
PRIVACY PROTECTION FOR ROLE-BASED ACCESS
CONTROL IN SERVICE ORIENTED ARCHITECTURE

By

YeYu
Bachelor of Science

Zhongshan (Sun Yat-sen) University
Guangzhou, China, 510275

1994

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010
©Ye Yu2010

PROPERlY OF
RYERSON UNIVERSITY LIBRARY

Author's Declaration

I hereby declare that I am the sole author oftrus thesis and the work was done under the guidance

of Professor Cungang Yang, at the Ryerson University.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

Author's signature: "--- -......... ---~~-

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Author's signature:

ii

Abstract

Privacy Protection For Role-based Access Control in Service Oriented Architecture

©YeYu

Master of Applied Science

Electrical and Computer Engineering

Ryerson University

Toronto, 2010

Service Oriented Architecture (SOA) changes the way of conducting business by opening their

services/information to the larger business world over the networks. However, properties of

"open" and "interoperable" of SOA make privacy security a sensitive issue since this architecture

combines unknown individuals and individuals systems together. In SOA, service providers limit

the permission of access to specific authorized individuals only, so they have to verify these

individuals' identity information to decide if permission should be granted or not. On the other

hand, access requestors are not willing to disclose their privacy in an open system to unknown

parties. In this thesis, we present cryptography-based protocols to solve this issue of conflict. Our
,

protocols are proposed for Role-Based Access Control (RBAC), which is a most popular access

control methodology, in SOA environment. In addition, our protocols are compatible with current

SOA standards and technologies such as XACML and SOAP.

iii

Acknowledgements

I am heartily thankful to my supervisor, Dr. Cungang Yang, whose guidance, encouragement and

support from the initial to the final level enabled me to develop an understanding of the subject.

During the period of research work, Dr. Yang's truly scientist intuition inspires and enriches my

growth as a student and researcher. I am indebted to him more than he knows.

Also, I thank my wife Grace Fen Yin and two lovely children Matthew Yu and Michelle Yu for

their sacrifice and support throughout all my studies at University.

iv

Content

Declaration ... ii

Abstract ... iii

Acknowledgements .. iv

Content ... v

List of Figures ... viii

List of Tables ••...••••..•••..•••••......•....••....•••...••••..••••........••..••....••••.....•••.••.•..••••.....•.••••••...••..•• x

1. Introduction .. 1

1.1 Introduction to Service Oriented Architecture .. 1

1.2 Introduction to SOA Security .. 3

1.3 Introduction to Role-Based Access Control .. 4

1.4 Our Contribution ... 8

2. Related Works .. 10

2.1 Non-cryptography Based Trust Negotiation ... : 11
,

2.2 Cryptography Based Privacy Protection Solution for Attributes or Identity Based Access

Control ... 12

2.3 Cryptography Based Privacy Protection Solution for RBAC ... 13

3. Preview of Related Cryptographic Technologies .. 14

3.1 Identity-based Encryption .. 14

3.2 Homomorphic Encryption .. 16

3.3 Set Intersection ... 17

3.4 Oblivious Transfer .. 18

4. Proposed RBAC Solution in SOA ... 19

4.1 SOA Access Control Standard - XACl\1L .. 20

4.1.1 XACl\1L Processing Model .. 20

v

4.1.2 XACML Policy Language .. 22

4.1.3 XACML Request and Response Language ... 23

4.1.4 A Complete Access Control Sample ofXACML ... 23

4.2 RBAC Profile ofXACML .. 26

4.2.1 Role PolicySets and Permission PolicySets .. 26

4.2.2 Attribute-Based Role Assignment .. 30

4.2.3 Conclusion on RB-XACML ... 31

4.3 Proposed SOA RBAC Solution .. 32

4.3.1 General Design of Our Proposed SOA RBAC Solution ... 32

4.3.2 Login & Role Assignment Process:35

4.3.3 Access Request & Response Process: ... 36

4.4 Privacy Protection Targets for the SOA RBAC SoIution ... 39

S. Privacy Protection Protocols in Login & Role Assignment process 40

5.1 Attributes Credentials Values Exchange Stage43

5.1.1 Attributes Standards and Preparation .. 43

5.1.2 Privacy Protocol- I: NaIve Protocol .. 44

5.1.3 Privacy Protocol- II: Sophisticated Protocol... ... 46

5.1.4 Privacy Protocol- III: Improved Sophisticated Protocol..49

5.1.5 Comparison of Three Protocols .. 51

5.2 Policies Mapping Stage .. 52

5.2.1 Principles for Policies Mapping and Role Assignment...52

5.2.2 Solution One for Policy Mapping .. .54

5.2.3 Solution Two for Policy Mapping .. 55

5.2.4 Solution Three for Policies Mapping .. 57

5.2.5 Comparison of Three Solutions .. , 59

5.2.6 Role Hierarchy and Constraints .. 60

5.2.7 Role Credential and Role Assignment .. 61

5.3 Security Review for Role Assignment Process .. 62

vi

6. Privacy protection in Access Request & Response Process 63

6.1 Goals and Principle for Our Privacy Protection Protocols ... 63

6.2 Our Role Privacy Protection Protocol .. 65

6.2.1 Privacy Protection Protocol for Information Access Request ... 66

6.2.2 Privacy Protection Protocol for Service Access Request.. .. 68

6.2.3 Role Hierarchy and Complicated Roles-to-Permission Policies 70

6.3 Implementation of our protocols in Access Request & Response Process 73

6.3.1 Implementation ofInformation Access Request Protocol .. 73

6.3.2 Implementation of Service Access Request Protocol ... 78

6.4 Security Review on Protocols for Access Request & Response Process 81

7. Conclusion and Future Work ... 83

References .. 84

Glossary- ... 88

vii

List of Figures

Figure 1: Basic SOA Model ... 2

Figure 2: Current SOA Security Standards Framework ... 3

Figure 3: RBAC model ... 6

Figure 4: Sample of Role Hierarchy ... 7

Figure 5: Example of Credential Exchange Sequence ... 11

Figure 6: IBE System .. 15

Figure 7: 1-out-of-2 OT .. ; .. 19

Figure 8: Traditional SOA XACML based Access Control model ... 22

Figure 9: XACML Request Sample .. 24

Figure 10: XACML Policy Sample ... 25

Figure 11: XACML Response Sample .. 26

Figure 12: Sample - Permission PolicySet for IT Manager Role .. 27

Figure 13: Sample - Permission PolicySet for Senior Developer Role ... 28

Figure 14: Sample - Role PolicySet for IT Manager Role .. 29

Figure 15: Sample - Role PolicySet for Senior Developer Role .. .30

Figure 16: Attribute-Based Role Assignment31

Figure 17: Simplified SOA Access Control Solution33

Figure 18: Single Sing on .. 34

Figure 19: Login & Role Assignment Process .. 35

Figure 20: Access Provider Response Process37

Figure 21: Sample of Modified Request for SOA RBAC Solution ... 38

Figure 22: Naive Protocol ... 45

Figure 23: Sophisticated Protocol .. 47

Figure 24: Improved Sophisticated Protocol .. .49

Figure 25: Policy Mapping. Solution One54

viii

,

Figure 26: Policy Mapping - Solution Two .. 55

Figure 27: Flow Chart for Policy-Role Mapping Process ... 58

Figure 28: Privacy Protection Protocol for Information Access Request.. .. 66

Figure 29: Privacy Protection Protocol for Service Access Request ... 68

Figure 30: XACML Request In Tradition Way ... 73

Figure 31: XACML Request under Privacy Mode .. 74

Figure 32: Sample - Resource PoIicySet for developer-guide.doc ... 75

Figure 33: Sample - Permission PolicySet for developer-guide.doc ... 76

Figure 34: Sample of Encrypted SOAP Message in Information Access Request .. 77

Figure 35: Sample - Resource PolicySet for Service .. 78

Figure 36: Sample of Encrypted SOAP Message to Transfer Encrypted S ... 79

Figure 37: Sample of Encrypted SOAP Message to Transfer Encrypted {St, S2, ... Sn} 80

Figure 38: Sample of Response in Service Access Request .. 80

ix

List of Tables

Table I: Notation ... 43

Table 2: Comparison of Three Protocol for Value Exchange Stage .. 52

Table 3: Comparison of Three Solutions for Policies Mapping Stage .. 60

x

1. Introduction

Service Oriented Architecture (SOA) has become widely popular and acknowledged. The

benefits driving the organizations to adopt SOA primarily come down to two factors. First, SOA

can provide organization flexibility to be able to change their IT infrastructure faster than before.

Second, SOA saves development dollars through reuse of services.

SOA is a distributed system open to a wider world and combines unknown individual systems

together. As a result, with the great convenience and success brought by SOA, it also causes

security issues. In this thesis, we will propose protocols to protect identity privacy for Role Based

Access Control (RBAC) in SOA. This chapter introduces this thesis by describing the background

knowledge in SOA, SOA Security Framework and RBAC.

1.1 Introduction to Service Oriented Architecture

There is no authoritative definition for "Service Oriented Architecture (SOA)" yet. Different

resources explain SOA in different ways. One of typical definition can be found in [IS], "Service

Oriented Architecture (SOA) is a paradigm for organizing and utilizing distributed capabilities

that may be under the control of different ownership domains." However, the basic concept of

SOA is the same for all these definitions and we can understand SOA in this way:

• SOA is created to implement a complicated business process;

• The complicated business process is composed of multiple business functions;

• Each business function is implemented by an independent IT system, that means business

functions may have different IT environments (Operation System, Database,

Programming Language etc.)

• SOA is a structure or solution to combines those different unconnected functions together

to realize the integrated business process.

SOA has the following characteristics:

• Concept of SOA is developed from Distributed system which consists of multiple

autonomous computer systems that communicate through a computer network (secured

or unsecured);

1

• SOA is loose coupled. Sub-systems under SOA do not communicate with each other

directly from database or program level. Instead they communicate through an

application interface (services);

• Service is core of SOA. Even though there is no explicit standard, most of SOA is based

web Service which is application programming interface (API) expressed in Extensible

Markup Language (XML) format.

Now we know that web service is the most important component and the key for SOA. A typical

definition of Web Service in [16] is "A Web Service is a software system designed to support

interoperable machine-to-machine interaction over a network. It has an interface described in a

machine-processable format (specifically WSDL). Other systems interact with the Web service in

a manner prescribed by its description using SOAP messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related standards." We may also

understand Web Service in this way: it is a modular XML-based application using standards and

technologies for distributed computing and defined with WSDL, published in UDDI and invoked

via SOAP.

Find

Service
Contract

Figure 1: Basic SOA Model [15]

Publish

Figurel [15] is a basic SOA model, from which we can know that major elements in SOA are:

• Service Consumer (alternative name: Service Client, Service Requestor, Application

Builders, Access Requestor) which applies to access a service;

• Service Provider which provides service;

2

• Service Broker (alternative name; Service Registry, UDDI - Universal Description

Discovery Integration) is a place where service providers publish services infonnation

and service consumers query/find needed service.

Among these elements, Access Requestor (AR), and Service Provider (SP) are two of major

parties that we will discuss in this thesis.

1.2 Introduction to SOA Security

As we mentioned in Section 1.1, security is becoming major concerns and blockage for SOA

popUlarization and promotion. As a result, SOA security becomes a hot topic for academic

research and industry interest [11J[18][20][21][24][25][26]. Lots of organizations including

W3C, WS-I, OASIS, IT industry giants such as IBM, HP, Oracle, BEA etc. and academic

organizations are working on SOA security architecture, standards and protocols. Figure 2 [13]

provides us a clear picture about a SOA security standards framework which represents major

achievements in SOA security researches and implementations.

security Mgmt

1 WST. t
Identity Mgmt

88
Message Security Reliable Messaging

I ~ I ,--~_~_nve_t __ ' _ llIl!tion

[SOAP Founda!ion

XM~ s~curity XML Encryption

[, Transport: !evel security , I

I Nernork: level security .. f :
- tIt

Policy & Access
Control

, i WSPollcy

, I XACML t, [~J
I
I 'I XML Signature t_

SSUTLS f:

L,. IPsec
.,

Figure 2: Current SOA Security Standards Framework [131

3

I
J

From Figure 2 [13], we can find the following major security components and their functions in

SOA Security Framework:

• Network Level Security (IP Security or IPsec): provides secure sessions with host

authentication, data integrity and data confidentiality during the data transportation

process in network;

• Transportation Level Security (Secure Socket Layer or SSL): provides authentication,

data integrity and data confidentiality;

• XML Security (XML Signature and XML Encryption): provides data integrity and data

confidentiality at XML document level;

• SOAP Messages Security (WS Security and WS SecureConversation): provides single

SOAP message integrity and confidentiality and mechanisms for associating security

tokens with messages content (header and body blocks);

• Access Control & Policies (XACML, SAML and WS-Policy): provides standards for

access policies, access request & response and security assertion etc.;

• Identity Management (SAML, Liberty, WS-Federation): provides and promote

interoperability between disparate authentication and authorization systems;

• Security Management (XKMS - XML Key Management Standard, WS-trust): provides

general security function such as key management and enable the issuance and

dissemination of credentials among different trust domains (individual systems).

Figure 2 gives us a clear picture of SOA security framework which has been carefully designed

and implemented, and covers most of SOA security concerns. However, this framework does not

include Identity Privacy Protection. SOA is loosely coupled by individual systems, and clients are

not willing to disclose their identity information (Business Identity or Personal Identity) to

unknown systems. The lack of Identity Privacy Protection of current SOA security framework is

the main motivation of our research works.

1.3 Introduction to Role-Based Access Control

Access control technology has evolved from research and development efforts supported by the

Department of Defense (DoD). This research has resulted in two fundamental types of access

control: Discretionary Access Control (DAC) and Mandatory Access Control (MAC). After that,

4

new access control methodologies were developed to meet requirements of industry organization.

Most important access control technologies are listed as following:

• Mandatory Access Control (MAC) or Lattice-based Access Control (LBAC): the

operating system constrains the ability of a subject or initiator to access or generally

perform some sort of operation on an object or target [17]. MAC mechanisms assign a

security level to all information as well as a security clearance to each user, and ensure

that all users only have access to that data for which they have a clearance;

• Discretionary Access Control (DAC): a means of restricting access to objects based on

the identity of subjects and/or groups to which they belongs;

• Identity-based Access Control (IBAC) which is an unofficial concept/type in access

control, however it is also popularly used. In this model, access permissions and policies

are applied to the identity of access Requestors. We can regard mAC as a kind ofDAC;

Under IBAC, access permissions are assigned to individuals based on their identity. For

example, a policy of mAC states: "EDIT permission for code of main.java is assigned to

John Smith with employee ID ofDEV20100615001".

• Attributes-based Access Control (ABAC): access permissions are decided by attributes of

subjects, objects and environment.

For example, under ABAC, a policy states "EDIT permission for code of main.java is

assigned to those whose position is developer (subject attribute) during the time period of

8:00AM to 5:0PM (environment attribute)".

• Role-Based Access Control (RBAC), which is the access control approach discussed in

this thesis, we will explain it in detail in the chapter;

In [19], with RBAC, access decisions are based on the roles that individual users/subjects have as

part of an organization. Users take on assigned roles (such as IT Manager, Senior Developer,

Junior Developer). Access rights/privileges are grouped by role name, and the use of resources is

restricted to individuals authorized to assume the associated role. RBAC model can be very

complicated. In this thesis, we will only study on basic RBAC modeL Figure 3 [49] demonstrates

a typical RBAC model.

5

(VA) User
Assignment

(PA)
Permission
Assignment

Figure 3: RBAC model [49]

Major components of the RBAC model are as follows:

Users & Roles: For simplicity in this model, a user can be regarded as a human being. A role is a

named job function within the organization that describes the authority and responsibility

conferred on a member of the role. [49] Actually, range of concept of "User" can be expanded to

a function, sub-system or system etc.

Permissions: Permission is an approval of particular mode of access to one or more objects in the

system. The terms of authorization, access right, and privilege are also used in the literature to

denote permission.

Sessions: Users establish session during which they may activate a subset of roles they belong to.

Each session maps one user to possibly many roles.

Role Hierarchies: Role Hierarchies are a natural means for structuring roles to reflect an

organization's lines of authority and responsibility (see Figure 4). By Convention, more powerful

(senior) roles are shown toward the top of these diagrams and less powerful Gunior) roles are

shown toward the bottom. [49] Permissions of junior (child) roles will be automatically inherited

by senior (parent) role.

Constraints: Constraints are an important aspect of RBAC and are sometimes argued to be the

principle motivation behind RBAC. [49] A common example is that of mutually disjoint

organizational roles, such as Developer and QA (a person can not hold a role of developer and

6

QA at the same time). Constraints can also be placed on (PA) permission_assignment. For

example, permission of "modifying code" & permission of "publishing code" can not be assigned

to a same role.

Figure 4: Sample of Role Hierarchy

Characteristics and concept ofRBAC can also be understood as following:

• A user/subject is granted access to an object based on the assigned role;

• Roles are defined based on job functions;

• Permissions are defined based onjob authority and responsibilities within ajob fimction;

• Operations on an object are invocated based on the permissions;

• The object is concerned with the user's Role rather than the user (identity or attributes);

RBAC system enables users to carry out a broad range of authorized operations, and provides

great flexibility and breadth of application. System administrators can control access at a level of

abstraction (based onjob function rather than individual) that is natural to the way that enterprises

typically conduct business [19]. RBAC greatly reduces work load for access control task, and

makes it flexible and scalable to grow. For distributed systems (such as SOA), RBAC

administrator's responsibilities can be divided among central and local protection domains; that

is, central protection policies can be defined at an enterprise level while leaving protection issues

that are of local concern at the organizational unit level. In SOA, we can also let role definition

7

and assignment to be handled at enterprise level, and each unit can freely maintain

(create/modify/delete) access policies based on their business requirement and security concerns.

(We will discuss this model in details next chapter)

RBAC becomes a promising method for controlling what information computer users can utilize,

what program they can run and what modifications that they can make since this methodology

was brought up. Actually, RBAC is already popularly used by a large range of IT system and

organizations, and it's also a hot topic in academic research.

1.4 Our Contribution

In this thesis, we contribute from the following aspects:

• Overall Concept and Idea. Our research works step across fields of SOA, RBAC and

privacy protection to provide privacy protection solution for RBAC model in SOA

environment. The overall concept, idea and solution elaborated in this thesis, as a whole, is

one of the major contributions of this thesis. It is the first academic research in these cross

fields, and in addition this research work can be valuable and beneficial to industry since

SOA & RBAC are popular architecture and access control methodology accordingly and

privacy is a sensitive security issue now.

SOA has a general access control standard - XACML and RBAC standard - RBAC profile of

XACML. XACML is a rich language and complicated. So, it is not possible for us to updated

XACML to fit our protocols. On the contrary, it's required that our proposed privacy

protection protocols should be compatible with current SOA standards so that the protocols

can be feasible to be implemented in SOA. Our solution in this thesis meets this requirement

and it is compatible with current SOA standards.

Our solution proposed in this thesis is composed of three parts: new SOA RBAC structure

(modeling); privacy protection protocols in Login & Role Assignment process; and privacy

protection protocols in Access Request & Response process. We will discuss these three parts

in details in Chapter 4, Chapter 5, and Chapter 6 accordingly.

• New SOA RBAC Structure (Modeling). New SOA RBAC structure introduced in this

thesis divides RBAC process into two separate process blocks: Login & Role Assignment

Process, and Access Request & Response process. Login & Role Assignment Process is

handled by a separate system apart from traditional SOA structure, and Access Request &

8

Response process however, is still operated within SOA. Login and role assignment process

and related operations are handled by three components: Access Request (AR), Role Assigner

(RA) and Policy Verifier (PV). These three components are working together to realize role

assignment in a privacy preserving manner during login & role assignment process.

Separating Login & Role Assignment process from SOA main structure makes it possible for

us to propose protocols for a complete privacy protection solution (ZERO Knowledge

disclosure) for this process. The separation also has other benefits such as meeting

requirements of Single Sign on, and easy syste4m maintenance and policy management etc.

