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Abstract 

Zhenhe Chen, Master of Applied Science, Electrical and Computer Engineering, 

Ryerson University. 

Video object extraction is one of the most important areas of video processing in which 

objects from video sequences are extracted and used for many applications such as surveil­

lance systems, pattern recognition etc. 

In this research work, an object-based technique based on the spatiotemporal inde­

pendent component analysis (stICA) is developed to extract moving objects from video 

sequences. Using the stICA, the preliminary source images containing moving objects 

in the video sequence are extracted. These images are processed using wavelet analysis, 

edge detection, region growing and multiscale segmentation techniques to improve the 

accuracy of the extracted objects. A novel compensation method is applied to deal with 

the nonlinear problem caused by the application of the stICA directly to the video se­

quences. The recovered objects are indexed by the singular value decomposition (SVD) 

and linear combination analysis. Simulation results demonstrate the effectiveness of the 

stICA-based object extraction technique in content-based video processing applications. 

v 
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Chapter 1 

Introd uction 

1.1 Motivation 

T HE increasing popularity of video processing is due to the high demand for video in 

entertainment, security related applications, education, tele-medicine, database and 

new wireless telecommunications. Recently, interesting research topics such as automated 

and efficient video content-based t~chniques are attracting much attention. 

Video content-based techniques are aimed at achieving significant data reduction of 

video by applying suitable transformation on video sequences based on their content. This 

data reduction has two main advantages: video databases work efficiently for searching 

content-based videos, and processing cost reduces dramatically. The content-based video 

presentation is an essential need for broadcasting services, Internet and security appli­

cations. This thesis develops a framework for automated content-based video processing 

based on the spatiotemporal independent component analysis (stICA). Both theoretical 

derivation and simulation results are provided to illustrate the effectiveness of the pre­

sented methods. 

1.2 Review of Previous Works 

The essence of this thesis is in applying the stICA technique to extract the objects in 

video sequences. A brief review of some of the works done in these fields is covered in 

1 
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2 
this section. 

Raw video clips are usually binary streams that are not well organized. To represent 

their contents, video clips must be decomposed into objects so analysis can be performed. 

The object-based technique is one way of analyzing the video clips and it is gaining 

importance in achieving compression and performing content-based video retrieval. 

Recently, there have been many video object segmentation techniques to extract or 

track the objects, such as transition-based [1] [2] and key frame estimation [3] [4]. The 

transition-based methods (also named scene change detection) look at the grayscale value 

difference between two image frames being considered. This process identifies any pixel 

as either being a "changed" or "unchanged" pixel when a function of its grayscale value 

difference is respectively greater than or smaller than a certain predetermined decision 

threshold. This kind of method often suffers from noise due to global thresholding and 

inaccurate moving object boundaries due to occlusion areas. Moreover, this method is 

very reliable for abrupt changes but not so effective for gradual changes. 

A video key frame is the frame that can represent the salient content of a video shot. 

Key frames provide an abstraction for video processing. One important class of the 

methods is shot boundary based approach [3]. Another important class is unsupervised 

clustering based approach [4]. However, most of the key frame estimation methods per­

form object segmentation based on low-level image features and other readily available 

information instead of semantic primitives of video, such as objects of interest, actions 

and events. Thus it cannot satisfy the requirements of a video surveillance system. 

All the above object segmentation approaches are frame-based techniques. In this 

thesis, we introduce a novel statistical analysis method based on the stlCA. The stICA 

model is used to formulate the spatial and temporal independence of the different moving 

objects. The solution of the stICA model can therefore identify these objects. 

In recent years, the independent component analysis (ICA) based techniques are get­

ting much attention in video processing. The ICA based techniques have been applied in 

many areas of signal processing, medical application, neural networks, information theory 
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3 
and telecommunications. The ICA can be used in two complementary ways to decompose 

an image sequence into a set of images and a corresponding set of time-varying image am­

plitudes. The spatial ICA (sICA) [5] finds a set of mutually independent component (IC) 

images and a corresponding set of unconstrained time courses, whereas the temporal ICA 

(tICA) [6] finds a set of IC time courses and a corresponding set of unconstrained images. 

However, the sICA and tICA can only seek either the ICs of images (frames) or the time 

courses, respectively. As shown by McKeown [5], the sICA extracts the independent im­

ages but these images' corresponding temporal sources could be highly correlated. This is 

undesirable for object-based video sequence analysis, since the corresponding time courses 

for the independent objects should be independent as well. The stICA, the generalization 

of the classic ICA, can blindly separate the independent sources from their spatial and 

temporal mixtures. It was initially developed in functional magnetic resonance imaging 

(fMRI) [8]. 

1.3 Objectives 

The presented research focuses on the video sequences taken with a still camcorder. We 

assume that there is a stationary background in each frame. The objects and background 

can be considered the spatial ICs and the corresponding time courses can be considered 

the temporal ICs. 

The following are the objectives of our proposed framework in this thesis: 

1. To verify/assess the applicability of the stICA model for video sequences. This 

involves segmenting objects of interest from a stationary background in every video 

frame. 

2. To deal with the limitations of the stlCA model on video sequence applications, 

since objects of interest and their background are not linear combination. 

3. To show that the algorithms proposed in this system are effective. 
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4 
The novelty of the proposed methods in this thesis lies in the extraction of semantic 

moving objects through a background separation technique in a complex environment and 

in the processing of every independent frame of the video sequences. 

The contributions of this thesis consist of 

1. A new method of analyzing video sequences by the stICA model. 

2. A novel compensation method to deal with the nonlinear combination problem in 

the stICA model for video sequences. 

3. The integrated post-processing techniques based on wavelet analysis, edge detection 

with region growing and multiscale segmentation approaches. 

1.4 Proposed Approaches and Methodologies 

To achieve the goals mentioned above, the proposed system involves the following modules 

as stated in Figs. 1.1, 3.2, and 5.1 [9] [10]: 

• The stICA is applied to the video frames to separate the spatial and temporal 

signals. 

• The signals obtained after the stICA are further processed in the first iteration, 

where wavelet analysis, edge detection with region growing, and multiscale image 

segmentation techniques are employed to improve the accuracy. 

• In the second iteration, a compensation approach is introduced to deal with the 

nonlinear combination problem of the stICA. A frame object indexing technique is 

then performed to reconstruct the sequence of frames containing only the objects. 

More precise video objects are extracted in this iteration. 
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1.5 Overview of the Thesis 
5 

This thesis will summarize the ICA and other related technologies in chapter 2. In chap­

ter 3, the stlCA model is used to formulate video sequences. Chapter 4 and chapter 5 

elaborate on all the methodologies applied in the proposed two-iteration approach. There 

are simulation results and summaries from chapter 3 to chapter 5. Finally, chapter 6 

summarizes all work included in this thesis and points out some possible future work that 

might improve the current stlCA model. 
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Original video 
sequences 

Video capture 
device 

Video frames f. 
I 

Algorithm 

The first iteration 
of algorithm 

The second 
iteration 

of algorithm 

Segmented frames 
with objects OJ only 

Processed video 
sequences 

Figure 1.1: Block diagram of the framework. i and j are the indices of frames and objects 
respectively. 
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Chapter 2 

Principle Component Analysis and 
Independent Component Analysis 

I N this chapter, the basic concepts of principle component analysis (peA), singular 

value decomposition (SVD), whitening, leA and stIeA are introduced. This chapter 

is a summary of the work stated in [11] [12] [8]. 

2.1 Principle Component Analysis, Singular Value 
Decomposition, and Whitening 

2.1.1 Principle Component Analysis 

The peA is potentially valuable for applications involving reduction of the dimension of 

multivariate data. We suppose that X=[Xl, "', xnV is a zero-mean vector, and fix is a 

vector with its mean values. C x is the covariance matrix of x such that 

(2.1) 

Since the mean of vector x is zero, i.e. fix=O, C x is given by the correlation matrix 

(2.2) 

The goal of the peA is to find an nxn orthogonal matrix W=[Wl, "', wnl that 

determines a linear transform of x, i.e. y= W T X. It can be proven that such an orthogonal 

transform does not change the total variance of x. This is true because the orthogonal 

7 
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transform changes neither the angles between x and y nor the vectors' lengths, which 

means [12] 

{total variance of Xl, ... , Xn} = {total variance of Yl, ... , Yn} = Al + ... + An, (2.3) 

where Aj (j=1, ... , n) are the eigenvalues of CX' 

The solution to the PCA is given by the unit-length eigenvectors el, "', en of CX' 

Thus we have wl=el, ... , wn=en . The detailed solution of eigen decomposition can be 

found in [13]. 

Compared with the SVD, eigen decomposition is only valid for a given square ma­

trix [14] while the SVD is valid for any given mxn matrix [12]. Thus in practical appli­

cations, the SVD is the main tool used to perform the PCA. In the next subsection, the 

general idea of the SVD will be introduced. 

2.1.2 Singular Value Decomposition 

The SVD is one of the most widely used matrix factorizations in applied linear algebra. 

The SVD of A involves an m x n "diagonal" matrix L; of the form 

(2.4) 

where D is an r x r diagonal matrix for some r not exceeding the smaller of m and n. 

Let A be an m X n matrix with rank r. Then there exists an m x n matrix L; as in 

Eq. (2.4), where the diagonal entries in D are in the first r singular values of A, (T12: 

.. '2:(Tr>O, and there exists an mxm orthogonal matrix U and an nxn orthogonal matrix 

V such that [12] 

A=U~VT. (2.5) 

Any factorization A=UL;VT , with U and V orthogonal and L; as in Eq. (2.4), is called 

an SVD of A. The matrices U and V are not unique, but the diagonal entries of ~ are 

necessarily the singular values of A. 
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9 
Since A is an m x n matrix, AT A is symmetric and can be orthogonally diagonal-

ized [12]. Let [VI, .. " v n] be an orthonormal basis for n-dimensional space (Rn) consisting 

of eigenvectors of AT A. Let AI, "', An be the associated eigenvalues of AT A. Then, for 

1:S i:Sn, 

IIAvill2 - (AVif AVi = vf AT AVi 

- Vf(AiVi) 

Ai(vf Vi) = Ai, (2.6) 

where Vi is an eigenvector of AT A, and AiVi=AT AVi. The singular values of A are the 

square roots of the eigenvalues of AT A, denoted by 0"1, ... , an. That is, O"i=A, for 

1 <i:Sn, the singular values of A are the lengths of the vectors AV1, ... , Avn . 

