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Abstract

Modelling Compressible Blood Flow with Slip in a Constricted Rectangular Flow Domain

Master of Science 2015

Matthew DeClerico

Applied Mathematics

Ryerson University

The abnormal narrowing of blood vessels is known to affect the characterization of blood flow

through these constricted regions. Both theoretical and clinical research has suggested that these

changes in flow are associated with cardiovascular related diseases. Analytic, numerical, and par-

ticle based methods have been employed to solve the Navier-Stokes momentum integral equations

associated with compressible, Newtonian fluid flow. In this thesis, the Karman-Pohlhausen method

is used to transform a system of partial differential equations into a single second-order, non-linear

differential equation in terms of the density. Numerical solutions are presented and important flow

features, including the role of slip and compressibility, are discussed. The choice to use a symmetric

rectangular channel, rather than a cylindrical one, is largely motivated by the opportunity to com-

pare the numerical solutions with experimental data collected from a rectangular microchannel.

The numerical results also indicate similar trends in the flow characteristics for the rectangular

channel as compared to previous results using cylindrical models.
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Chapter 1

Introduction

A constriction in the artery, or arterial stenosis, is the abnormal narrowing of a blood vessel.

When blood contains high levels of cholesterol and fatty molecules, they can adhere to the artery

walls forming a plaque. Over time, these deposits grow narrowing the cross-sectional area of

the artery. Alternatively, the stenosis can form as a result of arterial lesions along the vessel

walls. Such constrictions alter the mechanical forces and flow properties of the blood, producing

physiological, biochemical, and pathological changes in the body [24]. It is believed that the

locations of these constrictions are not random; rather they are observed in neighbourhoods where

the flow properties undergo large changes, such as areas of increased curvature or branching ([4],

[15]). Multiple researchers have linked the changes in flow properties to cardiovascular related

diseases. Improved understanding of the fluid dynamics of blood will allow better identification,

treatment, and prevention of cardiovascular related diseases [3].

The fluid dynamics of blood have been investigated analytically using idealized, smooth cylin-

drical geometries. The momentum integral equations have been solved using perturbation methods

([21], [19]) and the Karman-Pohlhausen method ([9], [24], [23], [1]). In the latter, the solution to

the velocity profile is assumed to be of a polynomial form. While [23] assumes a zero slip boundary

condition, it was suggested by [16] to include slip velocity along the vessel wall. The role of slip

was further investigated by ([14], [1], [20]). In [1], the role of slip was investigated with respect to
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CHAPTER 1. INTRODUCTION

an asymmetric constriction. In the Thesis by [20], the role of slip was investigated using a variety

of smooth geometries.

Numerical methods have also been successfully implemented to better understand how fluid

properties are affected by the stenosis ([13], [7]). It was numerically shown by [12] that at low

Reynolds numbers, recirculation zones did not form downstream of the constriction. Furthermore,

at low Reynolds numbers, [2] numerically showed that the flow resistance went unaltered when the

stenosis was modelled as an irregular, non-smooth surface. This is a significant result since it is

known that flows in stenotic neighbourhoods involve low Reynolds numbers [5], and the stenosis is

often asymmetrical in shape [7].

Blood is often modelled as an incompressible, Newtonian fluid ([2], [22]). However, [3] and

[19] demonstrated that the pressure gradient is affected by the weakly compressible nature of

blood. Recently, particle-based methods called Multi-particle Collision Dynamics (MPC) have

become popular approaches to further study the fluid properties of blood ([11], [3], [1]). MPC

methods allows researchers to describe the individual interactions among particles suspended in the

blood. This approach is also favourable since compressibility is built into this model. The rise in

popularity of particle-based methods is attributed to advancements in high performance computing

[8]. Previously, such methods were unfavourable due to the immense processing resources needed

to model individual particles in the fluid.

Early experimental research was carried out by [10] using a long, rigid tube with a theoretically

modelled stenosis. In [6], the flow properties were compared using a straight, smooth tube and a

cast of a diseased human artery. Later experiments ([17], [4]) investigated the properties of non-

Newtonian fluids as they moved through a sudden constriction. The amount of experimental data

to compare with the results of analytic, numerical, and particle based methods is growing, yet, it

is still limited. This Thesis is largely motivated by the opportunity to compare numerical results

with experimental data. A team of engineers plans to construct a rectangular microchannel to

further study the dynamics of blood-like fluids moving through a constriction. For this reason a

rectangular vessel is chosen to model the constriction instead of the more popular, and biologically

2



CHAPTER 1. INTRODUCTION

relevant, cylindrical geometry.

In Chapter 2 the governing equations will be provided in Cartesian coordinates and initial

assumptions, along with the full details of the model, will be discussed. Chapter 3 provides the

specifics of the analytic methods used to develop a differential equation in terms of density. In

Chapter 4, results are presented graphically along with discussion points. Finally, in Chapter 5,

conclusions and possibilities for future projects are presented.
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Chapter 2

Fluid Dynamics

Fluid dynamics is the study of the movement, often referred to as flow, of fluids. A fluid is a

substance that deforms continuously under external forces. There are two types of fluids; one

being a gas, the other a liquid. Both gases and liquids are comprised of molecules and can flow

easily, however they exhibit some defining differences. A gas has no fixed volume and will take

the shape of its container. Gases are easily compressible since the molecules are widely spread

out. In comparison, due to stronger attractive forces, the molecules in a liquid are more closely

packed together. Liquids will take the shape of the container, but unlike gases, they have a definite

volume. Fluid dynamics is an evolving and multidisciplinary subject. This subject is studied across

many fields including biology, astronomy, engineering, and meteorology. Fluid properties, such as

velocity, density, and pressure, are described by the solutions to the governing equations that arise

from the laws of fluid flow.

In this Chapter, the governing equations describing compressible, Newtonian fluids are presented

in Cartesian Coordinates. Initial assumptions that have been used in the literature are adopted

to transform a system of partial differential equations into a non-linear, second order differential

equation. Finally, a full description of the flow domain is discussed.
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CHAPTER 2. FLUID DYNAMICS 2.1. GOVERNING EQUATIONS

2.1 Governing Equations

The goal is to derive a system of governing equations which describe the changes in physical

properties (velocity, density, and pressure) of a fluid during flow. There are two approaches that

have been used to achieve this. The first approach considers the individual molecules in the fluid.

