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Abstract

Enhanced Molecular Dynamics Approach for Thermal Transport Phenomena in Complex
Systems

Doctor of Philosophy 2019
Sylvie Antoun

Mechanical and Industrial Engineering
Ryerson University

This thesis introduces an enhanced Molecular Dynamics (MD) approach, blended with
fine-tuned Force Field (FF) models to reflect more realistic experimental conditions and
achieve a precise representation of the atomic interactions in complex systems.

Firstly, an enhanced MD algorithm consisting of an upgraded non-equilibrium integration
scheme, namely eHEX, coupled with an augmented TraPPE-UA force field, was generated
and put to use to predict Soret effect in a binary mixture: n-pentane/n-decane. The results
were compared to other MD approaches and validated with respect to benchmarked exper-
imental data. The suggested method showed a closer agreement with experimental data
than the previous MD findings. The reinforced potential field (TraPPE-UA) was capable of
reflecting the real molecular interactions between the hydrocarbons and reproduce the liquid
mixture properties at different conditions. Moreover, the extended HEX method succeeded
in conserving the system’s overall energy with minor fluctuations and attaining a stationary
state, ensuring the precision of the integration scheme and the satisfaction of local equilib-
rium.

Secondly, the performance of the previously proposed approach was further studied to
test its performance on a ternary mixture of methane/n-butane/n-dodecane at five different
compositions. Thermodiffusion separation ratio of each component was assessed at 333.15
K and 35 MPa, and compared to the experimental data as well as 3 other MD models from
the literature. A good qualitative agreement between the experimental data and the MD
model observed in this work was observed, displaying the least deviation when compared to
the other MD approaches. The method was capable of adequately representing the physics
behind the thermodiffusive separation and deepening the microscopic understanding of the
segregation process in a ternary mixture undergoing large thermal gradients. Put differently,
the approach elucidates the relative contribution of the cross-interactions found between the
unlike species in the mixture and their corresponding composition.

Next, an enhanced MD approach was also presented to predict the dynamics and thermo-
physical properties of suspended γ-alumina nanoparticles (NPs) in acidic aqueous solutions.
The previous MD work have unveiled numerous impediments in terms of reproducing the
thermal transport phenomena in nanofluids. A hybrid potential field, comprised of refined
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force field models (ClayFF and SPC/E), was implemented to allow a precise integration of
the nanoscale phenomena into the dynamics and structure of charged alumina NPs, thereby
bridging the challenging gap between the solid-liquid interfacial chemistry and the overall
thermodynamic properties. The original CLAYFF was augmented to properly account for
the energy and momentum transfer between the water molecules and the positively charged
NPs, while keeping the number of parameters small enough to allow modeling of a relatively
large nanofluidic system.The results were in good agreement with the experimental data.
An increase of the NPs volumetric concentration (φ) lead to the enhancement of thermal
conductivity along with an increase of viscosity. The results demonstrate the crucial role
played by the repulsive electrostatic forces yielding well-dispersed NP suspensions, specially
at low φ. The post analysis of Mouromtseff number demonstrated that at lower φ, the system
show a higher propensity for stability and enhancement for φ less than 2%, specially at high
temperatures. On the contrary, for volumetric concentrations higher than 2%, the system
thermal performance deteriorates which is expected due to the fact that the system exhibit
a critical condition of aggregation and clogging.

With all of the above findings in mind, the MD framework presented in this thesis rep-
resents an improved step towards a precise and computationally balanced MD modelling
that bridges the relation between molecular signatures and macroscopic features, capable of
overcoming the shortcomings present in mainly two emerging thermal applications: 1) Soret
effect in hydrocarbon mixture and 2) thermal transport of alumina-water nanofluids.

Thesis Supervisor: M. Ziad Saghir
Thesis Co-Supervisor: Seshasai Srinivasan
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

This thesis is a concerted effort into developing fine-tuned molecular dynamics (MD) algo-

rithms blended with augmented force field models in an attempt to achieve a better micro-

scopic representation of the real atomic topologies and potential interactions, which highly

affect the accuracy of thermal transport predictions. The MD models were revamped and

applied to two specific applications covered in-depth throughout this dissertation work:

(1) Soret effect of multicomponent hydrocarbon mixtures: The numerical target behind

this field is to unravel the pitfalls found in thermodiffusion experimental discoveries

and theoretical formulations, thereby bringing a possible numerical alternative, a low-

cost reliable MD tool, to complement and delineate strategies to advance the grading

of pre-exploitation of hydrocarbons in underground oil reservoirs.

(2) Thermophysical and transport characteristics of alumina-water nanofluids suspended

in a low pH level regime. The aim of this MD application is to bring a more precise

image of the inter-particle bonding and dynamics with the focus on modulating the

solid-liquid interface structure and charge corresponding to an acidic pH conditions,

at which one can avoid aggregation and prolong nanofluids stability. Many theoretical

and experimental efforts have been carried out to gain insight into the water metal

oxide interfacial behaviour. Recent experimental findings on interfacial phenomena

shed light on the specific factors influencing the inter-NP and water-NP interactions,

thereby clarifying the multiple, closely coupled processes controlling the dispersion

1



of NPs in water (i.e. dissolution, adsorption, protonation, hydroxylation, etc.).The

MD algorithm was linked to a hybrid potential field, comprised of refined force field

models (extended CLAYFF and SPC/E) to accurately reproduce the interaction po-

tential of protonated aluminium-oxides, including correctly capturing the attractive

van der Waals and the repulsive electrostatic interactions, particularly important at

the nanoscale.

This enhanced MD approach stands as a promising strategy to build a rational understanding

and control of NPs aggregation in the base fluid, visualize their dynamics and predict their

macsrocopic properties. Moreover, to estimate the overall performance of the nanofluid in

convective heat transfer applications, the predicted thermophysical properties were combined

into one factor of merit, evaluated at different volumetric concentrations and temperatures.

Most modern systems involve heterogeneous composition of species with dissimilar shape,

size, chemical activity, and atomic interactions (such as electrostatic, dispersion and inter-

facial interactions). The use of more than one component introduces new variables, which

strongly modify the atomic interactions and the system dynamics via cross-coupling effects.

Thermal, electric and chemical effects are often present and intimately interconnected, lead-

ing to a broad spectrum of new phenomena for which a good theoretical understanding and

accurate models are often lacking.

Overall, the contribution attempts of this work is to build on recent MD progress in the

field of thermodiffusion and thermal transport prediction of nanofluids. On one part, the

close agreement of Soret effect results with benchmarked data herein imply that our MD

approach is a low-cost precise alternative and altogether a valuable link between thermod-

iffusion experiments and theories, essentially in oil and gas industrial applications. On the

other part, the MD predictions have shown that the addition of nanoparticles (NPs) leads

to a relative enhancement of the nanofluids thermal conductivity accompanied with a gain

of viscosity, thereby showing a good agreement with the experimental findings [4]. The ra-

dial distribution functions along with the mean square displacement (self-diffusion) of both

species, alumina NPs and the water molecules attained at each φ level, demonstrate the cru-

cial role played by the repulsive electrostatic forces yielding well-dispersed NP suspensions,

especially at low volumetric concentration (depicting a relatively lower viscosity). In fact, the

2



surface charge density have shown great potential to stabilize NPs assembly in a base fluid,

as demonstrated in some reported experimental papers [5], thereby qualitatively validating

our modelling approach. The post analysis of the factor of merit Mouromtseff number (Mo)

demonstrated that at lower φ, the system show a higher propensity for enhancement and

stability, specially at high temperatures. On the contrary, for φ higher than 2%, the system

thermal performance deteriorates, due to the fact that the nanofluid exhibits a critical con-

dition of aggregation and clogging, thereby establishing a threshold for its functionality. The

results have shown that the MD model developed here demonstrates an improved numerical

effort, compared to previous MD attempts, for predicting the thermophysical properties of

alumina/water while establishing a precise representation of the atomic topology and inter-

facial potential interactions.

An empirical-numerical synergy will eventually allow scientists to discover unique transport

phenomena and open up a wide range of innovative solutions for nanofluid based thermal

management, storages and convective heat transfer to design, simulate and optimize thermal

systems efficiently, with a better accuracy and and computational efficiency.

The majority of the material that appears in this thesis has been either submitted for pub-

lication or published in peer-reviewed journals. This introductory chapter elaborates on the

motivation, novelty, objective, scope, structure and contributions of this thesis.

1.1 Project Motivation

The shortfall of reliable MD tools capable of quantifying Soret effect prompted our initial

drive to elucidate the underlying physics, on an atomic scale, behind the compositional

grading in multicomponent mixtures under geothermal gradients and ultimately bolster

the evaluation of pre-exploitation distribution of hydrocarbons in underground oil reser-

voirs. In particular, this interest in this work is stirred by the need to generate precise

non-equilibrium MD models adequate enough to mimic thermodiffusion phenomena in un-

derground petroleum and eventually complement/interpret the empirical database obtained

from microgravity experiments conducted in space for ternary mixtures at high pressures

and temperatures.

3



The research gaps on both numerical and experimental sides, carried us to further inves-

tigate the below shortcomings of Soret effect quantification:

• The scarcity and lack of consensus on the available experimental data. In fact, per-

forming thermodiffusion measurements under laboratory conditions is very sensitive

and data can be easily distorted by mechanical disturbances: the relative magnitude of

the components separation under the effect of a temperature gradient is very small and

it is easily affected by external factors such as gravity field, mechanical vibrations and

the procedure of post-processing the system components.

• Theories fail to quantify the thermodiffusive separation ratio in multicomponent asym-

metric systems (entailing more than 2 components) and to account for the interplay

of multiple factors such as: molecular masses, effective molecule size, temperature,

mixture composition, and cross intermolecular interactions between unlike species.

• Non-Equilibrium MD (NEMD) predictions of transport properties are highly susceptible

to the choice and the degree of refinement of the potential field models. The all-atomic

representation of the interactions found in large systems of n-alkanes is computation-

ally expensive. Therefore, one should find a balance between the level of resolution

and computational efficiency of the force field model (i.e. reduce the total number of

interactions sites and ultimately the total simulation time while still holding a precise

picture of realistic inter-connections between the different hydrocarbons).

Moving on to nanofluids MD application, the numerical findings on nanofluids existing in

the literature are skewed by many simplifying assumptions: they mostly neglect the effect

of NPs surface atomic structure and electrostatics resulting from various chemical/physical

processes occurring from solvating solid nonmaterial in aqueous solutions of different ionic

strength. For example, dissolution, adsorption (physisorption and chemisorption), protona-

tion/deprotonation and other processes highly affect local functionalities of the nanofluid

found at the interface. The specific motives that brought this research to tackle MD mod-

elling of nanofluids are the below:

• The suspension of NPs in aqueous solutions, known as nanofluid, hold promise in many

energy applications, including thermal management, energy storages, sustainable power

harvesting for cooling/heating purposes, etc. The ability to tune NP interactions, and

4



thereby modulate the dispersion level, holds the key to rationally synthesize a stable

nanofluid and extend the shelf-life of its properties and functionality. However, en-

gineering nano-sized suspensions remain a challenging task both experimentally and

theoretically. Recent empirical and quantum studies on interfacial phenomena shed

light on the specific factors influencing the inter-NP and water-NP interactions, thereby

clarifying the multiple, closely coupled processes controlling the interactions between

NPs dispersed in water (i.e. dissolution, adsorption, protonation, hydroxylation, etc.).

• Despite the widespread experimental investigations of heat transfer in nanofluids, it

remains unclear how the acidic - basic properties of alumina NPs predominantly gov-

erned by the nature and concentration of hydroxyl groups evolve in aqueous medium

and affect the system macroscopic properties.

• There is an essential need to combine MD modelling with precise potential fields quali-

fied to emulate the hydrated/protonated state of aluminum-oxide surface to help provide

an improved understanding of the surface charge effect on the NPs dispersion level and

the system thermal transport properties.

1.2 Objective and Scope

The main objective of this work is to produce enhanced MD simulations synergistically

combined with augmented force field models, rectify the atomic representation of cross-

interactions between the system species, and ultimately improve MD numerical predictions

of thermal transport properties. This thesis thoroughly tackles two distinctive application

fields: 1) Soret effect in petroleum and 2) heat transfer enhancement in nanofluids.

Briefly, the main contributions that this work offers to the research are the following:

• An enhanced non-equilibrium MD approach, namely eHEX combined with an aug-

mented TraPPE-UA force field, was capable to adequately represent the physics behind

the thermodiffusive separation (magnitude and sign) and deepen the microscopic under-

standing of the segregation process in binary/ternary hydrocarbon mixtures undergoing

large thermal gradients.

• The ability to numerically estimate self-diffusion and thermal diffusion properties of

oil reservoirs while ensuring the continuity of both the temperature and concentration
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gradients at stationary state and emphasizing that the system behavior, despite the

extreme thermal fluxes, is still in the domain of linear response and converges with

minimal computational error.

The proposed NEMD approach showed the closest agreement to the benchmarked ex-

perimental data compared to other MD models found in the literature. The method

succeeded to conserve the system overall energy with minor fluctuations and attain a

stationary state under large thermal gradients which demonstrates the precision of the

integration scheme and the satisfaction of local equilibrium condition. Moreover, the

reinforced potential field was capable to reflect the real molecular interactions between

the hydrocarbons and reproduce the liquid mixture properties at different conditions.

In the ensuing chapters of this thesis work, we intend to produce enhanced MD simulations

synergistically combined with fortified force field models (namely CLAYFF coupled with

SPC/E), to accurately predict the thermophysical properties of alumina-water nanofluids at

different volumetric concentrations and temperatures, mainly in an acidic regime (pH range

3 ∼ 3.75 << PZE) and subsequently estimate their overall performance for convective heat

transfer applications.

More specifically, the aim is to develop an improved MD model capable of predicting the dy-

namic behavior of positively charged alumina NPs scattered in water to uncover the critical

links between nanoscale and macroscale phenomena, and facilitate a controlled suspension

of the nanofluid. The main objectives of the nanofluid MD application are the following:

• Forge a rational understanding and control of the interparticle potential (i.e. cross-

interactions between Np-Np, Np-water and water-water) to ensure a reliable prediction

of the topology and the potential energies between the dispersed NPs and the base fluid.

In fact, various chemical phenomena occur at the solid-liquid interface when immersing

NPs in water, such as hydration, dissolution, protonation/deprotonation (depending on

the solution ionic strength) which highly modify the surface atomic structure, partial

charges, bonding types and polarity at the solid-liquid interface.

• Modulate the dispersion level of the nano-colloidal system by manipulating the solid-

liquid interfacial chemistry (alumina-water) to mimic the conditions of a stable system.

Preventing aggregation, clogging and sedimentation of NPs in the base fluid while

achieving a better enhancement of the overall thermophysical properties have been the

6



primary focus of advanced nanofluids preparation methods in order to maintain their

stability and extend the shelf-life of their functionality in various thermal applications

[6].

In summary, our MD computations were designed to fill the gap and justify the discrepan-

cies of the experimental and theoretical findings, by elucidating the actual thermal transport

mechanisms at a hitherto unobservable scale. All in all, this thesis intends to demonstrate

that an enhanced MD tool combined with fine-tuned force field models is a viable and alto-

gether effective approach to solving complex thermal engineering problems, ultimately ca-

pable of avoiding many of the pitfalls associated with conventional theoretical and empirical

frameworks.

1.3 Thesis structure

In this section, we briefly summarize the work flow of this dissertation. Firstly, we produce

an enhanced non-equilibrium MD algorithm and implement it to predict Soret effect in a

hydrocarbon binary mixture: n-pentane/n-decane. Using the same basis, we move on to

a ternary mixture to gain a better insight of the thermodiffusive behavior of methane/n-

butane/n-dodecane and ultimately prove the power of our enhanced method. Finally, our

sights on a more energy efficient future drive our MD work towards nanofluids, specifically

the evaluation of thermal transport behavior in alumina-water. The specifics of each chapter

of this thesis proceed as follows:

Chapter 2 - Applications Background: This preliminary chapter introduces a brief

background of the two engineering areas of interest to further contextualize and motivate

the necessity of implementing enhanced MD techniques, starting with 1) thermodiffusion in

hydrocarbon mixtures, and followed by 2) thermal transport of nanofluids for energy effi-

ciency applications.

Chapter 3 - Molecular Dynamics: Methodology, Applications, and Perspectives:

This chapter discusses the fundamentals of MD simulations, including the underlying algo-

rithms and theory, force field model and limitations.
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Chapter 4 - Enhanced Molecular Dynamics Modeling of Thermodiffusion in

Binary Mixtures: This chapter introduces an enhanced non-equilibrium MD approach,

model predictions for a binary hydrocarbon mixture with experimental data. Multiple

MD simulations were performed to calculate and compare Soret coefficient predictions of

n-pentane/n-decane (nC5-nC10), evaluated at 300.15 K and 0.1 MPa for three different mo-

lar compositions. An augmented TraPPE-UA force field combined with the original HEX

approach was first tested and compared to the numerical data obtained from the different

force field models available in literature, which were based on the same BD-NEMD algo-

rithm. Subsequently, the performance of an enhanced HEX algorithm was compared to the

original HEX model, when coupled with the augmented TraPPE-UA.

Chapter 5 - Enhanced Molecular Dynamics Evaluation of Thermophobicity in

Ternary Mixtures: This chapter further studies the feasibility of the previously proposed

enhanced MD algorithm in ternary mixtures at five different compositions in the attempt

to understand the physics behind the separation response in each mixture and the effect

of cross-interactions between the molecules of different species influencing thermodiffusion

behavior. The thermodiffusion factor or separation ratio of methane/n-butane/n-dodecane

(nC1-nC4-nC12) was assessed at 333.15 K and 35 MPa, and compared to the experimental

data as well as to 3 other MD models from the literature.

Chapter 6 - Molecular Dynamics evaluation of Alumina nanofluid thermal trans-

port performance: This chapter introduces an MD approach synergistically combined

with augmented force field models to investigate the thermophysical properties and overall

thermal performance of Al2O3-water nano fluid at different volumetric concentration and

temperatures. In all the MD runs, alumina nano-composites were assumed to be suspended

in an aqueous solution of an acidic pH level (in the rage of 3 ∼ 3.75) corresponding to the

conditions at which one can prepare a stable well-dispersed nanofluids. To achieve the latter,

the force fields were revamped by manipulating the solid-liquid interfacial atomic structure

and electrostatic states in order to create positively charged alumina NPs, thereby bringing a

closer solution of delineating methods for preparing and modulating the stability/aggregation

of nanofluids.

Chapter 7 - Conclusions and Future Research Directions: This chapter provides
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a summary of the work completed in this thesis and gives suggestions for future work based

on the contributions herein.

9



Chapter 2

Applications Background

As there are many cases in which measurements and theoretical predictions are challenging,

contradicting or impossible, MD simulations recreate a wide range of engineering problems

to justify the discrepancies and fill the gap left by experimental discoveries and theoretical

formulations.

In this thesis work, we attempt to illustrate specific aspects and validate the usefulness

of the MD approach dealing with multicomponent thermofluid. This preliminary chapter

introduces a brief background of the two engineering areas of interest to further contextu-

alize and motivate the necessity of implementing enhanced MD techniques, starting with 1)

thermodiffusion in hydrocarbon mixtures, and followed by 2) thermal transport of nanofluids

for energy efficiency applications.

2.1 Thermodiffusion in Petroleum

When a temperature gradient is applied to a mixture, it produces not only a transport of

energy but also a transport of mass. This non-equilibrium diffusive effect (the establishment

of a concentration gradient under the influence of a temperature gradient) is called ther-

modiffusion or Soret effect [7]. Different constituents may drift to the cold or to the warm

areas, and mixtures may display a relative accumulation in any of the two areas. Such a

physical process is observed in a plethora of natural and technological applications including

petroleum, biology, environmental engineering as well as material science [7]. The separation
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appears in a wide variety of systems of different chemical nature, ranging from molecular

liquids, gases and even solids, such as polymer solutions, biological fluids, oil reservoirs,

charged electrolytes and colloidal dispersions, gas bubbles in liquids or aerosols. Evidently,

most systems of scientific interest contain significantly more than two constituents [8].

