

A
0 0 0 0

0 1 1 0

0 2 2 0

0 3 3 0

1 0 0 1

1 1 1 1

1 2 2 1

1 3 3 1

2 0 0 2

2 1 1 2

2 2 2 2

2 3 3 2

3 0 0 3

3 1 1 3

3 2 2 3

3 3 3 3

Constructing a (0,2,2)-net in base 4 from the above OOA gives us the following set of 16 points, using

the construction described in Section 2.3.2:

{(0, 0), (1
16 ,

4
16), (

2
16 ,

8
16), (

3
16 ,

12
16), (

4
16 ,

1
16), (

5
16 ,

5
16), (

6
16 ,

9
16), (

7
16 ,

13
16),

(8
16 ,

2
16), (

9
16 ,

6
16), (

10
16 ,

10
16), (

11
16 ,

14
16), (

12
16 ,

3
16), (

13
16 ,

7
16), (

14
16 ,

11
16), (

15
16 ,

15
16)}

Using these points to approximate the value of the integral using QMC integration gives us an ap-

proximation of -0.3928.

Now, we can perform the permutation σ1 = (0123) for each value in the first part of the original

OOA, and the permutation σ2 = (02)(13) for each value in the second part of the original OOA. So our

new OOA(2, 2, 2, 4), call it B, which is isomorphic to the original is:

52

5.1. DISTINCT (T,M,S)-NETS FROM A SINGLE OOA

B
1 1 2 2

1 2 3 2

1 3 0 2

1 0 1 2

2 1 2 3

2 2 3 3

2 3 0 3

2 0 1 3

3 1 2 0

3 2 3 0

3 3 0 0

3 0 1 0

0 1 2 1

0 2 3 1

0 3 0 1

0 0 1 1

Constructing a (0,2,2)-net in base 4 from the above OOA gives us the following set of 16 points:

{(5
16 ,

10
16), (

6
16 ,

14
16), (

7
16 ,

2
16), (

4
16 ,

6
16), (

9
16 ,

11
16), (

10
16 ,

15
16), (

11
16 ,

3
16), (

8
16 ,

7
16),

(1316 ,
8
16), (

14
16 ,

12
16), (

15
16 , 0), (

12
16 ,

4
16), (

1
16 ,

9
16), (

2
16 ,

13
16), (

3
16 ,

1
16), (0,

5
16)}

Using these points to approximate the value of the integral using QMC integration gives us an ap-

proximation of 0.3928.

For this example, if we take the average of both these approximations, we get: 0.3928−0.3928
2 = 0,

which is obviously much closer to the exact value which we calculated to be 0.

We tried other permutations for the original OOA(2, 2, 2, 4), A, given above. The following table

summarizes the permutations for each part of the OOA, σ1 and σ2, based on the original OOA, A, and

the corresponding values for the numerical approximations obtained for
� π

0
(
� 1

0
ysin(200x)dy)dx using

the corresponding (0,2,2)-nets base 4:

σ1 σ2 Numerical Approximation

(021) (01)(23) 0.1964

(0)(1)(2)(3) (0123) 0.3928

(03) (032) -0.3928

Therefore different permutations of the alphabet of an OOA will result in different OOAs and there-

fore distinct corresponding (t,m, s)-net point sets which in turn may give us different approximations

for the integral.

53

5.2. INTEGRALS THAT FLUCTUATE IN CERTAIN DIMENSIONS

5.2 Integrals that Fluctuate in Certain Dimensions

An integral might fluctuate more in a certain dimension depending on the function itself, or because it

has a larger interval to cover in that dimension. When solving such integrals using quasi-Monte Carlo

integration, it would be advisable to use more points for a better numerical approximation. But instead

of increasing the total number of points in each dimension, we can instead increase the number of points

only for specific dimensions that are required. This would require a smaller number of points than that

required for increasing the number of points in each dimension.

In order to construct a (t,m, s)-net with a different number of points in different dimensions, while

keeping the number of points in each elementary interval the same, we require a different number of

elementary intervals in different dimensions. In terms of the OCA, this translates to a different number

of u-tuples within different left-justified sets. Without changing the value of u, we can increase the

number of u-tuples within a left-justified set by increasing the alphabet for at least one of the u columns.