The macroscopic behaviour of the fluid is described by the dynamics of the molecules within. In

a typical fluid system, the number of molecules is of the order ∼ 109. Keeping track of how each

molecule changes is very complex and computationally expensive. Instead, the second approach,

called the continuum method, is used. In this model the fluid is assumed to be made up of

homogeneous fluid particles that vary continuously in space and time. Each fluid particle is thought

to be an average of the state of the system in a local neighbourhood. This approach allows for the

interactions and changes of individual molecules in the system to be ignored.

The state of the system is described by the velocity vector u(x, t), the density ρ(x, t), and the

pressure P (x, t), where x = (x, y, z) are spatial coordinates and t is time. For reference, bold face

will be used to represent vector quantities. In addition to the continuum approach, all fluids are

subject to conservative laws, namely conservation of momentum and conservation of mass. For

an isothermal system, these laws lead us to a system of governing partial differential equations in

terms of velocity, density, and pressure.

ρ

(
∂u

∂t
+ u · 5u

)
= −5 P +5 · τ + F (2.1)

τ = µ

(
5u +5uT − 2

3
(5 · u)I

)
(2.2)

∂ρ

∂t
+5 · (ρu) = 0 (2.3)

P =
kBT

m
ρ (2.4)

Here 5 = ( ∂
∂x ,

∂
∂y ,

∂
∂z ) is the gradient operator, F is the external force vector per unit volume

acting on the fluid, µ is the dynamic viscosity, T is the constant fluid temperature, m is the mass

5



CHAPTER 2. FLUID DYNAMICS 2.2. NAVIER-STOKES IN CARTESIAN COORDINATES

of a fluid particle, and kB is the Boltzmann constant. Together, equation (2.1) and equation

(2.2) are known as the Navier-Stokes equation for the conservation of momentum for isothermal,

compressible, viscous fluid flow. The conservation of mass relationship takes the form of equation

(2.3). Equation (2.4) is known as the Equation of State for an ideal gas and offers a means to

translate between pressure and density in the system. Equations (2.1)-(2.4) represent a system of

partial differential equations with unknowns u(x, t), ρ(x, t) and P (x, t).

2.2 Navier-Stokes in Cartesian Coordinates

For the model being used in this Thesis, the system of equations will need to be written in Cartesian

coordinates. Following [18], the Navier-Stokes equation, (2.1) and (2.2), in component form for a

fluid whose velocity is u = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) in terms of the stress tensor, τ ,

can be written as:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=

(
∂

∂x
τxx +

∂

∂y
τyx +

∂

∂z
τzx

)
− ∂P

∂x
+ ρgx, (2.5)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=

(
∂

∂x
τxy +

∂

∂y
τyy +

∂

∂z
τzy

)
− ∂P

∂y
+ ρgy, (2.6)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=

(
∂

∂x
τxz +

∂

∂y
τyz +

∂

∂z
τzz

)
− ∂P

∂z
+ ρgz (2.7)

Here, F = ρ(gx, gy, gz). More specifically, gx denotes the component of the force in the x-direction.

Continuing with [18], the components of the stress tensor are:

6



CHAPTER 2. FLUID DYNAMICS 2.2. NAVIER-STOKES IN CARTESIAN COORDINATES

τxx = µ

[
2
∂u

∂x
− 2

3
(5 · u)

]
, (2.8)

τyy = µ

[
2
∂v

∂y
− 2

3
(5 · u)

]
, (2.9)

τzz = µ

[
2
∂w

∂z
− 2

3
(5 · u)

]
, (2.10)

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
, (2.11)

τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
, (2.12)

τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
, (2.13)

5 · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(2.14)

Consider the following assumptions for the model:

• the system is in steady state (independent of t and ∂
∂t terms vanish)

• no flow in the z-direction and z independence (u = (u(x, y), v(x, y), 0), ρ = ρ(x, y), and

P = P (x, y))

• model blood as a Newtonian fluid (viscosity, µ, is constant)

• external force applied only in the y-direction (F = (Fx, Fy, Fz) = (0, ρg, 0))

With these assumptions, together with the substitution of the appropriate components of the

stress tensor (2.8) - (2.14), a simplified system of the conservation of momentum equations in

component form is obtained, namely

ρ(uux + vuy) =
1

3
µ
∂

∂x
(ux + vy) + µ(uxx + uyy)−

∂P

∂x
, (2.15)

ρ(uvx + vvy) =
1

3
µ
∂

∂y
(ux + vy) + µ(vxx + vyy)−

∂P

∂y
+ ρg (2.16)

7



CHAPTER 2. FLUID DYNAMICS 2.2. NAVIER-STOKES IN CARTESIAN COORDINATES

where the z-momentum equation is identically satisfied.

Next, following Forrester and Young [9], assume that the constriction is mild. Two additional

results follow from this assumption. First, equation (2.15) can be approximated as ∂P
∂x = 0. From

the equation of state (2.4) this implies that P = P (y) and ρ = ρ(y).

With this result the conservation of mass equation (2.3) can be written as:

ρ
∂u

∂x
+
∂(ρv)

∂y
= 0 (2.17)

Second, as the fluid flows through the mild constriction we assume that the speed in the x-direction

is negligible compared to the y-direction. Additionally, considering the flow in the y-direction, it

can be assumed that changes in the x-direction are negligible compared to the y-direction. This

implied that uvx � vvy and we can neglect uvx.

Using these two results we can write the system (2.15)-(2.16) as a single PDE in terms of v(x, y),

ρ(y), and P (y):

ρv
∂v

∂y
=

1

3
µ
∂

∂y

(
−v
ρ

dρ

dy

)
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
− dP

dy
+ ρg (2.18)

Note: Equation (2.17) has been used to replace the ux + vy in the first term of the right hand side

of (2.16).

In Chapter 3, the equation of state (2.4) will be used to write all pressure terms as density

terms. Then, the analytic methods used to transform (2.18) into a differential equation in terms of

dρ
dy will be discussed.

8



CHAPTER 2. FLUID DYNAMICS 2.3. FLOW GEOMETRY

Figure 2.1: Flow geometry modelled as a rectangular microchannel.

2.3 Flow Geometry

The flow geometry for a constricted vessel is often modelled either experimentally ([10], [4], [6])

or theoretically ([3], [1], [24]) as an axisymmetrical cylindrical tube. For this thesis, a rectangular

geometry is chosen to model the constriction instead of the cylindrical geometry. This choice is

largely motivated by the opportunity to compare our numerical results with experimental data. A

team of engineers plans to construct a rectangular microchannel to further study the dynamics of

blood-like fluids moving through a constriction. Figure 2.1 presents the general model of the flow

domain. Assume that the channel is tall enough, that is Lz large enough, for z-independence.