The quantification of this effect still lacks a clear theory and explanation. In fact, a

general principle capable of predicting thermodiffusion, from non-associating to associat-

ing mixtures, is still unclear as the response of species to a temperature gradient strongly

depends on the chemical structure, interfaces and the ensuing cross-interactions mode. It

has proven almost impossible to formulate a unified model that can adequately capture all

aspects and atomic morphology influencing the separation of species [9].

During the last decade, the advances in computation and the accessibility of atomistic

techniques such as MD have enabled the discovery of the molecular contributions on ther-

modiffusion in real physical systems: simulations have provided a way to mimic the non-

equilibrium conditions and observe the unusual effects controlling the orientation of the fluid

species [10, 11].

Our work was instigated by the extensive investigations and debates around quantifying

thermodiffusion in hydrocarbons mixtures. The majority of oil and gas industrial interests

focus on exploring and extracting petroleum fluids from geological formations and wells lo-

cated in the deep crust [12]. Crude oil reservoirs mainly consist of multicomponent mixtures

of varying structural shape and composition under the effect of gravity, chemical reactions

and thermal gradients, with the Soret effect playing a decisive role in the establishment of

their initial state. The empirical data of physical and transport properties of real reservoir

fluids are relatively scarce: experimental techniques are expensive, difficult to perform and

fail to cover the full range of working conditions. A comprehensive review of the available

experimental studies of asymmetric ternary and multicomponent hydrocarbon mixtures is

given in [12–15]. Modeling these mixtures remains a challenging task, due to the asymmetry

in composition of such complex systems and the nature of cross-interactions between unlike

particles.

Definitely, there is a lack of MD attempts when it comes to evaluating the effect of
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asymmetry on the degree of heat and mass transfer in ternary mixtures [16]. Most of the

MD findings are limited to binary liquid mixtures, consisting of two components with similar

masses [14]. The necessity to gain better insight into the molecular origin in multicomponent

mixtures and quantify the thermodiffusive effect on the species distribution carried us to

construct an enhanced MD algorithm capable to appropriately reflect the thermophobicity

concept in hydrocarbon reservoirs.

2.2 Thermal Performance in Nanofluids

In the last few decades, dispersions of nanofluids have received a great attention in a

large variety of thermal engineering applications. A nanofluid is a mixture of nanometer-

sized solid particles suspended in a conventional fluid, such as water, oil or ethylene gly-

col [17]. The NPs could be metal particles, such as Al, Cu, and Ni; oxides, such as

Al2O3,TiO2,CuO, SO2,Fe2O3 and Fe3O4; and some other composite materials, such as AlN,

SiC, and graphene [17]. Unique properties and phenomena arise when adding nanoparti-

cles (NPs) to base fluids. Engineering nano has been offering tremendous opportunities by

pushing nanoscale heat transfer frontiers in thermal management, dispatchable renewables,

energy storages, sustainable harvesting for cooling/heating purposes, as well as nanofabrica-

tion techniques. [18, 19].

Nevertheless, exploring paradigms at the few-nanometer scale requires unprecedented pre-

cision, not readily possible through experimental techniques or conventional theories [20, 21].

In particular, a complete description of nanoscale thermal behavior remains a great chal-

lenge, yet a promising platform for discovery to enable new and improved functionalities.

Complex physical and chemical adsorption phenomena are expected at the NP surface.

The possible ion migrations upon surface hydration modify the chemical nature (surface

density, electronic structure, morphology, etc.) and ultimately the thermophysical and rheo-

logical properties of the nanofluid. Far from being anecdotal, the various interactions found

at the solid-liquid interface, involving pair potential forces, electrical layer action and steric

action, largely govern NPs morphology by changing their dispersion, shape and aspect ratio

[22, 23].

12



Research on nanofluids has been tempered by a lack of consensus and clarity to identify

the real heat transfer mechanisms behind the enhancement in thermal technologies, such as:

aggregation level, electric charge (pH level), Brownian motion, interfacial nanolayer, nan-

oclusters size and configuration [6, 24].

The heat transfer performance can greatly improve from high surface area to volume ratio

of the NPs, especially at very low volume fraction [23]. But due to the strong interactions

between them, NPs always tend to aggregate or settle out of solution under the influence

of gravity [25]. The formation of clusters is a common occurrence during the preparation

and processing of NPs, which results in not only sedimentation and clogging but also de-

terioration of the nano-colloidal characteristics, such as thermal conductivity, viscosity and

specific heat capacity [25]. Maintaining a static nanofluid with a homogeneous suspension

is crucial to extend the shelf-life of the nanofluid, while preserving its unique properties and

functionality. Several physical and chemical treatments have been suggested to obtain stable

nanofluids, including 1) the addition of stabilizing agents or surfactants, 2) pH regulation to

modify particles electrostatics and solution ionic strength and 3) the application of powerful

forces on nanoclusters using ultrasonic waves [25].

Adding nanomaterials to conventional fluid could lead to superior heat transfer per-

formance; however, combining and optimizing the different thermophysical properties of

nanofluids lead to performance tradeoffs and requires further investigations [22, 26, 27]. For

example, most studies deal with thermal conductivity enhancement, and few examine vis-

cosity; when they do, the data is rarely coupled. The dynamic viscosity is very sensitive

to NP concentration or agglomeration state: the addition of NPs may favor the thermal

conductivity, but is detrimental to the fluidity, due to unfavorable clustering and increased

interparticles collisions [27, 28]. Therefore, it is important to give viscosity the same at-

tention, due to its critical effect on the overall performance of thermal energy plants. In

other words, an all-encompassing measurement of both thermal conductivity and viscosity

of the nanofluid is essential to bring response elements on the actual enhancement of the

heat transfer coefficient.

Despite many interesting phenomena described and understood, there are still several
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important issues that need to be solved for practical application. The winning composition

of nanofluids meeting all engineering requirements (high heat transfer coefficients, long-term

stability and low viscosity) has not been formulated yet, because of the complexity and

multi-variability of nanofluid systems [26, 28].
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Chapter 3

Molecular Dynamics: Methodology,

Applications, and Perspectives

In this chapter, we proceed with an introduction to MD simulation, followed by a more

detailed exposition of the methodology used to simulate the systems of interest pertinent to

the present thesis work. More specialized preliminary information pertaining to the content

of an individual chapter can also be found in this chapter.

3.1 Foundation

Today, computer simulations are an essential tool in scientific research. They serve as a

complement to experiments, enabling us to understand and further develop systems that

are not experimentally feasible in laboratory. In some cases, experiments are impossible to

conduct: too dangerous, too expensive or incapable of detecting microscopic comportment’s

[11]. Theories based on scarce experimental data carry these shortcomings in the form of

approximations, assumptions and simplifications. Therefore, one can turn to molecular sim-

ulations to circumvent the pitfalls that exist in experiments and theories.

Molecular modeling acts as an intermediate between the classical models and laboratory

measurements, being considerably more precise than theory and significantly less expensive

than experiments. It does not substitute experimental measurement, but rather comple-

ments them and validates the theoretical models. Molecular models are particularly useful
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for constructing complicated molecular systems, visualizing 3D structures and understanding

the relationship between structure, dynamics and function. The typical scale of molecular

simulations (ranging from less than 1 nanometer to a micrometer) helps address chemical

reactions, equilibrium properties and transport phenomena [29]. Depending on the type of

problem addressed, atomic structure can be defined at very high resolution, using Quantum-

Mechanics (QM), with every single electron modelled, or at coarser levels with Molecular

Dynamics (MD), where the smallest particles represented are atoms or parts of molecules.

The former comes at the expense of severe computational cost [30]. Due to the multitudinous

interactions between electrons of atoms and molecules, QM struggles to deal with macro-

molecules [31]. Put differently, it is simply too expensive to reproduce the collective dynamic

behavior of larger systems, like the ones adopted in this work.

Reliable MD simulations can be performed on a variety of systems, thanks to the de-

velopment of numerous ingenious algorithms which save computer time, while nevertheless

exploring all possible configurations. In the light of the applications in this thesis, MD serves

as the most suitable method. In the following sections, we provide a background discussion

of the main theoretical ingredients and methodology of the MD approach. We first introduce

the formulations of classical MD algorithms and the Force Field models, followed by a de-

scription of the Linear Response Theory to derive the thermal transport properties. Finally,

we represent the fundamental features of Equilibrium MD (EMD) and Non-Equilibrium MD

(NEMD) approaches adopted for the calculation of the system properties with regard to the

applications of this thesis project.

It must be noted that the description of any additional information required to simulate

the systems of interest can be found in the chapter of the corresponding application.

Mathematical Formulation

In MD, the dynamics of a system consisting of an ensemble of atomic particles is studied

by numerically integrating Newton’s laws of motion (see Eq. (3.1)) for each particle, using

prescribed interatomic potentials [11].
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Fi = mi
d2ri(t)

dt2
(3.1a)

Fi = −∂U(ri, ...rN )

∂ri
(3.1b)

Where Fi is the force acting on atom i (1, 2, ..., N) with mass mi and t denotes the time. MD

simulation requires calculation of the gradient of the potential energy U(r), which therefore

must be a differentiable function of the atomic coordinates ri.

The trajectories generated by time integration schemes correspond to a sequence of system

microstates. Assuming ergodicity, these microstates can be sampled to obtain thermody-

namic quantities and system properties at equilibrium as well as steady state [32]. Static

equilibrium quantities can be obtained by averaging over the trajectory, which must be of

sufficient length to form a representative ensemble of the state of the system. In addition, dy-

namic information can be extracted [32, 33]. The microcanonical averages can be computed

according to Eq. (3.2) or (3.3) as shown below:

〈A〉 = lim
τ→∞

1

τ

∫ τ

0

A[x(t)] dt ≡ Ā (3.2)

where x(t) is a representative point of the phase space defined as x(t) = (rN(t), pN(t))

where r and p denote the position and momentum vectors respectively. This formula can

be discretized for MD simulations as follows:

〈A〉 =
1

M

M∑
n=0

A(xn∆t) (3.3)

Another asset of MD simulation is that non-equilibrium properties can be efficiently studied

by keeping the system in a steady non-equilibrium state, as discussed in the following sec-

tions.
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Assumptions, Approximations and Limitations

When using a particular MD model to predict the properties of a molecular system, one

should be aware of the assumptions, simplifications, approximations and limitations that are

implicit in the model. Many simulation factors such as the system size, processes timescale,

the accuracy of the potential field as well as the precision of the integration schemes radically

impact the validity of the MD results [11].

3.2 Force Field Models

The force field is one of the most crucial part of MD simulations. Cast in the form of a

simple mathematical function, it must faithfully represent the interaction between atoms. It

is used to describe the intramolecular and intermolecular potential energy of a collection of

atoms, and the corresponding parameters that will determine the energy of a given config-

uration [30]. These functions and parameters have been derived from experimental results

and quantum mechanical calculations of small model compounds. They are often refined by

computer simulations to compare calculated condensed phase properties with experiment or

reproduce benchmarked results of system properties [34].

However, approximations and simplifications lead to limitations in transferability and

reliability of MD results. Simplifying assumptions in the force field model alter the results of

MD predictions [11]. These inaccuracies call for more thorough potential fields, with minimal

use of assumptions. Improvement of the quality and extension of the range of applicability

of the potential energy functions is a continual concern in the area of MD [10]. Though some

applications require more refined force fields than others, there should be a balance between

the level of refinement and the computational efficiency.

Mathematical Formulation

As shown in Eq. (3.1b), the force acting on an atom i is calculated as the negative gradient

of a scalar potential energy function U that depends on all atomic positions and, thereby,

couples the motion of atoms. For systems of biomolecules, this potential energy function is
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usually divided in two parts [35]:

U = Ubonded + Unon-bonded (3.4)

The bonded potential Ubonded involve 2 , 3, and 4-body interactions of covalently bonded

atoms. The non-bonded potential Unon-bonded involves long-range interactions between all

pairs of atoms (usually excluding pairs of atoms already involved in a bonded term).

Bonded potential terms

The bonded potential describes the stretching, bending, and torsional of the covalent bonds.

• Bond stretching:

The bond stretching term is a 2-body potential, generally assumed to be harmonic, that

describes the vibrational motion between a pair of covalently bonded atoms:

Ub(r) =
∑
bonds

kb
2

(b− b0)2 (3.5)

where b is the distance between the two atoms. Two parameters characterize each bonded

interaction: b0 the average distance between them and a force constant kb.

• Angle bending:

The angle bending terms describes the force originating from the deformation of the valence

angles between three covalently bonded atoms (3-body interactions). The angle bending

term is described using a harmonic potential:

Uθ(r) =
∑
angles

kθ
2

(θ − θ0)2 (3.6)

where θ is the angle between three atoms. Two parameters characterize each angle in the

system: the reference angle θ0 and a force constant kθ.

• Torsional terms:

The torsional terms are weaker than the bond stretching and angle bending terms. They

describe the barriers to rotations existing between four bonded atoms (4-body interaction).
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There are two type of torsional terms: proper and improper dihedrals. Proper torsional

potentials are described by a cosine function:

Uδ(r) =
∑
proper

kδ
2

[1 + cos(nδ − γ)] (3.7)

where δ is the angle between the planes formed by the first and the last three of the four

atoms. Three parameters characterize this interaction: γ sets the minimum energy angle,

kδ is a force constant and n is the periodicity.

The improper dihedral term is designed both to maintain chirality about a tetrahedral

heavy atom and to maintain planarity about certain atoms. The potential is described by

a harmonic function:

Uω(r) =
∑

improper

kω
2

(ω − ω0)2 (3.8)

where ω is the angle between the plane formed by the central atom and two peripheral

atoms and the plane formed by the peripheral atoms.

Non-bonded potential terms

The non-bonded potential describes the Van der Waals forces and the electrostatic interac-

tions between the atoms.

• Van der Waals interactions

The Van der Waals force acts on atoms in close proximity. It is strongly repulsive at

short range and weakly attractive at medium range. The interaction is described by a

Lennard-Jones (LJ) potential:

UV dW (rij) = 4 εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(3.9)

where rij is the distance between atoms i and j. It is parameterized by σ: the collision

parameter (the separation for which the energy is zero) and ε the depth of the potential

well. The LJ potential approaches 0 rapidly as r increases, so it is usually truncated

(smoothly shifted) to 0 past a cutoff radius.

• Electrostatic interactions
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Finally, the long distance electrostatic interaction between atoms i and j with charges qi

and qj at a distance rij is described by the Coulomb’s law:

Ue(r) =
N∑
i=1

∑
i 6=j

qiqj
rij

(3.10)

The final equation for the potential energy describing the force field can be expressed as a

summation of all the above energy modes:

U(r) =
∑
bonds

kb
2

(b − b0)2 +
∑
angles

kθ
2

(θ − θ0)2 +

+
∑
proper
dihedrals

kδ
2

[1 + cos(n δ − δ∗)] +
∑

improper
dihedrals

kω
2

(ω − ω0)2 +


Bonded

interactions

(3.11a)

+
N∑
i=1

∑
i 6=j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
N∑
i=1

∑
i 6=j

qiqj
rij

=⇒ Non-bonded
interactions (3.11b)

3.3 Linear Response Theory: Heat and Mass Trans-

port

Generally, the linear phenomenological theory postulates that the fluxes are linear homoge-

neous functions of the corresponding gradients. This linearity is expressed as [33, 36]:

Jα =
∑
β

LαβXβ

where Jα is the flux of the ith physical quantity (component), Xβ the βth thermodynamic

force and Lαβ the corresponding phenomenological coefficients. According to the Onsagers

reciprocity hypothesis, Lαβ = Lβα, which assumes microscopic reversibility or local equilib-

rium. The fluxes and gradients (or thermodynamic forces) are connected to the second law
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of thermodynamics through the entropy production σ given by

σs =
∑
α

JαXα (3.12)

In the absence of external forces and chemical reactions and assuming no viscous flow, the

entropy production

σs = JU .
∇T
T 2
−

n−1∑
k=1

Jk .∇
(
µk − µn

T

)
(3.13)

where JU is the internal energy flux, Jk is the mass flux of component k, T is the tempera-

ture, µk is the partial specific Gibbs energy of component k. The summation in the second

term of (3.14) is over all species except one, since one mass flux Jn is eliminated by making

use of
n∑
i=1

Ji = 0 since the variables within one set should independent [37].

The mass flux of species k in the barycentric frame of reference of the mixture is given

by:

Jk =
1

V

Nk∑
j=1

(vj − v) (3.14)

where v denotes the barycentric velocity and vj is the velocity of the jth particle of type k.

Irwing and Kirkwood [36] have derived an instantaneous and microscopic expression for the

internal energy flux JU . In this work, we use the definition given by [38]:

Jq = JU −
n−1∑
k=1

(hk − hn)Jk (3.15)

where JU is the internal energy flux and Jq is the ’reduced’ heat flux that is responsible for

conduction in a multi-component system. hi is the partial specific enthalpy of species i. For

an ideal mixture, hk is independent of the composition and equal to the specific enthalpy of

pure component k. In this work, we shall assume hydrocarbon liquid mixtures as an isotope

quasi-ideal mixture with molecular masses mk, which leads to hk = mnhn/mk. Therefore

Eq.(3.15) can be written as:

Jq = JU − hn
n−1∑
k=1

(
mn

mk

− 1

)
Jk (3.16)
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Onsager reciprocal relations [39] describe the coupling of heat and mass transfer in a multi-

component mixture, such that the macroscopic flux is expressed as a linear combination

of the temperature and concentration gradient forces. These relations are expressed in the

following way:

Jq = LqqXq +
n−1∑
j=1

LqjXj (3.17a)

Jk = LkqXq +
n−1∑
k=1

LikXk (3.17b)

with Xq = −∇T
T 2

and Xk = −∇ (µk − µn)T
T

.

For a simple binary system with 2 components (α, β), the phenomenological relationships

reduces to

Jq = −Lqq
∇T
T 2
− Lq1

1

T
∇ (µk − µn)T , (3.18a)

Jα = −L1q
∇T
T 2
− L11

1

T
∇ (µk − µn)T (3.18b)

Using the Gibbs-Duhem identity in terms of the concentration w
β∑

k=α

wk(∇µk)T,P = 0 and

the relation (∇µk)T,P =

(
∂µα
∂wα

)
T,P

∇wα Eq.(3.18a) can be expressed as:

Jq = −Lqq
∇T
T 2
− Lq1

1

Twβ

(
∂µα
∂xα

)
T,P

∇xα, (3.19a)

Jα = −L1q
∇T
T 2
− L11

1

Twβ

(
∂µα
∂wα

)
T,P

∇wα, (3.19b)
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Alternatively, the set of flux relationships can be written as:

Jq = −k∇T − ρ
(
∂µα
∂wα

)
T,P

TDT∇wα, (3.20a)

Jα = −ρwαwβDT∇T − ρD12 ∇wα, (3.20b)

At the stationary state when Jα = 0, the thermodiffusion factor or Soret coefficient can be

obtained from Eq.3.20(b), respectively:

αT = T
DT

D12

= − T

w1w2

(
∇w1

∇T

)
J1=0

(3.21)

ST =
DT

D12

= − 1

w1w2

(
∇w1

∇T

)
J1=0

(3.22)

Further details of linear response theory a basis for are given in [36, 40]. The energy flux in

a control volume (CV) is given in MD by [38]:

JU =
1

V

∑
i ε CV

([
1

2
mi(vi − v)2 + δi

]
(vi − v)− 1

2

N∑
j=1

[(vi − v) . Fij] rij

)
(3.23)

where V is the size of the control volume, mi and vi the mass and velocity, respectively, of

particle i, v is the barycentric velocity of the system, δi is the potential energy of particle i in

the field of all other particle, Fij is the force action on i due to j, and rij is the vector from

the position of i to the position of j. This a local, instantaneous analogue to the macroscopic

internal energy flux. The full expansion for a two component system results in [32]. The

evaluation of partial enthalpies requires simplifying assumptions. The mean enthalpy can be

computed as the sum of the mean kinetic and potential energies, and the virial [32]. In this

work, the computation of the partial enthalpy of species α, specifically conducted in EDM

simulations for the nanofluids systems, was described as the below:

hα =
1

Nα

Nα∑
i=1

[
Ki + Pi +

1

3

(
miv

2
i +

1

2

N∑
j=1

rij . Fij

)]
(3.24)
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Generally speaking, partial enthalpies are thermodynamic functions not readily accessible

from molecular simulations [36]. Their decomposition into kinetic, potential and virial is

true for isotopic or equi-potential mixtures, and in less restrictive ideal mixtures. Note that

beside the reliability of the potential field model, the choice of the microscopic heat flux

formulation also has a substantial impact on the calculation of the transport properties. A

commonly accepted definition follows from the second law of thermodynamics and for an n

component system, it is given by [32]

3.4 MD Algorithms for Transport Coefficients Calcu-

lation

The computation of thermal transport properties via MD simulations has evolved into two

main approaches: Equilibrium (EMD) and Non-Equilibrium (NEMD). EMD involves sam-

pling the fluctuation of various fluxes spontaneously generated in the system to predict

thermophysical properties on the system such as density, viscosity, diffusion coefficients and

others. NEMD involves applying a temperature gradient to a system via imposed boundary

conditions and then directly measuring the systems response.

