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Abstract

STEREO VISION-BASED VISUAL ODOMETRY FOR PLANETARY EXPLORATION
by

Kieran Kneisel

B.Eng, Ryerson University, 2009

A thesis presented to Ryerson University in partial fulfillment of the requirements for
the degree of Master of Applied Science in the Program of Aerospace Engineering

Ryerson University
Toronto, Ontario, Canada, 2011

The ability to localize an unmanned vehicle is an essential requirement for
extraterrestrial robotic exploration missions. The goal of this thesis is to develop a
visual odometry algorithm capable of operating in real-time and in natural unstructured
environments. Accuracy, repeatability and computational cost were the primary
considerations during the development of the algorithm. The resulting visual odometry
algorithm can operate in real-time and provides the foundations for further
development. More commonly used approaches for localization include the use of
inertial measurement units (IMU) or wheel odometry, which are prone to drift and
slippage respectively, making them unreliable for long duration missions. Visual
odometry also experiences error accumulation, however, it offers the possibility of
mitigating this problem through techniques such as loop closing and bundle adjustment.
The performance of the Iterative Closest Point (ICP) algorithm in conjunction within the
visual odometer was also evaluated and shown to have improved overall localization

performance.






Acknowledgements

I would like to first acknowledge my academic supervisor, Dr. G. Okouneva, as well as
my industry supervisors, Dr. F. Aghili and S. Gemme from the Canadian Space Agency.
Without their guidance, criticism and continuous support this project could not have

been carried out.

| would also like to thank our research partners, the Canadian Space Agency and the
Neptec Research Group. | would especially like to thank Sébastien Gemme from the CSA
for contributing so much of his time and expertise which proved invaluable in making
the project a success. | would also like to thank Erick Dupuis from the CSA and Chad

English from Neptec for making my presence at the CSA possible.

Next | would like to thank the members the CSA Robotics Group for welcoming me into

the department and always making themselves available to me.

Finally | would like to thank those people who are closest to me that have never failed
to offer me with their support and encouragement. Especially my parents, who inspired
me to reach this point in my career path and to whom | owe so much else. To my sister
and friends, for reminding me of the value of laughter and keeping me sane when the
stress began to get to me. Finally to Reda El Amraoui and Sana Medelci, for welcoming

me into their home and making me feel like family during my time in Montreal.



Vi



Dedicated to my family

Vii



viii



Table of Contents

Y o EY - [ T PP P PP PPPROPPPTOTI iii
ACKNOWIEAGEMENTS. ..ciiiiiii ittt e e e e saa e e s s br e e e e sbaeeessaraeeenans v
Table Of CONTENES ...ttt s e e iX
LISt OF TABIES ..t st s xi
LIST OF FIUIES «.vveeeieiiiie ettt e s st e s st e e e e s e e e e s abae e e saaaeeeennsaaeeas Xii
[ o) A o =] g Vo LTl PRSPPI Xiv
NOMENCIATUIE ...ttt sbe e st e e sare e s ennee e XV
ADBBIEVIATIONS ...t e xviii
1 Introduction and Previous WOrK.........c.ceeeeriiieenieeeeeenreeee e 1
1.1 MOTIVATION ettt 1
1.2 Previous WOTK ..c...ooiiiiiiieseeeeeee ettt 2
1.3 ScoPE Of this TRESIS ceeeeiiiirieeee e e et e e e e e e e naraees 5
1.4 Thesis OrZanizZation .....ccoccccrieeeeeie e e e eerccrre e e e e e e e e searrereeeeeesesnraeeeeeeeeeessnnsrenees 6

2 Theoretical Foundations of the WoOrk.........cccocveeiiiiiinieniieceee e 9
2.1 Summary of Camera MathematiCs .....cccovveeieeiieieiiiiieeee e 9
2. 1.1 EPIPOIar GEOMELIY .cceeeieiiieeeee e e eecciree et e e e eeseerree e e e e e e eeearaeeeeeeeesesnsreseeeeeesennnns 9
2.1.2 FUNAamental MatriX ......cccoeueiiiinieiieeeee e e 10

2.2 Feature/Interest POINt DeteCION ... 12
2.2.1 Scale Invariant Feature Transform (SIFT) .....covvvvvieeieiieiiiieeeeee e 13
2.2.2 Speeded Up Robust FEatures (SURF) .......ueiiiiieciiieeeieeee e eerineveee e e 14
2.2.3 GPU-SURF .ttt sttt 16

PG N DT} & I oY g g =Ty 0T g Ve [T o Tl TS 17
2.3.1 Descriptor Matching SChEMES......ccccuviieeiiii et 17
2.3.2 Outlier Rejection/Inlier ACCEPTANCE .......cceeevveeiiecreeee et 17

2.4 PoSe EStimMation .......cooccuviiiiiiiiiiiiiiiiiric i 18
DO A T [ o T=4 U] =1 o o TR O PR UPUPRRRRRt 18
2.4.2 HOrN METNOM ... e 19
2.4.3 lterative Closest Point AIZOrithm ....cccuvveeiiiiiii e 20



2.5 CoOrdinate SYSTEMS. ... bbb bbb bbb a b e rarararrrarares 23

3 Preliminary Studies for Visual-Odometer Development .......ccccccoeecvvvveeeeeeeeiicinveeneeeen, 27
3.1 Preliminary STUdIES...uuueii ittt e e r e e e e e e seaaabeeeeeeessennnnes 27
3.1.1 Maximum Tracking RANEE ....uuvveeeiiiiiiiiirieeeee et eeerrreee e e e s earbaneee e 27
3.1.2 Impact of Maximum Tracking Range in an Unstructured Environment .......... 30

3.2 Data CollECION ..ot e 32
TV @ Lo FoT 0 g L=l =T gl 1T = o [PPSR 35
4.1 Triangulation & AGNMENT ... e 37
4.2 Feature Association & Outlier ReJection.......cccuveeeeiiieicciiiieeee e, 38
4.3 Selection of @ Feature Detector .........cceiiiiiiiiiiiiiecee e 41

5 Experimental Characterization ... 43
5.1 EXPErimENtal SELUP ..uviiiieei ittt e e e e e et e e e e e e et ea e e e e e e eeanes 43
5.2 EXperimental RESUIS .....ccci it e e e e e 44
5.2.1 Characterization of the Visual Odometer.........c.ccooviiiiiiiniiiiniiciieeceeeceee 44
oI [ oY o - Tox flo ] [ F P 50
5.2.3 Computational CoSt. .t 55

5.3 Functionality Verification .........ccoviiiiiiiiiiec e 56

B CONCIUSIONS .ottt ettt sab e et e s bt e sabe e e saneeeeanee s 61
6.1 Summary of SPECIfiCc RESUILS ....ceiiviiiieiiiiieece e 62
6.2 FULUIE WOTK ..ttt et st s 63
FAY oY o1=] g Vo Tl P PP PPPTPRP 65
Appendix A: Algorithm Characterization FIUIreS........ccovviiviiiiiiee e 65
Appendix B: Camera SPeCifiCationS.......ccueeiiiiiieiiiiiiiecieee e 71
REFEIENCES ...ttt sttt s e s e s bt e e s bt e e saneesane 73



List of Tables

Table 1 - Average algorithm processing time for different feature detectors................. 41
Table 2 - Average error experienced during multiple traverses.........ccccevvvveeereeieirennnnen, 46
Table 3 - Average errors shown in order of the length of the associated traverse ......... 47
Table 4 - Characterization case 1 aVErage ErrOr.....cccuueeeeeeiececiieeeee e e e eeccrrereee e e e e eesnereeeeas 51
Table 5 - Characterization Case 2 aVErage EITOr ......ccuveeeeeeeeieciirrereeeeeeeeeinrreeeeeeeeeesnsreeeens 54
Table 6 - Average computational CoSt ... 55
Table 7 - Transformation applied to the syntheticdata.........ccoovvveeeiieiieiciieeee e, 58
Table 8 - Average error in localization estimates for synthetic data.........cccceevvviveennnnnne. 59

Xi



List of Figures

Figure 1 - Mars Emulation Terrain at the Canadian Space Agency ......cccccevvvveeeiervveeeennnne 2
Figure 2 - Bumblebee® stereo camera SYSteM .....cooccuvvveeeieeiiiieiiieeeee e 6
Figure 3 - Epipolar 8e0metry [31] ..ottt 9
Figure 4 - Projection of point x onto the image planes [31].....cccccceeeeiieicciieeeee e, 11
Figure 5 - Visual representation of the SIFT descriptor assignment [42] ......ccccceevevveeennns 14

Figure 6 - Left: Approximation of the Gaussian second order partial derivative in the y-

direction; Right: Corresponding box-filter approximation [7].....ccccccceeerivveriiiiieeecsinnennn. 15
Figure 7 - Pose estimation using the ICP algorithm........cccccooeeiiiiiii e, 23
Figure 8 - Body-centered frame relative to the stereo camera......cccccccvvcvvveeeeeeeeiccnnnnen, 24
Figure 9 - CSA Mars Emulation Terrain with world coordinate frame .......cc.ccccceevvvveeenns 24

Figure 10 - Maximum Tracking Range Experiment Setup: A — Bumblebee® camera

system; B — Default tracking pattern ... viiiiiiiiiiee e e 27
Figure 11 - Constant Radius Patterns Results, Radius of Circles is 0.01 M .......ccc.cceevunnnnee 28
Figure 12 - Constant Distance Pattern Results, Distance Between Circles is 0.06 m........ 29
Figure 13 - Scaled Pattern RESUIS .........euviiiiieeieeeeee e 29

Figure 14 — Sample of terrain used for the visual odometry algorithm development..... 30
Figure 15 - Sample left camera frame with descriptors .......cccccvvieeeiiieecccieeeee e, 31

Figure 16 - Matched descriptors overlaid on the associated left and right camera frames