For the analysis, a two-dimensional cross section in the xy-plane of the channel is considered. A

continuous, symmetric Gaussian distribution profile has been chosen for the boundary. Note: the

9



CHAPTER 2. FLUID DYNAMICS 2.3. FLOW GEOMETRY

cross section has been reflected, and the positive x-axis is directed up. This choice does not affect

the model due to the symmetry. The distance, R, from the center line of the channel, is defined

by:

R(y) = R0(1− δe−by
2
) (2.19)

where R0 is the unconstricted, constant, upstream and downstream distance from the centre of

the channel, having units m, δ is a dimensionless quantity that determines the severity of the

constriction, and b determines the length of the constriction having units m−2. This is shown in

Figure 2.2.

10



CHAPTER 2. FLUID DYNAMICS 2.3. FLOW GEOMETRY

Figure 2.2: Cross-section of flow domain using Gaussian distribution profile for the boundary.
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Chapter 3

Analytic Methods

3.1 The Assumed Solution for Velocity

Following the work of Forrester and Young [9], begin by using the Karman-Pohlhausen method.

Assume that the velocity profile in the y-direction is some fourth-order polynomial of the form:

v

V
= Aη +Bη2 + Cη3 +Dη4 + E, (3.1)

where η = R(y)−|x|
R(y) and V = V (y) is the unknown centerline velocity, still to be determined. Note:

With this definition, v = v(x, y) is still maintained.

The following conditions arise from the model:

(i) v = vs√
1+R′2 at x = ±R(y) (slip boundary condition)

(ii) ∂v
∂x = 0 at x = 0 (approximate symmetric flow)

(iii) v = V at x = 0 (definition of centerline velocity)

(iv) ∂2v
∂x2

= −8(V−vs)
H2 at x = 0 (nearly parabolic flow with slip)

(v) dP
dy ≈ ρg + µvxx at x = ±R(y) (approximation of (2.18) at the boundary)

12



CHAPTER 3. ANALYTIC METHODS 3.1. THE ASSUMED SOLUTION FOR VELOCITY

More specifically, condition (i) follows from solving the system u ·n = 0 (the normal component

of the velocity vanishes at the boundary) and u · t = vs (the tangential component of the velocity

has a magnitude of vs at the boundary). Conditions (ii) and (iv) come from assuming the velocity

profile is nearly parabolic at the centre of the channel. Condition (iii) is the definition of the

centerline velocity. Finally, condition (v) is an approximation of the y-momentum equation at

the boundary. The coefficients A - E in equation (3.1) can be determined by imposing these five

conditions. This leads to,

A =
1

6
(12− λ+ T + 2M − 12E), (3.2)

B =
1

6
(3λ− 3T ), (3.3)

C =
1

6
(−12− 3λ+ 3T − 6M + 12E), (3.4)

D =
1

6
(6 + λ− T + 4M − 6E), (3.5)

E =
vs

V
√

1 +R′2
(3.6)

where,

λ =
R2

µV

dP

dy
, (3.7)

T =
R2ρg

µV
, (3.8)

M =
−4R2

H2

(V − vs)
V

(3.9)

Each expression (3.2)-(3.6) is dependent on y only. Before an explicit expression for the center-

line velocity can be determined, properties of the flow rate will be presented.

13



CHAPTER 3. ANALYTIC METHODS 3.2. FLOW RATE ANALYSIS

3.2 Flow Rate Analysis

The mass flow rate, defined for the rectangular geometry, takes the form:

Q =

∫ Lz

0

∫ R

−R
ρv dx dz

= 2Lz

∫ R

0
ρv dx (3.10)

where Lz is the height of the channel in the z-direction and R = R(y) is the width of the channel.

Two results follow from this definition. First, it will be shown that the change in mass flow rate

in the direction of flow is zero. This implies that the flow rate is constant across the channel.

dQ

dy
=

d

dy

(
2Lz

∫ R

0
ρv dx

)
= 2Lz

d

dy

(∫ R

0
ρv dx

)
= 2Lz

(
ρR′vs√
1 +R′2

+

∫ R

0

∂

∂y
(ρv) dx

)
(using (A.3))

= 2Lz

(
ρR′vs√
1 +R′2

−
∫ R

0
ρ
∂u

∂x
dx

)
(substitute (2.17))

= 2Lz

(
ρR′vs√
1 +R′2

− ρu
∣∣x=R
x=0

)
(integrate with respect to x)

= 2Lz

(
ρR′vs√
1 +R′2

− ρ
(

R′vs√
1 +R′2

))
(from boundary condition and u

∣∣
x=0

=0)

= 0 (3.11)

Second, a relationship between the centerline velocity, V , and average velocity, V , will be

derived. Alternatively, the mass flow rate (3.10) can be defined in terms of the average velocity at

any cross section along the channel.
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Q = 2LzρRV (3.12)

Equating (3.10) and (3.12) and using the assumed solution (3.1) leads to the following relationship:

V =
1

R

∫ R

0
V (Aη +Bη2 + Cη3 +Dη4 + E) dx (3.13)

Carrying out the integration and recalling that only η is a function of x, leads to the expression:

V =
1

(7H2 − 2R2)

(
− 1

12

R2H2ρg

µ
+

1

12

R2H2

µ

dP

dy
− 2R2vs − 3

vsH
2

√
1 +R′2

+ 10H2V

)
(3.14)

The details of this calculation are presented in Appendix A.2.

These two results will be used in the next section to help derive a differential equation in terms

of dρ
dy for the fluid as it moves through the constriction.

3.3 The Density Gradient

In this section the steps taken to transform the momentum PDE developed in Section 2.1 into an

ODE in terms of dρ
dy are presented. Recall equation (2.18), namely:

ρv
∂v

∂y
= ρg − dP

dy
+
µ

3

∂

∂y

(
−v
ρ

dρ

dy

)
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
(3.15)

Begin by integrating across the channel. Since the boundary is symmetrical about the axis,

bounds of integration can be changed to go from 0 to R(y).
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∫ R

0

(
ρv
∂v

∂y

)
dx =

∫ R

0

(
ρg − dP

dy
+
µ

3

∂

∂y

(
−v
ρ

dρ

dy

)
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

))
dx (3.16)

Since ρ = ρ(y) and P = P (y), the first two terms on the right side of the equation integrate

easily. Also the integrand on the left side can be rewritten using the following substitution: v ∂v∂y =

1
2
∂
∂y (v2).