This corresponds to a mixed ordered covering array (Definition 4.1.3). In Section 4.4, we saw how OCAs

were used to construct (t,m, s)-covering nets. Since MOCAs are just OCAs with mixed alphabet size,

we will follow the same construction, to create a corresponding (t,m, s)-covering net in a mixed base.

Example 5.2.1. We will construct a (t,m,s)-covering net from a MOCA(6; 2, 2, 2, (2, 2, 3, 2)).

MOCA(2, 2, 2, (2, 2, 3, 2))

0 0 0 0

0 1 1 0

0 ∗ 2 0

1 0 0 1

1 1 1 1

1 ∗ 2 1

The alphabet size of the OCA relates to the base of the (t,m, s)-covering net. Since this is a MOCA,

the alphabet size of the array is not constant, therefore we end up with a (0,2,2)-covering net in a mixed

base. The first part of the MOCA has alphabet size two, and four different pairs, so we will translate it

to points in the (0,2,2)-net using a binary to decimal conversion:

Binary Decimal

.00 (0 ∗ 2−1) + (0 ∗ 2−2) = 0

.01 (0 ∗ 2−1) + (1 ∗ 2−2) = 1
4

.10 (1 ∗ 2−1) + (0 ∗ 2−2) = 1
2

.11 (1 ∗ 2−1) + (1 ∗ 2−2) = 3
4

For the second part of the MOCA which has mixed alphabet size, we will translate it to 6 distinct

points in the (0,2,2)-net using a mixed base to decimal conversion. For the conversion, we will use base

3 for the first digit after the decimal point (since the alphabet size for the corresponding column is 3) and

54

5.3. INTEGRALS THAT FLUCTUATE IN SPECIFIC INTERVALS

base 3 × 2 = 6 for the second digit after the decimal point (since the alphabet size for the corresponding

two columns are 3 and 2):

Mixed Base Decimal

.00 (0 ∗ 3−1) + (0 ∗ 6−1) = 0

.01 (0 ∗ 3−1) + (1 ∗ 6−1) = 1
6

.10 (1 ∗ 3−1) + (0 ∗ 6−1) = 2
6

.11 (1 ∗ 3−1) + (1 ∗ 6−1) = 3
6

.20 (2 ∗ 3−1) + (0 ∗ 6−1) = 4
6

.21 (2 ∗ 3−1) + (1 ∗ 6−1) = 5
6

In mixed base form, our six points are:

(.00, .00), (.01, .10), (.00, .20), (.10, .01), (.11, .11), (.10, .21).

Translating these points to decimal using the corresponding conversions from the tables above for the

first and second coordinates of each point, gives us the following points for our covering net:

{(0, 0), (14 ,
2
6), (0,

4
6), (

2
4 ,

1
6), (

3
4 ,

3
6), (

2
4 ,

5
6)}+ (�, �)

In our first dimension, we divided our area into quarters. We have a total of four points with distinct

x-coordinates, with at least one point per elementary interval of volume 1
4 . In our second dimension, we

divided our area into sixths. We have a total of six points with distinct y-coordinates, with at least one

point per elementary interval of volume 1
6 .

0

1
6

2
6

3
6

4
6

5
6

1

1
4

2
4

3
4 1

5.3 Integrals that Fluctuate in Specific Intervals

If we know that an integral fluctuates within a certain region for all dimensions, we can increase the

number of points required for that specific region only, while keeping the number of points in other

regions the same. In terms of (t,m, s)-nets and elementary intervals, this can be achieved by placing a

(t,m, s)-net within an elementary interval of the (t,m, s)-net (in which the function fluctuates).