• Privacy Protection Protocols and Solution in Login & Role Assignment Process. This

process is divided into two stages/operations: attributes value exchange & policy mapping.

We propose three protocols to achieve attributes value exchange operation between Access

Requestor and Role Assigner: Naive Protocol, Sophisticated Protocol and Improved

Sophisticated ProtocoL All these protocols are cryptography-based and each protocol has its

, advantage and disadvantage. Naive Protocol has only two steps. However it causes exchange

values explosion which would consume system's memory storage and computation capability

and reduce system efficiency. Sophisticated Protocol has 5 steps and it successfully solved

values explosion issue. However, Role Assigner will get to know how many valid credentials

Access Requestor holds. Improved Sophisticated Protocol is a complete ZERO knowledge

disclosure protocol. However, there are six steps involved in this protocoL Organi~tion can

choose one of these three protocols based on their situation and priorities.

For policy mapping operation, we compare three solutions for mapping role assignment

policies with attributes values. In Solution One, the Access Requestor simply sends her

obtained values as value exchange operation to the Role Assigner. This solution is easy in

implementation however it is not privacy preserving because Role Assigner can easily know

all Access Requestor's valid attributes via her values. Solution two is cryptography-based and

handled at Access Requestor side. This solution discloses some of Role Assigner's policies

privacy such as which values are required for a role and how many credentials the role

requires etc. In addition, this solution will cause lots of computation at Access Requestor side

and requires Access Requestor (client side device) to have strong computation capability. So,

it's not an ideal solution. Solution three takes use of a newly introduced 3rd party - Policy

Verifier and it is a complete privacy preserving solution for Role Assigner's attributes-to-role

policies with ZERO policies knowledge disclosure. This solution is recommended.

9

• Privacy Protection Protocols and Solutions in Access Request & Response Process. In

this thesis, we make a thorough analysis on privacy importance and sensitivity for Access

Request & Response process, and conclude that privacy protection is not a critical task in this

process comparing with Login & Role Assignment process. However, it's still desirable to

setup privacy protection mode in case access request need to protect her role information as

privacy. So, in our protocol, there is an option for Access Requestor to choose to use "privacy

mode" or normal access mode when she submits her access requests.

Proposing Privacy Protection Protocols in Access Request & Response process is more

difficult than to proposing Privacy Protection Protocols in Login & Role Assignment process

because we need to take into consideration of system efficiency (too complicated

cryptography algorithm will slow down the whole process and system); system integration

and compatibility (the protocol should be able to implemented using current SOA standards

and technologies.). In addition, there are two kinds of access request: information access

(required information can be sent to access requestor) and service access (access requestor

needs permission of access to a specific function, service or webpage). Protocols for these

two kinds of access request are different. We introduce two sets of protocols for these two

access requests. They are not ZERO knowledge disclosure protocols. However, it greatly

improves privacy protection comparing with traditional SOA access control technology

without involvement of complicated cryptography computation. Moreover, the solution is

able to be implemented based on current SOA standards such as XACML, SOAP etc. so that

our protocols are practical and feasible to be implemented.

2. Related Works

Our research and original ideas come from area of automated trust negotiation. Purpose of trust

negotiation is to enable stranger access sensitive data in open environment without violating

access policies and privacy. Our research works evolve from original idea of trust negotiation,

and step across fields of privacy protection, RBAC and SOA. There is no similar academic

research on this area yet, however, there are lots of previous research works which focus on one

of related fields in trust negotiation, privacy protection or privacy protection for RBAC, which

are suitable for a specific scenario. Based on focus of these research works, we can group them

into the following three catalogs:

• Non-cryptography based trust negotiation;

10

• Cryptography Based Privacy Protection Solution for Attributes or Identity Based Access

Control;

• Cryptography Based Privacy Protection Solution for RBAC

We will discuss these three catalogs in the following three sections:

2.1 Non-cryptography Based Trust Negotiation

T. Yu et at proposed "interoperable strategies for automated trust negotiation" [1]. Their

solutions are provided to protect sensitive credentials and services with (access control) policies

and establish trust incrementally through a sequence of credential disclosures: begin with

credentials that are less sensitive; then build up trust so that more sensitive credentials can be

disclosed;

Landscape Designer

CrediC Card <E

BBB_Member

Reseller_License <E

true

~
Credit_Card
Reseller _License

CPN

Order_OK <E- (Credit_Card v
CPN_ Account) /\ ReseUer _License
BBB ...Member <E- true

Figure 5: Example of Credential Exchange Sequence

Figure 5 [1) illustrates a trust negotiation sample in T. Yu's paper. We do not need to understand

the terms of CPN and BBB member. We just need to know the process: CPN provides the

Landscape Designer less sensitive information "BBB~Member". First. if she gets a response from

Landscape Designer and receive "Credit_Card ReseUer_License", then she will send Landscape

11

Designer more sensitive information "Order_OK".

CPN_Account) /\ Reseller_License" represents kind of complicated policy condition operation.

In this paper, they created sophisticated information exchange model to built trust negotiation.

However,defects of their solution are obvious:

• It's not cryptography level solution, and it's easy for attacker to find security leak from

their proposed model (for example, is so called "less sensitive" information really not

sensitive?).

• It is not able to handle situation of dead cycling where both sides of information

exchanging are not willing to disclose information first.

• This solution is not manageable because different individuals have different standard to

measure "sensitive" information, as a result there will be heavy management and

maintenance work for their counter part to handle many different standards.

2.2 Cryptography Based Privacy Protection Solution for Attributes or

Identity Based Access Control

W. Du et aI. created "Oblivious Signature-Based Envelope" [2] which is a cryptography-based

solution and perfectly solved dead-cycling issue which [1] can not fix.

For example, the sender has a message to report, but she wants to make sure only CIA can receive

it. So she wants the receiver to show her the CIA certificate. On the other hand, the receiver

won't show his CIA certificate to the sender because that's dangerous, and he just requires the

sender send him the message. It is a conflicting situation, and communication won't continue.

Oblivious Signature-Based Envelope is introduced to solve this kind of problem. The basic idea is

as follows: sender encrypts the message in an "oblivious signature-based envelope", so that

receiver can open the envelope if and only if he has the required certificate; on the other hand, the

sender do not know whether the receiver has the certificate. Then, the communication is

accomplished by a privacy friendly manner which can satisfy both receiver and sender.

Oblivious Signature-Based Envelope (OSBE) can be built on Identity-Base Encryption (!BE)

technology. Where information sender encrypts sensitive information using received ID as public

key, and only receiver can decrypt it using private key from a 3rd party CA (PKG), and it can also

use RSA signature to negotiate public key and private key between sender and receiver.

12

This solution is created to protect privacy for identity.based access control, and it can only be

used in some simple situation (single sender, single receiver and ID based IBE). This solution

absolutely can not meet our requirement.

K. Frikken et al. introduced "Attribute.Based Access Control with Hidden Policies and Hidden

Credentials" (4] which discussed attribute and policy privacy protection in a more complicated

access control environment. There are two primary phases in their protocols: a credential hiding

phase; and a blinded policy evaluation phase. So, their protocols also provide complete privacy

preserving solution for both access requestor's privacy and information provider's policies. They

proposed several protocols with different complexity trading-off different security level for each

phase. Their protocols are able to efficiently protect attributes privacy of access requestor.

However, they can not efficiently protect information provider's access policies even though they

proposed an even more complicated cryptography algorithm. There is no absolute policy privacy

security in the case of direct value/trust negotiation between access requestor and service/data

provider. If policy mapping is handled at service/data provider side, provider will know which

values (which represent credentials/attributes held by access requestor) the access requestor

holds; likewise, if policy mapping is handled at access requestor's side. the requestor will get to

know what values are related to specific role assignment policy. There is no policy privacy

security in either way without help of 3td party agent who will perform policy mapping. The 3td

party is trusted by both access requestor and data provider. That's the reason why we introduce

"Policy Verifier" in our proposed model in Chapter 4. In addition. their solution is for attribute

based access control and they are not used in a distributed system like SOA.

J. Li et al. initiated "OACerts: Oblivious Attribute Certificates" [3] which is actually combination

of [2] and [4]. It took use of similar technologies used in [4J to expand idea of [2] being able to be

utilized in more complicated situation (multiple attributes and policies requirements are

involved). and it had the same shortcoming of [4]: policies protection issue and complexity. Also,

it's used for attributes-based access control rather than RBAC.

2.3 Cryptography Based Privacy Protection Solution for RBAC

D. Yao et al. proposed "Compact and Anonymous Role-Based Authorization Chain" [5] which

discussed privacy protection in RBAC scenario. This paper provided privacy protection solution

for "Role Privilege Delegation" scenarios. For example, a staff of a company with "IT Manager"

role can pass the role privileges to a contractor without revealing his identity information. The

13

solution can only be suitable in specific "Role Privileges Delegation" scenarios. Also, the

solution is inefficient because of its one time key and signing permit (every delegation process

needs a new one time key and signing permit).

In conclusion, all these five protocols/solutions are all innovative and have success in some

particular situations. Actually, they can only be applied within those particular situations. K.

Frikken et al. and J.Li's protocols are perfect for attributes-based access control,; W. Du et al.'s

work is suitable for identity-based access control; T. Yu et al.'s solution is created for non

cryptography trust negotiation and D. Yao's work is used only for role privileges delegation.

None of these solutions is suitable for our situation - SOA RBAC model. We want to create

efficient and flexible identity privacy protection protocol which matches RBAC model and is

compatible to current SOA standards. That's the goal of our research.

3. Preview of Related Cryptographic Technologies

Our privacy protection protocols are cryptography-based, and they are taking use of some

existing applied cryptographic technologies. In this chapter, we will introduce several major

applied cryptographic technologies which we use in our protocols:

3.1 Identity-based Encryption

Identity-based Encryption (IBE) [2)[4][6][37][38] is the most important applied cryptography

technology used in this thesis. An lBE public key encryption scheme is a public key system with

the added twist that any string can function as a public key. In such system there is a third party

that has a secret master-key that enable it to generate the private key corresponding to any public

key string. So, the purpose of introducing IBE is to make a string (such as a personal ID, email

address, a title of a Role or any other identity-related string) as a public key to encrypt

information. Then the sender can encrypt information by using receiver'S ID as public key so that

the sender voids obtaining a public key from sender or a directory or another party. Only the right

receiver holds private key which is related to her ID and issued by 3rd party private key generator.

The private key is kind of credential which can be regarded as approval of receiver's ID. As a

result, no one else except the right receiver can decrypt the message.

14

The concept of IBE was first proposed by Shami~ [37] in 1984; however the first usable IBE

systems were proposed recently by Boneh and Cocks [2] [4] [6] [38]. An IBE scheme is

specified by the following four steps [4]:

1. Setup: A Private Key Generator (PKG) takes a security parameter k and generates system

parameters p and a master secret s. p is public, whereas s is private to PKG;

2. Extract: Given any arbitrary string ID (such as sample@users.example.com , "IT

Developer" etc.), PKG uses p, s, and ID to compute the corresponding private key dID;

3. Encrypt: It takes p, ID, and plaintext M as input and returns ciphertext C. We can

elaborate the process by a cryptography equation: C = I (M, ID) ;

4. Decrypt: It takes p, dID, and ciphertext C as input and returns the corresponding plaintext

M. The according cryptography equation is M = r1 (C, PID) ;

After setup, message sender holds system parameter p, arbitrary string ID (plain text definition of

target receiver) which are public information. Then she can encrypt her plaintext M by P and ID.

Receiver holds public parameter p and dID as private key, and she can decrypt the encrypted

message by p and dID. The other person without dID can not decrypted the message even if they

obtain ciphertext by whatever method.

-~.> .. --~" ... -.... "~,-. " ,

Private Key
Generator (PKG)

Master Secret

'" 1'-' -....

ID Authentication Privat eKey

EncryptMby "II 7
",. -"' , Receiver's ID (string) : -..

Sender
.....

Receiver
"

,
~ -~ . -. "' "-~-

Figure 6: IBE System

Figure 6 is a typical IBE system. In short, in IBE, Identities (or Attributes or any recognized

string) = Public Keys, and Sender uses the Public Keys to encrypt sensitive message. Receiver

15

receives corresponding private key from PKG, and decrypt the encrypted message. One of

advantage of IBE is its ease to be used, and there is no certificate management; no revocation

lists; and no pre-enrollment;

IBE is an important technology we used in this thesis. First, it's used at login and role assignment

process by RA who uses her attribute as public key and RA who uses her credentials (obtained from 3rd

parity CA who performs as PKG in this case) as private key, IBE is also used at RBAC based information

access stage where information providers use Role's title as public key to encrypt information and AR uses

Roles' credentials (obtained from RA who performs as PKG in this case at login process) as private key to

decrypt information. Details will be discussed in Chapter 5 and Chapter 6.

3.2 Homomorphic Encryption

Homomorphic encryption is a form of encryption where specific algebraic operation is performed

on the plaintext and a possibly different algebraic operation is performed on the ciphertext.

Depending on one's viewpoint, this can be seen as either a positive or negative attribute of the

cryptosystem. Homomorphic encryption schemes are malleable by design. The homomorphic

property of various cryptosystems can be used to create secure voting systems, collision-resistant

hash functions, and private information retrieval schemes. [17]

For example, a cryptographic scheme is said to be homomorphic if, for its encryption function E,

the following holds: E(x) . E(y) = E(x + y). This encryption function is exactly what we will use

in our protocol.

Homomorphic can be realized by different cryptosystems, and here are four samples:

By Unpadded RSA [17]:

If the RSA public key is modulus m and exponent e, then the encryption of message x is give by

E(x) = x6 mod m.

The homomorphic property is then:

By EIGamal [17]

In the EIGamal cryptosystem, in a group G, if the public key is (G,q,g,h), where h = gX, and x is

the secret key, then the encryption of a message m is E(m) = (gx, m . h ,), for some r E {O, 1, ... ,

q-l }. The homomorphic property is then:

16

E(xl}' E(X2) = (gri. x\-h (1
)· (gr2, x2'hr2) = (gr1+r2. (Xl' Xl) _h r1

+r2
) == E(XI' X2)

By Benaloh [17)

In the Benaloh cryptosystem, if the public key is the modulus m and the base g with a blocksize

of r, then the encryption of a message X is g x ur mod m. The homomorphic property is then:

By Paillier [17]

In the Paillier cryptosystem, if the public key is the modulus m and the pase g, then the

encryption of a message x is E(x) = gl(rm mod m2
• the homomorphic property is then:

These are just some samples cryptosystems for homomorphic Actually, there are more

homomorphic cryptosystems. More homomorphic schemes are discussed in [40](4l][42][4]. A

homomorphic encryption scheme is semantically secure if E[x] reveals no information about X;

hence. from a pair (E(XI). E(X2», it is computationally infeasible to distinguish between the case

Xl ::f: Xl and Xl == X2-

3.3 Set Intersection

[43][4] introduces a perfect scheme for calculating intersection of two k element sets. In this

paper, the following protocol is proposed:

[43]There are two sides for information exchange, let's identify them as C (Client) and S

(Server):

Client (C) defines a polynomial of degree k whose roots are his inputs x ,Xit

C sends to server S homomorphic encryptions of polynomial's coefficients

Enc(~), ... , EncCa..)

Enc(P(y)) == Enc(~ + al .y1 + __ . + a.: .y) == Enc(~)' Enc (al) y1 •••.• Ene (ak) yk

S uses homomorphic properties (Section 3.2) to compute:

Enc(random' P(y} + Y }

Ify E X, X = {XI. Xl, ... Xk}, we can see that P(y) =:: 0, so,

17

Enc(random' P(y) + y) = Enc (y);

Otherwise, P(y) ::f:. 0, so,

Enc(random' P(y) + y) = Ene (random);

From the variant protocols, the formular can be updated to:

Enc(random' P(y) + 0)

Enc(random' P(y) + 0) = Ene (0)

Otherwise, Enc(random' P(y) + 0) = Enc (random)

From the paper, we can conclude this valuable function: SETINT(x, S, EA), where one side (for

example RA) provides a value x, and the other side (for example AR) provides a set of values.

EA is a semantically secure homomorphic encryptions system.

The result of the function is that RA will learn EA[y] where y is 0 if and only if XES, and

otherwise y is a random number.

3.4 Oblivious Transfer

In cryptography, an Oblivious Transfer protocol (OT) [33] [34] [35] [36] is a protocol by which a

sender sends some information to the receiver, but remains oblivious as to what is received. We

can think of a following situation: we have a sender and receiver, where sender has a list of n

strings XI> ••• , Xno and the receiver wants to learn Xi' Of course, the client can simply send i to the

sender, but the receiver does not want the sender know the number of "i". Now, the sender just

simply send the n strings to the receiver but the sender does not want the receiver to learn all

other strings rather than Xi' That is receiver will not learn Xj where j :f:. i.

OT mainly solves the problem in this situation. With OT technology, on the one hand the receiver

will only know xi, and not all other strings Xj 0 :f:. i); on the other hand, the sender will not know

the "i", that is sender will not know which string the receiver takes.

There are three popular OT technologies:

• Rabin's oblivious transfer protocol;

• 1-out-of-2 obvious transfer

• l-out-of-n or k-out-of-n oblivious transfer

18

This thesis will make use of 1-out-of-2 oblivious transfer technology, and we will describe it in

details:

In 1-out-of-2 OT situation, the sender sends an ordered pair of bits (bo, b l) to a 1-2-0T machine.

The receiver then gives the machines a bit i (i (0, I»), indicating which input he would like to

receive. The machine outputs bi and discards bl-i. Sender knows that Receiver has one of the bits,

but not which one.

Sender Receiver
Side

bO ~. t
Side

1-out-of-20T
hI • bi

Figure 7: 1-out-of-2 OT [33]

4. Proposed RBAC Solution in SOA

SOA is distributed system which is composed of individual sub-systems of different technology

backgrounds and access control policies. Nature of distributed system makes access control in

SOA more challenging than that in centralized systems because:

• There is no boundaries of composed/unit systems;

• There is no prior relationship between access requestor and service provider;

• Subjects (identities or roles of access requestors) and attributes should be unified over the

range of SOA;

• Each individual system should be autonomous in maintaining her access control policies

which applied to unified subjects;

To handle the above problems or challenges, OASIS standards organization is keeping working

on to build and improve SOA access control standard - XACML which is popularly used by

industry. Our proposed access control solution is also compatible with this standard to make

implementation feasible and practical.

Identity-Based Access Control and Attribute-Based Access Control were normally used as access

control approach in practice of SOA implementation. In this situation, access permission is

granted based on access requestors' identity (asserted by SAML) or attributes. However, due to

19

its weak points of being un-scalable (colossal policies pool), not manageable and not-privacy

friendly, people are working on a solution with better access control method. Academic

researchers and industry begin to take use of a more flexible and scalable access control

methodology - Role-Based Access Control as access control technology [8][9][10][11][12][27]

for SOA. RBAC solves "scalable" issue, and emerging of "RBAC profiles of XACML"[12]

makes RBAC compatible with XACML. However, RBAC profile of XACML is still not a

privacy preserving standards, and this is the reason why we should to create a new RBAC

protocols for SOA.

4.1 SOA Access Control Standard - XACML

To propose our RBAC model for SOA, we need to understand SOA access control standard -

XACML first. In SOA, XACML [12][13][14][30][31][32][44][45][46] stands for eXtensible

Access Control Markup Language. It is a declarative access control policy language and access

control decision request/response language implemented in XML and a processing model,

describing how to interpret the policies and decide access permissions. In short, XACML

includes the three main components: Policy Language (in XML); Access control decision

request/response language (in XML); and Processing model.

4.1.1 XACML Processing Model

Figure S [12] illustrates a traditional SOA access control model [12][lS][30].Major

components/terms in the model are listed as following:

• PEP (Policy Enforcement Point): Resource specific authorization decision

request/response handling and policy defined obligations execution;

• PDP (Policy Decision Point): Evaluates the authorization request against the policy

defmed for a particular job, resource and user attributes/roles;

• PAP (policy Authority Point) or Policy DB: policy storage (distributed);

• PIP (policy Information Point): Supply external policy context and attributes (subject

credentials and attributes verification;

• RIP (Resource Information Point): Provide resource context.