3.4.1 Equilibrium Molecular Dynamics (EMD)

A system is said to be in equilibrium when its intensive state variables such as density and

temperature are invariant with time and all the gradients of the variables are absent. So

under equilibrium conditions there are no macroscopic flow of mass, momentum and energy.

According to LRT, the transport coefficients can be expressed as time correlation function

of appropriate autocorrelation functions. In an equilibrium state, spontaneous fluctuations

occur all the time, and time correlations are spatio-temporal functions that describe these

fluctuations [37]. The connection between these functions and transport properties comes

from the celebrated Onsager’s regression hypothesis [37]. Generally, the time correlation

functions are calculated by averaging the appropriate dynamic variables over time using EMD

simulations and invoking the ergodic hypothesis of the equivalence of time and ensemble

averaging [36]. Hence, the advantage of EMD begins by making the dynamical details of

the temporal behavior of the heat flux correlation functions accessible for analysis. This
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method is also known as the Green-Kubo (GK) formalism [36]. A detailed description of

GK formulation can be found in [32].

Application in Nanofluids

In this work, EMD approach was selected over NEMD to calculate the transport properties

of nanofluids, namely thermal conductivity and viscosity. Since nanofluids are characterized

with both spatial inhomogeneity and non-ideality, an extreme temperature gradient can

adversely affect the dynamics at the solid-liquid interface, especially since cross-interactions

between the base fluid (water) and the NPs (aluminum oxides) are significant. Therefore,

the system to deviate from the linear response regime. Finally, the computational burden in

EMD is greatly reduced compared to NEMD.

Note that stationary equilibrium period will depend on the relaxation time of the selected

property. During a simulation, a number of quantities are monitored to ensure the stability of

the simulation. The results are analyzed by taking time averages or averages over simulations

with different initial conditions of the quantities of interest. Fluctuations and correlation

functions are also calculated to interpret the mobility and dynamic behavior of the system

[11, 32].

3.4.2 Non-Equilibrium Molecular Dynamics (NEMD)

Also based on LRT, NEMD has evolved into a powerful technique for predicting many phys-

ical and transport properties of many-body systems, principally driven out of equilibrium

by an external thermodynamic force [38]. As with EMD simulations, the properties are

computed as averages over time in a stationary state. Nevertheless, the main downside of

NEMD is that it requires large perturbation strengths at the macroscale to generate de-

tectable microscale responses larger than statistical noise effects of the system.

NEMD formulation is based on the linear irreversible thermodynamics, which assumes

local equilibrium state [36]. However, the large thermal gradients (up to 1010 -1011 k/m) en-

countered in typical NEMD simulations, one might expect a divergence from the microscopic

reversibility or local equilibrium distribution leading to large uncertainties of the calculations

[41]. It is then essential to check that the criteria of local equilibrium conditions are satisfied

for NEMD simulations, especially in asymmetric systems. The validity of local equilibrium

theory entails that local volume elements are small enough so that the thermodynamic prop-
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erties vary little over each layer, but large enough so that each control volume is treated as

a macroscopic thermodynamic subsystem with small local fluctuations of its properties with

respect to the gradients (i.e. temperature and particles number fluctuations)[42].

The nature of the coupling between the external field and the system differs between

NEMD algorithms. The most suitable for a particular application is determined by its

ability to mimic the underlying physics.

Application in Hydrocarbon Soret effect

The most representative NEMD algorithms applied in thermodiffusion and heat conduction

studies are: synthetic NEMD (S-NEMD) also called homogeneous NEMD where the external

thermodynamic force is built into the equations of motion for the system, and Boundary-

Driven (BD) or direct NEMD where the external force stems from perturbations of the

systems boundaries [43]. The main drawback of this method is that it requires the knowl-

edge of additional thermodynamic quantities for the quantification of Soret coefficients[11].

One can avoid the calculation of these quantities by using BD-NEMD approach, which di-

rectly mimics the thermodiffusion procedure of the most pertinent experimental techniques

[38]. The method is based on the following modification of the system boundaries: the

simulation box is partitioned into equal slabs along one direction with periodic conditions;

heat is added to one region and removed from the other in order to create two reservoirs,

with one acting as a heat sink and the other as a source. As a consequence, an energy

flux is induced across the system, leading to well-developed temperature and concentration

gradients at steady state [38].

One strategy to impose a fixed heat flux in the MD simulations involves swapping kinetic

energy between the two regions of the simulation box. The heat exchange (HEX), developed

by Hafskjold et al. [38], and the momentum exchange (PEX), developed by Mller-Plathe [43],

are the most well-known algorithms based upon this concept. In the HEX method, a specific

amount of heat flux is periodically subtracted from one subdomain (creating a cold reservoir)

and added to another (generating a hot reservoir) by adjusting the non-translational kinetic

energy through velocity rescaling while preserving the individual center of mass velocities

of each subdomain [38]. In the PEX algorithm, the thermal flux is carried out through a
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momentum exchange between the particle with the highest kinetic energy in the cold region

and the particle having the lowest kinetic energy in the hot region, continuously. In both

cases, a stationary state is reached, and the system properties can be computed [43].

In particular, the HEX method prevails in the field of thermodiffusion studies where

theories and experimental techniques fail to understand the underlying cross-coupling effect

of transport mechanisms and quantify the Soret coefficients of the system components [44].

The method does not necessarily require an exact knowledge of the microscopic heat flux,

which makes them highly attractive to assess the nature of heat and mass transport in mul-

ticomponent systems.

In summary, an MD technique based either on empirical force fields or quantum-based

ab-initio molecular forces is a powerful tool, both as a means of probing equilibrium and

non-equilibrium phenomena and for obtaining dynamical properties of systems [30].

The contents of the next chapters will highlight a number of challenging problems and

limitations, which are well beyond the reach of simulation methods because of the size of the

configurational space involved, the time scale of the process or the complexity of the system

components.
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Chapter 4

Enhanced Molecular Dynamics

Modeling of Thermodiffusion in

Binary Mixtures

This chapter has been reproduced, nearly exactly, from our previously published work to refer

directly to Chapter 4 of this thesis. The publication originally appears as in [8]: S. Antoun,

M. Z. Saghir, and S. Srinivasan, “ An improved molecular dynamics algorithm to study

thermodiffusion in binary hydrocarbon mixtures.”

4.1 Introduction

Ludwig – Soret effect, also known as thermodiffusion, is the process of induced mass transport

of chemical species in liquid or gaseous convection–free mixtures in response to a thermal

gradient [13]. The strength and direction of the separation process are quantified by the

Soret coefficient or thermal diffusion factor. The latter is measured at stationary state when

the net mass flux of the mixture vanishes and the temperature and composition gradients

are well developed in the linear regime. For the simple case of a binary mixture, is defined

as:

ST = −DT

D12

=
∇w1

w1(1− w1)∇T
(4.1)
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Thermal diffusion plays an important role in several natural and industrial practices. For

instance, it plays a key factor in component segregation in petroleum reservoirs [12], for-

mation of the salt concentration in different layers of oceans [45] as well as convection in

stars. From the industrial point of view, the Soret effect is used in isotope separation of

liquids and gaseous mixtures [46], thermal osmosis [47], mass transport across biological

membranes [48] and thermophoretic trapping of DNA [49]. In the past 20 years, different

type of experimental methods (optical and non-optical) have been developed for thermod-

iffusion investigations.However, accurate measurements of are very difficult to perform due

to the complexity of the process: the magnitude of the effect is very small which renders its

measurement challenging under laboratory conditions, in addition to possible distortion due

to mechanical disturbances. A detailed review of the experimental investigations and tech-

niques of thermodiffusion is found in [50, 51]. Despite recent progress, experimental data are

still scarce and lack consensus when using different techniques. On the experimental front,

errors can creep in due to the several external factors including natural gravity, mechanical

vibrations, and the handling of the mixtures constituents during the post-processing of the

experiment [52].

On the other hand, a lot of theoretical work has been advanced in this field in order

to predict the thermodiffusion coefficient of binary and ternary mixtures. Most of these

models are based on non-equilibrium thermodynamic theory for ST estimation. Eslamian

and Saghir [53] presented a comprehensive review of these theoretical approaches. Despite

the development of several theories, there are still discrepancies and discontinuity among the

models in producing accurate results of thermal diffusion. The reason for the disagreement

is the complexity of understanding the microscopic contributions of the phenomena.

Among other computational techniques, MD has served as a highly promising method

and a low-cost alternative for experiments to estimate thermodynamic and transport proper-

ties, including thermal diffusion coefficients [1, 39, 43, 44, 54–58]. Many approaches based on

nonequilibrium statistical mechanics have been developed to compute the Soret coefficient in

binary and ternary mixtures [1, 43, 44, 54]. Mozaffari et al. [57] presented a detailed compre-

hensive review and comparison between the different MD methods based on the data from

the literature (theoretical as well as experimental). They investigated the behavior of two

well-known boundary-driven non-equilibrium molecular dynamics (BD-NEMD) approaches,
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namely, Reverse Non-Equilibrium Molecular Dynamics (RNEMD) and heat exchange (HEX)

algorithm. They also introduced a Modified HEX (MHEX) model that showed to be more

accurate and computationally efficient to simulate the mass and heat transfer mechanism.

Perronace et al. [44] did an extensive study of Soret coefficients on n-pentanen-decane mix-

tures for three different weight fractions using EMD, synthetic (S-NEMD), and BD-NEMD

simulations. Their results showed good agreement with the experimental results. Zhang and

Muller-Plathe [43] implemented the RNEMD method to investigate the thermal diffusion

of benzene-cyclohexane mixtures using an all-atom (AA) model with partial charges. They

studied the influence of different parameters such as the cutoff distance and the perturbation

strength. They also evaluated the composition and temperature dependence on the Soret

coefficient. Galliero et al. [59] conducted BD-NEMD simulations to examine thermodiffusion

coefficients of methane (nC1), butane (nC4), and dodecane (nC12) ternary mixtures at 333.15

K and 35 MPa for 5 different molar compositions using different fluid models: Lennard-Jones

(LJ) and Lennard-Jones Chain (LJC) fluid models. Later, Artola and Rousseau [54] per-

formed extensive MD simulations on ternary isotopic mixtures using the LJ sphere model.

They computed the Soret coefficients of 440 different systems and investigated the effect of

63 different compositions and 7 sets of mass ratio using the HEX approach.

As pointed out by Wirnsberger et al. [58], several studies have reported round-off and

truncation errors related with approximate integration schemes and limited computational

precision. These errors have a significant impact on time averages of transport coefficients,

mainly when the algorithms convergence and stability time scales are long. They proved that

the numerical implementation of the HEX method leads to a considerable drift in the total

system energy over the simulation run time. For long simulations, this energy loss becomes

restrictive, limiting the accessible simulation time scales to a few nanoseconds. Wirnsberger

et al. [58] proposed a new algorithm for boundary-driven (BD-NEMD) simulations called en-

hanced HEX (eHEX) that entails an extension of the HEX algorithm. The method proposes

an additional coordinate integration step to minimize the truncation error coming from the

operator splitting. The eHEX MD simulations exhibited an excellent conservation of energy,

even for large time steps when compared to the HEX method.

The goal of the work of Mozaffari et al. [57] was to minimize the computational time,

while maintaining reasonable accuracy. Nevertheless, to guarantee that the performance
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observed in NEMD simulations is representative of real dynamical systems, the selection of

an accurate force field is essential.A great deal of work has been conducted over the past

decade in developing potentials suitable for reproducing equilibrium transport properties

and a benchmark based on their density and viscosity prediction of n-alkane under ambi-

ent and HighTemperature High Pressure (HTHP) conditions [29, 35, 59–68]. Two main

approaches are commonly adopted when modeling dispersion and repulsive interactions be-

tween polyatomic molecules: (i) all-atom (AA) models; (ii) united-atom (UA) models. The

benefit of AA models is that they describe better the details of the molecular configuration

and structure directly associated with the dynamic properties [35, 62]. However, they are

computationally very expensive when simulating large systems with complex geometries.

Whereas, the UA potentials treat a specific group of atoms, such as CH2 and CH3, as sim-

ple Lennard-Jones sites with single force centers [60]. This approximation has been widely

adopted in recognition of the fact that more efficient computations of various properties

are gained in reducing the total number of interaction sites especially in large systems that

require long simulations.

Several UA models have been proposed to predict the thermodynamic properties of n-

alkanes with good performance [35, 64], Significant issues with these force fields were high-

lighted for the simulation of linear alkanes for different chain size and under specific condi-

tions. More specifically, all of the UA force fields under-predicted the viscosity and friction of

long-chain linear molecules, and the AA force fields ensued a raise in the melting point for n-

alkane, leading to anomalous density and viscosity values, and subsequently a discrepancy in

diffusion coefficient predictions [35, 64]. These problems are expected to affect the thermod-

iffusion process in confined NEMD simulations. Nevertheless, a lot of research studies have

recently focused on resolving this weakness by modifying model parameters to have a better

representation of the experimental data for transport properties of n-alkanes. For instance,

Ungerer et al. [? ] suggested improving the anisotropic united atom (AUA4) model [66] by

increasing the energetic barriers of the torsion intramolecular potential and enhancing the

resulting internal dynamics of n-alkanes expressed in transport properties. Later, Galliero

[59] showed that employing an additional rigidity fourth molecular parameter to the fully

flexible Lennard-Jones Chain (LJC) model can serve as a mean to circumvent the problem

and get a better description of simultaneously thermodynamic and transport properties of

not too short n-alkane chains. However, adding the influence of a rigidity parameter requires

32



the modification of the existing equation of states and transport properties correlations,

which can be time consuming for MD simulations.

The transferable potentials for phase equilibria-united atom (TraPPE-UA) force field,

developed by Martin and Siepmann [60], have been used extensively in simulations of com-

plex chemical systems, and it appears superior compared to other potential fields in its

application to model bulk and interfaces transport properties in a wide range of states for

both pure and mixtures of linear n-alkanes [64, 67]. Although the model underestimates the

viscosity relative to experimental values, Dysthe et al. [64] proved that TraPPE-UA properly

captures the dependence between the molecular structure, diffusion coefficient, and viscosity

of hydrocarbons by performing multiple MD simulations. According to Ewen et al. [35],

L-OPLSAA (long chain optimized potentials for liquid simulation) showed a better predic-

tion of long-chain n-alkane properties; however, it is computationally more demanding when

simulating large systems and has not proven to be more accurate for transport properties of

short linear alkanes than TraPPE-UA. In the original TraPPE-UA, all pseudo atoms along

the alkane chain are connected with bonds of fixed length. However, recent calculations of

diffusion coefficients using a variation of the TraPPE-UA model, with flexible bonds, were

performed on pseudo-atoms in n-alkanes mixtures [67]. In their work, Makrodimitri et al.

[67] showed that the TraPPE-UA force field augmented with a harmonic bond stretching

potential agree well with the experimental data for small molecules in heavy hydrocarbons

and can be implemented to predict accurately system densities and diffusion coefficients in

mixtures. From the above literature survey, it is clear that TraPPE-UA is potentially a very

good candidate for modeling interactions between n-alkanes with the least computational

burden.

Keeping the advantages of the various approaches in mind, in this work, we propose to

implement the eHEX NEMD algorithm along with the augmented TraPPE-UA to study

thermodiffusion in a real system of hydrocarbons. The feasibility of this approach is demon-

strated by calculating the thermodiffusion factor of the binary mixture nC5 –nC10 for three

different compositions at 300.15 K and 0.1 MPa and by comparing the results with exper-

imental and other MD numerical data available in the literature. In doing so, this paper

is organized as follows: In section 4.2, a brief description of the theoretical concepts of

thermodiffusion MD and potential field model formalisms is provided. In section 4.3, the
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methodology details are outlined for both EMD and NEMD simulations. Then, an analysis

of the validity of computational results pertaining transport properties and the Soret coeffi-

cient of liquid mixtures is discussed in section 4.4 Finally, the summary of our investigation

and the pertinent conclusions are drawn in section 4.5.

4.2 Theoretical Formulation

The basics of the MD method rely on classical mechanics, determining the trajectory in the

phase space of the system and taking time averages of the observables of interest along this

trajectory. At each step of the MD simulation, the microscopic coordinates and momen-

tum of all the particles were calculated according to equations of classical mechanics where

forces are computed from the force field. In the ensuing paragraphs, the methodology and

computational aspects adopted in this work are briefly described.

4.2.1 The Enhanced Heat Exchange (eHEX) Algorithm

The enhanced heat exchange (eHEX) algorithm proposed by Wirnsberger et al. [58] is

an extension of the HEX method derived with a higher-order truncation error of the time

integration algorithm. It consists of applying a constant heat flux onto the system by adding

heat ∆Qr into the hot region Γ1 and subtracting the same amount of energy from the cold

region Γ2 at each time step (see Figure 4.1). As a consequence, the net energy flux of the

system is zero and a stationary state is reached where a temperature gradient and internal

energy fluxes are established between the subdomains. The simulation box is replicated in a

direction perpendicular to the heat flux to enable periodic boundary conditions (PBCs) in

three dimensions. Note that the variables ri and vi denote the position and velocity vectors,

respectively, of i-th atom, whereas vΓr and vΩ represent the center of mass velocities of the

regions Γr and the box, respectively.

The temperature gradient calculation is performed by dividing the simulation box into

equal slabs in order to capture the spatial variation of the temperature. The instantaneous

kinetic temperature Tj of slab j is given by

Tj =
2

(Njf − 3)Kb

N∑
i ε binj

[
1

2
mi

(
v2
i − v2

Γi

)]
(4.2)
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Fig. 1 Illustration of the simulation box, Ω, with a hot 
reservoir, Γ1 (red), and a cold reservoir, Γ2 (blue). The 
center of mass velocities of Ω, Γ1, and Γ2 are vΩ, vΓ1, and 
vΓ2, respectively. 

Figure 4.1: Illustration of the simulation box, Ω, with a hot reservoir, Γ1 (red), and a cold
reservoir, Γ2 (blue). The center of mass velocities of Ω, Γ1 , and Γ2 are vΩ, vΓ1, and vΓ2,
respectively.

where Kb represents Boltzmanns constant and Nj represents the number of particles con-

tained in slab j. The quantity f represents the number of degrees of freedom per atom.