For example, placing a (0,2,2)-net base 2 into the elementary interval [0, 12) × [12 , 1) of a (0,2,2)-net

base 2 yields the following points in a [0, 1)× [0, 1) square:

55

5.3. INTEGRALS THAT FLUCTUATE IN SPECIFIC INTERVALS

{(0, 0), (0, 2
4), (

1
8 ,

6
8), (

2
8 ,

5
8), (

3
8 ,

7
8), (

2
4 ,

1
4), (

3
4 ,

3
4)}+ (�, �)

0

1
4

2
4

3
4

1

1
4

2
4

3
4 1

Combinatorially, this can be constructed in the following way:

Example 5.3.1. We will construct the above 7 points by placing a (0,2,2)-net base 2 in the elementary

interval [0, 1
2)× [12 , 1) of a (0,2,2)-net base 2:

A (0,2,2)-net base 2 is equivalent to an OOA(2, 2, 2, 2). We will use the following OOA(2, 2, 2, 2) for

our construction:

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1

Using the (t,m,s)-net construction discussed earlier, we place a decimal point before each value of

each part of the OOA, which yields the following corresponding points:

(.00, .00)

(.01, .10)

(.10, .01)

(.11, .11)

We translate these decimal points to points in a (0,2,2)-net base 2 using the binary to decimal con-

version:

Binary Decimal

.00 (0 ∗ 2−1) + (0 ∗ 2−2) = 0

.01 (0 ∗ 2−1) + (1 ∗ 2−2) = 1
4

.10 (1 ∗ 2−1) + (0 ∗ 2−2) = 1
2

.11 (1 ∗ 2−1) + (1 ∗ 2−2) = 3
4

Using this translation, we can see that the second point, (.01, .10), which translates to (14 ,
1
2), lies in

the elementary interval [0, 1
2)× [12 , 1), to which we will be applying another (0,2,2)-net base 2. In order

to do this, we first scale by multiplying each value of the four binary points by 0.1, in order to get the

following points: (.000, .000), (.001, .010), (.010, .001), (.011, .011).

56

5.3. INTEGRALS THAT FLUCTUATE IN SPECIFIC INTERVALS

We now add (0, .1) to each of the four points to move all the points into the top left quarter of the

square. This gives us the following four points: (.000, .100), (.001, .110), (.010, .101), (.011, .111).

We now translate these points from binary to decimal to get four points that lie in the elementary

interval [0, 1
2)× [12 , 1):

Binary Decimal

.000 (0 ∗ 2−1) + (0 ∗ 2−2) + (0 ∗ 2−3) = 0

.001 (0 ∗ 2−1) + (0 ∗ 2−2) + (1 ∗ 2−3) = 1
8

.010 (0 ∗ 2−1) + (1 ∗ 2−2) + (0 ∗ 2−3) = 2
8

.011 (0 ∗ 2−1) + (1 ∗ 2−2) + (1 ∗ 2−3) = 3
8

.100 (1 ∗ 2−1) + (0 ∗ 2−2) + (0 ∗ 2−3) = 4
8

.101 (1 ∗ 2−1) + (0 ∗ 2−2) + (1 ∗ 2−3) = 5
8

.110 (1 ∗ 2−1) + (1 ∗ 2−2) + (0 ∗ 2−3) = 6
8

.111 (1 ∗ 2−1) + (1 ∗ 2−2) + (1 ∗ 2−3) = 7
8

Using the above translation, the four points in the elementary interval [0, 1
2)× [12 , 1) are:

{(0, 2
4), (

1
8 ,

6
8), (

2
8 ,

5
8), (

3
8 ,

7
8)}+ (�, �)

Combining these four points with the other three points gives us all seven points in the [0, 1)× [0, 1)

square:

{(0, 0), (0, 2
4), (

1
8 ,

6
8), (

2
8 ,

5
8), (

3
8 ,

7
8), (

2
4 ,

1
4), (

3
4 ,

3
4)}+ (�, �).

57

5.3. INTEGRALS THAT FLUCTUATE IN SPECIFIC INTERVALS

58

Chapter 6

Conclusion

In this thesis, we focused on two combinatorial objects, ordered orthogonal arrays and a new object

that we introduced called ordered covering arrays. We now summarize all the main contributions of this

thesis and discuss some future work in this area.