There is a theorem concerning about the rank and the singular values [12]: if an mxn 

matrix A has T nonzero singular values, 0"12:·· '2:O"r>O with O"r+1 = .. '=O"n=O, then the 

rank of A is equal to T. 

The SVD is based on the property of the ordinary diagonalization that can be imitated 

for rectangular matrices. Let us denote the symmetric matrix AT A by B. The eigenvalues 

of B determine how much of the energy of B is distributed along the directions specified 

by the eigenvectors. If BX=AX and IIxlI=l, then 

IIBxl1 = IIAXII = IAI· (2.7) 

If Al is the eigenvalue with the greatest magnitude, then the corresponding unit eigenvec­

tor VI identifies the direction along which the stretching effect of B is the greatest. This 

is, the length of Bx is maximized when X=V1, and IIBv111=IAll, by Eq. (2.7). 

Lay [12] describes the relationship between the PCA and the SVD as follows: if C is 

an mxn matrix of observation with zero mean, and if A=(1/.vn=-I)cT, then AT A is 

the covariance matrix of C. The squares of the singular values of A are the eigenvalues 

of AT A, and the singular vectors of A are the unit eigenvectors of C. Through the SVD, 

the unit eigenvectors of the image matrices can be obtained. Thus the SVD is widely 

used to perform the PCA. 
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10 
2.1.3 Whitening 

Whitening is a useful preprocessing technique in signal processing. The term "white" 

comes from the fact that the power spectrum of white noise is constant over all frequencies, 

somewhat like the spectrum of white light contains all colors. A zero-mean random vector 

Y=[Yl, "', YnJT is said to be white if its elements Yi are uncorrelated and have unit 

variances: 

(2.8) 

Generally, the objective of whitening is: Given a random vector x with n elements, 

find a linear transformation V into another vector y such that 

y=Vx (2.9) 

has elements that are uncorrelated and have unit variances. 

Let us denote the covariance matrix of x by ex' Let E=[el' "', en] be the matrix 

whose columns are the unit-norm eigenvectors of ex' Let D=diag(Al' "', An) be the 

diagonal matrix of the eigenvalues of ex' Then a linear whitening transform is [13] [11] 

(2.10) 

It is easily proven that the matrix V of Eq. (2.10) is indeed a whitening transformation. 

In fact, ex can be written in terms of its eigenvector and eigenvalue matrices E and D as 

Cx=EDET [13], where E is an orthogonal matrix satisfying ETE=EET =1. It holds that: 

(2.11) 

The covariance of y is the unit matrix, hence y is white. 

2.2 Independent Component Analysis 

Imagine that there are two people speaking simultaneously in a room. Two microphones 

record these voices and give two time signals that can be denoted as Xl(t) and X2(t). Each 
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of these recorded signals is a weighted sum of the speech signals Sl(t) and S2(t) given by 

the two speakers, respectively. Usually, we express them as linear combination: 

(2.12) 

(2.13) 

where the aij with i,j=1,2 are the parameters that depend on the distances of the micro­

phones from the speakers. It would be very useful and challenging if we could restore the 

original signals Sl(t) and S2(t), by using only, the recorded signals Xi(t). This is called 

the "cocktail-party problem" . 

This seems to be an impossible task since we know neither aij nor Si (t). One relatively 

new tool to estimate both aij and Si (t) relies on the use of the statistical information of 

the signals Si(t). This tool is named independent component analysis (ICA). In the ICA, 

the observed random vector x is modelled as 

x=As, (2.14) 

where the mixing matrix A is assumed to be square, i.e. the number of ICs is equal to 

the number of observed mixtures; and s is the original signal vector. This model can also 

be written as 
n 

X = Laisi 
i=l 

where ai is the column vector of A and n is the total number of ICs. 

(2.15) 

By definition, elements Si are statistically mutually independent (zero mean) random 

variables such that 
n 

p(s) = IIpi(si). (2.16) 
i=l 

Eq. (2.14) is the basic ICA model. The ICA model is a derivative model, which means 

it describes how the observed data are generated by a process of mixing the components 

Si. The ICs Si are latent variables, meaning that they cannot be directly observed. Also 

the mixing coefficients aij are assumed to be unknown. The ICA problem now becomes 
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the estimation of both the ICs s and the mixing matrix A using only the observation x. 

This is a type of blind model identification. 

There are some assumptions underlying the ICA method. 

1. The source signals are assumed to be statistically independent. 

2. The ICs must have non-Gaussian distributions. 

There are two ambiguities in the ICA model in Eq. (2.14): 

1. The variances(energies) of the ICs cannot be determined. 

Since both s and A are unknown, any scalar multiplier in one of the sources Si 

could always be cancelled by dividing the corresponding column ai of A by the 

same scalar. 

2. The order of the ICs cannot be determined. 

This is also due to the indeterminacies because both s and A being unknown. We 

can freely change the order of the terms in Eq. (2.15), and call any of the ICs the 

first one. 

2.3 Comparison of PCA, Whitening and ICA 

To transform some given random variables into uncorrelated variables, whitening or the 

PCA is the straightforward method.· However, whitening or the PCA cannot recover the 

ICs from these given random variables. 

Two random variables Yl and Y2 with zero mean are uncorrelated if their covariance 

IS zero: 

(2.17) 

Since their mean values are zero, E{Yl}=E{Y2}=O. In this case, the covariance is equal 

to the correlation corr(Yl,Y2)=E{YlY2}, and uncorrelatedness is the same thing as zero 

correlation [11]. 
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If two random variables are independent, they must be uncorrelated. Furthermore, 

for any variables derived from certain functions of these two variables, they must be 

uncorrelated as well. Suppose we have two functions f 1 and f 2 for two independent 

random variables Yl and Y2 respectively, we have: 

E{fl(yd!2(Y2)} - J J !I(Yl)!2(Y2)P(Yl, Y2)dy1dY2 

J J fl(Yl)!2(Y2)Pl(ydp2(Y2)dy 1dY2 

J it (Yl)Pl (yddYl ! !2(Y2)P2(Y2)dY2 

E{fl (Yl)} E{!2(Y2)}, 

which verifies that the variables !I(Yl) and f2(Y2) must also be uncorrelated. 

(2.18) 

However, on the other hand, uncorrelatedness does not imply independence. For 

example, suppose that (Yl,Y2) are discrete values and follow a distribution such that the 

probability of the pair being equal to any of the following values: (1,0), (0,1), (-1,0) and 

(0,-1) is i . Obviously Yl and Y2 both have zero mean values. In this specific example, 

Yl, Y2 are uncorrelated, based on the calculation as follows: 

4 4 

COV{Yl' Y2} = corr{Yl, Y2} = LYliY2iP(Yli, Y2i) = La' P(Yli, Y2i) = o. (2.19) 
i=l i=l 

On the other hand, 

4 4 

E{YiJA} = LyiiyiiP(Yli, Y2i) = La' P(Yli' Y2i) = a (2.20) 
i=l i=l 

(2.21) 

E{yIyni=E{ynE{yn. It violates the condition in Eq. (2.18), so the variables cannot 

be independent. 

Whiteness is a slightly stronger property than uncorrelatedness. Whitening random 

vector y with zero mean will make its components uncorrelated and their variances equal 

unity. As shown in Eq. (2.8), the covariance matrix of y is E{yyT}=I. Whitening can 

be done by using eigenvalue decomposition of the covariance matrix as well as the SVD. 
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How far is the whitened data from being independent? Hyvarinen et al. showed that 

"whitening is only half ICA" [11]. Suppose that the data in the ICA model is whitened. 

Whitening transforms the mixing matrix A into a new one, .A. We have from Eqs. (2.9) 

and (2.14) 

y = VAs = .As. (2.22) 

Since .A=VA is orthogonal, E{yyT}=.AE{sST}.AT =1, which means the searching for the 

mixing matrix can be restricted to the space of orthogonal matrices. Instead of having 

to estimate the n2 parameters that are the elements of the orthogonal matrix A, we only 

need to estimate an orthogonal mixing matrix.A. This orthogonal matrix has n(n-l)/2 

degrees of freedom. The complexity of the ICA problem is reduced partially, "ICA is 

solved on the half way" [11]. 

The following example shows the fact that only non-Gaussian variables are accepted in 

the ICA, which is explained by whitening. Assume that the joint distribution of two ICs, 

81 and 82, is the standard Gaussian distribution. Their joint probability density function 

(pdf) is [11] 

P(SI' S2) = -exp - = -exp --- . 1 [sr + s~] 1 [llsI12] 
2K 2 2K 2 

(2.23) 

Furthermore, let us assume that the mixing matrix A is orthogonal. For example, we could 

assume that this is so because the data has been whitened. Using the classic formula of 

transforming pdf's in [11], and noting that for an orthogonal matrix A -1=AT holds, we 

get the joint pdf of the mixtures Xl and ,X2 

p(x .. x,) ~ 2~ exp [_IIA:xll']ldetATI. (2.24) 

Because of A's orthogonality, we have IIAT x1l 2=llx11 2 and Idet AI=l. Note that if A is 

orthogonal, so is AT. Thus 

(2.25) 

The orthogonal mixing matrix has no effect on Gaussian pdf, because it does not appear in 

the pdf. Both the original and mixed distributions are identical. The reason for such un-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

15 
identity is due to the fact that uncorrelated Gaussian random variables are independent. 

This tells us that the information of the les does not exceed that of whitening. 

2.4 The leA Estimation Methods 

• The leA by Negentropy 

A fundamental result of the information theory is that a Gaussian variable has the 

largest entropy among all random variables of equal variance [15] [16]. From this 

conclusion, two hints can be obtained: 

1. Entropy can be used as a measure of non-Gaussianity, and 

2. Gaussian distribution is the "most random" or the least structured among all 

distributions. 