Particles outside any thermostatted region are not affected by the velocity rescaling. For the

individual region Γk the velocity update for the particles located in Γr can be formulated as

vi 7−→ v̄i = ξkvi + (1− ξk)vΓk (4.3)

where the rescaling factor is defined as:

ξk =

√(
1 +

∆QΓk

kΓk

)
(4.4)

with kΓk representing the non-translational kinetic energy and ∆QΓk representing the amount

of heat added or subtracted in each subdomain. In their study, Wirnsberger et al.[58]

considered a coordinate correction to overcome the energy loss as follows:

x(∆t)−∆t3 ε xex(0) = xex(∆t) +O(∆t4) (4.5)

They ignored the additional velocity Verlet truncation error and all other correction terms af-
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fecting velocities only. Basically, the accuracy of the numerical approximation was enhanced

by applying the correction ∆t3 ε xex(0) to the original solution. Their analysis yielded to

the eHEX algorithm, whose steps are outlined in the following updated sequence:

vni = ξnk ri v
n
i + (1− ξnk ri) vΓk ri

(4.6a)

v
n+1/2
i = v̄ni +

∆t

2mi

fni (4.6b)

rn+1
i = rni + ∆t v̄i

n+1/2 (4.6c)

fn+1
i = −∇riU(r) |r=rn+1 (4.6d)

vn+1
i = v̄

n+1/2
i +

∆t

2mi

fn+1
i (4.6e)

vn+1
i = ξ̄n+1

k(r̄i)
v̄n+1
i +

(
1− ξ̄n+1

k(r̄i)

)
v̄n+1

Γk(ri)
(4.6f)

where the correction term was given by

εΓi,α =
ηi,α

miKΓk(ri)

FΓk(ri)

48
+

1

6

∑
jεΓk(ri)

fj .
(
vj − vΓk(ri)

)− FΓk(ri)

12KΓk(ri)

fi,αmi

− 1

miΓk(ri)

∑
jεΓk(ri)

fj,α


(4.6g)

The symbols used in Eqs.(4.6) are described in the nomenclature. Further details of the

eHEX scheme used in this work can be found in [58].

4.2.2 Force Field Model

The n-alkanes (nC5 –nC10) were represented using a modified version of Martin and Siep-

mann [60] TraPPE-UA force field model proposed by Makrodimitri et al. [67]. As mentioned

earlier, TraPPE-UA has been validated to be very accurate for thermodynamic properties of

n-alkanes in the pure state and in mixtures over a wide range of conditions [64, 67]. It was

optimized to reproduce accurately the liquid-vapor coexistence curve and predict the critical

properties for several linear and branched alkanes. In the original TraPPE-UA, all pseudo

atoms along the alkane chain are connected with fixed bonds. However, Makrodimitri et al.
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[67] used instead a harmonic bond stretching potential in order to predict accurately system

densities and diffusion coefficients in hydrocarbon mixtures.

The potential energy functions and parameters used in the augmented TraPPE-UA model

are summarized in Table (4.1). The potential energy model accounts for bond stretching,

Table 4.1: Potential energy functions and parameters for the TraPPE UA model

  Potential energy functions Potential energy parameters 

   

Non-

bonded LJ 
𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 4𝜀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗

)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗

)

6

]

𝑝𝑎𝑖𝑟𝑠

 
𝜎𝐶𝐻3

= 3.75 A  𝜀𝐶𝐻3
/𝑘𝑏 = 98 K 

𝜎𝐶𝐻2
= 3.95A  𝜀𝐶𝐻2

/𝑘𝑏 = 46 K 

   

Bond 

stretching 
𝑈𝑠𝑡𝑟𝑒𝑡𝑐ℎ = ∑

𝑘𝑟(𝑟 − 𝑟𝑒𝑞)
2

2
𝑏𝑜𝑛𝑑𝑠

       
𝑘𝑟/𝑘𝑏 = 96500 K/A2 

𝑟𝑒𝑞  = 1.54 A 

   

Bond-angle 

bending 
𝑈𝑏𝑒𝑛𝑑 = ∑

𝑘𝜃(𝜃 − 𝜃𝑒𝑞)
2

2
 

𝑎𝑛𝑔𝑙𝑒𝑠

 
𝑘𝜃/𝑘𝑏 = 62500 K/ rad2 

θeq =114º 

   

Torsion 𝑈𝑡𝑜𝑟𝑠 = ∑ [

𝑐0 + 𝑐1(1 + 𝑐𝑜𝑠∅)

+𝑐2(1 − 𝑐𝑜𝑠2∅)

+𝑐3(1 + 𝑐𝑜𝑠3∅)
]   

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

 

𝑐0/𝑘𝑏  = 0 K 

𝑐1/𝑘𝑏 = 355.03 K 

𝑐2/𝑘𝑏 = -68.19 K 

𝑐3/𝑘𝑏  = 791.32 K 

 

bond bending, torsional rotation, and van der Waals non-bonded interactions. The non-

bonded intermolecular interactions are modeled with a pairwise Lennard-Jones (LJ) potential

with a cutoff length of 14 A. Intramolecular non-bonded interactions for sites separated by

more than three bonds are also described by a LJ potential. The standard LorentzBerthelot

(LB) combining rules have been used extensively in previous simulation work to describe non-

bonded LJ interactions between sites of different types i and j according to the expressions

εij =
√

(εii εjj) and σij = (σii + σjj) /2 where εii and σii are the parameters for interactions

between identical sites [67, 68]. Although phase equilibrium and thermodiffusion magnitude

can be very sensitive to the combining rules, LB proved to be accurate when modeling n-

alkanes-n-alkanes mixtures with UA [56, 68]. Therefore, the LB method was entailed in this

work to obtain unlike-pair parameters. The bond stretching and angle bending potentials
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were described with harmonic functions. The torsional dihedral angle potential function was

defined by using the Optimized Intermolecular Potential Functions (OPLS). Details on the

force field functional form and parameters for the various terms of n-alkanes can be found

in [67].

4.3 Methodology and Numerical Computations

Atomistic molecular dynamics simulations require a starting model to generate the system

initial configuration. Packmol was used in order to pack the molecules in a cubic simula-

tion box and generate atoms initial coordinates [41]. The interaction force field model was

created using a cross-platform molecular builder Moltemplate [69]. Subsequently, EMD and

NEMD simulations were carried out within the MD simulator Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS)[30]. The calculated values of transport properties

resulting from MD simulations highly depend on the system size, the intensity of pertur-

bations, and the simulation time length [70, 71]. In order to secure reliable results, these

numerical parameters were monitored until a consistency was observed.

4.3.1 EMD Simulations

To test the validity of the force field model, EMD simulations were conducted to obtain

thermodynamics equilibrium properties (density and self-diffusion coefficient). Simulations

were carried out at 300.15 K and 0.1 MPa, and Periodic Boundary Conditions (PBCs) were

applied for all systems. To simulate the systems with just one component, 1000 molecules

were used. On the other hand, for the binary mixtures, a total of 2000 molecules were in-

cluded in the systems. In order to avoid highly overlapped atoms, the system configuration

was initially brought to a local potential energy minimum by performing an energy mini-

mization. Next, an annealing procedure was used in order to accelerate the equilibration and

avoid trapping in a local minimum of energy: the system was initially heated up to 700 K

and then cooled down back to 300.15 K. Annealing process is important before performing

equilibration runs since it allows the system to avoid high energy barriers that force energy

minimization into local minima. Also, it is necessary to apply the appropriate rate of heating

and cooling during the annealing process that will bring the system to a global minimum.

Next, the NPT ensemble with a Nose Hoover thermostat and barostat using the time con-
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stants of 0.1 and 1 ps, respectively, was employed in order to determine the equilibrium

system density at a target pressure of 0.1 MPa. Long-range tail corrections to the energy

and pressure were included [29]. The equations of motion were integrated using the velocity

Verlet algorithm, and a time step of 1 fs was used in all simulation runs.

The diffusion coefficients of pure components were obtained from EMD simulations in the

NVT ensemble using the Nose Hoover thermostat at the previously determined equilibrium

density corresponding to a pressure of 0.1 MPa. After running NVT for 2 ns, the average

system energy was calculated using the NVE ensemble. The energy of the last configuration

of the NVT simulation was adjusted by carrying out an additional NVE equilibration run for

5 ns. This procedure allowed us to achieve an average equilibrium temperature of 300.15±
2 K. The final configuration obtained was used as the initial configuration in the simulations

for determining the diffusion coefficient, which is also performed again in the NVE ensemble

with an additional run time of 5 ns. The atoms configurations were written out every 200

time steps. The self-diffusion coefficients Dself of pure components were calculated via the

Einstein relation [67, 71] as

Di,self =
1

2dN
lim
k→∞

1

k ∆t

〈 N∑
i=1

(ri(t+ k∆t)− ri(t))
2

〉
(4.7)

where ri(t) is the particle position vector of type i at time t and (ri(t+ k∆t)− ri(t))
2

represents the mean square displacement of the center of mass of molecules. N denotes

the total number of molecules and ∆t denotes the time step. The quantity d (= 3) is a

numerical constant which depends on system dimensions. The simulation time (t) for all

diffusion coefficient determinations was large enough to achieve a constant slope behavior of

the mean square displacement. EMD results from density and the diffusion coefficient were

used to test the accuracy of the force field in the determination of this transport property by

comparison with experimental data and other simulation results available with other force

fields.
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4.3.2 BD-NEMD Simulations

The system size and strength of the heat flux were considered as two important parameters

to achieve good computational results and local equilibrium, as defined by the validity of

thermodynamic equations [42, 70]. According to Zhang and Muller-Plathe [43], a stronger

perturbation produces better results due to a better signal to noise ratio, provided the linear

response holds. Whereas, a weaker temperature gradient causes the average composition

in each slab to be of the same order of magnitude as the fluctuations, thus resulting in an

inaccurate estimation of Soret coefficients. Therefore, the magnitude of the heat flux was

regulated such that the imposed temperature gradient is high enough to ensure a linear

response with a quantifiable signal to noise ratio and low enough to avoid phase transition

and deviation from equilibrium caused by high perturbations of particles motion inside the

thermostatted regions (by analyzing the density gradient)[42, 43]. The criteria of validity

of local equilibrium from NEMD, clearly formulated in the work of Kjelstrup et al. [42],

were checked in order to support the consistency of our computational results under extreme

temperature gradients.

In order to ensure a good statistical precision, all NEMD binary systems contained 2000

molecules (given composition). With the previously obtained densities, binary mixtures

configurations were equilibrated again using NVT and NVE and a time step of 1 fs. The

system region was modified for BD-NEMD simulations. The box dimensions were rescaled

such that Lz/2 = Lx = Ly, while keeping the equilibrated system density constant. In

order to capture the spatial variation of the temperature and composition, the simulation

box was divided in the z direction into 32 bins of equal size. The number of molecules

inside each slab (around 62 molecules) was considered large enough for it to behave as a

thermodynamic system [42, 70]. A unidirectional heat flux was imposed on the system along

the z-axis. The two thermostat regions (consisted each of 4 slabs) were centered at the

points z = ±Lz/4 (see Figure 4.1). During each time step, the heat ∆Q is taken from

region 2 and added to region 1 (∆QΓ1 = ∆QΓ1 = ∆Q > 0) maintaining a fixed energy flux

into the reservoir F = ∆QΓ/∆t. Each BD-NEMD simulation (given composition) was at

least 45 × 106 time steps long (after an equilibrium simulation of 5 × 106 time steps) with

a larger time step of 2 fs for which the total system energy exhibited a minor drift (less

than 0.3%). Since the problem can be described as a 1D diffusion equation, the minimum
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expected time for concentration and temperature gradients to attain stationary state can

be estimated as the same order as L2
z/(4D) ∼ 5.3 ns and L2

z/(4TDT ) ∼ 5 ns , respectively.

The latter asserts that the total run time of our simulations is considered large enough to

reach a steady state and obtain linearity of both composition and temperature gradients.

The first 2.5× 106 time steps of the simulation were discarded from the average calculations

to avoid transient effects. Local temperature and density fraction were computed at each of

the 500 time steps, and averages of 20 samples were dumped every 10 000 time steps to a

file for later analysis. In addition, accumulated averages of the system overall energy and

temperature and the local mole fraction and temperature for each layer were computed [72].

The corresponding gradients were also calculated from a linear fit of the local quantities.

The hot and cold regions (4 slabs each) as well as two neighbor slabs have been discarded

from the temperature gradient measurement because of non-linear behavior in these layers

(see Figure 4.4) [43]. The statistical errors were estimated from the standard deviation from

the mean.

4.4 Results and Discussions

4.4.1 Validation of the Force Field Model

As summarized in Table 4.2, the computational results of density at 300.15 K and 0.1 MPa

of the single component fluids as well as the three binary mixtures of nC5 –nC10 showed good

agreement with the experimental data. Typically, the agreement is better than 1% for all

mixture compositions. The diffusion coefficients of pure components were also reported and

compared with experimental and some simulation data of other force fields available in [73].

As seen from Table 4.3, the self diffusion coefficients of nC5 and nC10 obtained from this work

were in very good agreement with the experimental data with an error of 8.1% and 3.42%,

respectively. They also revealed a better performance with respect to the AUA model. These

results support the employment of the augmented TraPPE-UA force field and confirm its

precision in predicting thermodynamics equilibrium properties for n-alkanes liquid pure and

binary mixtures. Note that the data extracted from Ref.[73] were interpolated to get values

at the same temperature of 300.15 K and the statistical errors for experimental densities and

self diffusion coefficients were estimated from the standard deviation from the mean using

uncorrelated data [74].
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Table 4.2: Densities of nC5–nC10 mixture for different molar composition at 300.15 K and
0.1 MPa. The % error ∆ of the numerical density of this work was computed with respect
to NIST data

xC10 
Mixture Density (Kg/m3) 

NIST This work Δ (% ) 
0 618.84 619.25 0.07 

0.2 652.40 653.71 0.20 
0.5 688.32 690.21 0.27 
0.8 712.96 715.13 0.30 
1 724.97 727.54 0.35 

 

Table 4.3: Potential energy functions and parameters for the TraPPE UA model

  Dself (10-9 m2/s) 

 Expt. TraPPE-UA* AUA1 AUA2 

nC5 5.68 6.14 (8.1) 6.21 (9.33) 6.27 (10.39) 
nC10 1.46 1.51 (3.42) 1.52 (4.11)        1.7 (16.44) 

4.4.2 Linearity and Convergence of Composition and temperature

profiles

Density, temperature, and concentration profiles for all nC5 –nC10 mixtures clearly show a

linear trend (see Figure 4.2).
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Fig. 2 Temperature (Top), Density (Middle) and nC10 mole fraction (Bottom) profile for the three different molar composition 
of nC5-nC10 (a) xC10=0.2 (b) xC10=0.5 and (c) xC10=0.8. 
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Figure 4.2: Temperature (top), density (middle), and nC10 mole fraction (bottom) profiles
for the three different molar compositions of nC5 –nC10: (a) xC10 = 0.2, (b) xC10 = 0.5, and
(c) xC10 = 0.8
.
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The continuity of the three gradients indicates that the system behavior, despite strong

thermal gradients (highest value of 1.79× 1010 K/m attained for xC10 = 0.2), is still in the

domain of linear response. To support this assumption, the criteria of local equilibrium from

NEMD were checked.39 Each layer contained around 62-63 molecules. The temperature

and mole fraction relative fluctuations were minimal averaging 0.35% and 4% in each slab,

respectively. The relative change of temperature and density across the slab in the direction

of diffusion was smaller than one. The linearity condition of both gradients was also evalu-

ated through the R2, which achieved a value higher than 0.98 and 0.99 for composition and

temperature, respectively (Figure 4.3).
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Fig. 3 System overall Temperature (red) and Energy (blue) variation as a function of simulation time for the three different 
molar composition nC5-nC10 (a) xC10=0.2 (b) xC10=0.5 and (c) xC10=0.8 
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Figure 4.3: System overall temperature (red) and energy (blue) variation as a function of
simulation time for the three different molar compositions of nC5 –nC10: (a) xC10 = 0.2, (b)
xC10 = 0.5, and (c) xC10 = 0.8.
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Low and high temperatures were detected in the coldest and hottest slabs, respectively.

The lowest temperature attained in the cold region was 250 K (see Figure 4.4), which is

above the experimental melting points of nC5 and nC10 (143.4 and 243.3 K, respectively).

The latter indicates that the mixture did not cross the barrier to act as a supercooled liquid

or to affect the dynamics of the system by slowing down the particles movement. On the

other hand, the hot region reached higher temperatures than the vapor-liquid equilibrium

region for the nC5 –nC10 mixture. According to experimental data, the boiling points of nC5

and nC10 are 309.2 and 447.2 K, respectively.

   

   
         (a)         (b)              (c) 

 
Fig. 4 Temperature (Top) and nC10 mole fraction (Bottom) profiles for the three different molar composition of nC5-nC10 (a) 
xC10=0.2 (b) xC10=0.5 and (c) xC10=0.8. 

 

240

260

280

300

320

340

360

-70 -50 -30 -10 10 30 50 70

T 
(K

)

z (A)

240

260

280

300

320

340

360

-70 -50 -30 -10 10 30 50 70

T 
(K

)

z (A)

240

260

280

300

320

340

360

-70 -50 -30 -10 10 30 50 70

T 
(K

)
z (A)

0.17

0.18

0.19

0.20

0.21

0.22

0.23

-70 -50 -30 -10 10 30 50 70

x C
10

z (A)

0.47

0.48

0.49

0.50

0.51

0.52

0.53

-70 -50 -30 -10 10 30 50 70

x C
10

z (A)

0.77

0.78

0.79

0.80

0.81

0.82

0.83

-70 -50 -30 -10 10 30 50 70

x C
10

z (A)

Figure 4.4: Temperature (top) and nC10 mole fraction (bottom) profiles for the three different
molar compositions of nC5 –nC10: (a) xC10 = 0.2, (b) xC10 = 0.5, and (c) xC10 = 0.8.
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Figure 4.4 indicates that the temperature in the hottest slab reached a value around

351 K (for xC10 = 0.2), which is higher than the boiling point of nC5. Zhang and Muller-

Plathe [43] observed a similar behavior for a benzene/cyclohexane mixture at 324 K and

mole fraction of 0.25 (with a temperature gradient of the order of 1010 K/m). They observed

a temperature around 360 K in the hot slab, which is higher than the boiling point of both

substances (353.1 K for benzene and 353.7 K for cyclohexane), indicating a possible vapor

phase transition. To rule out the formation of a vapor phase, Zhang and Muller-Plathe [43]

tested the linearity of the density profile across the simulation box to make sure that the

mixture behaves as a liquid in each slab.

In order to confirm the liquid-like behavior of this work, the nC5 –nC10 mixture, the

steady state density profile was plotted for all mixtures. Figure 4.5 shows that even with

a large imposed heat flux, the average density varies linearly through the system and the

simulated mixture behaved as a liquid in every slab.

 
Fig. 5 System Density profile for the three different molar composition of nC5-nC10 (a) xC10=0.2 (b) xC10=0.5 and (c) xC10=0.8. 
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Figure 4.5: System density profile for the three different molar compositions of nC5 –nC10:
(a) xC10 = 0.2, (b) xC10 = 0.5, and (c) xC10 = 0.8.
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The time evolution of thermal and composition gradients across the simulation box were

plotted in order to check for convergence. Figure 4.6 shows that the time needed for the tem-

perature gradient to reach a plateau (which was around 2× 106 time steps)was significantly

shorter than that of the concentration gradient or number density (a minimum of 20 × 106

time steps). The lines are running averages since the start of the production run. Addi-

tionally, Figure 4.6 illustrates a relatively higher fluctuation in the number density gradient.

These fluctuations can be due to the size of the molecules and their movement: counting the

number of center of masses in each slab can be very different for each time step.

It was noticed that the R2 value of concentration profiles reached an acceptable value

(higher than 0.98) before attaining the steady state. In order to avoid the errors due to

composition fluctuations and check for exact convergence of the composition gradient, the

simulation time for all the cases was extended to at least 55× 106 time steps. According to

4.6, the number density gradient time evolution established nearly a plateau for the larger

simulation, which indeed reduced the uncertainties of Soret coefficient calculations. The

errors in composition and temperature in each slab were taken into account to compute

profiles and their uncertainties. The standard error of the Soret coefficient was computed

with the composition and temperature profile uncertainties using standard error propagation

methods [74].