1

2
ρ

∫ R

0

∂

∂y
(v2) dx = Rρg −RdP

dy
+
µ

3

∫ R

0

(
∂

∂y

(
−v
ρ

dρ

dy

))
dx

+ µ

∫ R

0

(
∂2v

∂x2

)
dx+ µ

∫ R

0

(
∂2v

∂y2

)
dx (3.17)

Use the chain rule to expand the third term on the right hand side of the equation. This leads

to:

1

2
ρ

∫ R

0

∂

∂y
(v2) dx = Rρg −RdP

dy
+
µ

3

1

ρ2

(
dρ

dy

)2 ∫ R

0
v dx

− µ

3

1

ρ

(
dρ

dy

)∫ R

0

∂v

∂y
dx− µ

3

1

ρ

(
d2ρ

dy2

)∫ R

0
v dx

+ µ

∫ R

0

∂2v

∂x2
dx+ µ

∫ R

0

∂2v

∂y2
dx (3.18)

Using the integral properties in Appendix A.1, the partial derivatives with respect to y can be

moved outside the integrals on both the left and right sides of equation (3.18).
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ρ

2

d

dy

∫ R

0
v2 dx− ρ

2

vs
2R′

1 +R′2
= Rρg −RdP

dy
+
µ

3

1

ρ2

(
dρ

dy

)2 ∫ R

0
v dx− µ

3

1

ρ

dρ

dy

d

dy

∫ R

0
v dx

+
µ

3

1

ρ

dρ

dy

vsR
′

√
1 +R′2

+ µ

∫ R

0

∂2v

∂x2
dx− µ

3

1

ρ

d2ρ

dy2

∫ R

0
v dx

+ µ
d2

dy2

∫ R

0
v dx+

2µvs(R
′)2

(1 +R′2)
3
2

d2R

dy2
− µvs√

1 +R′2
d2R

dy2
(3.19)

Now the flow rate relationship, Q = 2Lzρ
∫ R
0 v dx, can be used to rewrite each of the integrals

of v in terms of Q on the right hand side of the equation.

ρ

2

d

dy

∫ R

0
v2 dx = Rρg −RdP

dy
+
ρ

2

vs
2R′

1 +R′2
+
µ

3

1

ρ2

(
dρ

dy

)2 [ Q

2Lzρ

]
− µ

3

1

ρ

dρ

dy

d

dy

[
Q

2Lzρ

]
− µ

3

1

ρ

d2ρ

dy2

[
Q

2Lzρ

]
+
µ

3

1

ρ

dρ

dy

vsR
′

√
1 +R′2

+ µ

(
∂v

∂x

) ∣∣∣∣
x=R

+ µ
d2

dy2

[
Q

2Lzρ

]
+

2µvs(R
′)2

(1 +R′2)
3
2

d2R

dy2
− µvs√

1 +R′2
d2R

dy2
(3.20)

Note that the second partial derivative of v with respect to x on the right hand side has been

integrated and the symmetric flow condition (ii), namely ∂v
∂x

∣∣
x=0

= 0, has been used. In Section 3.2

it was demonstrated that the flow rate, Q, is a constant. Differentiating the flow rate expressions

on the right hand side, along with ρ = ρ(y), leads to:

ρ

2

d

dy

∫ R

0
v2 dx = Rρg −RdP

dy
+
ρ

2

vs
2R′

1 +R′2
+
µ

3

1

ρ2

(
dρ

dy

)2 [ Q

2Lzρ

]
+
µ

3

1

ρ

dρ

dy

[
Q

2Lzρ2

]
dρ

dy

− µ

3

1

ρ

d2ρ

dy2

[
Q

2Lzρ

]
+
µ

3

1

ρ

dρ

dy

vsR
′

√
1 +R′2

+ µ

[
Q

Lzρ3

(
dρ

dy

)2

− Q

2Lzρ2
d2ρ

dy2

]

+ µ

(
∂v

∂x

) ∣∣∣∣
x=R

+
2µvs(R

′)2

(1 +R′2)
3
2

d2R

dy2
− µvs√

1 +R′2
d2R

dy2
(3.21)

Collect the like terms to simplify the right side of the equation. Then, use the equation of state
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(2.4) to write P in terms of ρ. Refer to (A.13) for details pertaining to evaluating
(
∂v
∂x

) ∣∣
x=R

.

ρ

2

d

dy

∫ R

0
v2 dx = Rρg −RkBT

m

dρ

dy
+
ρ

2

vs
2R′

1 +R′2
+

8µ

3

(
dρ

dy

)2 [ Q

2Lzρ3

]
− 4µ

3

d2ρ

dy2

[
Q

2Lzρ2

]
+

µ

3

1

ρ

dρ

dy

vsR
′

√
1 +R′2

− µV A

R
+

2µvs(R
′)2

(1 +R′2)
3
2

d2R

dy2
− µvs√

1 +R′2
d2R

dy2
(3.22)

Use equation (3.12) to write Q in terms of the average velocity, V . Next, substitute the expression

(A.14), derived in appendix, for the V A
R term. The equation of state has been used to write dP

dy in

terms of dρ
dy . Collecting like terms and simplifying leads to:

ρ

2

d

dy

∫ R

0
v2 dx =

5

6
Rρg − 5

6
R
kBT

m

dρ

dy
+
ρ

2

vs
2R′

1 +R′2
+

8

3

µRV

ρ2

(
dρ

dy

)2

− 4

3

µRV

ρ

d2ρ

dy2

+
µ

3

1

ρ

dρ

dy

vsR
′

√
1 +R′2

− 2µV

R
+

4

3

µV R

H2
− 4

3

µvsR

H2
− 2µvs

R
√

1 +R′2

+
2µvs(R

′)2

(1 +R′2)
3
2

d2R

dy2
− µvs√

1 +R′2
d2R

dy2
(3.23)

At this point Maple is used to evaluate the expression on the left side of (3.23). The details in

obtaining an ODE in terms of dρ
dy are as follows:

• Integrate
∫ R
0 v2 dx using the assumed solution from Section 3.1.

• Differentiate the resulting expression with respect to y. Refer to (A.12) for the derivative of

V (y).

• Using the equation of state, (2.4), substitute all P terms for expressions with ρ.

• Non-dimensionalize the final equation by dividing each term by the factor µV
R .