• AA (Attribute Authority): Manage User attributes.

From Figure 8 below, we know the XACML Data Flow as follows:

20

1. PAP: polices/sets ..:t PDP

2. Access Request sends request to PEP

3. PEP sends request to context handler in its native request format, optionally including

attributes ofthe subjects, resources, action and environment
~

4. context handler constructs an XACML request context and sends it to the PDP

5. PDP requests any additional subject. resources, action and environment attributes from

the context handler

6. Context handler requests attributes from PIP

7. PIP obtains the requested attributes.

8. PIP returns requested attributes to the context handler

9. Optionally, the context handler includes the resource in the context

10. Context handler sends requested attributes and (optionally) the resource to the PDP.

PDP evaluates the policy

11. PDP returns response context (including the authorization decision) to the context

handler

12. Context handler translates response context to the native response format of the PEP.

Context handler returns the response to the PEP

13. PEP fulfills the obligations.

The data flow model clearly illustrates that traditional SOA access control is an attributes-based

access control. It has serious police volume and privacy issue - that is exactly the motivation of

our research and motivation.

21

Obligation

I Service

13b. Obligations

Service 2. Access Request
PEP

I 13a. Access Decision Service
Requester I Provider

3. Request 12. Response

4. Request Notification

I 5. Attributes queries 9. Resources Content

PDP
Context Resource

10. Attributes Handler (RIP)

I 11. Response Context

6. Attributes query 8. Attributes

1. Policy 7c. Resource Attributes

PIP
I Th. Environment Attributes

PAP
i 7a Subject Attributes

I
Environment

Subject
(AA)

Figure 8: Traditional SOA XACML based Access Control model (12]

4.1.2 XACML Policy Language

At the root of all XACML policies is a Policy or a PolicySet. A PolicySet is a container that can

hold other Policies or PolicySets, as well as references to pOlicies found in remote locations. A

Policy represents a single access control policy, expressed through a set of Rules. Each XACML

policy document contains exactly one Policy or PolicySet root XML tag.

Because a Policy or PolicySet may contain multiple policies or Rules, each of which may

evaluate to different access control decisions, XACML needs some way of reconciling the

decisions each makes_ This is done through a collection of Combining Algorithms [12]. Each

algorithm represents a different way of combining multiple decisions into a single decision. There

22

are Policy Combining Algorithms (used by Policy8et) and Rule Combining Algorithms (used by

Policy). An example of these is the Deny Overrides Algorithm, which says that no matter what, if

any evaluation returns Deny, or no evaluation permits, then the final result is also Deny. These

Combining Algorithms are used to build up increasingly complex policies, and they are what

allow XACML policies to be distributed and decentralized. While there are several standard

algorithms, you can build your own to suit your needs. [48]

4.1.3 XACML Request and Response Language

In addition to define a standard format for policy, XACML defines a standard way of expressing

Requests and Responses. A Request contains Attributes in each of the four categories: Subject,

Resource, Action, and Environment (which is optional). There is exactly one collection of

Resource and Action Attributes in a Request, and at most one collection of Environment

Attributes. There may be multiple collections of Subject Attributes, and each collection is

identified by a category URI (or, if no category is specified, then the default category is used). In

addition to Attributes, the Resource section allows the inclusion of the content of the requested

resource, which can be considered in policy evaluation through XPath expressions. The only

Attribute that is required in a Request is the Resource identifier.

A Response consists of one or more Results, each of which represents the result of an evaluation.

Multiple Results can only be caused by evaluation of a hierarchical resource (explained later). so

typically there will only be one Result in a Response. Each Result contains a Decision (Penni!,

Deny, NotApplicable, or Indeterminate), some Status information (for instance, why evaluation

failed), and optionally one or more Obligations (things that the PEP is obligated to do before

granting or denying access). The Request and the Response provide a standard format for

interacting with a PDP.

4.1.4 A Complete Access Control Sample of XACML

The scenario shows a user trying to access a web page. The request includes the Subject's identity

as well as a group they belong to, the resource being accessed. and the action being taken. The

policy applies to anyone taking any action on the resource, and contains a rule that applies to a

specific action. The Condition in the Rule requires certain group membership to access the

resource.

23

The Request:

<Request>
<Subject>

<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names:tc:xacml: 1.0:data-type:rfc822Name">

4.ttributeValue>sample@users.example.com<lAttributeValue> <lAttribute>
<Attribute Attributeld="group" DataType=''http://www.w3.orgl2001IXMLSchema#string''

Issuer="admin@users.example.com">·
4.ttributeValue>developers</AttributeValue></Attribute>

</Subject>
<Resource>

4.ttribute Attributeld="urn:oasis:names:tc:xacm I: 1.0:resource:resource-id"
. DataType=''http://www.w3.orgI2001IXMLSchema#anyURI''>

<AttributeValue>http://server.example.com/code/docsldeveloper
guide.html</AttributeValue></Attribute>

</Resource>
<Action> .
,4.ttribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType=''http://www.w3.orgI2001IXMLSchema#string''>
<AttributeValue>read</AttributeValue></Attribute>

</Action>
<lRequest>

Figure 9: XACML Request Sample

Figure 9 provides us a typical XACML sample request statement. There are three key types of

information included in the code:

• Attributes of subject: in this sample there are two attributes: sample@user.example.com

and "developers". Please be noted, the "developers" is an attribute of the subject (in this

case, developers is the position attribute of subject) rather than a role;

• Requested resource: in this sample, it's a html page:

http://server.example.com!code/docs/developerguide.html

• Requested action/operation: in this sample, it's "read".

XACML is a rich language which can be very complicated. Its policy language can hold

PolicySet -> Policy -> Rule with different override algorithm. We will only describe it in a simple

sample. Figure 10 below is a typical simplified policy language code,and there are also three key

components in this sample code: 1. for the subject with a attribute of "developers"; 2. for the

requested target resource of: http://server.example,com!code/docs/developerguide.html; 3.

requested action is : "read" .

24

The Policy:

<policy Policyld="Examplepolicy"
RuleCombiningAlgld=:"urn:oasis:names:tc:xacml:l.O:rule

combining-algorithm:permit-overrides">
<Target>

<Subjects><Anysubject/></Subjects>
<Resources> ' .

<Resource>
<ResourceMatch .

Matchld="urn:oasis:names:tc:xacml:1. O:function:anyURI-equal">
, <At t ribut eVa lue
DataType=''http://www.w3.org/2001/XMLSchema#anyURI">http://server. exam
ple.com/code/docs/developer-guide.html</AttributeValue:> '

<ResourceAttributeDesignator
DataType=''http://www.w3.org/2001/XMLSchema#anyURI'' .
Attributeld= "urn: oasis :'names: tc :xacml: 1. 0: resource: resource-id II /:>

. . </ResourceMatch></Resource>
</Resources>
<Act ions ><AnyAction/ ></ Actions;:,:

</Target> ~' ' .
<Rule Ruleld="ReadRule" Effect="Permit">

<Target>
<Subjects><AnySubject/></Subjects>
<Resources ><AnyResource/></Resources >
<Actions> ' '
" <Action>

, . <ActionMatch
Matchld="urn:oasis:names:tc:xacml:1. O:function:string-equal">

" <AttributeValue " . ' , ",
DataType-''http://www.w3.org/2001/XMLSchema#string">read</AttributeVal
ue> " ',' " :. . , ' '. ", ',', " :"

<ActionAttributeDesignator" ,
DataType="http://www.w3 .org/2001/XMLSchema#string" "

'Attributeld="urn:oasis:names:tc:xacml:l.0:action:action-id"/>
,<!ActionMatch>' ;'. ' '; ",

<l Action> " .,., .' ,
</Actions> ' " ,

</Target> ; "
",<Condition ,,' '" "

", "

Functionld="urn:oasis:names:tc:xacml: 1,.0: function: string-equal">
\<Apply " " -, ," ~ "',

FUnctionld="urn:oasis:names:tc:xacml:l.O:function:string-one-and-
only">' ' ; -,' . '

. ~subjectAt.trib,iteDesigD,ato~, '" ;
DataType-''http://www.w3.org/2001/XMLSchema#string" .
" " " . ..:, " Attributeld="group"/>":. ,-

</Apply> ""c:; " '. •... , ,

'; <AttributeValue ," ': ',. "" . " "':":,
DataType="http://www. w3 .org!2001/XMLschema#string lf >developers</Attrib.·
uteValue> , • : J , >', ".'" c' ,""

" </Condition> .:
, " <JRuIe> <' .. ';, '

</policy>: ,';.'

25

The Response:

<Response>
<Result>

<Decision>permit</Decision>
<Status>

<StatusCode Value=/lurn:oasis:names:tc:xacml:l.O:status:ok"/>
</Status>

</Result>
</Response>

Figure 11: XACML Response Sample

Figure 11 is the sample of XACML response statement. The decision on the request can either be

"Permit" or "Deny". There are only two keywords of decision in the code: "Permit" or "Deny".

Service Provider will check access request (Figure 9) based on target policy (Figure 10), and

since this request meets requirement defined in the policy, so the decision in response statement

(Figure 11) is Permit.

4.2 RBAC Profile of XACML

RB-XACML 2.0 [12][47] was approved as OASIS committee draft on 30 September, 2004. It's

standard to implement the core and hierarchical components of ANSI standard in SOA including

Roles and Role Hierarchies; Permission-role Assignment Relation and User-role Assignment

Relation.

4.2.1 Role PolicySets and Permission PolicySets

According to RBAC profile of XACML, PolicySets is divided into two types: Role PolicySets

and Permission PolicySets. In these PolicySets, Role is regarded as a specific XACML Attribute.

Role PolicySets:

Role PolicySets are applicable only to holders of a given Role and they reference the Permission

Policy Set that specifies the permissions to be granted to holders of this Role;

Permission PolicySets

Permission Policy Sets are never used as base policies, but only by reference from Role PolicySets

and are application to any Subject. Permission PolicySets specify a set of Permissions to be

granted to holders of a given Role or to holders of any Role that is senior to the given Role.

26

Here is an example. There are two roles "IT Manager" and "Senior Developer", and they are

expressed as two separate values for a single XACML Attribute called "Role". A "Senior

Developer" role has permission to "Modify Code", and an "IT Manager" role has permission to

<PolicySet policySetld:"Permission PolicySet for ~T Manager Role" '
CornbiningAlgorithm= "permit-overrides " >

<Target> '
, <Subjects>

<AnySubject/>
</Subject>
<Resources>

<AnyResource/:>
</Resources>

<Actions><AnyAction/></Actions>
<Target>" '

<policy policyld="permissions specifically for the ~T Manager
role" CornbiningAlgorithm="pEmUlt-overrides">

<Target> '
<Subjects><AnySubject/></Subject>
<Resources><AnyResource/></Resources>.
<Actions><AnyAction/></Actions>

</Target> '
<Rule Ruleld-"Permission to Publish Modified COde"

Effect="Permit" >
<Target>
, , <Subj ects:>

, '. <AnySubj ect/:>
</Subjects>

, <Resources>
'<Resource> '" "

.. , :

<ResourceMatch Matchld~"string-match">
" <AttributeValue>Delete Code</AttributeValue>

·'<ResOurCeAttributeDesignat.or Attributeld="res~urce-id"/>,
",,: </ResourceMatch> ' , '~ . ,"

</ResourCe> ' . ~ !,:'
< !Resources;"
';;Actions>.
"<Action>.' " ,.

<ActionMatch Matchld="string~match">
<AttributeValue>publish</AttributeValue>l
<ActionAttributeDesignator Attributeld="action-id"/>,
</ActionMatch>
</Action>

, ' </Actions>
" .,'; " </Target> £ ,

. ,

"'</Rule>, " '4,.. ,

'>; :'~~i~~:t~dR~f~~e~ce>;~~~si~: '~olicYset 'for senior':'I)eveloper
Role</PolicySetldReference> " ,,' . ',' , : . "

,,</policyset>, , ' .' '". ~ " '

Figure 12: Sample - Permission PolicySet for IT Manager Role

27

"., {

"Publish Modified Code" plus any pennission granted to "Senior Developer" role. ("IT Manager"

is a more senior role than "Senior Developer") Now, let's see how to implement the sample by

Pennission PolicySets and Role PolicySets:

<PolicySet PolicySetld=="permission PolicySet for Senior Developer
Role"

CombiningAlgorithm="permit-overrides">
<Target>

<Subjects>
<AnySubject/>

</Subject>
<Resources>

<AnyResource/>
</Resources>

<Actions><AnyAction/></Actions>
, <Target>
. <Policy Policyld=npermissions specifically for the Senior

Developer role",CombiningAlgorithm="permit-overrides">
<Target> .

<Subjects><AnySubject/></Subject>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
<Rule Ruleld="Permission to Modify Code" Effect="Permit">

<Target>
<Subjects>'

<AnySubject/>
, </Subjects>
<Resources>

<Resource> , ~,.. '.

<ResourceMatch Matchld="string-match">
<AttributeValue>Code</AttributeValue>,
<ResourceAttributeDesignator Attributeld';'''resource-id''/> '
</ResourceMatch>

'</Resource>
</Resources>
<Actions>

<Action> , ""

<ActiOnMatch Matchld="string-match">
<AttributeValue>Modify</AttributeValue> ,
<ActiOnAttributeDesignator Attributeld="action-id"/>
</ActionMatch>
'</Action>

</Actions>
</Target>

</Rule>
. </Policy> , " , . •

, <! -- PolicySetldReferences can be added here if the Senior ,','
'Developer role later obtains permissions associated with any other,'
role such:'as Junior Developer _":"> - ': ,;;'. '"1':" ,,~ .. ,.' _' ,l. "

, ~/poi.icyset> ' " .' ',' . . . ,
,. ,

Figure 13: Sample - Permission PolicySet for Senior Developer Role

28

" .'

Figure 12 is sample Permission PolicySet for IT Manager Role. From the bold key words in this

PolicySet, we can see that it is to grant "Publish Modified Code" to an IT Manager role and IT

Manager role can inherit all permission from Senior Developer role.

Figure 13 is sample RBAC XACML language code for "Permission PolicySet for Senior

Developer Role". The Permission PolicySet grant "Modify Code" permission to Senior

Developer role, and it can be still flexible to let Senior Developer to inherit any more junior role

such as Junior Developer.

<PolicySet PolicySetld="ROle Policyset for IT Manager Role"
CombiningAlgorithm= "permit-overrides " >

<Target>
<Subjects>

<Subject>
<SubjectMatch Matchld=llstring-match"> '

j <AttributeValue>IT Manager</AttributeValue>
, :" <SUbjectAttributeDesignator Attributeld="ROle"/> ,
, ,</SubjectMatch> ; ,

'</Subject> ' ,
'</Subjects>

<Resources>
<AnyResource/> ,

</Resources>
<Actions>
, <AnyAction/>

</Actions> " ,
</Target> . < ' ,

<PolicySetldReference>permission PolicySet for ,IT Manager .
Role</policySetldReference>

, <lPolicySet>·

Figure 14: Sample - Role PoJicySet for IT Manager Role

Figure 14 is a sample RBAC profile XACML Role PolicySet statement for IT Manager Role. The

code provide the following rule: for an access requestor (Subject) with a role of "IT Manager",

check "Permission PolicySet for IT Manager Role" to decide to grant permission or not.

Role PolicySet for' Senior Developer is similar to IT Manager Role. Figure 15 is Senior

Developer's Role PolicySet Based on the Role PolicySet, for all access requestor holding a

"Senior Developer" role, their permission decision will be referred to "Permission PolicyS~t for

Senior Developer Role".

29

<PolicySet PolicySetld="Role PolicySet for Senior Developer Role"
CombiningAlgorithm= "permit-overrides II >

<Target>
<Subjects>

<Subject> .
<SubjectMatch Matchld="string-match">

<AttributeValue>Senior Developer</AttributeValue>
<SubjectAttributeDesignator Attributeld="Role"/>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>

<AnyResource/>
<{Resources>
<Actions>

<AnyAction/>
</Actions>
</Target>
<PolicySetldReference>permission PolicySet for Senior Developer

. Role</PolicySetldReference>
</PolicySet>

Figure 15: Sample - Role PolicySet for Senior Developer Role

4.2.2 Attribute-Based Role Assignment

From Figure 16 [12] below, we know that Role Assignment in RB-XACML is based on Subjects

(Access Requestor)'s attributes, so we call it "Attributes-Based Role Assignment". The role

assignment is handled at access request process. PDP will evaluate access requestor's attributes

and grant suitable role(s) to her by Role Assignment PolicySets. Then the access request will be

evaluated by Role PolicySets and Permission PolicySets based on requestor's role. Attribute

Based Role Assignment is composed of the following four steps:

Step 1: PDP evaluates Access Requestor's attributes to decide which role (s) should be assigned

to her;

Step 2: After role assignment, assigned role will show up at access request XACML

statement/code just like a regular attribute, then, service provider will check Role PolicySet based

on the assigned role;

Step 3: Role PolicySet will refer suitable Permission Assignment PoIicySet;

Step 4: Permission Assignment PolicySet will check permission rules based on target information

(role, target resource and required action etc.) to decide to permit or deny.

30

<Request>

<Subject>

Role Assignment <PolicySet>

IT Manager Role Assignment

~
. , ~~

. • -t

.r ~ .. ~:;,

Role <PolicySet>

L--+-~ IT Manager Role <PolicySet>

Permiss ion Ass ignment <PolicySet>

IT Manager Permission <PolicySet>

Senior Developer Permission

Pem1ission ' ~ PolicySe t>

<farget>
Modified Code. Publish

<farget>
Code, Modify

Figure 16. Attribute-Based Role Assignment [12;

4.2.3 Conclusion on RB-XACML

From Sections of 4.2 1 and 4.2.2, we can know that RB-XACML is actually a modified version

of traditional XAL'ML whIch let XAC\t1L policy meet features of RBA C' (such as Roles

definition, pennission to role assignments etc.) Our proposed prtvacy-friendly RB,\C proposal

for SUA still takes use of current XAC\t1L and RB-XAC:v1L standards plus some nccess:uy

modifications, and these modifications will not cause major change for SOA structure and

XACML standards. So. there wil l be no compatible and implement:ltion issue.

Fven though: RB-XACML IS created as a standard for RBAC in SOA. we still need to propose a

new RBAC solution for SOA because RB-XAC'ML has the following defects :

31

• Based on RB-XACML, the role is assigned during the access request process. So, each

access request will cause a role assignment process. That reduces system efficiency;

• There is no authoritative and recognized organization which provides unified Roles

definitions, attributes definitions and attributes-to-roles assignment rules, as a result it

will cause lots of coordinate work and maintenance work for a distributed system;

• The role-user assignment is still attribute-based. Furthermore, subject's attributes are sill

transported between different sub-systems!components to support the process. So, it is

not-privacy-friendly. (this is the main motivation of this thesis)

• Role exists as an "Attribute Value" during the process, and it is not a privacy friendly

method (in some case, access requestor does not want her role disclosed) because the role

of access requestor will be known by counterparts during the process.

Our new SOA RBAC protocol/solution is proposed to solve these defects. The major advantages

of our new SOA RBAC solution are listed as the following:

• To realize one role assignment process, then access requestor can use assigned role for all

access request within the same session;

• To unify role assignment policies, the policies are agreed and used by all individual

systems within SOA range and individual systems are not necessary maintain their own

policies;

• To protect attributes privacy, there is ZERO attributes disclosed during the process;

• To protect role privacy ifrJecessary.

4.3 Proposed SOA RBAC Solution

In this section, we will propose our SOA RBAC solution which will conquer the following three

major challenges: manageable role assignment policies; privacy protection; and compatible with

current SOA standard and technologies such as XACML.

