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ABSTRACT 

Pose Estimation for Robotic Percussive Riveting 

 

Yu Lin 

A dissertation for the degree of 

Doctor of Philosophy, 2014 

Department of Aerospace Engineering, Ryerson University 

 

Recently, a robotic percussive riveting system has been developed at Ryerson 

University for an automation of percussive riveting process of aero-structural fastening 

assembly. The system consists of a robot holding a percussive riveting gun equipped with 

a rivet feeder, a gantry holding a working panel of aero-structure, and a position visual 

sensor. Prior to riveting, the robot is required to first position and then insert a rivet 

precisely into a hole on the panel without engaging the panel to prevent potential damage. 

The underlying challenges to precise insertion are various sources of system 

uncertainties, mainly including alignment errors among coordinate systems of the robot, 

panel and sensor, and relatively poor absolute positioning accuracy of the robot due to 

mechanical deflection, assembly clearance, and machining tolerance. For this reason, the 

research of relative pose estimation between the robot and panel has been carried out 

pertaining to these challenges.  

Essentially, pose estimation is proposed for robotic percussive riveting, which 

estimates the relative pose between two rigid bodies based on noisy visual measurements 

of point features on rigid bodies. Three categories can be classified, namely, static, 

dynamic, and robust pose estimation. Firstly, static pose estimation is the parameter 

estimation of static relative pose transformations among a number of frames, which 

solves the issue of alignment errors. Direct solutions of static relative pose estimation are 

derived based on least-square methods. Secondly, to tackle the issue of poor absolute 

positioning accuracy of the robot, dynamic relative pose estimation is proposed 

addressing a state estimation of relative poses during motion. Iterative extended Kalman 

filter method is adapted for the state estimation. Thirdly, for robustness against outliers of 
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point measurements, robust pose estimation is proposed based on an outlier diagnosis 

using the technique of relaxation of rigid body constraints. Indeed, outlier diagnosis is a 

pre-processing of point measurements, in which outliers are detected and removed prior 

to the relative pose estimation. Further, a decorrelation method is proposed for 

measurement calibration using multivariate statistical analysis to find an optimal sensor-

to-target configuration. As a result, each coordinate measurement is close to uncorrelated 

and it allows for a simple calibration.  
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NOMENCLATURE 

Symbol    Definition   Units 

 

x, y, z x, y or z coordinate position m 

α, β, γ pitch, roll, and yaw angles rad (or degree if specified)  

p position vectors m 

R 

t 

T 

U,  ,V 

v 

D 

n 

  

rotation matrix 

translational vector 

homogeneous transformation matrix 

singular value decomposition  

normalized directional vector 

observation matrix formed by v 

number of points 

frame - Cartesian coordinate system 

- 

m 

- 

- 

- 

- 

- 

- 

b body vectors m 

b' local body vectors m 

q motion parameters (s and θ) - 

θ rotation angles rad (or degree if specified)  

I identity matrix - 

J Jacobian matrix - 

g geometry of a robot (bs and Rs) m and rad 

X state of dynamic pose estimation m and rad 

A point coordinates of target 1 m 

B point coordinates of target 2 m 

c compatibility of relaxation  - 

ε residual  - 

s 

 

merit scores  

 

- 

 

   

Subscript Definition  

i i
th
 point   

n total number of points  

tcp tool central point   

r robot base  

m measurement  

p working panel  

tip 

t 

the tip of robot 

target 

 

min minimum  

max maximum  
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CHAPTER 1   INTRODUCTION  

1.1 Background  

In aerospace industry, high precision is necessary due to manufacturing of airplanes for 

their improved characteristics about safety, fuel consumption, noise pollution reduction, 

and comfort for passengers. In aerospace applications ranging from material handling to 

fastening and assembly, precise positioning plays a crucial role. Robots offer the prospect 

of removing much of the tedious, unattractive, and in some cases dangerous 

manufacturing tasks, greatly enhancing the working environment. But, most of today’s 

industrial robots do not have good three dimensional (3D) absolute positioning capacity, 

though their repeatability following taught positions is high enough. As in most of 

aerospace manufacturing environment, the complex working parts may have several 

thousands of positions and trajectories, at which a robot stops or passes. It is impossible 

to teach the robot at each position. As well, the varieties and the forms of parts may not 

be always rigid. For flexible fabrication with high precision, adaptive metrology-

guidance robotic systems are increasingly demanded in aerospace manufacturing.  

Riveting is one of the major joining methods used in aircraft assembly. Manual riveting 

operations are tedious, repetitious, prone to error, and likely causing health and 

ergonomic problems [1]. Currently, automated riveting systems are being developed to 

replace manual riveting operations, such as using dual robots to provide panel holding 

and feeding functions for conventional squeezing riveting machines [2], as shown in 

Figure 1.1. More recently, a novel robotic percussive riveting system has been developed 

in Ryerson University for percussive riveting automation [3]. The system adopts a robot 
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to hold and move a percussive riveting gun equipped with a rivet feeder, and a gantry to 

hold a working panel and to move a bucking bar. There are two main separating steps in 

the robotic percussive riveting process. One is called hole-drillings in which all the holes 

are first drilled based on a planned riveting path and another one is called rivet-in-hole 

insertion or called peg-in-hole insertion along the same path. Prior to the riveting process, 

rivet-in-hole insertion requires a robot to first position and then insert a rivet precisely 

into a hole on the working panel without engaging the panel to prevent potential damage.  

Practically, there always exist undesired errors, namely system uncertainties which 

significantly influence the positioning accuracy and the stability of the robotic riveting 

system. The uncertainties can be briefly grouped into two parts, which are the intrinsic 

parameters such as robot positioning errors due to mechanical deflection, assembly 

clearance, machining tolerance and thermal expansion, and the extrinsic parameters such 

as alignment errors, tooling calibration errors, and external disturbances including 

vibration, drill bit wear, rivet feeder positioning error, etc. In general, the tooling 

calibration errors can be reduced through well calibration process, but robot positioning 

errors always exist in a robotic riveting system. Generally, the rivet holes are dilled with a 

tolerance of approximately 0.2 mm [4]. The performance of the adopted ABB 4400/45 

robot can only assure unidirectional pose repeatability of 0.07 mm, linear path accuracy 

of 0.8 - 1.3 mm and linear path repeatability of 0.25 - 0.4 mm at rated load and 1m/s 

velocity on a inclined ISO test plane according to ISO 9283 [5]. Apparently, the robot 

path repeatability would not be able to guarantee a successful rivet insertion from the tip 

of the rivet gun to the inside of the hole. As a result, in the hole-drilling step of the 

robotic riveting process, even though the holes are drilled according to a planned path, 
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they are still deviated due to the presence of the system uncertainties. Unsuccessful rivet 

insertion would cause damage to sheet metal skins or to the tooling system.  

A great deal of research has been done on peg-in-hole insertion [6-11]. In [6], the 

geometric analysis and force/moment analysis of three-dimensional multiple-peg 

insertion are presented. Because of the difficulty and complexity in analyzing three-

dimensional peg-in-hole insertion, most analyses of this class of assembly tasks were 

done by simplifying the problems into two dimensions [7, 8]. Surges [9] analyzed the 

wedging in three-dimensional rectangular peg insertion. A hybrid force-position strategies 

using active and passive mechanism were designed in three-dimensional insertion [10]. In 

[11], a compliant mechanism was designed for axis symmetric part insertion to passively 

compensate for position and orientation uncertainties during an assembly process. 

However, the approaches on three-dimensional peg-in-hole insertions in assembly tasks 

depend on the geometric features of assembly objects or the interaction forces between 

pegs and holes, thus it cannot be used in the rivet-in-hole insertions of the robotic riveting 

process. Therefore, a robust and efficient control scheme should be explored for rivet-in-

hole insertions in robotic riveting system.  

One feasible and cost-effective way is to use robot visual servoing (RVS) method to 

achieve high precision positioning. RVS systems constitute a class of opto-mechatronic 

systems in which measurement data are integrated into the robot control system to 

enhance the robot control performance [12]. RVS systems can be classified into two main 

categories [13]: position-based visual servoing (PBVS) [14] and image-based visual 

servoing (IBVS) [15]. IBVS is only stable locally and may suffer from Jacobian 

singularity and local minima [16]. It usually induces the unpredictable and sometimes 
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undesired 3D trajectories. In contrast, PBVS is a model-based type of visual servoing and 

known to be global stable. It utilizes the pose (position and orientation) of object of 

interest with respect to the camera, therefore, sometimes referred to pose-based visual 

servoing. However, since it requires a 3D model of a target, the main drawback is 

reliance upon calibration and usually it has no control of the image plane and may easily 

loose the visual features that are used to estimate a pose [17]. In PBVS, first the 

estimation of the pose of the target with respect to the camera is performed, and this 

information is used to produce the appropriate control signal to track the target. 

To do so, pose estimation serves as an essential step of estimating the pose of object of 

interest with respect to the camera based on visual measurements. However, when 

multiple objects of interest are tracked, relative poses between these objects are 

demanded in the visual servoing. In this research, unlike the conventional way of 

estimating the pose of each object of interest with respect to the camera, relative pose 

estimation is proposed to directly estimate the relative pose between rigid body objects. 

Specifically for the purpose of robot precise positioning and rivet insertion control, the 

online state estimations of the relative pose and motion are desired between the tool 

center point (TCP) of the robot tooling and the working panel. For this reason, a 

metrology system of a position visual sensor is introduced to guide the robot and the 

research of relative pose estimation between the robot and panel has been carried out 

pertaining to these challenges.  

1.2 Robotic Percussive Riveting  

The robotic percussive riveting system is a new application for aircraft assembly 
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automation. The prototype of the system is located at EPH 107, Ryerson University. 

Figure 1.1 shows the principle of robotic percussive riveting. It includes a 6-DOF 

industrial robot that replaces the first worker for holding/moving a percussive rivet gun; a 

5-axis computer numerical control (CNC) gantry system that replaces the second worker 

for holding/moving a bucking bar [3]. A working panel of sheet metals is loaded on the 

jig of the gantry for riveting operations. The tooling of riveting gun is attached on the 

end-effector of the robot for riveting assembly of aero-structural parts on the working 

panel. A rivet is located at the TCP of the robot tooling. The details of the hardware and 

software development are provided in Appendix G.  

 

For the need of  precise positioning via metrology guidance, a position sensing system 

was adopted for position-based visual servoing in the robotic riveting system, as shown in 

Figure 1.2. The chosen position sensing system is a portable optical coordinate 

measurement machine (CMM), whose working principle is basically a camera-based 

triangulation system with 3 linear charge-coupled device (CCD) cameras, resulting in 1 

Figure 1.1: Principle of Robotic Percussive Riveting. [18] 
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horizontal and 2 vertical angle measurements [19]. The optical CMM is employed to 

measure the 3D coordinates of multiple feature points on the robotic tooling of riveting 

gun and the working panel on the gantry. Based on the measured  point positions, 

research of relative pose estimation is to be carried out. Figure 1.2 (b) demonstrates the 

experimental setup of the robotic riveting system, including a robot of ABB IRB4400/45 

and an optical CMM of 3D Creator FP7000 from Boulder Innovation Group (BIG).  

Position 

Sensing 

System

Industrial 

Robot 

Rivet 

Gun

Working 

Panel

Gantry

 
(a) 

BIG 

3D Creator 

FP 7000ABB IRB 4400 

robot

Rivet gun

Working panel

 
(b) 

Figure 1.2: (a) System configuration setup simulated in ABB RobotStudio. (b) 

Experimental setup of the robotic riveting system at EPH107, Ryerson University.  
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1.3 Problem Formulation 

The complete system transformational modeling is provided by assigning a number of 

Cartesian coordinate frames to the robotic riveting system, as shown in Figure 1.3. The 

frames are defined as follows:  

  : Frame of working panel      : Frame of TCP at the tip of a rivet 

  : Frame of measurement    : Frame of robot end-effector     

  : Frame of robot base     : Frame of target 1 on the panel 

  : Frame of rivet hole     : Frame of target 2 on the tooling 
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Eq. (1.1)

Eq. (1.2)

Eq. (1.4)

 

Figure 1.3: System transformational modeling with two loops of transformations. One 

between the panel, measurement, and robot base; while another one between the robotic 

tooling tip, end-effector, target, measurement, and robot base.  
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Figure 1.3 shows two loops of transformations. The first one describes the transformation 

between frames of the panel, measurement, and robot base, expressed in Eq. (1.1); the 

second one describes the transformations between frames of the robotic TCP, end-

effector, target 2, measurement, and robot base, expressed in Eq. (1.2).  

  
     

      
 

                                                      (1.1) 

  
       

      
     

   
   

                                              (1.2) 

where   
  represents a homogeneous transformation matrix from a x frame to a y frame; 

subscripts p, m, r, tcp, e, and t2 stand for the panel frame, measurement frame, robot base 

frame, TCP frame, end-effector frame, and target 2 frame, respectively. Table 1.1 shows 

the determination of these transformations in Eqs. (1.1) and (1.2).   
 

,    
 ,    

 , and  

   
  are determined by localization;   

   
 is obtained by tooling calibration.   

   and   
   

are solved by state estimation based on point measurements on targets 1 and 2.  

Table 1.1: Determination of Transformations 

Transformation Localization Calibration State Estimation 

  
 

 √   

  
  √   

  
   

  √  

   
  √   

  
     √ 

   
  √   

  
     √ 

1.4 Research Objective 

The main research objective is to improve the positioning accuracy of rivet-in-hole 

insertion for the robotic percussive riveting system. The future successful promotion of 

the robotic percussive riveting system depends on the precise positioning of rivet-in-hole 
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insertion. The research approach is to first analyze the sources of error or uncertainty, and 

then develop methodologies pertaining to these challenges.  

In general, there are three main sources of uncertainty, namely, localization, position-

based visual servoing, and measurement, as illustrated in Figure 1.4. Localization is to 

transfer the coordinates of the rivet spots to those in the robot frame after proper 

alignment, which leads to the research of static pose estimation in Chapter 3. Position-

based visual servoing is to control the robotic tooling tip to reach each rivet spot precisely 

based on state estimation of tip pose from visual sensing, which leads to the research of 

dynamic pose estimation in Chapter 4. Measurement accuracy can be improved through 

outlier diagnosis and measurement calibration, which leads to the research of robust pose 

estimation in Chapter 5, and a decorrelation method for measurement calibration in 

Chapter 6.  

Static Pose Estimation 

(Chapter 3)

Dynamic Pose Estimation 

(Chapter 4)

Robust Pose Estimation 

(Chapter 5)

Localization

Position-Based 

Visual Servoing

Outlier Diagnosis

MethodsProblems

Decorrelation Method 

(Chapter 6)

Measurement 

Calibration

 

Figure 1.4: Structure of research of pose estimation - problems and methods.  
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Clearly, localization is a prior step to provide a desired tip pose for the position-based 

visual servoing. Outlier diagnosis and measurement calibration both contribute to provide 

reliable and accurate point measurements for localization and position-based visual 

servoing.  

For localization, the key is to calculate the static relative pose between the panel and 

robot using Eq. (1.1). Multiple points attached on the working panel can be measured to 

estimate the pose transformation of the panel with respect to the measurement frame, 

denoted by   
 

. Likewise, the method of static pose estimation can be applied to find the 

pose of robot base with respect to the measurement, denoted by   
 . Then,   

 
 can be 

calculated conventionally by Eq. (1.1). However, the research reported in Chapter 3 aims 

at a direct solution of   
 
 from these point measurements.  

Upon the determination of   
 
, the local coordinates of the rivet spots in the panel frame, 

denoted by p', can be transferred to those in the robot base frame by Eq. (1.3), based on 

which the robot can be controlled to reach these desired spots using position-based visual 

servoing.  

    
                                                              (1.3) 

For position-based visual servoing, the key is the state estimation of tip pose from visual 

sensing using Eq. (1.2). To do so, a target is attached on the robotic tooling as a tracking 

reference for dynamic pose estimation of robotic tooling tip. Note that a target is a rigid 

body with multiple observable point features, in particular, artificial markers. Clearly, we 

have to dynamically estimate the pose of target with respect to the measurement frame 

based on point measurements, represented by   
   in Eq. (1.2).    

   
 is the pose from the 
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tooling TCP to the robot end-effector, which can be determined from tooling calibration. 

   
  is the pose from the robot end-effector to the target 2, which can be calculated by the 

static pose estimation.  

However, for flexible manufacturing, panel frame is assumed to be mobile. In other 

words,   
 

 may vary during robot operations. Thus, direct state estimation is demanded 

for relative pose between rivet TCP frame on the tooling and rivet hole frame on the 

panel during motion, denoted as     
 . Conventionally,     

  can be calculated by Eq. (1.4) 

with provided state estimation of   
   and   

  . In Chapter 4, the reported research of 

dynamic pose estimation aims at direct state estimation of     
  using point measurements 

of targets 1 and 2 on the tooling and panel.  

    
     

    
  

  
     

     
   

    
  

  
     

                               (1.4) 

1.5 Outline of Thesis 

The remaining thesis is organized as follows. 

Chapter 2 provides literature review on previous researches on the position-based visual 

servoing and pose estimation, including static, dynamic, and robust pose estimation.  

Chapter 3 first summarizes a number of formulation of static pose estimation. Direct 

solutions of relative pose are derived using least-square methods. Pose estimation is then 

applied in the localization of the robotic riveting system.  

Chapter 4 investigates the method of dynamic pose estimation, which addresses the state 

estimation of relative poses between two rigid bodies during motion using Iterative 

Extended Kalman filter method.   

Chapter 5 provides the robust pose estimation for robustness against outliers of point 

measurements. A relaxation method is proposed for outlier diagnosis using constraints of 
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rigid body.  

Chapter 6 proposes a data decorrelation method based on multivariate statistical analysis 

to preprocess the 3D coordinate measurements and find an optimal measurement 

configuration for calibration.  

Chapter 7 summarizes the conclusions, contributions, and future work of the research .   
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CHAPTER 2   LITERATURE REVIEW 

This chapter describes a literature review on previous researches that have been done on 

position-based visual servoing and pose estimation, including static, dynamic, and robust 

pose estimation.  

2.1 Pose Estimation  

A pose of a rigid body includes a position and an orientation, which describe six degrees 

of freedom (DOF) in 3D space with respect to a reference frame. Pose estimation for 

rigid bodies plays an important role in robotics, computer vision, and various positioning 

applications, such as visual servoing for robotics [14, 21-23], biomechanical motion [24], 

guidance for aircraft assembly automation [3], spacecraft docking and rendezvous [25], 

and satellite capture [26, 27], etc. The conventional 3D-to-3D pose estimation deals with 

one 3D rigid body with respect to an observing system, i.e., the pose transformation after 

a motion of one body. 

Estimation is the process of inferring the value of a quantity of interest from indirect, 

inaccurate and uncertain observations [20]. In general, the variable that is to be estimated 

can be classified into two categories, namely, a parameter – a time-invariant quantity of a 

static system and the state of a dynamic system, which involves in time according to a 

stochastic equation. Consequently, two classes of estimation can be classified, namely, 

parameter estimation and state estimation. As for pose estimation, parameter estimation is 

referred to the static pose estimation, and state estimation is referred to the dynamic pose 

estimation. Further, robust pose estimation adds robustness to pose estimation, dealing 
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with pose estimation from outliers contaminated point measurements.  

2.2.1 Static Pose Estimation  

Static pose estimation is the parameter estimation of poses, which is to estimate the static 

poses based on noisy measurements of point features on rigid bodies. The closed-form 

solutions for static pose estimation are based on a maximum likelihood criterion or 

orthogonally constrained total least-square (CTLS) goodness-of-fit criterion when 

assuming an independent Gaussian noise modeling with zero mean and known variance. 

There are normally two forms of solutions, namely, batch and recursive LS estimators 

[20]. The former estimates pose parameters by processing the entire measurement data 

simultaneously. The latter deals with ongoing measurements and estimation, adopted for 

sequential rather than batch processing. Nevertheless, they are only suitable for static 

systems or constant pose estimation, where there is no motion during estimation. Further, 

due to the nonlinearity, the close-form CTLS solutions of static pose estimation tend to 

decouple the rotational and translational parameters and normally estimate the rotation 

first and translation later [28, 29].  

There is a very extensive bibliography on the topic of pose estimation from corresponded 

3D point sets in many disciplines, such as photogrammetry, computer vision, robotics, 

and psychometrics. Different terminologies have been defined, namely, absolute 

orientation [30], registration [31], rigid body motion [32], and orthogonal Procrustes 

problem [33]. A number of efficient close-form solutions for this CTLS problem have 

been found and compared; see the surveys by Wrobel [34], Eggert et al. [35], and 

Williams et al. [31]. The solutions differ in terms of orientation representations and 
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mathematical derivation. Some applied Singular Values Decomposition (SVD) or polar 

decomposition based on rotation matrix representation [36, 37]. While others applied the 

eigensystem analysis of matrices based on unit or dual quaternion representation of 

rotation [30, 38, 39]. In particular, the SVD approach had been further investigated and 

improved [40-44]. Kanatani [49] stated the theoretical equivalent of the polar 

decomposition and SVD based methods. Eggert et al. [35] compared these four solutions 

and concluded no difference in robustness against noise data. Essentially, these solutions 

are optimal in the least-squares sense under the statistical assumptions that the Gaussian 

noise on the point measurements is isotropic (equal distribution in all directions) and 

homogeneous (equal for all points in space) [23]. However, due to the nature of 3D 

sensors, point measurement error distributions are usually anisotropic (direction 

dependent) and heteroscedastic or inhomogeneous (point dependent) [46]. Ohta and 

Kanatani [46] and Matei and Meer [47] both tackled the problem under the general noise 

conditions with renormalization and multivariate errors-in-variances regression, 

respectively.  