Let us define negentropy J as a measure of non-Gaussianity that is zero for a 

Gaussian variable and always non-negative: 

J(y) = H(Ygauss) - H(y), (2.26) 

where y gauss is a Gaussian random variable of the same correlation (and covariance) 

matrix as y, and H is the entropy. This negentropy is always non-zero and is zero 

if and only if y has a Gaussian distribution. 

Using negentropy as a measure of non-Gaussianity has its advantages. It is well 

justified by statistical theory [11] [17]. However, the computational complexity is 

very high . 

• The leA by Minimization of Mutual Information 

Another approach for the leA estimation, inspired by information theory, is min­

imization of mutual information. One can discover the fundamental relationship 

between mutual information and negentropy. 
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The definition of mutual information I comes from differential entropy. Here we 

denote m random variables Yi, such that: 

m 

I(Yl,···, Ym) = L H(Yi) - H(y), (2.27) 
i=l 

where i=l, ... , m and y is the vector containing Yl, ... , Ym. Mutual information 

is a natural measure of the dependence between random variables. In fact, it is 

equivalent to the Kullback-Leibler divergence [11] between the joint density f(y) 

and the product of its marginal densities; a very natural measure for independence. 

It is always non-negative, and zero if and only if the variables are statistically 

independent. 

To show the relationship between mutual information and negentropy, an important 

property of mutual information is that if an invertible linear transformation y=Wx 

exists then Eq. (2.27) can be expressed as [17] 

I(Yl,···, Ym) = L H(Yi) - H(x) -log I det WI· (2.28) 

Let us assume that Yi is whitened (Yi is uncorrelated and has unit variance) -

E {yyT}= WE {xxT} W T =1. We can get 

detl 1 = det(WE{xxT}WT) 

(det W)(det E{xxT} ) (det WT) (2.29) 

and this implies that detW must be constant since detE{xxT} does not depend 

on W. Moreover, for Yi of unit variance, entropy and negentropy differ only by a 

constant and the sign, as can be seen in Eq. (2.26). Thus we have 

(2.30) 

where C is a constant that does not depend on W. This derivation shows that the 

leA estimation by minimization of mutual information is equivalent to maximizing 

the sum of non-Gaussianities of the estimates, when the estimates are constrained 
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to be uncorrelated. This constraint can simplify the computation considerably. 

Thus mutual information gives another rigorous justification for finding maximally 

non-Gaussian directions [11] [17] . 

• The lCA by Maximum Likelihood Estimation 

Starting from the density Px of the lCA model in Eq. (2.14), we can get [11] 

Px(x) =1 det W 1 Ps(s) =1 det W 1 IIPi(SJ, (2.31) 

where W=A -1, and the Pi are the densities of the lCs. If we denote W=[W1' "', 

wn]T, we have 

Px(x) =1 det W 1 IIPi(wT x). (2.32) 
i 

If there are K observations of x, denoted by x(I), "', x(K). Then the likelihood 

can be obtained as the product of this density evaluated at the K points. This is 

denoted by Land considered as a function of W [18]: 

K n 

L(W) = II IIPi(wTx(t)) 1 detW I· (2.33) 
t=1 i=l 

Because many density functions contain an exponential function, it is more conve­

nient to deal with the log-likelihood function 

K n 

logL(W) = 'L'Llogpi(wTx(t)) +Klog 1 detW I· (2.34) 
t=l i=l 

To simplify notation, we can denote the sum over the sample index t by an expec­

tation operator, and divide the likelihood by K to obtain 

1 n 

K log L(W) = E{'L logpi(wT x)} + log 1 det W 1 
i=1 

(2.35) 

This expectation is not the theoretical expectation, but an average computed from 

the observed sample. 

Gradient methods are the simplest algorithms to maximize the likelihood. The Bell­

Sejnowski algorithm [6] is one of the most popular maximum likelihood estimation 
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techniques. Bell et al. showed that the gradient of the log-likelihood in Eq. (2.35) 

is: 

(2.36) 

Here g(WX)=[gl (wi x), "', gn(w;x)] is a component-wise vector function that 

consists of the score function gi of the distribution of Si, which is defined as 

, 
(1 )' Pi gi = OgPi =-. 

Pi 
(2.37) 

This gives the following algorithm for maximum likelihood estimation: 

(2.38) 

As it is a stochastic version of this algorithm, the expectation is omitted. In each 

step of the algorithm, only one data point is used: 

(2.39) 

Due to the inversion of the matrix W that is needed in every step, this algorithm 

converges slowly. The convergence can be improved by using whitening [6]. 

2.5 Spatiotemporal leA 

The stlCA is the generalization of the classic ICA. The distinction between the ICs and 

the mixing matrix is completely abolished. Considering the data with n observed vectors 

as its columns: X=[X1' .. " xn], and likewise for the ICs 8=[Sl' . ", sn]. The ICA model 

can be expressed as 

X=A8. (2.40) 

Taking a transpose of this equation, we have 

(2.41) 

Now we find that the matrix 8 is like a mixing matrix, with AT giving the realizations 

of the "ICs". In the conventional lCA model Eq. (2.14), the difference between sand 
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A is due to the statistical assumptions made on s. Now for the stICA, the independent 

constraints are made on both A and S. 

The stICA was initially developed for fMRI that is a form of magnetic resonance 

imaging (MRI) of the brain that registers blood flow to functioning areas of the brain [7]. 

The fMRI signal associated with a given voxel is affected by a subject's general arousal 

levels, the experimental task being executed, drifting sensor outputs, and noise. Thus the 

signal at each voxel consists of a mixture of underlying source signals (Fig. 2.1). Stone uses 

the stICA to separate signal mixtures into a set of statistically independent signals [8]. 

He describes a matrix containing a sequence o(n fMRI mixtures X = [Xl, "', xn]. Each 

image Xi is an m x 1 vector. A linear decomposition into k modes is defined by a matrix 

factorization like Eq. (2.40) 

(2.42) 

where S = [Sl' "', Sk], T = [t1' "', tk] and A is a diagonal matrix of scaling param­

eters. The independent image vectors Si are the columns of spatial images S and the 

corresponding independent time courses ti are the columns of T. 

Using the SVD [12], fMRIs are decomposed into two parts, eigenimages U and corre­

sponding eigensequences V: 

(2.43) 

where U is an m x k matrix of k:;. m eigenimages, V is an n x k matrix of k:;. n eigense­

quences, and ~ is a diagonal matrix of singular values. In order to determine the ICs S 

and T, two kx k unmixing matrices W sand W T are assumed to exist such that 

S=UWs, (2.44) 

and 

T=VW r · (2.45) 

(2.46) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Independent 
components 

maps 

1 

• 
• 
• • • 

-I. 

Mixing 
matrix 

Measured fMRI 
signals 

Mixing @t= 1 

OJ 
Mixing @ t= 2 

I-il 
~ 

• • • -~ 
Figure 2.1: Illustration of fMRI mixing. 

Given that X=UVT=SATT , it can be shown that WT=(WSl)T(A-l? 

20 

To find the unmixing matrices W T and W s, it is necessary to simultaneously maximize 

a function hST of the spatial entropy 

hs = H(a(UW s)), (2.47) 

and temporal entropy 

hr = H(r(VWT )), (2.48) 

where a and T approximate the cumulative density function (cdf) of each of the spatial 

source signals and temporal signals, respectively. The function h to be maximized is 

defined as: 

hST(W s) = ahs + (1 - a)hT' (2.49) 
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where a is a weighting factor given to spatial and temporal entropy. To optimize these 

two entropies by maximum likelihood estimation [6], their notations need to be changed 

to: 

(2.50) 

and 
1 n k 

hT = log I W T I +- 2:: 2:: logT{(tij ), 
n j=l i=l 

(2.51) 

where Sij and t ij are the corresponding elements of Sand T in Eq. (2.42). ai and Ti are 

the cdfs of the spatial and temporal signals, respectively. Their derivatives a~ and T[ are 

the corresponding pdfs. 

One can recover the spatial signals and the time courses at the same time using max­

imum likelihood estimation, which is similar to the conventional IGA [11] approximation 

techniques. 

2.6 Summary 

Let us review the procedures to find the IGs from the mixed observed data. The basis of 

this approach is that if the model in Eq. (2.14) holds, then the IGs corresponding to the 

uncorrelated one-dimensional projections are maximally non-Gaussian. For an observed 

random vector x, a vector Wi is sought such that 

(2.52) 

have a maximally non-Gaussian distributions and are mutually uncorrelated E {SiSj }=O, 

when i#j. 

A simple way to do this is to whiten the data, and then seek orthogonal, non-Gaussian 

projections. This is justified since uncorrelatedprojections in the original data correspond 

to orthogonal projections in the whitened data, and vice versa. Thus, a two-step process 

is used to estimate the IGs: 

1. The observed vector x is transformed by a whitening process y=Vx such that the 

elements of yare of unit variance and uncorrelated, i.e. E {yyT}=I. 
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2. An orthogonal matrix W that maximizes the non-Gaussianity of the elements of 

s=Wy can be obtained. 

For the stlCA, there are more constraints on both A and s, so the notations are 

changed to Sand T, respectively. The algorithm for maximizing the independence on S 

and T is the same as the lCA. Through the stlCA approach, the lCs in Sand T can be 

found. 
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Chapter 3 

Formulation of the stICA Model for 
Video Sequences 

F ROM the last chapter, we can see that the ICA is an ideal tool for data analysis, 

especially for source data separation. In this chapter, the ICA is employed to extract 

objects of interest from video sequences. 