We considered new constructions for ordered orthogonal arrays, using simple recursive and homomor-

phic constructions. We introduced a new graph called the interaction graph (see Definition 3.1.4), which

models the interaction patterns between the columns of an OOA. We used this graph to define a graph

homomorphism mapping the columns of an ordered orthogonal array to those of an orthogonal array.

We then developed some theorems and corollaries for constructions of OOAs using recursive methods.

The first main theorem involves using an OA and an OOA to construct an OOA with strength equal to

the sum of the strengths of the first two arrays (see Theorem 3.2.2). The second main theorem involves

using an OA and an OOA to construct an OOA with strength equal to the sum of the columns of the

first two arrays (see Theorem 3.2.4). A corollary from the latter construction for OOAs (Theorem 3.2.2)

is also translated in terms of (t,m, s)-nets, and therefore a recursive method is developed for creating

(t,m, s)-nets.

The new theorems developed in this thesis for the construction of ordered orthogonal arrays can be

studied further. In these theorems, we have kept the alphabet size for both the original and final OOA

the same. One idea is to extend these theorems in order to construct an OOA with a different alphabet

size than the original one.

For future work in the area of (t,m, s)-nets, it would be useful to construct a specific family of

(t,m, s)-nets with certain parameters, such as (0, 2, s)-nets in base b, using a similar recursive method

developed for ordered orthogonal arrays with certain parameters.

In Section 5.1, we discussed how distinct (t,m, s)-nets can be constructed from a single OOA using

permutations of the alphabet of the ordered orthogonal array. In Section 5.3, we discussed how a

(t,m, s)-net can be placed within an elementary interval of that (t,m, s)-net, to yield more points in a

specific area of the s-dimensional hypercube, suitable for multi-dimensional integrals that fluctuate more

within a specific interval. Therefore, we can combine these two concepts to create distinct (t,m, s)-nets

that are more concentrated in a specific interval.

59

Ordered covering arrays, introduced in Chapter 4, have the same relationship to ordered orthogonal

arrays as covering arrays have to orthogonal arrays. They relax the exact coverage condition just as

covering arrays do. In testing areas such as networks using interaction test suites, there may exist factors

that will never interact with each other. By modelling the test suite using ordered covering arrays, we

avoid certain interactions of the factors while allowing other interactions between factors. Constructions

for ordered covering arrays were studied in Sections 4.2 and 4.3. Covering array constructions such as

the block recursive method and Roux-type construction were adapted for the construction of ordered

covering arrays. The recursive and multiplicative methods developed for the construction of ordered

orthogonal arrays are also applicable to ordered covering arrays, as studied in Section 4.3. The concept

of ordered covering arrays is also applicable in constructing point sets similar to (t,m, s)-nets. As

discussed in Section 2.3, there exists an equivalence between (t,m, s)-nets and a parametric subclass of

ordered orthogonal arrays. But as we know, ordered orthogonal arrays do not exist for all parameter

values. Therefore, by relaxing the exact coverage condition required for ordered orthogonal arrays, allows

such arrays to exist for all parameters. We can use these ordered covering arrays to construct a new

object called a (t,m, s)-covering net, which was introduced in Section 4.4. This object is similar to a

(t,m, s)-net, except that in a (t,m, s)-covering net, there is at least bt points in every elementary interval

of volume bm−t, while for a (t,m, s)-net, there is exactly bt such points.

We conclude this chapter with suggestions for future work within the area of ordered covering arrays.

Since this is a new concept introduced in this thesis, there are many areas to explore and expand on

with regards to ordered covering arrays.

One such area is algorithms used to generate such arrays for any given parameter. As discussed

in Section 2.2.3, many algorithms have been developed for covering arrays, with different algorithms

targeting different objectives. Some of these algorithms may be adapted in order to construct ordered

covering arrays. In Section 4.4, we discussed how ordered covering arrays can be used to construct

(t,m, s)-covering nets. Therefore, these algorithms can be beneficial in creating large (t,m, s)-covering

nets for parameter values where their corresponding ordered orthogonal arrays do not exist.