2.2.2 Dynamic Pose Estimation 

Kalman filter (KF) based state estimation provides a computational tractable solution for 

dynamic pose estimation [21]. Kalman filtering technique provides a way to estimate 

sequentially the state of a dynamic system using a sequence of noisy measurements made 

on the system. It not only considers kinematic motion of system model of rigid bodies but 

also estimates both rotational and translational parameters together as a state vector.  

Kalman filter techniques consist of two models: system transition model and observation 
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model. Basically, the system transition model describes the evolution of the state with 

time; while the observation model maps the state estimate to noisy measurements. When 

the transition or/and observation models are nonlinear, linearization is applied during 

filtering. Although Kalman filter was originally derived for a linear problem, the 

extended Kalman filter (EKF) algorithm was introduced to provide a near-optimal 

solution for these nonlinear problems [26]. In terms of linearization errors, sufficiently 

high sampling rate enforces the accuracy of the linearization over the sampling period.  

However, EKF-based solutions might easily diverge under fast and nonlinear trajectory 

dynamics, for example, quick changes of the pose, even with a relatively high sampling 

rate [20]. To solve this issue, iterative extended Kalman filter (IEKF) has been developed 

to improve the linearization by taking into account the measurements iteratively.  

Recently, adaptive extended Kalman filter (AEKF) has been investigated for noise 

covariance adaptability due to the rising robustness requirements [20, 21]. The 

requirements are mainly caused by non-constant target moving speeds and accelerations, 

and the measurement vulnerability of traditional planar CCD cameras when illumination 

condition changes, etc.  

2.2.3 Robust Pose Estimation  

Visual features of a rigid body are observed in two ways, namely, passive and active 

mode. The passive mode means that illumination provides only for the visualization. The 

active mode means that artificial illumination provides geometrical constraints. The 

natural features include edges, corners, colors, textures, etc. When natural features are not 

accurate or reliable, it leads to the employment of artificial illumination, such as infrared 
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LED markers.  

A practical problem arises when measurements are contaminated with gross errors, called 

outliers. Outliers are anomalous observations lying outside the overall error distribution 

pattern. In reality, 3D measurements are vulnerable in a cluttered, dynamic, and 

unpredictable environment. Incorrect correspondences may cause outliers due to 

distractions from reflections, lighting variation, background colours and textures, and 

even algorithms of feature matching. Besides, sensing failure or invisibility may cause 

missing data due to obstruction or field-of-view constraints. Missing data is considered 

and treated as an extreme case of outliers. Some examples are studied in Appendix H.  

The foregoing reviewed closed-form solutions for pose estimation are all based on a LS 

goodness-of-fit criterion. Unfortunately, LS based minimization has been well recognized 

as highly sensitive to outliers, since it tends to accommodate all data with sum of squares 

of residuals. In this respect, robust estimation has been investigated in the fields of 

statistics and computer vision over the last 35 years [48, 49]. Rousseeuw et al. [50] and 

Hodge et al. [51] have reviewed two ways of solution: diagnostics and accommodation. 

The former detects and removes or replaces outliers prior to further processing. The 

Mahalanobis distance (MD) approach has been a classical method widely used in 

multivariate outlier detection [52]. The latter replaces the LS criterion with less sensitive 

ones to accommodate all data and withstand the effect of outliers, such as L1 regression 

[53], L∞ norm [54], least median of squares (LMedS), M-estimators, etc. [50]. However, 

robust estimators are not necessarily the only or even the best techniques that can be used 

to solve the problems caused by outliers in all contexts, since specialized heuristics for 

handling occasional outliers appear in specific contexts [48]. 
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With these statistical techniques, researchers have attempted to solve the outlier problem 

in the field of pose estimation. Siegel et al. [55, 56] first considered the 2D and 3D rigid 

transformation for a robust fit using the repeated median algorithm in biometrics. Zhang 

[57] and Pennec et al. [58] attempted to refine the point matching and registration by 

thresholding data against a MD criterion. Zhuang and Huang [59] also tackled the robust 

registration problem in an iterative scheme of M-estimator. Boulanger et al. [60] 

employed an LMedS norm for a robust correspondence estimation between computer-

aided design (CAD) models and measured points. Rosin [61] also applied the LMedS 

approach to determine the best minimum subset of point matches for pose estimation. 

Kumar and Hanson [62] compared the LMedS and M-estimator approaches in camera 

pose estimation using iterative techniques. Most recently, Enqvist et al. [54] studied the 

geometric conditions of the L∞ norm to handle outliers in camera pose estimation. 

However, all these techniques worked in their specific contexts and assumptions and the 

fraction of outliers were usual low, and a robust and efficient solution of outlier diagnosis 

has not been provided to preprocess measurements prior to pose estimation of rigid body 

motions.  

2.2 Position-Based Visual Servoing 

Visual servoing describes a class of closed-loop feedback control algorithms in robotics 

for which the control error is defined in terms of visual measurements [63]. It has diverse 

applications, including industrial automation, assistance in medical operations, control of 

ground vehicles, airborne vehicles, and robotic grasping. A comprehensive tutorial and 

review can be found in [64], and a review of more recent developments was discussed in 
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[65]. Basically, the relationship between the robot and camera is often described as 

moving camera (eye-in-hand) or fixed-camera at the kinematic level. In the former 

approach, one or more cameras are mounted on the end-effector of a robot and several 

targets are fixed in the workspace. The goal is to control the view of the camera with 

respect to targets. In the fixed setup, cameras are fixed and the targets are mounted on the 

end-effector and work-piece. The camera and end-effector are considered as working at 

opposing ends of a kinematic chain, and pose of the end-effector is controlled 

independently of the camera view [63].  

In terms of control architecture, two types of techniques were first introduced by [66]: 

position-based and image-based visual servoing. In position-based visual servoing, the 

control error is calculated after reconstructing the pose of the end-effector from visual 

measurements. Joint angles are then driven by the error between the observed and desired 

pose. Conversely, the control error in image-based visual servoing is formulated directly 

as the difference between the observed and desired location of features (such as points 

and edges) on the image plane. Both methods have some disadvantage and advantages. 

The image-based approach relies on the image Jacobian (or interaction matrix), which 

transforms an image-space error to a pose or joint-space error. The main drawback is the 

singularities issue in the image Jacobian and it does not provide an explicit control of 

pose, which can lead to inefficient and unpredictable trajectories in Cartesian space. On 

the other hand, position-based visual servoing requires explicit reconstruction of the robot 

and target pose, and it leads to predictable trajectories and allows simple path planners to 

be directly incorporated into the controller. The position-based visual servoing is 

implemented in this thesis.  
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Visual servoing schemes can be further classified as direct visual servo
1
 or dynamic look-

and-move, depending on whether the control law directly generates joint-level inputs or 

Cartesian set-points for robot’s joint-level controllers. For several reasons [64], almost all 

recent practical systems as well as the scheme proposed in this proposal adopt the 

dynamic look-and-move approach.  

One more significant distinction should be made between endpoint open-loop (EOL) and 

endpoint closed-loop (ECL) [64]. An ECL controller observes both end-effector and 

targets to determine the control error, while an EOL controller observes only the target. In 

the latter case, the relative position of the robot is controlled using a known, fixed camera 

to robot end-effector (hand-eye) transformation. This transformation is established by the 

hand-eye calibration, which has a significant effect on the accuracy of EOL control; while 

the hand-eye calibration is not necessary for ECL control, since the pose of the end-

effector is measured directly [63]. Moreover, it is always possible to transform the EOL 

control to ECL control by simply adding the observation of the end-effector. Thus, 

theoretically, the ECL system appears to be preferable to the EOL system. However, the 

ECL control requires the visibility of end-effector through the whole process of 

operation, and it may not be satisfied in the complex working conditions.  

There are two levels of control dealing with robots, namely, joint level and workspace 

level. Joint level control applies methodology of inverse kinematics in the control of joint 

motion of robot manipulators. For current industrial robot manipulators, such as the ABB 

robot used in the robotic riveting system, joint-level control is already commercially 

                                                           
1
 The terminology was introduced by Hutchinson et al. [64] to avoid confusion, since “visual servo”, 

Sanderson and Weiss used in 1980 [66], has come to be accepted as a generic term for any type of visual 

control of a robotic system. 
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available and thus it is not the focus of the research. Therefore, the control is targeted on 

the higher level above the joint level - the workspace level control. The workspace level 

control deals with the control of trajectories or more simply paths of robots without 

concern of time in the workspace that sends the commands of desired poses to the joint 

level control. The workspace level control is just analogue to the jogging mode of robots, 

where users use a teach pendant to jog robot incrementally in either joint or workspace 

level, such as linear or oriented modes in an ABB robot. In some circumstances, the 

workspace level robotic control is considered as the dynamic trajectory planning due to 

the fact that there is no direct control of joints involved and it only dynamically plans the 

trajectories of robots during motion.   
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CHAPTER 3   STATIC POSE ESTIMATION 

This chapter presents the direct solution of static relative pose estimation between two 

rigid bodies based on four sets of corresponding point measurements using least-square 

methods. Conventionally, static pose estimation is targeted for an object with respect to a 

camera. Instead, the goal here is to find the direct static relative pose estimation between 

two rigid body objects, as described in Eq. (1.1). First, several practiced formulations of 

solutions are summarized. Second, three levels of least-square methods are discussed for 

solving the static pose estimation. Furthermore, direct relative static pose estimation is 

derived for determining the relative pose transformation between two rigid bodies, and 

compared with the indirect method. As an application, the relative pose estimation is 

employed in localization of the robotic riveting system.  

3.1 Formulation of Pose Estimation 

Four commonly used formulations are summarized here for pose estimation, namely, 

Cartesian frame formulation, three point method, normalized directional vectors, and 

covariance matrix method. The first and second ones are based on three points. 

Specifically, first one establishes an orthonormalized  frame, and the second one simply 

formulates non-orthogonal linear systems. The third and fourth ones can be applied to 

more than three points to enhance estimation accuracy. The adopted formulation is 

normalized directional vectors method, since normalization reduces the effect of point 

distribution.  
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3.1.1 Cartesian Frame Formulation 

As shown in Fig. 3.1, based on three points (  ,   , and   ), a body-attached Cartesian 

coordinate system can be formulated using Gram-Schmidt orthonormalization procedure 

[67], i.e.,  

                                                              (3.1) 

where 

  
     

       
,   

        
         

   
 

         
         

   
  

, and                                (3.2) 

However, an orthogonal coordinate system is not necessary for determining a rotation. 

Furthermore, the method does not consider the measurement noise associated with the 

three points. Therefore, the following sections provide a simpler way by establishing non-

orthogonal linear systems based on least-square methods.  

 

Figure 3.1: Cartesian frame formulation. 

3.1.2 Three-Point Method 

A target with three non-collinear points, whose coordinates can be measured, is utilized to 

determine the pose transform. The three-point method estimates the pose changes through 

the initial and final position measurements of three targets, such as light emitting diode 

(LED) markers. As shown in Figure 3.2,    ,    , and     are the initial positions of the 

three-point target; while    ,    , and     are the final ones measured by certain devices.  
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Figure 3.2: Transformation determinations using the three-point position data [28]. 

The initial and final three line vectors formed by the three-point target are  

                                                        (3.3) 

                                                        (3.4) 

Then, the rotation matrix from the initial pose to the final pose can be formulated by [28] 

                                                              (3.5) 

where  

                                                             (3.6) 

                                                             (3.7) 

3.1.3 Normalized Directional Vectors 

In practice, normally, more than three points are employed. The redundancy of point 

features helps improve the estimation accuracy in the presence of occlusions. When more 

than three points are utilized for robustness, normalized line vectors can be constructed as 

directional vectors for each pair of the points i and j. Then, the rotation relating two 

corresponded directional vectors can be expressed as [29]  

                                                                  (3.8) 
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where  

                                                         (3.9) 

          
                                            (3.10) 

where n is the number of points.     , and     are the normalized vector from point   to  , 

calculated by 

     
  

    
 

   
    

  
   and      

     

       
                                        (3.11) 

3.1.4 Covariance Matrix Method 

The covariance method is to adopt statistical characteristics of point patterns to formulate 

the similarity transformation. The mapping equation system of the rotation matrix can be 

formulated by 

                                                              (3.12) 

where  

                                                 (3.13a) 

                                                 (3.13b) 

   and    represent the mean value of two point sets    and   ,  

   
 

 
   

 
     and     

 

 
   

 
                                       (3.14) 

Thus, the covariance matrix of two point patterns can be formulated as [40] 

           
 

 
    

                                               (3.15) 

The solution based on the singular value decomposition of the above covariance matrix 

of the point data is given as a theorem in Appendix D.  
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3.2 Least Squares Methods 

When considering the measuring noise in the coordinate data of these points, least square 

methods should be applied to estimate the optimal values for R in Equations (3.5), (3.8) 

and (3.12). As a result, three types of least square methods are summarized based on the 

method of normalized directional vectors in Eq. (3.8):  

 Least squares (LS) – Assuming noisy perturbations only on Df  side.  

           , min║ΔDf║
2
                                     (3.16) 

From Appendix C.5, the LS solution of R is  

       
      

  
  

                                             (3.17) 

where   
      

  
  

 is the pseudo-inverse of Do, as explained in Appendix C.3. 

 Total least squares (TLS) – Assuming measurement errors exist in both Do and Df.  

R(Do + ΔDo) ≈ Df + ΔDf, min(║ΔDo║F +║ ΔDf║F)                     (3.18) 

The result is given in [28].   

 Constrained total least square methods (CTLS) – Assuming measurement errors exist 

in both Do and Df  and subject to the orthogonality of R.  

R(Do + ΔDo) ≈ Df + ΔDf, min(║ΔDo║F +║ ΔDf║F), 

subject to                                                    (3.19) 

It is shown in Goryn and Hein [42] that the above problem yields a standard orthogonal 

Procrustes problem in Golub and Van Loan [68] and Appendix C.6, of which the 

intention is to find an orthogonal matrix R, which most nearly transforms Do to Df  in the 

least-squares sense. The solution is  

                                                             (3.20) 
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where the orthogonal     matrices U and V are given in terms of the SVD of     
 : 

    
                                                         (3.21) 

This SVD method for determining R has the same form as the one presented in Arun et. 

al. [36]. To always obtain a rotation matrix (and not a reflection matrix), the modification 

proposed in Umeyama [40] should be used. As given in Appendix D, the modified 

solution is  

     
   
   
          

                                         (3.22) 

Upon the calculation of R, the translational vector ti for each point can be obtained by  

                                                             (3.23) 

Then, the vector t for the rigid body can be computed by minimizing  

                  
  

                                         (3.24) 

By taking a derivative with respect to t and setting the derivative to 0, it yields 

              
 
                                              (3.25) 

Clearly, the optimum solution of t is the mean of translations of all point vectors.  

3.3 Direct Relative Pose Estimation between Two Rigid Bodies 

This section presents the relative pose estimation of two rigid bodies based on four sets of 

corresponding point measurements using least-square methods, including LS and CTLS. 

Two approaches of relative pose estimation are developed and compared, namely, 

conventional (indirect) and strict (direct) least-square methods. The former is to first 

obtain individual least-square pose transformation of each rigid body from its two sets of 

point measurements, based on which the relative pose transformation is then calculated 
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indirectly; while the latter is to formulate a direct transform mapping equation of point 

measurements for the relative pose transformation, based on which the least-square 

methods are directly applied to solve the relative pose transformation. The comparison 

has found and proved the inequality of indirect and direct ordinary LS solutions, and the 

equivalence of indirect and direct CTLS solutions. Thus, it is safe and acceptable to 

continue using the conventional indirect CTLS approach of relative pose estimation. 

Lastly, a case study of a robotic riveting system is provided to validate the result, aiming 

to estimate the optimal relative pose transformation between a robot end-effector and a 

work piece. 

3.3.1 Motivation of Direct Relative Pose Estimation 

The estimation of pose transformation of a rigid body from two sets of corresponding 

point measurements is a fundamental and well-studied problem, as given in literature 

study in Section 2.2.1. However, the research of the relative pose transformation between 

two rigid bodies from four sets of point measurements have not yet received much 

attention. Conventionally, the relative pose transformation between two rigid bodies is 

indirectly determined by first estimating the pose transformation of each rigid body from 

its two sets of corresponding point measurements and then multiplying the inverse of one 

of them with another one, as given in Eq. (1.1). The arising question is whether the 

indirect solution from the conventional approach is still optimal or not? Therefore, this 

section aims to derive a strict (direct) least-square solution of relative pose estimation as 

oppose to the conventional (indirect) approach and then compare them to verify the 

differences.  
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3.3.2 Problem Statement 

As shown in Figure 3.3, two rigid body targets with a certain number of point features are 

observed by a measurement system. Based on the observed point data, the underlying 

problem is to estimate the relative pose transformation between these two rigid bodies.  

Measurement

Point features

Target 1

Target 2

Point features

 

Figure 3.3: Two rigid body targets observed by a measurement system.  

Thus, the following problem can be stated:  

Let                      and                         be two sets of 

corresponding non-coplanar points for a rigid body (Body 1) in m-dimensional space; 

                    and                          be another two sets of 

corresponding non-coplanar points for another rigid body (Body 2) in m-dimensional 

space. Note that the 3-dimensional cases, i.e.,    . n and k are the number of points on 

Body 1 and Body 2, respectively.   and   are the observed coordinate data of points with 

respect to a common measurement frame, denoted as    ;    and    are the local 

coordinates of points with respective to the body-fixed frames of Body 1 and Body 2, 

denoted as     and    , respectively. The objective is to find the relative pose 

transformation of frame     with respective to frame   , by minimizing the variance of 
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estimation errors caused by the Gaussian noises of the data of  ,  ,    and   . Suppose 

the Gaussian noises of point measurements are isotropic (equal distribution in all 

directions) and homogeneous (equal for all points in space). The relative pose 

transformation can be defined as a             homogeneous transformation 

matrix, i.e.,  

     
      

  
                                                      (3.26) 

where                            and          are the orthonormal 

rotation matrix and translation vector, respectively. Scaling factor is set to be one and 

therefore not considered here.  

Conventionally, from Eq. (1.1),     can be solved by a transform equation as  

       
          

        
           

  
      

       
          

  
  (3.27) 

where  

     
      

  
                                                      (3.28) 

     
      

  
                                                      (3.29) 

                     are homogeneous transformations of frames    and    with 

respect to frame   , respectively;          and          are the orthonormal 

rotation matrix and translation vector of    with respect to   , respectively.          

and          are the orthonormal rotation matrix and translation vector of    with 

respect to   , respectively.  

Based on     and    , the transform mappings of    and    from frames    and    to 

frame    can be described in Eqs. (3.30) and (3.31), respectively.  



31 

 
 
 
   

      

  
    

 
                                                   (3.30) 

 
 
 
   

      

  
    

 
                                                   (3.31) 

To solve for     and    , the rotation mapping equations of body 1 and body 2 can be 

formulated using the normalized directional vectors method in Eq. (3.8) as 

                                                                  (3.32) 

                                                                  (3.33) 

where           and           are based on the corresponding points of body 1, 

i.e.,    and  , respectively;           and           are based on the 

corresponding points of body 2, i.e.,    and  , respectively. It is obvious that        

                      , provided that the points of rigid bodies are well 

corresponded and non-coplanar.   

However, a direct mapping equation of     associated with the observations  ,  ,    and 

   is much more appreciated than the conventional solution in Eq. (3.27), in the sense of 

directly estimating parameters from noisy observations. Therefore, the transform 

mapping of    from its description in frame     to a description in frame    can be 

described in terms of     as  

    
 
 
        

 
                                                   (3.34) 

where     is the transform mapping from    to   , defined as 

     
      

  
                                                   (3.35) 

which can be characterized in the following transform mapping of   from    to   ,  
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                                               (3.36) 

Theoretically,     is the inverse of     in Eq. (3.28), i.e., 

       
       

     
    

  
                                     (3.37) 

Thus, the rotation mapping equations for     and     can be formulated in Eqs. (3.38) 

and (3.39) by multiplying     with both sides of Eq. (3.33) or decoupling     and     

from Eqs. (3.34) and (3.36).  

                                                             (3.38) 

                                                             (3.39) 

where 

                                                             (3.40) 

Based on the above conventional and strict formulations of relative pose transformation, 

the LS and CTLS methods are applied to solve the relative rotation matrix. Also, the 

conventional and strict solutions of     are compared. The objective is to investigate the 

differences and find out the reasons behind them.  

