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Abstract

Yield stress fluids are commonly encountered in the pharmaceutical, wastewater and
bioprocess industries. On agitation of these fluids with an impeller, a zone of significant
motion (cavern) is formed surrounded by stagnant regions. These inhomogeneous

conditions are undesirable from a product quality standpoint.

Therefore, to evolve a mixing system design that would eliminate these problems,
experimental measurements of mixing time were obtained and combined with power
consumption to provide a measure of mixing system efficiency. The effect of different
parameters such as fluid rheology, impeller rotational speed, impeller type and impeller
clearance on the mixing times was also investigated. In addition, using CFD, numerical
mixing times were calculated and a comparison of the numerical and experimental
mixing times were conducted to investigate the capability of the CFD tool to correctly

predict the homogenization process in mixing tanks.

In general, it was observed that the power characteristics of the different agitators were
well reproduced by the computational package. In addition, CFD was able to correctly
predict the effect of impeller rotational speed and fluid yield stress on the mixing times.
However, the effect of impeller clearance on the mixing time was not correctly predicted

by the CFD package when compared with experimental results obtained in this work as
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well as those obtained by other researchers. A comparison of the impellers used in this
study (Pitched Blade Turbine (PBT), marine propeller and Lightnin A320) using the
mixing time correlations available in the literature to fit the experimental data revealed
that the PBT was superior to the other impellers in mixing yield stress fluids. In addition,
the validated CFD model was used to measure the dimensions of the cavern formed

around the impeller and it showed good agreement with the Elson’s cavern model.
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Chapter 1 Introduction

1. Introduction

Mixing is a major component of operations in the chemical and process industries, and when
Newtonian fluids are encountered, it is a fairly easy operation. However, the same cannot be said
for highly viscous non-Newtonian fluids, particularly those exhibiting a yield stress. Yield stress
fluids contain structured networks of molecules that depend on the shear rate of the fluid. Such
fluids exhibit a high apparent viscosity at low shear rates, and since the shear rate decreases as
the distance from the impeller increases, circulation problems can often be encountered when
mixing such fluids (Hayes et al., 1998). Close to the impeller, there is formation of a zone of
significant motion called a cavern. Examples of materials exhibiting yield stress include
particulate suspensions, emulsions, some foodstuffs, blood, paint, pastes and cosmetics (Curran
et al., 2000; Chhabra and Richardson, 1999; Zhu et al., 2005).

Several approaches have been considered to improve the mixing of yield stress fluids. For
instance, in the mixing of xanthan gum, a highly shear thinning fluid possessing a yield stress, a
replacement of the “standard” Rushton turbine with other impeller geometries which might be
expected to perform better (such as the Lightnin A315 impeller) has been proposed (Galindo and
Nienow, 1992).

Mixing systems can be characterized in terms of a performance criterion called the mixing time.
The mixing time is a key process parameter in many dispersion and homogenization applications
in stirred tanks widely used to describe the quality and effectiveness of mixing of fluids in stirred
tanks (Carreau et al., 1976). Mixing time provides a measure of homogeneity of the mixing
system (Hayes et al., 2000) and is mainly useful for comparing different agitator systems; for the
same power input, the most efficient mixer is the one with the shortest mixing time (Houcine et

al., 2000; Chavan et al., 1975). However, for highly viscous fluids, both Newtonian and non-
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Newtonian, determination of an absolute mixing time is a difficult task because of the difficulty
in attaining a truly homogeneous mixture (Carreau et al., 1976). Since collecting data under
experimental conditions can be time consuming and expensive, computational fluid dynamics
(CFD) is an option. CFD provides an efficient means to predict the mixing time in stirred tanks.
If properly and correctly applied, CFD can provide a more rapid design of mixing tanks because

it allows for the rapid evaluation of several different design scenarios compared to constructing

experiments for each scenario under consideration. However, experiments are still needed to
validate the mixing time results obtained from CFD (Hayes et al., 1998; Harvey and Cassian,
1995).