In Section 5.2, we briefly discussed the application of having a mixed base for (t,m, s)-covering nets,

in order to vary the number of intervals in different dimensions, suitable for approximating the value

of multi-dimensional integrals which fluctuate more in a specific dimension. We just touched on the

concept of mixed bases for covering nets, such an object and its applications is another area that can be

studied further.

Another area for future work is upper bounds on the number of rows for ordered covering arrays.

Bounds for covering arrays have been studied extensively [16, 22]. It would be both interesting and

useful to see how these relate to ordered covering arrays.

And finally bounds for (t,m, s)-nets and ordered orthogonal arrays have also been studied [26, 31].

Therefore studying the bounds on the discrepancy of (t,m, s)-covering nets constructed using ordered

covering arrays is essential, in order to conclude that the set of points have a low discrepancy. In this

thesis, we just assume this to be true, but it is an important step in order to further discuss and formalize

applications of (t,m, s)-covering nets.

60

References

[1] R. J. Abel, C. J. Colbourn and J. H. Dinitz, Mutually orthogonal Latin squares (MOLS), The CRC

handbook of combinatorial designs, 2nd ed., C. J. Colbourn and J. H. Dinitz, 160-171, CRC Press,

2007.

[2] M. J. Adams, Generalized orthogonal arrays: Construction and related graphs, J. Combin. Des. 7

(1999), 31-39.

[3] J. Bierbrauer, Y. Edel and W. Ch. Schmid, Coding-theoretic constructions for (t,m,s)-nets and

ordered orthogonal arrays, J. Combin. Des. 10 (2002), 403-418.

[4] J. R. Birge, Quasi-Monte Carlo approaches to option pricing, Tech. Report 94-19, Dept. of Ind. and

Oper. Eng., Uni. of Michigan, 1995.

[5] R. C. Bose, On the application of the properties of Galois fields to the problem of constructions of

hyper-Graeco-Latin squares, Sankhya: The Indian Journal of Statistics 3 (1938), 323-338.

[6] R. C. Bose, S. S. Shrikhande, and E. T. Parker, Further results on the construction of mutually

orthogonal latin squares and the falsity of Euler’s conjecture, Canad. J. Math. 12 (1960), 189-203.

[7] R. C. Bryce, C. J. Colbourn and M. B. Cohen, A framework of greedy methods for constructing

interaction tests, In Proc. of the 27th Int. Conference on Software Eng. (2005), 146-155, IEEE, Los

Alamitos, CA.

[8] R. C. Bryce and C. J. Colbourn, Prioritized interaction testing for pairwise coverage with seeding

and avoids, Info. and Software Tech. J. 48, (2006), no. 10, 960-970.

[9] R. C. Bryce and C. J. Colbourn, The density algorithm for pairwise interaction testing: Research

articles, Software Test. Verif. Reliab. 17, (2007), no. 3, 159-182.

[10] J. N. Cawse (ed.), Experimental design for combinatorial and high throughput materials development,

John Wiley & Sons, New York, 2003.

[11] M. A. Chateauneuf and D. L. Kreher, On the state of strength-three covering arrays, J. Combin.

Des. 10 (2002), 217-238.

61

REFERENCES

[12] D. M. Cohen, S. R. Dalal and G. C. Patton, The AETG system: An approach to testing based on

combinatorial design, IEEE Transaction on Software Engineering 23 (1997), no. 7, 437-444.

[13] M. B. Cohen and C. J. Colbourn, A deterministic density algorithm for pairwise interaction cover-

age, In Proc. of the IASTED Intl. Conference on Software Engineering (2004), 242-252.

[14] M. B. Cohen, C. J. Colbourn, P. B. Gibbons and W. B. Mugridge, Constructing test suites for

interaction testing, In Proc. of the Intl. Conf. on Software Engineering (2003), 38-48.

[15] D. M. Cohen, C. J. Colbourn and A. C. H. Ling, Constructing strength three covering arrays with

augmented annealing, Discrete Math. 308 (2008), 2709-2722.