3.1 Formulation of the stICA Model for Video Se­
quences 

Let us denote a video sequence with n frames as F=[fb ... , fN ], where fi is an M x 1 column 

vector representing a frame that contains M pixels. These image vectors are constructed 

by taking the column-wise elements from the frame images. Thus the dimension of matrix 

F is MxN. The mutual independent objects of interest are denoted as 0=[01, .", OK], 

where 0i is constructed in the same way as fi and K 5:.N. The dimension of the object 

vector 0i should be the same as t M x 1. Thus the dimension of 0 is M x K. If the video 

sequence is captured by a fixed camera, for example in the surveillance security system, 

the background is a constant vector. To simplify the work, the stationary background can 

be considered as a vector of 0, say OK. The independent temporal signals time courses 

A=[a1, "', aK] affect the objects on every time unit. Again, we use the same method 

to construct the time course column vector ai. In every time unit there should be time 

Courses affecting each object and the dimension of any time course vector ai should be 

23 
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equal to the number of video frames, i.e. N x 1. This means that each column of A is the 

time signature for the corresponding objects in o. The dimension of A is N x K, where 

K SN. Because the background is stationary, the corresponding time course vector aK 

has no effect on it, which means all elements of vector aK have value 1. We have 

To find out each object's effect on the video frames, we expand the matrices: 

[

aU 0u a21011 

al1~Ml a21 0MI 

+ ... + . 
[ 

alKOIK 

aIK~MK 

aNI] 

a~K 

a
N2

0
12

] 

aN2~M2 

(3.1) 

(3.2) 

A function 9 is assumed to describe the object oi's contribution to F. From the above 

matrices expansion, we can see: 

(3.3) 

These equations reveal the fact that ai is the time signature for the corresponding object 

0i. We can rewrite Eq. (3.1) in vector format as: 

K 
A '" T F = ~Oiai. 

i=l 

(3.4) 

To find the element construction in j th video frame fj (j = 1, ... , K), we need to utilize 

the linear combination relationship between the spatial elements 0ik and the time sequence 

signals ajk from previous assumptions (Eqs. (3.1) and (3.2)): 

K 

iij = L °ikajk, 
k=l 

(3.5) 
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where i=l, ... , M. This equation reveals that an element at a specific location in a frame 

is the linear combination of the elements at the same locations of all the independent 

spatial objects at a certain time moment i; i.e. the ith element in the jth video frame 

is the linear combination of all the ith elements in all the independent object vectors 01, 

•.. , OK at ith moment. 

Independent 
components 

Background 

Object 1 

Mixing 
Matrix 

Video frames 

Mixing@,.-t_=_1 ________ -, 

Object1 
Back-

Object 3 
ground 

Object1 I Object 21 Back­
ground 

I Objoct 21 Objoel3 

1--_--, Back round 

Object 2 Object 3 

Figure 3.1: Illustration of video frame construction by mixing objects. 

Fig. 3.1 demonstrates how the stICA model is applied to video frames. At a certain 

time moment, a video frame consists of a linear combination of all the objects, including 

the background. 

For example at t=l, video frame 1 is obtained by the linear combination of the spatial 
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ICs on the left-hand side of Fig. 3.1. Frame 1 carries the information of the background, 

object 1 and object 3. In this way, different video frames are constructed. 

Please note that the video frames cannot be the linear combination of the ICs that 

we want because some of the background is blocked by the moving objects in the video 

frames. This condition violates the stICA assumption. Thus. we need to compensate 

for the background information that is lost due to object blocking. In this way, the 

assumption of linear combination may hold so that the stICA requirements are met. Here 

we denote the ideally blocked background information by Ai in ith frame fi' such that 

(3.6) 

where the dimension of Ai is also M x 1 and i = 1, .. " N. 

Between the practical video frame model in Eq. (3.6) and the fitting model in Eq. (3.4), 

there is a gap Ai that affects the accuracy of the stICA approach on video sequences. This 

problem is dealt with by our proposed methods in the following chapters. 

3.2 The stICA Based Video Segmentation Approach 

In this section, we will introduce an stICA based iterative approach, which can segment 

semantic video objects without any human intervention. To deal with the nonlinear 

combination problem (shown in Eq. (3.6)), we set up a two-iteration scheme (Fig. 1.1). 

In the first iteration (block diagram in Fig. 3.2), the stICA model is applied to the 

captured video frames. The maximum likelihood estimation is employed on both spatial 

and temporal signals. The Bell-Sejnowski algorithm is implemented to find the unmixing 

matrices, where the ICs 0i and ai are substituted for both Si and ti in fMRI (Eqs. (2.42)­

(2.46)). However, since the video frames cannot be the linear combination of the objects 

and their background, the recovered spatial signals 0i are still coarse representation of 

the objects (Fig. 3.3). Among all the recovered spatial signals, only the background 

image is clear. We can subtract it from all original video frames to get the preliminarily 

processed images which only contain objects (Fig. 3.5). Post-processing techniques are 
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Figure 3.2: Block diagram of the first iteration. 

then required to refine the object segmentation, which will be introduced in the next 

chapter. 
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(a) (b) 

(e) (d) 

Figure 3.3: Spatial SOlll'C<c signals from the first stICA processillg. 

3.3 Shnulation of the stICA applied to Video Pro­
cessing in the First Iteration 

In our experiments, if \yithout further notice. the propused ::;ystclU is applied to the video 

sequence "Hall "t\lonitor" \yith ~J.28-s('cond duration. There arc altogeth('l" 280 frames, 

each of \vhich has 240 x 360 pixels and 2SG grayscale levels, i.e. there drc 2('30 illlages 

generated. \Vc suppose t hat en~ry video franw COllt ;lillS at lo;)st ono ohj('ct of interest. 

This means there are no pure "background" images. 

A set of frame is selected from these 280 frames for further proccssmg. To avoid 

interference between close objects, frames are select ed frolll the sequence at a constant 
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Figure 3.4: A CUI for the st ICA baticd object. extraction in \-icico sequellces. 

interval. We set up a GUI (graphic user interface) that can show the processing details 

step by step (Fig. 3A). The program allows OllC to define a f1"<11ne selection intcrnll. 

Based on the frallle selcdioll mte. a lHllU1Jl'r of frames is selected from the 280 frcullcs alld 

number of spatial output. images ClS input frames. 

Among the output images in Fig. 3.3. only the bnckground imnge is dear. l\Ieamvhile. 

there are a llumber of ulHlcsirahlc outpnt images (Fig. 3.3(b)-(d)). Tlw r('(1son is tlint th(' 

pixels representing objects ill the video frames are not the linear combination of the pixels 

representing objects and the background in recovered image sigrwls. In other words, these 

video frames are not a linear mixture of all the independent sources, namely the objects 

and background. Since the Lackground image is dear among all the outputs, we can 
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subtract it frolll all original video frames to get the prelimillarily proccssed imagcs which 

ouly contain objects as shown in Fig. 3.5. 

(a) (b) 

(e) (d) 

Figure 3.5: Prclilllinaril.y processed images from the first sHeA processing sllbtrac:tiOlI. 

Iu these images, we ("all SC'C cxtcnsiw' noise. Post-processing tedllliques, which ,yill be 

prescuted in the llext chapter, are thus required to refine the object segmentation. 

3.4 Summary 

In this chapter, ;-)11 stICA ll1odC'] is formulated for vid('o S0qllC'll(,('S. A hnl-iteration ap-

proach is proposed to segment. llloving objects from a "ideo sequence. III the next ('hapt(~r, 

the post-processing techniques will be prescnkd. Based on the first iteration results, the 

nonlinear cOlllbination problem will be dealt with in the second iteration. 
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Chapter 4 

Post-processing in the First Iteration 

T HE stleA approach alone cannot provide a satisfactory object segmentation result. 

Some post-processing techniques are required to fine tune the output images. In 

this chapter, we introduce post-processing techniques based on wavelet analysis, edge 

detection, region growing and multiscale image segmentation. These methods are applied 

sequentially to segment the object.,of interest. 

4.1 Using Wavelet Analysis to Locate Regions of In­
terest 

As an ideal tool of image analysis, the wavelet transform performs well in characterizing 

singularities [19] [20]. In other words, large coefficients represent edge transitions in the 

wavelet domain. 

The wavelet transform decomposes an image into three wavelet subs'paces (LH, HL 

and HH) and one scaling subspace (LL). A single level of 2D wavelet decomposition is 

shown in Fig. 4.1. The three wavelet subspaces capture image details along the vertical, 

horizontal and diagonal directions, respectively. 

We use the HL subspace to detect the horizontal boundaries of the image objects and 

the LH subspace to detect the vertical boundaries. First let us focus on the HL subspace 

to make an illustration. As we know, image object boundaries are represented by large 

coefficients in the wavelet domain. Thus in the HL subspace, image horizontal edges are 

31 
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Figure 4.1: Illustration of one stage of 2D wavelet decomposition. 

represented by large coefficients. For other image areas where there are no horizontal 

edges, basically there are no large coefficients in such areas in the HL subspace. Thus we 

can apply a slide window in the HL subspace and let it slide from one side of the image 

to the other side horizontally. While it is sliding, we observe the coefficients along each 

column and use the coefficient with the largest absolute value to represent such column. 

According to the wavelet features we explained before, if this coefficient has a very small 

value, this indicates that there are no image horizontal edges along this column. If the 

value is large, it means there are some horizontal edges. Through this method we can 

define the horizontal scope of the image ?bjects in the HL subspace, which can bring us 

the horizontal region of interest (ROI) (ROIHLhorizontal) in the wavelet domain. 

For any spatial signal after the stIeA processing, we define W as the HL subspace 

at the Nth level of the wavelet decomposition and Wij is the coefficient in that subspace, 

where i, j are the indices of rows and columns of W, respectively. We also use a vector 

\lI={ 'ljJl, ... , 'ljJq} to represent the ensemble of those largest coefficient values in the HL 

subspace, where 'ljJj=maxi I Wij I is the largest absolute coefficient value of column j in the 

HL subspace. Here q is the total number of columns in the subspace, which is decided by 

the level of the wavelet decomposition. For example, if the dimension of an image is r x r, 
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then 
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Figure 4.2: (From top to bottom) a. Maxima of absolute wavelet coefficients; b. Mean values 
of the maxima in the overlapping windows; c. Mean values after thresholding. 