  

   
                      (a)            (b)          (c) 

Fig. 6 Normalized temperature gradient (dT/dz) * (Top) and nC10 composition gradient (dxC10/dz) * (Bottom) variation over 

simulation time for the three different molar composition of nC5-nC10 (a) xC10=0.2 (b) xC10=0.5 and (c) xC10=0.8. 
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Figure 4.6: Temperature (top) and number density of nC10 (bottom) gradients variation over
simulation time for the three different molar compositions of nC5 –nC10: (a) xC10 = 0.2, (b)
xC10 = 0.5, and (c) xC10 = 0.8.
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4.4.3 Comparison of ST with experimental and other numerical

work

The experimental Soret coefficient, ST , has been determined as a combination of the experi-

mental data of thermal diffusion (DT ) and molecular diffusion (D) coefficients obtained from

the literature [44, 75, 76]. The average value of the selected data measured using different

techniques was considered as a benchmark reference for numerical comparison and validation

(see Table 4.4). All the coefficients of the nC5 –nC10 mixture were all measured under the

same conditions used in our numerical simulations for the three nC10 molar fractions: (a)

xC10 = 0.2, (b) xC10 = 0.5, and (c) xC10 = 0.8.

Table 4.4: Experimental data of diffusion (D) and thermal diffusion coefficients (DT ) mea-
sured using different techniques at 300.15K for the nC5 –nC10 mixture for three different
molar compositions.

 xC10 0.2 0.5 0.8 

 
 

                D /10-5 (cm2/s) 
TDFRS  2.63 2.30 1.90 
SST  3.36 2.96 2.20 
Average 3.00 2.63 2.05 

  
DT /10-8 (cm2/s.K) 

TDFRS    9.28 ± 0.75 7.54 ± 0.61 7.18 ± 0.59 
TC para.  10.49 ± 0.30 8.76 ± 0.30 6.76 ± 0.20 
TC cyl.  10.36 ± 0.50 8.67 ± 0.40 6.92 ± 0.30 
TDFRS   10.81 ± 0.70 9.11 ± 0.60 7.75 ± 0.60 
Average 10.24 ± 0.70 8.52 ± 0.60 7.15 ± 0.60 

  
ST = DT/D /10-3 (K-1) 

Average 3.42 ± 0.56 3.24 ± 0.48 3.49 ± 0.42 

MD simulations were first conducted using the original BD-NEMD (HEX) method devel-

oped by Hafskjold et al. [38] in order to verify the choice of the augmented TraPPE-UA force

field over other potential models that have also been combined with BD-NEMD algorithm to

estimate thermodiffusion of the nC5 –nC10 binary mixture. The results of ST of the original
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HEX along with the augmented TraPPE-UA and the numerical data of other force field

models in the literature were first compared to the benchmark experimental values. Table

4.5 summarizes the values and the percentage deviation of the different force field models

with respect to the experimental results evaluated for the three molar compositions of the

of nC5 –nC10 mixture [(a) xC10 = 0.2, (b) xC10 = 0.5, and (c) xC10 = 0.8]. When compared

to the other models, the augmented TraPPE-UA presented the least deviation (see Table

4.5). The Smit-Karaborni-Siepmann (SKS) showed a discrepancy up to 30%. The LJ sphere

model implemented by Galliero et al. [59] revealed a deviation up to 20% compared to the

benchmark values. Whereas, the values obtained by Mie Chain Coarse- Grained (MCCG)

[39] were off by nearly 11%–25% depending on the mixture molar composition. In other

words, the comparison emphasizes that the augmented TraPPE-UA potential force field

over other potential models that have also been combined with BD-NEMD algorithm to

estimate thermodiffusion of the nC5 –nC10 binary mixture. The results of ST of the original

HEX along with the augmented TraPPE-UA and the numerical data of other force field

models in the literature were first compared to the benchmark experimental values. Table

4.5 summarizes the values and the percentage deviation of the different force field models

with respect to the experimental results evaluated for the three molar compositions of the

nC5 –nC10 mixture [(a) xC10 = 0.2, (b) xC10 = 0.5, and (c) xC10 = 0.8]. When compared

to the other models, the augmented TraPPE-UA presented the least deviation (see Table

4.5). The Smit-Karaborni-Siepmann (SKS) showed a discrepancy up to 30%. The LJ sphere

model implemented by Galliero et al. [6] revealed a deviation up to 20% compared to the

benchmark values. Whereas, the values obtained by Mie Chain Coarse- Grained (MCCG)

[39] were off by nearly 11%25% depending on the mixture molar composition. In other words,

the comparison emphasizes that the augmented TraPPE-UA potential field is a very good

choice to reproduce the real molecular interactions in the system and predict thermodiffusion

transport properties. In order to assess the performance of the eHEX method in predicting

the thermodiffusion factor, results were compared to the original HEX. Both approaches

were applied along with the augmented TraPPE-UA. As seen in Table 4.6, the data from

this study eHEX show a very good agreement with the experimental data. More precisely,

the accuracy in predicting the Soret coefficient was improved compared to the original HEX

method with corresponding deviations from experimental between approximately 0.55% and

6.5%, depending upon the composition of the mixture. From the results of all the mixture

compositions analyzed so far, it can be concluded that the eHEX algorithm combined with
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Table 4.5: Numerical values of ST computed using BD-NEMD with different force field (FF)
models for the the nC5 –nC10 mixture at three different molar compositions. The values
in the brackets represent the percentage error with respect to the benchmark values. HEX
along with augmented TraPPE-UA∗ correspond to this work results.

 xC10 0.2 0.5 0.8 

    ST /10-3 (K-1)  

Expt. Avg. 3.42 ± 0.56 3.24 ± 0.48 3.49 ± 0.42 

NEMD FF-Model    

BD-NEMD 
(HEX/PEX) 

SKS  
2.81 ± 0.42 2.91 ± 0.45  2.49 ± 0.58  

-17.77 -10.17 -28.63 

LJ sphere 
4.10 ± 0.49 3.13 ± 0.37  3.43 ± 0.47  

-19.98 -3.38 -1.69 

MCCG 
2.82 ± 0.60 2.88 ± 0.40 2.62 ± 0.60  

-17.48 -11.1 -24.91 

TraPPE-UA* 
3.13 ± 0.20 3.01 ± 0.20 3.43 ± 0.25 

-8.48 -7.1 -1.68 

the augmented TraPPE-UA force field model, proposed in this study, is a very good choice

for studying thermodiffusion in n-alkanes liquid mixtures.

4.5 Conclusion

The performance of Boundary Driven Non-Equilibrium Molecular Dynamics (BD-NEMD)

using the enhanced heat exchange (eHEX) algorithm was studied in order to test its ability

to accurately predict thermodiffusion in C5 –nC10 binary mixtures for three different molar

compositions. The eHEX algorithm is an extended version of the HEX algorithm, developed

by Hafskjold and co-workers with an improved energy conservation. It was applied along

with the augmented TraPPE-UA force field. The Soret coefficients of the C5 –nC10 mixture

for the three mole fractions [(a) xC10 = 0.2, (b) xC10 = 0.5, and (c) xC10 = 0.8] were assessed

at 300.15 K and 0.1 MPa and compared to the experimental data. In order to assert the

advantage of the augmented TraPPE-UA force field over other potential models, which have

also been combined with the BD-NEMD algorithm, the original HEX combined with the
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Table 4.6: Numerical values of ST computed using HEX and eHEX along with augmented
TraPPE-UA ∗ for the nC5 –nC10 mixture at three different molar compositions. The values
in the brackets represent the percentage error with respect to the benchmark values.

 

xC10 0.2 0.5 0.8 
    ST /10-3 (K-1)  

Expt. Avg. 3.42 ± 0.56 3.24 ± 0.48 3.49 ± 0.42 
NEMD FF-Model    

HEX 
TraPPE-UA* 

3.13 ± 0.20 3.01 ± 0.20 3.43 ± 0.25 
-8.48 -7.1 -1.68 

eHEX 
3.25 ± 0.20 3.14 ± 0.15  3.47 ± 0.23  

-4.91 -3.1 -0.55 

augmented TraPPE-UA simulations was first conducted and compared to the numerical data

of other potential field models available in the literature. Subsequently, the performance of

this study eHEX algorithm was compared to the original HEX model in predicting the Soret

coefficient, while applying the same force field model. The following conclusions were drawn

from the findings:

1. The round-off and truncation errors related with the modified integration scheme and

computational precision of eHEX manage to significantly conserve the system energy

and temperature with minor instabilities around the mean.

2. The continuity of the three gradients (temperature, composition, and mixture density)

emphasizes that the system behavior, despite the extreme gradients, is still in the

domain of linear response and converges with minimal computational errors.

3. Soret coefficients estimates from our model show a very good agreement with the bench-

mark experimental data. More precisely, the accuracy in predicting the ST was approx-

imately between 0.55% and 6%, depending upon the composition of the mixture.

4. The assessment of ST numerical values of this work with other MD approaches clearly

underlines that transport properties highly depend on the accuracy of NEMD and force

field algorithms. In other words, the potential field parameters should be accurate

enough to reflect the real molecular interactions in the system and reproduce precise

liquid properties. Additionally, the NEMD heat exchange algorithm should mimic the

real experimental process and conditions with a great computational and integration
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scheme precision.

Given that our proposed model performed well for calculating the thermodiffusion factor of

binary n-alkane mixtures, the eHEX algorithm along with the augmented TraPPEUA force

field model serves as a highly promising method and a low-cost alternative for experiments

to study thermodiffusion.
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Chapter 5

Enhanced Molecular Dynamics

Evaluation of Thermophobicity in

Ternary Mixtures

The formatting of this chapter is presented in the same style as of our recently published

paper. The original publication appears as [16]: S. Antoun, M. Z. Saghir, and S. Srinivasan,

“Composition effect on thermophobicity of ternary mixtures: An enhanced molecular dynam-

ics method.” As we demonstrated in Chapter 4, the eHEX method along with TraPPE-UA

is a potentially powerful method to predict thermodiffusion properties of asymmetric alkanes

mixtures. While the results showed a very good agreement with benchmarked experimental

data, the simulated systems only consisted of binary hydrocarbons. In this chapter, we build

off these results to study a more complex system comprising of ternary alkanes to examine the

ability of our newly employed model to quantify the thermodiffusive behavior of the mixture

components.

5.1 Introduction

In most of the applications, mixtures with scientific or technological interest are generally

multicomponent. Owing to their relative simplicity, binary systems have been studied more

extensively in the field of thermodiffusion. The development of experimental practices and

the extraction of accurate data on diffusion and thermodiffusion coefficients are extremely
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vital for advancing the theory of transport properties of multi-component mixtures and its

applications to natural and technological processes. It is only during the last decade that the

focus has begun to shift toward ternary mixtures, which may be viewed as the simplest truly

multicomponent mixtures [14, 72, 77–82]. The complexity of Soret experiments has increased

considerably with the increase in the number of components. Technical challenges and ex-

perimental errors can creep in due to the several external factors including earth gravity

in ground conditions which causes convective instabilities in the cavity domain, mechanical

vibrations, the lack of a detailed and elaborated processing of the experiment, and the han-

dling of the mixture constituents. Performing experiments under microgravity conditions

was one possible solution to produce data in convection-free conditions with least perturba-

tion effects of gravity, while taking into account the impact of g-jitter vibration [14, 15, 82].

In the framework of the DCMIX (Diffusion Coefficient measurements in ternary mixtures)

project, the microgravity platform has offered the benchmarking of ground measurements

with the benefit of convection free conditions. Subsequently, more work on thermodiffusion

measurements has increased with the aim to contribute to the experimental database in

multicomponent mixtures. The most recent progress has been the establishment of the first

benchmark on the ternary mixtures tetrahydronaphthalene (THN) + isobutylbenzene (IBB)

+ n-dodecane (nC12) at (0.8, 0.1, 0.1) mass fractions [82]. The goal of this benchmark is

to incorporate the results of Soret coefficients measured by six independent teams utiliz-

ing different experimental techniques in microgravity and ground conditions. Furthermore,

Srinivasan and Saghir conducted experimental investigations on the Soret effect of ternary

hydrocarbon mixtures composed of methane (nC1), n-butane (nC4), and n-dodecane (nC12)

for five different molar compositions. The experimental measurements were done at 333.15

K and 35 MPa in a microgravity environment on board the satellite FOTON-M [15]. In

their work, they justified the physics of separation direction and magnitude of mixture com-

ponents (light, heavy, and intermediate).

Despite the recent progress, experimental values on ternary mixtures are still scarce and

limited. Tests conducted in space cannot be considered fully reliable: they still face some

technical issues concerning design imperfections of cells on board, perturbations in the com-

ponent separation, and sensitivity of data post-processing [14, 82]. A detailed review of

the experimental techniques of thermodiffusion can be found in Ref. [14]. This shortfall of

multicomponent data has impacted the improvement of the current numerical models and
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the formulation of a clear unified thermodiffusion theory that can emulate the separation

physics with high accuracy.

Nevertheless, some progress has been made in the theoretical modeling of thermodiffusion

[9, 53, 83–86]. However, a number of open questions still exist regarding the limitations of

the current theoretical approaches when applied to describe thermodiffusion in multicompo-

nent petroleum fluids at typical reservoir conditions. As discussed in the review of Eslamian

and Saghir [85], most of these models are based on non-equilibrium thermodynamic, kinetic

equations, or mechanical expressions. The major drawback of such models is predicting the

accuracy of thermodynamics properties using the equations of state. A few attempts have

been done on the development of theoretical approaches to predict thermal diffusion factors

in multi-component mixtures [85, 86]. However, there is still discrepancy between the mod-

els: they fail to account for the complex composition dependence and relative properties

contributions to the Soret coefficient, which is due to the cross-interactions that happen at

the molecular level [9].

At present, very limited work has been done to study thermodiffusion in ternary hydro-

carbon mixtures using MD. Galliero et al. [87] conducted boundary driven non-equilibrium

molecular dynamics (BD-NEMD) simulations to examine the thermodiffusion coefficient of

(nC1-nC4-nC12) ternary mixtures at 333.15 K and 35 MPa for five different molar composi-

tions using different fluid models: Lennard-Jones (LJ) and Lennard-Jones Chain (LJC) fluid

models. Later, Artola and Rousseau [54] did extensive MD simulations on ternary isotopic

mixtures using the LJ sphere model. They compared their NEMD results with the data ob-

tained using the theoretical approach based on the extended Prigogine model, which showed

a remarkable agreement only for the isotopic ternary mixtures.

In this work, the eHEX NEMD algorithm along with the augmented TraPPE-UA is pro-

posed to study thermodiffusion in n-alkane ternary mixtures. Our employed methodology is

already validated in Chapter 4 for the binary mixture (nC5-nC10) at three different composi-

tions. In order to test the feasibility of this approach in ternary mixtures, the thermodiffusion

factor of the nC1-nC4-nC12 mixture for five different compositions was calculated at 333.15 K

and 35 MPa and validated with respect to the experimental data of Srinivasan and Saghir16

and compared to the MD work of Galliero et al. [87] In the attempt to understand the
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physics behind the separation response in each mixture, speculative explanations are given

based on an inherent assumption that thermal diffusion is an elementary process where two

molecules of different species swap positions. The possibility of a cross-interaction between

the 2 molecules is influenced by many factors some of which have competing effects. In

section 4.3, the computational details of EMD and NEMD methodology are described. Sec-

tion 5.3 presents the validity of numerical results pertaining thermodynamics properties of

liquid mixtures (density, diffusion coefficient) followed by an analysis of the thermodiffusion

separation ratio results obtained for the different cases. Finally, the summary of our research

study and the pertinent conclusions are drawn in section 5.4.

5.2 Methodology

5.2.1 EMD

To assess the performance of the force field model in ternary mixtures and ensure equilibrium

state, EMD simulations were conducted to obtain thermodynamics properties such as the

system density and self-diffusion coefficient of each component in the mixture. Simulations

were carried out at 333.15 K and 35 MPa, and Periodic Boundary Conditions (PBC) were

applied for all systems. A total of 2000 molecules were included in the systems. In order

to avoid highly overlapped atoms, the system configuration was initially brought to a lo-

cal potential energy minimum by performing an energy minimization. Next, an annealing

procedure was used in order to accelerate the equilibration and avoid trapping in a local

minimum of energy: the system was initially heated up to 700 K and then cooled down

back to 333.15 K. Next, the NPT ensemble with a Nose Hoover thermostat and barostat

using the time constants of 0.1 and 1 ps, respectively, was employed in order to determine

the equilibrium ternary system densities at a target pressure of 35 MPa for the 5 mixture

compositions. Long-range tail corrections to the energy and pressure were included. The

equations of motion were integrated using the velocity Verlet algorithm, and a time step

of 1 fs was used in all simulation runs. To bring the system to an equilibrium state and

ensure energy conservation, EMD simulations were performed in the NVT ensemble using

the Nose Hoover thermostat at the previously determined equilibrium density corresponding

to a pressure of 35 MPa. After running NVT for 2 ns, the average system energy was calcu-

lated using the NVE ensemble. The energy of the last configuration of the NVT simulation
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was adjusted by carrying out an additional NVE equilibration run for 5 ns. This procedure

allowed us to achieve an average equilibrium temperature of 333.15 ±1 K. The final con-

figuration obtained was used as an initial configuration in the simulations for determining

D, which is also performed again in the NVE ensemble with an additional run time of 5

ns. The self-diffusion coefficient (Di,self ) of each constituent of type i in the ternary mixture

(nC1-nC4-nC12) was computed to explain the effect of the diffusion rate with the system and

validate the performance of the force field model applied on ternary liquid mixtures (see Eq.

4.7). The mean square displacement (MSD), which measures the average distance traveled

by a given particle in a system, is used to describe the behavior and the atomic diffusivity

of the alkane molecules.

5.2.2 BD-NEMD

The system size and strength of the heat flux were considered as two important parameters

to achieve good computational results and local equilibrium, as defined by the validity of

thermodynamic equations [8]. The criteria of the validity of local equilibrium from NEMD,

clearly formulated in the work of Kjelstrup et al. [42], were checked in order to verify the

reliability of our computational results under extreme temperature gradients.

In order to ensure a good statistical precision, all NEMD ternary systems contained 2000

molecules (given composition). With the previously obtained densities, ternary mixture con-

figurations were equilibrated again using NVT and NVE and a time step of 1 fs. The system

region was modified for BD-NEMD simulations. The box dimensions were rescaled such that

its length in the z direction (Lz) is twice its length in x (Lx) and y (Ly) directions, while

maintaining the same equilibrated system density. A unidirectional heat flux was imposed

on the system along the z-axis. The two thermostat regions were centered at the points

z = ±Lz/4 (see Fig. 4.1). During each time step, a fixed amount of heat is taken from the

cold zone and added to hot zone. In order to capture the spatial variation of the tempera-

ture and composition, the simulation box was divided in the z direction into 32 bins of equal

size. The number of molecules inside each slab (around 62 molecules) was considered large

enough for it to behave as a thermodynamic system [42]. Each BD-NEMD simulation (given

composition) was at least 48×106 time steps long (after an equilibrium simulation of 5×106

time steps) with a larger time step of 2 fs for which the total system energy exhibited a
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minor drift (less than 0.3%). The first 2.5×106 time steps of simulation were discarded from

the average calculations to avoid transient effects. Local temperature and density fraction

were computed at each 500 time steps, and averages of 20 samples were dumped every 10

000 time steps to a file for later analysis. Additionally, accumulated averages of the system

overall energy and temperature and the local mole fraction and temperature for each layer

were computed [8]. The corresponding gradients were also calculated from a linear fit of the

local quantities. The hot and cold regions (4 slabs each) as well as two neighbor slabs have

been discarded from the temperature gradient measurement because of non-linear behavior

in these layers. The statistical errors were estimated from the standard deviation from the

mean.

For better physical insight into the separation process, both thermodiffusion factor αT,i

and the so-called separation ratio k′T,i corresponding to the Soret quantity were evaluated

from the proportionality coefficient relating the mole fraction gradient to thermal gradient

for each block, according to the following equations:

k′T,i = −∇xi
∇T

(5.1a)

αT,i = −T ∇xi
xi(1− xi)∇T

(5.1b)

where ∇T is the temperature gradient and ∇xi is the component type i mole fraction gradi-

ent. The thermodiffusion separation ratio was computed as a running average over the time

blocks, and the statistical error was estimated from the standard deviation from the mean.