• Introduce two dimensionless quantities:
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– Mach Number:

Ma =
V√
kBT
m

(3.24)

– Reynolds Number:

Re =
ρV R

µ
(3.25)

• Collect terms with respect to dρ
dy to reveal structure of ODE

After following those steps a second-order, nonlinear ODE is obtained with the general form:

0 = Ω1

(
d2ρ

dy2

)
+ Ω2

(
dρ

dy

)2

+ Ω3

(
dρ

dy

)
+ Ω4 (3.26)

where the coefficients Ω1, Ω2, Ω3, and Ω4 are non-constant coefficients dependent on y. More

specifically, they contain ρ = ρ(y), V = V (y), and R = R(y) terms as well as the dimensionless

quantities Re = Re(y) and Ma = Ma(y). It is important to point out that some terms in Ω1 also

depend on dρ
dy . The specific ODE is presented in Appendix A.6.

3.4 Upstream Analysis

In the current form, equation (3.26) cannot be solved numerically. The V (y), Re(y), and Ma(y)

terms need to be written in terms of ρ and R. Recall that the flow rate is constant through out

the channel, as shown in Section 3.2. From (3.12) it follows that:

2LzρRV = 2Lzρ0R0V 0 (3.27)
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where ρ0, R0, and V 0 represent constant upstream values of the density, channel width, and average

velocity respectively. Using (3.27), along with the definition of the Reynolds number (3.25) and

the Mach number (3.24), leads to:

V =
ρ0R0

ρR
V 0 (3.28)

Re = Re0 (3.29)

Ma =
ρ0R0

ρR
Ma0 (3.30)

where Re0 and Ma0 represent upstream values of the Reynolds and Mach numbers. Notice that

this implies the Reynolds number is constant throughout the entire channel.

From an additional analysis, the following relationship holds true:

Re =
3(1− vs0)

g0
(3.31)

where vs0 is the scaled, upstream magnitude of the slip velocity and g0 = gR0

V
2
0

is the scaled, upstream

force term. The details of this calculation are presented in Appendix A.5. With these relationships,

a numerical solution to (3.26) can be determined.
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Chapter 4

Numerical Solutions

In this chapter the numerical solutions to the second order, non-linear differential equation derived

in the previous chapter are presented. Recall, the ODE has the form:

0 = Ω1

(
d2ρ

dy2

)
+ Ω2

(
dρ

dy

)2

+ Ω3

(
dρ

dy

)
+ Ω4 (4.1)

The Runge-Kutta fourth-order method in Maple is used to determine numerical solutions for

ρ(y) and dρ
dy . In the following sections the role of the slip velocity, compressibility, and the geometry

of the constriction, and Reynolds number are investigated. Also investigated is the role of the

second-order derivative and the solution is compared with the results presented in ([24], [20]). Let

µ = 0.0035 kg
m·s for consistency with ([24], [20]). From the upstream analysis in Section 3.4, the

Reynolds Number, Mach Number, and average velocity can be written in terms of independently

chosen upstream values. For the results presented below, the initial values ρ0 = 20 kg
m3 , V0 =

0.4725ms , g0 = 0.01, vs0 = 0.1, Re = 270 and Ma0 = 0.1 have been chosen. Recall that the

constriction was modelled using a Gaussian profile distribution. For this Thesis, R0 = 0.1m,

δ = 0.25, and b = 25m−2 were chosen as the standard geometry. These values can be changed to

correspond to an experimental domain in later research.
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4.1 Role of Slip Velocity

We present solution curves for varying slip velocities. It is important to note that in changing the

value of the slip velocity, the Reynolds number also changes according to equation (3.31).

Figure 4.1 and Figure 4.2 show the solutions for the centerline density and the density gradient

while varying vs0 . The upstream slip velocities of vs0 = 0, 0.1, 0.5, 0.9, 0.95 were considered. The

solid line solutions correspond to the standard choice stated above, with vs0 = 0.1, and will serve

as the reference graph. In the no slip case, vs0 = 0, the decrease in centerline density is slightly

less compared to the case when vs0 = 0.1 as it moves through the constriction. However, the post

constriction density for the no slip case remains slightly less than the vs0 = 0.1 case. More generally,

Figure 4.1 shows that as the slip velocity increases, there is a greater decrease in centerline density

through the constriction. This observation is supported by the increasing magnitude of the pre-

constriction maxima in Figure 4.2. The figures also suggest that as the slip velocity increases, the

post-constriction density recovers to smaller values for vs0 ≥ 0.5. These trends seem to agree with

the results presented in [20]. It is important to note that as the upstream vs0 → 1, the Reynolds

number approaches zero from equation (3.31).

Interestingly, when vs0 = 0.5, the post constriction recovery occurs at a faster rate compared

to vs0 = 0 and vs0 = 0.1, but settles to roughly the same downstream density. The maxima in

Figure 4.2 show that as vs0 increases the changes in pre-constriction density also increase. Also,

the asymmetry in the density gradient curves indicate that the change in post-constriction density

is less than the changes in pre-constriction density.

4.2 Role of Compressibility

Blood is weakly compressible by nature and research has shown that the effects of compressibility

should not be ignored ([3], [19]). An incompressible fluid is modelled using Ma = 0 and increasing

the Mach number increases the compressibility of the fluid. Figure 4.3 and Figure 4.4 show the

solutions for the centerline density and density gradient, respectively, while varying the Mach
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number using the values Ma = 0.01, 0.05, 0.1, 0.2, and 0.35. The solid line solutions correspond to

the standard choice ofMa = 0.1 and will serve as the reference graph. Both figures suggest asMa→

0 the change in density through the constriction and post constriction is almost zero. However,

Figure 4.3, suggests that increased compressibility of the fluid (i.e. larger Mach number values),

correspond to greater decreases in the density through the constriction. This is also supported

in Figure 4.4 by noting that the magnitude of the maxima increase with respect to increasing

Mach number. Similar to slip velocity, increasing the Mach number corresponds to a decrease in

downstream density. The solution diverges for Ma > 0.5.

Figure 4.5 and Figure 4.6 show the centerline density and density gradient solutions correspond-

ing to zero slip for the same choices of Mach number as above. Note that vs0 = 0 corresponds to

Re = 300. These results suggest that there are no significant differences in the solutions for the

cases vs0 = 0 and vs0 = 0.1. This was expected as a similar trend was demonstrated in [20].

4.3 Role of Geometry

In Chapter 2, the analysis of the Navier-Stokes equation began by following [9] and assuming a

mild constriction in the flow domain. It is expected that the solution profile would be affected by

the choice of the severity (δ) and the length (b) of the constriction.