Figure 17 — Aerial view of the Mars Emulation Terrain at the Canadian Space Agency .. 32
Figure 18 - Instrumented cart used for data collection..........cccoeevveeiiniiieiiniiee e, 33
Figure 19 — Visual 0dometer STrUCTUIE ... .uvvviiiiei ittt 36
Figure 20 - Time required to match for a set of descriptors using varying search areas. 39
Figure 21 - Number of inliers detected for varying search area sizes........cccccceeeeeeennnnee. 40
Figure 22 — The MRT equipped with a stereo camera and GPS frame..........ccccceevevveenns 43
Figure 23 - Various environmental conditions experienced during the characterization of
the VisUul OdOMETEr.......oiiiiieee e 45

Figure 24 - Comparison of rover traverses 2 and 8 ........ccoovcveeeiriiieeiiniiieeeeniieeeessieee e e a7

Xii



Figure 25 - Displacement error vs. the length of the traverse .......cccccccvveivveeeeeiieiicnnnen, 48

Figure 26 - Yaw error vs. the length of the traverse.......cccociviiniiiiiiiie e, 48
Figure 27 - Graphical output of offline processing .......ccccccevveevireeeeeiceieiieeeee e, 49
Figure 28 - Characterization case 1 roVer trajeCtory ......ieeieccireeeeeeeeeeeicrrreeeeeeeeesevneeen. 50
Figure 29 - Characterization case 1 terrain teXtUre......ccccevviecciiieeee e, 50
Figure 30 - Characterization case 1 rover displacement ........cccooeuveeeiiviieeeniiiee e 51
Figure 31 - Characterization case 1 rover yaw angle.....cccceveeccciiieeee e eccciieeee e 52
Figure 32 - Characterization case 2 shown on a CAD model of the MET ..........ccccevveennne 53
Figure 33 - Characterization case 2 terrain teXtUre ......ccccvvvvveeeiniiiee e 53
Figure 34 - Characterization case 2 rover displacement ........cccovvveeeiieieiicireeeneeeeeeiinnnenen, 54
Figure 35 - Characterization case 2 rover yaw angle......cccocvveeviviiieeiiniiieeeiniieee e sninee e 55
Figure 36 - Outlier rejection results during varying weather conditions ............ccceuu...... 57

Figure 37 - Synthetic data used to compare the modes of the visual odometry algorithm

........................................................................................................................................... 58
Figure 38 - Traverse 3 diSplaCemMeNnt EITO .. ..uuiii it e e e raeeees 65
Figure 39 - Traverse 3 yaw @ngle EITOr ... ..t e e e ee e 66
Figure 40 - Traverse 4 diSplaCemMeNnt EITO .. .uuuiii ittt e e e e e eeearraeeeas 66
Figure 41 - Traverse 4 Yaw ANl EITON ...cvuueeiiriirieeeiiiieeeseireeeesieeeeesirneeessreeeessssseeessanens 67
Figure 42 - Traverse 5 diSplaCement EITO . ...ttt e e e e 67
Figure 43 —Traverse 6 diSplacemMeENt €ITOr .....ccocuiiiiiiiiiee et e e seee e 68
Figure 44 - Traverse 7 diSPlaCemMENT EITO . ..ttt eeeerreee e e e e s s eeaareeeeeas 68
Figure 45 - Traverse 8 displacement rTOr......covvuiiiiiiiiiie ettt saee e 69
Figure 46 - Traverse 8 yaw angle ErTOr ... ..ttt e e e eee s 69
Figure 47 - Bumblebee® camera specifications [65] ....eeeeeeeiieiiiiiieeeeeeeeecciireeeee e, 71
Figure 48 - Bumblebee® camera dimensional drawings [65] ......ccccceeveiiieeeeiiiieeeecieeeeens 72

Xiii



List of Appendices

Appendices

Appendix A: Algorithm Characterization FIUIreS........ccvvviieiiriiiee e esieee e

Appendix B: Camera SPeCifiCationsS........cueeiiriiieiiiiiiie e

Xiv



Nomenclature

€ <

>

Euclidean distance between descriptors

Error threshold for the ICP cost function

Error threshold for the ICP relative magnitude of rotation matrices
Error threshold for the ICP relative magnitude of translation matrices
Error threshold for the ICP absolute magnitude of rotation matrices
Error threshold for the ICP absolute magnitude of translation matrices
Rover pitch

Epipolar plane

Standard deviation, scale

Rover roll

Rover yaw

Image pixel

Baseline

Camera center

Points representing the Data set for ICP

Approximation of the second order derivative of the Gaussian function
Descriptor value for dimension i

Haar wavelet response in the x direction

Haar wavelet response in the y direction

Epipole

Fundamental matrix

Entry of the fundamental matrix corresponding to position (i)

Camera focal length

XV



Gaussian function

Homography mapping all points x to their corresponding points x”

Hessian matrix

Image

Point Index

Camera calibration matrix

Number of trials required by RANSAC

Convolution of the Gaussian second order derivative

Epipolar line

Points representing the Model set for ICP

Image gradient magnitude

Number of data points randomly selected by RANSAC

Camera projection matrix

Rotation matrix to transform coordinates from the rover frame into the
world frame

Rotation matrix

SIFT keypoint orientation

Current coordinate frame vector

Previous coordinate frame vector

Point coordinate expressed relative to the centroid of the data set

Coordinates of the data set centroid expressed in the left frame

Scale factor

Translation matrix

Probability that a given feature correspondence is an inlier

XVi



Point in 3D space

Point in 3D space, rover body-centered frame

Point in 3D space, world frame

Image point

Cartesian x-axis coordinate

Pixel x- axis coordinate for image point x

Pixel x-axis coordinate of the camera focal point in the image
Cartesian y-axis coordinate

Pixel y- axis coordinate for image point x

Pixel y-axis coordinate of the camera focal point in the image
Cartesian z-axis coordinate

Probability that a random selection of n feature correspondences consists

entirely of inliers

XVii



Abbreviations

API Application Programming Interface
CCcDh Charge Coupled Device

CSA Canadian Space Agency

GPU Graphics Processing Unit

ICP Iterative Closest Point Algorithm
IDC Iterative Dual Correspondence
IMRP Iterative Matching-Range-Point
IMU Inertial Measurement Unit

LIDAR Light Detection and Ranging

MET Mars Emulation Terrain

MRT Mars Rover Testbed

PSM Polar Scan Matching

RANSAC Random Sampling Consensus

RTK Real Time Kinematic

SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SURF Speeded-Up Robust Features

VME Visual Motion Estimation

VO Visual Odometry

Xviii



1 Introduction and Previous Work

1.1 Motivation

Localization is an essential capability for a robotic vehicle on an extraterrestrial
exploration mission. The time delay for communication from Earth to other bodies
makes it impractical to have a human component in the loop to performing this task.
Additionally, the lack of Earth-based assets, such as the Global Positioning System (GPS),
means that a vehicle cannot rely on them for localization. The localization problem is

currently is being addressed through the development of visual odometry algorithms.

Visual odometry, or visual motion estimation, is a method of performing localization.
This can be performed using one or more cameras and can be done using any
combination of feature detection, feature matching, outlier rejection and pose
estimation techniques. In the case of stereo-based visual odometry, the task is to

determine motion from the images captured by the stereo camera system.

Localization algorithms have most commonly been developed using wheel odometry or
inertial measurement units (IMU). Wheel odometry is unreliable due to the wheel
slippage on terrain where traction is poor and IMUs become unreliable as they drift over
time. These problems cause error to accumulate in the sensor readings causing

increasingly large errors in localization estimates.

Light detection and ranging (LIDAR) equipment has been used to perform localization,
however they have a high mass, volume and power consumption, compared to a stereo
camera system. It is extremely important to minimize these factors when designing
space missions and hardware for them. Finally, LIDAR has the additional drawback of
requiring the vehicle to stop movement while it scans the terrain, whereas a camera can

collect imagery in real-time.

Stereo camera systems have also been used to perform obstacle avoidance and slip
detection when wheel odometry was used as the primary localization method. The

results of these algorithms demonstrated the potential of visual-odometry and also



showed that the error accumulation in wheel odometry could be greatly reduced

through the use of this system.

Current visual odometry algorithms, while gradually improving in accuracy, have either
post-processed data or required that their vehicles move slowly. A major focus of this
thesis is the development and testing of a visual odometry algorithm capable of
operating in real-time while providing accurate localization estimates. Another goal was
to assess the utility of incorporating the Iterative Closest Point (ICP) algorithm into the
visual odometer to improve localization estimates. All experimental characterization of
the completed algorithm was performed using an actual rover in the Canadian Space

Agency’s Mars Emulation Terrain (MET) shown in Figure 1.

Figure 1 - Mars Emulation Terrain at the Canadian Space Agency

1.2 Previous Work

Visual odometry is a branch of computer vision that is essential to the advancement of
autonomous robotics. It estimates a rigid transformation between data points or
descriptors obtained from camera frames. Ego-motion estimation, or estimation of a

vehicle’s motion, through visual odometry has applications for all manner of vehicles.



Autonomous navigation of rovers designed for planetary exploration is the application
for which the visual odometry algorithm presented here is intended. Other applications
include navigation of vehicles such as cars ([14] and [75]), rescue vehicles [19] and even
robotic museum tour guides [6]. Visual odometry can also be used as a secondary
system to complement localization estimates obtained through other means such as
wheel odometry ([12],[33] and [47]). A variety of camera configurations exist for visual
odometry including stereo ([15],[20],[35],[48],[58],[59], [67] and [69]), monocular

omnidirectional ([13] and [75]) and multi-ocular omnidirectional [66] configurations.

Feature detection and description, the process by which data is obtained from images, is
essential to visual odometry. Building on the work of Canny [11] and Moravec [55],
Harris and Stephens first developed an algorithm capable of locating corners within
images, an approach which gained wide acceptance within the image processing
research community [30]. Much of the work in visual odometry has been either directly
or indirectly based on Harris and Stevens. One such example is the algorithm developed
by Lowe [40], called scale invariant feature transform (SIFT). SIFT is currently the most

widely used feature descriptor in use within the visual odometry community.