4.3.1 General Design of Our Proposed SOA RBAC Solution

One of major innovations in our proposed SOA RBAC solution is to separate role assignment

from traditional SOA structure, and it will be accomplished at login stage before sending access

request to an individual system for a specific resource within SOA.

32

In our proposed solution, the access process is divided into two separate processes: Login & Role

Assignment Process - Before Sending Access Request; and Access Request & Response Process

- After Receiving Access Request.

Login & Role .. Access Request &
Assignment

--
Response

Process Process

Figure 17: Simplified SOA Access Control Solution

Login & Role Assignment Process is separated from typical SOA access control process (Figure

17). It is handled by a separate and independent sub-system from outside of SOA. In this process,

client will accomplish login process and roles will be assigned to himJher based on his/her

attributes.

Access Request & Response Process is still a part of traditional SOA structure, and it is similar to

traditional access control process that we discussed in section 4.1.

Login is always the first and necessary step for all system's access. In our solution, clients or

access requestors need to login first before sending access requests. Their attributes will be

verified and roles will be assigned based on their verified attributes during the login process. The

roles which are assigned to Access Requestors are unified within the SOA range whicn can be

recognized and used by all individual systems.

Our design meets requirements of Single Sign On (SSO Figure] 8), which means a user logins

only once and gains access to all individual or sub systems (if she is granted necessary

permission) without being prompted to login (or the process like role assignment) again at each of

access request for different individual system. SSO is a major property of access control for

distributed system like SOA which are composed by mUltiple, related, but independent software

systems.

33

Indiviuual Systems

Single Sign On &
Role Assignment

User

Figure]8: Single Sing on

From Figure 17 & Figure 18, we knOv. that, in our solution, Role Assignment is not handled at

acce:,s request & respond stage within SOA structure. This is different from traditional XACML

or RB-XACML standards. Instead. Role Assignment and Login are both handled within one

process in a separate system outside of SOA structure. The benefits for the separation are listed as

following:

• Role Assignment process will not be restricted by requirement and syntax of XACML or

RB-XACML standards/language. and we can implement or propose privacy protection

cryptographic technology freely in a the separak Login & Role Assignment sub system

to achieve pnvacy protection;

• Preve:1t personal attributes/privacy from being transported via different individual system

within SOA - more privacy friendly;

• It is much easier and more ~fficient to maintain global Role-to-User policies in a

centralized system than by individual systems;

• Role assignment and login are accomplished in one process, after that, assigned roles will

be valid and usable for all access requests to all individual system. So that system

efficiency is improved.

34

4.3.2 Login & Role Assignment Process~

Policies Mapping

Role Assigner
(Independent 3rd

)

Access Request & Values I::xchange

Policy Verifier ~======:I
(Independent 3rd) ... Access Requeter

Values Providing
& Role

Assignment

Figure 19: Login & Role Assignment Process

Figure 19 provides an overview of Login & Role Assignment Proc~ss. From Figure J 9, we can

see that there are two independent 3rd parties, Role Assigner eRA.) and Policy Verifier CPV),

Involved in the process. Access Requestor CAR), \\ ho is client or server Requestor in SOA,

obtained eligible roles during the interactions with RA and PV during the login process. RA

works as an independent 3rd party organization to maintenance Role-to-User assigrunent polices

for all sub-systems. RA IS a centralized and unified role assignment organization for SOA. RA

collects and maintains individual access policies from individual systems and unifies & integrates

these policies into global policies which can be applied to all individual systems.

We still have another common party which does not show up in Figure 19 - Certificate Authority

(CA) which provides attribute credential for AR. The CA verifies AR's attributes and issues her

credentials based on verified attributes. These attributes credentials function as private key dUflng

the role assigrunent process based on Identity Based Encryption (lBE) technology which we

already discussed at Chapter 2. So. CA is playing a role which provides attributes verification and

credential issuing for AR. and these credentials will be used as AR's private key later on during

the access control process.

The Login & Role Assignment Process can be divided into the following three stages:

Stage one: AR send access request to RA, and then AR and RA will be engaged in a

proposed cryptography technologies based value exchanged process. After the process AR

will get a group of values which represent the attributes credentials she holds;

35

Stage two: AR then provides PV with the values she has after stage one, and RA also

provides PV with her value and policy string;

Stage three: PV will compare the values provided by AR and policies provided by AR,

then PV will assign suitable roles to AR.

During these three stages, AR & PV know nothing about AR's attributes, and on the other hand,

AR and PV know nothing about RA's policies. So, it's a convinced privacy friendly process, and

we will discuss the process in detail at Chapter 5.

This process has the following advantages:

• It meets with principle of Single Sign-on (SSO), that is a single login/sign on process will

provide the Requestor roles for all access request within this SOA architecture;

• There is only one Role Assignment process, and roles can be used in all access requests

processes within the same login session;

• Each individual system does not need to maintain Role-to-User assignment policies, and

it not only greatly reduces Role Access Policies maintenance works but also provides a

unified and standard way to assign roles. Individual system just needs to maintain

Permission-to-Role assignment.

In conclusion, the new mode and emerging of 3rd party RA & PV make RBAC of SOA more

efficient and easy to be maintained. Tedious policies integration and maintenance works are "out

sourced" to 3rd party organization apart from SOA, and resource-cost "User-to-Role

Assignment" process is also separated from SOA access request and is only handled once during

login process based on our proposed mode. We will discuss detail Login and Role Assignment

process in Chapter 5.

4.3.3 Access Request & Response Process:

Our Access Request & Response process (or we also call it Service or Information Access

process) is similar to traditional SOA access control based and compatible well with XACML

standard. Figure 20 illustrate general idea of our "Access Request & Response" solution.

36

Policy
.A " Policy Decision 'A .. Policy Information Enforcement Point

(PEP) " .. Point (PDP) " " Point (PIP)

" :Ii.

, .,
Policy Access
Point (PAP)

Figure 20: Access Provider Response Process

Figure 20 is actually a simplified model of Figure 8. That means we do not need to change SOA

infrastructure and current technologies. In Figure 20, PEP works as an interface with Information

Requestor; PDP handles access control based on Role-permission policies (encrypted requested

information by public keys of allowed roles - we will discuss the details later); PAP is the place

for Permission-to-role polices; and PIP can provide PDP more requirement information (about the

resources for example.) if necessary.

In our Proposed solution, roles of AR (which are granted at "Login & Role Assignment"

process), work in the same way as attributes' value in traditional SOA, and we just need a very

little change to XACML standard languages. The following statement (Figure 21) is modified

Request writing in XAXML on proposed RBAC model:

37

Modified Request:

<Request>
<Subject>

<Attribute Attributeld="urn:oas is: names:tc:xacml: 1. O:subjectsubject -id"
DataType="urn:oasis:names:tc:xacml: 1.O:data-type:rfc822Name">

<AttributeValue>sample@users.example.com</AttributeValue> </Attribute>
<Attribute Attributeld="role" DataType="http://www.w3.org/2001IXMLSchema#string''

Issuer="admin@users.example.com">
<AttributeValue>Senior Developer</AttributeValue></Attribute>

</Subject>
<Resource>

<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType=''http://www.w3.org/2001IXMLSchema#anyURI">

<AttributeValue>http://server.example.com/code/docs/developer
guide.html</AttributeValue></Attribute>

</Resource>
<Action>

<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType:''http://www.w3.org/2001lXMLSchema#string''>

<AttributeValue>read</AttributeValue></Attribute>
</Action>

</Request>

Figure 21: Sample of Modified Request for SOA RBAC Solution

Since role is regarded as attribute value of access requestor, policy language of new SOA RBAC

Solution is the same as traditional XACML policy language, and response language of XACML

is also the same in general. In "role-privacy" protection model, we will not use XACML response

language. Instead, we will use SOAP (Simple Object Access Protocol) to transfer encrypted

information to access control. SOAP is XML-based messaging framework which has the

following features:

• Extensible (SOAP defines a communication framework that allows for features such as

security, routing, and reliability to be added later as layered extensions);

• Interoperable (SOAP can be used over any transport protocol such as rcp, HTTP, SMTP

etc.)

• Independent (SOAP allows for any programming model and is not tied to any specific

system)

Since SOAP is SOA standard for message transferring, using SOAP as access response in our

protocol will not break compatibility to current SOA technologies.

38

In conclusion, our privacy protection RBAC model does not need huge change of SOA standards

which are already popularly used, ant it makes our solution feasible and practical to be

implemented. We will discuss detailed implementation of "Access Request & Response" process

in Chapter 6.

4.4 Privacy Protection Targets for the SOA RBAC Solution

In this section, we will elaborate our targets for privacy protection. That is what privacy should be

protected during the SOA RBAC process by our proposed solution?

There are two kinds of privacy which should be protected by our proposed solution: Access

requestors' (SOA clients) individual or identity privacy (including her attributes and assigned

roles) and RBAC related policies (From Figure 3, we can see that there are two kinds of access

control policies: Role-to-User policies and Permission-to-Role policies).

This thesis will provide solutions and protocols to protect AR's individual privacy and all kinds

of policies in both Login & Role Assignment process and Access Request & Response process.

Meanwhile, we have to balance privacy protection and system feasibilities. That means we have

to look into "sensitive level" of different kinds of privacy in different process stage to decide

which privacy protection level action we should take. In this thesis, we will take use of the

following two levels of protection action:

• ZERO knowledge disclosure. This is a strict privacy protection action. Under this action

level, there will be completely no privacy to be disclosed;

• Optional and tolerant action. This action is used to protect non-sensitive privacy to gain

system efficiency. Under this action, involved parties can choose to set their information

as privacy (they do not want to disclose their information) or not (it is fine for them to

disclose information since it is not sensitive information.). Even they set it as privacy, it

may not be ZERO knowledge disclosure.

From SOA RBAC solution we proposed in section 4.3.1 and Figure 17, our access control

process is composed of two parts/processes: Login & Role Assignment process; and Access

Request & Response process. We will discuss these two processes in Chapter 5 and Chapter 6

accordingly. In this section, we'd like to elaborate privacy protection goals based on these two

parts/processes. In generally,

• for Role Assignment process part (Figure 19), what roles AR will get depends on her

attributes such as her work unit, position, location, age, income, gender etc. We regard

39

AR's personal attributes and RA's Attributes-to-Role policies as sensitive privacy, and

we should take "ZERO knowledge disclosure" action. So,

o RA & PV will know nothing about AR's attributes after the process;

o On the other hand, AR & PV will also know nothing about RA's Role

assignment policies;

• For Access Request and Response process part (Figure 20), AR will apply access

permission based on her roles. We will regard the roles and SP's Permission-to-Role as

non-sensitive privacy (we will provide thorough analysis in Chapter 6). As a result, we

will take use "Optional and tolerant action", in which,

o AR can set her access request as "privacy" mode or not. If it's not a privacy

mode, her roles are not regarded as privacy, and her roles' information can be

disclosed to SP. If it is set as a privacy mode, SP will not know AR's role

information;

o We can be tolerant on SP's Permission-to-Role policies disclosure (we will

provide thorough analysis in Chapter 6).

In this Chapter, we already proposed our general RBAC solution for SOA. This solution makes

perfect privacy preserving possible. Based on this solution, we will continue to work on a

cryptography technologies based privacy protection solutions or protocols, and the rest parts of

these thesis will illustrate our identity & policy privacy protection protocols and how they work.

Our SOA RBAC solution has nvo processes: Login & Role Assignment process and Access

Request & Response Process. In Chapter 5, we will provide protocols in privacy protection in

"Login & Role Assignment process", In Chapter 6, we will discuss privacy protection in "Access

Request and Response" process

5. Privacy Protection Protocols in Login & Role Assignment

process

Based on our discussion in Chapter 4, our proposed SOA RBAC solution is divided into the two

processes: Login and Role Assignment Process and Access Request and Response (RBAC)

process. In this chapter, we will discuss privacy protection protocol in Login and Role

40

Assignment process only. We will talk about privacy protection protocol in Access Request and

Respond process in Chapter 6.

As illustrated in Figure 19, in the login and Role Assignment process, there are three parties

involved: Access Requestor (AR), Role Assigner (RA) and Policies Verifier (PV). AR is the

client/consumer of SOA who sends access require for specific information or service. RA is an

independent party above the composed units of SOA. RA maintains unified roles assignment

policies which are agreed by all individual systems. PV is another 3rd party which gets involved in

role assignment process. The purpose that we bring in PV is to achieve ZERO privacy disclosure.

Policy mapping process is handled by PV as a 3rd party. In this way we can completely prevent

privacy knowledge disclosure. PV's function will be discussed in section 5.2.

In this Chapter, we will focus on attributes privacy protection in Login and Role Assignment

process. There are three privacy protection targets in this process:

Target One: AR's Attributes Privacy Protection: AR has to apply for roles by submitting her

attributes credentials, and RA has to verify AR's credentials to decide which roles should be

assigned to her. However, AR does not want to disclose her attributes because they are her

privacy. However, RA has to verify AR's attributes to decide which roles should be assigned to

her. Our target is to provide protocols and solutions to solve the conflict: RA can verify AR's

attributes credentials and assign suitable roles to AR with ZERO knowledge of AR's credentials.

Target Two: RA's Policies Privacy Protection: RA & AR get involved in a credential and

policies mapping process so that RA can know which roles can be granted to AR. As we stated in

Target One, there is ZERO knowledge of AR's credentials be disclosed, and we also required

ZERO knowledge disclosure for RA's policies. After the Role Assignment process, AR knows

only which roles she is assigned and nothing else. AR has ZERO knowledge on RA's policies

and she is not likely to guess or extrapolate RA's polices.

Target Three: An Other Privacy Information Protection: After policy mapping process, AR

will be assign eligible role credentials. The role information is also AR's privacy. Our complete

privacy protection action level requires no one (both RA and PV) can get to know what roles are

assigned to AR.

Our proposed Login and Role Assignment process is divided into two stages: Atttibutes and

Credentials values exchange stage: and Polices Mapping Stage.

We will discuss stage one "Atttibutes Credentials values exchange stage" in Section 5.1. In stage

one, our major focus is on target one - AR's Attributes Credentials Privacy Protection, and we

41

will propose three protocols Naive Protocol, Sophisticated Protocol and Improved Sophisticated

Protocol which will be described in Section 5.1.2, 5.1.3 and 5.1.4.

In Section 5.2, our focus is stage two "Polices Mapping Stage". In this stage, the major privacy

security concern is "Target Two: RA's Policies Privacy Protection", and we also propose three

solutions on this stage which are elaborated in section 5.2.2, 5.2.3 and 5.2.4 accordingly. In this

Chapter we will also look into how our solutions realized two most important RBAC features:

Role Hierarchy and Constraints.

Notations used in this chapter and the rest part of the thesis are listed in the following table.

Name Description

ATT~ Attributes i to be verified where i E {I, n} and n is the
I total amount of attributes

~ I The ith random number created to represent one attribute

I(kj, A TTRi) Identity-based encryption to ki using A TTRi as public
key

CRED j Credential for attribute j where j E {I, m} and m is the
I total amount of credentials held by access requestor

rl(I(ki' ATTRt), CRED Decryption of I(k;, A TTRi)' "CRED r is privacy key
j) used for decryption.

EA A homomorphic encryption.
I

DA Decryption of "EN'

SETINT(~[O], {Di,l ••• A "Set Intersection", Output is EA[x], ifk i[O] E {D~1
Di,m}, EA) .. , Di, m} and x = 0 else x will be a random number

Enc(P, k i [1]) Symmetric key encryption ofP using k i [1J as I
encryption.

I

OT Oblivious Transfer I

ICC Array of all values obtained by Access Requestor after
I

value exchange stage

RCred Credential of role

Enc(Enc(Enc(RCredu Symmetric key encryption to RCred. n times by kh
kl)t k2) •••• kn k2, kn as key.

I

42

Enc· l (Enc· l (Ene·l I Decryption "ERCredt n times by Ch C2, •••• Cn

(RCred., cn), Cn-I) Cl)

EK (i) Identity-based Encryption on "Information" i (which is
requested information) by using K as public key. K is

I required role (such as IT Manager) to access requested
information.

I EK(S) lS-based Encryption on "S" using K as public key. l

i ated random number
i ,

JAR I Access Requestor

!RA i Role Assigner ,

!PV ! Policy Verifier

rSp • Service Provider

Table 1: Notation

5.1 Attributes Credentials Values Exchange Stage

Attributes Credentials values exchange stage is stage one of Role Assignment process. In this

stage, RA will verify AR's credentials and result of verification will be used at stage two as

necessary input for policies mapping. and the verification process is privacy preserving.

5.1.1 Attributes Standards and Preparation

Our protocol is based on Identity~Based Encryption (IBE) technology discussed in 3.1. Attributes

will be used as Identity Key. and we need to frame attribute standard to facilitate the use of !BE.

In our protocol, attributes are all identical and clear strings. For example, for "Age" attributes. we

used to use number to represent person's age such as 28, and range of numbers to represent a

policy such as "age between 20 and 30" or ''>= 20 and <= 30". We can not use this way to define

attributes and policies, because number attributes which are not identical strings, and can not be

used inIBE.

Instead, we define attributes and policies in this way. For the same sample of age, it can be

represented by the following identical strings: "Age below 20"; or «Age between 20 and 30"; or

"Age between 30 and 40"; or "Age above 40" etc.

So, RA can also use one ofthe string such as "Age between 20 and 30" in her policies pool which

can be used as public key during the value exchange process in our protocol. On the other hand,

43

AR may hold a credential as CRED issued by a 3rd party Certificate Authority or Public Key

Generator (PKG) for "Age between 20 and 30" which will be used as private key. As we discuss

in section 3.1, this is realization of Identity-Based Encryption (IBE). RA holds clear strings of

attributes in her policies which will be used as public keys, and AR holds a bunch of credentials

issued by 3rd CA or PKG which will be used as private key. This is implemented based on

principle and requirement of IBE.

For example, RA has a policy to assign role of "Senior Developer" which is a combination of the

following attributes:

Attribute One: In a core sub-organization (individual system/organization can be divided into

several levels based on their business, size, importance etc.);

Attribute Two: Work Experience more than 5 years;

Attribute Three: Position in Software development;

Attribute Four: Salary between 60k and 80k;

So, with IBE technology, during the trust negotiation process in login, RA can use each of

attributes in policy such as "Position in Software development" as public key to encrypt values to

be exchanged in our proposed protocol. AR obtains her private keys for verified attributes from

CA or PKG as credentials. Only when AR holds all credentials for required attributes, she will be

granted the role. More details about the technology can be found in [6]. We will discuss how RA

and AR use attribute I credentials as public key I private key to exchange values as trust

negotiation in this chapter

5.1.2 Privacy Protocol- I: NaIve Protocol

For this stage, we propose three protocols: NaIve Protocol, Sophisticated Protocol and Improved

Sophisticated Protocol.

In NaIve Protocol (Figure 22), the process & principle is simple. The RA creates one random

value for each attributes in all her policies, and encrypts the value by corresponding attribute.

Then RA sends these encrypted values to AR. After receives the encrypted values AR will try to

decrypt the value by her credentials (private key). For each decryption operation, AR will get a

decrypted value. But AR has no idea if the credential (private key) matches required attributes.

AR has to try to decrypt each value by all her credentials. After the process, AR will for sure get

correct value for some of attributes for which she holds corresponding credentials. However, she

44

totally has no idea how many attributes and what attributes she matches. There are only two steps

are involved:

RA

Step 1:

Step 2: E, = I(ki, A ITRi)

DiJ r 1(Ej , CRED)

Figure 22: Naive Protocol

Step 1: For each attributesA1TRi that may relate to anyone role's assignment (for example, there

are total 20 roles, and total n = 200 attributes are involved, i E {I, 200}), RA creates one random

key k for each AlTRi> and she encrypts I<:; by AlTRj • Ei = 1(1<:;, A1TR,). Then, RA send Ei i E {I,

200} toAR;

Step 2: AR receives <l; i E {l, 200}, for each ct.i, she decrypts it by each credentials (CRED}) she

holds. OiJ r1(Ei' CREDj). If AR totally have m credentials, then AR will get m values OJ,l .•. O~

m for each E i • If one of CRED j match AlT~, then AR will get the value of 1<:;, or she will get a

random number.