Few publications have been devoted to the CFD modeling of the mixing of non Newtonian fluids
(de la Villeon et al., 1998; Shekhar and Jayanti, 2003; Bertrand et al., 1996; Xu and McGrath,
1996). In some of cases, the mixing times have also been simulated in an attempt to predict the
mixing performance of different impellers (Montante et al., 2005; Thyn et al., 2005). However, a
thorough search of the current mixing literature suggests that CFD modeling of non Newtonian
fluids is limited.

Therefore, the objectives of this work are to use CFD to characterize the performance of three
axial flow impellers: the marine propeller, A320 impeller and pitched blade turbine (PBT)
impeller in the mixing of a yield stress fluid, xanthan gum. This characterization will be done in
terms of power consumption and mixing time. In addition, the effect of impeller rotational speed,
fluid rheology, impeller type and impeller location from the tank bottom (clearance) on the
observed mixing times will be investigated. An investigation into the size of the cavern

generated by the marine propeller and the pitched blade turbine as a function of impeller
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rotational speed will be conducted using the CFD tool from which conclusions on the mixing

performance of these impellers in mixing yield stress fluids will be drawn.



Chapter 2 Literature Review ‘

2. Literature Review

Introduction
The proper design of mixing systems for non Newtonian fluids requires an understanding of the

rheology of these fluids as this information has implications on the impeller geometry and

system configuration that would be required to achieve the desired mixing performance.
Therefore, the literature review section begins with an overview of non Newtonian fluids and the
mathematical expressions that describe their behavior. Thereafter, an introduction to the impeller
classification adopted in this work is presented. A review of two important parameters for
describing mixing system performance namely power consumption and mixing time is also
undertaken, and then a summary of the important research involving non-Newtonian fluids in
stirred tanks is conducted, after which the concept of cavern formation is presented especially

with regards to the important information it provides on the extent of mixing in the mixing tank.

2.1 Mixing Theory

2.1.1 Rheology of Non-Newtonian Fluids
A non-Newtonian fluid may be defined as a fluid whose flow curve (plot of shear stress versus
shear rate) is non-linear. In other words, its apparent viscosity is not constant at a given
temperature and pressure, but depends on flow conditions such as flow geometry, shear rate, etc.

(Chhabra and Richardson, 1999).

Non-Newtonian fluids may be broadly classified into two categories:
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Time-independent fluids: Shear stress is a unique function of the shear rate and is independent of
the time of shearing. The apparent viscosity, &, , at a particular shear rate for time independent
non-Newtonian fluid behavior is defined as (Holland and Chapman, 1966):

T
M, =— (2.1)
4

where 7 and }/ are the shear stress and shear rate respectively.

Time-dependent fluids: The relationship between shear stress and shear rate depends on the

duration of shearing.

Since the focus of this study is on the mixing of xanthan gum, a pseudoplastic fluid possessing a
yield stress, which falls under the category of time-independent fluids, the following paragraphs

will address this class of fluids

Time independent non-Newtonian behavior may be further broken down into three types:
1) Shear thinning or pseudoplastic
ii.) Shear thickening or dilatant

iii.) Viscoplastic

Shear thinning or pseudoplastic: This is the most common type of time-dependent non-
newtonian fluid behavior observed, and a fluid with this property has an apparent viscosity that
decreases with increasing shear rate. The flow curves (shear stress vs. shear rate) of most shear

thinning polymer solutions and melts become straight lines at very high and very low shear rates
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which indicates newtonian behavior at these shear rate values. The apparent viscosity at the very

high and very low shear rates is referred to as the zero shear viscosity ( 4, ) and the infinite shear

viscosity (., ) respectively. Therefore, the apparent viscosity decreases from g, to u_ with

increasing shear rate.
The values of the shear rates that give rise to the upper and lower limiting viscosities are
dependent on a number of factors, such as the type and concentration of the polymer, polymer

molecular weight distribution, nature of the solvent, etc.

Shear-thickening or dilatant: Dilatant fluids are characterized by an apparent viscosity that
increases with increasing shear rate; hence they are also referred to as shear thickening fluids.
Originally observed in some concentrated suspensions such as china clay and titanium dioxide,

dilatant fluid behavior has not been studied in great detail.