While SIFT feature descriptors have been proven to be robust in a variety of
environmental conditions ([3]), the high cost in terms of computation is a drawback for
real-time systems. Further development has resulted in a large number of variations
and alternatives including Speeded Up Robust Features (SURF) [7], maximally stable
extremal regions, MSER [49], PCA-SIFT [37] and gradient location and orientation
histogram, GLOH [50]. SURF in particular is gaining wide acceptance as it provides
comparable accuracy to SIFT with less intensive computation requirements. This is due
to SURF’s use of a 64 dimension descriptor [7] as opposed to the 128 dimension
descriptor used by SIFT [40][44]. Finally, SURF also offers 32 dimension and 128
dimension descriptor versions as well as upright SURF, or U-SURF, which forgoes

rotation invariance for increased speed [7]. Work has also been performed by Valgren



and Lilienthala on determining the robustness of SIFT and SURF to the environmental

changes caused by changing seasons [78].

Feature association, or feature matching, is inherently linked with feature detection and
description. Unless an association of descriptors can be achieved between frames,
there is not enough available information to perform pose estimation. Methods of
performing feature matching are largely derivatives of the Nearest-Neighbour matching
technique [40] which matches descriptors based on the lowest Euclidean distance
between them ([35], [42], [61] and [66]). Variations of the Nearest-Neighbour approach
include Nearest-Neighbour Ratio ([6], [51] and [75]), Nearest-Neighbour Threshold ([58]
and [59]) and Preferred Mate matching [61]. An alternative method has been proposed
by Zhang et al. to match using an iterative heuristic greedy rounding process [81] and
another has been described by Zhang et al. using epipolar geometry [82]. In both cases
the alternative approaches were found to perform similarly or better than typical

nearest neighbour approaches.

Erroneous matches are inevitable when matching large data sets against one another.

In the majority of work performed in visual odometry, outlier rejection is performed
independently of feature association and is almost synonymous with using the Random
Sample Consensus (RANSAC) to estimate the epipolar geometry of the images and
eliminate the matches that do not fit the model [24]. The work of Zhang et al. estimates
and utilizes the epipolar geometry as part of the feature association step instead of

performing it independently after matching is completed [82].

Pose estimation can be performed a variety of ways. Optical flow is a viable method for
performing pose estimation and has been used by Corke et al. [13]. During
development of the algorithm presented here, the Horn method [34] was chosen to
determine the initial pose estimation for the ICP algorithm. A number of other
approaches have been used as well including sparse bundle adjustment as used by
Suinderhauf et al. ([22] and [74]) and the Hough transform approach used by Se et al.
[71].



The ICP algorithm, developed by Besl and McKay [9], is an integral part of the visual
odometry algorithm presented here. Alternative approaches to the ICP algorithm have
been proposed. The Iterative Duel Correspondence (IDC) algorithm, a hybrid of the
original ICP algorithm and the new Iterative Matching-Range-Point (IMRP) algorithm
was proposed by Lu and Milios [45]. As well, Diosi and Kleeman developed the Polar
Scan Matching (PSM) algorithm [16] and have demonstrated its value for simultaneous

localization and mapping (SLAM) algorithms [17].

Past research into visual odometry has yielded promising results. All of the reported
data indicates that visual odometry is reliable for translational motion. The stereo-
based visual odometry algorithm reported by Helmick et al. consistently achieved an
overall displacement error of less than 2.5 % [32]. Similarly, Olson et al. were able to
achieve a displacement error of approximately 1.2 % with their stereo-based visual
odometry algorithm [63]. Finally, the work of Nistér et al. [61] demonstrated a visual
odometry algorithm with a 1-2 % error in displacement and up to 5° in rotation.
Rotation is a particularly difficult aspect of motion for a visual odometer to estimate, as

features pass out of the field of view faster than when undergoing translational motion.

Alternative approaches to vision-based pose estimation have included radar [18], sonar
([21],[76] and [80]), and LIDAR based systems ([20] and [45]), as well as inertial systems
[5].

1.3 Scope of this Thesis

The primary contribution of this thesis is the design of a visual odometry algorithm that
is capable of operating in real-time to localize a vehicle in an unstructured environment,
without the use of external infrastructure, such as artificial markers. This addresses the
problem of determining position and orientation information for a vehicle while seeking

to reduce the limitations visual odometry can impose in terms of the vehicle’s speed.

The algorithm also provides the basis for conducting future research by offering a

framework on which to build. As well, this thesis provides an evaluation of the



capability of ICP to improve pose estimates obtained from stereo imagery.
Characterization of the algorithm as a whole and of the ICP algorithm is done by

processing the imagery from the stereo camera system shown in Figure 2.

Due to the use of ICP by the visual odometer, it is necessary to generate 3D Cartesian
coordinates for each descriptor. Consequently the work presented here lends itself to
fusion with a mapping algorithm, however, there are certain capabilities of such an
algorithm that are outside of the scope of this thesis. The algorithm has been tested in
simple traverses in both laboratory and relevant field environments. Capabilities such
as the loop closing problem and kidnapped robot scenario are beyond the scope of this

work.

Figure 2 - Bumblebee® stereo camera system

1.4 Thesis Organization
Chapter | discusses the motivation behind the project, previous work performed by

other researchers and a brief description of the scope of the thesis.

Chapter Il contains a discussion of the definitions and theoretical knowledge required

for this work.



Chapter Il contains a description of the preliminary experiments performed to
determine the capabilities of the hardware with which development would be

conducted as well as the data collection process.

Chapter IV describes the different components of the visual odometry algorithm. The

decision making processes used in selecting the components are also discussed.

Chapter V outlines the characterization experiments conducted to test the finalized
algorithm as well as presenting the testing methodology used in Canadian Space

Agency’s Mars Emulation Terrain (MET) on the CSA Mars Rover Testbed (MRT).

Chapter VI outlines the specific conclusions of the research and makes

recommendations for future work.






2 Theoretical Foundations of the Work

A significant number of algorithms and concepts are required in order to construct a
functional visual odometer. The following section contains necessary theoretical

foundations for the project.
2.1 Summary of Camera Mathematics

2.1.1 Epipolar Geometry

The epipolar geometry is the projective geometry between two views, and is
independent of the scene viewed by the cameras. The primary applications of the
epipolar geometry are the outlier rejection technique, RANSAC, and the triangulation of
the matched stereo pairs. The only relevant parameters are the internal camera
parameters, being the focal length and the coordinates of the principle point, and the

relative pose between cameras.

Suppose a point, X, in 3D space is imaged in two views, let x denote the image point in

the first image and x’ in the second. The camera centers for each view are denoted as C
and C’ respectively. It can be seen in Figure 3 that rays back-projected from the camera
centers through the image points will intersect at X. Thus, X, x, x’, C and C’ are coplanar.

This plane is referred to as the epipolar plane [31].

Ax2
epipolarplane T X

c c ¥ . e

epipolar line
for x

Figure 3 - Epipolar geometry [31]



Also shown in Figure 3 is the epipolar line corresponding to x’, denoted F’, as well as the
epipoles of each view, denoted e and e’ respectively. The line connecting camera

centers € and C’ is referred to as the baseline.

The epipole of an image is located at the intersection of the baseline with the image
plane. This point corresponds to the location of the camera center of one view in the
other view. An epipolar line, I, is a line in the image plane that intersects the image
epipole, e, and the image point, x. Each epipolar line intersects the image epipole.
Additionally, each epipolar plane contains the baseline and intersects the image planes

along the epipolar lines [31].

These relations are of particular importance to visual odometry and scene
reconstruction. More specifically, this directly impacts feature correspondence
between images. Knowledge of epipolar geometry can be used to speed up feature
matching by limiting the search to the correct epipolar line. This also has implications
for outlier rejection as well, in that correct matches should be located along the
corresponding epipolar lines. Feature correspondence and outlier detection is discussed

further in Section 2.4.

2.1.2 Fundamental Matrix
The fundamental matrix, F, is a 3x3 homogeneous matrix of rank 2 that encapsulates the
geometry of a stereo camera system. It is a mapping from one point in one image to the

corresponding epipolar line in another image.

The following is a geometric derivation as described by Hartley and Zisserman [31]. An
algebraic derivation in terms of the camera projection matrices, P and P’, can be found
in G. Xu and Z. Zhang's text Epipolar Geometry in Stereo, Motion and Object Recognition
[81].

There are two steps when deriving the fundamental matrix geometrically. The first is to
map x from one image to x’ in the other image through the plane t. The plane t does

not intersect either camera center. The ray through the first camera and the image

10



point x intersects the plane tat X. The world point X is then projected onto the other
image at x”. As the point X lies on the ray connecting x with the corresponding camera
center, the projected point x” must lie on the epipolar line I/, which is the image of the

ray in the other image. This is illustrated in Figure 4.

\

\ X T\

/ I

T— H

/|
\// |
\ /
L & \ .t' /{//.

7
b ’

Figure 4 - Projection of point x onto the image planes [31]

The set of all points x; and the corresponding point x’; are projectively equivalent to X;
and are therefore projectively equivalent to each other. Hence, there is a

transformation, H, that maps x; to x’;, shown by Figure 4.

The second step in deriving the fundamental matrix geometrically is to determine the
epipolar line from the point projected onto the other image. Knowing that the epipolar

line, I, passes through x” and e’, we can write the equation of the epipolar line as

l'= [el]xx (1)

0 —e, e
[el]x =1 € 0 —€x (2)
—ey, ey 0



Since x” can be expressed as x' = H - x, we can write that
l!'=[e],rH-x=F-x (3)

From (3) it can been seen that the fundamental matrix is a mapping of x to F, or of x” to

1, as expressed by (4a) and (4b) respectively.

l!'=F-x (4a)

I=FT -x (4b)
where,

l-x=0 (5a)

xT =0 (5b)

It can be easily shown that if a point, X, in 3D space is imaged in two views denoted by x

and x’, then the image points must satisfy the correspondence condition.
xT F-x=0 (6)

This relation also has significant implications for visual odometry. It is the basis of
outlier rejection, namely RANSAC, applied to the feature matches obtained as part of

the visual odometry algorithm and is further described in Section 2.4.2.