In conclusion, for each attributes,

A1TR/ -> AR creates kl and encrypts it to EI -> RA gets a group decrypted values of 0 1,1 ••• Ol, m

A1TR2 -> AR creates k2 and encrypts it to ~ -> RA gets a group decrypted values of 02,1 '" D2,m

A1TRn -> AR creates k" and encrypts it to En -> RA gets a group decrypted values of 0n,1 ••• Dn.m

Only when RA holds a right credential, there will be a [3 value matches corresponding k.

However, both RA & AR do not know which values are matched and how many values are

matched. In other word, RA knows nothing about AR's credentials. On the other hand AR does

not know matched values neither, it's not possible for AR to deduce RA's policies. This is

prerequisite of policies protection. We will discuss it in details in next section.

45

Now, let's analyze the result. If AR has m = 20 credentials (eRED) j E {l, 20}), giving n=200

(RA has 200 attributes totally). AR will totally have values of:

m * n = 20 * 200 = 4,000.

If among AR's total 20 credentials, there are 15 credentials match attributes required by RA,

there will 15 correct k values within AR's 4,000 values. Again, both AR and RA do not know

which 15 values are matched.

During the process, AR has no idea about how many attributes she matches, and what attributes

she matches. So it's not feasible for AR to deduce Role-Attributes policies. On the other hand,

RA knows nothing about AR's credentials because "Step 2" happens at AR side and AR does not

need to send anything to RA. So, this protocol meets privacy protection requirement.

After the process is finished, AR will pass all m * n values to PV, and RA will also pass k E {I,

n} and policies (PV will not understand the policy because it's represented by k values). We will

discuss the policy verification process later on in this chapter.

NaIve Protocol is not feasible because it will cause values explosion when both m (amount of

AR's credential) and n (amount of RA's attributes) values are very large, and it is always the case

in a true distributed system in industry. However, NaIve Protocol is easy to be understood. So, it

can be helpful for us to understand the Sophisticated Protocol that we will discuss in next section.

5.1.3 Privacy Protocol - II: Sophisticated Protocol

NaIve protocol looks simple, however, we can easily find its shortcoming: not scalable. For

example, if n == 2000 and m=500, AR will totally provide m * n = 500 * 2000 = I, 000, 000

values to PV. The number is still possible to increase quickly with growing of the system. The

gigantic amount of values will cause decrease of system in several ways such as it needs more

time and bandwidth to transfer the values from AR to PV; and it needs more time of policy

mapping in PV.

So, we propose another protocol: Sophisticated Protocol which is more complicated in

cryptography point of view, however, AR will only provide n values to PV for further process. In

sophisticated protocol, if AR holds only 15 valid credentials for attributes, she will get only 15

valid values after value exchange process with RA. As a result, she just needs to pass these 15

values to PV for evaluation. So, we solve the problems of "scalability" and "efficiency".

46

Step 2: Ei;P
EA
D· = r1(E CRED·)

IJ " J

D,EA Step 3:
SETINT(kj[O], {Dj I .•.

Di,m}' EA) ,

Step 5:
l1j = DA(oj)

Enc(P, k i [I])

Step 1:
{ ki(O], ki[lJ}; P
E; = I (K ;[0], AITRi)

K,[O]

Step 4:
~i EA[x,]'" EA[ki[l]]] =
EA[x,+ki[l]]

Enc(P, k j [IJ)

Figure 23: Sophisticated Protocol

From Figure 23 we know that sophisticated protocol contains 5 steps. We will explain the

protocol and these steps in details in this section.

Step 1: For each attributes (ATTR,) required by all roles, RA created two random keys ki[O] &

kill], and a public marker P. RA encrypts each kl[O] by ATTR; : ~ = I (K j(O], ATTRi)' Then, she

send all Ei i E {I, n} (RA totally has n attributes) and P to AR. This step is pretty like the step 1

in NaIve Protocol expects that RA create TWO keys for each attributes rather than only one.

After this step, for each attribute A ITRi , RA will have the following values:

Random key pair (ki[O], ki[I]);

A public marker P;

Encrypted ~ = I (K ;[0], ATTR,)

Among them, all Ej and P will be sent to AR for further process.

Step 2: AR then creates a semantically secure homomorphic encryption system EA. Then for

each value (li, and for each of her credentials CREDj , she creates a value Dij = r 1(Ej , CRED j). If

47

she holds m credentials, then she will get m D values for each E; (D"I .•. D"m)' Comparing "Step

2" in naIve protocol, AR need to create a semantically secure homomorphic encryption system

EA, and the other parts are the same.

After this step, AR will create homomorphic encryption system EA; and for each received Ei , get

a group values of (D,.I ... D., m) which are created by DjJ = r1(Ej , CRED) for every credential she

holds;

Step 3: AR and RA then engaged in Set Intersection protocol, SETINT{k,[O], {Dj,l ... Dj,,,,}, EA).

AR's input are {D"l ... Di,m} and EA, and RA's input is kj[O]. As a result, if there is only one

value in {Dj,1 ... D"m} equal to k,[O] (AR has the credential of required attribute), RA will learn

EA[O], otherwise it will be a random value.

So, after this step, for each attributes (or each E; she sent to AR), RA will get the value of

EA[x;] (Xi = 0, if AR has the credential, or Xi will be a random number.).

Step 4: RA calculates

0; = EA[x,] * EA[k,[l]]] = EA[x; + k j [1]]

Then, she makes ordered pairs (OJ, Enc(P, k j [1])). The order of pairs is random. RA then sends

these pairs to AR.

After this step, for each attribute or value of she creates the following two values and sends them

toAR:

Oi ;:::: EA[x;] * EA[kDJJJ = EA[xj + k; [1]]

& Enc(P, k; (ID

Step 5: When AR receives the pairs, she computers TJ.i = DA(oj) and then computes Dec(Enc(P, kj

[1]). l"JJ)' If AR has the credential of ATTRj' TJ.i = ls [1], and she will get P or she will get a random

number. If AR get P, she will keep ~ [1] which is a valid value to prove she holds a valid

credential (even though she does not know which one she holds).

After the step, AR will get P when she could successfully decrypt E, by D;j = I\E j , CRED j) at

Step2 and let EA[xJ (Xi = 0) at Step 3. Or AR won't know P.

Our protocol may stop here. If AR totally has 15 credentials match attributes for example, she

will have 15 ~ [1] values which will be sent to PV for further process. However, AR does not

48

know what attribute or credential these values represent. She just knows she have 15 valid values

which means she has 15 valid credential which may help her to be granted a specific role.

So, AR knows nothing about RA's policy, and on the other hand, RA knows nothing about AR's

credentials. However, AR will at least get to know one thing: how many valid credentials she

holds. We can improve our protocol so that AR does not even know how many valid credentials

she holds. We call it Improved Sophisticated Protocol, and discuss it at next section.

5.1.4 Privacy Protocol- III: Improved Sophisticated Protocol

Improved Sophisticated Protocol is proposed for enhanced privacy preserving. Under this

protocol, AR will not even know how many valid credentials she holds. Of course, AR still

knows nothing about RA's policy and RA knows nothing about AR's attributes.

AR

Step 2:
EA
DjJ :: r 1(Ej, CRED j }

D,EA

E,;

Step 3:
SETINT(k i[O], {Di,J
... D"m}, EA)

Step 5: 41---------
'l1j DA(o)

Step 6:
1 ~out-of-2 OT

rj[O]orri[l]

Step 1:
{1d[O], kiLl)};
E. = I (K i[O], A TTRi)

Step 4:
OJ EA[x i] ,.. EA[k
;[1]]] == EA[x; + k j [1]]

{r i {O].
Enc(rj Pl, k i nU}

Figure 24: Impro,'ed Sophisticated Protocol

49

PROPERTY OF
RYERSON UNIVERSITY UBRAHY

Step 2 to Step 3 of this improved protocol are the exactly the same as Sophisticated Protocol we

discussed at previous section. We will modify Step1, Step 4 and StepS in this new protocol and

add one more step - Step 6. Now let's view details:

Step 1: For each attributes (ATTR) required by all roles, RA created two random keys kilO] &

ki[l]. RA encrypts each k,[O] by ATTR, : Ei = I (Ki[O], ATTR,). Then, she send all Ei i E {l, n}

(RA totally has n attributes) to AR.

We can see, Step 1 is pretty like Step 1 in Sophisticated Protocol. Only difference is that RA does

not create P value as public marker.

Step 2: AR then creates a semantically secure homomorphic encryption system EA. Then for

each value ai, and for each of her credentials CREDj , she creates a value Dij = [1(Ei, CRED j). If

she holds m credentials, then she will get m D values for each E, CD"l ... D~ m). Comparing "Step

2" in naive protocol, AR need to create a semantically secure homomorphic encryption system

EA, and the other parts are the same.

After this step, AR will create homomorphic encryption system EA; and for each received Ei, get

a group values ofCDi,l ... Di.m) which are created by D'j = ['(Ei, CRED) for every credential she

holds;

Step 3: AR and RA then engaged in Set Intersection protocol, SETINT(k,[O], {Di,l ... Di,m}, EA).

AR's input are {Di,l ... D4m} and EA, and RA's input is kiLO]. As a result, ifthere is only one

value in {D"l ... Di,m} equal to k,[O] (AR has the credential of required attribute), RA will learn

EA[O], otherwise it will be a random value.

So, after this step, for each attributes (or each Ei she sent to AR), RA will get the value of

EA[x.J (Xi = 0, if AR has the credential, or Xi will be a random number.).

Step4: RA calculates

5 i = EA[Xi] * EA[k,(l]]] = EA[Xi + k j (1]]

Then, she sends 5 j to AR. Compared with Sophisticated Protocol, RA does not create Enc(P, k i

[1 D, and just creates and sends the following one value to AR for each attribute:

Step5: When AR receives the pairs, she computers ru = DA(aj). Since there is no public marker

P, she will not know if the value she get by DA(aJ) is k i [1] or not.

50

After the step, for each required attributes, AR will get a value k. [1] (if she holds the credential

for the attribute) or a random value (if she does not holds the credential). But, AR totally does not

know if she gets a k i [IJ or a random number.

This protocol can stop here because AR can provide PV enough information to handle role

assignment. However, we can stilI add one more step as optional:

Step6: For each attribute ATTR i (with the same order of pairs in step 4), RA and AR engaged in a

1-out-of-2 OT protocol. Where RA's input is the list of {r, [0], Enc(ri [1], k i [ID}, and AR's

input is 11 which is actually k i [1] if she has it or a random value if she does not have the

credential. If her input is k i [IJ, she will decrypt Enc(ri [IJ, k i [1]), and gets the value ofri [l] or

she will get r. [OJ.

In this case, AR will send list ofr, [lJ or ri [0] i E {I, n} to PV. For example, if AR has 15 valid

credentials, she will have 15 r i [1 J and the others are r, [0]. After this step, AR will not hold a

random number, her values provided to PV for evaluation will be one of value of {ri [0], ri [I]}.

This will be same as {O, I} or {no, yes} for PV ifPV get the attributes-to-role policy from RA.

Our protocol makes this step as optional because it's not necessary.

5.1.5 Comparison of Three Protocols

Table 1 provides comparison of three proposed protocols in aspects of security; involved

technologies and system efficiency (steps, calculations and operations and created values etc.).

I Naive Protocol Sophisticated

I
Improved

Protocol Sophisticated I
Protocol

Cryptographic • Identity-based • Identity~based • Identity-based
Technologies Encryption Encryption Encryption

• Homomorphic • Homomorphic
Encryption

I:
Encryption

• Set Intersection Set Intersection
1-out-of-2 OT ;

i
Steps 2 steps 5 steps 6 steps I

Calculations n: encryptions 2n: encryptions 2n: encryptions
& Operations m*n: decryptions m*n + 2n: decryptions m*n + 2n: decryptions

! n: Set Intersection n: Set Intersection

i protocol operations ~otocol operations

51

n: Homomorphic n: Homomorphic
Encryption operations Encryption operations

n: 1-out-of-2 OT
operations

Created m*n valid credentials n
Values number (>= 0 & <=m

)

Security Zero Knowledge AR know valid Zero Knowledge
Disclosure credentials number Disclosure

I
"n" is total amount of attributes involved in RA's poJicies~
"m" is total amount of credentials held by AR

Table 2: Comparison of Three Protocol for Value Exchange Stage

5.2 Policies Mapping Stage

In 5.1 we discussed several protocols to let RA verify valid credentials held by AR in a

totally blind way. After credential verification process, AR will obtain a group of values

among them some values represent valid credentials she holds. In RA side, she has role

assignment policies (attributes-to-role), for example, a policy is to assign a "Senior IT

Manager" role, and it requires three attributes: 1. Employer: First level corporation; 2.

Position: IT Manager; 3. Duration in the position: 5 years and more

These three attributes will be changed to three values in RA's policy, such as (kl,ks,klO)'

Then, the next step for Login and Role Assignment process is to check if AR holds these

three values or not. If yes, AR will be assigned the role, or she will not be assigned the

role. This step is still handled by a privacy-preserving method, and we will discuss the

method in details in this section.

5.2.1 Principles for Policies Mapping and Role Assignment

Let's define input ofRA and AR during the stage.

52

After values exchange stage using proposed protocol discussed in 5.1, AR has a bunch of

values, and some of these values represent credentials she holds. Let's briefly review the

values held by AR:

• In Na'ive Protocol: AR has n (RA's attributes amount) rows of values, and each

role has m CAR's credentials amount) values. So, if AR has 15 valid credentials,

she will get 15 valid values (m >= 15), and each row can have no more than one

valid value;

• In Sophisticated Protocol: if AR has 15 valid credentials, she will have 15 valid

values (each value will represent one valid credential);

• In Improved Sophisticated Protocol: AR will have n (amount of all attributes

involved in RA's policies) values Vi ,i E {t, nJ, and Vi E {r; [0], ri [In. If AR holds a

valid credential according to a required attribute AITR j Vi == rj [1] or vi =:; rj [0];

These values will be mapping to RA's policies which are also represented by a group of

values and Roles will be assigned to AR based on values mapping result.

RA has a bunch of policies, and each policy decides if a Role should be assigned to AR

or not. We use function P(klo k2 ... kh) to denote a policy. {kh k2 ... ~} are values created

by RA during the process we discussed in 5.1. If AR owns a required credential; she will

have a related k value. Let's form a value set of K, and set a function of P{K} = P(kh k2

... kh), when kh kz ... kh E K, P{K} = P(kh kz ... kh) = 1.

Or, we can define the principle in this way:

RA: RA has a policy p: {O, l}h -7 {O,l}, and corresponding h key values {kh kz ... ~}. If one

key is matched from values held by AR, the value {O, I} will be set to 1, and only all values

matched, the value ofthe function will be {l}, that is p : {I} h -7 {I};

AR: AR can provide a bunch of values she obtains during the process described in 5.1. In

Na'ive protocol case, she will has m '" n values; in sophisticated protocol cased she will

have x (x<=m & x<=n) values which means she holds x valid credentials; in improved

sophisticated protocol, she will get n values. Let's use CC = {CI'CZ,' .. cmon} (in Na'ive

protocol), {ChCZ'" .cx } (in Sophisticated protocol) and {chCZ," .cn } (in Improved

Sophisticated protocol) denote the value set AR has.

53

Mapping Principle: If there is a subset of Cx E CC, and Cx = {kl> k2 ... kh} (which is value

set of a policy), P{Cx} = 1, that is P{Cx} = 1 when AR (value set of CC) has all required key ({

kl' k2 ... kh}) in RA's policy.

What if Matched: If AR's value set match RA's policy, AR will receive a credential of related

Role, which can be used as private key of Role IBE during the information access stage (we will

discuss it in next chapter).

Multiple Polices for One Role: It's possible for multiple policies defined for the same Role, and

AR can match more than one policy for just one Role. In that case, we can let algorithm to reduce

duplicates, and AR will get one Role in this case, and all Roles AR gets are identical.

How to handle policies mapping: How to handle policies mapping is a tricky process. It

relates privacy and computation complication issues. We will suggest 3 solutions for

Policy Mapping. In Solution One and Solution Two, Policy Mapping is handled directly

between AR & RA. In Solution Three, a 3rd party is involved in the process.

Role Hierarchy and Constraints: Role Hierarchy and Constraints are important features

in RBAC, and we will discuss them in 5.2.5 on how to handle Role Hierarchy and

Constraints during role assignment process.

5.2.2 Solution One for Policy Mapping

Solution One: RA handles Policy Mapping

cc

RCreds

Value Mapping with
Policies and CC

Figure 25: Policy Mapping - Solution One

In this solution illustrated in Figure 25, AR will send her values directly to RA. After receiving

values from AR, RA will compare and map these values with required keys in her policies to

decide which Roles should be assigned to AR. Then, RA sends matched roles' credentials (we

denote them in RCreds) to AR.

54

Obliviously, this solution violates privacy protection principle in two ways. First since the key

values are provided by RA herself, she will get to know which value represent what attributes.

For example, if she checks a value of k;, and she knows this key is for attributes of an "Age

between 20 and 30", then AR's privacy is disclosed. Actually, this is almost the same as AR

passes her credentials directly to RA. Second, RA will get to know which Roles the AR will get.

Solution One does not meet our privacy preserving requirements. Actually, if we go with this

solution, all protocols we discussed in Section 5.1 are meaningless.

5.2.3 Solution Two for Policy Mapping

Solution Two: Cryptographic Solution for Policy Mapping

If AR matches all attributes (she has all related key values), she will be assigned credential of

related Role (RCreds). In RA's policy, there are n attributes required for this Role, and there are n

key values correspondingly {kh k2 ... k,,}. RA must make sure that AR owns all these keys to get

RCreds• Figure 26 provide us with steps of solution two for Policy Mapping.

Step 3:
Y = Enc'I(Eqn, c). c E

CC

Step 4:
RCred. = Enc·1 (Enc·1

(Enc·1 (RCred., cn), Cn•

I) CI)

{q\, q2, ... qn},
{Eqb Eq2, ... Eqn},
ERCreds

Step 1:
{qlo q2, ... qn}
{k" k2 ... kn}

EGj = Enc(Gj, kj)

=>{Eqb Eq2, ... Eqn}

Step 2:
ERCreds =
Enc(Enc(Enc(RCred ..
k l), k2) kJ

Figure 26: Policy Mapping ~ Solution Two

55

Step 1: RA picks up n random numbers {qh q2 qn}. Then she encrypts these n numbers

by using {kh k2 ... kn } as key (Note: the order is fixed, for example, k, is used to

encrypted qI> and kn is used to encrypt qn.) ECL = Enc(<iJ, kj); j E {t, n}. So, RA get n

encrypted values {Eq" Eq2, ... Eqn}.

Step 2: RA encrypted RCreds values, n times by {k
"

k2 ... kn}in the same order of she

created E<iJ values. RA will get:

ERCred. = Enc(Enc(Enc(RCred., k1), kz} kn);

Then RA will pass the {qh q2, ... qn}, {Eqh Eq2, ... Eqn} and ERCreds to AR.

Step 3: After AR receives these values, she will decrypt Eqn first by each of key values

she gets from process described in 5.1. Y Enc'\Eqn, c}. C E CC . If there is one Y value

equal to qn, then the c is k." and AR will keep the value and try to decrypt the other value of Eqn-

1... until Eql. If AR can successfully decrypt all values in {Eq" Eq2, ... Eqn}, she will get all

required key values { c" C2 ... Cn } which is equal to {k" k2 .. , kn}.

Step 4: Then she will use the keys to decrypt ERCred. by kn' ... k2, k,. (in the fixed order),

and she will get RCred. as Role's credential:

RCred. = Enc·1 (Enc·1 (Enc·1 (RCred., kn), kn•1) •••• k,);

If AR is failed to get anyone value in {qh q2, ... qn}, that means she can not have all keys

in {kh k2 ... kn}. She is not qualified for the Role's credential. AR will just stop the

process.