5.3 Results and Discussion

5.3.1 Validation of mixture density and self-diffusion coefficient

The employed potential model was validated by comparing simulation densities for all mix-

tures with the experimental data obtained from NIST [88], as shown in Table 5.1. The

numerical values provide a reasonable verification of the potential model parameters by re-

vealing a maximum error of 1.64% (obtained for mixture 4) with respect to the experimental
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data. Thus, our UA force field is a good candidate for accurately modeling the interactions

Table 5.1: Densities of nC1-nC4-nC12 mixture for different molar composition at 333.15 K
and 35 MPa. The % error ∆ of the numerical density of this work was computed with respect
to experimental data.

 
Mixture 

Mole fraction Size of simulation 
box (A3) 

 

Density (kg/m3) 

nC1 nC4 nC12 NIST MD Work 

1 0.2 0.1 0.7 604180.21 744.32 736.16 (1.10) 
2 0.2 0.2 0.6 549809.33 734.28 728.21 (0.83) 
3 0.2 0.4 0.4 457988.35 703.09 696.56 (0.93) 
4 0.2 0.5 0.3 419034.49 679.64 668.52 (1.64) 
5 0.2 0.6 0.2 379212.89 648.72 643.44 (0.81) 

	

and transport properties of the ternary n-alkane mixtures at high pressure and temperature,

for the different molar compositions.

Another benchmark for model validation is the evaluation of the dispersed and aggre-

gated state of the ternary system (interactions between molecules) for different molecular

compositions. The justification is done by calculating the self-diffusion coefficients of the

system components. Figure 5.1 illustrates the MSD of nC1, nC4, and nC12 evolution with

respect to the EMD simulation time for mixtures 2, 3, 4, and 5 at 333.15 K and 35 MPa. A

great linear trend of MSD was observed for all the species.

The self-diffusion coefficients were calculated from the slope of MSD lines and presented

in Table 5.2. In comparison with the results in the literature for pure and binary n-alkanes,

the governing self-diffusion coefficients lie in the same magnitudes at identical temperature

and pressure conditions. The overall increase in self-diffusion coefficients of each n-alkane

constituent (nC1, nC4, and nC12) with the increase in nC4 mole fraction proved the effect of

system density, species relative weight, and activation energy on the molecular displacement.

This behavior is expected and explained by the increase in the system molecular loading

which intensifies the collisions between particles, thereby raising the energy barriers for
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diffusion. In other words, the accuracy of the calculated results in Table 5.2 is acceptable

and the existing force field model accurately describes the molecular interactions in ternary

n-alkane mixtures.

Table 5.2: Self-diffusion coefficients (D) of nC1, nC4 and nC12 for the different ternary
mixture molar compositions.

 
 

nC4 mole fraction D × 10-9 (m2/s) 
nC1 nC4 nC12 

0.1 3.87 2.03 1.08 
0.2 4.29 2.52 1.32 
0.4 4.48 3.04 1.43 
0.5 5.24 3.40 1.82 
0.6 14.96 8.98 5.05 

Linearity and convergence of non-equilibrium MD process

Local equilibrium and system convergence were examined by tracking the variation of tem-

perature, composition, and energy (potential and kinetic) in each slab over simulation time

steps. In order to have a similar evaluation scaling factor, normalized values of all time

evolution variables were considered with respect to steady state mean values and plotted

against simulation time, according to the following formula:

y∗(ti) =
y(ti)

y∞
(5.2)

where y(ti) indicates any variable at time ti and y∞ is the estimated mean value of the vari-

able. Figure 5.1 shows the normalized kinetic (Ke), potential (Pe), and total energy in three

different regions of the simulation box (hot, cold, and middle). For all compositions, station-

ary state was attained with minimal fluctuations at the end of the production run. Moreover,

it is noticed that as the mixture density increases, the convergence time increases for Pe,

while it decreases for Ke. The fluctuations in Ke at the beginning of the simulation runs

for low mixture density (mixture 5 to 1) is due to the increased amount of lighter molecules

that require lower activation energy. On the other hand, as mixture density increases the

intermolecular interactions between molecules increase due to heavier component collisions,
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which develops Pe instabilities.

The continuity profile of steady state local density, temperature, and concentration was

verified for each nC1-nC4-nC12 mixture composition. The linear trend of density and temper-

ature profiles across the simulation box for mixtures 25 indicates that the system behavior,

despite strong gradients, is still in the domain of the linear response and behaves like a liquid

[43]. The high pressure of 35 MPa ensured that methane remained in the liquid state in the

mixture. In order to check for concentration linearity, the mole fraction profiles for each

component were evaluated for all compositions. Figure 5.2 verifies the linear trend and di-

rection of concentration slopes attained in mixtures 2, 3, and 4. The dotted lines correspond

to a linear fit of the data. To support this assumption, the criteria of local equilibrium from

NEMD were checked [42]. Each layer contained around 62-63 molecules. The average fluctu-

ation estimates of local concentration and temperature were around 4%-9% and 0.3%-0.5%,

respectively, in each slab. The relative change in temperature and density across the slab

in the direction of diffusion was smaller than one. The linearity condition of both gradients

was also evaluated through the R2, which achieved a value higher than 0.97 and 0.99 for

composition and temperature, respectively. The observed local convergence demonstrates

that n-alkane ternary systems are in local equilibrium state prior to data post-processing.
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(a)  

	

(b)  

(c) 

Figure 5.1: Normalized local kinetic energy (left) and potential energy (right) variation
with NEMD simulation time in hot (red), cold (blue), and middle (green) slab regions and
represented for (a) mixture 2 (xC4= 0.2), (b) mixture 3 (xC4 = 0.4), and (c) mixture 5 (xC4

= 0.6).
.
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(b) 

(c) 

Figure 5.2: Mole fraction profile of nC1 (black dots), nC4 (red triangles), and nC12 (blue
squares) for three different molar compositions (a) mixture 2 (xC4= 0.2), (b) mixture 3 (xC4

= 0.4), and (c) mixture 4 (xC4 = 0.5). The error bars which represent the standard deviation
of the mean are only shown for mixture 3
.
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When dealing with large multicomponent systems, it is important to look at the time

evolution of each components concentration gradients. Figure 5.3 represents the running

averages of the normalized mole fraction gradients of each component in mixtures 2 - 5, eval-

uated since the onset of the production run. High oscillations were detected at the beginning

of NEMD simulations, which eventually attenuate at the end of the run as shown in Figure

5.3. As expected, the time needed for species mole fraction gradient to reach a plateau

or local equilibrium was significantly higher than that of the temperature gradient due to

higher instabilities in particles movement and collisions (check Ke in Figure 5.1 for tempera-

ture gradient time evolution and Figure 5.3 for concentration gradient time evolution). Note

that the errors (standard deviation of the mean) in local composition and temperature were

taken into account to compute profiles and their uncertainties. The standard error of the

thermodiffusion separation ratio was computed with composition and temperature profile

uncertainties using standard error propagation methods [74].
 

 

 

 

Fig. 6 Normalized concentration (density number) gradient variation with NEMD simulation 
time for each component in (a) mixture 2 (xC4=0.2), (b) mixture 3 (xC4=0.4), (c) mixture 4 
(xC4=0.5) and d) mixture 5 (xC4=0.6). 

 

 

 

 

 

 

 

	

(a) (b) 

(c) (d) 

Figure 5.3: Normalized concentration (density number) gradient variation with NEMD sim-
ulation time for each component in (a) mixture 2 (xC4 = 0.2), (b) mixture 3 (xC4 = 0.4),
(c) mixture 4 (xC4 = 0.5), and (d) mixture 5 (xC4 = 0.6.
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5.3.2 Thermodiffusion Factor

The main aspect of understanding the thermodiffusion process is to be able to identify the

direction (sign) and strength (magnitude) of separation of the components in a mixture when

a thermal gradient is applied. According to the previous findings [9, 15, 54] the particular

interactions leading to a certain thermodiffusion separation direction and magnitude are de-

pendent on the combination of different factors such as the activation energy, size, similarity,

and mole fraction of system components. For instance, species with a relatively large mole

fraction would imply that the latter dictates the segregation process by being the dominant

creator of holes as well as by being available in large quantities to fill a hole. Additionally,

large molecules (higher density) involve higher activation energy and lower mobility, which

renders their diffusion even slower. The opposite applies for smaller molecules. Note that

in mixtures of linear n-alkanes composed of flexible and chemically akin molecules (non-

associated mixtures), one can expect an isotope-like behavior of the system [9, 14, 54].

Keeping in mind the elements responsible of forming a particular molecular interaction,

the trends of the thermodiffusion factor of nC1, nC4 and nC12 in these mixtures can be

explained based on the inherent assumption of the probability of a molecule to occupy or

create a hole formed by other types of species. In other words, the separation process can

be explained via three probable interactions: nC1-nC4, nC1-nC12, and nC4-nC12. These in-

teractions are largely impacted by the mole fraction, similarity, and the relative difference

of mass and activation energy of the two molecules involved in creating and occupying a hole.

The thermal diffusion of each component for the different mixture compositions was

carefully examined. The experimental and numerical values obtained by this work and the

MD model of Galliero et al. [1] are shown in Figure 5.4. Data with the corresponding relative

errors are also listed in Table 5.3.
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Table 5.3: Numerical values of thermodiffusion factor computed for each component using
this work MD algorithm and other models of Galliero [1] for all the molar compositions. The
values in brackets represent the percentage error with respect to the experimental values.

 

 

 

	

nC4  
mole fraction 

nC4 thermodiffusion factor 𝛼"# 

Exp. This work LJC/LB LJC/KG LJC/WH 

0.10 -0.22 -0.44 (38.64) -0.41 (86.87) -0.42 (91.92) -0.47 (112.12) 

0.20 -0.25 -0.24 (2.55) -0.42 (67.5) -0.39 (55.00) -0.38 (52.50) 

0.40 -0.5 -0.49 (38.92) -0.37 (25.83) -0.48 (4.25)      -0.51 (1.67) 

0.50 0.55 0.32 (41.85) -0.31 (156.73) -0.29 (153.09) -0.31 (156.00) 

0.60 0.82 0.74 (10.28) -0.10 (112.70) -0.13 (115.24) -0.18 (121.85) 

nC4  
mole fraction 

 nC1 thermodiffusion factor 𝛼"$	 

Exp. This work LJC/LB LJC/KG LJC/WH 

0.10 -1.53 -1.31 (14.26) -1.03 (32.60) -1.13 (26.06) -1.12 (26.88) 

0.20 -1.55 -1.21 (22.09) -1.02 (34.27) -1.07 (31.05) -1.14 (26.21) 

0.40 -1.20 -1.12 (2.83) -0.95 (20.83) -1.01 (16.09)      -0.99 (17.19) 

0.50 -1.76 -1.44 (18.37) -0.89 (49.22) -0.99 (43.89) -1.08 (38.92) 

0.60 -1.71 -1.71 (0.15) -0.91 (46.64) -0.99 (41.89) -0.97 (43.35) 

nC4  
mole fraction 

  nC12 thermodiffusion factor 𝛼"$&	 

Exp. This work LJC/LB LJC/KG LJC/WH 

0.10 1.26 1.13 (10.30) 2.24 (23.66) 2.43 (17.23) 2.46 (16.48) 

0.20 1.20 1.44 (19.73) 1.44 (20.14) 1.46 (19.10) 1.53 (15.28) 

0.40 1.30 1.24 (4.62) 1.00 (22.76) 1.15 (11.54)       1.17 (9.94) 

0.50 0.68 0.61 (9.85) 0.88 (54.76) 0.92 (61.76) 1.00 (74.37) 

0.60 0.47 0.40 (15.53) 0.71 (127.39) 0.79 (151.33) 0.83 (163.30) 
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Fig. 7 Comparison of thermodiffusion factor for each component (a) nC1, (b) nC4 and (c) nC12 in the ternary 
mixture for all the five molar compositions. Values correspond to the experimental, other numerical values in 
the literature and this work MD results.   

	

(a) 

(b) 

(c) 

Figure 5.4: Comparison of the thermodiffusion factor for each component (a) nC1, (b) nC4,
and (c) nC12 in the ternary mixture for all the five molar compositions. Values correspond
to the experimental other numerical values in the literature and this work MD results.
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It is clear that there is good qualitative agreement between the experimental data and

the MD model presented in this work, which presents the least deviation compared to the

Galliero et al. MD model [1]. Specifically, the MD framework proposed in this work accu-

rately predicts the change in the direction of separation for nC4 as its concentration in the

mixture increases, while the Galliero et al. [1] model fails to predict the direction of the

intermediate component (nC4) for mixtures 3 and 4. The large deviations of Galliero et al.

[1] could probably be attributed to the fact that a detailed force field model was not used

to produce the atomistic interactions. Also their model does not correct the energy losses in

the original HEX algorithm.

Based on the findings in all the simulated mixtures, the heavier species (nC12) always

tend to enrich at the cold side and lighter species (nC1) tend to go preferentially to the hot

side. This behavior is in agreement with the thermophobicity concept of Hartmann and

co-workers [89] and can be explained as follows: In the case of nC12, in all the mixtures, it

mostly appears in nC1-nC12 or nC4-nC12 interactions. Since in either case it is the denser

component with the highest activation energy, it always moves to the cold side; i.e., it has a

positive thermodiffusion factor. On the other hand, nC1 is largely involved in nC1-nC12 or

nC1-nC4 interactions and is the component with the lowest activation energy in these inter-

actions. Hence, it always segregates to the hot side; i.e., it has a negative thermodiffusion

factor. On the other hand, in ternary mixtures 1, 2, and 3, the component with an interme-

diate density, nC4, has a positive slope segregating to the hot reservoir. In mixtures 4 and

5, nC4 separates to the cold reservoir (see Figure 5.4). The sign change of thermodiffusion

with the molar composition of nC4 implies that its relative concentration with respect to

nC1 and nC12 in the mixture directly influences its direction of segregation.

For a better understanding of the physical insight into the magnitude of thermodiffusion,

the results of the separation ratio k′T,i are summarized in Table 5.4.

In the first 3 mixtures, nC12 is the dominant species and exhibits the highest propor-

tion of separation relative to nC1 and nC4. This is due to the considerable amount of nC12

molecules contributing in more possible interactions of nC1-nC12 and nC4-nC12. The fewer

nC1-nC4 interactions resulted in a net motion of nC4 toward the hot side as the number of

these interactions is too small to overcome nC4-nC12 interactions.
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Table 5.4: Experimental and this work MD results of thermodiffusion separation ratio k′T,i
for each component at every mixture mole fraction.

nC4  
mole 

fraction 

Separation ratio 𝑘",$% ∗ 1000 

nC1 nC4 nC12 

 Exp. This 
work Exp. This 

work Exp. This 
work 

0.1 -0.73 -0.63 -0.06 -0.08 0.79 0.71 
0.2 -0.74 -0.58 -0.12 -0.12 0.86 1.04 
0.4 -0.58 -0.56 -0.36 -0.22 0.94 0.89 
0.5 -0.85 -0.69 0.41 0.24 0.43 0.39 
0.6 -0.82 -0.82 0.59 0.53 0.23 0.19 

 
 

As we move from mixtures 1 to 5, the absolute value of the nC4 separation ratio continues

to rise until it reaches a maximum value of 0.53. This behavior is speculated by the relatively

intermediate density of nC4 and the gradually increasing mole fraction. Put differently, as

nC4 becomes the dominant species (as in the case of the final two mixtures), there is an

increase in nC4-nC1 interactions and a reduction in nC4-nC12 interactions. As a result, there

is a net movement of nC4 to the cold side. The reason that the separation strength is higher

toward the cold region is hypothesized by the fact that nC4 molecules become more mobile

as the mixture density decreases.

In the case of nC1, the lowest thermodiffusive separation is observed in mixture 2 (-

0.58) and the highest in mixture 5 (-0.82). In fact, nC1-nC4 interactions in mixture 5 are

stronger than nC1-nC12 interactions in mixture 2, for the same molar composition ratio of

the 2 species involved. This behavior can be explained by the decrease of system molecular

loading (lower density) in mixture 5, which diminishes the collisions between particles and

consequently causes a drop in energy barriers in the way of diffusion. Finally, the effect of

mixture composition, cross-interactions, mobility, and similarity features of ternary mixture

components highly influence the sign and magnitude of the thermodiffusion factor.

In summary, the proposed MD approach can precisely reproduce the molecular behavior

of the different mixture species when subject to a thermal field, while conserving the system
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energy with minor numerical instabilities. In other words, the thermophobicity concept

along with the effect of relative mixture composition on the magnitude and sign of the

thermodiffusion factor of each component in the ternary mixture is demonstrated fairly

accurately in our NEMD results.

5.4 Conclusion

The performance of Boundary Driven Non-Equilibrium Molecular Dynamics (BD-NEMD)

using the enhanced heat exchange (eHEX) algorithm was studied in order to test its ability to

accurately predict thermodiffusion in nC1-nC4-nC12 ternary mixtures for five different molar

compositions. The eHEX algorithm is an extended version of the HEX algorithm, developed

by Hafskjold and co-workers with an improved energy conservation. It was applied along

with the augmented TraPPE-UA force field. The thermodiffusion factor or separation ratio

for all ternary mixture compositions was assessed at 333.15 K and 35 MPa and compared to

the experimental data as well as 3 other models from the literature [1]. The following key

observations were drawn from the findings:

1. The computational precision of our enhanced algorithm along with the UA force field

model manage to accurately describe the molecular interactions in ternary n-alkane

mixtures and predict mixture densities and self-diffusion coefficients for each compo-

nent. Moreover, our MD approach achieved local equilibrium with great convergence

while significantly conserving the system energy with minor instabilities.

2. The continuity of the gradients (temperature, composition, and mixture density) em-

phasizes that the system behavior, despite the extreme gradients, is still in the domain

of the linear response. The time evolution of both local energies and species concentra-

tion gradients converges with minimal computational error.

3. The model proposed in this work showed good agreement with experimental data and

performed better than the other models proposed by Galliero et al.[84]. More specif-

ically, our MD model accurately captures the change in the sign of nC4 separation as

its concentration in the mixture increases, which was not possible in Ref. [84].

In conclusion, the MD framework proposed in this work can adequately represent the

physics behind the thermodiffusive separation and we can explain the segregation based on
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the composition dependent interactions between the different species in the mixture. Given

that our proposed model performed well for calculating the thermodiffusion factor of ternary

n-alkane mixtures, the eHEX algorithm along with the augmented TraPPE-UA force field

model serves as a highly promising framework and a low-cost alternative for experiments to

study thermodiffusion in ternary mixtures.
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Chapter 6

Molecular Dynamics Evaluation of

Alumina Nanofluid Thermal

Transport Performance

This chapter has been reproduced, nearly exactly, from our submitted paper work to refer

directly to Chapter 6 of this thesis. The submitted manuscript appears as in [90]: S. An-

toun, M. Z. Saghir “ Thermophysical Properties and Heat Transfer Enhancement of Alumina

Nanofluid: An Improved Molecular Dynamics Study.”

6.1 Introduction

The suspension of nanoparticles (NPs) in aqueous solutions, known as nanofluid, hold

promise in many energy applications, including thermal management, energy storages, sus-

tainable power harvesting for cooling/heating purposes and others, owing to unique ther-

mophysical properties obtained by adding NPs into conventional fluids [20, 21]. Extensive

research has been conducted to evaluate thermal enhancement, but despite the progress

brought by experimental effort, real understanding of the nature of heat transfer enhance-

ment mechanisms in nanofluids has yet to be achieved [6, 18]. Many studies in the literature

offer conflicting experimental results [4, 91–95]. Discrepancies stem from a multitude of tech-

nical challenges associated with the preparation of similar nanofluids, such as particles size

and shape, solution ionic strength, NPs volume concentration, temperature etc. [24, 96, 97].
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It remains a challenge and a subject of strong argument to identify clearly the heat

transfer mechanisms in nanofluids: higher specific surface area of NPs, dispersion and elec-

tric charge, Brownian motion, interfacial layer, collision between particles and nanoclusters

morphology.

A review of the latest developments came into a consensus that NPs aggregation is

the most significant factor that dictates thermal transport enhancement [22, 25, 27]. The

agreement was based on the fact that NPs motion while in solution results from all the

interconnections involving van der Waals forces, columbic repulsion and steric action with

the neighboring species. Therefore, balancing the various competing interactions leads to

NPs dispersion and thus prevents aggregation and sedimentation [96, 98]. The ability to

tune NP interactions, and thereby modulate the dispersion level, holds the key to rationally

synthesize a stable nanofluid and extend the shelf-life of its properties and functionality.