2.2 Feature/Interest Point Detection

Feature detection is an integral part of a visual odometry algorithm, and can be broken
down into two main steps. First, interest points must be detected in the images from
unique areas of each image. Typically, such areas are characterized by corners, T-
junctions and blobs. The most important property for feature detection is repeatability
in detection of these areas. If an algorithm cannot detect the same interest points in
the same scene, but viewed under different conditions, then correct matches are
unlikely. Second, the area surrounding each interest point must be described by a

vector which must be both unique and robust to noise and detection errors [7].
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2.2.1 Scale Invariant Feature Transform (SIFT)

The first feature detection method evaluated for use in the visual odometer is Scale
Invariant Feature Transform (SIFT) developed by Lowe [40]. The algorithm consists of
both feature detection and feature description. For detection, a Gaussian pyramid is
constructed. A Gaussian pyramid is created by repeatedly blurring and scaling down a
series of images. Doing this multiple times results in a collection of successively smaller
images. Local maxima and minima, referred to as keypoints or interest locations, are
identified in the pyramid using multiple difference-of-Gaussian images. Because the 2D
Gaussian function is separable, Lowe computes each convolution by applying the 1D

Gaussian function, given by (7), in the horizontal, followed by the vertical direction:

1 x?

g(x,0) = ==e 27 (7)

Where x is the image coordinate, and o is the standard deviation of the Gaussian

distribution, which is taken to be V2. The image gradient magnitude, M,,q, and

orientation, R, q, at each pixel are determined:

M;; = \/(Ap.q - Ap+1.q)2 + (Apq — Ap.q+1)2 (8)

Rpq = tan_l(Ap.q —Apr1,gApg+1 — Ap,q) (9)

where A, 4 is the pixel associated with the pixel coordinate (p,q). Each key is assigned an
orientation, determined by a peak in a histogram of local image gradient, to ensure
rotation invariance. The histogram is created using a Gaussian-weighted window with a
standard deviation which is three times higher than that used for smoothing when

creating the Gaussian pyramid.

Finally, for each keypoint, the pixel sampling from the pyramid level at which this
keypoint was detected is used to assign it a descriptor. SIFT uses an orientation
histogram formed from the gradient orientations, for each region of a 4x4 grid assigned

to each keypoint. With eight orientation planes being used for each of the regions of
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the 4x4 grid assigned to the keypoint, the resulting descriptor has 128 dimensions.
Orientation planes are defined by Lowe as representations of the local image region
using multiple images representing each of a number of orientations. Finally, the

descriptor is normalized to unit length to improve invariance to illumination changes.
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Figure 5 - Visual representation of the SIFT descriptor assignment [42]

The assignment of the descriptor based on the orientation planes is illustrated in Figure
5 where the arrows show the gradient magnitude and orientation at each region of the
4x4 grid. Figure 5 shows a 2x2 descriptor array computed from an 8x8 set of samples

[42].

2.2.2 Speeded Up Robust Features (SURF)

In developing Speeded Up Robust Features, SURF, Bay et al. [7] were able to reduce the
number of dimensions in the descriptor vector from 128 to 64, without sacrificing much
in terms of accuracy. The resulting algorithm is an attractive alternative to SIFT due to
its significantly lower computational cost and comparable accuracy [7]. The SURF

algorithm can be broken down into two operations, detection and description.

The SURF detector is based on the Hessian matrix, using its determinant to select both
location and scale of interest points. Given a point, x, in an image with coordinates [x,y],

the Hessian, H(x, 0), is defined as

Lix ny
H(x,o) = [ny Lyy] (10)
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where o is the scale and L, is the convolution of the Gaussian second order derivative
5 . . : . I )
ﬁg(x, o) with the image / in the point x and similarly for Ly, and L,,, [7]. SURF

approximates the Gaussian second order derivatives using box filters, illustrated in

Figure 6.

Figure 6 - Left: Approximation of the Gaussian second order partial derivative in the y-

direction; Right: Corresponding box-filter approximation [7]

The second order derivatives are evaluated using integral images. Taking the

determinant of the Hessian matrix yields:

2
det(H) = Dy, Dy, — (0.9D,,) (11)

where D, D,, and D, denote the approximations of the second order derivatives.
Filters of increasing size are applied to the images in order to generate an image
pyramid. Finally, a non-maximum suppression in a 3x3x3 neighbourhood is applied in
order to localize interest points [7]. Non-maximum suppression means that interest

points occur where the gradient magnitude assumes a local maximum.

Once the location and scale of features have been determined, feature description is
applied to generate a descriptor for each interest point. The process begins by assigning
an orientation to each interest point by calculating the Haar wavelet responses in the x
and y directions. This is within a circle of radius equal to six times the scale of the

interest point.

The next step is to construct a square region surrounding the interest point, oriented
using the previously assigned orientation. The region is subdivided into a 4x4 area, with

each sub-region being assigned a feature vector. This vector is given by:
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v=(Tdy, 2 dy,Tld,l,2|dy]) (12)

where dy and d, denote the Haar wavelet responses in the horizontal and vertical
directions respectively. By assigning each of the 16 sub-regions a vector of four

dimensions, a descriptor containing 64 dimensions is created for the interest point [7].

This approach allows for a significantly reduced computation time. More detailed

information can be found in [7].

2.2.3 GPU-SURF

GPU-SURF is an implementation of the SURF algorithm using the NVIDIA CUDA API [26].
CUDA, compute unified device architecture, is NVIDIA’s parallel computing architecture
was enables increases in computing performance by utilizing the GPU for processing
[62]. While the theory and equations used in developing GPU-SURF are as described for
SURF in Section 2.3.2, the performance deviates from the SURF algorithm of Bay et al.
[7]. This is a result of the closed source nature of the original SURF distribution. Despite
this inability to access SURF source code, the GPU-SURF implementation achieves

comparable performance while doing so at a much lower computational cost [26].

There are some limitations identified by Furgale and Tong [26] that result from using the
GPU instead of the CPU for processing. The first such issue is that the GPU hardware
has single precision floats which results in slightly different computational results. The
reported keypoint scale is larger than what SURF produces for a blob of comparable
size. Also, the Gaussian weighting used by the GPU-SURF descriptor appears to use a

different value from those generated by the original SURF distribution [7].

Because of the unique nature of GPU-SURF, it is treated as a separate from the original

SURF algorithm when assessing its value for the visual odometer.
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2.3 Data Correspondence

2.3.1 Descriptor Matching Schemes

Feature correspondences are formed using both the Nearest-Neighbour matching
approach, proposed by Lowe [42], and the Preferred-Mate matching scheme [61]. The
Preferred-Mate matching approach is a variant of the Nearest-Neighbour matching
scheme which determines matches based on the Euclidean distance between

descriptors. For descriptors of m dimensions,

A= J(d; —dD)? + (dy — dD2 + -+ (dpy — d}p)? (13)

where A is the Euclidean distance between descriptors, d is the descriptor for the
feature in the left image, d’ is the descriptor in the second image and the subscriptiin
d;, and d;, is the dimension. Unlike matching using the Nearest-Neighbour approach,
which searches for matches in one direction, that is, from one image to the second, the
Preferred Mate approach searches in both directions. Only those feature pairs, in which
the two descriptors have found each other to be the most likely match, are accepted as

a valid [61].

2.3.2 Outlier Rejection/Inlier Acceptance

All point correspondences are subjected to the Random Sample Consensus (RANSAC)
algorithm, the basis of which is the computation of the fundamental matrix from a set of
nine randomly selected point correspondences. As previously mentioned, the

fundamental matrix is defined by the correspondence condition, equation (6).

Given nine valid point correspondences, this condition can be used to compute the
entries of F. The coefficients of this equation are functions of the known coordinates for

two points, specifically the equation for the points (x,y, 1) and (x',y’,1) is

X'xfir + X' Y2 + X' fis + Y xfo1 + V' Va2 TV fas H xf31 +Vf32 + 33 =0 (14)

where f;; are the coefficients of the matrix F. Generally, from a set of n point

correspondences we obtain a homogeneous set of linear equations
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X1X1 X1¥1 X1 YiX1 YiV1 Vi *1 V11
Af = Poob oo i b f=0 (15)
XnXn XpYn Xn YnXn YnYn Yn *n Yn 1
Using nine point correspondences a least-squares solution is obtained for this system to

determine the entries of F. If only eight point correspondences are available then the

solution will be unique up to scale [31].

Using the fundamental matrix, F, the correspondence condition, equation (6) can be
applied to the data set to determine which point correspondences are inliers. Inliers are
those points that satisfy the correspondence conditions, while outlier are those that do
not. The RANSAC algorithm repeats the process of estimating the fundamental matrix
until it has determined, within the specified confidence interval, that no larger set of

inliers exists.

The algorithm bases the decision to stop selecting new random sets of data to compute
F based on the expected number of trials that are required to select a data set that is
error free. This is determined by the following equation:

__ log(1-2)

- log(1—w™) (16)

where k is the required number of trials, z is the probability that at least one of the
randomly selected data sets consists entirely of valid matches, w is the probability that
given point is an inlier and n is the number of points in the data set [24]. Because it is
not possible to determine all of the parameters used by RANSAC beforehand, it is

important to properly tune the algorithm.
2.4 Pose Estimation

2.4.1 Triangulation
After the outliers have been removed from the data set using RANSAC, triangulation is
performed to determine a Cartesian coordinate for each feature pair. This is performed

using the Point Grey APl which is a part of the software package accompanying the

18



Bumblebee ® camera system. The software triangulates each pixel coordinate pair

according to the equations below.

7 =10 (17)
X2—X1

X = %Z (18)

y =227 (19)

where fis the focal length of the left camera, b is the baseline of the stereo camera
system, (x., y.) are the pixel coordinates of the focal point in the left image, (x;,y;) are
the pixel coordinates of the feature in the image taken by the left camera and (X,Y, Z2)
are the Cartesian coordinates associated with the feature. Values for the camera

parameters can be found in Appendix B.