3.3.3 LS solution 

Without the error assumption of point data and                    , the 

theoretical solutions of     and     can be determined in Eqs. (3.41) and (3.42) from the 

aforementioned rotation mapping equations in Eqs. (3.32) and (3.33).  

          
                                                    (3.41) 

          
                                                    (3.42) 
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Thus, the theoretical solution of     can be derived based on Eq. (3.27) as  

       
             

   
  

      
         

        
             (3.43) 

When considering the independent Gaussian errors in Eqs. (3.32) and (3.33), i.e., 

              and              , and the number of points is more than m, 

i.e.,            and           , the LS solutions of     and     are given as  

           
        

        
  

  
                              (3.44) 

           
        

        
  

  
                              (3.45) 

where     
   and    

  are the Moore-Penrose (M-P) inverses of     and    , 

respectively. Since                , i.e., have full row rank, we have     
  

   
        

  
  

 ,    
     

        
  

  
.  

Thus, the conventional (indirect) solution of     can be obtained based on      and      as  

        
  

            
  

  
      

 
 

        
        

  
  

 
  

      
        

  
  

 

       
        

  
  

      
        

  
  

.                            (3.46) 

However, the conventional (indirect) solution might not be the LS solution for     . 

Therefore, the following is to directly derive the strict LS solution of     based on its 

direct rotation mapping equation in Eq. (3.38) and compare it with the conventional 

solution in Eq. (3.46). Clearly, the strict LS solution of     can be solved by 

                        
        

           
                    (3.47) 
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From the rotation mapping equation of     in Eq. (3.39), we have  

           
                                                        (3.48) 

where    
     

        
  

  
 is the M-P inverse of    . 

Substituting Eq. (3.48) into Eq. (3.47), it yields the strict (direct) LS solution of      

                    
       

        
        

  
  

      
        

  
  

  (3.49) 

Clearly, it is observed that the strict LS solution in Eq. (3.49) can be quickly achieved by 

replacing the inverses of     and      of the theoretical solution in Eq. (3.43) with their 

M-P inverses. Thus, Eq. (3.49) provides a general solution of    . More importantly, the 

differences are observed for the conventional (indirect) and strict (direct) LS solutions of 

    in Eqs. (3.46) and (3.49). Specifically, the inequality of the conventional and strict 

LS solutions, i.e.,         , can be proved by applying the following lemma, i.e., 

            
  

. This implies that a LS solution of a rotation matrix loses its orthonormal 

property, i.e.,                           . Therefore, the CTLS solution of 

relative pose transformation considering the orthonormal constraint is discussed in the 

next section.  

Lemma 1: Let           
  and           

 .         ,         ,        

        .    
        

    
  and    

        
    

  are the Moore-Penrose inverses of 

    and     based on their SVD, respectively. An inequality about     and     can be 

concluded that          
  .  

Proof of Lemma 1: Suppose          
  , i.e.       

         
  

  
, then 

      
       

   .                                                      (3.50) 
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Computing the product of       
  and     

     reveals 

      
           

       
    

          
                             (3.51) 

   
           

    
          

        
   

   
  

  
  

 

  
 
      

                (3.52) 

where          and          includes the singular values of     and    , i.e.,  

      
     
   
     

   
   
   

      and       
  

 
 
 
 
 
 
   

    
   
     

  

     
     
      

 
 
 
 
 

              (3.53) 

     

     

   
     

   
   
   

      and       
  

 
 
 
 
 
 
   

    

   
     

  

     
     
      

 
 
 
 
 

               (3.54) 

          
                                                          (3.55) 

where         and             are orthonormal bases for the row space of    , 

denoted by      
   and the nullspace of    , denoted by       , respectively.  

Hence, Eq. (3.56) can be obtained from Eqs. (3.50) and (3.51). 

      
       

        
                                                 (3.56) 

yields that 

   
                                                                 (3.57) 

which is conflicted with the property of    
         

    in Eq. (3.52).  

Thus, we prove that  

         
                                                         (3.58) 

This concludes the lemma. 
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3.3.4 CTLS solution 

When considering the independent Gaussian errors in both sides of the aforementioned 

rotation mapping equations in Eqs. (3.32) and (3.33), i.e.,                      

and                     , and the orthogonality of     and    , the constrained 

total least square (CTLS) solutions of     and     are given by Eq. (3.22) as  

        
   
   
          

  
   

 
                                    (3.59) 

        
   
   
          

  
   

 
                                    (3.60) 

where the orthogonal matrices   and   ,    and    are produced in terms of the SVD of 

      
  and       

 , i.e.,  

      
        

                                                   (3.61) 

      
        

                                                   (3.62) 

Thus, the conventional (indirect) CTLS solution of     in Eq. (3.27) can be obtained by 

substituting the      and      in Eqs. (3.59) and (3.60) as  

        
  

         
 
     

     
   
   
          

  
   

  

 

   
   
   
          

  
   

  

    
   
   
          

  
   

    
   
   
          

  
   

                        (3.63) 

Next is to directly derive the strict CTLS solution from the rotation mapping equation of 

    in Eq. (3.38). When considering errors in both     and     and the constraint that the 



37 

rotation matrix of     is orthonormal, the problem can be described as follows:  

                        ,           
         

 ,               (3.64) 

subject to                           , 

From the mapping equation of     in Eq. (3.39), the CTLS solution of     is given as 

        
   
   
          

  
   

                                             (3.65) 

where the SVD of       
  can be obtained based on Eq. (3.61) as 

      
         

  
 

        
          

                                  (3.66) 

Thus, the strict (direct) CTLS solution of     can be determined by 

       
   
   
         

  
   

  

    
   
   
          

  
   

    
   
   
          

  
   

                   (3.67) 

based on the SVD of       
  by substituting Eqs. (3.62) and (3.65), i.e.,  

      
            

       
                                         (3.68) 

where 

     
   
   
          

  
   

                                        (3.69) 

       
            

   
 
        

           
                      (3.70) 

Comparing the conventional (indirect) and strict (direct) CTLS solutions in Eq. (3.63) 

and (3.67), the equivalence of them can be clearly found due to the fact that the CTLS 

solutions of rotation matrix maintains the orthogonality, i.e.,     
  

     
 

     . 



38 

Hence, it is safe and acceptable to employ the conventional CTLS approach of relative 

pose estimation. It indicates that any approach that enforces all required constraints and 

that is based on the same cost function, must lead to the same result. For verification, a 

case study of a robotic riveting system is presented in the following section.  

3.3.5 Case Studies 

As shown in Figure 3.4, a robotic riveting system consists of a robot end-effector, a work 

piece, and a measurement system. In this case,     represents the relative pose 

transformation between the robot end-effector and the work piece to be estimated for the 

purpose of precise rivet insertion.     represents the pose transformation of the robot end-

effector with respect to the measurement system;     represents the pose transformation 

of the work piece with respect to the common measurement system. The underlying 

problem becomes finding the optimal relative pose transformation of the work piece with 

respect to the robot end-effector based on the measurements of points on both bodies.  

 

Figure 3.4: Experimental setup of a robotic riveting system. 

To represent the points on rigid bodies, rigid body targets are attached and fixed on the 

robot end-effector and the work piece at predefined locations, as shown in Figure 3.5. 
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Each target has four observable points at the ends of four frames. The observed 

coordinates of points of rigid body targets (  and  ) with respect to the frame of the 

measurement system are given in Table 3.1. The local coordinates of the points (   and 

  ) with respect to the body-fixed frames were pre-measured and collected in Table 3.2. 

Therefore, the problem of finding the relative pose transformation between the robot end-

effector and the work piece becomes obtaining the optimal relative pose transformation 

between these two rigid body targets.  

 

Figure 3.5: Two rigid body targets on the work piece and the robot end-effector. 

Table 3.1: Observed Coordinates of Points of Rigid Body Targets w.r.t. the Frame of the 

Measurement System  

Bodies 
 Observed Coordinates of Points (unit: m) 

 Point 1 Point 2 Point 3 Point 4 

Robot end-effector 

    

x -0.298104 -0.254750 -0.378223 -0.261440 

y 0.106871 0.123163 0.070411 0.008391 

z -1.678396 -1.774297 -1.738408 -1.696042 

Work piece 

    

x 0.176478 0.101090 0.238220 0.188659 

y 0.267341 0.308396 0.296363 0.370121 

z -1.911722 -1.974734 -1.993495 -1.886204 

Rigid Body Targets 

Work Piece 

Robot  

End-Effector 
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Table 3.2: Local Coordinates of Points of Rigid Body Targets 

Bodies 
 Local Coordinates of Points on Bodies (unit: m) 

 Point 1 Point 2 Point 3 Point 4 

Robot end-effector 

     

x -0.000005 0.000236 -0.069540 0.069309 

y 0.001074 0.079929 -0.040248 -0.040756 

z 0.052548 -0.019033 -0.016784 -0.016731 

Work piece 

     

x -0.000208 0.000279 -0.069691 0.069620 

y 0.000818 0.079873 -0.040136 -0.040555 

z 0.052497 -0.018844 -0.017044 -0.016610 

Based on the observed and local coordinates of points in Tables 3.1 and 3.2, the relative 

rotation matrix can be determined based on the conventional and strict LS solutions of 

    in Eqs. (3.46) and (3.49), as well as the conventional and strict CTLS solutions in 

Eqs. (3.63) and (3.67). As shown in Table 3.3, the difference can be noticed between the 

conventional and strict LS solutions and no difference for CTLS solutions can be 

observed. The difference of conventional and strict LS solutions can be calculated as  

            
  

     
                    
                   

                    
    .              (3.71) 

Table 3.3: Relative Rotation Matrix in Experiments (   ) 

Methods 
Relative Rotation Matrix  

 Conventional (Indirect) Solutions (   )  Strict (Direct) Solutions (    ) 

LS 

-0.30576275 -0.77385220 0.55468233  -0.30576276 -0.77385219 0.55468232 

-0.16915305 -0.52902878 -0.83143468  -0.16915303 -0.52902878 -0.83143467 

0.93696618 -0.34821710 0.03047248  0.93696616 -0.34821709 0.03047247 

CTLS 

-0.30575458 -0.77388833 0.55462689  -0.30575458 -0.77388833 0.55462689 

-0.16937745 -0.52902079 -0.83153369  -0.16937745 -0.52902079 -0.83153369 

0.93692338 -0.34818652 0.03067129  0.93692338 -0.34818652 0.03067129 

 

Also, the LS solutions lost the orthogonality of rotation matrix, since the determinant of 

    is about 0.999 and the error of orthogonality is obtained as 
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    .              (3.72) 

In order to check the accuracy of the LS and CTLS solutions of    , a simulation based 

on the experimental data is carried out by adding Gaussian noises to the nominal 

coordinates of points assuming the calculated CTLS solutions of pose transformation are 

nominal. The nominal pose transformations of     ,     and     are given by the CTLS 

solutions of     ,     , and      as  

           

                   
                   
                   

       
      

       
                                   

                         (3.73) 

           

                    
                    
                   

      
      

       
                                   

                         (3.74) 

           

                    
                     
                   

      
      

       
                                   

 .                       (3.75) 

Thus, the contaminated coordinates of points with respect to the measurement system can 

be simulated by Eqs. (3.76) and (3.77). Tables 3.4 and 3.5 demonstrates the simulated 

coordinates of points with Gaussian noises, as opposed to the experimental data in Tables 

3.1 and 3.2.  

  
 

 
             

 
   

  

 
                                           (3.76) 

  
 

 
       

      

 
   

  

 
                                           (3.77) 

where the Gaussian noises of point measurements are assumed to be isotropic and 

homogeneous and subject to  

                                .                                 (3.78) 
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Table 3.4: Simulated Coordinates of Points w.r.t. the Measurement Frame 

Bodies 
 Simulated Coordinates of Points (unit: m) 

 Point 1 Point 2 Point 3 Point 4 

Robot end-effector 

     

x -0.299487 -0.255640 -0.379557 -0.261125 

y 0.105938 0.122051 0.070346 0.008379 

z -1.679709 -1.776592 -1.741395 -1.696640 

Work piece 

     

x 0.178792 0.098922 0.240034 0.189335 

y 0.266327 0.306103 0.295649 0.371958 

z -1.912906 -1.973721 -1.992492 -1.886938 

 

Table 3.5: Simulated Local Coordinates of Points w.r.t. the Body-Fixed Frames 

Bodies 
 Simulated Local Coordinates of Points (unit: m) 

 Point 1 Point 2 Point 3 Point 4 

Robot end-effector 

      

x -0.001320 0.000193 -0.069476 0.069657 

y 0.000658 0.080512 -0.039648 -0.040938 

z 0.053773 -0.020040 -0.018145 -0.017671 

Work piece 

      

x -0.000114 0.000236 -0.070122 0.069996 

y 0.000440 0.080834 -0.041764 -0.040782 

z 0.051014 -0.017106 -0.016877 -0.017759 

Based on the simulated observed coordinates of    and    in Table 3.4 and the simulated 

local coordinates of     and     in Table 3.5, the relative rotation matrices (   ) can be 

determined in Table 3.6.  

Table 3.6: Relative Rotation Matrix in Simulation (   )  

Methods 
Relative Rotation Matrix  

 Conventional (Indirect) Solutions (   )  Strict (Direct) Solutions (    ) 

LS 

-0.31229 -0.76069 0.56700  -0.31216 -0.76065 0.56688 

-0.16128 -0.54042 -0.83075  -0.16132 -0.54043 -0.83069 

0.94755 -0.34769 0.00274  0.94746 -0.34769 0.00280 

CTLS 

-0.30035 -0.77032 0.56249  -0.30035 -0.77032 0.56249 

-0.17525 -0.53511 -0.82640  -0.17525 -0.53511 -0.82640 

0.93759 -0.34679 0.02572  0.93759 -0.34679 0.02572 

Compared with the nominal rotation matrix (    ) in     , the accuracy of LS and CTLS 
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solutions of     in Table 3.6 can be evaluated by  

             
  

    
 
                                         (3.79) 

where 

      
                    
                     
                   

 . 

As a result, the errors of the conventional (indirect) and strict (direct) LS solutions are 

different, i.e., 0.0330 and 0.0328, respectively. The errors of the conventional (indirect) 

and strict (direct) CTLS solutions are equivalent, which is 0.0107. Apparently, the CTLS 

solutions has the best accuracy among these solutions besides the fact that it also 

maintains the orthogonality of a rotation matrix. Therefore, both the simulation and 

experiments have demonstrated the inequality of conventional and strict LS solutions, 

and the equivalence of conventional and strict CTLS solutions. It indicates that the 

relative pose transformation should be solved by either the conventional or the strict 

CTLS solutions.  

3.3.6 Summary 

In this section, the conventional (indirect) and strict (direct) closed-form solutions of the 

least-square relative pose estimation were presented. To find the relative pose 

transformation between two rigid bodies from four sets of corresponding point 

measurements, two approaches have been developed and compared, namely, 

conventional (indirect) and strict (direct) approaches. For each approach, the ordinary 

least-square (LS) and constrained total least square (CTLS) have been applied to solve 

the optimal solutions of the relative pose transformation. From the comparison, the 
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inequality of conventional and strict LS solutions, and the equivalence of conventional 

and strict CTLS solutions have been theoretically proved and verified by both simulations 

and experiments. The comparison indicates that the direct solution with constraints lead 

to identical results of the conventional solution. However, without constraints, the direct 

solution yields better accuracy compared with the conventional solution. The reason is 

that CTLS method takes into account the orthogonality of a rotation matrix, i.e., the 

inverse equals to its transpose. Hence, the relative pose transformation between two rigid 

bodies should be solved by either the conventional or the strict CTLS solutions. It is safe 

and acceptable to employ the conventional CTLS approach of relative pose estimation. 

Moreover, the number of observed points on the end-effector and the work piece might 

have different influences on the estimation accuracy of    . For example, it might be true 

that points on the robot end-effector have more influence that those on the work piece. 

Therefore, an analysis of influence of number of points on the relative pose estimation 

accuracy may need to be investigated. Also, a more interesting question would be what is 

the optimal combination of point numbers to have the most accurate result and yet still 

cost-effective? Table 3.7 demonstrates an example of the combination of point numbers. 

The objective is to find an optimal combination of numbers of points if existing. Eggert 

et. al. [35] stated that as the number of points grows, the error in the computed pose 

transformation approaches a value dependent on the noise level.  

Table 3.7: Combination of point numbers 

n/k 3 4 5 

3 (3,3) (3,4) (3,5) 

4 (4,3) (4,4) (4,5) 

5 (5,3) (5,4) (5,5) 
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3.4 Pose Estimation for Multiple Frames of a Rigid-Body System 

This section presents pose estimation for multiple frames of a rigid-body system. For 

localization of a robotic riveting system, pose transformations need to be estimated 

between a number of coordinate frames. Such a robotic system consists of both single 

and articulated rigid bodies. The large numbers and different types of frames add 

complexity into the procedure of localization. For this reason, the approach is designed to 

generate corresponding point measurements with respect to each pair of two frames, 

based on which pose transformation between these two frames can be estimated based on 

a constrained total least-square method. Lastly, experiments are provided to validate the 

effective implementation of pose estimation among various frames of a robotic riveting 

system.  

3.4.1 Description of Localization 

The localization is to find the location of an object in an environment, specifically pose 

transformation of a body-fixed frame with respect to a reference frame, including a 

rotation matrix and a translational vector. When a sensing system is utilized for 

localization, the underlying problem is to find the pose transformation with respect to the 

sensor's frame. The parameters of pose transformation can be estimated with a CTLS 

criterion from redundant measurements. More specifically for a position measuring 

system, redundant measurements are spatial coordinates of multiple observable point 

features, which are known as targets rigidly attached on the bodies. More specifically for 

a position sensing system, measurements are spatial coordinates of multiple points, which 

are known as targets rigidly attached on the bodies.  
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In this section, the methodology of pose estimation is implemented in the localization of 

a robotic percussive riveting system. The localization needs to be performed for the robot 

holding a rivet gun and a working panel on the gantry, i.e.,   
  and   

 
 in Eq. (1.1). By 

employing a position measuring system, the goal is to estimate the pose transformations 

between frames of the robot base, TCP of the rivet gun, the working panel, and the 

measuring system based on point measurements. Once established, the online 

measurements of the target on the robot tooling and the working panel could be 

transformed into the robot's frame using Eq. (1.2). Also, the coordinates of points of 

interests on the work piece could be transformed into the robot’s frame for manipulation 

purpose using Eq. (1.3).  

It is obvious that the robotic riveting system consists of single and articulated rigid 

bodies. Single rigid bodies include the working panel, the position measuring system, and 

rigid body targets; while the articulated rigid body indicates the robot manipulator. Thus, 

two categories of frames are classified, namely, frames of single rigid bodies with 

multiple observable point features, and frames of articulated rigid bodies with only one 

point, i.e., the TCP of the robot. The large numbers and different categories of frames add 

complexity into the procedure of localization. Basically, the approach is to generate 

several corresponding point measurements with respect to each pair of two frames, based 

on which pose transformation between these two frames can be estimated based on the 

CTLS method using the SVD solution.  

3.4.3 Localization of Robotic Riveting System 

Prior to the pose estimation, two sets of corresponding points need to be generated for 
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frames of both single and articulated rigid-bodies. For a single rigid body with multiple 

points, the generating approach is straightforward. One set is the local coordinates of 

points with respect to the body-fixed frame, while another set is the measured coordinates 

with respect to the sensing frame. For an articulated rigid-body system with only one 

point, the approach is to move the robot to multiple poses and then measure the 

coordinate of the TCP. The purpose is to create multiple point measurements at these 

locations as one set of points, while the corresponding local coordinates of the point are 

also recorded as another set. In this sense, a virtual target with multiple points is created. 

Thus, based on the methodology of point generation and the relative pose estimation in 

the previous section, the details of the implementation in the robotic riveting system are 

developed as follows, including the working panel, robot, and target localization.  

3.4.3.1 Working Panel Localization 

The working panel localization is to determine the pose transformation of the frame of 

the working panel with respect to the frame of the position measuring system, denoted 

by   
 

. Three tooling balls with known geometry (1/2"±0.0002") are installed at three 

predefined locations of the working panel, as shown in Figure 3.6. This is a case of a 

single rigid body with multiple points. Thus, spheral surface digitization of the tooling 

balls can be conducted with a wireless handheld probe and the position measuring 

system, as shown in Figure 3.7. There are multiple LEDs on the probe, which provide a 

reference to calculate the 3D coordinate of tip of the probe. Then, the techniques of 

sphere fitting can be applied to estimate the central coordinates of the tooling balls with 

respect to the position measuring system. Based on these two sets of point coordinates of 

tooling balls and transformation equation in Eq. (3.80), the aforementioned CTLS 
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solution of the pose estimation can be applied to find the optimal pose transformation 

between the frame of the working panel and the frame of the position measurement 

system.  

 
  

 
    

     
 

                                                  (3.80) 

 

Figure 3.8 shows the three tooling balls on the corners of the working panel and the TCP 

of the rivet gun. The surface digitization of tooling balls has been done with a handheld 

probe by touching the multiple locations of the surface, as shown in Figure 3.9(a). Sphere 

fitting was then employed to estimate the central coordinates of the tooling balls, as 

shown in Figure 3.9(b).  