However, engineering nano-sized suspensions remain a challenging task both experimentally

and theoretically. Recent empirical and quantum studies on interfacial phenomena shed light

on the specific factors influencing the interNP and water-NP interactions, thereby clarifying

the multiple, closely coupled processes controlling the interactions between NPs dispersed in

water (i.e. dissolution, adsorption, protonation, hydroxylation, etc.). For instance, creating

a high surface charge produces an electrical double-layer around the NPs, which results in

strong repulsive Coulombic forces that promote particle dispersion [99].

The pH variation effects on dispersion stability and other properties of the alumina/water

have been studied by several researchers [100–103]. G. Lefvre et al [100] calculated the real

surface charge from titration experiments of hydrated -alumina suspensions for high and

low pH values. According to their study, there is a large effect of dissolution on surface

charges determination for pH <10 and pH <4.5 [100]. The correction for such an effect on

alumina nanoparticles in acidic solution lead to an apparent saturation surface charge of

+2.3 at/nm2 (corresponding to +0.37 C/m2) for a pH range less than 3.75. Lately, Mui

et al. [25] investigated the aggregation and stability phenomenon of commercially available

γ-Al2O3 NPs as a function of the solution pH, ionic strength for better understanding of

the colloidal behavior of γ-Al2O3 NPs in aqueous environments. According to their analysis,

γ-Al2O3 NPs possess pH-dependent surface charges, with a point of zero charge (PZC) of
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pH 7.5 to 8 for maximum aggregation. It has been also revealed that γ-Al2O3 NPs attain a

positively charged surface (ζ potential) in acidic solution pH (pH <PZC) and a negatively

charged surface with pH >PZC [25].

According to the previously mentioned findings [96, 98, 103], it is essential to prepare

nanofluids at low pH values, where the nanoparticles become positively charged, thus induc-

ing repulsive forces between them and promoting a well-dispersed regime and maintaining the

suspension stability [104, 105]. In fact, avoiding agglomoration and ensuring stability should

be the main target to extend the shelf-life of nano-colloid properties and functionalities.

More recently, Bouguerra et al. [27] examined the dispersion regime in alumina/water-based

nanofluids by experimentally conducting simultaneous measurements of thermal conductiv-

ity and dynamic viscosity for different volume fractions of NPs immersed in different pH

solution.

In response to the increased need for simulation and theoretical techniques induced by

cost effectiveness and time-saving interest, a lot of theoretical work has been proposed to

predict nanofluids thermal properties at different conditions [28, 106]. However, the initial

predictions based on various assumptions rather than definite formulation accumulate ambi-

guity in the collection of results and generate wide inaccuracies. A consensus has yet to be

reached when it comes to modelling the real microscopic behavior of heat transfer involved

in nanofluid dispersion [23, 107].

Among other computational techniques, MD stands out as a highly promising alternative.

From a conceptual standpoint, the approach provides inestimable atomic-level details to help

us elucidate the intrinsic heat transport mechanisms in nanofluids [28]. Recently, Jabbari et

al. [18] conducted a comprehensive review of the different MD methods applied to predict the

thermophysical properties of nanofluids, mainly viscosity and thermal conductivity. They

highlighted the gap between the different techniques and the missing components that need

to be considered for future studies. Most of the MD findings on nanofluids found in the

literature are skewed by a large number of simplifications and limitations [108–113]:

• They are restricted to modeling one NP thus disregarding the collective behavior of

many NPs and their dipersive state
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• They fail to represent the real atomic structure and electrostatics at the solid-liquid

interfaces which are highly altered due to hydroxylation, protonation/deprotonation

phenomena from solution pH effects, etc.

• They use generalized mixing rules to calculate the potential energy parameters corre-

sponding to the interactions between unlike species.

• They fall short to account for the actual inter-particle energies and electrostatics of

nanoparticles scattered in acidic aqueous solutions.

The result of all these assumptions lead to incorrect predictions of the real interaction po-

tential energies, the system dynamics and its macroscopic properties.

With the above background in mind, there is a need of a more reliable predictive MD

model to uncover the critical links between nanoscale and macroscale phenomena, and facil-

itate a controlled suspension of the nanofluid.

γ-alumina nanomaterial was selected in this work due to the extensive number of related

studies found in the literature and its broad use in many technological applications. Alumina

is largely utilized for its relatively high thermal conductivity and largely employed in thermal

nanofluids [4]. Moreover, the chemical resistance and porosity of alumina surfaces enable

superior performance when it is used as a catalyst or catalyst support [27]. Additionally,

aluminum oxide clusters have been extensively studied both numerically and experimentally

to better understand the relationship between atomic structures, bonding nature and other

interfacial surface properties with water [114–116]. Still, the interfacial properties are very

challenging to obtain because they are highly dependent on the experimental conditions. For

instance, due to possible ion migrations upon surface hydration, features like electronic and

structural surface density make the actual chemical nature of the oxide surface intrinsically

difficult to describe at the atomic level.

Thanks to recent quantum computations conducted on γ-alumina/water interfaces, a

better atomic scale understanding of the structure and dynamic behavior of the surface

atoms along with the interfacial water molecules was furnished. Recent studies thoroughly

investigated the surface morphology and properties of hydrated γ-alumina resulting from

various chemical phenomena that take place at the solidliquid interface such as dissolution,
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hydration, protonation, deprotonation and others [3, 5, 100, 117, 118].

A successful application of MD technique requires the use of a potential force field (FF)

that effectively and accurately accounts for the interactions in complex colloidal systems

[28]. That is, the force field must be transferable and suitable for effective modeling of the

actual chemical nature (electronic and structural) of the metal oxide γ-Al2O3 surface and

the liquid (water) in contact with the solid NPs. The Clay Force Field model, hereafter

referred to as CLAYFF, was developed by Cygan et al. [3] and has shown to effectively

model the behavior of clay/water systems in MD simulations [119]. It is based on an ionic,

non-bonded, description of the metal-oxygen interactions associated with hydrated phases.

The results obtained to date demonstrate that the CLAYFF shows good promise for MD

simulations to accurately reproduce the interaction potential of hydrated aluminium-oxides,

including correctly capturing the attractive van der Waals and the repulsive electrostatic

interactions, as well as entropic effects which are particularly important at the nanoscale

[100]. However, despite its success, few limitations have also become evident with the use of

the original CLAYFF. In this study, the original CLAYFF model was augmented to account

for positively charged alumina NPs to effectively describe the structure and behaviour of

water, hydroxyl, protons and the surface atoms of alumina-waters in an acidic pH regime.

On the other hand, MD studies rarely couple the thermal conductivity enhancement and

the viscosity variations of nanofluids. Yet, the enhancement can be very sensitive to the

effective viscosity [26, 27]. To this end, it is crucial to assess the performance of heat trans-

fer nanofluids by the combination of the properties rather than by each of the individual

properties.

Due to shortage of microscopic understanding on NPs behavior from existing experimen-

tal and the lack of precision of numerical MD work to reproduce thermal transport, the

present chapter responds to the necessity to adopt a precise MD approach capable of pre-

dicting the thermophysical properties (such as density, viscosity, heat capacity and thermal

conductivity) of γ-Al2O3-water nanofluid suspended in acidic solutions. The main goal of

this work is to conduct MD simulations with the focus on the manipulation of solid-liquid

interfacial atomic structure and electrostatic state, in order to create positively charged

alumina nanoparticles dispersed in water, thereby bringing a closer solution of delineating
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methods for modulating the stability and aggregation of nanofluids.

A hybrid potential field, comprised of refined force field models (extended CLAYFF

and SPC/E), was first produced to allow a precise integration of the nanoscale phenomena

into the dynamics of the suspended positively charged alumina NPs, thereby bridging the

challenging gap between the nanoscopic solid-liquid interfacial phenomena and macroscopic

thermodynamic properties.

Nest, the refined FF was synergistically combined to the MD model [3] to probe the

thermophysical properties of the nanofluid evaluated at 4 different volumetric concentrations

(1%, 2%, 3%, 4%) and over a temperature range of 5 to 40 ◦C to be able to compare the data

with the experimental findings of alumina/water for convective heat transfer applications

existing in the literature[4]. We finally compared the performance efficiency of nanofluids to

the corresponding basefluid by calculating the Mouromtseff number (Mo which serves as a

factor of merit based on the four properties of the fluid: density (ρ), dynamic viscosity (µ),

thermal conductivity (k) and heat capacity (cp) [26, 27]:

Mo =
ρ0.8 k0.67 c0.33

p

µ0.47
(6.1)

This chapter is organized as follows: a description of the the methodology details are outlined

in section 6.2. Then, section 6.3 provides an analysis of the validity of computational results

pertaining to the thermodynamics and heat transfer enhancement of the nanofluid. Finally,

the summary of our investigation and the pertinent conclusions are drawn in Section 6.4.

6.2 Methodology

The precision of MD simulations highly depends on the selection of a realistic force field

model, system size and simulations timescales. Most MD studies conducted till date are

skewed by many assumptions, which calls for enhanced MD models, in which the fewest

number of simplifying assumptions are applied, on one hand, and the volume of computations

is not increased significantly, on the other hand [28]. Put differently, in order to model

thermophysical properties concordant with real experimental measurements, it is crucial to

scout and implement the relevant findings in the literature to shape an accurate potential field

capable of 1- emulating the complexity between the water and Al2O3 NPs and 2- sustaining

a dispersed regime corresponding to a pH <PZC [100].
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6.2.1 Initial Configuration and Choice of Potential FF

The chemical nature of the surface, its charge and the concentration and distribution of NPs

are expected to play a key role in the heat transfer mechanisms. Therefore, it is vital to

identify the initial system structure to reproduce realistic features of nanofluids observed

under experimental conditions. Material Studio was initially used to confine the molecules

in a cubic simulation box and optimize the systems initial structure [120]. The γ-Al2O3

particles were extracted by carving a sphere out of γ-Al2O3 supercell. The diameter of the

NP was fixed at 4 nm. Various coordination number of Al and O sites were found to be

left at the surface. Undercoordinated Al-edge were healed with H2O groups (acidic level

solution) whereas undercoordinated O-edge were healed with protons [100, 116, 117]. The

well-dispersed state was modelled by initially placing the assembled NPs in the box at cer-

tain distances so that it has insufficient time to aggregate within the time domain [106]. The

rest of the space in the cell was homogeneously occupied by water molecules. The water

density was set to 1.0 g/mL for all the starting configurations. The number of γ-Al2O3 NPs

were tuned to model the nanofluids with different volume concentrations. A snapshot of the

simulation model is shown in Figure 6.1.

The simulation of dispersing nanoparticles is performed in a systematic way. The detailed

steps are stated below:

1) Carving a spherical nanoparticle with a diameter of 4 nm from an optimized crystal

unit cell of gamma-alumina (110) using Material studio software. The parent bulk gamma-

alumina structure for the slab model used in this work originates from the optimized model

proposed by Ngouana-Wakou et al [5]. The optimized cell parameters consisted of a =

8.034A, b = 8.36A, and c = 5.55A containing 40 atoms (16 Al and 24 O).

2) Hydroxylation phenomena is assumed to occur on the surface chemistry of alumina NP

when in contact with water molecules. Therefore, the obtained carved sphere is functional-

ized by further hydroxylating the dangling bonds found on the surface. More specifically, the

dangling bonds were saturated with H and OH terminal groups such that their coordination

number of the surface atoms will be the same as in the bulk crystal.
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(a) (b) 

(c) (d) 

Figure 6.1: NPs dispersion morphology in water for (a) φ= 1% (b) φ= 2% (c) φ= 3% (d)
φ= 4%. Red and green represent oxygen and aluminum atoms of NPs and blue symbolizes
water molecules (base fluid).

3) Protonation of surface hydroxyl by adding hydrogen bond to increase its surface charge

and reach a value of 2.3 at/nm2.

System and NP Sizes

Modelling the conventional nominal size of one alumina NP (usually of a diameter 30 ∼
100nm in most industrial applications) requires a large number of atoms in MD simulations.

As a result, generating multiple NPs distributed in an aqueous solution requires an enor-

mous number of water molecules . The separation in scales between the size of the water

molecule and the NP renders the modelling of scattered nano-colloidal system very complex
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and demands extensive computational resources in MD.

Since the main goal of this study is to estimate the transport properties of nanofluid

while visualizing the corresponding assembly at different low volumetric concentrations (1-

4%), it is essential to have enough number of NPs in the system and ameliorated prediction

of the dynamic behaviour resulting from interparticle potentials specially at the solid-liquid

interfaces. A compromise must be found between the targeted accuracy and the size of the

models. Therefore, the NP diameter was fixed at 4 nm (after hydroxylation) for all the sys-

tems such that the minimum number of generated NPs is 3 at the lowest concentration level.

Note that the spherical NP shape and size was assess based on having a surface area large

enough to correspond to the highest possible hydroxylation coverage and eventually an ap-

parent positively surface charge of approximately +0.37 C/m2 of a fully protonated NP [100].

The choice to integrate a more precise potential field interactions over modelling the

actual nanoparticles size was based on the assumption that the solid-liquid interfacial inter-

actions have a larger influence on the thermal motion and diffusion of NPs in the base fluid

and ultimately the system thermophysical properties.

Hybrid Force Field Model

The water molecules were simulated using the simple point charge/extended (SPC/E) model

[121]. The model is known to reproduce accurate structural and dynamic properties of bulk

water. In order to reproduce precise particleparticle and waterparticle interactions, an ex-

tended CLAYFF model was implemented [3, 5, 100, 117, 118].

The results obtained to date demonstrate that CLAYFF shows good promise for MD

simulations to accurately reproduce the interaction potential of hydrated aluminium-oxides,

including correctly capturing the attractive van der Waals and the repulsive electrostatic

interactions, as well as entropic effects which are particularly important at the nanoscale

[3]. However, despite its success, few limitations have also become evident with the use of

the original CLAYFF. In this study, the original CLAYFF model was augmented to account

for positively charged alumina NPs to effectively describe the structure and behaviour of

water, hydroxyl, protons and the surface atoms of alumina-waters in an acidic pH regime.
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Below are the main restrictions found in the original FF model along with the corresponding

modifications adopted to solve the limitations:

• It assumes a net surface charge of zero (NPs at point zero charge (PZC)). Therefore,

the charge distribution on the NP was altered from the classical CLAYFF force field by

adding protons to the surface hydroxyl groups (adding H bonds to form OH2 groups)

until a globally positive NP, with a surface charge density of +0.37 C/m2 is reached.

• The difficulty to accurately represent the edges of finite size nanoparticle rather than

infinitely layered periodic structures. Recently, Pouvreau et al. [2] proposed a system-

atic approach to solve this problem by developing specific metal-O-H (M-O-H) bending

terms for CLAYFF, Ebend = k(θ − θ0)2 to better describe the structure and dynamics

of singly protonated hydroxyl groups at mineral surfaces. Based on a series of DFT

calculations, the optimal values of the Al-O-H for Al in octahedral coordination are

determined to be θ0AlOH = 110 ◦and kAlOH = 15 kcal/mol rad2. The addition of the

new bending term leads to a much more accurate representation of the orientation of

O-H groups at the basal and edge surfaces [2].

Details on the parameters can be found in TableA.1 in the Appendix. The LJ parameters for

unlike interactions were determined by Lorentz-Berthelot mixing rules. The cutoff distance

for all interactions was 9 . The ParticleParticle Particle-Mesh K-space (PPPM) solver was

applied for long range electrostatic interactions with a precision of 1/10,000 [34].

6.2.2 EMD Simulations

To validate the performance of the employed force field model, the density and specific heat

capacity of the system were compared to the experimental results in [4]. EMD simulations

were carried out at a fixed temperature of 300K and pressure of 0.1 MPa. Periodic Boundary

Conditions (PBC) were applied for all the nanofluid cases. The system configuration was

initially brought to a local potential energy minimum by performing an energy minimization.

Then, the NPT ensemble was employed for 4 different volume fractions ( 1%, 2%, 3%, 4%),

with a Nose Hoover thermostat and barostat using time constants of 0.1 and 1 ps, respec-

tively.

To ensure thermodynamic equilibrium, the convergence of total energy and its compo-
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nents (kinetic and potential; Coulomb, non-Coulomb, bonding, etc.) as well as temperature,

density, and atomic radial distribution functions were carefully monitored during this equi-

libration period. Following the equilibration, the atomic trajectory was recorded during the

next 40-100 ps of MD simulation at 0.004 ps intervals for the statistical analysis of the struc-

tural and dynamical properties of the simulated system.

All MD simulations in this work were performed using LAMMPS (Large-Scale Atomic

Molecular Massively Parallel Simulator) software [30]. Long-range tail corrections to the

energy and pressure were included [29]. The equations of motion were integrated using the

velocity Verlet algorithm with a time step of 1 fs.

6.3 Results and Discussions

6.3.1 Simulation Model Validation

To ensure equilibrium state and convergence, the system energy and temperature fluctuations

were carefully examined for the different NPs volume fraction. The total system energy and

temperature exhibited a minor drift (less than 3.5% and 2% respectively) for all the cases,

which verify that the MD simulation time is long enough to ensure accurate statistical

calculation results.

Density

Figure 6.2 presents the variation of the nanofluid density as a function of the particle volu-

metric concentration and temperature. The present data of γ-Al2O3-water nanofluid can be

seen to agree well with the experimental measurements obtained by Ho et al. [4]. It can be

also verified that the density of alumina NPs is less sensitive to the temperature variation

in comparison with the base fluid.
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Figure 6.2: Variation of Al2O3-water nanofluid density with temperature for the different
NPs volumetric concentration.

Specific heat capacity

Next, the specific heat capacity was also calculated using the following numerical formulation

[122]:

cp =
〈E2〉 − 〈E〉
KBT 2

(6.2)

where, 〈E〉 is the average total energy, T is the temperature and KB is Boltzmann’s constant.

During the simulation, fluctuations of the energy were recorded as a function of time (t).

Figure 6.3 indicates that the specific heat of the nanofluid decreases as the concentration of

NPs increases, and does not change with the rise in temperature, which are prominently in

line with experimental observations [4, 123]. The decrease of cp with increasing concentration

can be attributed to the fact that alumina NPs have lower specific heat than water. Finally,

the good agreement of the nanofluid density and cp with previous experiments [4] (5% and
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7% error respectively) verifies the accuracy of the employed MD computational scheme along

with CLAYFF model, which succeeded in emulating the complex interactions between the

base fluid and NPs.
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Figure 6.3: Variation of Al2O3-water nanofluid specific heat capacity with temperature for
the different NPs volumetric concentration.

6.3.2 Thermal conductivity and Viscosity calculation

The Green-Kubo formulation was utilized to calculate the thermal conductivity (k) and

viscosity (µ) of the nanofluid. The values of k and µ were obtained using the following

equations respectively [28]:

k =
1

3KBT 2V

∫ ∞
0

〈
~J(t) ~J(0)

〉
dt (6.3)

µ =
V

KBT

∫ ∞
0

〈Pαβ(t)Pαβ(0)〉 dt (6.4)
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where KB the Boltzmann constant,
〈
~J(t) ~J(0)

〉
is the heat current autocorrelation func-

tion (HCACF) and 〈Pαβ(t)Pαβ(0)〉 is the stress autocorrelation function (SACF). According

to the time evolution of HCACF and SACF (see Figure 6.4), a correlation length of 20 ps is

sufficient enough to reach convergence and generate stable results of the nanofluid relative

thermal conductivity and viscosity. Figure 6.4(a) and (b) represents the HCACF and SACF

of the nanofluid evaluated at φ= 2% and T= 25 ◦C respectively. Generally, HCACF and

SACF of liquid water decay to zero monotonically. However, the addition of NPs changed the

decay into an oscillatory manner. The oscillation intensities of the autocorrelations became

stronger with increasing particle concentration, resulting in an increase in thermal conduc-

tivity and viscosity in the nanofluid. These fluctuations can be attributed to the effect of

solid-liquid interfaces in the system.
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Figure 6.4: Time evolution of (a) HCACF and (b) SACF for the nanofluids at φ=2% and
T=25 ◦C.