4.3.1 Effects of varying δ

Figure 4.7 and Figure 4.8 show the centerline density and density gradient solutions, respectively,

while varying the severity of the constriction. The values δ = 0.05, 0.1, 0.25, 0.45 were chosen. The

solid line solutions correspond to the standard choice of δ = 0.25 and will serve as the reference

graph. These solutions show very similar characteristics to the solutions presented with varying

the compressibility. As δ → 0 the solution approaches the constant solution observed for a channel

with no constriction. As δ increases, there is an increase in the change in density through the

constriction. Again, similar to Mach number and slip velocity, as δ is increased there is a decrease

23



CHAPTER 4. NUMERICAL SOLUTIONS 4.4. ROLE OF REYNOLDS NUMBER

in the post constriction density. It was observed that for δ > 0.49 the solution diverges, which

agrees with the original assumption of a mild constriction.

4.3.2 Effects of varying b

Figure 4.9 and Figure 4.10 show the centerline density and density gradient solutions, respectively,

while varying the length of the constriction. The values b = 10, 25, 50, 100 were chosen. The solid

line solutions correspond to the standard choice of b = 25 and will serve as the reference graph.

As b decreases, there is a greater decrease in centerline density through the constriction. However,

comparing Figure 4.10 with Figure 4.8 it can be seen that increasing δ has a greater affect on both

the pre- and post-constriction density changes than decreasing b. It was also observed that for

b > 112 the solution diverges.

Figure 4.9 shows that the downstream centerline density recovers to similar values for the

different choices of b. Also, Figure 4.10 shows that as b decreases, the pre-constriction centerline

density changes sooner and does not peak as high. Both these results are different than what was

observed for varying values of vs0, Ma, and δ.

4.4 Role of Reynolds Number

The role of the Reynolds number was also investigated to compare with ([24], [20]). In Section 3.4,

an expression for the upstream Reynolds number was developed, namely:

Re =
3(1− vs0)

gR0

V
2
0

(4.2)

The Reynolds number, as defined in equation (3.25), can also be written in terms of upstream

values as:
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Re =
ρ0R0V 0

µ
(4.3)

Substituting equation (4.3) into equation (4.2) and solving for V 0, leads to:

V 0 =
ρ0R

2
0g

3µ(1− vs0)
(4.4)

Equations (4.4) and (4.3) show that both the upstream Reynolds number and the upstream average

velocity are proportional to the external force, g. By varying the values of g, different Reynolds

numbers can be investigated without changing the initial values used in Sections 4.1 - 4.4.

Moderate to low Reynolds numbers were chosen which are more appropriate for microchannels.

Low Reynolds numbers are also more appropriate when using MPC methods. Figure (4.11) and

Figure (4.12) show the solutions for the centerline density and density gradient respectively for the

values Re = 241, 120, 60 and 12. Figure 4.11 shows that as the Reynolds number decreases, there is

a greater pre-constriction decrease in centerline density. Interestingly, for small Reynolds numbers

(Re ∼ 12), there is a significant decrease in density as the fluid moves through the constriction,

compared to the moderate Reynolds numbers. Also, the density does not increase post-constriction,

rather is remains relatively constant. This trend is also shown in Figure 4.12.

4.5 Role of second-order derivative

In ([24], [20]), the first-order differential equation for the pressure gradient was solved numerically.

This corresponds to the d2ρ
dy2

being dropped in (4.1). Figure 4.13 compares the first-order solution

for density with the second-order solution with zero slip velocity on the boundary. Figure 4.14

compares the two solutions for density with slip velocity incorporated. The solid line solution

corresponds to the second order DE solved in this Thesis and the dashed line corresponds to the
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first-order solution presented in [24].

Both figures suggest similar differences between the first and second order solutions. The

inclusion of the second order term decreases the magnitude of the drop in density as the fluid

moves through the constriction. Interestingly, for the second order solution, the minimum density

is achieved at a position that is downstream of the maximum constriction. Additionally, Figure

4.14 suggests that when slip velocity is incorporated the difference between the minimum density

and constant downstream density between the two solutions is less when compared with Figure

4.13.

4.6 Graphical Results

The figures discussed in Sections 4.1 - 4.5 are presented.
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Figure 4.1: Solution for scaled density while varying slip velocity, vs0 , with Ma0 = 0.1 and R0 =
0.1m, δ = 0.25, b = 25m−2.

Figure 4.2: Solution for density gradient while varying slip velocity, vs0 , with Ma0 = 0.1 and
R0 = 0.1m, δ = 0.25, b = 25m−2.
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Figure 4.3: Solution for scaled density while varying Mach Number, Ma, with vs0 = 0.1 and
R0 = 0.1m, δ = 0.25, b = 25m−2.

Figure 4.4: Solution for density gradient while varying Mach Number, Ma, with vs0 = 0.1 and
R0 = 0.1m, δ = 0.25, b = 25m−2.
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Figure 4.5: Solution for scaled density while varying Mach Number, Ma, with vs0 = 0 and R0 =
0.1m, δ = 0.25, b = 25m−2.

Figure 4.6: Solution for density gradient while varying Mach Number, Ma, with vs0 = 0 and
R0 = 0.1m, δ = 0.25, b = 25m−2.
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Figure 4.7: Solution for scaled density while varying severity of constriction, δ, with withMa0 = 0.1,
vs0 = 0.1, Re = 270 and R0 = 0.1m, b = 25m−2.

Figure 4.8: Solution for density gradient while varying varying severity of constriction, δ, with
Ma0 = 0.1, vs0 = 0.1, Re = 270 and R0 = 0.1m, b = 25m−2.
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Figure 4.9: Solution for scaled density while varying width of constriction, b, with Ma0 = 0.1,
vs0 = 0.1, Re = 270 and R0 = 0.1m, δ = 0.25m−2.

Figure 4.10: Solution for density gradient while varying width of constriction, b, with Ma0 = 0.1,
vs0 = 0.1, Re = 270 and R0 = 0.1m, δ = 0.25m−2.
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Figure 4.11: Solutions for scaled density while varying Reynolds number, Re, with Ma0 = 0.1,
vs0 = 0.1, and R0 = 0.1m, δ = 0.25, b = 25m−2.