Figure 3.6: Three tooling balls. 

Figure 3.7: Wireless handheld probe for digitization. 
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Figure 3.8:  Panel localization using three tooling balls, and TCP of the rivet gun. 

 

(a)      (b) 

Figure 3.9: (a) Digitization of tooling balls with a handheld probe; (b) the fitted sphere. 

Table 3.8: Central coordinates of tooling balls in the sensor and panel frames. 

    - Measured coordinates in the sensor frame (mm)   
 
 - Coordinates in the working panel frame (mm) 

 
X Y Z X Y Z 

Tooling ball 1 357.97 388.437 -1830.798 670 0 0 

Tooling ball 2 368.958 3.683 -2379.214 0 0 0 

Tooling ball 3 -120.915 -5.52 -2382.621 0 0 490 

By comparing the actual dimensions, the diameter errors of the fitted spheres for three 

tooling balls were [0.0494 0.0023 0.0488]
T
 mm. The errors of the horizontal and vertical 

distance between three tooling balls were 0.0129 mm and 0.0290 mm. It proves the 

precision of the sensing system. Therefore, the fitted central coordinates and the local 
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coordinates of tooling balls were gathered and shown in Table 3.8. Based on these two 

sets of coordinates, the pose transformation from the measuring system frame to the 

working panel frame can be calculated by the CTLS techniques,  

  
   

                  
                  

                 
                   

                   
  

                 
  

 . 

3.4.3.2 Robot Localization 

For robot localization, the goal is to find the relative pose transformation between the 

robot base and the working panel, based on which the local coordinates of rivet holes on 

the working panel from the rivet pattern planning can be transformed to the robot base 

frame for robotic path planning. To do so, the pose transformation from the robot to the 

measuring system has to be determined first, denoted by   
 . Then, the relative pose 

transformation from the panel to the robot, denoted by   
 
, can be calculated by Eq. (1.1).  

As the first step of estimating   
 , tooling geometric parameters have to be determined for 

robotic TCP calculation, as shown in Figure 3.10. Specifically, the least-square 

techniques of plane fitting of end-effector flange and calculation of Euclidean distance 

from the TCP to the plane can be applied to find the tooling geometric parameter, i.e., the 

distance from the TCP to the flange surface of the robot end-effector by assuming no 

coaxiality error of the TCP with respect to the end-effector. Without the assumption, the 

coaxial errors can be found based on cylinder surface fitting. More specifically, principle 

component analysis (PCA) can be adopted as a solution of the plane fitting when finding 

the normal vector of the plane. The result was 369.0433 mm. Note that there was an 

offset of 2.5 mm considering the radius of the probe ball. 
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(a)      (b) 

Figure 3.10: Determination of tool length from TCP to end-effector flange, (a) digitizing 

the surface of the flange of the end-effector; (b) digitizing the TCP of the rivet gun. 

Later, the length value was inputted into ABB robot’s tool database for tool length 

compensation, as shown in Figure 3.11(a). In our case, the rivet gun tooling length of 

369.043mm was along the z axis of the end-effector frame and assumed that the tooling 

was coaxial with the robot end-effector. The assumption was reasonable based on the 

design of the tooling.  

 

(a)       (b) 

Figure 3.11: (a) Screenshot of tool definition for the rivet gun in the ABB FlexPendant; 

(b) Pose of TCP of the rivet gun with respect to the robot base frame (  
   

). 

The second step is to create a virtual target at the robot TCP of multiple poses in the 

workspace, as shown in Figure 3.12. Therefore, two sets of corresponding point sets can 

be generated for this articulated rigid-body system. The approach is to measure the 
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coordinates of the TCP by the handheld probe and the position measuring system at 

various locations when the robot is jogged in the workspace, denoted as   . In the 

meantime, the coordinates of the TCP with respect to the frame of the robot base are 

recorded at these poses from the robot controller or the ABB FlexPendant, as shown in 

Figure 3.11(b), denoted as      .    denotes various joint angles of the robot.  

 
  

 
    

  
     

 
                                                  (3.81) 
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Figure 3.12: Robot localization by creating a virtual target at multiple poses in 

workspace. 

Similarly, the aforementioned CTLS solution of the pose transformation can be applied to 

solve for an optimal estimation of pose transformation of   
  from Eq. (3.81). It should be 

noted that at least three locations are required and the more numbers of locations 

spanning in the workspace the less bias of estimation. The selection of locations should 

be carefully considered in terms of well representing the working volume, such as the 

riveting operating volume with respect to the working panel. These two sets of data are 

shown in Table 3.9. Based on them, the pose transformation from the measuring system 

frame to the robot base frame can be determined by the CTLS techniques as, 
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 . 

Finally, the pose transformation matrix from the panel to the robot can be calculated as  

  
 

  

                
                 

                
                

                 
  

                
  

 . 

Table 3.9: Coordinates of the TCP in the sensor and robot base frames. 

 
 
 - Measured TCP coordinates in the sensor frame (mm)       - TCP in the robot base frame (mm) 

 
X Y Z X Y Z 

Pose 1 69.825 -316.292 -2059.047 1197.4 339.2 1307.2 

Pose 2 -87.23 -334.008 -2146.817 1232.1 418.6 1465.7 

Pose 3 214.587 126.688 -1706.057 1362.3 -200.4 1152.6 

Pose 4 337.598 7.229 -1973.685 1417.1 90.3 1035 

Pose 5 -8.611 -84.016 -1964.318 1334.6 127.8 1382.3 

Pose 6 105.71 -103.454 -2023.266 1352.4 189 1269.2 

Pose 7 251.214 -163.125 -2138.181 1369.9 319.9 1125.6 

Pose 8 83.427 118.864 -1903.497 1467.3 -36.1 1287.6 

Pose 9 48.965 -105.784 -2110.403 1399.6 261.6 1327.4 

Pose 10 193.107 -48.501 -2070.071 1424.5 197.9 1182.2 

Pose 11 158.138 114.124 -1912.339 1468.7 -24.2 1213.1 

Pose 12 127.778 -50.006 -2208.214 1501.2 311.5 1249.6 

Pose 13 25.521 -114.313 -1998.223 1328.9 173.5 1348.8 

 

3.4.3.3 Target Localization  

A rigid body target with observable point features is rigidly attached on the tooling of the 

robot to provide a tracking reference. Target localization is to find the location of the 

target 2 with respect to the end-effector of the robot. The target is usually equipped with 

multiple passive or active markers, such as reflective tapes and LEDs. This is also a case 

of a single rigid body with multiple points. Similarly, from these two sets of local 

coordinates and the measured coordinates of the points of the target 2, a pose 

transformation from the target to the measuring system, denoted by   
  , can be estimated 
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based on the aforementioned CTLS technique of the pose estimation based on   

 
     

 
    

   
      

 
 .                                                 (3.82) 

Thus, the pose of the target 2 with respect to the end-effector can be derived by  

  
      

        
       

  .                                        (3.83) 

For target localization, a target with four infrared LEDs called a dynamic rigid frame 

(DRF) is rigidly attached on the tooling, as shown in Figure 3.13.  The local coordinates 

and the measured coordinates of the four LEDs of the target are shown in Table 3.10. 

Similarly, the pose transformation from the DRF target to the end-effector of the robot 

can be calculated by the CTLS techniques,  

  
    

                  
                   

                   
                      

                   
  

                     
  

 . 

Table 3.10: LED coordinates of the target in the sensor and local frames. 

      - Measured coordinates in the sensor frame (mm)   
    

 - Coordinates in the target frame (mm) 

 
X Y Z X Y Z 

LED 1 40.38 -243.43 -1423.66 -0.0051 1.0743 52.5481 

LED 2 84.73 -228.00 -1519.27 0.2362 79.9293 -19.0332 

LED 3 -39.63 -279.13 -1484.19 -69.54.4 -40.2479 -16.7839 

LED 4 76.02 -342.36 -1440.63 69.3093 -40.7557 -16.7310 

 

(a)      (b) 
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(c) 

Figure 3.13: Target 2. (a) Modeling (b) Four infrared LEDs. (c) The target on the tooling 

and transformation between frames of target 2 and measurement.  

3.4.4 Verification of Localization 

For verification of the accuracy of the localization, a procedure was designed as follows. 

First, a random rivet spot was chosen on the working panel and then digitized the spot 

with the handheld probe, as depicted in Fig. 3.14. The coordinates were denoted as    .  

 

Figure 3.14:  Hole digitization with handheld probe. 

Second, the digitized coordinates of the spot were transformed into the robot base frame 

by  

     
     . (3.84) 

Third, the transformed coordinate was defined as a robot target and programmed in a 
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motion command in the ABB robot. Lastly, the command was executed and checked if 

the robot TCP was actually positioned at the rivet spot. Then, this procedure was repeated 

for several random spots on the working panel to ensure the results.  

It was found that the robot was capable of reaching the digitized rivet spots after the 

proper localization with an accuracy of 1~2 mm, approximately, which depends on the 

robot absolute positioning accuracy and localization accuracy. Also, the techniques of the 

localization with the position sensing system along with the digitization using a probe can 

be integrated as a robot programming-by-demonstration to replace the conventional 

programming-by-teaching. The work in this area is ongoing to further analyze the 

accuracy of estimation and the influence of the number of points on the accuracy.  

3.4.5 Summary 

The pose estimation for multiple frames of a rigid-body system is presented in this 

section. Two categories of frames are classified, namely, frames of single rigid bodies 

with multiple observable point features, and frames of articulated rigid bodies with one 

point. The approach is to generate several corresponding point measurements with 

respect to each pair of two frames, based on which pose transformation between these 

two frames can be estimated based on a CTLS method using the SVD. Localization using 

a virtual target with multiple points is proposed for articulated body systems. The 

methodology has been implemented for the localization of the robotic riveting system. 

Pose transformations were estimated between frames at robot base, TCP, working panel, 

rigid body target, and a position measuring system. Clearly, the method can be extended 

to other rigid-body systems with single rigid bodies and articulated rigid bodies.   
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CHAPTER 4   DYNAMIC POSE ESTIMATION 

This chapter addresses a novel method of dynamically estimating relative pose between 

two rigid bodies during motion for position-based visual servoing. The conventional way 

is to estimate pose of each body individually relative to measurement. The proposed 

approach is to dynamically estimate relative pose of two bodies simultaneously. For 

robotic riveting, the objective is for dynamic pose estimation between the robot TCP and 

working panel, as given in Eq. (1.4). For this reason, when directly assigning the relative 

pose and motion as a state estimate, the observation model is formulated in such a way 

that the state estimate is mapped to the observed point sets of two bodies. Since this 

observation model is nonlinear, an analytical expression of linearization is derived and 

state estimation by iterative extended Kalman filters (IEKF) is adapted to reduce the 

linearization errors. The proposed approach is implemented in simulations of position-

based visual servoing and validated experimentally on a robotic riveting system for 

aircraft automated assembly.  

4.1 Description of Dynamic Pose Estimation 

A relative pose transformation is defined between two rigid body’s frames. Instead of 

tracking each body individually, the work presented in this section addresses the state 

estimation of relative poses between two rigid bodies simultaneously during motion 

based on noisy geometric measurements. For measurements, geometric features of rigid 

bodies can be observed such as points, lines, planes, etc. Among them, point features are 

the most effective due to easier implementation for processing. In order to measure 3D 

coordinates of point features in high frame rates for real-time control, a portable optical 
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CMM is utilized by tracking targets of synchronized active LED point markers attached 

on rigid bodies [19, 69]. It avoids conventional time-consuming processing of computer 

vision in planar CCD cameras, such as image formation, processing, feature extraction, 

matching, and registration, etc.  

In visual servoing, the existing relevant research [21, 22] mainly focused on pose 

estimation of a rigid body relative to a camera, regardless of configurations of cameras. 

When a camera is attached to an end-effector of a robot, they provide estimation relative 

to the camera or the end-effector [14]. When cameras are fixed as standalone devices, 

they provide estimation relative to cameras. Due to the large size of an optical CMM and 

the requirement of good robotic tooling accessibility [3], the CMM needs to be fixed 

outside of the robot’s operational space. Specifically for aircraft robotic structural 

assembly, when one target of point markers is fixed on the robotic tooling and another 

one on the working aero-structural panel, the underlying problem becomes to estimate the 

state of relative pose and motion between the robotic tooling and the working panel 

simultaneously based on point measurements of targets.  

Therefore, Kalman filtering technique is applied to estimate sequentially the state of a 

dynamic system using a sequence of noisy point measurements from the optical CMM. It 

captures both rotational and translational parameters together as a state vector. When 

directly assigning the relative pose and motion as a state estimate, the observation model 

is formulated in such a way that the state estimate is implicitly mapped to the observed 

3D coordinates of points on the bodies. Since this observation model is nonlinear, an 

analytical expression of linearization is derived. As mentioned in Section 2.2.2, the recent 

development of AEKF mainly targets noise covariance adaptability due to changing 
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velocities and accelerations of tracked objects, and the measurement vulnerability of 

traditional planar CCD cameras when illumination condition changes, etc [21, 22]. 

However, there is no such need for an optical CMM using active targets and 

synchronized acquisition, which has the advantage of being not sensitive to external light 

conditions [70]. Furthermore, the velocities and accelerations of industrial robot are 

normally kept to be constant. Therefore, the paper adopts IEKF for the state estimation of 

relative pose from point measurements provided by an optical CMM.  

In this section, a method of relative pose estimation from four sets of corresponding 

points based on IEKF is presented during the motion of two rigid bodies. The objective is 

to simultaneously estimate the relative pose between two rigid bodies using point 

measurements provided by an optical CMM. By formulating the observation model to 

map the state of relative pose to the measurements of points, this method applies IEKF as 

a state estimator. The effectiveness of this method is demonstrated through a case study 

of a robotic riveting system for aircraft automated assembly.  

4.2 Problem Statement 

As shown in Figure 4.1, two rigid body targets with certain numbers of point features are 

observed by a position measurement system of optoelectronic CMM during motion. 

Based on the observed points, the underlying problem is to dynamically estimate the 

relative pose and motion between these two rigid bodies.  

Thus, the problem can be stated mathematically as follows:  

Let                                 and                         be two 
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sets of corresponding non-coplanar points for a rigid body (Target 1) in m-dimensional 

space at a discrete time step of k;                                 and    

                     be another two sets of corresponding non-coplanar points for 

another rigid body (Target 2) in m-dimensional space at discrete time of k. Note that we 

focus on 3-dimensional cases, i.e.,    . n and l are the numbers of points on Targets 1 

and 2, respectively.      and      are the observed sample k of the coordinates of points 

with respect to a common measurement frame, denoted as   ;    and    are the local 

coordinates of points with respective to the body-fixed frames of Targets 1 and 2, denoted 

as     and    , respectively.  

Measurement

Point features

Target 1

Target 2

Point features

 

Figure 4.1: Two rigid body targets observed by a position measurement system.  

The objective is to find the state estimate of relative pose transformation of frame     

with respective to frame    and its derivative with respect to time during motion, by 

minimizing the variance of estimation errors caused by the Gaussian noises of the point 

data of      and     . Suppose the Gaussian noises of point measurements are isotropic 

(equal distribution in all directions) and homogeneous (equal for all points in space). The 

relative pose transformation can be defined as a homogeneous transformation matrix, i.e.  
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 ,                                                        (4.1) 

where                 ,                            and          are 

orthonormal rotation matrix and translation vector, respectively. As for the orientation 

representation, Euler angles with a rotation sequence of Z-Y-X axes are adapted instead 

of the rotation matrix. Thus, the relative pose transformation in Eq. (4.1) can be 

represented as a relative pose vector,  

      
   

  
 

          ,                                (4.2) 

where         ,              ;           are the Euler angles for 

   , then let             be a matrix function defined on a set of    in     , i.e.,   

                               ,                                    (4.3) 

where  

         
              
             

   

                                           (4.4) 

         
             

   
              

                                           (4.5) 

         

   
              

             
 .                                         (4.6) 

Thus, from Eq. (4.1) and (4.2), let                     be a matrix function defined 

on a set of    in      , i.e.,   

         .                                                          (4.7) 

To directly map the relative pose transformation of     to the measured points ( ) of 

Target 2, the transform mapping of local points of    from its description in frame    to a 
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description in frame    can be described in terms of     as  

    
 
 
        

 
 ,                                                     (4.8) 

where     is the transform mapping from    to   , defined as 

     
      

  
 ,                                                     (4.9) 

which can be characterized in the following transform mapping of the measured points 

( ) of Target 1 from    to   ,  

   
 

   
      

  
  

 
 
 .                                               (4.10) 

Based on the problem statement, the following is to investigate the methodology of 

dynamically estimating the relative pose and motion from these four corresponding point 

sets during motion.  

4.3 Relative Pose and Motion Estimation 

First, the problem is further modeled as discrete time-varying non-linear systems in state 

space domain, and the relative pose vector and its time derivative are both captured as a 

state vector. Essentially, the nearly constant velocity model is assumed for the state 

transition during motion. Moreover, the observation model is formulated to directly map 

the state to the point measurements. Second, the IEKF is applied to find the suboptimal 

estimation of the state based on the non-linear systems. An analytical expression of 

linearization is derived for the non-linear observation model and the iterative scheme of 

IEKF minimizes the linearization errors.  
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4.3.1 State Space Modeling  

When the relative pose vector in Eq. (4.2) and its derivative with respect to time are 

chosen as the state variables, the problem can be described as discrete time-varying non-

linear stochastic systems in state space domain, i.e.,  

                                                                (4.11) 

               ,                                                  (4.12) 

where            is the state variables, defined as  

                           
      ,                            (4.13) 

and   
           is the time derivative of       in Eq. (4.2),          is a state 

transition matrix.            is a control input with a control gain of      

      , detailed in the following section of implementation.               is a 

measurement vector associated with measured points of B, and         is a non-linear 

observation mapping model from the state of      to the measurement of     . The 

unpredictable disturbances of         and            are assumed to be zero-

mean white Gaussian noises and mutually independent. Furthermore,          and 

               are the noise gains for the disturbances of   and  , respectively.  

As for the state transition model in Eq. (4.11), a nearly constant velocity model is 

assumed during motion. Thus, the state transition matrix can be defined as  

   
               

       
 ,                                              (4.14) 

where    is the sampling time interval. As mentioned, the acceleration is modeled as a 

zero-mean white Gaussian noise, i.e.,            , where          
  , 
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          , when i ≠ j. Thus, the corresponding noise gain is given by [20] 

   
 

 
          

         

 ,                                                    (4.15) 

and the covariance of    can be calculated as 

                            
      

      
   

 ,                        (4.16) 

where          , and                       , given by 

    
 

 
          ,         

 

 
          ,               .          (4.17) 

For the observation model in Eq. (4.12), a nonlinear mapping from the state of the 

relative pose and motion to the measurements of B can be formulated in Eq. (4.18) and 

(4.19) based on the transform mapping equation in Eq. (4.7) and (4.8).  

      
            

 
            

                                                    (4.18) 

         
             

 
             

   
                

 
                

 .                        (4.19) 

Further, the noise of the measurement is         
  , i.e.,            

 , depending 

on the precision of the position measuring system. Based on the assumption of isotropic 

and homogeneous noise, the covariance of    is denoted as  

                             
                

 ,                  (4.20) 

where the noise gain is given by 

              .                                                      (4.21) 
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4.3.2 Relative Pose and Motion Estimation by IEKF 

Based on the state space model in Eq. (4.11) and (4.12), the IEKF is applied to iteratively 

compute the mean of the posterior estimate of the state in Eq. (4.22) and then determine 

its corresponding covariance in Eq. (4.23) upon the convergence of the mean. Eq. (4.22)-

(4.28) are iterative until successive state estimates          converge according to 

suitable criteria [20]. The number of iteration depends on the termination criteria. The 

final results of          is taken as the updated state estimate of        . Essentially, the 

scheme of the IEKF removes the effects of observation model nonlinearity.  

                                                                  

(4.22) 

                             ,                                  (4.23) 

where           and          are the mean and covariance of the prior estimate of 

the state, predicted as  

                                                             (4.24) 

                         .                                  (4.25) 

In Eq. (4.22) and (4.23),         is the Kalman gain using minimum mean-square error 

as the performance criterion, of which one form is given by  

                                            
  

,              (4.26) 

      is the measurement residual calculated from Eq. (4.18) and (4.19), i.e.  