The method stated above to detect a horizontal image edge is based on the detection 

of large coefficients that represent image edges. The method requires a successive set 

of large coefficients to detect a single horizontal edge. However, if there are some small 

coefficients (below threshold) existing among these large ones, we may detect two or more 

edges where the object only has one. For example, in Fig. 4.2(a), there exist some valleys 
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between peaks, which without further processing would give erroneous results. 

To avoid wrong detection of multiple edges, we apply an overlapping sliding window 

in the HL subspace. While it is sliding from the left to the right, we calculate the mean 

value of the largest absolute values within the window and use the mean value to decide 

whether there is an edge or not. Using this method reduces the likelihood of erroneous 

results. The overlapping sliding window has two important parameters to control the 

sliding properties. One is the width of the overlapping sliding window frame and the 

other is the sliding step. We define the width parameter as 1 and the step parameter as . ' 

1. At the last several steps of window sliding, the number of 'lfJi is less than l, so there is 

a total of q-l+ 1 steps for the window to slide. We calculate the mean value of 'lfJi within 

the window at each sliding step as follows: 

E~+l-l 'lfJ. 
mk = ~=k t k = 1 ... q - 1 + 1 

1 ' " . (4.2) 

The processing result is shown in Fig. 4.2(b). Now the object edges are represented by 

some large mean values and the image background is represented by some small mean 
• 

values. To distinguish these two classes, we need to define some thresholds. 

A threshold detector is set up by comparing the mean values and the global absolute 

maximum value of the HL subspace wavelet coefficients: 

(4.3) 

where Q is an empirical constant, k = 1, ... ·,q+l-1, and i,j = 1, .. ·,r. We compare the 

mean values to the threshold. Once the first mean value that is greater than or equal 

to the threshold is observed, the corresponding position in HL subspace is recorded as a, 

the beginning of the edge. We continue to compare values until we observe a mean value 

that is less than the threshold. At this point, the position in HL subspace is recorded as 

b, the end of the edge. In HL subspace, the wavelet coefficient ensemble can stand for the 

region containing the object horizontal edges if these coefficients meet the criteria such 

that (Fig. 4.2(c)): 

ROI horizontal = {i I a < i < b} HL __ , (4.4) 
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where i is the column index. We continue comparing values and this manner all regions 

containing object edge can be detected. 

Applying the same method in the LH subspace, the vertical ROI can be defined: 

ROILHvertical = {j I c < j ~ d}, (4.5) 

where j is the row index; c, d are the starting and ending points of vertical edges, re­

spectively. Thus the rectangular ROIs that contain the objects in the wavelet domain are 

obtained: 

RO Iwavelet = {i, j liE RO IHL horizontal, j E RO ILH vertical}. (4.6) 

• 
The corresponding ROI in the stICA processed images can be located by using the inverse 

calculation in Eq. (4.1). 

The purpose of segmenting a ROI is to decrease computational complexity for later 

post-processing and to reduce noise so that edge detection techniques and region-based 

segmentation approaches can achieve better results. Moreover, the object indexing ap­

proach that will be introduced in chapter 5 also needs the ROI to detect true objects. 

The ROI technique can also be applied to the original video frames as the video object 

tracking method. 

In the following two sections, two post-processing approaches are applied sequentially: 

one is edge detection with region growing and the other is multiscale image segmentation. 

4.2 Image Edge Detection with Region Grewing 

The ROIs detected by the presented object detection method based on the stICA repre­

sent areas of the objects of interest. However, the ROIs do not contain exact boundary 

information of the detected objects. The Canny edge detection technique is applied to 

these rectangular ROIs. This operation renders a binary image, in which Is stand for the 

object (foreground) and Os for the background. 

From the binary images, we have obtained prospective object regions from edge detec­

tion. However, not all the obtained regions are objects of interest. In the ROIs, the target 
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Figure 4.3: Region growing technique to label connected pixels. a. Binary edge pixel neigh­
bourhood; b. Mark pixel neighbourhood; c. Label pixel neighbourhood. 

objects are generally larger than the other isolated regions. Thus we can discriminate the 

target objects from those unwanted regions through the comparison of their sizes. Here a 

region growing technique is introduced to calculate the connected region size. To perform 

this region growing operation, we fill the interior regions inside the closed edge with the 

value 1. These closed-edge detections are performed by the Canny technique. 

Marshall et al. [21] introduced a region growing approach that has the following op­

erating procedures: 

1. An initial set of small areas are iter~tively merged according to similar constraints. 

2. Start by choosing an arbitrary seed p~el and compare it with neighbouring pixels. 

3. The region is grown from the seed pixel by adding in neighbouring pixels that are 

similar, increasing the size of region. 

4. This whole process continues until all pixels belonging to a region are processed. 

In a digital image, if two pixels have similar grayscale values and they are in their 

neighbours of eight, they are deemed in the same region. In our case, the processed 
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images are binary images. If two adjacent pixel values are equal to 1, they are considered 

to be in the same region. We assume in a binary image I with rx r size, its pixels ii,j and 

ip,q are in the same region if 

ii,j = ip,q = 1, where i,j,p, q ::; r, 1 p - i I::; 1, and 1 q -j I::; 1. (4.7) 

We define two matrices with the same dimensions as I. All pixel values in these two 

matrices are initialized to zero. One matrix is named "Mark Matrix" and the other is 

named "Label Matrix". The flag with value 1 is assigned to a certain pixel in the Mark 

Matrix M to indicate that this pixel has been processed to avoid repeated processing. The 

Label Matrix L is used to assign a unique labelling integer to each isolated region. Thus 

the isolated regions can be distinguished by the different labelling integers. The total 

number of each labelling integer indicates the region size. For example, in Fig. 4.3(a), 

a seed pixel ii,j is randomly chosen, the values of its eight neighbours are checked in a 

clock-wise order. In this case, pixels ii-I,j and i HI,j+1 are equal to 1, therefore they are in 

the same region as ii,j. For each pixel that is in the same region as ii,j, its corresponding 

element in the Mark Matrix M is set to 1 to indicate that it has been processed such that 

(Fig. 4.3(b)) 

(4.8) 

Meanwhile, a labelling integer, say 3, is assigned to corresponding elements in the Label 

Matrix L to represent that region (Fig. 4.3{c)) 

(4.9) 

After the labelling of L is completed, the sizes of all isolated regions can be easily calcu­

lated. In Fig. 4.3{c) the total number of labelling integers 3 in matrix L represents the 

size of this region. 

Let us explore the proposed region growing approach depicted in Fig. 4.4. First of all, 

in the binary image I, a seed pixel ii,j is selected, which must satisfy two criteria: 

1. Pixel value must be 1: ii,j=l; 
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2. The Mark Matrix element value cannot be 1: Mi,j =1= 1. Otherwise ii,j has been 

processed. 

Once a new seed pixel ii,j is chosen, its eight neighbours ip,q (I p - i 1:::;1, 1 q - j 1:::;1) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

39 
are examined. There are two underlying possibilities. 

1. If ip,q=1 holds for any p,q (I p - i 1::;1, 1 q - j 1::;1), the value of the corresponding 

element in the Mark Matrix M, M p,q should be checked. There are two possibilities 

under this condition: 

(a) M p,q= 1: this indicates that the pixels corresponding to M p,q and ip,q have been 

processed. Thus ii,j belongs to the same region as ip,q, and li,j is assigned the 

same value as lp,q. 

(b) M p,q= 0: this implies ip,q has not been processed. If all the neighbours of ii,j 

have not been processed, lp,q and li,j are both assign'ed a new labelling integer. 

2. If there is no value 1 pixel in the seed pixel ii,j'S neighbourhood, i.e. ip,q=O, this 

means ii,j is the only one pixel in its region. M i,j is flagged to 1 and li,j is assigned 

a new labelling integer. 

In this way, all ii,j'S neighbours ip,q with value 1 are identified. Their Mark Matrix 

elements M i,j, M p,q are marked flag 1 after they have been processed. The corresponding 

Label Matrix elements li,j and lp,q are assigned the same labelling integer. 

This recursive computing method is employed on every unmarked seed pixel. After the 

seeking is finished, all isolated regions are assigned different labelling integers by the Label 

Matrix L. A region size threshold detector is used to distinguish the objects of interest 

from any smaller size regions, which are not the objects of interest and are subsequently 

removed. 

This region growing algorithm is simple, easy to implement, and reliable. It employs 

two ancillary matrices, which are efficient in processing. The Mark Matrix eliminates 

unnecessary processing, and the Label Matrix makes calculation of the region size easy. 

Such implementation does not change any pixel in the binary image I. 
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4.3 Multiscale Image Segmentation 

Edge detection techniques such as the Sobel method and Canny method work efficiently 

on sharp edges. However, the processed images after the stICA do not possess such sharp 

edges. This leads to some false edges that affect further processing. In the last section, 

we apply the Canny edge detection technique to the rectangular ROIs and then exploit 

the region growing method to remove small regions that are not objects of interest. This 

gives us the approximate regions of objects, which are called the object regions. 

In Fig. 4.5', the objects of interest are obtained by edge detection with region growing to 

remove the small regions that are disconnected with the objects. However, this approach 

cannot remove the regions that are connected to the objects. For simplicity, the connected 

regions are given a new name: connected component. Because of the false edges generated 

by edge detection, the region growing method cannot accurately identify the edges. Thus 

a multiscale region-based still image segmentation method [22] [23] [24] is employed on the 

object regions in post-processing. Note that here the term "multiscale" means the scales 

of the grayscale variance in a region. A region in this method is defined by measuring 

grayscale similarity and each region is labelled with a unique integer. The result of region 

growing shown in Fig. 4.9(c) is combined with the original image in the ROI in Fig. 4.8(a) 

giving the object regions in Fig. 4.1O(a). Multscale segmentation is then performed on 

the object regions giving the multiscale segmented regions shown in Fig. 4.10(c). 