2.4.2 Horn Method

Presented by Horn [34], this method is a closed form solution to the least squares
problem of absolute orientation of two Cartesian coordinate frames, referred to as the
current and previous frames. This algorithm is advantageous for visual odometry as a
pose estimate can be determined in a single step without any iteration. In order to
describe the process of determining the rotation and translation, let there be n points
which are defined in each coordinate frame as {ru} and {rm-} respectively. The

translation is determined such that
r.=sR(r)+T (20)

where s is a scale factor, Tis the 3x1 translation matrix, R is the 3x3 rotation matrix and
T, and r; are the coordinates of the point expressed in three dimensions using the
coordinate frames whose origins coincide with the current and previous camera frames
respectively. This equation is solved using a least-squares approach to minimize the

residual error given by

v = sR(r) =T (21)
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The Horn method requires that the rotation matrix is determined first. The
determination of the rotation matrix is performed using quaternions. Minimization of
(20) is equivalent to maximization of the function below

myrrR(rp;) (22)

where the primes denote the position vectors expressed in a new coordinate frame
relative to the centroid of the data set. The new coordinates are determined by
T =Ty — Ty (23a)
r'r,i =T — T (23b)
Where 1; and 1. ; denote the coordinates of the data relative to the centroid of the
data set r;. and r,. . denote the coordinates of the data set centroid in the current and
previous frames respectively. For each coordinate pair nine possible products are
determined as x;x;., X; Yy, ..., Z;Z; and the sum is taken to obtain Sy, Sy, ..., S.; Where
Sex = D=1 X[ i Xy (24a)
Sxy = ?=1 xl,,iy;‘,i (24b)
Using this information the symmetric matrix N is determined according to the following.

Sex +Syy + Sz Syz—S Sy — Se Sy, —S

yz zy y Oyx
N = Syz - Szy Sxx - Syy - Szz Sxy + Syx Szx + sz (25)
Szx — Sxz Sxy + Syx —Sxx +Syy — Sz Syz + Szy
Sxy — Syx Sz + Sy Syz + Szy —Sxx — Syy + Szz

The eigenvalues of N are then determined and the corresponding eigenvector for the
most positive root is obtained. Finally, as stated by Horn, the quaternion representing

the rotation is a unit vector in the same direction.

2.4.3 Iterative Closest Point Algorithm

The Horn method provides a non-iterative closed-form solution to the problem of
determining the orientation between two coordinate frames. The lterative Closest
Point (ICP) algorithm proposed by Besl and McKay [9] iteratively refines the Horn

method’s closed-form solution.
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The goal of the ICP algorithm is the iterative minimization of the cost function,
presented in (26), by determining rotation and translation matrices that minimizes the
least squared distance between the points of the “Reference Data” and “Collected Data”
sets. The Reference Data the set of data to the newly acquired data, called Collected

Data, is aligned. The cost function is given by
ming r ¥.p||My, — (RDy + T)||? (26)

For the visual odometer presented herein both data sets are point clouds, the Reference
Data consists of data points triangulated previous image frames and the Collected Data
consists of the coordinates triangulated from the current stereo frame correspondence.
The ICP algorithm operates using five steps and may be stopped by meeting any one of

four stopping criteria. The process used by the algorithm is:

1. The cumulative transformation parameters for rotation, R, and translation, T, are
initialized to the initial pose estimate.

2. For each point in the Collected Data set, select the closest point in the Reference
Data based on the Euclidean distance.

3. Updated values for R and T are determined by minimizing the cost function.

4. The transformation determined in the previous step is then applied to all points
in the Collected Data set.

5. If a stopping criterion has been satisfied the algorithm terminate, otherwise the

process is repeated from step two.

The first two stopping criteria are based on the incremental change in the

transformation matrices. The first stopping criterion is described by

|Rp|
T < &pr (27a)
Thl ¢ (27b)
[Th-1l
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where h is the iteration number, R;, and R;,_; are the rotation matrices determined for
the current and previous iterations respectively, €z, is the threshold specified for the
relative magnitudes for the rotation matrices. Similarly, T}, and Tj,_, are the translation
matrices determined for the current and previous iterations respectively, er, is the
threshold specified for the relative magnitudes for the translation matrices. The

algorithm stops if the conditions given by equations (27a) and (27b) are satisfied.

The second stopping criterion is given by
|Rp| < &gq (28a)
ITy| < erq (28b)

where g, is the threshold specified for the absolute magnitude of the rotation matrix
and €7, is the corresponding term for the translation matrix. Again both the conditions
of both (28a) and (28b) must be satisfied for this stopping criterion to be met. The third

stopping criterion is based on equation (26):
mingr Xpl[My — (RD, + TH|I* < £ (29)

where ¢ is the error threshold. Finally, the algorithm can be stopped if a specified
number of iterations are reached. The process of aligning the Collected Data set with

the Reference Data is illustrated by Figure 7.
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Figure 7 - Pose estimation using the ICP algorithm

2.5 Coordinate Systems

The coordinate systems used by the visual odometer and for experimental
characterization are presented in this section together with the equation used to
convert between them. Two coordinate systems are used. The first, a body-centered
coordinate frame is used by the visual odometer to represent the position of each point
of interest in three dimensional space. The origin of the body-centered frame coincides
with the left camera on the Bumblebee® camera system and is oriented such that the y-
axis is normal to and positive towards the ground. The x- and z-axes are oriented along

and normal to the front face of the rover respectively as shown in Figure 8.
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Figure 8 - Body-centered frame relative to the stereo camera

The world frame is that used by the GPS system to track the rover’s movements during
data collection. The origin of this frame is coincident with the north-west corner of the
CSA’s Mars Emulation Terrain and is oriented such that the x- and y-axes are positive in
the south and east directions respectively with the positive z-axis coinciding with the

zenith direction. The world coordinate frame is shown in Figure 9.

Figure 9 - CSA Mars Emulation Terrain with world coordinate frame

The ground truth data describing the rover’s position and orientation are defined in the

world frame, as they are determined by the GPS. While the GPS only provides position
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estimates, orientation is obtained by comparing the relative position of three individual

antennas mounted on the vehicle.

The GPS readings are transformed from the world frame to the body-centered frame for
the purposes of comparing the visual odometry estimates to ground truth data. The

equation to rotate from the body-centered frame to the world frame is:
X, =0 Xy (26)

where Q is the rotation matrix, X,. is the coordinate in the body-centered frame and X,,
is the coordinate in the world frame. The rotation matrix, Q, is an Euler angle yaw-pitch-

roll sequence:

Q

[cos 6 cos Y sin ((p - E) sinf cosy — cos @ siny cos ((p — z) sin 8 cos P + sin ((p - E) sin 1[;]
I 2 2 2 |

~ | cos @ siny sin(<p—z)siné?sinv,b+cos<pcos¢ cos(<p—E)sinesintp—sin((p—z)cosw
2 2 2

—sinf sin(¢ — m) cos 6 cos ¢ cos 6
(27)

where Y is the yaw angle, 8 is the pitch angle and ¢ is the roll angle.
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3 Preliminary Studies for Visual-Odometer Development

3.1 Preliminary Studies

Preliminary work was conducted to determine the capabilities of the camera as well as
the most advantageous conditions under which to operate. These studies focused
primarily on determining the optimal range at which the camera was able operate in an

effort to determine how to best mount the camera on the rover.

3.1.1 Maximum Tracking Range

The first preliminary experiment was conducted in the lab and consisted of a simple
tripod setup, as shown in Figure 10A. The purpose of the experiment was to determine
the limitations of the hardware using the software provided with the camera API to
track a known pattern, such as the one shown in Figure 10B. A pattern was suspended
in the field of view of the camera and was slowly translated and rotated away from the
camera until tracking failed. The camera’s estimation of the pattern’s pose was
observed and stored in real time using the camera software. Once the software
stopped updating the pose estimates, the individual experiment was halted and data

recorded.

A E

Figure 10 - Maximum Tracking Range Experiment Setup: A — Bumblebee® camera

system; B — Default tracking pattern
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Multiple trials were conducted in a controlled environment for a variety of patterns in
order to obtain a measure of the average capability of the camera beyond the
specifications provided by the manufacturer, see Figure 47 and Figure 48. The trials
varied based on the patterns used for tracking. The default pattern used, shown in
Figure 10B, was then used as a template for new patterns that were created by varying

the distance between and the size of pattern features.

The results of this experiment are given below. Figure 11 illustrates the test results for
those patterns which used identically sized circles set at varying distances. Figure 12
shows the results for tests using patterns in which the circle size was varied, but their
positions were constant. Finally, Figure 13 shows the results for patterns which were

scaled versions of the default pattern found in Figure 10B.

Range for Constant Radius Patterns
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Figure 11 - Constant Radius Patterns Results, Radius of Circles is 0.01 m
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Range for Constant Distance Patterns
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The results of the tracking experiment indicated that the camera was able to
consistently track the patterns between 0.25 m and 1.00 m. Some tracking data was
able to be collected beyond 1.00 m. The default pattern, which is associated with the
center peak of each figure, was consistently tracked up to 2.50 m. Itis assumed that a
similar experiment was performed by the manufacturer in order to provide the best
pattern to the customer, which resulted in the default pattern performing significantly
better than the others. Pose estimates from beyond 2.5 m were obtained more
sporadically, and therefore were considered to be outside the camera’s optimal range.

Results from these tests are shown in Figure 11, Figure 12 and Figure 13.

3.1.2 Impact of Maximum Tracking Range in an Unstructured Environment

A second experiment was conducted off-line in MATLAB using data from the MET to
determine the impact of the camera’s maximum tracking range on the results of the
visual odometer. The primary consideration of this test was to determine impact of
signal noise, which was expected to have a greater impact on descriptors corresponding
to distant features. The frames were obtained using the stereo camera mounted on a

stationary tripod. One such frame is shown in Figure 14.

Ji‘

i

e

Figure 14 — Sample of terrain used for the visual odometry algorithm development

Performing feature detection on the sample image demonstrated that descriptors are
detected in all areas of the image. This is illustrated in Figure 15 where a green marker

is located to the position of each detected feature.
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Figure 15 - Sample left camera frame with descriptors

By performing feature matching on the sample frame and plotting the results on top of
a composite image, it was determined which areas of the image produced the most

successfully matched data points.