               
 
      ,                                            (4.27) 

and       is the linear approximation of         in Eq. (4.19), derived as  
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Specifically, from the definition of    in Eq. (4.2) and the derivative of the pose 

transformation matrix in Lemma 2, it yields  

      
           

   
  

      
           

   

      
           

   

                 
   

               
 

  
 
                                                     

where  

      
       

                     
 
 .                      (4.30) 

Lemma 2: A homogeneous matrix of pose transformation is defined as    
  
  

 . Let 

                 be a matrix function defined on a set of   in      , i.e.,   

    . Then, the partial derivative of T with respect to 

     
   

  
 

           can be derived as  

  

  
  

  

   

  

   
   

     

  
    

  
                                       

Proof of lemma 2: From the definition of R in Eq. (4.3),      can be reformulated as  
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 .                                              (4.32) 

Since      , and   is the angular velocity tensor defined as 

             ,                                                  (4.33) 

where    is the skew-symmetric matrix of  , defined as  

    
      

      

      
 ,                                              (4.34) 

and the Jacobian of angular velocity in Lemma 3, the differential of R can be derived as  

                        .                              (4.35) 

Then, the derivative of R with respect to    is  

  

   
                                                                     

Thus, the partial derivative of Eq. (4.32) is derived as  

  

  
  

  

   

  

   
   

     

  
    

  
                                       

where  

  

   
  

  

   

   

   

  

   
     

  
                                                   

  

   
  

  

   

   

   

  

   

  

   
 

  

   
    

  
                                      

Lemma 3: For the rotation sequence of Z-Y-X, the angular velocity can be expressed as 

[71] 

      ,                                                             (4.40) 
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where   is the Jacobian that maps the rate of change of the Euler angles to the angular 

velocity,  

         

                    

                   

         
 .                               (4.41) 

Proof of Lemma 3: If the rotation sequence is Z-Y-X, then the angular velocity can be 

expressed as a combination of an individual rotation axis multiplied by the time rate of 

change of the angles about the axis,  

                                              .        (4.42) 

Thus, from Eq. (4.4)-(4.6), the angular velocity can be reformulated in matrix form as  

        

                    

                   

         
  

  
  

  
 .                            (4.43) 

4.4 Simulations and Experiments 

Based on the aforementioned formulation of the relative pose and motion estimation 

using IEKF for robot positioning control, a case study of an aircraft robotic riveting 

system is presented to validate the effectiveness and performance of the methodology.  

As mentioned, the purpose is to calculate the state estimations of the relative pose and 

motion between the TCP of the robot tooling and the working panel. Thus, two rigid body 

targets with four infrared LEDs are rigidly attached on the robot tooling and the working 

panel serving as references for relative pose and motion estimation. As shown in Figure 

4.2, targets 2 and 1 are attached on the robot tooling and the working panel, respectively. 

The local coordinates of the four LED points of the targets with respect to the body-fixed 
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frames are shown in Table 4.1. Based on the local and measured coordinates of the points 

of the targets, the relative pose and motion between the TCP of the robot tooling and the 

working panel are to be estimated dynamically using the aforementioned method.  
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Figure 4.2: (a) Four LEDs on the rigid body target 1. (b) Two rigid body targets attached 

on the robot tooling and the working panel.  

Table 4.1: Local coordinates of LED points of the targets in the body-fixed frames 

   - Target 1 (mm)    - Target 2 (mm) 

 
X Y Z X Y Z 

LED 1 -0.2075 0.8182 52.4971 -0.0051 1.0743 52.5481 

LED 2 0.2794 79.8727 -18.8438 0.2362 79.9293 -19.0332 

LED 3 -69.6914 -40.1362 -17.0435 -69.5404 -40.2479 -16.7839 

LED 4 69.6195 -40.5548 -16.6097 69.3093 -40.7557 -16.7310 
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4.4.1 Preliminary Transformation of Target 2-TCP and Target 1-Working Panel  

To estimate relative pose of TCP for the rivet insertion control, the local coordinates of 

target 2 in Table 4.1 need to be transformed to the frame of the TCP. To do so, the pose 

transformation from the optoelectronic CMM system to the robot base is determined as 

  
   

            
             

             
               

              
  

              
  

 , 

and the pose transformation from the frame of the target 2 to the end-effector of the robot 

is 

  
    

            
             

            
              

             
  

             
  

 . 

Since the offset of the robot tooling from the end-effector to the TCP is 369.04mm along 

the z axis of the end-effector, the pose transformation from the frame of target 2 to that of 

the TCP is  

    
       

   
    

  
  

            
            

  
  

        
            

  

            
             

            
              

             
  

             
  

  

 

            
             

            
              

             
  

              
  

 , 

based on which the local coordinates of points of target 2 with respect to the frame of 

TCP are calculated by        
    . The results are listed in Table 4.2.  

Similarly, since the target 1 is attached on working panel, the local coordinates of target 1 

need to be transformed to the frame of the working panel. First, the pose transformation 
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from the optoelectronic CMM system to the working panel is obtained as 

  
   

               
                

                  
               

              
  

                   
  

 . 

Then, the pose transformation from the frame of target 1 to that of the working panel is 

determined as  

  
    

             
              

              
          

                 
  

             
  

 , 

based on which the local coordinates of points of target 1 with respect to the frame of the 

working panel are determined by      
    , as shown in Table 4.2.  

In the following, simulations and experiments are presented to verify the convergence 

and accuracy of the proposed relative pose estimation by IEKF. 

Table 4.2: Local coordinates of LED points of the targets w.r.t. TCP and working panel 

a' - Target 1 (mm) w.r.t. the panel b' - Target 2 (mm) w.r.t. TCP  

 
X Y Z X Y Z 

LED 1 537.22 -50.56 184.28 55.67 -217.60 -265.77 

LED 2 510.46 20.10 259.32 99.12 -146.18 -199.79 

LED 3 485.94 19.46 122.57 -26.38 -149.94 -259.39 

LED 4 616.93 18.76 169.99 87.75 -146.54 -338.40 

 

4.4.2 Simulations  

A simulation of a robotic position-based visual servoing is carried out for the robotic 

riveting system using the proposed filter of relative pose estimation, as illustrated in 

Figure 4.3.  

The controller was designed using a simple proportional control law based on the error of 
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estimated relative pose compared with the desired one, denoted as e(k). Note that the 

estimated Euler angles are changed back into the rotation matrix as outputs of the state 

estimator, since the calculation of relative pose error in the controller is based on the 

rotation matrix. In this case, the control input is the velocity of the robot TCP with respect 

to the frame of end-effector or TCP, denoted by     . Thus, to map the control input to 

the state of the relative pose estimation, the control gain in the transition model in Eq. 

(4.11) can be designed as  

     

 
 
 
 
 
      

    

      
   

  
    

   
   

 
 
 
 
 
 

                                                (4.44) 

  
      

   
   

      
   

                                                 (4.45) 

where   
   

 is the rotation matrix of the TCP frame with respect to the frame of the 

working panel.   
  is the rotation matrix from the CMM to the panel.   

  is the rotation 

matrix from the base of the robot to the CMM.   
     is the rotation matrix of end-

effector with respect to the base of the robot at the time step of k.  
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Figure 4.3: Relative pose estimation integrated in the position-based visual servoing of 

the robotic riveting system.  

The Simulink model of the position-based visual servoing was designed in MatLab 7.12 
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based on the Robotics Toolbox 9.4 [72], as shown in Figure 4.4. It consists of a 

controller, a plant of an ABB robot, a vision of optoelectronic CMM, and the relative 

pose estimation block.  

 

As shown in Figure 4.5, the control error is calculated by comparing the estimated values 

of relative pose transformation of the TCP with respect to the working panel, denoted as 

Figure 4.4: Simulink model of the robot position-based visual servoing using the 

proposed filter of the relative pose estimation designed in MatLab. 
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, and the desired values, denoted as   
    

, i.e.,  

    
      

    
        

    

  
     

    
  

  
    

                                  (4.46) 

where     
    

 and     
    

 are the orientation and translational errors of the TCP, respectively. 

Note that the error is calculated with respect to the frame of the TCP. 

 

Figure 4.5: Position-based visual servoing in the Simulink model.  

Then, the error of orientation is converted to the representation of the angle-axis 

parameters by 

         
                                                               (4.47) 

       
                                                              (4.48) 

where         is a unit direction vector representing the equivalent axis of the rotation 

error of     
    

.   is the rotation angle about the axis with the right-hand rule. In doing so, 

the control law of the proportional gain can be applied using Eq. (4.49) to calculate the 

velocity of the TCP as an input of the robot plant, as shown in Figure 4.6.  

                                                              (4.49) 
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where    is the proportional gain with a tuned value of 0.5. 

 

Figure 4.6: Plant of the robot in Simulink model. 

In the robot plant in Figure 4.6, the control input of TCP velocity is converted to the robot 

joint space using the robot Jacobian mapping as 

                
  

                                                 (4.50) 

where                     is the Jacobian matrix function defined on a set of joint 

angles      in     , and   is the number of the joints of the robot. Basically,          

maps the robot joint angle rates            to the velocity of the TCP, derived by  

         

  
                                   

           

        
        

                 

     
            

where       is the z-axial vector of the ith revolute joint of the robot with respect to the 

frame of TCP, assuming the joint rotation is about z axis of the joint.            is the 
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position vector from the ith robot joint to the TCP.  

Then, the pose of robot TCP can be calculated based on the robot forward kinematics 

from integration of the joint angle rates,  

  
                  

                    

  
  

  
              

             
 
   

  
 ,                            (4.52) 

where         is the robot's geometric or kinematic parameters, including the local 

body vectors of the links of the robot, denoted as   . Specifically,     is the body vector 

from the end-effector to the TCP.            and            are the rotation matrix and 

the position vector of the robot TCP with respect to the robot base.            is the 

rotation matrix of the ith joint with respect to the      th joint.        is the rotation 

matrix of the ith joint with respect to the  robot base.  

The Simulink block of the optoelectronic CMM for simulating the point target 

measurements is illustrated in Figure 4.7. The simulated point measurements are 

generated by  

    
        

   
                                                    (4.53) 

    
   .                                                            (4.54) 

For simulation of robot positioning control, the initial and desired robot joint angles are 

set as                and                        , 

respectively. The schematic diagrams of initial and desired robot positions are illustrated 

in Figure 4.8. The D-H parameters of the ABB 4400/45kg robot manipulator are listed in 

Table 4.3. 
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Figure 4.7: The Simulink model of the optoelectronic CMM to simulate the point 

measurements.  

Table 4.3: D-H parameters of ABB 4400/45kg robot manipulator 

 
theta (rad) d (mm) a (mm) alpha (rad) 

Link 1 0 680 200      
Link 2      0 890 0 

Link 3 0 0 150      
Link 4 0 880 0     
Link 5 0 0 0      
Link 6   140 0 0 

Then, based on the robot forward kinematics, the desired pose of TCP with respect to the 

robot base is obtained as  

  
   

   
   

   
  

              
             

             
            

                    
  

             
  

 . 

Thus, the desired relative pose of TCP with respect to the working panel can be given as  

  
   

   
   

   
  

             
              

              
             

                 
  

                
  

 . 
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(a) 

 

(b) 

Figure 4.8: Schematic diagrams of the robot poses in the simulation. (a) The initial 

position. (b) The desired position.  

For the filter setup of relative pose estimation, the tuned noise covariance matrices are set 

based on the noise variances of   
                 and   

           , instead of 

null values. The process and measurement noise variances are obtained from the 

acceleration range of the robot motion and offline sampling of the optical CMM device, 

respectively. For simplicity, the initial state value and covariance are both set to be zero.  
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To evaluate the estimation accuracy, the estimated relative poses of the TCP with respect 

to the working panel are compared with the actual ones calculated from the robot forward 

kinematics. The trajectories of the actual and estimated relative translational and 

orientation are illustrated in Figure 4.9(a) and (b), respectively.  

 
(a) 

  
(b) 

Figure 4.9: Simulation results of dynamic pose estimation. (a) Relative translational 

estimation results. (b) Relative orientation estimation results. The blue solid lines 

represent the actual relative poses, and the red dashed lines represent the estimated poses.  
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As shown in Figure 4.10, the norm of error of relative pose estimation converges sharply 

from over 250 mm to 1 mm at about 0.8 s, and then continues to decline steadily to the 

required accuracy of 0.1 mm at about 2.5 s. Note that the total simulation time is 20 s and 

the fix-step size of sampling period is 0.04 s. In the next section, the experiment is 

provided to further verify the filter with the same system setup and filter initialization. 

 

(a) 

 
(b) 

Figure 4.10: Norm of the error of relative pose estimation during simulation. (a) Linear 

scale of norm of error values. (b) Log scale of norm of error values.  
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4.4.3 Experiments 

To further verify the performance of the proposed method, experiments are carried out on 

the robotic riveting system under the equivalent system setup and IEKF initialization. 

Note that experiments focus on the relative pose estimation alone without the 

experimental implementation in the robot position-based visual servoing. First, the points 

of targets are measured and stored while the robot moves along the predefined linear 

trajectory with average velocities of 25 mm/s and 0.0154 rad/s. The initial and final 

positions of the robot with the working panel are depicted in Figures 4.11 and 4.12, 

respectively. Then, the method is applied offline to process the collected point 

measurements. Lastly, the estimated and nominal relative poses are compared and the 

norm of the error is calculated accordingly.  

 

Figure 4.11: Initial position of the robot with joint angles of q
0
 = [0 0 0 0 10° 0].  
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Figure 4.12: Final position of the robot with joint angles of q
d
 = [15° -20° 30° 0 15° 0]. 

As illustrated in Figure 4.13, it is observed that the performance of the relative pose 

estimation ensured the convergence to the nominal trajectories. In Figure 4.14, the norms 

of errors of the relative pose estimation converge dramatically from approximately 800 

mm to 25 mm at about 0.8 s, to 9 mm at about 2.5 s, and then decline continuously before 

settling down stably to around 6.9 mm after about 14.3 s at the end when the robot stops. 

The bump around 1 s is normal as overshooting happens at the beginning of filtering, 

mainly due to zero initial value of the state. The final converging errors are 1.7 mm, 3.6 

mm, -3.6 mm, -0.6e-3 rad, -3.8e-3 rad, and -1.8e-3 rad. The errors are mainly contributed 

by the poor robot absolute positioning accuracy caused by the systematic errors, such as 

deflection due to flexibility and loading, assembly errors due to backlash, and 

manufacturing errors due to machining tolerances, etc. [73]. That explains the necessity 

of the proposed dynamic pose estimation. The approach is capable of directly estimating 

the positioning errors of the TCP with respect to the working panel during motion. Based 

on the approach, further research of calibration-based iterative learning control (ILC) is 

being developed to reduce the estimated errors [97, 98]. Also, it could be extended for a 
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wide range of robotic positioning applications for intelligent manufacturing. Further, no 

control input was enrolled in the experiment as opposed to the simulation with the control 

input of the TCP velocity, which obviously benefited better motion prediction.  

 
(a) 

 

(b) 

Figure 4.13: Experimental linear trajectory comparison. (a) Relative translational 

estimation results. (b) Relative orientation estimation results. The blue solid lines are the 

nominal trajectory and the red dashed lines are the estimated trajectory. 
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(a) 

 

(b) 

Figure 4.14: Converging results of norms of the errors of relative pose estimation in the 

experiment. (a) Linear scale of norm of errors. (b) Log scale of norm of errors. 
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an optical CMM. To do so, when the relative pose and motion are defined as a state 

vector, state-space discrete time-varying non-linear stochastic systems are modeled 

consisting of state transition and observation models. Specifically, the observation model 

nonlinearly maps the point measurements to the state of relative pose and motion. To 

tackle the state estimation, IEKF is adopted to minimize the linearization errors. The 

performance of the proposed method has ensured the convergence of the estimation 

through the verifications of the simulations and experiments on a robotic riveting system.  

Note that the proposed filter for relative pose estimation merely provides estimated 

feedback of relative pose errors for the control of visual servoing. Thus, the control of  

visual servoing is not the focus in this research. The simulation with PD control merely 

demonstrated the performance of the proposed filter. The experiment showed the filter 

could dynamically estimate the relative pose errors, which potentially could be used as 

feedback for control loop. With the proposed method of relative pose estimation, further 

research has been aiming at the control method of calibration based iterative learning 

control (ILC) for robotic riveting [97, 98]. The method of calibration based ILC is to 

reduce the systematic errors that were estimated in the experiment, while the method of 

relative pose estimation in this research just guarantees the estimation accuracy.  
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CHAPTER 5   ROBUST POSE ESTIMATION 

In this chapter, a novel outlier diagnosis method is proposed for robust pose estimation of 

rigid body motions from outlier contaminated 3D point measurements. Due to incorrect 

correspondences in a cluttered measuring environment, observed point data are 

contaminated by outliers, which are unusual gross errors that lie out of an overall error 

distribution. Standard least-squares methods for pose estimation are highly sensitive to 

outliers. For this reason, an outlier diagnosis method is developed to preprocess measured 

point data prior to pose estimation. This diagnosis method detects and removes outliers 

based on a relaxation method with rigid body constraints of a rigid body. Simulations and 

experiments prove the effectiveness and advantages of high breakdown point and ease of 

implementation.  

5.1 Problem Statement 

As illustrated in Figure 5.1, the cubic structure represents a rigid body and its corners 

represent attached markers from which 3D coordinate data are measured. Note that     

and    are the 3D coordinates of the ith marker measured at two different poses. Based on 

    and   , the target is to optimally estimate the pose transformation from frame {B’} to 

{B}, denoted by   
  . The solution of   

   was given in Chapter 1.  

However, considering outliers that occur in the measurements    and   , static pose 

estimation cannot give a robust solution due to the nature of least square fitting criterion. 

Therefore, an outlier diagnosis of     and    is proposed and conducted in order to detect 

and remove the outliers before pose estimation.  
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Figure 5.1: Motion of the cubic rigid body. 

5.2 Outlier Diagnosis 

During rigid body motion, point measurements must obey rigid body constraints. Based 

on these rigid body constraints, an outlier diagnosis is developed by utilizing a relaxation 

method. The principle is to replace rigid body constraints with values into an objective 

function of outlier diagnosis so as to exact a penalty on the objective if the constraints are 

not satisfied. 

5.2.1 Rigid Body Constraints 

The rigid body constraint means that distances between points must not change when the 

rigid body is moved. Thus, the Euclidean distances calculated between point 

measurements should remain statistically constant or equivalent to the nominal distances 

when the model of the rigid body is known. Assuming the model is given, the absolute 

residuals between the calculated and nominal point distances can be determined by  
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 
ijoijmij ll , for 1 ≤ i, j ≤ n, i ≠ j                                     (5.1) 

where 

     21T

jijijiijml pppppp                                      (5.2) 

where    and    are measurements of the ith and jth marker, lmij and loij are the measured 

and nominal distances between    and   , respectively. The deviation εij must be within 

the requirement of δ to satisfy the rigid body constraints. The value of δ is determined by 

the error model of the distance calculation due to the sensor accuracy of the measuring 

system. If the model of the rigid body is unknown, the model-free approach can be 

developed by building the reference distances from a “teaching-by-showing” process. 

The process is to show the rigid body to the measuring system such that the point 

distances can be learned and stored as references. Thus, the deviation of the measured 

distances from the references can still be monitored by using (5.1). 

Based on the distance deviations, we can find out the candidate outliers. Large deviations 

out of δ indicate the violation of rigid body constraints and the existing of outliers. 

Thresholding of these errors by δ is based on the deviation of point measurement 

distribution. However, the procedure needs to be robust in order to provide a reliable 

measure for the recognition of outliers. Geometrically, at least four distances from one 

point to four other noncollinear and non-coplanar points are required to yield a unique 

solution of the point’s 3D position, as shown in Figure 5.2. Figure 5.2(a) demonstrates 

that if there are only three or less measured distances identical to the nominal values, it 

may implicitly embrace outliers. In particular, there may be an outlier of reflection 

occurred when only three of distance constraints are satisfied. Figure 5.2(b) shows that at 

least five points are needed since four distance constraints of l12, l13, l14, l15 are capable of 
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locating the unique 3D position of point p1 in Figure 5.2(c). An example of a detected 

outlier is provided in Figure 5.2(d). Thus, though four points targets were used in static 

and dynamic pose estimation in Chapters 3 and 4, targets with minimum five points are 

recommended for the concern of robustness against outliers using rigid body constraints.   
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(b)                                                    (c)                                        (d) 

Figure 5.2: Point distances under the rigid body constraints. (a) one, or two, or three 

distance constraints are not sufficient for unique 3D positioning; (b) the minimum 

number of points is 5 for unique 3D positioning; (c) four distance constraints for point p1; 

(d) an outlier example. 

5.2.2 Outlier Diagnosis by Relaxation 

Relaxation techniques iteratively assign values to mutually constrained objects in such a 

way as to ensure that the values remain consistent [74, 75]. In our case, objects are 

markers of a rigid body mutually constrained by the rigid body constraints defined in 

(5.1). The mechanism of outlier diagnosis using relaxation techniques begins by 

replacing the rigid body constraints with compatibility indicators. For 1 ≤ i, j ≤ n, a 
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compatibility indicator, denoted by ci,j, is defined by 
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          (5.3) 

Essentially, ci,j indicates the compatibility of the rigid body constraints between markers 

pi and pj. In particular, the compatibility for each marker pi itself is defined by ci,i = 1.  