Apparently, segmentation of regions 'Yith similar grayscale generally does not segment 

the objects of interest in images. A grayscale region may contain multiple objects, or one 

object may be divided to several grayscale regions. If an image has complex structure, it 

is difficult to find correspondence between each closed homogeneous region and a specific 

object. Fig. 4.5 is an illustration of the proposed approach. In Fig. 4.5(c), an object and 

its connected component are divided to four regions (Rb R2 , R3 and R4) according to 

their grayscale similarities. In this case, Regions Rl R2 and R3 belong to the object of 

interest. However, we cannot segment Rb R2 and R3 from R4 if only using multiscale 

segmentation. 
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Figure 4.5: Illustration of the procedures of incorporating edge detection and multiscale seg­
mentation. a. Regions obtained by edge detection and region growing; b. Smoothed regions 
obtained by Matlab Image Processing Toolbox; c. Regions obtained by multiscale segmentation; 
d. Objects obtained by the projecting operation between (b) and (c). 

If we apply a smoothing and projecting approach on the multiscale segmentation 

results, the objects of interest can be identified. This indicates that we need to distinguish 

which regions in Fig. 4.5( c) should belong to the object of interest. The first step is 

to smooth all the connected regions (Rb R2 , R3 and R4 ) in the object regions. The 
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smoothed results are shown in Fig. 4.5(b). The purpose of smoothing is to reduce the 

object region and make sure that there are no extra pixels outside of the objects of interest. 

The second step involves the removal of the connected component by the projecting 

operation. This involves mapping the pixels in the smoothed image (Fig. 4.5(b)) to the 

corresponding pixels in the segmented image (Fig. 4.5(c)). Then the regions labelled by 

the corresponding pixels in the segmented image are regarded as the desired parts of 

the object. The theoretical basis for the approach is that the connected components are 

relatively small and so that smoothing will effectively remove them. After smoothing, their 

pixels and relevant segmentation labelling information will be removed in the smoothed 

image plane. Thus the smoothed image only contains the pixels belonging to the object. 

For example, utilizing the location information of pixels ill i2 and i3 in Fig. 4.5(b) can 

correspondingly indicate that R}, R2 and R3 in Fig. 4.5(c) belong to the object of interest. 

Fig. 4.5(d) shows the segmented object of interest that contains R1 , R2 and R3 only. 

In this way, by utilizing wavelet analysis, edge detection, region growing and multiscale 

image segmentation approaches on the stICA outputs, objects with shape and boundaries 

can be approximately extracted. 

4.4 Simulations of the Post-processing Techniques in 
the First Iteration 

The first iteration is illustrated in Fig. 3.2. In the last chapter, the inputs for post­

processing are the preliminarily processed images obtained by subtracting the recovered 

background from original video frames. The preliminarily processed images are processed 

by wavelet analysis to locate the rectangular ROIs. The ROIs can track the objects of 

interest, however they cannot describe the exact object boundaries. Thus edge detection 

and region growing approaches are necessary. They are used to outline the edges and 

remove the isolated small size regions. After the edge detection and the region growing, 

there may still be some connected components (e.g. R4 in Fig. 4.5). Connected compo­

nents and object are given a new name: object regions (e.g. RI-R4 in Fig. 4.5). To remove 
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the connected components from an object, the multiscale segmentation technique is ap-

plied to the object regions. Through the smoothing and projecting approaches, multiscale 

segmented regions belonging to the object can be identified. 

4.4.1 Simulation of Wavelet Analysis to Locate ROIs 

Figure 4.6: An example of 2D wavelet decomposition. a. LL scaling subspace; b. LH subspace; 
c. HL subspace; d. HH subspace. 

After the subtraction of the recovered background, the preliminarily processed images 

contain object but with extensive noise (e.g. Fig. 3.5{a)-{d)). The discrete wavelet 

transform decomposes an image into four subspaces: three wavelet subspaces{LH,HL 

and HH) and one scaling subspace(LL). A scaling subspace (LL) example is shown in 

Fig. 4.6{a). It is a low frequency approximation of the original image. The other three 

subspaces LH, HL and HH are shown in Fig. 4.6(b)- 4.6(d). We can see that as we stated 
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above, LH, HL and HH describe image details along three directions: vertical, horizontal 

and diagonal directions, respectively. Thus LH and HL subspaces are used to locate the 

vertical and horizontal edges. 

HL subspace wavelet coefficients are used to detect the horizontal edges. An overlap­

ping sliding window approach is then appl~ed. The subspace wavelet coefficients Wij have 

q columns such that: 

q = (~)N X r = (~) 1 x 360 = 180. (4.10) 

Thus vector ll1·has 180 elements ["pI, "', 11'180]' Each element lPj is the largest absolute 

coefficient value of column j in matrix W. The 60th frame in the video sequence is selected 

to demonstrate the proposed method. The graph of vector ll1 is shown in Fig. 4.2(a). The 

edge detection technique is based on a set of large coefficients to detect a single horizontal 

edge. However, some small coefficients (below threshold) may exist among these large 

ones. From the curve, decision-making of edge detection might not work because of some 

valleys between peaks. 

To minimize this adverse effect, an overlapping sliding window method is employed. 

This method has two important parameters: a window width of 4 and a sliding step of 1 

were found to provide good results in the experiments. Then the number of mean values 

is 

q - l + 1 = 180 - 4 + 1 = 177. (4.11) 

This is also the number of steps for the, window to slide from the left to the right of 

HL subspace. Fig. 4.2(b) demonstrates the application of Eq. (4.2). The rough curve in 

Fig. 4.2(a) is smoothed and is shown in Fig. 4.2(b). It clear that the result emphasizes 

the edges on the horizontal direction. Now the object edges are represented by some large 

mean values and the image background is represented by some small mean values. To 

distinguish the two classes, we need to define a threshold. 

The threshold is determined by comparing each mean value with the global absolute 

maximum value of the HL subspace wavelet coefficients. The empirical constant Q in 

Eq. (4.3) is set at 0.685. This constant proves to be efficient in all test images. The 
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mean values ml to m177 are compared with the threshold sequentially. Whenever a mean 

value is found to be greater than the threshold, the corresponding position in the HL 

subspace is recorded. In the selected frames, a = 68. Comparison continues until a mean 

value is found to be lower than the threshold, which indicates that the horizontal edges 

end and this position in the HL subspace is recorded as b = 96. The results are shown 

in Fig. 4.2(c). The mean values out of the range (68:96) are set to be zero. Then the 

corresponding 68th-96th columns in the HL subspace can construct the horizontal edges 

of the ROI: 

ROI horizontal = {i I 68 < i < 96}. HL - _ (4.12) 

The horizontal ROI in the original domain is illustrated in Fig. 4.7(a). Note that the 

horizontal ROI is located between the 136th column and the 192nd column. The locations 

are acquired by the inverse calculation in Eq. (4.1). Applying the same method in the 

LH subspace leads to the detection of the vertical edges and the vertical ROI: 

ROILH vertical = {j 1 24:::; j :::; 89}. (4.13) 

Combining the ROIHLhorizontal and ROILHvertical yields a rectangular ROI: 

ROIwavelet = {i,j 168 :::; i :::; 96,24 < j < 89}. (4.14) 

The post-processing begins with the wavelet analysis along the vertical and horizontal 

directions, which can accurately locate the ROIs that contain object of interest. This 

procedure can significantly reduce the searching range of the object and· thus reduce the 

computational complexity. For example, in Fig 4.7(a) and (b), we only need to consider 

an area containing rows 48 to 178, and columns 136 to 192. This rectangular area is 

131 x57, which is only 
131 x 57 

240 x 360 = 8.64% (4.15) 

of the original image area. Fig. 4. 7(b) also shows that the locations of the ROIs are very 

accurate and the object of interest is completely included within the rectangular ROI. 

Fig. 4.7{c) shows a "zoom in" video frame from its original size 240x360 to 131x57. 
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This "zoom in" operation reduces the computation complexity and makes the detection 

immune to the interferences generated by the stICA (consider reference to Fig. 4.6(a)). 

Figure 4.7: (From top to bottom) a. Horizontal ROJ; b. A rectangular ROJ after the horizontal 
and vertical wavelet analysis; c. The "zoom in" video frame 60. 

4.4.2 Simulation of Edge Detection with Region Growing 

The ROls detected by the presented object detection method based on the stICA de­

scribe the areas of the object of interest, but the ROIs do not contain exact boundary 

information of the detected objects. The Canny edge detection technique is applied to 

these rectangular ROls. This operation renders a binary image, in which Is stand for the 
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object(foreground) and as for the background. Fig. 4.8(b) shows this operation. However, 

in this binary image of the ROI, not all the detected regions are object of interest. For 

example, in Fig. 4.8(b), besides the moving human object, there are some other regions 

included, such as the door. In the ROls, the target objects are generally larger than the 

other isolated regions. Thus we can discriminate the target objects from those unwanted 

regions through the comparison of their sizes. For example, in Fig. 4.8(b), the size of the 

moving human is much larger than others'. 

Figure 4.8: (From top to bottom) a. Original image in the RaJ; b. Edge detection by the 
Canny detector. 

The region growing approach can categorize these isolated regions. To apply this 

technique we fill the interior regions inside the closed edge with the value 1. These closed­

edge detections are performed by the Canny technique. Fig. 4.9(a) shows these three 

isolated regions in whit.e (Is), and the background in black (as). Another two matrices 
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Figure 4.9: (From top to bottom) a. Filling regions after edge detection; b. Labelling regions 
with the same integer; c. Removing regions that are not of interest by threshold detection. 

with the same dimensions are defined: the Mark Matrix M and the Label Matrix L. All 

pixel values in these two matrices are initialized to zero. 

This region growing algorithm is a recursive computing method (Fig. 4.4). Its imple­

mentation is simple and reliable. In the binary image I, the first seed pixel ii,j that meets 

two criteria (ii,j=l, Mi,j #1) is found by column-wise searching. Its eight connected 

neighbours ip,q (I p - i 1::;1, 1 q - j 1::;1) are then checked for both their pixel values and 

their Mark Matrix element M p,q. After the checking is finished, the l'vlark Matrix is flagged 

and the same labelling integer is assigned to li,j , lp,q. One of the neighbours ip,q with 
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value 1 is considered to be a new seed pixel on which the same operation is implemented. 