Viscoplastic: This fluid behavior is characterized by the existence of a yield stress which must
be exceeded before the fluid can flow. Once the magnitude of the external stress exceeds the
yield stress, the flow curve may be linear or non-linear. The viscoplastic fluid behavior can be
explained by postulating that the fluid at rest is made up of three-dimensional structures of

sufficient rigidity to resist any stress less than the yield stress.

If the flow curve is linear for 7 >7, , the fluid is a Bingham plastic fluid and is characterized

by a constant plastic viscosity (slope of the linear flow curve) and a yield stress. A fluid

possessing a non-linear flow curve (for7 >7 | ) beyond the yield stress value is called a ‘yield-
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pseudoplatic’ material (Chhabra and Richardson, 1999). A viscoplastic material also possesses

an apparent viscosity that decreases with increasing shear rate (Chhabra and Richardson, 1999).

As mentioned previously, since this focus of this study is on the mixing of pseudoplastic yield

stress fluids, the mathematical models that describe the behavior of such fluids will be discussed.

Mathematical Models for time-independent fluid behavior

The power law or Ostwald de Waele model

A plot of shear stress vs. shear rate on log-log coordinates can be approximated to a straight line
over a limited range of shear rates (or shear stress) (Chhabra and Richardson, 1999; Harnby et

al., 1997). This portion of the flow curve has the following equation:

T= K(Vj (2.2)

the apparent viscosity of a power law fluid is thus given by:

n—1
T
U, =—=K(}’j (2.3)
|4

where K and n are empirical curve-fitting parameters known as fluid consistency index and flow
behavior index respectively (Chhabra and Richardson, 1999).
When n < 1, the fluid is pseudoplastic; when n = 1, the fluid is Newtonian and K becomes equal

tou , and when n > 1, the fluid exhibits shear thickening properties.
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The power law model represents the most widely used model (Chhabra and Richardson, 1999;

Harnby et al., 1997).

The Ellis model ._ |
The apparent viscosity of shear thinning fluids can be modeled more appropriately at low shear

rates where deviations from the power law model are significant using the Ellis model (Chhabra

and Richardson, 1999) which has the following form:
M

-1
Tl/z

U, 1s the zero shear viscosity, 7,,, and o are model parameters with o representing the degree of

M= (2.4)

shear thinning behavior, and 7,,, representing the value of the shear stress at which the apparent

viscosity has dropped to half of its zero shear value (Chhabra and Richardson, 1999)

The Carreau viscosity model is a viscosity model that takes into account the limiting viscosities,

U, and p, at very high and very low shear rates where there are significant deviations to the

power law model:

<2 (n=1)/72
%: 1+(/17/) (2.5)
Hoy—H..

The Bingham plastic model

This is the simplest model describing the behavior of a fluid with a yield stress.
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T=7, +my for T>7, (2.6)

=0 for T<7T,

The Herschel Bulkley model

This model is used to describe the rheology of viscoplastic fluids with non-linear flow curves:
T=7,+ m(yj for T>7, 2.7

y=0 for T<7T,

Based on the previous discussion, the shear thinning, pseudoplastic fluid used in this work will

be modeled using the Herschel Bulkley model.

2.1.2 Impeller Types

Impellers are classified into two general types based on the flow patterns that they produce in the

mixing vessel: axial flow impellers and radial flow impellers (Paul et al., 2004). An axial flow
impeller discharges fluid along the impeller axis (parallel to the impeller shaft) while the radial
flow impeller discharges fluid along the impeller radius (perpendicular to the vessel wall) and
produce two circulating loops; one above and one below the impeller with mixing occurring

between the two loops but not as much as within a single loop (Ranade et al., 1992; Oldshue,

1983; Holland and Chapman, 1966).
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Axial flow impellers (pitched blade turbine, propeller, hydrofoils) are suited for liquid blending
and solids suspension, while radial flow impellers (rushton turbine, flat blade turbine, hollow

blade turbine) are best for gas dispersion applications (Paul et al., 2004).

2.1.3 Power Draw

Power draw or power consumption is defined as the energy transferred from the impeller to the
fluid per unit time (Harnby et al., 1997), and‘is usually a function of the flow regime, tank and
impeller geometry and fluid rheology. It provides a measure of the power required for the
operation of an impeller.