A merit score (si) is defined and assigned to each marker pi according to how well all 

other markers pj are compatible with the rigid body constraints between pj and pi when pi 

is not an outlier. Higher merit scores indicate better compatibility of constraints and less 

likelihood of outliers, and vice versa. Subsequent iterations use the product of the merit 

scores sj
k-1 

of pj and the compatibility of the constraints ci,j in (5.3) to assign a new merit 

score si
k 

to the marker pi. Marker pj with higher merit score and better compatibility 

contributes more positive support to the assumption that marker pi is not an outlier, and 

vice versa. The quantity of total support from all other markers after several iterations 

provides a robust measure for outlier diagnosis. Therefore, the outlier diagnosis by 

relaxation involves iterative, “parallel” adjustment of merit scores for each marker on the 

basis of local outlier evidence, expressed by [29] 
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                                                           (5.4) 

The initial values of merit scores si
0 

can be assigned in a variety of ways. It was chosen to 
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use the number of satisfied rigid body constraints as an initialization, since a priori 

knowledge of outlier is unknown. Essentially, the original problem of finding outliers 

among marker measurements becomes to iteratively calculate the merit scores in (5.4) 

starting from the initial values si
0
.  

Here are the procedures developed for the outlier diagnosis by relaxation [29]:  

i. Calculate the compatibility of rigid body constraints ci,j using (5.1) and (5.3); 

ii. Assign the initial values of merit scores for each point si
0
; 

iii. Iteratively compute the merit scores si
k
 with si

k-1
 and ci,j using (5.4); 

iv. Detect and remove the outliers according to the final merit scores. 

For quantifying the robustness of an estimator, a breakdown point had been defined to 

measure the fraction of data that can be contaminated without breaking down the 

estimator [76]. For example, the LS estimator has a breakdown point of 0% since one 

single outlier can affect the estimation significantly. Compared with other referred robust 

estimators, such as M-estimator or LMedS method, the advantage of using the proposed 

outlier diagnosis by relaxation is higher breakdown point and ease of implementation. 

This method has a breakdown point of more than 0.5, providing that at least three marker 

matches remain for pose estimation after removing the outliers. Additionally, this method 

can be easily implemented as long as the observed markers are rigidly moved. 

Furthermore, the method can be extended to multiple sets of markers that are attached to 

a number of different rigid bodies. Outlier diagnosis can be carried out simultaneously for 

these multiple sets of markers. As a downside of the method, the computational 

complexity for the compatibility calculation in (5.3) is O(n
2
). However, it is a one-time 

job prior to the whole iterative procedure of the outlier diagnosis. For the iterations of the 

diagnosis, the complexity is linear about the number of markers O(n). Nevertheless, the 
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computational cost is always under control since the number of markers is usually user-

defined and limited.  

5.3 Simulations and Experiments 

As shown in Figure 5.3, the experimental system located at the Aerospace Manufacturing 

Technology Centre (AMTC), is consisted of a Motoman UPJ robot, an Optotrak 3020 

system from NDI Inc., and a cubic rigid body target. To validate the proposed robust pose 

estimation, the cubic rigid body target was attached to the end-effector of the robot and 

moved by the robot within the workspace. 7 markers were attached to the 7 corners of the 

cubic rigid body, as illustrated in Figure 5.4.  

NDI 

Optotrak 

3020 

system

3 Trackers 

(line CCD 

sensors)

Motoman 

UPJ robot

Markers 

(Infrared LED)

Target – cubic

rigid body

 

Figure 5.3:  Experimental system set-up. 

The positions of these markers were measured by the Optotrak system, which is also an 

optical CMM. With synchronized active markers and three line imaging sensors, the 

optical CMM systems provide efficient triangulation that enables high frame rates of 3D 

data delivery. The repetitive position measurements of these markers were recorded for 5 

seconds at a frame rate of 100Hz at the two different poses of the robot, as shown in 
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Figure 5.5. Note that marker_1 represents the number one marker, and pose_1 represents 

the first pose of the cubic rigid body. 

 

(a)     (b) 

Figure 5.4:  (a) 7 Markers in the 3D space; (b) target of the cubic rigid body.  

Pose_1 of 

the cubic 

rigid body

Pose_2 of 

the cubic 

rigid body

 

Figure 5.5: Two poses of the cubic rigid body.  

5.3.1 Case Study of Four Outliers 

As an ultimate case study, four outliers were added at marker 1, 2, 6, and 7 of pose_1. 

Thus, the percentage of outlier is four out of seven, i.e., about 57.1%. These outliers were 

generated randomly from a mixture error model with Gaussian and uniform noise 

components, defined as 

),(),0()1( 2 baUN                                                (5.5) 

where N(0, σ
2
) is a Gaussian noise, with zero mean and a standard deviation of σ, U(a, b) 
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is a uniform noise, with a bound between a and b, and η is the proportion of outlier in the 

total noise. Since the data acquired from the experiments had Gaussian noise already, we 

chose a uniform noise model alone for outlier simulations. From the outlier contaminated 

data, the pose transformation from pose_1 to pose_2 was estimated, denoted by T_outlier 

and listed in Table 5.1. To demonstrate the influence of these four outliers, the cube at 

pose_1 was transformed to pose_2 by the calculated T_outlier. As shown in Figure 5.6(a), 

the deviation of two cubes indicates the error of pose estimation due to the outliers.  

Table 5.1: Pose Transformation Before and After the Outlier Contamination 
Pose Transformation (T) 

T_actual  T_outlier 

0.9975 -0.0007 -0.0701 -215.554  0.9989 -0.0157 -0.0444 -161.798 

0.0006 1 -0.0011 -3.1334  0.0156 0.9999 -0.0007 -1.9748 

0.0701 0.001 0.9975 3.6284  0.0444 -0 0.999 6.1705 

0 0 0 1  0 0 0 1 

As mentioned before, the threshold δ in Eq. (5.1) depends on the accuracy of the 

measuring system. In our case, the standard deviations of the Optotrak system are about σ 

= [3e-3, 3e-3, 2e-2]
T
 mm at x, y, and z axis, respectively. Thus, the three-sigma rule leads 

to a threshold of Euclidean distance deviation, determined by δ = 2[(3σ)
T 

(3σ)]
1/2

 =
 

0.1227mm. Therefore, the compatibility indicators cij can be calculated by Eq. (5.1) and 

(5.3), as listed in Table 5.2. By counting the number of satisfied constraints, the initial 

merit scores si
0
 of 7 markers are 1, 1, 3, 3, 3, 1, and 1, respectively. Table 5.3 and Figure 

5.7(a) show the merit scores of all markers after relaxation with 7 iterations. As a result, 

the outliers (markers 1, 2, 6, and 7) can be detected clearly from the negative sign “-1” of 

the normalized merit scores in Figure 5.7(b).  

After removing the outliers from the measurements, the data of markers 3, 4, and 5 are 

kept for the pose estimation. As listed in Table 5.4, T_removed represents the pose 
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transformation after removing the outliers. The satisfied results are illustrated in Figure 

5.6(b), showing two cubic rigid bodies placed together using T_removed. Essentially, this 

case study has proved the effectiveness of the method and a breakdown point of more 

than 0.5, providing that at least three markers remain for the pose estimation after the 

outlier diagnosis.  
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Figure 5.6: Outliers occurred at markers 1, 2, 6, and 7; (a) Pose transformation 

determined with four outliers; (b) Pose estimation from the remaining three markers 3-5 

after removing the outliers. 

Table 5.2: Indicators of Compatibility - Replacement of Distance Deviation with Integers 
 Indicators of compatibility for rigid body constraints (ci,j) 

 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 

Point 1 1 -1 -1 -1 -1 -1 -1 

Point 2 -1 1 -1 -1 -1 -1 -1 

Point 3 -1 -1 1 1 1 -1 -1 

Point 4 -1 -1 1 1 1 -1 -1 

Point 5 -1 -1 1 1 1 -1 -1 

Point 6 -1 -1 -1 -1 -1 1 -1 

Point 7 -1 -1 -1 -1 -1 -1 1 

Table 5.3: Iterations of Merit Scores for Outlier Diagnosis by Relaxation (Four Outliers) 

 Merit scores for point i (si)  

Iterations Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 

0 - initial 1 1 3 3 3 1 1 

1 -11 -11 5 5 5 -11 -11 

2 7 7 59 59 59 7 7 

3 -191 -191 149 149 149 -191 -191 

4 -65 -65 1211 1211 1211 -65 -65 

5 -3503 -3503 3893 3893 3893 -3503 -3503 

6 -4673 -4673 25691 25691 25691 -4673 -4673 

7 -67727 -67727 95765 95765 95765 -67727 -67727 
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(a)                                                                                      (b) 

Figure 5.7: (a) Merit scores during 7 iterations; (b) Signs obtained from normalized merit 

scores, “-1” indicate outliers (markers 1, 2, 6, and 7), and “+1” indicate the reliable data 

(markers 3, 4, and 5). 

Table 5.4: Pose Transformation Before and After the Outlier Diagnosis 
T_outlier  T_removed 

0.9956 0.0335 -0.088 -262.963  0.9975 -0.0007 -0.0701 -215.3592 

-0.0284 0.9979 0.058 134.8958  0.0007 1 -0.001 -2.9641 

0.0898 -0.0553 0.9944 -25.5177  0.0701 0.0009 0.9975 3.6335 

0 0 0 1  0 0 0 1 

5.3.2 Experiment Verification 

Two additional markers were attached adjacent to the original markers (markers 3 & 7) 

for simulating the occurrence of outliers, as shown in Figure 5.8. The measurements of 

these markers were treated as those of the original markers. As an experimental 
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verification, the outlier diagnosis was applied and markers 3 & 7 were identified, as 

shown in Tables 5.5 and 5.6.  

Marker 7

Marker 3
Original 

markers

 Markers for 

simulating 

outliers

 

Figure 5.8: Markers for simulating outliers and the original markers. 

Table 5.5: Indicators of Compatibility for 7 Markers 
 Indicators of compatibility for rigid body constraints (ci,j) 

 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 

Point 1 1 1 -1 1 1 1 -1 

Point 2 1 1 -1 1 1 1 -1 

Point 3 -1 -1 1 -1 -1 -1 -1 

Point 4 1 1 -1 1 1 1 -1 

Point 5 1 1 -1 1 1 1 -1 

Point 6 1 1 -1 1 1 1 -1 

Point 7 -1 -1 -1 -1 -1 -1 1 

Table 5.6: Iterations of Merit Scores for Outlier Diagnosis by Relaxation (Two Outliers) 

 Merit scores for point i (si) 

Iterations Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 

0 - initial 5 5 1 5 5 5 1 

1 23 23 -25 23 23 23 -25 

2 165 165 -115 165 165 165 -115 

3 1055 1055 -825 1055 1055 1055 -825 

5.4 Summary 

For robust pose estimation from outlier contaminated 3D marker measurements, a novel 

outlier diagnosis method has been developed using a relaxation of rigid body constraints. 

Instead of accommodating outliers in a pose estimator, the presented outlier diagnosis 
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method preprocesses measured data first to detect and remove outliers prior to further 

pose estimation.  

The rigid body constraint indicates that marker distances of a rigid body should remain 

statistically constant after motion. The constraint is chosen as the compatibility criteria of 

marker measurements. First, the diagnosis procedure by relaxation begins with a 

replacement of rigid body constraints with integers. Second, a merit score is defined for 

each marker to represent the possibility of being outliers. Third, an iterative calculation of 

merit scores is carried out based on the compatibility criteria. Fourth, outliers are clearly 

distinguished with negative diverge merit scores after the relaxation. Essentially, 

relaxation techniques iteratively assign merit scores to mutually constrained markers. It 

involves iterative, “parallel” adjustment of merit scores for each marker on the basis of 

local outlier evidence. Finally, a pose transformation is estimated from the remaining 

marker measurements after removing the detected outliers.  

This novel method has advantages of high breakdown point and ease of implementation. 

Case studies have proved the effectiveness of the method and a breakdown point of more 

than 0.5, providing that at least three marker measurement matches remain for pose 

estimation after removing the outliers. Moreover, this method can be easily implemented 

as long as the observed markers are rigidly moved. Nevertheless, it provides an easy-to-

use competitive alternative for robust pose estimation of rigid body motion and offers a 

simple outlier detection mechanism that can potentially be applied to many other areas.  
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CHAPTER 6 DECORRELATION METHOD FOR 

MEASUREMENT CALIBRATION 

In this chapter, a novel data decorrelation method is proposed for measurement 

calibration of a portable optical CMM measuring system. The measured 3D data suffer 

from correlations due to the principle of the triangulation, as described in Appendix F. 

This nature causes complexity when a calibration procedure is carried out. For this 

reason, a data decorrelation method based on multivariate statistical analysis is proposed 

to preprocess the 3D coordinate measurements and find an optimal configuration of 

CMM, in such a way that each component of the coordinate can be calibrated 

individually during calibration process. Consequently, the calibration procedure can be 

significantly simplified in a less time and memory consuming manner. The proposed 

method includes the local and global data decorrelation. Evaluation and comparisons of 

these two approaches have been analyzed with a conclusion on the better performance of 

the global data decorrelation. The optimal decorrelated configuration based on the results 

has been identified for the measuring system.  

6.1 Description of Measurement Calibration 

Photogrammetry is the measurement of three-dimensional object coordinates from stereo 

photographic pictures [77]. The discipline started in the 1880s, but more recently the 

advent of digital imaging has dramatically changed the accessibility and application areas 

of photogrammetry [78]. The nature of digital images makes it well suited for real-time 

applications. Originally used for the measurement of buildings, and later adopted for 

aerial mapping until 1970s, now the applications encompass a wide range of engineering, 
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medicine, geology, archaeology. 

Line sensors based photogrammetric measuring systems are recently wide used in optical 

3D coordinate measuring machines, especially in modern industry, for its ease of 

automated integration. With synchronized active targets (also called structured lighting 

[79]), efficient triangulation with cylindrical lenses and line imaging sensors as well as 

embedded circuits enables high frame rates of 3D data delivery. However, the 3D data 

suffer from correlations due to the computation algorithm of triangulation, as explained in 

Appendix F. Basically, the 3D object coordinates are computed by a spatial intersection 

of fan beams from the image points through the camera perspective centre into the object 

space [80]. Thus, each component of the coordinate from the intersection mutually 

depends on each other’s calculation. 

For the measuring system, calibration is necessary in order to ensure the accurate 3D 

measurement. In a calibration procedure, a rigid body target needs to be fabricated as a 

reference object. A number of point luminous markers, such as infrared LED, are attached 

to the rigid body. The target needs to be displaced at multiple positions with different 

depths in the 3D measurement volume. Based on the readings from these markers, 

calibration could be achieved by either identifying the modeled parameters or building a 

lookup table. The former method with a physical model has been investigated by many 

researchers [81], [82], [83], which may undergo linearization errors, correlations, and 

possibility of unmodeled systematic errors. The latter method using a lookup table is 

straightforward. It stores the ground truth discrete data and needs interpolation among the 

consecutive values. 



101 

However, the existence of correlation causes complexity when the lookup table is being 

built. The table needs to be 3D that costs enormous memory throughout the measurement 

volume, and speed could be sacrificed during the data indexing, interpolation, and 

transferring. Assuming the data could be decorrelated and each component of the 

coordinate could be treated individually, one dimensional lookup table would qualify for 

storing each axis [69]. For this reason, a data decorrelation method is presented based on 

multivariate statistical analysis to preprocess the 3D measurements, in such a way that the 

calibration procedure can be significantly simplified in a less time and memory 

consuming manner. 

The network configuration has been defined to represent the geometric arrangement of 

cameras and targets [79], [84]. A number of literatures have demonstrated the impact of 

imaging geometry on precision [81]. In this article, the relative configuration of sensors 

regardless of target is defined as the relative network configuration. For some measuring 

systems, the relative network configurations are fixed as the whole sensors are packaged 

into one single unit. In this case, based on the data decorrelation results, the optimal 

decorrelated configuration of the measuring system with targets can be identified. By 

setting up with this configuration, the measuring system is capable of providing more 

accurate data than other configurations. The stability under this configuration is studied 

as well.  

6.2 Decorrelation Formulations 

Both local and global data decorrelation are defined and formulated. The two methods 

employ the eigen-decomposition to explore the structure of the variance-covariance 
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matrix of the measurement data. The difference between the two is the way how the 

variance-covariance matrix is formulated. The local method is formulated using each 

individual marker data, while the global method is formulated using a linear combination 

of the entire set of marker data. Two approaches are evaluated and compared. 

6.2.1 Local Decorrelation 

Assuming that the 3D position measurement of markers complies with a normal 

distribution, the probability distribution function (PDF) of this multivariate normal 

distribution can be expressed as [85] 
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where X = (x, y, z)
T
; p is the number of variables, in this case, p = 3; μ is the 3×1 column 

vector of  means; and C is the 3×3 covariance matrix of X. This distribution can be noted 

as X ~  p(μ, C), with the mean vector and variance-covariance matrix expressed as 

 Tzyx                                                         (6.2) 
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where ρxy, ρxz, ρyz are the correlation coefficients among x, y, and z axes and detailed as  
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From the eigen-decomposition, C can be factorized as [10] 

1VDVC                                                            (6.7) 

where the columns of V are the eigenvectors of C, i.e., V = (v1 v2 v3); D is a diagonal 

matrix, with eigenvalues as its diagonal elements, i.e., D = diag(λ1, λ2, λ3). C is a 

symmetric positive definite matrix, which has an orthonormal basis of eigenvectors. 

Therefore, V is an orthogonal matrix, and (6.7) becomes 

TVDVC                                                             (6.8) 

By substituting (6.8) into the exponential part of (6.1), it yields 
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where 

                                                             (6.10) 

From (6.10), X’ is the new set of coordinate values from converting X by V
T
. Equation 

(6.9) can be viewed as an ellipsoid defining the surface of constant density of distribution 
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where d is a real constant scalar, V
T
 is considered as the rotation matrix, rotating the axes 

of the ellipsoid to be aligned with the principle x, y, and z axes. Note that no scaling 

happens during the rotational transformation, since V
T
 is orthogonal. Refer to (6.9), the 

distribution of the obtained data X’ can be noted as X’ ~  3(μ’, D), whose covariance 



104 

matrix is a diagonal matrix without any cross-correlations. Also, the principle axial 

directions of ellipsoids correspond to the eigenvectors; the principle lengths are 

proportional to the eigenvalues.  

In the light of the relative rotation between sensors and markers, we could transform the 

coordinate frame of sensors instead of markers’ coordinates. The new frame of the 

measuring system, denoted as e’, can be described by [69] 

eXXe       (6.12) 
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With the obtained eigenvectors or the rotation matrix, the sensors could be placed in such 

an optimal configuration that the 3D coordinate measurements of markers would not 

suffer from the correlations. The coordinate frames of sensors are aligned with the 

principle directions of PDF ellipsoids of markers, and the coordinates can be treated 

independently. For multiple markers, however, since the normal distributions and 

variance-covariance matrices for each one of them are different, the eigenvalues and 

eigenvectors are different accordingly. In other words, the optimal configurations for 

different markers are different as well. 

6.2.2 Global Decorrelation 

As mentioned before, the optimal decorrelated configurations of the sensors vary with 

different markers. A common optimal sensor configuration is more preferable for the 

entire set of markers. Therefore, the entire set of marker data could be combined together 
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to form a global covariance matrix. Then, the eigen-decomposition in (6.8) can be applied 

to find the global eigenvectors for the decorrelation in (6.10). This kind of decorrelation 

is regarded as the global data decorrelation method, while the above method for each 

individual marker is the local data decorrelation method.  

Consider a linear combination of the coordinate vectors of markers [86], 
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where the ith marker’s vector is Xi = (xi, yi, zi)
T
, with a normal distribution of  p(μi, Ci), p 

= 3, as detailed in (6.1)–(6.3); and n is the number of markers.  

When combining the vectors as a column vector, X = (X1,...,Xn)
T
, the combination in 

(6.13) can be expressed as 
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where A = (a1I, a2I, … , anI), and I is the 3×3 identity matrix. The covariance or 

correlations of the combination Y are considered as the global covariance or correlations; 

while the local covariance or correlations are defined for Xi. The np×1 column vector X 

has a multivariate normal distribution of  np(μ, C), where  Tn 21  and 
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Then, the distribution of the combination Y can be determined by  p(Aμ, ACA
T
), i.e., 
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Statistically, assuming these vectors Xi are mutually uncorrelated, i.e., Cov(Xi, Xj) = 0, 

Equation (6.15) becomes 
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Then the distribution of Y becomes  p(
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where   
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and m is the number of measurements for each marker.  

Applying the eigen-decomposition, the global covariance matrix in (6.17) can be 

diagonalized and the eigenvectors V can be obtained. Also, the global correlation 

coefficients of x and y for the combination can be calculated by 
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From (6.6) & (6.19), when ρ(x,y) = 0, or   iiii yxyxE ),( , it does not necessarily mean 

ρ(xi,yi) = 0, or iiii yxyxE ),( ; but not vice versa. 

6.3 Evaluation and Comparison 

For a comparison, the local and global data decorrelation methods are evaluated in terms 

of the root mean square (RMS) values of the local correlations coefficients of X, 

described as 

 
 


N

i

N

j

ijRMSCorrCoef
1 1

2
_                       (6.20) 

where ρij is the markers’ local correlation coefficients, with {i, j    1 | 1 ≤ i, j ≤ N, i ≠ j, N 

= n × p}. 