This operation continues until all pixels are processed. In this way, a region finishes its 

growing and its corresponding Label Matrix region is assigned a unique labelling integer. 

For example, Fig. 4.9(b) shows three connected regions that are assigned three labelling 

integers. The sizes of isolated regions are easily acquired by summing up the number of 

each labelling integer. We get the sums of labelling integers 0 through 3 as 2023, 457, 

2643 and 22. Labelling integer 0 corresponds to the background; labelling integer 2 corre­

sponds to the moving object; and labelling integers 1 and 3 correspond to the non-target 

regions. 

Finally, the small regions corresponding to the labelling integers 1 and 3 are eliminated 

by a region size threshold detector (Fig. 4.9(c)). This threshold is set to 10% of the largest 

region size (except the background) in the whole binary image. In the test image, the 

threshold is set at 10% x 2643~264. After threshold detection, only the approximate 

object of interest remains. Thus image quality improves. 

4.4.3 Simulation of Multiscale Image Segmentation 

In Fig. 4.9(c), the object regions are obtained by edge detection and region growing. 

However, this approach cannot remove the unwanted components that are connected to 

the objects. Such components are caused by the false edges resulting from edge detection. 

The multiscale region-based still image segmentation method in [22] [23] [24] is em­

ployed on the object regions in post-processing. In thE; simulation, we apply this algorithm 

to the original frame in the area outlined by edge detection. Then we get the multiscale 

segmented regions in Fig. 4.1O(c). Since the object of interest (the human) and its con­

nected regions are segmented into several regions based on their grayscale similarities, 

extra information is required to distinguish which regions should be considered as parts 

of the object. This information comes from edge detection of the object regions. 

However, edge detection can bring unnecessary connected components because of the 

false edges. Smoothing the edge detected regions can remove such unnecessary connected 
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Figure 4.10: (From top to bottom) a. Object regions in the ROI; b. Smoothed regions from 
edge detection; c. M ultiscale segmented regions. 

components. After smoothing the regions in Fig. 4.9(c), a "slimmer" object is obtained 

and shown in Fig. 4.10(b). The major unnecessary connected components have been 
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removed. We project the pixels after the smoothing operation to the multiscale segmented 

image (Fig. 4.10(c)). The regions belonging to the object are identified. The reason for 

smoothing the binary regions is to make sure that no pixel is projected to the connected 

components. An example of the extracted object from the original image is illustrated in 

Fig. 4.11(b). 

Figure 4.11: (From top to bottom) a. Original video frame 20; b. Extracted object. 
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4.5 Summary 

In summary, the first iteration includes the following steps (as shown in Fig. 3.2): 

1. Use the stICA to process the selected frames from a video sequence. The prelimi­

narily processed images are obtained by subtracting the recovered background from 

original video frames. 

2. The preliminarily processed Images are processed by using the wavelet analysis 

followed by applying overlapping moving windows and a threshold detector to obtain 

the rectangular ROIs. 

3. From the ROIs, edge detection of the extracted object is performed by using the 

Canny method. A recursive region growing technique is employed to remove the 

small size regions in the ROIs. The object regions are formed in this step. 

4. Multiscale segmentation techniques are applied to the object regions with the smooth­

ing/projecting approach to identify the regions belonging to the object. 

In this way, by utilizing the wavelet analysis, edge detection, region growing and 

Illultiscale image segmentation approaches on the stICA outputs, the objects with specific 

shapes and boundaries can be approximately extracted. 
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Chapter 5 

A Compensation Approach of stICA 
for Practical Video. Sequences 

T HE post-processing procedures described in chapter 4 work effectively for the ob­

jects with relatively simple background. For the objects used in the tests, the 

background regions at the target object boundaries possess grayscale values that are suf­

ficiently different to enable easy distinction. However, if both the background and the 

objects of interest have similar greyscale values, false regions may be identified as the 

objects of interest, as illustrated in Fig. 5.3(b) and (c). To deal with this problem and 

the nonlinear combination problem in the stICA model for video sequences, a "compensa­

tion" technique is applied to the stICA in the second iteration of our framework (Fig. 1.1). 

In the second iteration (Fig. 5.1), satisfactory object segmentation results are achieved 

by a compensation approach, a frame object indexing method and the post-processing 

techniques. 

5.1 A Compensation Approach of stICA 

The major obstacle of the stICA's application to video sequences is the nonlinear combi­

nation problem as shown in Eq. (3.6). The nonlinear property of video frames leads to 

the poor outputs from the stICA when it is applied directly to the video frames. Thus 

the complicated post-processing methods are required in the first iteration (Fig. 3.2). If 

we can determine the approximate region .6.i that is blocked by the object in each frame 

53 
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Figure 5.1: Block diagram of the second iteration. 

fi and "compensate" the blocked background back to each frame (Eq. (3.6)), then we can 
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(5.1) 

where ~i' Ai, fi and fi are the Mx1 column vectors as stated in chapter 3. 

If ~i is ideally located, -Ai+ ~i = 0, which means the video frames can fit the stICA 

model. In fact, if we get the accurate blocked background information, we can outline the 

objects of interest and fulfil the video object segmentation task. However, we can only 

acquire the approximate blocked background information in the first iteration and use it 

for the stICA processing in the second iteration. The following steps are the procedures 

of the compensated frames for the stICA processing in the second iteration: 

1. The blocked regions of the background are determined by the segmented objects in 

the first iteration. The blocked regions are used as binary masks (Fig. 5.4) and the 

masks are applied to the background image obtained in the first iteration to get the 
• 

blocked background information ~i (Fig. 5.5). 

2. ~i is superimposed onto its corresponding original video frame and the compensated 

frames are obtained (Fig. 5.6). 

Comparing Eq. (3.5) and Eq. (5.1) we obtain 

(5.2) 

where -Ai+ ~i is the major factor that determines the accuracy of the stICA processing 

results. 

We apply the stICA model (Eq. (2.46)) to the "compensated" frames (Fig. 5.6). 

The stICA estimation algorithm stated in chapter 3 is employed again. The accurate 

foregrounds (objects) and background are recovered from the "compensated" frames. 

Fig. 5.2(b)-(d) are the results of the stICA outputs. The edges of extracted objects 

are much clearer than those in the first application of the stICA (Fig. 3.3(b)-(d)). Their 

clear edges demonstrate an improvement in the object segmentation quality . 

. ------------------------------------------------ -----
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(c) (d) 

Figure 5.2: Spatial source signals from the second stlCA processing: 01, 02, 03, 04. 

5.2 Frame Object Indexing Approach 

The stICA recovered video objects (spatial signals 0) are clear enough for edge detection. 

However, due to the ambiguities of the ICA [11], the order ofthe ICs cannot be determined. 

The order of the ICs is very important for reconstructing the video sequence containing 

only the objects. Thus, before edge detection, the recovered spatial objects 0 must be 

indexed according to the order of the video frame F. We propose an indexing method 

based on the SVD [12] and the corresponding weighting matrices. Such a weighting 

matrix is a kind of linear combination. 

We derive the frame object indexing from the compensated video sequence F and its 

SVD products U and V in Eq. (2.43) such that 

(5.3) 
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Since both U and V are orthogonal [8], we could make use of these two equations vrv 
= I and U = UE1/2. We can get the following derivation results 

(5.4) 

where E is a diagonal matrix with singular values. The multiplication of U with E 1/ 2 

can only change the amplitude of U (eigenimages), but can not change the eigenimage 

indices. Let us suppose that V is a kxk weight matrix. Eigenimage Ui (i=l, .. ·,k) is 

most affected by the frame that has the largest absolute element in the corresponding 

column of V. 

Once we find the indexing relationship between F and eigenimages U, we can pro­

ceed to get the ~ndexing relationship between U and the independent spatial images O. 

Referring to Eq. (2.44), we denote spatial ICs 

O=UWo , (5.5) 

where Wo is a k x k unmixing matrix. In the stICA model, 0 is generated by the 

multiplication of eigenimages U and the unmixing matrix Wo. The indexing relationship 

between U and 0 can be found in the same manner as that used for F and U. Now the 

object index in 0 can be referred to the order of F. 

Here we still need to use the ROls obtained from the first iteration to assure the quality 

of edge detection. Those post-processing techniques used in the first iteration, such as 

the edge detection with region growing and multiscale image segmentati'On, are applied 

to the indexed objects. In this way, the objects with accurate shape and boundaries are 

extracted. 

5.3 Simulations 

The methods we used in chapter 4 work effectively for the objects with a simple adjacent 

background, which means the greyscale of the background pixels are not similar to the 

target objects. Fig. 5.3(a) and (d) are in this category. However, if both the background 
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(e) (d) 

Figure 5.3: The output images from the first iteration. 

and the object of interest have similar greyscale values, false regions may be identified as 

the objects of interest as shown in Fig. 5.3(b) and (c). 

5.3.1 Simulation of Compensation Approach of stICA 

Fig. 5.4(a)-(d) show the binary masks that are determined by the segmented objects from 

the first iteration. The blocked background regions are obtained by projecting the masks 

to the background we recovered in the first iteration so that the compensated video frames 

are the sum of original video frames and the corresponding blocked background regions. 

Fig. 5.6(a)-(d) are the examples of the compensated video frames. 

Then the stICA model is applied to the compensated video frames (Fig. 5.6(a)-(d)). 

As expected, the second stICA processing detects the object edges accurately. Compared 
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(c) (d) 

Figure 5.4: Binary masks determined by the first iteration. 

with the results obtained in the first stICA processing (Fig. 3.3(b )-( d)), the edges of 

the recovered spatial ICs in the second stICA processing (Fig. 5.2(b)-(d)) are clearer and 

sharper. This represents an improvement the object segmentation quality. 

5.3.2 Simulation of the Frame Object Indexing Approach 

After the second stICA processing, the stICA recovered objects (spatial signals 0) are 

clear and the edge detection results are more accurate than the first orie. However, due 

to the ICA's ambiguities, the order of the ICs cannot be determined. The order of ICs is 

very important for reconstructing the video sequence containing only the objects. 