For Newtonian fluids, a fixed tank and impeller geometry, and a flat fluid surface with no

vortices, the power draw is only a function of the Reynolds number (Curran et al., 2000):

dSsz_ p

P N f[Nd plﬁN,Ff(Rg) 2.8)

P is the power consumption calculated from the torque produced by a rotating agitator and is
given by:
P =27NM (2.9)

where M and N are the torque and impeller rotational speed, respectively.

In the laminar flow regime, the power number is inversely proportional to the Reynolds number:

N,=K,IR, (2.10)

10
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Where N, is the power number, Re is the Reynolds number and K), is a geometric factor related
to power consumption for a mixing system (Delaplace et al., 2000b). The log-log plot of N, vs.
Re represents the power curve for the mixing system. In the laminar regime (Re < 10), the slope
of the power curve is -1 as may be deduced from Equation (2.10).

A power curve provides power data for a particular tank configuration at various impeller

speeds, liquid viscosities and densities.

As mentioned previously, the viscosity of non-Newtonian fluids (and the Reynolds number)
depends on the shear rate, which in turn depends on the impeller rotational speed.
Therefore, to generate a power curve for non-Newtonian fluids similar to that for Newtonian

fluids, the Reynolds number must be defined in terms of an effective or apparent viscosity, u

a

Nd*
Re, = 4 P @.11)
M,

Where u, is obtained by substituting the Herschel Bulkley rheological model for shear stress in

u, = / 2.12)
Y(IV

The average shear rate ¥, is given by the classical equation developed by Metzner and Otto

the expression below:

(1957) which relates the shear rate generated by the impeller in the mixing vessel to the impeller

rotational speed:

Yo =k N (2.13)

where k; is a proportionality constant.

11
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This linear relationship between the average shear rate and the impeller rotational speed is valid

only in the laminar regime (Cheng and Carreau, 1994).

Therefore the apparent Reynolds number, Re,, is written out in its full form (based on the

Herschel Bulkley rheological model) as:

k N*d’p
Re, =+— - 2.14
T, +m(kSN)' ] (2.19)

With the above expression for Reynolds number, it is now possible to extend the power draw
equation for Newtonian fluids to non-Newtonian fluids because the non-Newtonian power curve
can be obtained by a plot of non-Newtonian power number data against apparent Reynolds
number. All that is left is for the constant k; to be determined for the mixing system. It is usually
estimated by measuring K, (which is independent of fluid properties, but dependent on
geometrical parameters) for a Newtonian fluid and then back-calculating &, using data obtained

for non-Newtonian fluids (Curran et al., 2000).

Much of the mixing literature is filled with controversy on the dependence of k; on rheological
properties of the fluid and the geometry of the mixing system. According to the equation
proposed by Metzner and Otto (Equation (2.13)), & is a constant that depends only on the mixing
system geometry. However, no agreement can be reached on whether or not k; depends on the
fluid rheology and on the strength of the dependence (Delaplace et al, 2000b). For example, Yap

et al. (1979), Espinosa-Solares et al. (1997), Perse and Zumer (2004) state that k; is a function of

12
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the fluid rheological properties, while Curran et al. (2000) found that k; depends only slightly on
the fluid rheology.

Calderbank and Moo-Young (1959) found k; to be 10 for a number of Bingham and shear
thinning fluids with a flow behavior index between 0.05 and 0.6. Metzner et al. (1961) extended
their work and found k; to be 11.5 for flat bladed turbines, 13 for pitched blade turbines and 10

for marine propellers.

2.1.4 Mixing Time

Mixing time, f,,, is defined as the time measured from the instant of tracer addition to the time
when a specified degree of homogeneity is reached. Usually, a tracer of the same density and
viscosity as the bulk fluid is used to evaluate the mixing time. By means of a suitable
detector/sensor, the tracer concentration is measured as a function of time at a particular point in
the vessel. If the volume of tracer added is known, it becomes possible to calculate an
equilibrium concentration, C_ . The mixing time may then be defined more rigorously as the time
required for the tracer concentration at the addition point to reach the equilibrium value.
Obviously, the point of addition of the tracer as well as the way in which the tracer is added will
influence the mixing time (Harnby et al., 1997). For instance, adding the tracer close to the
impeller, vessel wall or liquid surface will affect the mixing time.