Figure 16 - Matched descriptors overlaid on the associated left and right camera

frames

Figure 16 is a composite image created using a stereo image pair showing a dot to mark
each descriptor which was successfully matched to the correct feature in the
corresponding image. A line is also shown for each descriptor in the left frame
connecting it with its counterpart in the right frame. It is evident from Figure 16 that
the vast majority of successfully matched descriptors were detected on the terrain as

opposed to the horizon or the sky.
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This test was performed in an off-line manner, and results were evaluated qualitatively
with images similar to Figure 16. The results confirmed that distant points in the images
were much more susceptible to noise and consequently fewer successful matches are
obtained from these points. As a result, the decision was made to mount the camera at
an angle such that it was 30° below the horizontal on the rover’s pitch axis. This
orientation limited the field of view of the camera such that the majority of the terrain

was 0.5 - 3.0 m from the camera.

3.2 Data Collection
A variety of data was collected for use in development of the visual odometer. This was
done to ensure the robustness of the resulting system. Three separate traverses of the

MET were performed to collect preliminary data, and are shown on an aerial view of a

CAD model of the MET in Figure 17.

Figure 17 — Aerial view of the Mars Emulation Terrain at the Canadian Space Agency
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Collection of the data was performed using the instrumented cart as shown in Figure 18,
while the experiment itself was performed offline. The red arrows indicate the paths
followed by the cart during data collection and are marked with their corresponding
number. Also, visible in Figure 18 are the Bumblebee® camera system and the GPS

setup used.

Figure 18 - Instrumented cart used for data collection

Of the three traverses, shown in Figure 17, paths 1 and 2 were taken with the camera
positioned horizontally relative to the rover wheel base. This orientation did not limit
the viewing range of the camera. The result of this was that the sky and structures were
visible in the frame, which allowed clouds to introduce interest points that did now

often match successfully while the buildings created glare.

The imagery from path 3, also shown in Figure 17, was collected with the camera tilted
30° below the horizontal on the pitch axis. This orientation limited the visible range of

the camera preventing the inclusion of the sky and distant objects in the frames.
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4 Visual Odometer Design

The processes of a visual odometer can be broken down into seven individual steps.

1)

2)

3)

4)

5)

6)

7)

The first step is pre-processing, feature detection and feature description. This
step encompasses all operations performed on the raw image data, such as
rectification, as well as the application of a feature detector.

The second step is feature correspondence for concurrent frames. In this case
matching is performed using the Nearest Neighbour matching scheme with line
scanning applied to reduce the computation time.

The third step is outlier rejection for the concurrent frame point
correspondences. This is performed using RANSAC.

Triangulation based on the correspondences achieved from the current frames is
the fourth step of the algorithm.

The fifth step is to perform feature correspondence between the features of the
current and previous left frames.

Outlier rejection is performed using RANSAC as well as strength and orientation
information for the consecutive frames match set.

The seventh and final step of the algorithm is the pose estimation. The Horn
method is used to determine an initial alignment of the data and the ICP

algorithm refines this alignment.

The flow of data through the components of the visual odometer is illustrated in

Figure 19.
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Figure 19 — Visual odometer structure

In practice, it was not possible to select methods to perform the individual steps in the
order they are used. It was also not to select them individually. This was due to the
goal of developing a real-time implementation and evaluating the potential for the ICP
algorithm to improve pose estimates. For example, the size of the feature descriptor
used significantly impacted the computational cost of not only the feature detection and
description phase, but also the feature correspondence phase. To reflect this, the visual
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odometer components are presented in the order that they were selected as opposed

to the order they are used in the algorithm.

4.1 Triangulation & Alignment
Triangulation is the process of recovering the 3D coordinate of a point from its
projection onto 2D images. More specifically the triangulation component of the

algorithm uses the point correspondences obtained from the feature association

The Horn method was selected as the method of determining the initial pose estimate
because of its accuracy as well as its use of a closed form solution as opposed to an
iterative method. This allowed an estimate to be obtained while minimizing the time

required for processing.

ICP was selected to refine the pose estimates produced by the Horn method due to the
success of previous work implementing it into pose estimation in other fields. To
evaluate the effectiveness of ICP’s inclusion in visual odometer, two modes were

created within the visual odometer:

Mode 1: the algorithm uses only the Horn method to estimate the transformation, pose,

between two consecutive frames associated with the rover motion.

Mode 2: at each frame, the algorithm refines the pose using ICP with the Horn method’s

pose estimate as the initial guess.

It is commonly known that the computational cost of ICP increases significantly as the
matched data sets increase in size. For a system using large data sets seeking to run in
real-time, the computational cost of ICP would have been prohibitively large. Due to
the comparatively small data sets generated from the stereo camera, when compared
to a laser scanner, the computational cost of ICP for pose estimation was found to be

acceptable in this application. This is discussed further in Section 5.2.
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4.2 Feature Association & Outlier Rejection
Different approaches to determine feature correspondence were selected for use in

matching concurrent and consecutive frame descriptors. A technique called line
scanning is used for concurrent frame matching to find candidate matches while the
matching itself is performed using the Nearest-Neighbour approach. Line scanning is
when the search for a matching descriptor in the corresponding image is restricted to
the corresponding epipolar line and the area immediately adjacent to it. This technique
was implemented to reduce the number of candidate matches and by extension the
computation time. This was possible due to the geometry of the stereo camera system.
Because the individual cameras are contained in one unit they are always mounted
parallel to each other and at the same height. This means that corresponding
descriptors occur in the same y-coordinate range of the captured images. To take
advantage of this, the search for matching descriptors is limited to a +2 pixel range in

the y-direction when matching descriptors from concurrent frames.

Matching for consecutive frames was performed using a modified version of the
Preferred-Mate matching method instead of the simpler Nearest-Neighbour method.
The reason for this was that this method performs better in rotation than the Nearest-
Neighbour approach. In order to compensate for the additional computational cost
associated with the Preferred-Mate matching technique, the search area for candidate

matches was restricted.

By restricting the area searched for candidate matches, a significant savings in
computational cost was achieved. It can be seen from Figure 20 that by reducing the
search area around the descriptor from 64x64 pixels to 32x32 pixels, the time for
computation dropped significantly. Reducing the area size to 16x16 pixels or 8x8 pixels
resulted in further reductions in computation time, though the savings decrease
exponentially. Overall it was found that a search area of 32x32 provided the best
balance between computation time and the number of descriptors successfully

matched.
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Figure 20 - Time required to match for a set of descriptors using varying search areas

The number of successful matches obtained for varying scan area sizes, across a series
of 2000 images, is illustrated in Figure 21. It is important to note that from frames 500
to 1000, significantly fewer inliers were detected for all scan area sizes. This is a
reflection of the algorithm obtaining fewer descriptors from these images than the
others. Therefore it is important to only consider the number of inliers of each trial
relative to the others. It is evident that even reducing the search area from 64x64 pixels

to 32x32 pixels has a measurable impact on the number of inliers detected.
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Number of Inliers vs. Frame Number
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Figure 21 - Number of inliers detected for varying search area sizes

For the final implementation of the visual odometer, a scan area of 32x32 pixels is used
for consecutive frame matching. This decision came as a result of the need to balance
accuracy with computation time. The reduction in time required for this type of
matching eliminated a significant obstacle to creating a visual odometer that operates in
real-time. As well, it should be noted that the decline in the number of inliers for all
search area sizes around frame 550 is a result of the terrain yielding fewer descriptors.
This reduction in the number of inliers can be addressed by having the vehicle traverse
more slowly across the terrain in order to reduce the disparity between consecutive

images and consequently reduce the likelihood of poor pose estimates.

The dominant method used for outlier rejection in visual odometry research is RANSAC
as it is a robust approach that has been shown to remove outliers from data sets in
which the number of outliers, or erroneous matches, is as high as 60%. Based on the
past performance of the RANSAC algorithm and the lack of proven alternatives it was

selected for use in the visual odometer as the primary outlier rejection method.
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For consecutive frame descriptor correspondence, candidate matches are evaluated
based a comparison of descriptor orientations and strengths, as defined by Lowe [43].
Any pairs where the difference in orientation or strength exceeds a threshold were
removed prior to evaluating the set of descriptor pairs using RANSAC. This combination
of methods was found to require somewhat less computation time than running
RANSAC alone. This was not the case when matching descriptors from concurrent

frames. RANSAC was the only outlier rejection algorithm used for these matches.

4.3 Selection of a Feature Detector

Three candidate feature detectors were identified from the literature review performed
at the onset of the project to be the most robust. These feature detectors are SIFT,
SURF and GPU-SURF. SIFT has been used very successfully by the research community
since its development, and SURF, though only recently developed, has also proven to be
both accurate and reliable in the short time it has been available. Finally, GPU-SURF is a
new approach that has not yet been widely implemented, but was selected as a
candidate for its potential to provide comparable results to the other algorithms at a

reduced computational cost.

Given that the accuracy of the three candidate algorithms has been reported by related
research to be comparable, the performance indicator used in the selection process was
the processing time. Each candidate was applied to the same series of frames to
evaluate their performance, the average results are given by Table 1. The computer

used for the evaluation is equipped with a Pentium 4HT processor.

Table 1 - Average algorithm processing time for different feature detectors

Descriptor Processing Operating
Type Time [ms] Frequency [Hz]
SIFT 7517.74 0.1330187
SURF 2447.66 0.408553476

GPU-SURF 559.73 1.78657567
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It can be seen from Table 1 that the computational cost of GPU-SURF is an average of
4.37 times lower than SURF and 13.43 times lower than SIFT. Consequently, in order to
obtain a comparable level of accuracy, a vehicle utilizing the SIFT or SURF algorithms
would be required to travel much slower than a vehicle utilizing GPU-SURF respectively.
While irrelevant to an algorithm intended for use as a post-processing error correction
tool, the significantly lower operating frequency makes the computational costs of SIFT
and SURF prohibitively large for use in real-time. Consequently, GPU-SURF was selected

as the feature detector and descriptor for the visual odometer.
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5 Experimental Characterization

5.1 Experimental Setup

Characterization of the algorithm was performed off-line using additional data collected
from the Canadian Space Agency’s Mars Emulation Terrain. Instead of reusing the
instrumented cart shown in Figure 18, the stereo camera system was mounted on the
CSA’s MRT. The reason for this was the intention to validate the algorithm under the

motion of an actual rover as opposed to a cart controlled by a person.