Is Solution Two a complete privacy preserving solution? After this process, AR will get to know

the following information:

• How many valid attributes credentials he has (amount of valid c values);

• How many valid credentials RA requires for each role;

• Which values are required for a specific role

So, even though RA doesn't know anything about AR's credentials, it's not a complete privacy

preserving solution.

56

In addition, it will cause computation and complication issue Let's use naiVe protocol as a

sample, the AR will have 1,000,000 values, and if the Role need 50 attributes (n = 50), then AR

will have to do up to 1,000,000 * 50 = 50,000,000 times decryption to get the RCred •.

So, we will suggest another solution.

5.2.4 Solution Three for Policies Mapping

Solution Three 3rd party PV for Policies Mapping

Model displayed by Figure 19 is using the solution. To solve privacy and complication issues

together, the 3m party PV \ViII handle Policies Mapping task.

PV will receive all policies list from RA (p,(kll , kI2,. .. klnl), pz(k2h k4l , ••• khz), ...). and all AR's

key values set CC., then PV can map policies with AR's value by the following operation (Figure

27):

L PV pickup one policy value set (received from RA);

2. Check if the Role is constraint with Roles already assigned to AR, if yes, error or

warning, ifno, continue (details in section 5.2.5);

3. Check if its parent role has already assigned to AR, if yes, assign this role to AR, if no,

continue (details in section 5.2.5);

4. Pickup one value in policy value set, and search the value from AR's value set If

matched value is found, then pickup the next value in policy value set, if not found,

return to step 1 to pickup another role's value set;

5. Repeat step 4 until the last value;

6. If all values are matched (end of value set), then assign the role to AR;

7. Repeat step 1 until the last policy value set (end of policy value set);

57

Figure 27: Flow Chart for Policy-Role Mapping Process

58

The flow chart or algorithm can be implemented by any suitable programming language based on

PV's platform and system. In this thesis, we will not provide source code for the operation.

Now,let's verify privacy protection for this stage:

PV receives all policies which are represented by sets of values from RA. PV has no knowledge

of which value represents which attribute, as a result, PV knows nothing about RA's policies.

With the same reason, PV knows nothing about AR's credentials neither because PV has no idea

about relationship between the value and represented credentials/attributes.

We can safely conclude that bringing in 300 party PV can perfectly protect privacy during role

mapping process.

5.2.5 Comparison of Tbree Solutions

Table 2 compares three proposed solutions in security, technologies, complexity and system

efficiency points of view.

l Solution One Solution Two Solution Three

: Mapping RA RA for encryption PV
. Location

i

I AR for decryption
I

I Technologies Mapping Cryptography-based Mapping at PV
'.

I PV involved? No No Yes
,

Steps NIP ! 4 steps NIP

Calculation . Policy-role mapping 2*s*1 encryptions Policy-role mapping
and up to 2"'v*s"'1
Operations decryptions

59

Security I Not Privacy
Preserving

"s" is total amount of RA' s role credentials;

AR will know: Zero Knowledge
• How many valid Disclosure

attributes
credentials he has;

• How many valid
credentials RA
requires for each
role;

• Which values are
required for a
specific role

I

"I" is average amount of required attributes for each role credential in RA's policies;
"v" is created values held by AR after value exchange stage

Table 3: Comparison ofTbree Solutions for Policies Mapping Stage

5.2.6 Role Hierarchy and Constraints

As we discussed in section 1.3, Role Hierarchy and Constraints are two important features in

RBAC model. To handle Role Hierarchy and Constraints in our solutions, we propose the

following principles:

Principle One: The most senior role first

When RA provides policy value sets to PV, the order of the policy value sets is arranged. The

most senior role's value sets will be verified first. Let's see the sample presented in Figure 1.4.

The role of "IT Manager" will be first verified, then "Senior Developer" and the "Junior

Developer" is the last role to be verified.

Principle Two: Children Roles Follows Parent Role

When a senior role (parent of children roles) is assigned to AR, all children role under this role

will also be assigned to AR without value verification. In sample of Figure 1.4. if role of "IT

Manager" (which is verified first) is assigned to AR, roles of "Senior Developer" and "Junior

Developer" which are children role of "IT Manager" will also be assigned to AR without value

verification process.

Principle Three: Zero Tolerance to Violation of User-to-Role Assignment Constraint

60

In section 1.3, we talked about role assignment constraint issue. Some of conflict roles can not be

assigned to the same user. For example, role of "Senior Developer" and "Senior

QA" can not be assigned to the same person.

In our solution, we are zero tolerant to violation of such constraint due to security consideration.

When conflict roles are assigned to the same person, PV will stop Policy mapping and value

verification process, and send error message to both AR and RA. No role will be assign to AR.

Both AR and RA will review their attributes and policies to find out where problem is and fix it.

For example, if a both "Senior Developer" and "Senior QA" roles are assigned to AR, then either

there is something wrong for AR's attributes credentials (she can not hold credentials which will

match both "Senior Developer" and "Senior QA" role, or there is some problem for RA's policies

(the policies should be well defined that a normal user can match policies of these conflict roles).

After the problem is found and fixed, they will restart a new login and role assignment process.

5.2.7 Role Credential and Role Assignment

Matched role(s) will be assigned to AR after policies mapping and values verification process.

During process of solutions three we defined in 5.2.4, matched roles are recorded, so PV knows

which roles should be assigned to AR even though he does not know which roles' title they are.

We talked about Identity-Based Encryption (IBE) technology in Section 3.1. We already use IBE

technology in three values exchange protocols we proposed in 5.1. and we will continue, to use

the technology for information access process. When a role is assigned to AR, actually. it's the

credential of the role is assigned. AR holds the role's credential and uses it as private key. On the

other hand. service/information provider uses the string to role's title as public key. We will

discUss its details in Chapter 6.

Let's go back to Policy Mapping Solution Three. During the initiation stage in the flow chart, RA

will send all policies value sets to PV as well as all role's credentials (again, these credentials will

be used as private key in IBE protoco1.). These credentials are encrypted by a secret key S shared

by AR & RA. The secret key S can be easily created during the vales exchange protocols between

AR & RA. So, PV will receive Enc(RCreds• S). and PV still knows nothing about Role

credentials. After policies mapping process, PV will send matched encrypted Role Credentials to

AR. AR already has shared key (in key exchange stage with RA) to decrypt Role Credential by

Enc·1 (RCreda• S) to get role credentials RCreds•

61

Then, AR has finished all steps to get her Role Credential without disclosing any of her attributes,

and RA also successfully keeps her policies in secret.

5.3 Security Review for Role Assignment Process

Let's take a brief review on our protocols and solutions proposed in stage one and stage two for

Role Assignment Process to see ifit meets our two privacy protection targets or not:

Target One: AR's Attributes Privacy Protection - ZERO disclosure of AR's attributes;

Target Two: RA's Policies Privacy Protection - ZERO disclosure ofRA's Policies

Target Three: All Other Privacy Information Protection - such as RA's role's credentials

and AR's roles information;

In Stage one, we proposed three protocols with different complication level. In these three

protocols, RA encrypted values by attributes as public key using IDE, and there is no non·

neglectful possibility for AR to decrypt these values without credentials as private key. Or IBE is

unsustainable. So, AR can not get to know these values if she does not hold valid credentials.

This is the security base for these three protocols.

In these three protocols, encrypted values are passed from RA to AR to handle. So, RA receives

nothing about AR's credential and as a result, RA of course has ZERO knowledge about AR's

credentials/attributes.

Since attributes in RA's policies are represented by random values in arbitrary order, In AR's

side, during her process of decrypting arbitrary ordered encrypted random values, AR is not

possible to infer which value represents which attribute. In Sophisticated Protocol, AR will get to

know how many valid credential she has, if this is a privacy security concern, we can use Naive

Protocol and Improved Sophisticated Protocol which are complete ZERO knowledge disclosure

protocols. AR even does not know which values are matched which are not among the bunch

values she gets. So, AR will also have ZERO knowledge about RA's policies.

In Stage two, we created three solutions. Among them, solution one and solutions two are proved

to be not privacy-preserving. We still put Solution One & Solution Two in this chapter because it

can be used as a reason why we need to use a third party PV in Solution Three. Now, we just

analyze security in Solution Three.

62

First of all, in Solution Three, there is no direct infonnation/value exchange between AR & RA,

so there is of course ZERO privacy disclosure for both AR & RA.

Then, let's see what PV can know from AR & RA.

PV receives policies values and encrypted Role Credentials from RA. PV can not decrypt Role

Credentials without shared key between AR, and policies values are also meaningless to PV. So,

PV has ZERO knowledge to RA's policy and role credentials.

AR sends PV a bunch of values getting in Stage One, which are also meaningless to PV. So, PV

has ZERO knowledge about AR's attributes. After policy match, PV will send matched encrypted

Role Credentials to AR. PV does not know what roles AR will get, but PV does know how many

roles AR will be assigned. Ifthis is a privacy concern, it can be easily fixed by the following way:

RA can create some fake polices with fake Role Credentials to let true Role Credentials hidden in

these fake policies. Then after Policy Mapping process, PV will get to know how many Roles are

matched, but there are some fake roles included. As a result PV does not know how many

true/valid roles AR has. That's ZERO knowledge of AR's roles.

Now, we can safely conclude that our protocols and solutions are complete privacy-preserving

with ZERO knowledge disclosed.

6. Privacy protection in Access Request & Response Process

6.1 Goals and Principle for Our Privacy Protection Protocols

Our protocol proposed in Chapter 5 meets with SSO (Single Sign-on) feature of SOA. AR just

needs to sign onlIogin only one time, and she will be able to apply for accessing all web services

or information within the SOA structure without login again.

In this chapter, we wil1100k into privacy protection in Service or Information access process (or

we can also call it as Access Request & Response process). For AR, she has already obtained a

bunch of Role Credentials after Login and Role Assignment process. These role credentials will

be used to decide if access pennission should be granted to her or not. Nonnally. AR's role

information is not regarded as sensitive personal privacy. However, in some cases, AR still would

not like service/infonnation providers know her roles. For example, a VP does not want other

person know he is checking work process or reviewing some information. So, in this process, for

63

this kind of cases AR regards her assigned roles credentials as privacy, and she needs an option to

set her roles credentials as privacy.

For SP's role-to-permission policies which provide permission granting rules, there is a trade-off

between privacy and performance. First, we need to analyze importance of role-to-permission

policies protection in this process comparing with attributes-to-role policies protection in Login &

Role Assignment process. Attributes-to-role policy is privacy sensitive because if AR gets to

know the policies she will try to forge attributes (even though attributes credential is issued by a

3rd party CA, attribute verification is a highly customized process and fake attributes could still be

able to pass verification process if AR has intention to do so.) Since we already have ZERO

knowledge disclosure protocols discussed in Chapter 5 and no AR can get to know attributes-to

roles policies. So, even AR knows the policies and she can not cheat to get that role's credentials

because she can not know attributes-to-roles policies. AR can not obtain a role credential if she

really holds necessary attribute. Under this situation, roles-to-permission policies are not privacy

sensitive any more. In addition, there is a common sense that more senior roles can have more

permission. For example, if AR's role is "Junior Developer" and fails to get permission to edit a

code, she will easily assume that the permission should be assigned to "Senior Developer".

Subjectively, AR always wants the most senior roles to have more access permission no matter

she knows (or reason out) roles-to-permission policies or not. As a result, protecting roles-to

permission is not critical in our privacy preserving goal.

From performance and implement point of view, a complete privacy protection protocol (ZERO

privacylknowledge disclosure for both sides) is very complicated and resource consuming just

like protocols we proposed in Chapter 5. It's acceptable for login and role assignment process,

because: first, it's a once for all process. AR just needs to login once and she accesses

information many times without login again (Single Sign On) within the same session. Second,

it's a separate system from SOA, and we can implement our protocols by whatever technologies

without worrying about limitation of SOA standards. We can imagine if a similar protocol is

implemented for service or information access process, we need to repeat the whole

cryptographic calculations for each access request, and the implementation must be compatible

with current SOA technologies and standards. That will cause huge performance lose and

implementation difficulties.

Combining the critical level of privacy and impact on system performance, we can safely

conclude that in Access Request & Response process, polices (roles-to-permission) is not our

64

major goal of privacy protection protocols, and we Will take "Option and Tolerant Action" in this

process.

Based on nature of Access Request & Response process, in some cases, SP has to know the result

of access request - success or fail. For example, if the access request is to visit a webpage

provided by SP, SP will finally for sure to get to know if AR is able to access or not. SP will also

know if AR has required roles or not. Our privacy protection can not prevent this from happening.

Based on above analysis, we can list our goals and principle for privacy protection in service &

information access process:

One: AP can choose to set roles as privacy or not when she sends out access request. If roles are

set as privacy, SP will have ZERO knowledge about AP's roles except for the case that AR needs

to visit SP's services such as a webpage. In that case SP will know the result of access request;

Two: We will also try to keep SP's roles-to-permission policies as secret, however, based on our

analysis, the policies are not privacy sensitive. So, it is not the major goal for our protocols.

Three: service and information access has to be based on SOA technologies such as web service,

SOAP, XML, SOA RBAC profile and standards such as XACML and SAML etc. So, our

solution should be compatible or be able to be implemented with current SOA technologies and

standards.

6.2 Our Role Privacy Protection Protocol

Role's Privacy may not be as sensitive as personal attributes such as company, position, age and

gender etc., however, it's still desirable and valuable in some cases for Role's Privacy protection.

For example, a top manager wants to access some information as inspecting and supervising, and

he does not want the SP know a top manager is checking the data/information. At this scenario,

Role Privacy protection technology is required. So, in most of cases, roles information is not

regarded as privacy, for example, role of "IT Developer" is held by thousands of developers in a

large organization, and it's not possible for SP to know who is accessing the information.

However, role of "Vice President of IT" is held by very limited person, and it's easily for SP to

reason out who is accessing the information. In that case, AR is likely to require role privacy

protection during the access process.

As we mentioned in section 6.1, there are two kinds of access request, "service" (such as a

webpage) access request or "information" (data or text file) access request. Our protocols and

65

privacy protection goals/requirements are different for these two access request types. We will

discuss our protocols in 6.2.1 and 6.2.2 for these two types.

6.2.1 Privacy Protection Protocol for Information Access Request

As we discussed before, Role's privacy protection is not desirable all the time. We can make it as

an option for AR. So, AR will have an option to choose her access request as "Privacy Mode" or

not. In most of cases, AR & SP can just follow traditional SOA access control standards to realize

access control. When "Privacy Mode" option is selected (triggered by AR), SOA will work in a

little bit different way (will discuss the details below) as illustrated in Figure 6.1.

Information Access request means that AR requests some data or text file which can be

transferred to her. Figure 28 is the protocol we propose to protect AR's role information when it's

regarded as privacy if the request is "information access request".

SP

(1) Access Request in
privacy model

4

(2) Create a Random number
S. Check related policy &
Encrypt S and requested
information using Public key
K = IT Manager Role

(3) EK (Information)
EK(S)
S

AR

(4) Decrypt EK (S) using the all
her private key (Role credentials)
one by one. If the decrypted value
is equal to S by using one of role
credential, then AR will decrypt
EK (Information) by the role
credential.

Figure 28: Privacy Protection Protocol for Information Access Request

66

Figure 28 illustrates our role privacy protection protocol for information access request. The

protocol is also based IBE technology. SP encrypts required information with role's title as public

key, and sends the cipher text to AR. Then AR will decrypt the cipher text with her credentials

obtained from login and role assignment process in Chapter 5. If and only if AR holds private key

of the Role, she can decrypt the cipher text and get the information. Now, let's check the detailed

steps in this protocol:

Step 1: AR sends Access Request to SP. In this step, AR will also let SP know that if it's a role

privacy preserving request or a normal request. This request will be implemented by improved

XACML request language (will discuss in section 6.4);

Step 2: If it's a role privacy preserving request (this protocol discuss privacy preserving request

only), SP will check from her policies to found out required roles for the information/message.

Then, SP will create a random number S, and encrypt the random number S and messages by the

required roles as public key:

EK (Information) & EK (S) (K is required role as public key such as "IT Manager".);

Step3: SP sends encrypted Message and random number S: EK (Information) & EK (S) as well as

original random number S to AR;

Step4: AR decrypts EK (S) by her role credentials as private keys: Da·1 (EK (S» (R = Role

Credential), ifthere is one role credential Ki to let Dru·
1 (EK (S» = S, that means the role credential

of Ri is the required Role, then AR can decrypts EK (Information) by the Ri:

Dru·1 (EK (Information» = Information

Under the protocol, SP knows nothing about AR's role, however SP is sure that only when AR

holds required Role(s), she can access the information. Both AR's role privacy and SP's

information security are protected.

Some reader will point out that this is not a complete privacy preserving protocol. AR will get to

know which role is required to access this information since she needs to decrypt and get the

random number S first. If AR successfully decrypts and obtains the random number S, she knows

she has permission for the required information. She can get to know not only the required

information but also SP's required role as permission. However, as we discussed in section 6.1,

this is not a huge privacy concern. For example. if AR's role is Junior Developer, by no matter

what way she gets the information, she will get to know that her role as Junior Developer is

enough for the information access. Or if she fails, it's very easy for her to assume that a more

67

senior role such as Senior Developer can have permission to access the information. Based on this

nature, it's meaningless for us to be picky to SP's protect roles-to-permission policies. We

already discussed it in details in section 6.1

Again, please note that, the protocol should be compatible and work well with SOA's current

access control technologies and standards. We will discuss implementation later on.

6.2.2 Privacy Protection Protocol for Service Access Request

If what AR requires is access of a webpage, the situation will be difference from what we

discussed in 6.2.1. It does not make sense for SP to send the webpage to AR, and AR needs

access to view the webpage. In this case, AR is requesting access to some resource of SP rather

than some detailed data or text file which could be transferred.

Our protocol in this situation is a different one.

SP

(1) Access Request in
privacy model

(2) Create a Random number
S. Check related policy &
Encrypt S by required role as
public key

~

K = IT Manager Role (3) EK (S)

(6) Check ifthere is one vlue
in {Sit S2 Sn} } equal to S,
SP will grant access to AR, or
deny the access.

AR

(4) Decrypt EK (S) using the all
her private key (Role credentials)
one by one. And get a set of values
{Sit S2, ... Sn} (if AR has n roles
credentials)

Figure 29: Privacy Protection Protocol for Service Access Request

68

Figure 29 illustrates our role privacy protection protocol for service access request. It's also an

IBE technology based protocol. SP created a random number and encrypts the number with role's

title as public key, and sends the encrypted number to AR. Then AR will decrypt the cipher text

with her credentials obtained from login and role assignment process in Chapter 5. Then AR will

get a set of decrypted number {S" S2, ... Sn}. If and only if AR holds private key of the required

Role, she can get the number ofS (even though AR does not know what's S and if there is a S in

her value set). Now,let's check the detailed steps in this protocol:

Step 1: AR sends Access Request to SP. In this step, AR will also let SP know that if it's a role

privacy preserving request or a normal request. This request will be implemented by improved

XACML request language (will discuss in section 6.4);

Step 2: If it's a role privacy preserving request (this protocol discuss privacy preserving request

only), SP will check from her policies to find out required roles for the information/message.

Then, SP will create a random number S, and encrypt the random number S using the required

roles as public key:

EK (S) (K is required role as public key such as "IT Manager".);

Step3: SP sends encrypted random number S: EK (S) to AR;

Step4: AR decrypts EK (S) by her role credentials as private keys: Si _ Dru'1 (EK (S» (~ = Role

Credential), and AR will get a set of decrypted value: {Sh S2, ... Sn}. She will sent the value set to

SP for further process;

StepS: After receives values set from AR, SP will check if there is a value S in the set or not. If

yes, she will grant access to AR or she will deny the access request.