In both the turbulent and laminar flow regimes, mixing time can be correlated by the following

expression:

k =Nt (2.15)

13
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where k, is referred to as the mixing number or homogenization number which is only a

function of geometry (Novak and Rieger, 1975) for a properly designed mixer and m refers to the

desired degree of mixedness.
For example, fg9 is defined the time required for the concentration to reach and remain between

1% of the final equilibrium value.
The mixing number has units of revolutions and it represents the number of revolutions required
to achieve a desired degree of mixing (Tatterson, 1991; Delaplace et al., 2000a).
A number of experimental techniques have been developed and employed for the measurement
of mixing time:

e Conductivity method

e Thermal method

e Dye addition method

e Tracer method

e Schlieren method

e Chemical reaction method
More complex methods involve the use of magnetic tracers and radioisotopes (Hayes et al.,
1998).
An overview of some of the mixing time measurement methods that have been employed in

previous research is presented.

Conductivity Method
This method involves monitoring the change in the electrical conductivity of the fluid after the

injection of a conductive tracer. A small volume of an electrolyte solution with a density and

14
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viscosity that is comparable to that of the bulk fluid is fed into the suction zone of the impeller
(Hiby, 1981). The variation of conductivity with time is then recorded using a probe placed at a
point of high flow velocity (usually the region close to the impeller) until there is no change in
the conductivity measurements. This variation in conductivity with time can be converted to a
concentration versus time scale using the proper calibration (Nere et al., 2003).

Since the probe only measures the local conductivity, erroneous mixing times may be obtained
using this technique particularly if the tank employs multiple impellers or if significant dead
zones exist in the tank (Nere et al., 2003; Ford et al., 1972). Another disadvantage of this
technique is that it cannot be employed at higher temperatures and in industrial reactors that
process organic materials (Nere et al., 2003). Also, the conductivity of the bulk fluid becomes
higher after each experimental run, and so it would have to be renewed eventually (Ford ez al.,
1972). Overestimation of the mixing time especially in the laminar regime is a concern in using
the conductivity-probe method (Hiby, 1981).

The conductivity technique may be improved by taking measurements at multiple locations in
the tank. Proper estimation of the mixing time is a function of a number of factors namely the

location of the probe, size of the probe and number of probes.

Thermal Method

The thermal method uses temperature differences to quantify the degree of mixing. A portion of
the bulk fluid is heated to some degrees above the rest of the fluid in the tank. Alternatively, a
heat pulse may be generated by an electrical heating element. Fluctuations in temperature are
then monitored at one or more points in the vessel using thermistors inserted into the bulk fluid.

Energy transfer within the mixing vessel during the homogenization process is caused by

15
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convective mixing and conduction. If the rate of mixing is to be quantified in any meaningful
way, the rate of conduction must be small compared to the rate of mixing (Hayes et al., 1998).
Also, a high sensitivity temperature measuring instrument is also required to prevent the need for
excessive thermal pulse into the fluid (Ford et al., 1972).

The resolution of the thermal method increases with increasing temperature difference between
the bulk fluid and the heat pulse, but large temperature differences will result in undesirably
large viscosity differences between the two fluids.

In spite of these drawbacks, the thermal method allows for an unlimited number of experimental
runs with the same fluid. In addition, no changes in the chemical composition of the bulk fluid

occur with the application of the thermal method (Ford et al., 1972).

The dye addition method

The dye addition method is the simplest technique available for mixing time measurements. A
dye solution is prepared vwith some of the bulk fluid gnd added as a tracer. The mixing time is the
time required for the dye to be uniformly distributed throughout the tank contents (Ford et al.,
1972; Nere et al., 2003).