Figure 4.12: Solutions for density gradient while varying Reynolds number, Re, with Ma0 = 0.1,
vs0 = 0.1, and R0 = 0.1m, δ = 0.25, b = 25m−2.
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Figure 4.13: Solutions for scaled density for first order DE compared to second order DE with
Ma0 = 0.1, vs0 = 0, Re = 300 and R0 = 0.1m, δ = 0.25, b = 25m−2.

Figure 4.14: Solutions for scaled density for first order DE compared to second order DE with
Ma0 = 0.1, vs0 = 0.1, Re = 270 and R0 = 0.1m, δ = 0.25, b = 25m−2.
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Chapter 5

Conclusions and Future Work

In this Thesis an approximate analytic solution for centerline density is developed for a weakly

compressible fluid moving through a rectangular channel with a symmetrical mild constriction.

The choice to use a rectangular channel was largely motivated by the opportunity to compare

with experimental data that will further explore the dynamics of blood-like fluids. A smooth,

continuous Gaussian distribution profile was chosen to model the constriction. In Chapter 3, the

Karman-Pohlhausen method was used to transform the Navier-Stokes momentum equations into a

single non-linear, second-order differential equation in terms of dρ
dy .

Using the Runge-Kutta fourth-order method in Maple, numerical solutions were obtained and

presented in Chapter 4. Parameters such as slip velocity, compressibility, geometry of the constric-

tion, and Reynolds number were isolated to investigate their role in the flow properties of the fluid.

It was found that varying the Mach number (i.e. compressibility) had a greater effect on the change

in density, compared to variations in the slip velocity. It was also observed that incorporating slip

while varying the Mach number had little to no affect on the solution curves.

Small values of the severity of the constriction, δ were chosen to agree with the earlier assumption

that the constriction was mild. As the length of the constriction, b, was increased it was observed

that the magnitude of the decrease in centerline density became smaller and decrease occurred

over a greater distance. An unexpected result came from the Reynolds number analysis. While
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moderate Reynolds numbers produced expected results, low Reynolds numbers resulted in much

larger decreases in centerline density. Additionally, the density did not increase post-constriction,

rather remained relatively constant. Since low Reynolds numbers are associated with the flow in

microchannels, it will be interesting to compare this result with experimental data when it becomes

available. In this Thesis it was assumed that the height of the channel, Lz was large enough to

assume z independence. One challenge that may arise experimentally is designing a flow domain

where this assumption will still be valid.

Lastly, the role of the second-order derivative was investigated. Previous work done by ([24],

[20]) discarded the second-order term in equation (3.26) and solved the first-order quadratic differ-

ential equation. With the inclusion of the second order term it was observed that pressure did not

decrease as much as predicted by the first-order solution. Also, the minimum density is achieved

at a position that is downstream of the maximum constriction.

In the future, MPC methods can be used to study the flow properties of the fluid using a

particle based approach. The results obtained from MPC could then be compared with the results

presented in this Thesis. It would also be interesting to directly compare the solutions obtained

from an idealized cylindrical model with the results from the rectangular model. For the analytic

approach one may ask: How is the solution affected by the axisymmetric nature of the cylindrical

model? Using MPC methods one may ask: How is the solution affected by the corners that arise

from the rectangular geometry?
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Appendix A

Additional Calculations

A.1 Derivatives of Integrals

Consider the following property of multi-variable functions:

d

dy

∫ R

0
h(x, y) dx = h(R, y)

dR

dy
+

∫ R

0

∂

∂y
h(x, y) dx (A.1)

Equation (A.1) will be used to in the derivation of the pressure gradient to move derivatives outside

of integrals. For the model chosen:

d

dy

∫ R

0
v dx =

vs√
1 +R′2

dR

dy
+

∫ R

0

∂v

∂y
dx (A.2)

d

dy

∫ R

0
ρv dx =

ρvs√
1 +R′2

dR

dy
+

∫ R

0

∂(ρv)

∂y
dx (A.3)

d

dy

∫ R

0
v2 dx =

vs
2

1 +R′2
dR

dy
+

∫ R

0

∂v2

∂y
dx (A.4)

d2

dy2

∫ R

0
v dx =

vs√
1 +R′2

d2R

dy2
− 2vs

(1 +R′2)
3
2

(
dR

dy
)2
d2R

dy2
+

∫ R

0

∂2v

∂y2
dx (A.5)

36



APPENDIX A. ADDITIONAL CALCULATIONS A.2. CENTERLINE VELOCITY

Here the boundary condition v|x=R = vs√
1+R′2 from Section 3.1 has been used.

A.2 Centerline Velocity

Below are the details for the derivation of (3.14) from the flow rate analysis. Starting from equation

(3.13):

V =
1

R

∫ R

0
V (Aη +Bη2 + Cη3 +Dη4 + E) dx (A.6)

=
V

R

∫ R

0

[
A

(
R− x
R

)
+B

(
R− x
R

)2

+ C

(
R− x
R

)3

+D

(
R− x
R

)4

+ E

]
dx (A.7)

=
V

R

[
A(12R) +B(13R) + C(14R) +D(13R) + E(R)

]
(A.8)

= V [ 1
12(12− λ+ T + 2M − 12E) + 1

18(3λ− 3T ) + 1
24(−12− 3λ+ 3T − 6M + 12E)

+ 1
30(6 + λ− T + 4M − 6E) + E] (A.9)

= V

[
7

10
− 1

120
λ+

1

120
T +

1

20
M +

3

10
E

]
(A.10)

=
7V

10
− 1

120

R2

µ

dP

dy
+

1

120

R2ρg

µ
− 1

5

R2

H2
(V − vs) +

3

10

vs√
1 +R′2

(A.11)

Now, expanding and solving for V in terms of V , leads to equation (3.14), namely:

V =
1

(7H2 − 2R2)

(
− 1

12

R2H2ρg

µ
+

1

12

R2H2

µ

dP

dy
− 2R2vs − 3

vsH
2

√
1 +R′2

+ 10H2V

)

A.3 Derivative of V

In Section 3.3, the derivative of the centerline velocity is needed for constructing the ODE, equation

(3.26). Differentiating equation (3.14) with respect to y results in:
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(
∂V
∂X

)
|X=R

dV

dy
=

1

12(7H2 − 2R2)

[
−2

RR′ρgH2

µ
− R2gH2

µ

dρ

dy
+ 2

RR′H2kBT

µm

dρ

dy
+
R2H2kBT

µm

d2ρ

dy2

− 60
QH2

Lzρ2R

dρ

dy
− 60

QH2R′

LzρR2
− 48RvsR

′ + 36
vsH

2R′

(1 +R′2)
3
2

d2R

dy2

]

− 1

12(7H2 − 2R2)2

[
4
R3ρgH2R′

µ
− 4

R3kBTH
2R′

µm

dρ

dy
− 240

H2R′Q

Lzρ
+ 96R3vsR

′

+ 144
vsH

2RR′√
1 +R′2

]
(A.12)

Here the definition of the flow rate, Q = 2LzρRV , and dQ
dy = 0 has been used.