6.4 Experiments and Simulations 

As an experimental validation, the data decorrelation of the 3D position readings from the 

Optotrak 3020 system located at AMTC was conducted with the proposed method. As 

shown in Figure 5.3 & 5.4, the experiment system consisted of a Motoman UPJ robot, the 

Optotrak system, and a target of a cubic rigid body, which was designed to form a cubic 

structure. In the experiment, 7 markers (infrared LED) were attached to the rigid body. 
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The locations are the 7 corners of the cube. The Optotrak device has three line CCD 

sensors packaged into one single unit. The relative network configuration is fixed and 

arranged in a way for the spatial intersection. The maximum frame rate of the system is 

3500/(n+1), about 437 Hz in this case (n = 7). 

 

Figure 6.1:  500 repetitive readings of marker_1s' constant 3D position at pose_1. 

The repetitive position measurements of these markers were recorded for 5 seconds at a 

frame rate of 100Hz at the five different poses of the robot. Figure 6.1 shows the 500 

measurements of marker_1 at pose_1. From these data, variance and correlation of 

coordinates have been calculated, with the maximum amounts of variance at z axis (the 

viewing or depth direction) and correlation at y and z axes. Figure 6.2 shows the standard 

deviations and the average values on x, y, and z axes are 0.003, 0.0025, and 0.0151 mm, 

respectively. Clearly, the value of deviation on z axis is about 5 - 6 times of those on x 

and y axes, since z value is calculated upon x and y values and the errors are accumulated. 

The average values of the correlation coefficients of xy, xz, and yz axes are 0.2431, 

0.3274, and 0.5443, respectively. Wing-shaped curve of the correlations has been found 

as shown in Figure 6.3. All of these indicate that 3D point measurement noises are 
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usually anisotropic (direction dependent) and heteroscedastic or inhomogeneous (point 

dependent), due to the nature of 3D sensors. 

 

Figure 6.2:  Standard deviation (STD) of marker's positions. 

yxj ,
̂

zxj ,
̂

zyj ,
̂

 

Figure 6.3:  Mean absolute correlation coefficients of 5 poses for 7 markers. 

Figure 6.4(a) and (b) show the comparison of ellipsoids of 1σ, 2σ, 3σ of the original and 

the decorrelated data. As mentioned, the principle axial directions and lengths of 

ellipsoids are defined by the data’s covariance matrix. In Figure 6.5(a), the local 

decorrelated configurations of NDI sensors are shown in red, with respect to the 

corresponding ellipsoids of the markers. The original configuration is shown in cyan. 

Note that there are slightly differences of NDI configurations for each marker according 

to the different eigenvectors. Figure 6.5(b) shows the mean and standard deviation values 

before and after the local data decorrelation. 
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(a) 

 

(b) 

Figure 6.4:  Comparison of ellipsoids of 1σ, 2σ, 3σ of the original (a) and the 

decorrelated data (b).  
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(a) 

 

(b) 

Figure 6.5:  (a) Local optimal decorrelated configurations of the NDI Optotrak system 

(in red) with respect to the PDF ellipsoids of 7 markers, the original NDI configuration is 

in cyan; (b) mean and STD of measurements before and after the local decorrelation. 

The global data decorrelation is carried out with the assumption of whether the 

measurements of markers are mutually uncorrelated or not, as shown in Figure 6.6. It is 

shown that when mutually correlated in Figure 6.7, the ellipsoid has a larger size than that 
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of Figure 6.6, due to the larger eigenvalues when the covariance matrix accounts for the 

mutual correlations.  

 

Figure 6.6:  The global decorrelated configuration of NDI for the entire set of markers 

(in red), when the marker data Xi are mutually uncorrelated. 

 

Figure 6.7:  Results when the data of the 7 markers are mutually correlated, with a larger 

size of ellipsoid due to larger eigenvalues. 
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Figure 6.8:  Local and global data decorrelation comparisons, with various noisy levels 

from ±10% to ±30%. “Local_1” to “Local_7” mean the seven local data decorrelation 

methods at each markers. “Global_UC” represents the global data decorrelation when 

mutually uncorrelated; “Global_C” indicates the global data decorrelation when mutually 

correlated. 

Figure 6.8 shows the RMS values for the local and global data decorrelation methods. 

Various noisy levels, ±10%, ±20%, and ±30% of the sensor configurations are applied for 

the sensitivity evaluating purpose. In Figure 6.8, “Local_1” to “Local_7” represent the 

local data decorrelation methods at the 1
st
 to the 7

th
 markers, respectively. Thus, there are 

totally 7 local decorrelation methods. “Global_UC” stands for the global decorrelation 

when Xi are mutually uncorrelated; while “Global_C” stands for the global decorrelation 

when Xi are mutually correlated. Without noise, the RMS values for the 7 local and 2 

global methods are 0.462, 0.4291, 0.4602, 0.5519, 0.4181, 0.4498, 0.5861, 0.4151, and 

0.4105, respectively. Clearly, the global decorrelation methods have lower values 

compared with the local methods. The global method when Xi are mutually correlated has 
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the lowest value, corresponding to the fact of existence of the mutual correlations of Xi. 

Also, noises have impact for all of methods, especially for some of the local methods, 

such as local_1 and local_2. As a conclusion, the global decorrelation method when Xi 

are mutually correlated is the best solution to perform the data decorrelation and obtain 

the optimal decorrelated sensor configuration. 

6.5 Summary 

For eliminating the correlations of the multiple markers’ readings, the local and global 

data decorrelation methods have been presented based on the multivariate statistical 

analysis. For both methods, the eigen-decomposition is employed to explore the structure 

of the variance-covariance matrix and then the eigenvectors are assigned as the rotation 

matrix to align the principle axial directions of the ellipsoids, which are the surfaces of 

constant density of distribution. The difference is how to formulate the variance-

covariance matrix. The local method formulates it from the each individual marker data; 

while the global method formulates it from the linear combination of the entire set of 

markers data. Evaluation and comparison under various noisy levels has proved a better 

performance of the global data decorrelation method in terms of the root mean squares 

values of the local correlation coefficients of markers. The RMS value has been reduced 

from 0.5525 to 0.4105, with a percentage of about 25.7%. The optimal decorrelated 

configuration for the measuring system has been identified based on the results. In such a 

configuration, the calibration of 3D measurements could be simplified by using one 

dimensional lookup tables.    
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CHAPTER 7   CONCLUSIONS AND FUTURE 

WORKS 

7.1 Conclusions 

In this dissertation, pose estimation has been studied for position-based visual servoing 

with an application in robotic percussive riveting. The challenges of accuracy in position-

based visual servoing include localization errors, poor absolute positioning accuracy of 

the robot, and measurement errors. For this reason, three categories of pose estimation 

have been investigated pertaining to these challenges, namely, static, dynamic, and robust 

pose estimation.  

In static pose estimation, direct solutions of relative pose between two rigid bodies 

estimated from noisy point measurements are derived based on least-square methods. The 

inequality of conventional and direct LS solutions, and the equivalence of conventional 

and direct CTLS solutions have been found. Also, the results of static pose estimation are 

applied in localization of robotic riveting. In dynamic pose estimation, state estimation of 

relative pose between two rigid bodies have been developed based on iterative extended 

Kalman filter. Measurement errors have been tackled by outlier diagnosis for robust pose 

estimation, and a decorrelation method for measurement calibration. For measurement 

calibration, a decorrelation method is proposed for finding an optimal measurement 

configuration at which calibration can be conducted for each axis of measurement frame 

with less effect of correlation. The methods of pose estimation have been validated with 

simulations and experiments of a robotic riveting system.  
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7.2 Contributions 

 Static, dynamic, robust pose estimation were systematically studies for precise rivet-

in-hoe insertion of the developed robotic percussive riveting system.  

 Different formulations of static pose estimation from points have been summarized, 

namely, Cartesian frame formulation, three point method, normalized directional 

vectors, and covariance matrix method. Normalized directional vectors was chosen 

due to no effect of point distribution.  

 Direct solutions of static relative pose estimation based on least-square methods have 

been derived with and without the constraint of orthogonality for rotation matrix. The 

direct solution with constraint has been proved to be identical to the conventional 

indirect method. However, the direct solution without the constraint has been proved 

to be different from the conventional solution.  

 Static pose estimation have been extended for localization of multiple frames of rigid 

body systems, including articulated rigid bodies, i.e., robot manipulators. A virtual 

target  was proposed to align the robot frame and measurement frame. The virtual 

target consists of multiple points of the TCP of the robot at different poses within the 

workspace.  

 Dynamic relative pose estimation has been shown to address a state estimation of 

relative poses between two rigid body during motion. The method tackles the issue of 

poor absolute positioning accuracy of the robot by estimating relative pose between 

robot TCP and working panel, which has been verified in simulation and experiments. 

 For robustness against outliers of point measurements, an outlier diagnosis is shown 

based on the relaxation of rigid body constraints of points. This novel method has 

advantages of high breakdown point and ease of implementation. The method has 

been verified by both simulation and experiments.  

 A decorrelation method is proposed for measurement calibration using multivariate 

statistical analysis to find a optimal sensor-to-target configuration. As a result, each 
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coordinate measurement is close to uncorrelated and it allows a simple calibration 

using one dimensional lookup table.  

7.3 Future Works 

In static pose estimation, four formulations may be compared more thoroughly in terms 

of estimation accuracy.  Also, the effect of number of points on static pose estimation 

accuracy may be of interest to be evaluated. For the considered relative pose problem, the 

direct formulation does not offer any redundancy in the provided input that might be 

exploited further in order to obtain an even optimal solution in future.  

In dynamic pose estimation, the IEKF based algorithm was based on known shape of the 

targets, i.e., availability of A' and B', homogeneous noise, assumption that the targets are 

within field of view and not features occlusion happens. As a future work, the algorithm 

may be extended to provide a general solution to the relative pose state estimation. In 

addition, more experimental data may need to carried out to ensure the more reliable 

performance of the proposed algorithm, by considering longer trials with more 

challenging motion sequences. Also, a comparison of this work with respect to the single 

rigid body pose estimation algorithms might be of interest to be evaluated.  

For the decorrelation method for measurement calibration, although real measurement 

data were used in the decorrelation experiment, it would be interesting to actually build 

lookup tables after the measurement system is reoriented at the global optimal 

configuration.  

To fully integrate the proposed methodologies, software development of an overall 

interface needs to be further carried out with details that can be found in Appendix G.   
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APPENDIX A - POSITION AND ORIENTATION 

In this section, the position vector and rotation matrix are introduced to represent the pose 

of each module. 

 

Figure A.1: Multiple modules system for a serial robot manipulator.  

A.1 Position Vector 

The position of a point in space is represented with respect to a coordinate frame using a 

vector. In general, the vector components in the Cartesian coordinate are expressed as  

p = [p1, p2, p3]
T
                                                      (A.1) 

A position vector, as shown in Figure A.2, can be expressed in terms of the frame axes in 

linear combination as  

p=p1e1+ p1e1+ p1e1                                                 (A.2a) 

or                                                  p=Ep                                                           (A.2b) 

where E = [e1, e2, e3]. In the Cartesian coordinate system, E = [x, y, z], and x, y, z are the 

unit vectors along x, y, and z axes relatively, that is, x = [1, 0, 0]
T
, y = [0, 1, 0]

T
, z = [0, 0, 

1]
T
.   

Base frame 

 

 

 

 

Module 1 

Module 2 

Module n-1 

Joint 1 Joint 2 

Joint i 

Joint n 

Module i 

Module n 

Joint n-1 

Tip 



119 

 

Figure A.2: Position vector p [71].  

A.2 Rotation Matrix 

A rotation matrix represents a linear transformation between two coordinate frames. In 

Figure A.2, position vectors can be expressed either in frame {e1, e2, e3} (Equation A.2a) 

or frame {e’1, e’2, e’3},  

p = p’1e’1+ p’1e’1+ p’1e’1                                              (A.3a) 

or                                                  p=E’p’                                                           (A.3b) 

Since Equations (A.2) and (A.3) represent the same position vector, so  

E’p’ = Ep                                                           (A.4) 

It leads to 

p = Rp’                                                            (A.5) 

where R is the rotation matrix given as 

R = E
T 

·E’                                                         (A.6) 

Since ei is orthogonal to ej, then ei·ej = δij = 1 when i=j; ei·ej = 0 when ij. Hence, E is 

orthogonal, and E
-1

 = E
T
.  

R is in fact defined by the dot product of two unit vectors, i.e., the direction cosine. It is 

p 

e3 e3
’ 

e2 

e2
’ 

e1 

e1
’ 
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also called the tensor product, defined as  

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3
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                                 (A.7) 

Reversing the order of Equation (A.4), Equation (A.5) becomes  

p’ = R’p                                                            (A.8) 

where  

R’ = E’
T 

·E                                                        (A.9) 

Obviously  

R’ = R
T 

= R
-1

                                                    (A.10) 

Hence, R is orthogonal, and such that all columns are mutually orthogonal and have unit 

magnitude. In fact, it is proper orthogonal, meaning det(R) = 1.  

It is clear that the nine elements of a rotation matrix are not all independent.  Six 

dependencies or constraints between the elements can be easily found from a given 

rotation matrix,  R X Y Z :  

1

1

1







X

Y

Z

                                                  (A.11a) 

0

0

0

 

 

 

X Y

X Z

Y Z

                                                (A.11b) 

As a result, three independent parameters representation is developed in the following 

section in order to express the rotation matrix conveniently, using the angle-set 

convention.  
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A.3 Angle-set Representation of a Rotation  

There are basically two methods to describe the orientation of a frame relative to a 

reference frame by angle-set conventions. According to Craig [94], one is Euler angles, 

and one is fixed angles. In the former representation, each rotation is performed about an 

axis of the moving coordinate system rather than one of the fixed reference frame. For the 

latter one, each of the three rotations takes place about an axis in the fixed reference 

frame.  

For each method, 12 sets of conventions are employed according to different sequence of 

rotation about the X-Y-Z axes. One of them is introduced in details in this section, and the 

rest can be found in [94]. Usually, there is no particular reason to favor one convention 

over another, but various authors adopt different ones [94]. The following PRY angles (or 

X-Y-Z Euler angles) are applied in this thesis.  

 (Tait) Bryan Angles (Pitch Roll Yaw, PRY) [or X-Y-Z Euler angles] 

In terms of pitch, roll, and yaw angle (PRY) [71], the three individual rotation matrices 

can be given as: 

 x x x

x x

1 0 0

θ  = 0 cosθ -sinθ

0 sinθ cosθ

 
 
 
  

R                                         (A.12) 

 

 
y y

y

y y

cosθ 0 sinθ

θ  = 0 1 0

-sinθ 0 cosθ

 
 
 
 
 

R                                         (A.13) 

 



122 

 
z z

z z z

cosθ -sinθ 0

θ  = sinθ cosθ 0

0 0 1

 
 
 
  

R                                         (A.14) 

Then, the resulting rotation matrix in the global reference frame is given as: 

     x y z = θ θ θR R R R                                            (A.15) 

If the order is reversed, it will become the rotation matrix in the local frame 

     T T T T

z y x = θ θ θR R R R                                        (A.16) 

Expanding Equation (A.15) leads to 

y z y z y

x y z x z x y z x z x y

x y z x z x y z x z x y

cθ cθ -cθ sθ sθ

 = sθ sθ cθ +cθ sθ -sθ sθ sθ +cθ cθ -sθ cθ

-cθ sθ cθ +sθ sθ cθ sθ sθ +sθ cθ cθ cθ

 
 
 
 
 

R                  (A.17) 

When given three PRY angles, Equation (A.17) can be used to compute the rotation 

matrix directly. For the reverse problem, some elements in the Equation (A.17) are 

selected to determine the PRY angles for a given a rotation matrix, for example:  

   
1 2

2 2-1

y 23 33θ  = cos r + r
     

 

 -1

x 33 yθ  = cos r cosθ                                              (A.18) 

 -1

z 11 yθ  = cos r cosθ  

where r23 = -sin(θx)cos(θy), r33 = cos(θx)cos(θy), r11 = cos(θy)cos(θz).  

Different selection of elements from the given rotation matrix leads to different method 

for a solution. Bai and Teo [95] developed another solution using atan2(y, x), a two-

argument arctangent function that uses the signs of both x and y to identify the quadrant 
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in which the resulting angle lies:  

 x 23 33θ  = atan2 -r , r  

y 13 23 x 33 xθ  = atan2(r , -r sin(θ ) + r cos(θ ))                                    (A.19) 

 z 21 x 31 x 22 x 32 xθ  = atan2 r cos(θ ) + r sin(θ ), r cos(θ ) + r sin(θ )  

However, none of them is capable of solving this inverse problem with a unique solution 

from a rotation matrix in all four quadrants, which is called the quadrant sensitivity 

problem. Equation (A.18) is only valid for 0 ≤ θy ≥ 90
◦
, 0 ≤ θx ≥ 180

◦
, and 0 ≤ θz ≥ 180

◦
; 

while Equation (A.19) is valid when θy lies in the first and fourth quadrants.  

In other words, if θy is located in the second and third quadrants, the values of cos(θy) 

would become negative. As a result, the two elements r23 = -sin(θx)cos(θy) and r33 = 

cos(θx)cos(θy) in Equation (A.19) change signs, and the values of θx determined from 

atan2(r23, r33) are no longer true.  

So by modifying Equation (A.19),  

2 2 2 2 2

y 23 33 x y x y ycosθ  = r  + r  = (-sθ cθ )  + (cθ cθ )  = cθ                  (A.20) 

then θy can also be determined by  

2 2

y 13 23 33θ  = atan2 (r , r  + r )                                        (A.21) 

Even though a second solution exists, by using the positive square root in Equation 

(A.20) for θy, we always can compute the single solution for which -90
◦ 

≤ θy ≥ 90
◦
, 

making it a one-by-one mapping orientation representation.  

Attention should also be paid to the names pitch, roll and yaw angles, since they are often 

given to other related but different angle-set conventions; for instance, it is referred to the 

X-Y-Z fixed angles in Craig [94].    
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APPENDIX B - GENERAL MOTION 

This section presents the forward kinematic modeling of a serial robot with rigid bodies. 

The topic to compute the position and orientation of the end-effector relative to the base 

coordinate as a function of the joint variables. 

B.1 General Motion of a Single Rigid Body 

As shown in Figure B.1, the general motion of a single rigid body is the combination of 

rotation and translation, and the position vector p is  

p = Rb’ + h = h + Rb’                                            (B.1) 

where h is the vector of translation, b’ is the body vector in local coordinate system, and 

R is the rotation matrix. 

 

Figure B.1: General motion of a single module [71]. 

Clearly, Equation (B.1) is communicative, meaning the order of rotation and translation 

can be reversed, which can also be found in Figure B.1. When h is null, it becomes pure 

rotation.  

B.2 General Motion of Multiple Rigid Bodies 

Figure B.2 shows the vector method used to compute the position of a multi-module 
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system.  

 

Figure B.2: Vector method for a multi-module system [71] 

The position of each joint from 1, 2 to i can be expressed respectively as:  

Joint 1                     p1 = b0 

Joint 2                     p2 = b0 + R01b’1 = p1 + R01b’1  

Joint 3                      p3 = b0 + R01 (b’1+R12b’2) = p1 + R01 R12 b’2  

…… 

Joint i                        pi = b0 + R01 (b’1 +…+ Ri-1 i b’i) = pi-1 + R0 i-1 b’i-1                      (B.2) 

where Ri-1 i defines the rotation between two coordinate systems attached to two adjacent 

modules i-1 and i; b’i is the local body vector, representing the translation between two 

coordinate systems, or defining the ith joint to the (i+1)th joint in the ith local coordinate 

frame.  

Clearly, Equation (B.2) is a recursive method for computing the position of a multi-

module system. Similarly, the recursive method of computing rotation can be given as  

R0i = R01R12…Ri-1i = R0i-1Ri-1i                                     (B.3) 

Tip 
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Hence, in general, the pose (position and orientation) of the end-effector of a n-module 

system can be expressed as [71]  

Position                            
1 0

0 0

'
n n

n i i i

i i



 

  p R b b                                         (B.4) 

Orientation                              0 ( 1)

1

n

n j j

j





R R                                                (B.5) 

As for a robot system, it usually has the default home configuration or initial 

configuration setup. Therefore, it should be noted that all the employed parameters here 

may have static part and motion part. The static part is according to the initial 

configuration setup, and the motion part represents the movement of each joint.  

R = Rs Rm                                                      (B.6) 

b = bs + bm                                                    (B.7) 

where Rs and bs are initial configuration setup, which are the geometric parameters need 

to identify; and Rm and bm are related to active joints, i.e., motors. The static part can be 

further expressed by the PRY angles rotation as  

Rs = RxRyRz                                                        (B.8) 

bs = bxx + byy + bzz                                          (B.9) 

where Rx, Ry, and Rz are the rotation about x, y and z axis of the configuration setup; bx, 

by, and bz are the translation along the x, y, and z axe of the configuration setup.  