In this protocol, AR has no knowledge about SP's policy, however, SP will get to know if AR's

access permission is granted or declined. That is SP can know if AR has required role or not. This

kind of knowledge disclosure is not able to be prevented. The service is hosted by SP, and she has

to grant permission by herself and know if AR has permission to access or not. Even in this

situation, SP just knows AR holds one of required roles to access the service. She does not know

which exact role AR has and also she has no knowledge about other roles held by AR. This is

already an accepted and satisfied result.

69

6.2.3 Role Hierarchy and Complicated Roles-to-Permission Policies

We already introduced RBAC (Role Based Access Control) in Chapter 1, and know that role

hierarchy is one of its important features. Then how we handle role hierarchy in our protocols?

We will still use the sample of Figure 4. We have three roles: IT Manager, Senior Developer,

Junior Developer, among them, IT Manager is the most senior role and Junior Developer is most

Junior Role. If there is information which is available for all three roles, then, in our protocols the

information will only be encrypted by the most junior role - Junior Developer. The reason is the

following:

Based on role assignment principle we discussed in section 5.2.5, if a senior role is assigned to

AR, all junior roles belong to this senior role will automatically granted to AR. So, if AR holds a

role of IT Manager she will for sure hold roles of Senior Developer and Junior Developer. So, if

SP's permission can be assigned to all these three roles, SP just needs to encrypt information with

the most junior role.

Role constraint is another important feature for RBAC. Since we already take constraint into

consideration at Login and Role Assignment process, there is no user-to-role constraint and SPs

will be responsible for their policies definition to prevent role-to-permission constraints.

Now, let's see how we handle some complicated roles-to-permission policies in our protocols.

There are two kinds of complicated policies:

• Permission can be assigned to mUltiple roles;

• Permission can only be assigned to those who hold specific multiple roles

Then, how we handle these two kinds of complicated policies in our protocols? First, let me study

the first kind "permission can be assigned to multiple roles".

For example, based on SP's policy, permission can be granted to two roles: "Senior Developer"

& "Senior QA". Then, we just need to make a little bit change to our protocols.

For Information Access Request protocol (section 6.2.1), our modification is started from Step 2

in the following way:

Step 2: SP will create a random number S, and encrypt the random number S and messages by

the two roles (Senior Developer and Senior QA) as public key:

EKI (Information) & EKI (S) (Kl is role "Senior Developer".);

Eo (Information) & EK2 (S) (K2 is role "Senior QA".);

70

Then all these four encrypted values EKI (Information) & EKI (S) and EK2 (Information) & EK2 (S)

will be sent to AR. The following steps are similar to original protocoL AR will decrypt EKI (S)

and EK2 (S) separately by her role credentials, AR just needs one role credential to decrypt S and

get the information, so no matter she get S by which encrypted value. she can use the role

credential decrypt EK (Information) and get the information the process is accomplished.

For Service Access Request protocol (section 6.2.2). we still just need to modify the Step 2:

Step 2: SP will create a random number S. and encrypt the random number S by two roles

(Senior Developer and Senior QA) as public key:

EKI (S) (Kl is role "Senior Developer".);

EK2 (S) (K2 is role "Senior QA".);

After AR receives the two encrypted values, she will decrypt them separately by all her role

credentials, and then she gets two values set:

SP will check with the two value set. if she find S from no matter which value set. the permission

will be granted to AR.

Now, let's look into situation of "permission can only be assigned to those who holds multiple

roles". For example. permission can only be assigned to a person who holds both the rollowing

roles: Senior Developer & Developer in Project One Team.

For Information Access Request protocol (section 6.2.1), we modify protocol from step 2

(improved Information Access Request protocol under: "permission can only be assigned to those

who holds multiple roles" scenario)

Step 2: SP will create a random number SI. and encrypt the random number SI and messages by

one of required role as public key first:

EKI (Information) & EKI (S 1) (Kl is one of required role of "Senior Developer",);

Then SP create another random number S2, and encrypt S2 and EKI (Infonnation) by the other

required role as public key, and she will get:

EK2(EK1 (Information» & EK2(S2) (K2 is the other required role of "Developer in Project One

Team".

Step3: SP sends EK2(EK1 (Information», EKI (SI), EK2 (S2), S1 and S2 to AR;

71

Step4: AR decrypts EKI (81) by her role credentials as private keys: DRio
1 (EKI (S 1» (Ri = Role

Credential), ifthere is one role credential Rl to let DR101 (EKI (SI» = SI, that means the role

credential of Rl is one of the required Role, then AR will keep this role credential and try to

decrypt EK2 (82) by the same process. If she can successfully decrypt EK2 (S2) by R2, then AR can

decrypts EK2(EK1 (Information» by the Rl and R2:

DRl01 (DR201 (EK2(EK1 (Information»») ::: Information

For Service Access Request protocol (section 602.2), we also modify protocol from step 2

(improved Service Access Request protocol under: "permission can only be assigned to those

who holds multiple roles" scenario):

Step 2: SP will create a random number SI, and encrypt the random number SI by one of the

required roles (Senior Developer) as public key:

EKl(Sl) (Kl is one of the required role "Senior Developer".)

Then SP create another random number 82, and encrypt S2 by the other required role "Developer

in Project One Team" as public key, and she will get:

EK2(S2) (K2 is the other required role of "Developer in Project One Team".

Step3: SP sends encrypted random numbers EKl(81) EK2 (S2) to AR;

Step4: AR decrypts EKI (SI) and EK2(82) separately by her role credentials as private keys:

S li=DRi•1 (EKl (SI» (Ri = Role Credential);

S2i=DRi•1 (EK1 (82» CRi = Role Credential);

AR will get two set of decrypted value: {Dh D2, ... Do}. and {Eh E2, ... En}. She will send the two

value set to 8P for further process;

StepS: After receives values set from AR, SP will check if there is a value 81 in the set {Db D2,

... Do} and S2 in the set {Elt ~" .. En}. If yes, she will grant access to AR or she will deny the

access request.

The purpose of this section is to present the flexibility of our protocols. Polices and access control

scenario in industry could be much more complicated, however, our protocols can be flexible to

be modified to meet requirements.

72

6.3 Implementation of our protocols in Access Request & Response

We already provided a detailed description for SOA access control standards in Chapter 4. As we

know, XACML is used as SOA access control standard and it includes Policy, Request and

Response languages. In addition, SOA has lots of other standards to support its technologies, for

example, SOAP is used as information transfer standards in SOA. As we mentioned several times

in this thesis, one of major challenges we face is how to implement our protocols using current

SOA standards. We may make reasonable modifications to these standards, and add new

functions (such as cryptography functions). However, our implementations have to be based on

current standards which are popularly accepted by SOA industry solutions. In this section, we

will discuss on implementations of our protocols in Access Request & Response process.

6.3.1 Implementation of Information Access Request Protocol

As we described in Section 6.2.1, one of the most important innovation of our protocol is that AR

has the option to set her request as a normal request mode (traditional SOA access request

without privacy protection), and privacy protection mode in Step 1. The normal mode will go

with the normal method that we discussed in Section 4.1 and Section 4.2. If AR chooses to use

role privacy protection mode, it will be implemented with a different way which is still

compatible with SOA standards. We will provide a simple sample to explain the implementation

of these two options:

<Request>.·,.,;"
.. <Subject> ~ , ,. " ""

. <Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:subjectsubject-id"
:;' ' DataType:::"um:oasis:names:tc:xacml: 1.0:data-type:rfc622Name">,'

, ,<AttributeValue>sample@users.example.com<lAttributeValue> <lAttribute> / ,,,
: <Attribute Attributeld="role" DataType="http:/twwW.w3.orgl2001IXMLSchema#string"
~., Issuer="admin@users.example.com"> ' ,.' . ' " " '" " ",', , ,

, <AttributeValue>Senior Developer</AttributeValue></Attribute> " " " .
</Subject>' .,
'<Resource>·';'" " ., ,
. <Attribute Attributeld="um:oasis:names:tc:xacml: 1.0:resource:resource-id"

, .. : ;:' , ',,'., DataType::''http://wwW.w3.orgI2001IXMLSchema#anyURI''>· "
,<AttributeValue>developer-gulde.doc</AttributeValue><lAttribute>.

: .,,<lResource> .. ,, . .. ,'" . , " .
" ,<Action> \ ~ • .',', .

<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:actkm-id" "', . ~.

• ~ DataType=''http://wwW.w3.orgI2001IXMLSchema#string''> ' , "
, , <AttributeVa lue>read <lAttributeValue?-<lAttribute> , " ,

. <lAction> ';' I', ' •. ,r,:

,~ ·<lRequest>~'
;, ti., '. .,~ " "~

Figure 30: XACML Request In Tradition Way

73

" :
.~,

<Request>
<Subject>
<Attribute Attributeld="urn:oasis: names:tc:xacml: 1.0:subject:subject-id"

DataType="urn:oasis:names:tc:xacml:1.0:data-lype:rfc822Name">
<AttributeValue>sample@users.example.com</AttributeValue> </Attribute>,

<Attribute Attributeld="role" DataType="http://www.w3.org/2001IXMLSchema#string''
Issuer="admin@users,example.com"> '

<AttributeValue>Privacy Mode<lAttributeValue></Attribute>
</Subject>
<Resource>
<Attribute Attributeld="urn:oasis: names:tc:xacml: 1.0: resource:resource-id"

DataType=''http://www.w3.org/2001IXMLSchema#anyURI">
<AttributeValue>developer-guide.doc</AttributeValue></Attrib ute>

</Resource>
, <Action>

<Attribute Attributeld="um:oasis: names:tc:xacml: 1.0:action:action-id"
DataType=''http://www.w3.org/2001IXMLSchema#String''> ,

<AttributeValue>read<lAttributeValue></Attribute>
</Action>

<JRequest>

Figure 31: XACML Request under Privacy Mode

There are four key elements in this sample:

• This access request is under RBAC Profile of XACML, so it's Role-Based Access

Control;

• AR holds a role of Senior Developer;

• Requested access is for a document of "develper-guide.doc" in the individual system;

• Requested action for the resource is "read".

Figure 30 and Figure 31 are the implementation of traditional SOA access request and privacy

protection mode accordingly. In Figure 30, we can see that role title of AR is listed in the request

code, however, in Figure 31, there is no role title displayed. In stead, there is a key word of

"Privacy Mode" in the place of role title. When SP sees the key word (it's a standard agreed by

all individual systems within SOA), she will enter Privacy Mode process.

So, after SP receives the request, she can identify the request is in "Privacy Mode", then her

response will be different. She will check her policy set to find out which roles are eligible to read

the information of the resource. In Chapter 4, we provided policy samples in Figure 12, Figure

13, Figure 14 and Figure 15.

74

We can see that these sample policies are all Role PolicySets which are suitable for the situation

that SP knows AR's role ready and try to search permission policies by the role. However. in our

privacy protection mode, role information is hidden. SP only knows the requested "resource"

title. So, we need to create a set of Resource PolicySets which is in the similar format of Role

PolicySets:

, ~ <Poliey-Set PolicySetId .. "Resource PolicySet for develper-guide. doc"
CombiningAlgorithm="permit-overrides" >

<Target>
<Resources>

<Resource>
<ResourceMatch Matchld=" string-match" > "

~ <AttributeValue> develper-guide.doc</AttributeValue>
<SubjectAttributeDesignator Attributeld,:,"Role"/>,'

</ResourceMatch> " " ' , ,
</Resource> , ,

</Resources>
'<Subjects>

. <AnySubj ect! > '
</Subjects> ,
<Actions>

':, " <AnyAction/ >' ;;
</Actions>, '"
</Target> " . . " , . ", .
<PolicySetldReference>permission ,Poll,cySet f~r develper-'

guide.doc </policySetIdReference>. ' , :

</PolicySet>

Figure 32: Sample - Resource PolicySet for deve)oper-guide.doc

7S

<PolicySet PolicySetld="Permission polieySet for developer-guide. doc"
CombiningAlgorithm="permit-overrides" >

<Target>
<Policy Policyld="permissions specifically for developer

duide.doc" CombiningAlgorithm="permit-overrides">
<Target>

<Subjects><AnySubject/></Subject>
<Resources><AnyResource!></Resources>
·<Actions><AnyAction/></Actions>.

</Target>
<Rule Ruleld="Permission to Senior Developer" Effect="Permit">

<Target>
<Subjects>

<AnySubject/>
</Subjects> '
<Actions>

<Action> ,
. <ActionMatch Matchld="string-match">
<AttributeValue>Read<!AttributeValue>
<ActionAttributeDesignator Attributeld="action-id"/>
</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
</Policy>

. </policySet>

Figure 33: Sample - Permission PolicySet for developer-guide.doc

From Figure 32 (Resource PolicySet for developer-guide. doc) and Figure 33 (Permission

PolicySet for developer-guide.doc), SP gets to know that role of "Senior Developer'; will be

granted read permission.

Then, SP will encrypt the information (document of developer-guide. doc) by the "Senior

Developer" as public key. She also creates a random number N, and encrypts N by the "Senior

Developer" as public key. Please be noted that these encryption operations are handled at SP as

an individual system, so it's not a SOA related. We can regard them as single machine operation

and it can be easily implemented and it's not the topic of our discussion. Then, SP sends

encrypted information, encrypted value N and original N to AR. All values are transferred via

SOAP which is file/data transfer standard for SOA and web service. Figure 34 is a sample of such

SOAP code to transfer encrypted information, encrypted random number N and original random

numberN.

76

<?xml version"'''l.O'' encoding="utf-S"?>
<soap:Envelope '

xmlns:soap'''''http://schemas.xmlsoap.orglsoap/envelopel'';
xm1ns:xsi= .. http:// 'WW. w3.org/200 lIXMLSchema-instance";
xmlns:xsd=''http://www.w3.orgl2001IXMLSchema'';>

<soap:Body> . .
<GetInformationResponse xm1ns="http://www.xmlforasp.net .. ;>

<GetInformationResult>
<!- Encrypted document of developer-guide.doc _>

,. <Encryptedlnformation>
grIKIJMCSYHrgXlRThnxEYqZicqWeio00J3
p+8NzFuqxzA8YlSSqaN/iy 1 Ywmm86fwqFmP
8HL4/81RA9dIfMySAkBSMFlKyEvSReConcE .

. . DLoyl4sXIiY gWPQceh4XF06r49PkQGk8mvb
WIpRbiiTJ76Uk22gCjdiUSlcWHnzB3k=

. <I EncryptedInformation >

.. <! - Encrypted Challenge Number N -> "
<EncryptedNumber>
wDzlBvGUIJwL6WXNsc2IFGXiG9tlW 4818VP
wzlOSetiCSSz7kw4jwp 1 QvDJhJ+tr78XI uT
zPkOQUbrUjHjaVnEwyPlEzluqVX7WWSzmvA, .
y3ZtPmkkzHIJnM8f+FyRMG6Fr6nzZ1ZDEw6
s+VaiSLTTLs3JZ297i5XTMAsalTgc74==
<I EncryptedNumber>

<I - original Challenge Number->
", <CbaIlengeNumber>

1234567890
. . '</ChallengeNumher>,

:,<1 GetInformationResult> "
. </ GetInformationResponse>
.• </soap:Body> :
<!soap:Envelope> .

", :. " ",. . ". ".

Figure 34: Sample of Encrypted SOAP Message in Information Access Request

After AR receives the encrypted message, she will decrypt "EncryptedNumber" by one of her

role credentials first If the decrypted value matches "ChallengeNumber", then use the credential

to decrypt "Encrypted Information" to get the information she needs. If it fails, she will try

another role credential until the last. If AR does not own the required role credential, she will

know nothing about the information. Again, the decryption and all other related operations are

handled at AR as an individual member of SOA.

Our protocol put some new functions/algorithms to traditional SOA such as: options for AR to

setup "Privacy mode" or stay with normal access request; and a bunch of Resource Policy Set and

Permission PolicySet for Resource are created.

77

These functions are easy to be implemented by logic or programming point of view. Most

important, the solution is still within SOA and web service basic standards and protocols such as

XACML and SOAP. So, there is no problem for implementation of our protocol.

For all encryption and decryption operations, they are handled at individual systems, and of

course there is no compatible or implementation issue for these operations.

6.3.2 Implementation of Service Access Request Protocol

Implementation of Service Access Request Protocol is similar to Information Access Requ,est

Protocol. Especially access request, Resource PolicySet, and Permission PolicySet, these codes

are the same as code in implementation of Information Access Request, and the only difference is

that the resource in these code is a service such as a webpage rather than a transferable

information.

<PolicY-set PolicySetld="Resource PolicySet for.
http://server.example.com/codeidocs/developer-guide.html'' .

"combiningAlgorithm="permit-overrides">
<Target> .

<Resources>'
<Resource> .

<ResourceMatch Matchld="string-match">
, <AttributeValue> ,

http://server.example.comlcode/docs/developer-guide.html< / AttributeVal ue>
<SubjectAttributeDesignator Attributeld="Role"/>.

</ResourceMatch::' " "
</Resource>

<!Resources> ..
. <Subjects>

<Anysubject/>
</Subjects>

. <Actions> .' .
, , , <AnyAction/ >
</Actions>

..
;. "

</Target> ~' '
'> , ,

<PolicySetldReference>Permission PolicySet for'
http://server.eXample.com/code/docs/developer-guide.html ' .
. </policysetldReference;' '.', ',: ". <:';' "'. .~ . ..;. ,-. -
</PolicySep.' , " ; . -,... :.,'; '. , ..

Figure 35: Sample - Resource PolicySet for Service

78

{ ., '.

, \

.~."

In this section, we only provide a sample of Resource PolicySet for Service. Please check Figure

35, and you can find that the "developer-guide.doc" as the resource title is changed to a non

transferable web page link: http://server.example.com!code/docs/developer-guide.html

In Step 1 of the protocol, AR choose "Privacy Mode" and send SP the request, the request code is

the same as what we used in implementation of Information Access Request. (resource is changed

to a service in this case)

In Step 2, SP will check Resource PolicySet and Permission PolicySet (as the samples in last

section) and create a random S. If SP finds that the matched role is "Senior Developer", she will

encrypt S by "Senior Developer" as public key.

In Step 3, SP will send the encrypted S to AR via SOAP (as described in Figure 36 as a sample):

<?xml version="l.O" encoding="utf-8"?>
<soap:Envelope '

xmlns:soap=''http://schemas.xmlsoap.ofg!soap/envelopel'';
xmlns:xsi=''http://www.w3.orgl2001IXMLSchema-instance";''
xmlns:xsd=:''http://wwW.w3.org/2001IXMLSchema'';>

<soap:Body> ' , ' ' , ", " '
<GetInformationResponse xmlns=:"http://www.xm1forasp:net'';>

<GetInformationResult> ,', ' ,
, <! -- Encrypted Challenge Number S ->

'r <EncryptedNumber>
wDzJBvGUlJwL6WXNsc2JFGXiG9tIW 4818VP
wzlOSetiCSSz7kw4jwpl QvDJhJ+tr78XluT

, zPkOQUbrUjHjaVnEwyPlEzluqVX7WW5zmvA
y3ZtPmkkzHIJnM8f+FyRMG6Fr6nzZ1ZDEw6

, s+ V ai5L TTLs3JZ297i5XTMAsaITgc74=
</ EncryptedNumber>

</ GetInformationResUlt>
" <; GetInformationResponse>

, { </soap:Body> , '
: </soap:Envelope>

Figure 36: Sample of Encrypted SOAP Message to Transfer Encrypted S

'(,

In Step 4, AR will decrypt the encrypted S by al1 role credentials she holds. Please be noted that

this process is handled at AR as an individual system or client, and it's not SOA related.