A.4 An Expression for
(
∂v
∂x

)
|x=R

The details for the calculation of
(
∂v
∂x

)
|x=R that is used at the end of Section 3.3 are presented

below.

(
∂v

∂x

)
|x=R =

∂

∂x
[V (Aη +Bη2 + Cη3 +Dη4 + E)]|x=R

= V

[
A

(
− 1

R

)
+ 2Bη

(
− 1

R

)
+ 3Cη2

(
− 1

R

)
+ 4Dη4

(
− 1

R

)] ∣∣∣∣
x=R

= −V A
R

(where η|x=R = 0) (A.13)

Use the expression for A that we developed in Section 3.1 to expand equation (A.13). This

leads to:

V A

R
=

V

R

(
2 +

1

6

R2ρg

µV
− 1

6

R2

µV

dP

dy
− 4

3

R2

H2

(V − vs)
V

− 2vs

V
√

1 +R′2

)
=

2V

R
+

1

6

Rρg

µ
− 1

6

R

µ

dP

dy
− 4

3

R

H2
(V − vs)−

2vs

R
√

1 +R′2
(A.14)

38



APPENDIX A. ADDITIONAL CALCULATIONS A.5. REYNOLDS RELATIONSHIP

A.5 Reynolds Relationship

An additional upstream analysis is needed to determine a relationship for the Reynolds number.

Begin with equation (3.14), namely:

V =
1

(7H2 − 2R2)

(
− 1

12

R2H2ρg

µ
+

1

12

R2H2

µ

dP

dy
− 2R2vs − 3

vsH
2

√
1 +R′2

+ 10H2V

)

Now consider the upstream centerline velocity, V0. Setting R′ = 0, H = 2R0, R = R0, and

ρ = ρ0 and simplifying, leads to:

V0 =
20

13
V0 −

7

13
vs +

1

78

R2
0

µ

(
dP

dy
− ρ0g

)
(A.15)

Now, solving the Navier-Stokes Equation (2.1) with u = (u, v, 0) = (0, v(x), 0) we get:

0 = µvxx −
dP

dy
+ ρ0g (A.16)

Integrating with respect to x results in:

v(x) =
1

2µ

(
dP

dy
− ρ0g

)
x2 + C1x+ C2 (A.17)
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where C1 and C2 are unknown constants. Now impose the following conditions:

(
dv

dx

) ∣∣∣∣
x=0

= 0 (Symmetrical velocity profile) (A.18)

v|x=±R0 = vs (upstream slip velocity) (A.19)

Using (A.18) and (A.19) we can solve for C1 and C2 in (A.17) to obtain:

v(x) =
1

2µ

(
dP

dy
− ρ0g

)
x2 − R2

0

2µ

(
dP

dy
− ρ0g

)
+ vs (A.20)

Using the definition of centerline velocity, v(x)|x=0 = V , the upstream centerline velocity from

(A.20) becomes:

V0 = −R
2
0

2µ

(
dP

dy
− ρ0g

)
+ vs (A.21)

Substituting the new upstream relationship (A.21) into (A.15) and solving for V0 we get the new

upstream relationship:

V0 =
3

2
V0 −

1

2
vs (A.22)

Rewriting this in terms of flow variables, and noting that dP
dy = 0 upstream, equation (A.21)

becomes:

V0 =
ρ0gR

2
0

2µ
+ vs (A.23)
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Substituting (A.23) into (A.22) and solving for V0 gives:

V0 =
1

3

ρ0gR
2
0

µ
+ vs (A.24)

In Section 2.3, the dimensionless quantity Reynolds number (3.25) was introduced. This rela-

tionship must be true upstream, which gives:

Re0 =
ρ0V0R0

µ
(A.25)

Substituting the expression for the upstream average velocity in (A.24) into (A.25) gives:

Re0 =
ρ0R0

µ

(
1

3

ρ0gR
2
0

µ
+ vs

)
=

1

3

(
ρ0V 0R0

µ

)2
gR0

V
2
0

+

(
ρ0V 0R0

µ

)
vs

V 0

=
1

3
Re20

gR0

V
2
0

+Re0
vs

V 0

(A.26)

Now, solving for Re0 6= 0 gives:

Re0 =
3(1− vs0)

g0
(A.27)

where vs0 = vs
V 0

is the scaled, upstream slip velocity and g0 = gR0

V
2
0

is the scaled, upstream force

term. This is the result presented in Section 2.4.
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A.6 Density ODE

In Section 3.3 the density gradient was developed using Maple. It has the form:

0 = Ω1

(
d2ρ

dy2

)
+ Ω2

(
dρ

dy

)2

+ Ω3

(
dρ

dy

)
+ Ω4 (A.28)

where the coefficients Ω1, Ω2, Ω3, and Ω4 are non-constant coefficients dependent on y. The

worksheet used in Maple to develop this ODE is presented. Note the following translations between

the worksheet and this Thesis:

• drho = dρ
dy , d2rho = d2ρ

dy2
,

• dR = dR
dy , d2R = d2R

dy2
,

• Vc = V , and dVc = dV
dy

where

V =
1

(7H2 − 2R2)

(
− 1

12

R2H2ρg

µ
+

1

12

R2H2

µ

dP

dy
− 2R2vs − 3

vsH
2

√
1 +R′2

+ 10H2V

)
and

dV

dy
=

1

12(7H2 − 2R2)

[
−2

RR′ρgH2

µ
− R2gH2

µ

dρ

dy
+ 2

RR′H2kBT

µm

dρ

dy
+
R2H2kBT

µm

d2ρ

dy2

− 60
QH2

Lzρ2R

dρ

dy
− 60

QH2R′

LzρR2
− 48RvsR

′ + 36
vsH

2R′

(1 +R′2)
3
2

d2R

dy2

]

− 1

12(7H2 − 2R2)2

[
4
R3ρgH2R′

µ
− 4

R3kBTH
2R′

µm

dρ

dy
− 240

H2R′Q

Lzρ
+ 96R3vsR

′

+ 144
vsH

2RR′√
1 +R′2

]
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