[16] C. J. Colbourn, Combinatorial aspects of covering arrays, Le Matematiche (Catania) 58, (2004),

121-167.

[17] C. J. Colbourn and J. H. Dinitz, The CRC handbook of combinatorial designs, 2nd ed., CRC Press,

2007.

[18] P. Danziger, N. Francetić and E. Mendelsohn, Covering arrays with row limit w=4, Submitted to

the J. Combin. Des., 2011.

[19] P. Danziger, E. Mendelsohn, L. Moura and B. Stevens, Covering arrays avoiding forbidden edges,

Theoretical Comp. Sci. 410 (2009), 5403-5414.

[20] L. Euler, Recherches sur une nouvelle espèce de quarrés magiques. Opera Omnia, Ser. I, Vol 7, 291-

392, Verhandelingen utigegeven door het zeeuwsch Genootschap det Wetenschappen te Vlissingen

9 (1782), 85-239.

[21] A. Hartman and L. Raskin, Problems and algorithms for covering arrays, Discrete Math. 284, no.

1-3 (2004), 149-156.3

[22] A. Hartman, Software and hardware testing using combinatorial covering suites, in: graph theory,

combinatorics and algorithms: interdisciplinary applications, Springer, Berlin (2005), 237-266.

[23] A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal arrays: theory and applications, Springer,

Berlin (1999)

[24] K. M. Lawrence, A combinatorial characterization of (t,m,s)-nets in base b, J. Combin. Des. 4

(1996), 275-293.

[25] C. F. Laywine and G. L. Mullen, Discrete mathematics using Latin squares, Wiley-Interscience,

New York, 1998.

[26] W. J. Martin, Linear programming bounds for ordered orthogonal arrays and (t,m,s)-nets, Monte

Carlo and quasi-Monte Carlo methods 1998, Springer, Berlin (2000), 368-376.

62

REFERENCES

[27] W. J. Martin, (t,m,s)-Nets, The CRC handbook of combinatorial designs, 2nd ed., C. J. Colbourn

and J. H. Dinitz, 639-643, CRC Press, 2007.

[28] W. J. Martin and D. R. Stinson, Association schemes for ordered orthogonal arrays and (t,m,s)-nets,

Canad. J. Math. 51 (1999), 326-346.

[29] L. Moura, J. Stardom, B. Stevens and A. Williams, Covering arrays with mixed alphabet sizes, J.

Combin. Des. 11 (2003), 413-432.

[30] G. L. Mullen and W. Ch. Schmid, An equivalence between (t,m,s)-nets and strongly orthogonal

hypercubes, J. Combin. Theory A 76 (1996), 164-174.

[31] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-

337.

[32] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Series in

Applied Math. 63, SIAM, Philadelphia, 1992.

[33] R. L. Probert and A. W. Williams, A practical strategy for testing pair-wise coverage of network

interfaces, Proc. Seventh Intl. Symp. on Software Reliability Engineering (1996), 246-254.

[34] R. L. Probert and A. W. Williams, A measure for component interaction test coverage, Proc.

ACS/IEEE Intl. Conf. on Computer Systems and Applications (2001), 301-311.

[35] G. Roux, k-Propriétés dans les tableaux de n colonnes: cas particulier de la k-surjectivité et de la

k-permutivité, Ph.D. Thesis, Université de Paris, 1987.

[36] G. Serourri and N. H. Bshouty, Vector sets for exhaustive testing of logic circuits, IEEE Trans. on

Infor. Theory 34 (1988), 513-522.

[37] D. E. Shasha, A. Y. Kouranov, L. V. Lejay, M. F. Chou and G. M. Coruzzi, Using combinatorial

design to study regulation by multiple input signals: a tool for parsimony in the post-genomics era,

Plant Physiol. 127 (2001), no. 4, 1590-1594.

[38] N. J. A. Sloane, Covering arrays and intersecting codes, J. Combin. Des. 1 (1993), 51-63.

[39] G. Tarry, Le problème des 36 officiers, C. R. Assoc. Fran. Av. Sci. 1 (1900), 122-123.

63