In terms of different kinematic pairs, they may be expressed differently according to joint 

movements, as shown in Table B.1. As for robotics, usually only revolute and prismatic 

joints are considered in reality. In Table B.1, R(θz), R(θy), and R(θx) are the rotation about 

z, y, and x axis of the joint respectively; while sz is the translation along z axis of the 
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joint. Conventionally, the first physical rotation or translation axis of a joint should be 

defined as axis z, second as y, and last as x. It should be noted this convention is totally 

different from the sequence of PRY angel set, which is used to represent orientation 

instead of a rotation matrix.  

Table B.1: Rm and bm of different kinematic pairs [71]. 

 

Joint  Rm bm 

Revolute  R(θz) 0 

Prismatic R(0) = 1 sz 

Cylinder R(θz)  sz  

Universal R(θz)R(θy) 0 

Spherical  R(θz) R(θy) R(θx) 0 
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APPENDIX C - MATRIX COMPUTATIONS 

C.1 The Rank of a Matrix  

A set of vectors         is said to be linearly independent if         implies all    

 . If         are not linearly independent, they are said to be linearly dependent. 

Let A be an     matrix. The column rank of A is the maximum number of linearly 

independent columns it contains. The row rank of A is the maximum number of linearly 

independent rows it contains. It may be shown that the column rank of A is equal to its 

row rank. Hence the concept of rank is unambiguous. We denote the rank of A by [96] 

                                                                       (C.1) 

It is clearly that  

                                                                   (C.2) 

If       , we say that A has full row rank.  

If       , we say that A has full column rank.  

We have the following important properties: 

                                                              (C.3) 

                                                                  (C.4) 

          , if B is square of full rank                                (C.5) 

                                                             (C.6) 

The column space of A, denoted     , is the set of vectors 

                              .                               (C.7) 
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C.2 Singular Value Decomposition  

Let A be a real m × n matrix with         . Then there exists an m × r matrix U such 

that          , an n × r matrix V such that         and an r × r diagonal matrix 

  with positive diagonal elements, such that [96] 

      .  (C.8) 

C.3 The Moore-Penrose (MP) Inverse 

The Moore-Penrose inverse was introduced by Moore (1920, 1935) and rediscovered by 

Penrose (1955). There is a huge literature on generalized inverses or the Pseudo-Inverse, 

of which the MP inverse is one particularly useful example due to its uniqueness with 

minimum Frobenius norm [68].  

Definition 

An     matrix   is the MP inverse of a real     matrix   if 

(i)                      (ii)       

                                       (iii)                 (iv)          

The MP inverse of   is denoted as   . 

Theorem 1 

For each  ,     exists and is unique. The unique M-P inverse of        is  

           
    

 

  

 
    ,                                                (C.9) 

 It is the unique minimal Frobenius norm solution:            . 

Some Properties 

                                                                (C.10) 

             , if                                                  (C.11) 
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             , if                                                 (C.12) 

       , if                                                      (C.13) 

C.4 The Solution of Linear Equation Systems 

An important property of the Moore-Penrose inverse is that it enables us to find explicit 

solutions of a system of linear equations [96].  

Theorem 2 

The general solution of the homogeneous equation      is 

           ,                                                       (C.14) 

where q is an arbitrary vector of appropriate order. The solution is unique and is    , if 

and only if       . If the solution is not unique, then there exist an infinite number of 

solutions given by (C.14). 

Theorem 3 

A necessary and sufficient condition for the vector equation      to have a solution is 

that 

      ,                                                            (C.15) 

in which case the general solution is 

               ,                                               (C.16) 

where q is an arbitrary vector of appropriate order. 

If there exists at least one solution, we say that the system      is consistent. The 

system is consistent for every b if and only if       . If the system is consistent, its 

solution is unique if and only if       . Clearly if         , then A is non-

singular and the unique solution is     .  
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C.5 Least Squares Method and Gauss-Markov Theorem 

Theorem 4 (Least Squares Method)  

Let A be a given m × n matrix, and b a given n × 1 vector. Then [96] 

                                                               (C.17) 

for every    in   , with equality if and only if 

                                                                (C.18) 

for some q in   . 

Note. From Appendix C.3, the solution using M-P inverse of A has the minimum 

Euclidean norm among all solutions, given by 

         
  

  

  

 
      ,                                             (C.19) 

In the special case where A has full column rank n, we have               and hence 

a unique vector    exists which minimizes               over all x, namely 

             .                                                  (C.20) 

The vector    is called the least squares solution and     is called the least squares 

approximation to b. Thus    is the ‘best’ choice for x whether the equation      is 

consistent or not. If      is consistent, then    is the solution; if      is not 

consistent, then    is the least squares solution. 

Theorem 5 (Gauss-Markov) 

Consider the standard linear regression model          , i.e. 

      ,                                                         (C.21) 

where A has full column rank n and the disturbances            are uncorrelated, i.e. 
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                         .                                          (C.22) 

The best (minimum variance) affine unbiased estimator of exists if, and only if, in which 

case 

                                                                (C.23) 

with variance matrix 

                 .                                               (C.24) 

Note. Compared with Theorem 4, In other words, the best linear unbiased estimator for b 

is the least squares solution of      . Note that the method of least squares, however, is 

a purely deterministic method which has to do with approximation, not with estimation.  

Example: Least squares solution of        

Consider the equation of        , where       ,       ,               , 

              . According to Theorem 4, the least squares solution of R is given by  

       
      

      
                                          (C.25) 

Proof. The least-square errors of        can be formulated as 

║   ║
 

                   
 

                                (C.26) 

By taking the first derivative and equal to zero, we can find the estimated matrix that 

minimizes the sum of square errors.  

 ║   ║
 

   
               

                                    (C.27) 

Hence, the LS solution of R is 

       
      

  
  

                                           (C.28) 

where   
      

  
  

 is the pseudo-inverse of Do in C.12.   
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C.6 Rotation of Subspaces (Constrained Least-Squares) 

Theorem 6: Suppose                     are two sets of data matrix obtained 

by performing two measurements or experiments. m is the size of each data or dimension 

of the subspace and n is the number of measurements.       is the solution for the 

orthogonal Procrustes problem, which is the possibility that    can be rotated into    is 

explored by solving the following problem: [68] 

                
 
                                                      (C.29) 

where V and U represent the SVD of      
 , i.e. 

    
       

Proof. Recall that the Frobenius matrix norm of   is the trace of a matrix    , denoted 

as     
         . It follows that if        is orthogonal, then  

        
 

 
                    

 
  

        
          

            
                 (C.30) 

Thus, is equivalent to the problem of maximizing         
  . If     

       is the 

SVD of this matrix, then  

        
                                                     (C.31) 

Clearly, the upper bound is attained by setting       for then        . Obviously, 

the minimum value of error norm is  

           
 

 
     

 

 
      

                                   (C.32) 
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APPENDIX D - LEAST-SQUARE ESTIMATION OF 

TRANSFORMATION PARAMETERS BETWEEN 

TWO POINT PATTERNS 

Umeyama [40] refined Arun et. al [36]’s SVD solution and proved the following theorem 

for estimating the similarity transformation parameters between two point patterns. 

Theorem: Let                and                be corresponding point 

patterns in m-dimensional space. The minimum value of the mean squared error 

          
 

 
                

                                      (D.1) 

of these two point patterns with respect to the similarity transformation parameters (R: 

rotation, t: translation, and c: scaling) is given as follows:  

     
  

       

  
                                                      (D.2) 

where 

   
 

 
   

 
                                                           (D.3) 

   
 

 
   

 
                                                           (D.4) 

  
  

 

 
          

                                                    (D.5) 

  
  

 

 
        

  
                                                    (D.6) 

    
 

 
               

  
                                          (D.7) 

and let a singular value decomposition of     be      (                   

    ), and  
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                               (D.8) 

    is a covariance matrix of X and Y,    and    are mean vectors of X and Y, and   
  

and   
  are variances around the mean vectors of X and Y, respectively.  

When                , the optimum transformation parameters are determined 

uniquely as follows:  

                                                                 (D.9) 

                                                             (D.10) 

  
       

  
                                                          (D.11) 
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APPENDIX E - GENERAL FORMULATION FOR 

THE OUTLIER DIAGNOSIS BY RELAXATION 

A function to calculate the total support of non-outlier provided to pi by all markers pj 

[87] 

 



n

j

k

jijj

k

i sc
n

s
1

1),(
1

                                               (E.1) 

where 

k

is  - Merit score for ith marker at kth iteration 

1k

js  - Merit score for jth marker at (k-1)th iteration 

 1),( k

jijj sc   - A function to calculate the support of non-outlier given to pi by pj, by 

combining the merit scores of pj (
1k

js ) and the compatibility )( ijc  . These two factors 

can be combined in various ways. It can be a product, e.g., 
1)(  k

jijj sc  , or to use 

their minimum, i.e.,  1),(min  k

jijj sc  , or etc. 

)( ijc   - A function to calculate the compatibility between pi and pj. It can be a continuous 

function of the error of the Euclidean distance ij , for example, )1(1)( 2

ijijc   , or a 

discrete function with integers by thresholding, c(εij) = {-1, 0, 1} 

ij  - The error of Euclidean distance between the nominal value and the measured value, 

defined by the rigid body constraints 
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APPENDIX F - MEASURING SYSTEM MODELING  

The measuring system is a line-sensor based Optical CMM. The principle of measuring 

system is illustrated in Figure F.1. The CMM has three line CCD sensors, represented by 

sensor 1, 2 and 3. At each CCD sensor, there is a projection plane perpendicular to the 

line sensor that pass through the point feature, the focal and the image point, denoted by 

Π1, Π 2, and Π 3. The intersects of these three projection planes establish the triangulation 

of the point of interest, whose coordinates are represented as p(x, y, z). The modeling 

basically solves the coordinates based on the triangulation of planes Π1, Π 2, and Π 3.  

X
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Figure F.1: Principle of Optoelectronic Coordinate Measurement Machines [88].  

Here are equations of three planes, as shown in Figure 3:  

0 : 11111  dzcybxa                                                    (F.1) 

0 : 22222  dzcybxa                                                   (F.2) 

0 : 33333  dzcybxa                                                   (F.3) 
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Since planes Π1 and Π2 are parallel to the X axis and its normal vectors 1n


 and 2n


 are 

vertical to the X axis, then a1 and a2 are zero. When calculating the coordinate values of a 

marker, y and z can be determined first by eqs. (F.1) and (F.2), yields [88] 

0 :

0 :

2226

1115





dzcybl

dzcybl
                                                              (F.4) 

or  
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                                                             (F.5) 

And substituting y and z values into eq. (F.3), x value can be obtained. Therefore, each 

component of the coordinates from the calculation mutually depends on each other’s 

calculation. As a result, the coordinates are correlated and require a decorrelation 

procedure during the calibration of the measurement system prior to the pose estimation.  
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APPENDIX G - ROBOTIC PERCUSSIVE RIVETING  

Riveting and welding represent two primary joining methods for the assembly of 

structural components that require strong joint strength. Compared with welding mainly a 

fusion method, riveting a mechanical method generates no thermal deformation, hence 

widely used for joining high thermal conductive materials such as aluminum sheet metals 

used in aircraft assembly [1]. There are hundred thousands of rivets in a regional aircraft 

and millions in a large continental aircraft. Overall, the operation of aircraft assembly is 

divided into three stages: subcomponent assembly, component assembly, and line 

assembly. The subcomponent assembly is the first step to construct the base components 

for four major sections, namely, fuselage, wing, cockpit and empennage. The component 

assembly is the middle step to join the subcomponents to form an individual major 

section. The line assembly is the last step to assemble a whole aircraft by connecting the 

four major sections together.  

The current riveting process in aerospace manufacturing entails a mix of manual riveting, 

semi-automated riveting, and automated riveting. The semi-automated and automated 

riveting machines are widely used in North America and Europe, but only limited to 

component assembly, such as wing skin panels and fuselage skin panels. Subcomponent 

assembly and line assembly are still conducted manually. The labor incurred producing 

these subassemblies/assemblies amounts to as much as fifty percent of the total cost. 

Manual riveting operations are tedious, repetitious, prone to error, and likely causing 

health and ergonomic problems [1]. 

In principle, there are two riveting methods, the first called squeezing (or one-shot) 
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riveting, where a large upsetting force is applied to deform a rivet instantly. This method 

requires a large riveter operating under high pressure beyond the yield strength of 

aluminum rivets in a range over 500 lb force. As shown in Figure G.1 (a), this type of 

riveter is made of either a hydraulic cylinder or an electromagnetic piston, very heavy, 

bulky and usually needing a lift-assisted device if used for manual operation. The 

automated and semi-automated riveting machines employ this type of riveter; hence they 

are gigantic and only limited to riveting large, simple and relatively flat components. The 

second method is called percussive (or hammering) riveting, where a small impulsive 

force is applied to deform a rivet accumulatively by a series of hits. As shown in Figure 

G.1 (b), this method uses a rivet gun in size of a regular hand-held power tool, very 

compact and light, operating under much lower pressure in a range less than 100 psi, very 

safe and energy efficient. Manual riveting employs this principle.  

 

Research on robotic riveting has been mainly centering on squeezing riveting that utilizes 

heavy-duty industrial robots of large size (> 100 Kg payload). In the automotive industry, 

squeezing robotic riveting systems have been fully developed and commercialized for 

joining metal parts. This technology is called robotic self-piercing riveting, in which a C-

(c) (b) 

(a) 

Figure G.1: Rivet guns and C-frame riveter. 
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frame tooling, as shown in Figure G.1 (c), is designed to have a squeezing riveter 

mounted on one end as a punch and the other end serving as a hitting base [89]. This 

system has been widely used for automotive chassis assembly. The application of robotic 

technology in aerospace manufacturing has been significantly slower than that in 

automotive manufacturing [90]. Though not commercially available, squeezing robotic 

riveting systems have been researched in the past by Boeing [91] and recently by EADS 

in Germany affiliated with AirBus [92]. In addition, a robotic system has been 

implemented at Bombardier in Montreal that uses two giant Kuka robots to hold large 

panels that are riveted on a C-frame squeezing riveting machine [2].  

The research results presented in [3] and this dissertation have been applied to implement 

our robotic percussive riveting system. Figure G.2 shows the physical system involving 

three controllers for three subsystems: robot, tooling and bucking bar gantry. All 

controllers are integrated, with the robot controller being the main one for 

synchronization. The entire riveting process is automated through synchronization. 

Furthermore, the choice of a gantry system instead of a second robot allows it to serve as 

a jig for mounting sheet metals. A complete riveting control sequence has been created in 

Figure G.4, starting from position the gun  position the bucking bar  insert rive  

extend the bucking bar  riveting  retract the bucking bar  retract the gun  move 

to the next spot. This sequence has been successfully tested and implemented to perform 

percussive riveting on sheet metal and composite panels [93], as shown in Figure G.3.  

The software development is undergoing to integrate the methodologies of the proposed 

pose estimation, as shown in Figures G.5 and G.6. The interface is developed as an add-

in button in ABB RobotStudio, which is a software of simulation, offline and online 
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programming developed by ABB Robotics, Sweden. After performing the localization 

based on static pose estimation, the transformation results can be typed into the input 

interfaces, including vision w.r.t. robot, and vision w.r.t. panel, as shown in Figure G.6. 

The methods of dynamic and robust pose estimation are being programming into the 

interface as part of robot path guidance, as shown in Figure G.5 (b). The decorrelation 

method is being programming into the acquisition interface, as shown in Figure G.6(a).  

 

 

(a) front - metal (b) side - metal     (c) back - metal 

(d) composite 

Figure G.3: Robot Riveted Samples [3]. 

Figure G.2: Robotic Percussive Riveting System [3]. 

Robotic 
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riveting cell - 

Controller 

CNC bucking bar gantry - Controller Tooling system - Controller 
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Figure G.4: Flowchart of Process of Robotic Percussive Riveting System. 
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(a) Interface developed as an Add-In button of ABB RobotStudio. 

(b) Interface of vision guidance. 

Figure G.5: Graphical user interface development for robotic riveting system. 
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(a) Acquisition interface of the Optical CMM (BIG 3D Creator). 

(b) Input interfaces for localization. 

Figure G.6: Interfaces for acquisition and localization.  
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APPENDIX H - ROBUSTNESS EVALUATING 

EXPERIMENTS FOR NDI DATA ACQUISITION  

In order to evaluate the robustness of the NDI Optotrak 3020 system, various distractions 

are considered in the experiments: reflection, illumination (white, laser, infrared), missing 

data and creating outliers.  

H.1 Reflection Distraction 

As depicted in Figure H.1(a), aluminum boards and painted metal parts are tested to 

prove the existence of reflection of infrared (IR) markers. The reflection on the aluminum 

board can be clearly noticed in Figure H.1(b). The reflected IR could be misinterpreted as 

a real marker and its coordinate value could be calculated by the photogrammetry system. 

However, when the aluminum board is far enough, the reflection seems to be weakened 

until disappearance. Besides, it depends on the reflecting characteristics of the material. 

In any circumstances, the reflection issue should be brought to our attentions during 

metrology integrations in aerospace manufacturing and assembly fields.  

 

Aluminum board 

(a) 

Painted metal part 
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Figure H.1: IR marker’s reflection on an aluminum board and a painted metal part. 

H.2 Illumination Distraction 

 White/Laser lights 

Basically, no distraction caused by white/laser lights was discovered from the 

experiments, since the wave length of the laser tested is far beyond the IR markers'.  

 Infrared Light Distraction 

In Figure H.2(a), when the markers are out of sight of NDI cameras, emitting infrared 

lights from an ordinary TV remote are observed and calculated instead. In Figure H.2(b), 

during the data acquisition, the remote is pressed down and placed beside one of the 

markers (marker 7). The distractions of the IR remote can be quantified based on the 

acquired data, as shown in Figure H.3. Note that the blue, green and red lines represent 

the x, y and z coordinates. Clearly, the remote causes missing data at the closest marker 

(marker 7) and disturbance at the nearby markers (markers 3-6). It may not affect a few 

IR marker’s reflection on 

the aluminum board 

(b) 
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markers that are far from the remote (markers 1&2). The reason behind this phenomenon 

could be the image extracking algorithm for the line CCD sensors of the NDI cameras. 

Most importantly, the observed outliers of infrared lights are not carefully filtered due to 

the lack of recognition of the characteristics of the infrared marker, such as the wave 

length. As a suggestion, infrared light distraction should be avoided in the metrology 

environment. 

 

Figure H.2: (a) The NDI Optotrak system observes the IR LED lights of the remote 

instead, when the markers are not observable due to away from the camera sensing 

direction. (b) Demonstration of Infrared LED remote’s distraction during the data 

acquisition: the remote was pressed down and placed beside a marker (marker 7). 

 

(a) 

Ordinary TV remote 

Infrared LED in the remote 

Marker 7 

(b) 
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Figure H.3: The positions of 7 markers under the distraction of the remote: missing data 

at marker 7; disturbances at markers 3-6; no effect at markers 1 and 2. The blue, green 

and red lines represent the x, y and z coordinates. 
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H.3 Missing data and outliers 

 Missing data 

The existence of missing data was achieved by obstructing the visibility of markers, such 

as swinging an arm between the markers and the camera. The results have shown that the 

missing data doesn’t affect the pose estimation of the rigid body as long as there are at 

least 3 visible markers remaining for the acquisition and the further pose estimation. 

 Outliers 

As a definition, the outlier is the gross measurement error that lies outside of the overall 

distribution of errors. In our case, it could be caused by the false correspondence of 

markers due to reflection, lighting distraction, sensor failures, or even the matching 

algorithm, etc. 

In order to demonstrate the occurrence of outliers, a marker is detached from the target-

mounted case and put at a distance from the original position. Figure H.4(a) shows the 

original set-ups of 7 markers attached to the cubic target. Figure H.4(b) depicts the way 

of creating an outlier from the target-mounted case. 

From the experiments, it is found that the pose estimation is highly sensitive to the 

outliers due to the nature of least-square methods that tend to accommodate the squares 

of all residuals. First, the outliers at least degrade the accuracy of pose estimation. 

Second, when the outliers are dominant and severe it leads to the failure of the pose 

estimation algorithm of the NDI system. As illustrated in Figure H.5, four outliers broke 

down the pose estimation even when three markers remained and the pose estimation was 
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restored immediately when these outlying markers were manually removed by holding 

them to ensure the invisibility to NDI cameras. 

This has proved that the outliers have significant influence on the NDI pose estimation 

solutions, since these solutions are based on the least-square methods. Therefore, we 

should endeavor to avoid this outlier caused catastrophic failure event by providing a 

more robust pose estimation algorithm. 

 

 

Figure H.4: (a) Original set-ups with 7 markers attached to the cubic target; (b) a way of 

creating an outlying marker by detaching the marker from the mounted case.  

 

(a) 

(b) 

Original marker Outlying marker 
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Figure H.5: (a) With four outlying markers, the pose estimation failed even when there 

are three remaining markers; (b) once four outliers were manually removed, the pose 

estimation of the rigid body was restored immediately. 
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