In the simulation experiment, there are altogether four video frames defined as inputs 

to the stICA. Since the SVD is the pre-processing tool of the ICA, we first use the SVD to 
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(e) (d) 

Figure 5.5: Blocked background regions determined by the binary mask. 

find the indexing relationship between the video frames F and the eigenimages U. In the 

eigenimages matrix U, the first principle component Ul represents the strongest energy 

among all the principle components [12]. Among all the objects, the background has the 

strongest energy because it exists in every frame of the video sequence. Thus Ul should 

correspond to the background (a special object). Through the observation of the elements 

of the eigensequence matrix V, the indices of other objects can be found. 

In this case, each video frame contains only one object. So there are altogether four 

objects and one background to be indexed. Since we have a total of four eigenimages after 

the SVD, there should be more than one object to be indexed in a certain eigenimage. 

We need to find the indexing information of the four objects and a background from 

these four eigenimages. The eigenimage Ul corresponds to the background. To determine 
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(c) (d) 

Figure 5.6: a.-d. Compensated video frames for the second stICA processing. 

what the indices of the four objects are, the largest absolute coefficients in columns two 

to four of the eigensequence matrix V found. 

[ 

0.4899 
0.4820 
0.4948 
0.5019 

0.4343 
-0.1482 
0.6290 
0.2218 

-0.7464 0.0245] 
0.4756 -0.7302 
0.4348 0.4129 

-0.1661 -0.8002 

As can be seen, the third coefficient of column two has the largest absolute value in 

that column, which means the object segmented from the second eigenimage U2 will be 

indexed as the third frame in the video sequence. This is true because the third frame 

corresponds to the third coefficient and the frame has the largest contribution to the 

formation of the second eigenimage and to the object in it. For the same reason, the 

object segmented from the third eigenimage U3 will be indexed as the first frame in the 
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(c) (d) 

Figure 5.7: The output images from the second iteration. 

video sequence. Finally, colullln four has two large coefficients at positions two and four, 

which means there are two objects to be segmented from the fourth eigenimage U4 and 

their indices in the video sequence \vill be the second and the fourth frames, respectively. 

The indexing relationship between the Eigcnimages U and the vidco framcs F can be 

described as follows: 

Then we use the Bell-Sejnowski algorithm in the stICA to optimize the eigenimages U 

and obtain the unmixing matrix W 0 such that O=UWo . In the experiment, W 0 is a 
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4x4 matrix 

Figure 5.8: The original video sequence frames. 

[ 

-10.9408 
-1.9929 
-0.5246 
-1.0995 

-0.8998 
-38.6003 

0.2471 
8.3672 

2.1762 
1.4613 

-40.57.52 
6.9683 

-1.4259] 
2.8184 
2.8608 

35.0712 

For the same reason outlined ahove, the rrlatiollship betwcPIl U and 0 is 

Thus we can map the relationship between F and 0 as follows: 
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(a) (b) 

(e) (d) 

Figure 5.9: The eigenimages: Ul: U2, U3, U4· 

04 ----+ f2 

02 ----+ f3 

04 ----+ f4 

64 

The object indexing relationship from F to 0 through U is illu::;trated in Fig. 5.10. In 

this way, the frame object order can be determined. 

To compare the segmented image quality in these two iterations, the Peak Signal to 

Noise Ratio (PSNR) [25J [26J is employed. The PSl\R is a standard criterion for ohjective 

noise measuring in video systems. For example, the image size is 10.1 x N, op( i,j) and 01'( i,j) 

denote the pixel amplitudes of the processed and reference images, respectively, at the 
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I~ 
I ~(f,) 0,,('3) 

Figure 5.10: Illustration oqhe indexing relationship from F to 0 through U. 

position (iJ): 

(255)2 
PSNR = 10 . log 1 N M .. . . 2 dB. 

MN Li=l Lj=l(Op(~,J) - OT(~,J» 
(5.6) 

Table 5.1 compares the PSNR values (dB) of the segmented object images in the two 

iterations from the "Hall Monitor" sequence. It shows that the results obtained in the 
, . 

second iteration (Fig. 5.7) are superior to those in the first one. (Fig. 5.3). 

Table 5.1: PSNR values (dB) of the segmented images in "Hall Monitor" sequence. 

Iteration Image (a) Image (b) Image (c) Image (d) 
First 30.25 27.43 26.12 34.71 

Second 36.36 39.84 41.72 40.30 

In another simulation experiment, the "Computer Lab" video sequence with 4.35-

second duration is used. There are altogether 160 frames, each of which has 240x360 
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(e) (d) 

Figure 5.11: The output images from the first iteration of "Computer Lab" sequcuce. 

pixels and 256 grayscale levels. \Ve suppose that every video frame contains at least one 

object of interest. This llleans there are no pure "background" images. A set of frames 

are selected from these 160 frames for further processing in the proposed system. To avoid 

interference between dose objects, frames are selected from the sequence at a constant 

interval 40. Thus there are 4 frames are selected to Le processed by the systelll each time. 

The approaches in first and the second iterations (Figs. 3.2 and 5.1) are applied. The 

output images in the t\VO iterations are shown in Figs. 5.11 and 5.12, respectively. 

Based on the "Computer Lab" simulation experiment, Table 5.2 gives the compari­

son results of the PSNR values between the first iteration and the second iteration. The 

oLtailled results are quite similar to the results in Table 5.1. The results after the sec­

ond iteration are better than the results after the first iteration. l'vIoreover, the missing 

information on the object's face in Fig. 5.11(c) can be retrieved back in Fig. 5.12(c) by 

the proposed compensation method. This is because the compensated frames consist of 
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(e) (d) 

Figure 5.12: The output images from the second iteration of "Computer Lab" sequence. 

both background information and object information inside the edges. Thus even some 

information is lost in the first iteration, it can still be retrieved by the proposed methods 

based on the stICA model. This is an advantage of applying the stICA to video frames. 

Table 5.2: PSNR values (dB) of the segmented images in "Computer Lab" sequence. 

Iteration Image (a) Image (b) Image (c) Image (d) 
First 24.42 29.66 25.17 38.72 

Second 26.67 31.21 31.54 40.28 

5.4 Summary 

To deal with the nonlinear combination problem in stICA model for video sequences, a 

novel compensation method is introduced. Spatial signals with clear shapes and edges 

are recovered from compensated video frames by the stICA. An object indexing method 
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is used to index the segmented objects in the original video sequence. The ROIs obtained 

in the first iteration are used to locate the objects in different spatial images (Fig. 5.2). 

Those post-processing techniques used in the first iteration, such as edge detection with 

region growing and multiscale image segmentation, are employed again in the second 

iteration to improve object segmentation accuracy. 

In the second iteration, the processing approaches consist of (shown in Fig. 5.1): 

1. Extracting the regions of background that are blocked by the objects whose bound­

aries are bbtained in the first 'iteration. 

2. Superimposing the regions of background that are blocked by the objects onto the 

original frames to obtain the compensated frames. 

3. Employing the stICA to process the compensated frames to produce spatial signals 

with clearer edges. 

4. Indexing the frame objects by the SVD and the weighting matrices. 

5. Using the ROIs obtained in the first iteration to locate the objects in different spatial 

images. 

6. Employing edge detection with region growing, multiscale image segmentation ap­

proaches to get accurate objects (shown in Fig. 5.7). 

Simulation results reveal that the proposed approaches along with the post-processing 

techniques can segment the objects of interest accurately and effectively. 
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Chapter 6 

Conclusion 

I N this thesis, a new framework for high-level video object segmentation based on the 

stICA is presented. This chapter summarizes the work presented and suggest some 

possible research extensions. 

6.1 Contribution 

The main purpose of this thesis is to verify the efficacy of the stICA model for video 

sequences. Based on the similarity of the independence of spatial and temporal signals in 

fMRI and video sequences, an stlCA model for video sequences is formulated. When the 

stICA model is applied directly to the video objects, a nonlinear combination problem 

will arise due to the absence of background information. To deal with the nonlinear 

combination problem, a novel two-iteration approach is presented. 

In the first iteration, the stICA processing together with wavelet analysis, edge de­

tection, region growing and multiscale segmentation techniques segment the objects from 

their backgrounds. However, some of the segmented objects cannot be extracted accu­

rately, especially when objects have a complicated background. Thus the second iteration 

is necessary. 

The nonlinear combination problem in Eq. (3.6) is the major obstacle for the stICA 

application for video sequences. The problem leads to rather poor outputs from the 

video frames processed by the stICA. To deal with this problem, we introduce a novel 
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blocked region compensation method. The stICA model is applied to the compensated 

frames and it recovers the spatial and temporal signals. Both theoretical derivation and 

simulation results show that this compensation technique is effective. After the second 

stICA processing, a frame object indexing approach is introduced to address the problem 

that is caused by the uncertain signal order of the ICA. This approach is based on the 

SVD and the weighting matrices used in the stICA algorithm. The ROls obtained in 

the first iteration are used to locate the objects in different recovered spatial signals. 

The post-proc~ssing techniques utiFzed in the first iteration, such as edge detection with 

region growing, and multiscale segmentation are applied again. Simulation experiments 

show that the outputs from the second iteration are improved and the extracted objects 

are superior to those extracted in the first iteration. 

The contributions of this thesis consists of 

1. A new method of analyzing video sequences by the stICA model. 

2. A novel compensation method to deal with the nonlinear combination problem in 
• 

the stICA model for video sequences. 

3. An integrated post-processing approach that consists of wavelet analysis, edge de­

tection, region growing and multiscale segmentation techniques. 

6.2 Possible Extension 

There are some possibilities that may be explored in the future in order to enhance the 

performance of the proposed system and to extend its applicability. 

1. The stICA optimization processing has the highest computational cost in the pro­

posed system. The implementation of its algorithm can be optimized to allow faster 

execution of the whole system. 

2. Object motion analysis. The proposed method in this thesis can effectively seg­

ment different moving objects from a video sequence. If two successive frames are 
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compared to obtain the change of locations of the moving objects, then the objects 

moving velocity and direction can be predicted. This application has a promising 

future in the image and video processing. 
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