Dispersion of the dye may be observed visually, or it may be assessed via the discoloration of the
uniformly colored solution. A sample removal method in which the samples are analyzed
colorimetrically, chemically or optically, may also be utilized to determine the end point of
mixing. However, sample removal disturbs the flow patterns and affects mixing efficiency (Ford
et al., 1972). Also, the dye addition technique remains a subjective method for measuring the

mixing time since the exact point at which homogeneity is achieved is difficult to establish. \
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The Schlieren method

This method operates on the principle that optical inhomogeneities, i.e., gradients in refractive
indices or Schlieren are present in an inhomogeneous fluid and absent in a homogenous fluid.
The time taken for the disappearance of the last optical inhomogeneity is defined as the mixing
time (Ford et al., 1972). The method by which the optical inhomogeneities are generated varies.
A sample of fluid with a density significantly different from that of the bulk fluid may be
introduced. When a light is passed through the resulting mixture, the density gradients produce
Schlieren patterns (Hayes et al., 1998). The disadvantage of using this method to generate
Schlieren patterns is the extent to which the density gradients themselves enhance the mixing
process. Alternatively, two fluids which initially form two superimposed layers may be used to
generate the optical inhomogeneities. These optical inhomogeneities arise due to the viscous
dissipation of energy when a sphere is rotated in a single viscoelastic fluid.

The disadvantage with the Schlieren method is the lack of knowledge about the time necessary to

establish a stationary flow pattern (Ford et al., 1972).

The Chemical Reaction method

The chemical reaction method is a technique that involves the bulk fluid either changing or
losing its color due to a chemical reaction with the injected fluid. The reaction could be an acid-
base neutralization reaction in which the base and acid are mixed in with the bulk fluid, followed
by the addition of the indicator. The extent of the reaction and hence mixing is observed by
monitoring the change in the color of the indicator, which differs depending on the type of

indicator employed.

17
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A redox reaction may also be used instead of the neutralization reaction and it offers an
advantage over the neutralization reaction method in that the color change produced is more
distinct (Ford et al., 1972).

With the chemical reaction method, there is always the concern that the reactants may affect the
rheological properties of the bulk fluid (Hayes et al., 1998). Also, the effectiveness of this
method is dependent on the extent to which the initial reactant is mixed in with the bulk fluid; the
impeller may be unable to accomplish the mixing necessary for accurate detection of the mixing

time particularly when stagnant regions are present in the tank (Ford ef al., 1972).

Liquid-crystal thermography technique

This technique provides mixing time measurements based on the color change of thermochromic
liquid crystals when they are subjected to different temperatures. Liquid crystals exhibit a rapid
and reversible response to temperature changes over a wide range of temperatures. This means
that liquid crystals must be calibrated at the start of the experiment so as to assign particular

colors to temperatures over the response range of the liquid crystals (Lee and Yianneskis, 1997).

Radioactive liquid tracer technique

This technique which can be used to measure the mixing time both in pilot scale and large-scale
batch mixing systems involves injecting the radioactive tracer along with one of the components
of the mixture and monitoring the concentration of the tracer continuously using radiation tracers
placed at one or multiple locations in the system. Alternatively, samples may be taken from a
single location at regular intervals or large samples from different locations may also be

obtained. The average concentration of a group of samples is obtained, from which the standard

18
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deviation is calculated. A plot of standard deviation vs. time can be obtained, and adequate

mixing is deemed to have been achieved when the standard deviation becomes constant (Pant et

al.,2001)

Electrical Resistance Tomography

Electrical Resistance Tomography (ERT) is a method for the measurement of mixing that is
becoming increasing popular in the mixing field. ERT involves the measurement of mixing using
an array of resistance tomography sensors. This method can be applied for the measurement of
mixing time by following the conductivity changes in space and time after the injection of a
pulse of high conductivity fluid tracer (Wang et al., 2000). The procedure for measuring the
mixing time in the ERT method involves applying different current patterns to the flow field via
electrodes attached on the boundary and the voltages between the electrodes on the boundary are
measured. Based on the current-voltage relation, the electrical conductivity distribution of the
fluid is estimated and is expressed as pixel images that provide instantaneous information on a
concentration distribution in a flow domain at a given location (Kim et al., 2006). In ERT, the
mixing time is taken to be the time for the concentration distribution at a plane to reach or nearly

reach a uniform distribution after the addition of the secondary fluid (tracer).

However, in spite of the diversity of techniques that have been developed for its measurement,
the mixing time is still considered ambiguous and arbitrary. This is because the various
techniques available for mixing time measurements, each having an inherently different way of

identifying the end point together with the difficulty in selecting a measuring point makes it
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difficult to agree on absolute mixing times for any mixing system. Provided there are no
significant stagnant zones in the vessel, the measuring point is not of great concern (Chavan et
al., 1975).