In Step 5, AR will send the value set {Sh S2, ... Sn} she gets at Step 4 back to SP via SOAP

(Figure 37):

79

<?xmI version="1.0" encoding="utf-S"?>
<soap:Enveiope ,

xmlns:soap=''http://schemas.xmlsoap.org!soap/envelopel'';
xmlns:xsi=''http://www.w3.org!20011XML8chema-instance'';
xmlns:xsd=''http://www.w3.org!20011XML8chema'';>

<soap:Body>
<GetInformationResponse xmlns= .. http://www.xm1forasp.net .. ;>

<GetInformationResult>
<! -- Decrypted Challenge Number 81 ->

<DecryptedNumberl>
32342
</ DecryptedNumberl>

<! - Decrypted Challenge Number 82 ->
<DecryptedNumber2>
42323
</ DecryptedNumber2>

<! -- Decrypted Challenge Number Sn ->
<DecryptedNumbem>
23212
</ DecryptedNumbern>

</ GetInformationResul~
</ GetInformationResponse>

</soap:Body>
</soap:Envelope>

Figure 37: Sample of Encrypted SOAP Message to Transfer Encrypted {SIt S2t ••• Sn}

In Step 6, AR will review received {SI> S2, .,. Sn} and compare her original random number of S

to decide to permit or deny and sends response back to AR (Figure 38):

<Response>
<Result> ,

<Decision>Permit</Decision>
. <Status>. . .' .''

<StatusCode Value: llurn:oasis:names:tc:xacml:1.0:status:ok"/>
<!Status> ~ ,"~' ~

. </Result>
</Response>

Figure 38: Sample of Response in Service Access Request

so

The response code is exactly the same as traditional XACML response language code.

We can conclude that implementation of Service Access Request can also take use of current

XACML standards just like implementation of Information Access Request. Also, the encryption

and decryption operations in Step 2 and Step 4 are handled as individual systems which do not

belong to SOA topics and we will not discuss implementation of these two steps in this thesis.

6.4 Security Review on Protocols for Access Request & Response Process

In this Section, we will review what kind of privacy protection we can provide in our protocols

for Access Request & Response Process. As we discussed in Section 6.1, there is a tradeoff

between privacy protection and system performance, and the major factor we decide on the

tradeoff is importance and sensitive level of privacy. From analysis we made in Section 6.1, AR's

roles privacy and SP's permission-to-role policies are not as sensitive as AR's attributes privacy

and RA's attributes-to-role policies. The purpose of our research work is to provide the best and

satisfying solutions to protect privacy which in the same time are compatible with current SOA

standards and technologies.

First, let's see how AR's role privacy is protected:

AR can choose to set her role as privacy (need to be protected) or not (do not need to protect role

privacy). Our protocols will only be used when AR chooses "Privacy Mode", or SOA will go

with traditional access process.

In Scenario of Information Access Request, SP will encrypt required information by required role

as public key and send it to AR, in this case: first SP has ZERO knowledge of AR's role. After

SP sends out encrypted information, she will not be involved in decrypted process. So, SP will

not know if AR can get the information or not, and it is not possible for SP get any information

about AR's role information; second SP is sure that her information will not be viewed by anyone

without a valid role credential. This is information security issue, and it's the basic requirement of

our protocol. Based on IBE [2][4][6][37][38], if the information is encrypted by role's title string

as public key, only those who holds valid role credential as private key can decrypt it. The role

credential can only be obtained through Login & Role assignment process described in Chapter 5.

In Scenario of Service Access Request, SP has to get involved to decide if permit should be

granted to AR or not, and as a result, SP will get to know at least that if AR's request is permitted

or not. If the request is permitted, SP will get to know that AR holds at least one required roles.

81

This knowledge disclosure is not possible to be avoided. If we check our protocol, we know that

SP will check S values from decrypted value set of {SI, S2, ... Sn}, and ifthere is a S in the set,

then SP knows AR holds required Role, and grants permission. However, it's still acceptable for

privacy protection because of the following reaons.

First, SP knows AR holds a required role, but she does not know anything about all other roles

held by AR, and it is already huge improvement comparing with traditional RB_XACML

technology.

Second, based on our discussion in Section 6.1, AR's role information is not a privacy sensitive,

and it will not cause serious subsequence for some role information disclosure.

Third, combining with privacy protocols in Login & Role Assignment process proposed in this

thesis, the whole privacy protection is satisfying and acceptable.

Now, let's review SP's policy privacy protection in this process.

In Scenario of Information Access Request, SP encrypts required information by required role

and sends encrypted value to AR, then AR will decrypt the value by her role credentials. If AR is

able to decrypt the random number and information by some role, she will know this role is

required by the policy, however, it is still an acceptable result, because:

First, AR will get to know which role credential let her get the permission of access. However,

this does not mean that she knows the permission policies. As we discussed in Section 6.2.3, SP's

policies can let several roles have the permission, and she will just encrypt the information by the

most junior role. So, AR can not be sure about what are SP's policies;

Second, in Section 6.1, we analyz.ed sensitive and importance level of SP's permission-to-role

policies, and could know that thesis policies are not privacy sensitive

In Scenario of Service Access Request, AR receives decrypted random number S, and decrypts it

by all her role credentials and get a value set of {SI, S2, ... Sn}, this value set will be sent to SP,

SP will check and value and make decision to grant permit or deny. So, AR does not get involved

in any polices related operations. As a result AR knows nothing about SP's polices.

In conclusion, we provide privacy prot~ction option for AR, and protect both AR's role privacy

and SP's polices in a reasonable and acceptable way. Considering the implementation, system

efficiency, compatibility etc. factors, privacy protection in this process is not designed to "ZERO"

knowledge disclosure. However, it is already a great improvement comparing with traditional

82

RB _ XACML standards and it is a good supplementary to the whole privacy solution we proposed

in this thesis as a part of the whole solution.

7. Conclusion and Future Work

In this thesis, we worked on providing privacy protection solution for RBAC in SOA

environment. We proposed a new SOA RBAC solution which meets single sign on requirement

and is privacy preserving and easier to be maintained. This RBAC solution is composed of two

processes: Login & Role Assignment process and Access Request & Response process. Login &

Role Assignment is privacy sensitive, and our protocol for this process is ZERO knowledge

disclosure which means both AR and RA knows nothing about the counterpart's privacy. Login

& Role Assignment process can be divided into two stages: attributes values exchanging and

policy mapping. We proposed three protocols/solutions for each stage with different privacy

protection and complication level, and at least one of these protocols/solutions meets the goal of

ZERO knowledge disclosure or complete privacy protection. Access Request & Response process

is regarded as less privacy sensitive and our solution must be compatible with current SOA

standards. In SOA, there are two kinds of access requests: Information Access and Service

Access. We provided AR option to setup privacy mode and gave two different protocols to handle

privacy protection for these two kinds of access requests. It's not ZERO knowledge 4isclosure

protocols but based on our security and privacy analysis, our protocols are good en~ugh to

provide necessary privacy protection. It already greatly improved privacy protection comparing

with traditional SOA access control standards and technologies.

As a whole, we made a thorough analysis on SOA RBAC solution and provided a set of new

protocols/solutions which make the whole process privacy friendly and are also beneficial for

security policy management and system maintenance.

Next, we will continue to work on how to improve current SOA standards such as XACML to

make it possible to realize ZERO knowledge disclosure during the Access Request & Response

process without obvious impact system's performance and efficiency.

83

References

[1] T. Yu, M.Winslett, K. E. Seamons, "Supporting structured credentials and sensitive policies through

interoperable strategies for automated trust negotiation", ACM Trans. On Information and System

Security, 6(1):1-42, February 2003

[2] N. Li, W. Du, D. Boneh, "Oblivious Signature-Based Envelope", Distributed Computing, vol. 17,no.4,

pp.293-302, 2005

[3] J. Li, N. Li, "OACerts: Oblivious Attribute Certificates", IEEE Trans. On Dependable and Secure

Computing. vol. 3, no. 4, October-December 2006

[4] K. Frikken, M. Atallah, J. Li, "Attribute-Based Access Control with Hidden Policies and Hidden

Credentials", IEEE Trans. On Computer, vol. 55, No. 10, October 2006

[5] D. Yao, R. Tamassia, "Compact and Anonymous Role-Based Authorization Chain", A CM Trans. On

Information and System Security, vol. 12, no. 3, article IS, January 2009

[6] D. Boneh, M. Franklin, "Identity-Based Encryption from the Weil Pairing", SIAM J. of Computing,

vol. 32, No.3, pp. 586-615,2003

(7] D. Boneh, C. Gentry, B. Lynn, H. Shacham, "Aggregate and verifiably encrypted signatures from

bilinear maps", Proceedings of the international conference on the Theory and Applications of

Cryptographic Techniques (Eurocrypt 03). 416-432, 2003

[8] M. K. Raghavendra, "An Architectural Approach to RBAC Policy Management Framework in a SOA

driven Enterprise", unpublished

[9] D. W. Chadwick, A. Otenko, E. Ball, "Role-Based Access Control With X.509 Attribute Certificates",

IEEE Computer Society, 1089-7801, 2003

[10] Z. Qu, N. Meng, "Design and Implementation of the RBAC-SOA Model", ICSP 2008 Proceedings

[11]F. Xu, G. Lin, H. Huang, L. Xie, "Role-based Access Control System for Web Service", Proceedings

of the 4"' International Conference on Computer and Information Technology (CIT 04),2004

[12] "Core and hierarchical role based access control (RBAC) profile ofXACML v2.0, OASIS

[13] "eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS Standard, February 1,

2005

[14]"SAML 2.0 profile ofXACML v2.0", OASIS Standard, February 1,2005

[15] "Reference Model for Service Oriented Architecture 1.0", Committee specification 1,2, August 2006

[16] "Web Service Architecutre", W3C, http://www.w3.orgfTR/ws-arch!

[17] Wikipedia, the free encyclopedia, http://en.wikipedia.orglwiki/

84

[18]B. Thuraisingham, "Security for Web Services and Service Oriented Architectures", Lecture

[19]"An Introduction To Role-Based Access Control", NISTIITL Bulletin, December, 1995

http://csrc.nist.gov/groups/SNS/rbac/documents/design implementation/Intro role based ac

cess.htm

[20]A. Oluwaseyi, "Service Oriented Architecture & Web Services", Master Degree Thesis in Computer

Science, January, 2008

[21]F. Meier, "Service Oriented Architecture Maturity Models: a guide to SOA Adoption". Master Degree

Thesis in Computer Science. 2006

[22] "Service Oriented Architecture Security Vulnerabilities - Web Services", Systems and Network

Analysis Center www.nsa.gov/snac

[23]V. Jonnaganti. "An Integrated Security Model for the Management of SO A", Master Degree Thesis in

Software Engineering and Management

[24] "SOA Security (red book)", mM

[25] 1. Fiere. "SOA Security", Master Degree Thesis in Information Sciences, November 2007

[26]N. A. Nordbotten, "XML and Web Services Security Standards", IEEE Communications Surveys &

Tutorials, vol. 11. No.3, third quarter 2009

[27] R. Bhatti, 1. B. D.loshi, E. Bertino, A. Ohafor, "Access Control in Dynamic XML-based Web

Services with XRBAC", in processing of The First International Conference on Web Service,-Las

Vegas.lune 23-26, 2003

[28]UDDI Version 3.0 Published Specification, July 19,2002. http://uddi.orglpubsluddiv3.htm

[29] W3C Note. Web Services Description Language (WSDL) 1.1, March 15,2001,

http://www.w3.orgffRlwsdl

[30] Y. Demchenko, "Using XACML and SAML for Authorisation messaging and assertions: XACML and

SAML standards overview and usage examples", March 28, 2005

[31]E. Dubois, B. Fachhochschule, "XACML: An Introduction",lanuary 2008, Lecture

[32] K. Kim, H. J. Ko, W. O. Choi, E.l. Lee, U. M. Kim, "A Collaborative Access Control based on

XACML in Pervasive Environments" • IEEE International Conference on Convergence and Hybrid

Information Technology, 2008

[33] A. Menezes, P. van Oorschot, S. Vanstone, "Handbook of Applied Cryptography", CRC Press, 1996

[34]B. Barak, "Oblivious Transfer (OT) and Private Information Retrieval (PIR)", November 29,2007

[35]R. Shahinian, T. Hu, ''Foundations of Cryptography", March 16,2005

85

[36]W. Tzeng, "Efficient l-Out-of-n Oblivious Transfer Schemes with Universally Usable Parameters",

IEEE TRANSACTIONS. ON Computers, vol. 53, no. 2. February 2004

[37] A. Shamir, "Identity-Based Cryptosystems and Signature Schemes", Advances in Cryptology - Proc.

CRYPTO 1984, pp. 47-53,1984

[38] C. Cocks, "An Identity Based Encryption Scheme Based on Quadratic Residues", Proc. Eighth lMA

International Conference Cryptography and Coding, pp. 360-363. December, 2001

[39] X. Boyen, "An Introduction to Identity-Based Encryption",

http://ai.stanford.edul-xb//gut07a!slides/index.html

[40] I. Damgard and M. Jurik, "A Generalisation, a Simplification and Some Applications ofPailier's

Probabilistic Public-Key System", Proc. Fourth International workshop Practice and Theory in Public

Key Cryptosystems, pp. 11 9-136, 2001

[41] T. Okamoto, S. Uchiyama, E.Fujisaki, Epoc: EffiCient Probabilistic Public-key Encryption Submission

toIEEEp1363a., 1998

[42] P. Paillier, "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes", Advances in

Cryptology-Proc. EURORYPT 1999, pp. 223-238,1999

[43] M. Freeman, K. Nissim, B. Pinkas, "Efficient Private Matching and Set Intersection", Advances in

Cryptology - Proc. EUROCRYPT 2004, pp. 1-19, May 2004

[44] T.Namli, A. Dogac, "Using SAML and XACML for Web Service Security & Privacy", Not Published,

Software R&D Center, Middle East Technical University

[45]D. Wahlin, "Encrypt SOAP Message Parameters using Custom Attributes and Headers",

http://www.dotnet247.coml24 7reference/msgs!24/1 21 Q 10.aspx

[46]C. A. Ardagna, S. Vimercati, S. Paraboschi, E. Pedrini, P. Samarati, "An XACML-Based Privacy

Centered Access Control System", ACM 978-1-60558-787 -5/09/JI, 2009

[47] 1. Crampton, "XACML and Role-Based Access Control", DlMACS Workshop on Secure Web Services

and e-Commerce

[48]6"Sun's XACML Implementation Programmer's Guide for Version 1.2",

http://sunxacml.sourceforge.netlguide.html

[49] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, "Role-Based Access Control Models",

IEEE, 0018-9162/96, 1996

[50] G. Geethakumari, A. Negi, V. N. Sastry, "A Cross - Domain Role Mapping and Authorization

Framework For RBAC in Grid System", International Journal of Computer Science and Application ©

2009 Technomathematics Research Foundation Vol. 6 No.1, pp. 1-12,2009

86

[51] S. Weber, P. Austel, M. McIntosh. "A Framework for Multi-Platform SOA Security Analyses", IEEE

International Conference on Web Services (JCWS 2007) 0-7695-2924-0/07,2001

[52] H. Amouzegar, S. Mohammadi, M. J. Tarokh, A. N. Hidaji, "A New Approach on Interactive SOA

Security Model Based on Automata", IEEE 978-0-7695-3131-1108,2008

[53] A. H. Karp, "Authorization-based Access Control for the Service Oriented Architecture", IEEE

Published in the Fourth International Conference on Creating, Connecting, and Collaborating

through Computing (CS), 26-27, January 2006,

[54] P. Pradat, M. Vallot, "Securing SOA and Traditional Infrastructure", A Bull Ellidian White Paper,

2005

[S5]F. Meier, "Service Oriented Architecture Maturity Models: A guide to SOA Adoption", Masters

Dissertation in Computer Science, 2006

[56] Z. Y. Peng, S. p. Li, "Privacy Protection in Trust Management", IEEE 978-1-4244-2096-4/08, 2008

[57] 1. Brickell, V. Shmatikow, "Privacy-preserving Graph Algorithms in the Semi-honest Model",

International Associationfor Cryptoiogic Research B. Roy (Ed): ASIA CRYPT 2005, LNCS 3788, pp.

236-252,2005

[58] A. Damodaram, H. Jayasri, "Authentication without Identification Using Anonymous Credential

System'" Internationa Journal of Computer Science and In/ormation Security IJCSIS Vol. 3 No.1, July

2009

[59]&. Bhaskar, K. Chandrasekaran, S.V. Lokam, P. L. Montgomery, &. Venkatesan, Y. Yacobi.

"Vulnerabilities in Anonymous Credential Systems", STM. 2007

[60] P. Mazzoleni, E. Bertino, B. Crispo, S. Sivasubramanian, "XACML Policy Integration Algorithms",

AC~f 1-59593-354-9/06/0006,2006

[61] J. S. Park, R. Sandhu, "Role-based Access Control on the Web", ACM Transactions on Information

and System Security. Vol. 4, No.1, 2001

[62]G. Swart, B. Aziz, S. N. Foley, J. Herbert. "Trading off Security in a Service Oriented Architecture'"

IBM Almaden Research, Not Published

87

Glossary

Term
AR

Cryptography

Encryption &
Decryption

IBE

Oblivious
Transfer

Public Key &
Private Key

PV
RA

RBAC

Description
Access Requestor

Cryptography (or cryptology; from Greek KPU1t't6<;, kryptos, "hidden,
secret"; and 'Ypa.<pro, graphO, "I write", or -Aoyia, -logia, respectively) is
the practice and study of hiding information. Modem cryptography
intersects the disciplines of mathematics, computer science, and
engineering. Applications of cryptography include ATM cards,
computer passwords, and electronic commerce

In cryptography, encryption is the process of transforming information
(referred to as plaintext) using an algorithm (called cipher) to make it
unreadable to anyone except those possessing special knowledge,
usually referred to as a key. The result of the process is encrypted
information (in cryptography, referred to as ciphertext). In many
contexts, the word encryption also implicitly refers to the reverse
process, decryption (e.g. "software for encryption" can typically also
perform decryption), to make the encrypted information readable again
(i.e. to make it unencrypted).

An Identity Base Encryption (IBE) scheme is a public-key cryptosystem
where any string is a valid public key. In particular, email addresses and
dates can be public keys.

In cryptography, an oblivious transfer protocol (often abbreviated OT) is
a protocol by which a sender sends some information to the receiver, but
remains oblivious as to what is received.

Public Key & Private Key cryptography is a cryptographic approach
which involves the use of asymmetric key algorithms instead of or in
addition to symmetric key algorithms. Unlike symmetric key algorithms,
it does not require a secure initial exchange of one or more secret keys
to both sender and receiver. The asymmetric key algorithms are used to
create a mathematically related key pair: a secret private key and a
published public key. Use of these keys allows protection of the
authenticity of a message by creating a digital signature of a message
using the private key, which can be verified using the public key. It also
allows protection of the confidentiality and integrity of a message, by
public key encryption, encrypting the message using the public key,
which can only be decrypted using the private key.
Policy Verifier
Role Assigner
role-based access control (RBAC) is an approach to restrict system
access to authorized users in which access permission is assigned based
role of the access requestor.

88

SAML

Single Sign On

SOA

SOAP

SP

XACML

XML

Security Assertion Markup Language (SAML) is an XML-based
standard for exchanging authentication and authorization data between
security domains, that is, between an identity provider (a producer of
assertions) and a service provider (a consumer of assertions). SAML is a
product of the OASIS Security Services Technical Committee.
Single sign-on (SSO) is a property of access control of multiple, related,
but independent software systems. With this property a user logs in once
and gains access to all systems without being prompted to log in again at
each of them

service-oriented architecture (SOA) is a flexible set of design principles
used during the phases of systems development and integration. A
deployed SOA-based architecture will provide a loosely-integrated suite
of services that can be used within multiple business domains.

SOAP, originally defined as Simple Object Access Protocol, is a
protocol specification for exchanging structured information in the
implementation of Web Services in computer networks. It relies on
Extensible Markup Language (XML) as its message format, and usually
relies on other Application Layer protocols (most notably Remote
Procedure Call (RPC) and HTTP) for message negotiation and
transmission
Service Provider

XACML stands for Extensible Access Control Markup Language. It is a
declarative access control policy language implemented in XML and a
processing model, describing how to interpret the policies.

XML (Extensible Markup Language) is a set of rules for encoding
documents in machine-readable form.

89