Figure 6.5 and 6.6 illustrate the dependence of alumina-water nanofluid viscosity (µnf )

and thermal conductivity (knf ) on temperature (from 5 to 40 ◦C) and volume concentration

(from 1% to 4%). According to Figure 6.5, the estimated viscosity of the nanofluid displays

a trend of quiet steep rise with the particle fraction; in particular at T= 15 ◦C, a relative

increase of up to 59% in the viscosity arises for the nanofluid containing 4% of NPs with

respect to water (see Figure 6.7(a) for relative change in µnf/µbf ).
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Figure 6.5: Variation of Al2O3-water nanofluid viscosity with temperature for the different
NPs volumetric concentration.

This significant raise is most likely due to increased solid-liquid interfacial interactions

when adding alumina NPs and the possibility of agglomeration in suspension, fostered by

augmented intermolecular forces between the solid particles [26]. Moreover, from Figure 6.5,

the decline in viscosity of the nanofluid with temperature becomes gradually pronounced

as the particle fraction is increased. As can be expected, the relative increase in viscosity

of nanofluid tends to be markedly reduced as the temperature increases. On the other

hand, it is observed that the thermal conductivity increases with an increase in the particle

volumetric concentration and also with an increase in the temperature. For example, at 25
◦C the thermal conductivity is increased by about 21% with respect to the base fluid for a

4% volume fraction (see Figure 6.7(b) for relative change in thermal conductivity knf/kbf ).

It is evident from the estimated trend of both viscosity and thermal conductivity that
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Figure 6.6: Variation of Al2O3-water nanofluid thermal conductivity with temperature for
the different NPs volumetric concentration.

there exists a good agreement between the present MD results and the experimental data of

Ho et al. [4]. Certainly, an increase of φ leads to the enhancement of thermal conductivity,

accompanied by an increase of viscosity of the nanofluid as depicted in Figure 6.7. The

dispersed NPs promote the improvement of thermal conductivity since they accentuate some

benefits from a high specific surface, promoting the intermolecular interactions at the solid-

liquid interfaces. But also a higher concentration increases the probability of interparticles

collisions which generate NPs aggregation and overall viscosity [27].

6.3.3 Mouromtseff Factor (Mo)

Given the opposite variations of thermal conductivity and viscosity, an explicit evaluation

of the nanofluid heat transfer performance is crucial to present in order to recognize its

behavior in promising thermal applications. Therefore, the Mouromtseff number Mo was

calculated according to Eq. (6.1) to better identify the enhancement in nanofluids. Figure
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Figure 6.7: Relative change of nanofluid viscosity (left) and thermal conductivity (right)
with respect to φ at different system temperatures.

6.8 shows the relative viscosity (µ∗), thermal conductivity (k) and heat transfer rate (Mo∗)

with respect to the base fluid versus temperature for each Al2O3 concentration level (see Eq.

6.5). Cases where Mo is less than 1 indicate that the nanofluid is superior to the base fluid.
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3% (d) φ= 4%.

90



Mo∗ =
Monf
Mobf

; k∗ =
knf
kbf

; µ∗ =
µnf
µbf

; (6.5)

It turns out that the increase of φ does not lead to any significant improvement in Mo∗.

In fact, at φ= 2% the nanofluid presents a better overall energy performance (see Figure

6.8(b)). As a matter of fact, when attaining a reasonably low viscosity, nanofluids offer

better performance than with highest thermal conductivity and high viscosity. At φ= 4%,

the heat transfer enhancement becomes almost 6% worse than the base fluid (observed at

20 ◦C) as depicted in 6.8(d). It reveals a very high viscosity attained at this level which

subsequently degrades the effect of higher thermal conductivity. The heat transfer efficacy

of using nanofluid is certainly dependent on the net effects by the relative changes in the

thermophysical properties of the nanofluid, comprising the thermal conductivity, viscosity,

the specific heat capacity and density. Only the relative increase in thermal conductivity

contributes to the heat transfer enhancement, while the relative changes in the remaining

properties (prominently the viscosity) affect unfavorably. In this case, replacing water by

the nanofluid is inferred to be infeasible. Of course, high thermal conductivity is needed

for maximum heat absorption in thermal transport applications. Nevertheless, low viscosity

is also essential to ensure less power consumption and a better overall efficiency of the system.

There is no direct correlation between the heat transfer enhancement and its temperature

and concentration levels (Figure 6.9). For instance, at φ= 2%, Mo* reaches its maximum

value at T=35 ◦C, indicating that the nanofluid is more promising for higher temperature

heat transfer applications [19, 26, 124]. These observations can be correspondingly related

to the state of dispersion attained in each NPs concentration and temperature level.

This chapter results demonstrate the crucial role played by the repulsive electrostatic

forces yielding well-dispersed NP suspensions, specially at low φ. The NP surface charge

density have shown great potential to stabilize NP suspensions, as demonstrated in some re-

ported experimental papers, thereby qualitatively validating our modelling approach. Firstly,

suspensions having higher φ exhibited a faster aggregation kinetics by showing a steeper in-

crease of viscosity. The post analysis of Mo demonstrated that at lower φ, the system show

a higher propensity for stability and enhancement specially at high temperatures. On the
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contrary, for volume fractions higher than 2%, the system thermal performance deteriorates

which is speculated by the fact that the system exhibit a critical condition of aggregation

and clogging, thereby establishing a threshold for the nanofluid functionality. The results

have shown that the MD model developed here demonstrates an improved numerical effort

for predicting the thermophysical properties of alumina/water while maintaining a precise

representation of the atomic topology and interfacial potential interactions.

When characterizing the nanofluid, the thermal conductivity cannot be considered alone

as a criterion for nanofluid selection. Viscosity of nanofluids is also essential, and it is possible

that nanofluids with lower thermal conductivity enhancement may be preferred because they

offer lower viscosity due to lower NPs concentration and a better dispersal state in the base

fluid [26]. Thus, the optimal performance of nanofluid is when the thermal conductivity

is high enough to induce a greater heat absorption with respect to the base fluid but low

enough to maintain a minimal viscosity.
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Figure 6.9: Global illustration of the heat transfer enhancement ratio computed at different
φ (%) and T (◦C) conditions.
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6.4 Conclusion

The suspension of nanoparticles (NPs) in aqueous solutions, known as nanofluid, hold

promise in many energy applications. Preventing the agglomoration/clustering of NPs in

the base fluid while achieving a better enhancement of the overall thermophysical proper-

ties, has been a primary focus to ensure the stability and an extended shelf-life of nanofluids

in many thermal applications.

The ability to tune NP interactions, and thereby modulate the dispersion level, holds

the key to rationally synthesize a stable nanofluid and extend the shelf-life of its properties

and functionality. However, engineering nano-sized suspensions remain a challenging task

both experimentally and theoretically. Recent empirical and quantum studies on interfacial

phenomena shed light on the specific factors influencing the interNP and water-NP interac-

tions, thereby clarifying the multiple, closely coupled processes controlling the interactions

between NPs dispersed in water (i.e. dissolution, adsorption, protonation, hydroxylation,

etc.). In low pH range, the hydrated gamma-alumina surface undergoes a complete protona-

tion and becomes positively charged, thus inducing repulsive coulombic forces between NPs

and promoting the nanofluid stability by avoiding agglomoration, clogging and sedimenta-

tion [25, 100].

The existing MD work have unveiled numerous impediments in terms of reproducing the

thermal transport phenomena in nanofluidic systems due to many simplifying assumptions

in the potential field that neglect the effects predominant at the solid-liquid interface. Ad-

ditionally, they miss to couple the thermal conductivity and dynamic viscosity and give an

overall assessment of the thermal enhancement aimed for specific energy applications.

With the need of a more reliable predictive MD model to uncover the critical links be-

tween nanoscale and macroscale phenomena, and facilitate a controlled suspension of the

nanofluid, we presented an improved MD approach to describe the dynamics and thermal

transport behavior of alumina-water nanofluid found in acidic regimes (pH range 3∼ 3.75<<

PZE) and predict their overall performance. More specifically, the enhanced MD approach

is synergistically combined to fortified force field models (extended CLAYFF and SPC/E)

to accurately predict the thermophysical properties of alumina-water evaluated at different

93



volumetric concentrations and temperatures while ensuring a stable nanofluid functionalities.

The MD results of the nanofluids properties were in agreement with the experimental

trends observed in the work of Ho et al. [4]. An increase of φ lead to the enhancement

of the thermal conductivity along with an increase of viscosity of the nanofluid. Therefore,

a strong dependence of both, viscosity and thermal conductivity of alumina/water upon

temperature and volumetric concentration was perceived. Consequently, the heat transfer

enhancement was tested by evaluating the Mouromtseff number Mo [27]. It was concluded

that the usefulness of nanofluids for heat transfer applications depends not only on the ther-

mal conductivity, but also on other thermophysical properties, such as viscosity, density and

specific heat capacity.

The results emphasize the intrinsic role played by the repulsive electrostatic forces yield-

ing well-dispersed nanofluid, specially at low φ. The NP surface charge density have shown

great potential to stabilize NP suspensions. The post-assessment of the overall thermal per-

formance predicts that at a lower φ, the system shows a higher propensity for stability and

enhancement specially at high temperatures. On the contrary, for φ higher than 2%, the

thermal enhancement deteriorates, speculated by the fact that the system exhibit a critical

condition of aggregation and clogging, thereby establishing a threshold for the nanofluid func-

tionality. In conclusion, the MD model developed here demonstrates an improved numerical

effort for predicting the thermophysical properties of alumina/water while maintaining a

precise representation of the atomic topology and interfacial potential interactions.

Further MD numerical investigations would be valuable to assess other effects like the

addition of stabilizing agents, nanoparticle size as well as non-equilibrium thermal transport

due to external fluxes could be also considered and included in future works to investigate

with the proposed MD model a wider sampling of alumina-water nanofluid.
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Chapter 7

Conclusions and Future Research

Directions

In this final chapter, a summary of the work completed and the research challenges faced

throughout this project are presented. Avenues for possible future directions based on our

contributions are also proposed.

As mentioned earlier, the central drive of this dissertation is to elucidate the underly-

ing physics of thermodynamics in selected fluids of industrial interest by performing MD

simulations based on efficient numerical schemes and reliable potential field models. This

thesis demonstrated the value of particular MD cases capable of reproducing the transport

behavior in complex mixtures, mainly hydrocarbon reservoirs and alumina-water nanofluid,

at different conditions.

7.1 Contributions

7.1.1 Thermodiffusion in Binary n-alkanes

The first part of this thesis consists of introducing an enhanced non-equilibrium MD ap-

proach, comprised of the eHEX algorithm coupled with the TraPPE-UA force field. To

ensure that the behavior observed in our NEMD simulations is representative of the real

dynamical system, the selection of an accurate force field is essential. We first demonstrated
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that TraPPE-UA force field accurately reproduces experimental density and self-diffusion

coefficients of linear molecules in multi-component systems. These properties are significant,

since they govern the dynamics of the system species and directly influence their thermod-

iffusive behavior.

The validity of the newly employed method in quantifying the thermodiffusive motion was

first tested for a binary mixture. The calculated Soret coefficients of the n-pentane/n-decane

mixture at three different compositions showed a good agreement with the benchmarked

experimental data and a better accuracy compared to other MD findings. The numerical

outcomes verifying the competence of our improved approach are summarized below:

1. The computational precision of the eHEX along with the UA force field manages to

accurately describe the molecular interactions in n-alkanes for the various compositions.

Moreover, our MD approach achieved local equilibrium with great convergence while

significantly conserving the system energy with minor instabilities;

2. The continuity of the three gradients (temperature, composition and mixture density)

emphasizes that the system behavior, despite the extreme gradients, is still in the

domain of linear response and converges with minimal computational errors;

3. The evaluation of our numerical results, when compared to other MD methods, clearly

underlines the importance of using meticulous integration schemes and potential param-

eters capable of reproducing precise liquid properties with minimal truncation errors

and computational cost.

7.1.2 Thermodiffusion in Ternary n-alkanes

Secondly, this work interests were expanded in ternary hydrocarbon mixtures to gain a better

insight of the thermodiffusive behavior of composites in a more complex mixture, under a

high pressure and a high temperature. Using the same eHEX approach, we evaluated the sign

and magnitude of thermodiffusion separation ratio of methane/n-butane/n-dodecane ternary

mixtures at five different compositions. The pertinent conclusions of our investigation are

the following:

1. The method succeeded in revealing the coupled effect of relative density and mole

fraction of the mixture species on thermodiffusion process;
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2. The separation ratio of the ternary mixture showed a good agreement with experimental

data and better accuracy in predicting the sign change of the intermediate component

(n-butane) as its concentration increases, when compared to other MD models.

7.1.3 Thermal Transport of Nanofluids

For another application, an enhanced MD algorithm was also applied to study thermal trans-

port of nanofluids. Preventing the agglomeration/clustering of NPs in the base fluid while

achieving a better enhancement of the overall thermophysical properties, has been a pri-

mary focus to ensure the stability and an extended shelf-life of nanofluids in many thermal

applications. A manipulation of the solid-liquid interface chemistry in combination with

the adjustment of NPs volumetric concentration is a promising strategy to modulate the

dispersion level and prevent clogging, sedimentation and ultimately the deterioration of the

nano-colloidal characteristics.

Experimental and numerical efforts have been failing to do so due to the lack of a deeper

understanding of the influence of NP surface chemistry on the stability of nanofluids. For

these reasons, there is a need of a more reliable predictive MD model to uncover the critical

links between nanoscale and macroscale phenomena, and facilitate a controlled suspension

of the nanofluid. Therefore, we produced an improved MD approach fortified with a refined

hybrid force field model (extended ClayFF and SPC/E), revamped to deepen the under-

standing of interparticle potentials (i.e. cross-interactions between Np-Np, Np-water and

water-water) and reveal the characteristics of interfacial atoms to ultimately establish a re-

liable prediction of the topology of fully protonated NPs dispersed in the base fluid, as well

as the nanofluid macroscopic properties. The highlights of nanofluid MD findings are the

below:

1. The MD predictions of the nanofluids thermophysical properties were in agreement with

the experimental data. An increase of the NPs volumetric concentration (φ) lead to the

enhancement of thermal conductivity along with an increase of viscosity.

2. The results demonstrate the crucial role played by the repulsive electrostatic forces

yielding well-dispersed NP suspensions, specially at low φ. The NP surface charge

density have shown great potential to stabilize NP suspensions, as demonstrated in some

reported experimental papers, thereby qualitatively validating our modelling approach.
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Firstly, suspensions having higher φ exhibited a faster aggregation kinetics by showing

a steeper increase of viscosity.

3. The post analysis of Mouromtseff number demonstrated that at lower φ (less than

2%), the system show a higher propensity for stability and enhancement specially at

high temperatures. On the contrary, for volume fractions higher than 2%, the system

thermal performance deteriorates which is speculated by the fact that the system exhibit

a critical condition of aggregation and clogging, thereby deteriorating the nanofluid

thermal functionality.

4. The results have shown that the MD model developed here demonstrates an improved

numerical effort for predicting the thermophysical properties of alumina/water while

maintaining a precise representation of the atomic structure/charge along with interfa-

cial potential interactions.

In summary, MD simulations blended with robust potential field models, allow the de-

liberate adjustment of various system parameters, to build an understanding of the relation

between atomic behavior and macroscopic properties under favorable simulation conditions.

It is expected that, as the power of readily obtainable computational resources increases and

accurate force fields are devised, MD will start to play a substantial tool in many experi-

mental labs for a broad range of thermal engineering and nanotechnology investigations.

7.2 Challenges Faced

In completing this work, we faced many obstacles and computational limitations. In this

section, we identify several facets of the work that need to be further explored:

1. The most stringent limitation of MD simulations is the availability of a well-established,

transferable potential field. As we use generalized combining rules, the accuracy of

predictions declines with the structural complexity and asymmetry (type, phase, partial

charge) of the different species composing the mixture. However, functional forms

that are simpler and computationally more efficient than some existing models are still

achievable;

2. Another drawback with MD is that it is computer-intensive, with typical simulations

lasting hours or days rather than seconds or minutes. Systems displaying long relaxation
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times or presenting heterogeneities on a scale larger than 5- 10 nanometers are very

difficult to simulate at the molecular level;

3. To avoid anomalous physical results in non-ideal systems, accounting for the average

partial enthalpy in the microscopic heat flux calculation of EMD is crucial, since asso-

ciated energy can be exchanged with diffusing particles [31].

As the review in Chapter 6 indicates, the methods developed in this thesis have not yet

been pushed to their limits:

1. More numerical studies should be done to provide a better insight into the flow physics

by considering NP behaviors and interactions in laminar, transition and turbulent

regimes;

2. MD can only afford simulations for a very small domain. Solving Newtons equation

of motion for a large system is quite time-consuming. Therefore, employing hybrid

techniques that combine continuum fluid dynamics and MD simulation would be ideal;

3. Near thermally active surfaces, one can expect spatial variations of local thermal proper-

ties (viscosity, density, specific heat and thermal conductivity) due to induced accumu-

lation or depletion of the NPs, which suggests other dynamics, such as thermodiffusion,

might play a role on the heat transfer enhancement.

Once such improvements are unlocked, confidence will augment in conducting efficient

performance investigations of nanofluids.

7.3 Recommendations for Future Work

A careful application of MD simulations, in concert with complementary experimental meth-

ods, represents an area of great opportunity in thermal science, and beyond. This opportu-

nity will only grow as simulations become faster, cheaper, more widely accessible and more

accurate.

The most obvious extension of nanofluid work area is to continue exploring its pivotal

concepts for the synthesis of a new class of nano-engineered fluids with unique proper-

ties and applications. For instance, engineering a hybrid nanofluid by mixing various types

of nanoparticles and phase change materials (PCM), can bring new opportunities for heat
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transfer enhancement through a manipulation of the system thermal properties and adjust-

ment of the constituents concentration fractions;

Despite significant advances, no comprehensive model for nanofluid characteristics can be

reached. To bridge the research gaps, the below guidelines are proposed as possible avenues

to improve the reliability of simulations and extend the scope of thermal issues that can be

tackled with nanotechnology:

1. It is essential to have a control over NP agglomeration and regulate their surface layers,

which greatly affect nanofluids properties. Such control can be achieved by gaining

a careful knowledge of the structuration and dynamics of atoms at the solid-liquid

interface;

2. The development of a congruent factor of merit that targets practical thermal fluid

applications should be a focus of future research, to address the coupled effects of the

thermophysical properties.

3. A further avenue would be investigating NP suspensions at pH level higher than PZC

(in basic solutions where NPs surface charge is negative) and ultimately evaluate the

performance of nanofluids to build guidelines for their rational design and the modula-

tion of their stability in different pH regimes.
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Appendix A

Molecular Dynamics Evaluation of

Alumina Nanofluid Thermal

Transport Performance
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A.1. Hybrid Potential Energy Field Parameters (extended CLAYFF and SPC/E)

Table A.1: Force field parameters implemented in this work [2, 3]

Nonbonding Parameters 

   R0 (A) D0 (kcal/mol) q(e) 
Al oct (bul/surface) 4.7943 1.3298x10-6 1.575 
Al tet (bul/surface) 3.7064 1.8405x10-6 1.575 
Oh (bulk/hydroxyl)a 3.5532 0.1554 -1.05 
H (hydroxyl)a 0 0 0.425 
Ow (water)b 3.5532 0.1554 -0.82 
Hw(water)b 0 0 0.425 

Bonding  Parameters 

 r0 (A) kb (kcal/mol/A2) 

|Ow-Hw| 1 554.1349 

|Oh-Hh| 1 554.1349 

 𝛳0 (deg) k𝛳 (kcal/mol/rad2) 

Al-Oh-Hh  110 15 

Hw-Ow-Hw 109.47 45.7696 
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A.2. Comparison of MD predictions with Exp. and theoretical data of the nanofluid viscos-

ity and thermal conductivity ratio at T=25 ◦C.
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Figure A.1: Variation of the nanofluid viscosity ratio (left) and thermal conductivity ratio
(right) as a function of φ for T=25 ◦C.
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