The MRT is shown in Figure 22 with the stereo camera mounted at the top at a
downward angle of 30° and a GPS frame consisting of three real time kinematic, RTK,
GPS receivers. The RTK GPS receivers provided the ground truth data that was the basis

of the algorithm characterization, but were unused by the visual odometer itself. The

ground truth data is accurate to within 0.04 m.

Figure 22 — The MRT equipped with a stereo camera and GPS frame
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The rover itself is a modified Pioneer 2AT from Mobile Robots Inc. The computing
processing unit (CPU) of the rover consists of a CF-30 Toughbook™ and the operating
system of the rover is a Linux distribution, namely Ubuntu 8.0.4. The rover features a
series of custom electromechanical interfaces to allow for additional hardware to be

added easily.

5.2 Experimental Results

A number of traverses were performed in and around the MRT, at a speed of 0.10 m/s
to generate data with which to characterize the visual odometer and to evaluate the ICP
algorithm as a part of the visual odometer. The results of off-line processing of the data
using the visual odometry algorithm in both Modes of operation are discussed below.
The data for each trial was collected and processed off-line by the visual odometer. The
error metrics used for evaluation during the test cases are the average percent error in
the overall rover displacement and the average error in yaw angle estimation. Data on
rotation for roll and pitch are not compared because the terrain did not cause the

vehicle to pitch or roll noticeably. This would result in inflated error estimates.

5.2.1 Characterization of the Visual Odometer
In order to characterize the visual odometer under varying conditions, traverses were

performed in different types of terrain and under various lighting conditions. A

composite image of the test cases is shown in Figure 23.
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Figure 23 - Various environmental conditions experienced during the characterization
of the visual odometer

As can be seen from Figure 23, the terrain over which localization was performed
included wet and dry sand, gravel and pavement. Data was not collected from
extremely rocky terrain due to the ground clearance limitations of the rover used.
Lighting conditions varied as well, as data was collected during both clear and overcast

weather conditions. The results of the traverses are given by Table 2.

It should be noted that ground truth data was only available for displacement during
traverses 5, 6 and 7. The reason for this is the fact that the data for these cases was
collected using the instrumented cart instead of the rover, which was only equipped
with a one RTK GPS antenna. The other five traverses were performed using the rover

equipped with three RTK GPS antennas.
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Table 2 - Average error experienced during multiple traverses

Traverse | Displacement [%] | Yaw Angle [°] Terrain Displacement [m]
1 5.085% 4.572 gravel, clear 14.075
2 20.480% 6.504 wet sand, overcast 26.503
3 20.249% 13.008 wet sand, overcast 32.993
4 43.212% 47.147 wet sand, clear 90.830
5 14.588% N/A wet sand, clear 42.717
6 89.600% N/A wet sand, clear 145.534
7 67.031% N/A pavement, overcast 109.048
8 6.670% 31.395 dry sand, clear 25.264

It can be seen that both the displacement error and the yaw error varied significantly

between the different traverses. Comparing traverses 4, 5, 6 and 8, we can see that the

texture change between wet and dry sand had a significant impact on localization error,

with lower error being seen during dry conditions. This is likely due to the decreased

texture of the environment seen when the terrain becomes saturated. Taking note of

the weather conditions, it is evident that the best results were predominantly obtained

from data collected on days having clear weather.

The impact of the weather conditions is most evident when comparing traverses 2 and

8. The paths followed for these data sets are nearly identical, having been started from

the same initial position and following the same trajectory. The change in

environmental conditions is the only significant difference between the two traverses

yet the localization error is significantly higher during traverse 2. Figure 24 illustrates

this, showing only one of the ground truth estimates to avoid cluttering the figure.
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Figure 24 - Comparison of rover traverses 2 and 8

Another factor that should be addressed for its potential to have an impact on the

localization accuracy, is the duration of the traverses. Table 3 gives the data shown
before, in Table 2, in order of increasing traverse duration based on the number of
frames collected.

Table 3 - Average errors shown in order of the length of the associated traverse

Displacement [m] Displacement [%] Yaw Angle [°]
14.075 5.085% 4.572
25.264 6.670% 31.395
26.503 20.480% 6.504
32.993 20.249% 13.008
42.717 14.588% N/A
90.830 43.212% 47.147
109.048 67.031% N/A
145.534 89.600% N/A

Looking at Table 3, there appears to be an overall trend to increase the average
translation error as the traverses become longer. Similarly the average yaw error also

appears to increase for the longer traverses. Figure 25 and Figure 26 illustrate this.
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Figure 26 - Yaw error vs. the length of the traverse

Individual figures illustrating the visual odometer performance compared to the ground

truth data can be found in Appendix A.

The yaw error has an important impact on the error in the final position. Even in those

cases where the visual odometer displacement error was relatively low, the final
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position can still significantly deviate from the ground truth estimate. This is illustrated

below in Figure 27.

Figure 27 - Graphical output of offline processing

Figure 27 shows the graphical output of the off-line visual odometer testing where the
green sphere represents the rover and the red line is the path estimated by the visual
odometer. The white line is the actual path followed, constructed from the ground
truth data, and the point cloud is the triangulated data used by the visual odometer for
the ICP algorithm. The impact of erroneous yaw angle estimations is apparent where
the estimated rover path deviates from the ground truth data. This is evident after
approximately 40 % of the traverse is completed when the algorithm estimates a sharp
turn. After this point no significantly high errors are found in the yaw estimates,

however the path continues to deviate due to the new heading.

It can be seen from the results presented here that the presented visual odometer was
not able to achieve the results published in other research. The traverses on which the
algorithm performed best achieved approximately 5.0 % and 6.5 % error in terms of
displacement and 4.5° and 6.5° error in terms of yaw. Data published by other
researchers put their displacement and yaw rotation errors at approximately 2.0% and

5° respectively.

A more definitive statement can be made about the impact of ICP on the accuracy of the
algorithm. The first two traverses were also processed without the use of the ICP
algorithm in order to form a basis on which to assess the impact of ICP on localization

accuracy. The results of this are discussed below.
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5.2.2 Impact of ICP
Characterization Case 1. As seen in Figure 28 and Figure 29, the first characterization

case was a traverse over a flat terrain characterized by gravel. In addition, the terrain

was dry and the weather was clear on the day of the experiment.

This scenario was evaluated for the challenge it provided to the camera, and would

provide to a laser scanner based system, which would have been unable to localize

properly under such uniform environmental conditions.

Figure 28 - Characterization case 1 rover trajectory

Figure 29 - Characterization case 1 terrain texture

Table 4 gives a summary of the average errors for the algorithm applied to the data in
both modes of operation. The visual odometer algorithm running ICP (Mode 2) had an
average displacement estimate error of 5.085%, while the associated error for the

algorithm omitting ICP is 19.535%. The average yaw error using ICP is also measurably
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less than the average error obtained without using ICP, at 4.572° and 8.355°

respectively.

The results of the first case appear to indicate that the ICP algorithm significantly
improves both the displacement and yaw errors. A more complex traverse is analyzed

for case 2 to determine if the same trend is visible under different conditions.

Table 4 - Characterization case 1 average error

Mode Pose Estimate Yaw Error
ICP on 5.085% 4,572°
ICP off 19.535% 8.355°

The experimental results obtained for the rover displacement and yaw angle during the

first case are given by Figure 30 and Figure 31 respectively.
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Figure 30 - Characterization case 1 rover displacement
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Yaw Angle vs. Frame Number
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Figure 31 - Characterization case 1 rover yaw angle

A deviation of up to 15° from the ground truth GPS reading is seen in Figure 31 for the
algorithm when used without ICP. Though it is known that the yaw angle is particularly
difficult for a visual odometry algorithm to estimate, this deviation is higher than
anticipated. This likely indicates that a larger number of incorrect matches were
characterized as inliers during the middle portion of the traverse, which adversely
affected the estimate obtained from the Horn method. This is significant because the
Horn method will only be able to obtain the optimal solution to the alignment problem
if the data is composed entirely of correct matches. The results, specifically the reduced
error in terms of displacement and the deviation in the yaw angle midway through the

traverse, demonstrate the benefit obtained from introducing the ICP algorithm.

Characterization Case 2. As seen in Figure 32 and Figure 33, the second case is a curved
traverse through terrain characterized by sand and a variety of small to large rocks. This
scenario was selected as it is a very similar environment to that found during planetary

exploration missions to Mars. Additionally, the shape of the path was chosen to provide
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a higher level of difficulty than the previous case. Rotational motion causes features to
pass out of the camera’s field of view more quickly than during translational motion,
resulting in fewer inliers, making rotational motion more difficult to correctly estimate.

Finally, the experiment was performed while the sand was wet and the sky was

overcast, the opposite of the conditions in the previous case.

Figure 33 - Characterization case 2 terrain texture

Table 5 summarizes the average errors in the results of the visual odometer pose
estimates. The average displacement errors for the ICP on and ICP off cases are
21.611% and 29.158% respectively while the associated average yaw errors are 6.419°
and 13.725° respectively. It is again evident that the algorithm performed significantly
better when utilizing ICP. This result matches that seen in the first case despite the

significantly different environmental conditions.
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Table 5 - Characterization case 2 average error

Mode Pose Estimate Yaw Error
ICP on 21.611% 6.419°
ICP off 29.158% 13.725°

The results confirm what was seen in the first case. The presence of the ICP algorithm
improved the pose estimate obtained by the Horn method, which was influenced by the

presence of erroneous matches in the inlier data set.

Figure 34 and Figure 35 show the estimated rover displacements and yaw angles for
both visual odometer modes compared to the ground truth data. The experimental
results obtained from the second experiment showed a decrease in localization error
when using ICP. While no significant deviations, such as those seen in Figure 31 are
evident, the deviation of the algorithm’s estimates from the ground truth data is less

severe when using ICP.
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Figure 34 - Characterization case 2 rover displacement
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Yaw Angle vs. Frame Number
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Figure 35 - Characterization case 2 rover yaw angle

By comparing the results of the second case to the first, it can be seen that the ICP
algorithm had a positive impact on algorithm accuracy when estimating both the
displacement and the yaw angle of the rover. This trend was seen despite varying

environmental conditions and terrain types.

5.2.3 Computational Cost
Computational cost was measured in term of the time required to perform the

individual operations of the visual odometer. The average cost is summarized in

Table 6.

Table 6 - Average computational cost

Process Time (ms)
GPU-SURF 433.31
Feature Matching & RANSAC 96.7
Horn Method & ICP 29.71
Total 559.73
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It is evident that feature detection remains the largest contributor to computational
cost, though there is room for further improvement in the feature matching and outlier
rejection time as well. As well, it is important to note that while the ICP algorithm is
typically computationally intensive, its impact in this context is sufficiently small in
comparison to the other algorithm operations that it can be used in this application.
This is attributed to the smaller data set obtained by a stereo camera then from a laser

scanner, the sensor most often used in conjunction with ICP.

5.3 Functionality Verification

Some additional tests were performed to verify that the outlier rejection and pose
estimation components of the algorithm are functioning correctly in light of the high
error seen in the localization results from those days which had poor weather

conditions.

Functionality Test 1. The first test was to determine if the outlier rejection algorithm,

RANSAC, was performing properly, the results of which are illustrated by Figure 36.
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Figure 36 - Outlier rejection results during varying weather conditions

It can be seen from Figure 36 that the ratio of outliers to inliers is consistently higher
during the traverse of fair weather conditions. By detecting a lower percentage of
outliers during the traverse under poor weather conditions, more outliers are
erroneously categorized as inliers and are used to perform motion estimation. Thisis a
source of error which contributes to the higher error seen under poor weather
conditions. It is possible that by adjusting the parameters used by RANSAC, the

performance during poor weather could be improved somewhat.

Functionality Test 2. A comparison of the localization components of the different
modes of the visual odometer was also performed on synthetic data to evaluate the
algorithm’s response to a 100% inlier data set. A point cloud in the shape of a cube with
rough face was generated using MATLAB to form the reference data, and a known
transformation, given in Table 8, was applied to generate the collected data. The

synthetic data can be seen in Figure 37.
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Figure 37 - Synthetic data used to compare the modes of the visual odometry
algorithm

Table 7 - Transformation applied to the synthetic data

Transformation Magnitude
X [m] 0.06
Y [m] 0.01
Z [m] 0.36
Yaw [°] 5

The results showed that Mode 1, using the Horn method without ICP refinement
performed, better than Mode 2, which used the ICP algorithm. The results are given

below.
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Table 8 - Average error in localization estimates for synthetic data

Error Mode 1 Mode 2
Displacement 0.0002% 0.7069%
Yaw 0.0003° 0.3230°

The results indicate that both modes of the algorithm are capable of accurately
performing localization of the data set shown in Figure 37. The mode 2 results are
slightly different from Mode 1 results because of noise injected into the simulated data

when performing ICP.
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6 Conclusions

Accurate localization estimation is a critical task for autonomous vehicles including
those used for exploration of other planets. The majority of systems currently in
practical use perform localization using either IMU’s or wheel odometry. Such
approaches become increasingly inaccurate over time due the drift experienced by

IMU’s and the slippage that is unaccounted for in wheel odometry estimates.

An alternative means of performing localization is visual odometry. It also experiences
error accumulation but this can be mitigated by the visual odometry algorithm itself

through the use of bundle adjustment and loop closing techniques.

The primary contribution of this thesis is the development of a visual odometry
algorithm capable of operating in real time and in the unstructured environments of
other planets. This work also provides a framework for use in future research. Imagery
is collected using a stereo-camera system which is used to obtain localization estimates.

The visual odometry algorithm can function in two modes.

Mode 1: the algorithm uses only the Horn method to estimate the transformation, pose,

between two consecutive frames associated with the rover motion.

Mode 2: at each frame, the algorithm refines the pose using ICP with the Horn method’s

pose estimate as the initial guess.

Evaluation of ICP in the context of the visual odometry algorithm found that it had a
minimal impact on the overall computational cost of the visual odometer. The
incorporation of ICP resulted in a significant reduction in the error of the yaw angle
estimates, a parameter typically difficult to estimate accurately using visual odometry.
The impact of ICP on the translation error estimates was less conclusive and should be

studied further using larger traverses.

In conclusion, running the algorithm in Mode 2 is found to be beneficial for rotation

accuracy, with minimal additional computational cost.
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It is recommended that sensor fusion be explored in future work as a means of further

reducing pose estimation error.

Data used for the development of the visual odometer was collected in from the
Canadian Space Agency’s Mars Emulation Terrain (MET). Performance evaluation of the
completed algorithm was also founded on data collected from the MET, ensuring that

the algorithm could operate in a relevant field environment.

6.1 Summary of Specific Results
Given the problem of localizing a vehicle in an unknown and unstructured environment,
this thesis works to develop a visual odometry algorithm that is capable of accurately

localizing in real time. It was found that:

1. The SIFT and SURF algorithms significantly limited to allowable speed at which a
vehicle could travel if localizing in real time.

2. The GPU-SUREF algorithm was able to partially alleviate the limitations in vehicle
speed by allowing the algorithm to operate at a higher frequency.

3. Even asingle inaccurate estimation of the vehicle yaw angle resulted in
significant deviation of the estimated final position from the true final position.

4. The integration of the ICP algorithm into the visual odometer substantially
reduced the error in vehicle yaw angle estimates, a parameter that is typically
difficult to estimate using visual odometry.

5. While ICP is computationally intensive on large data sets, the computation time
was sufficiently small in this application to be viable for use in a real time
algorithm.

6. The algorithm demonstrated a sensitivity to the lighting conditions, a known
problem in visual odometry research

7. The algorithm which was developed is capable of operating in real-time,

however the accuracy achieved is not comparable to other implementations.
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6.2 Future Work

Additional work is recommended to reduce the pose estimation error and improve
robustness, as the present version is not yet suitable for practical application. Itis
recommended that sensor fusion, loop closing and bundle adjustment be explored as
potential means of achieving this goal. As well, obstacle avoidance, the kidnapped
robot scenario and self-calibration are areas of research with the potential to further

the visual odometer presented here.

Sensor fusion offers another means by which the estimation error could be reduced and
should be considered for future work. It is possible that error could be reduced through
the integration of a second, independently determined, initial pose estimate. While
IMU'’s or laser scanners could be applied, these options incur an additional cost in terms
of volume, mass or power consumption. An alternative sensor, which should be
considered, is the right camera of the stereo camera system. The consecutive frames
from the left camera are the basis for the visual odometer’s initial pose estimate. The
consecutive frames from the right camera, currently unused, could produce a second,
independently determined, initial pose estimate. By comparing the two initial pose
estimates, this approach has the potential to improve the localization estimation error

at a very low cost.

A focus of current research is the loop closing problem. Loop closing occurs when a
vehicle conducting localization and mapping operations returns to a previously visited
location. In this event, the ideal scenario would be that the newest data corresponds
exactly with previously collected data. In reality this is unlikely due to error in the
previous estimates or differing perspectives on the environment. If the algorithm is able
to close the loop and achieve correspondence between new and old data, then the
error in the previous localization estimates can be reduced via bundle adjustment.

Future integration of bundle adjustment in highly recommended.

Bundle adjustment is the refinement of the 3D coordinates and relative motion

estimates obtained from imagery of a scene taken from multiple viewpoints.
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Performing bundle adjustment has been shown to increase pose estimation accuracy

and should be considered for future implementations of the algorithm.

The visual odometry algorithm would also benefit from work on the kidnapped robot
scenario. The kidnapped robot scenario is when an event occurs that prevents the
vehicle from successfully localizing. The problem is that when the vehicle is able to
resume normal operation, it must attempt to localize relative to previously collected
data even though it may have continued to traverse the terrain during the period where
localization had failed. A major component of this problem, as with loop closing, is that
the vehicle must be capable of recognizing previously viewed terrain from different

perspectives if it becomes turned around.

As well, the visual odometer could be advanced by integrating it with an obstacle
avoidance algorithm. The algorithm in this thesis required that the rover be driven by
an operator. A major step in removing the need for human assistance in the rover’s

operations is too incorporate obstacle avoidance capabilities.

Work could also be done to incorporate self-calibration into the visual odometer. This
would result in a more robust algorithm that would be readily transferable to vehicles
utilizing different stereo vision systems. As well, the algorithm described here could be
used for doing studies on slip detection. By comparing visual odometry to wheel
odometry, the algorithm could be used to better characterize conditions under which

slippage is most sever and to test methods of preventing it.
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Appendices

Appendix A: Algorithm Characterization Figures
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Figure 40 - Traverse 4 displacement error
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Figure 41 - Traverse 4 yaw angle error
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Figure 42 - Traverse 5 displacement error
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Figure 44 - Traverse 7 displacement error
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Figure 45 - Traverse 8 displacement error
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Appendix B: Camera Specifications

Bumblebee® Specifications

Sony?® 1/3" progressive scan CCD
Image Sensor Type ICX424 (648x488 max pixels) 1CX204 (1032x776 max pixels) 1CX445 (1280x960 max pixels)
74um square pixels 4.65um square pixels 3.75pm square pixels

Focal Lengths 2.5mm with 97° HFOV (BB2 only) or 3.8mm with 66° HFOV or 6mm with 43° HFOV

Tnterfores 6-pin IEEE-1394a for l and video d 2:x 9-pin IEEE-1394b for camera control and video data transmit
4 general-purpose digital inputioutput (GPIO) pins 4 general-purpose digital input/output (GPIO) pins

Power Consumption 2.5Watl2v 4Wat 12V

Lens mount. 2 x MI2 microlens mount 3 x MI2 microlens mount

Operating Temperature Commercial grade electronics rated from 0° to 45°C

Figure 47 - Bumblebee® camera specifications [65]
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