Another parameter that can be used to determine the homogeneity of a mixing system is the
circulation time, t., which is considered less arbitrary than the mixing time because it is
independent of the tracer addition location and the number of probes.

The circulation time is defined as the time required for a neutrally buoyant particle or blob of
tracer contained within the mixing system to complete one circuit of the tank, i.e., to return close
to its starting position. If measurement methods involving the use of probe(s) are used for
homogenization measurements, then the circulation time is measured as the distance between
two successive peaks on the response curve.

Typically, mixing times are two to four times larger than circulation times due to the time
required for the relatively quiescent regions of the tank to pass through the impeller and become

mixed (Tatterson, 1991).

2.2 Mixing Time in Non-Newtonian fluids
A number of researchers have experimentally measured mixing times in non-Newtonian fluids.
To show the wide variety of mixing time measuring methods that have been employed
particularly for mixing time determinations in non-Newtonian fluids, a summary of their
research is provided including the mixing time measuring technique employed and important

results are presented below.
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Nienow and Elson (1988) measured mixing times in a corn syrup (Newtonian fluid) and 0.8%
carboxymethylcellulose (CMC) solution, a non-Newtonian fluid, to characterize the mixing
efficiency of a number of impellers at equal power consumptions. They used the visual
discolorization of starch/iodine solution to obtain mixing time results and observed higher
mixing times with the CMC solutions.

Moo-Young et al. (1972) carried out experiments in both Newtonian and non-Newtonian fluids
to examine the relationship between mixing time and power consumption and used the results to
rank different impellers with regard to the efficiency with which they utilized power. Using
aqueous solutions of sodium CMC and an acid-base decolorization method, they observed higher
mixing times compared with Newtonian fluids in the laminar regime; specifically, the mixing
times for pseudoplastics decreased more rapidly with decreasing Reynolds number than for
Newtonian fluids.

Menisher et al. (2000) compared the mixing performance of two impellers in a bioreactor by
comparing the mixing time at equal power consumptions. They took the mixing time as the time
for the disappearance of the pink color of a basic solution of phenolphthalein on neutralization

with excess acid.

Carreau et al. (1976) studied the effect of fluid elasticity and helical ribbon impeller geometry on
the mixing effectiveness as measured by mixing time. Using the discolorization of starch/iodine
solution by sodium thiosulphate to obtain mixing time results, they observed that mixing time
increased with increasing non-Newtonian behavior due to the existence of stagnant zones in the

mixing vessel. Chavan et al. (1975) also used the same measuring method to obtain mixing time
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results and observed constant mixing times for Newtonian and inelastic shear thinning liquids in

the laminar regime (Re < 10).
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2.3 Cavern formation and Mixing time

Provided there are no stagnant regions in the mixing tank, the most efficient mixer is the one that
gives the smallest mixing time for the same power input. This is because the suitability of a
mixer for a particular mixing operation depends on its ability to circulate the entire tank contents
to avoid the formation of stagnant regions in the mixing tank (Mavros, 2001). Stagnant/solid-like
regions in the mixing vessel are commonly encountered in mixing non-Newtonian fluids
particularly those possessing a yield stress, at low Reynolds numbers (Ascanio et al., 2003).
Formation of these stagnant zones gives rise to a well mixed region surrounding the impeller
called a cavern.

It is for this reason that the design of efficient mixing systems for yield-stress fluids is considered
a difficult task (Bertrand ef al., 1996) since it depends on an accurate mixing time estimate which
is a function of the cavern size, the latter which can only be obtained when the phenomena of

cavern growth is understood.

Considerable work has been devoted to predicting the formation and growth of caverns in mixing

vessels and on this basis, models have been proposed for predicting the cavern size.

Wichterle and Wein (1989) determined the size of the cavern generated in extremely
pseudoplastic and plastic suspensions by moving the impeller towards the liquid surface or tank
wall and observing the appearance of the dye which had been added to the cavern. From their

results and a simple model, they derived the following equation for obtained the cavern diameter,

D.:
2-n 42 2
Re:ﬂKiz(D_ij (2.16)
e
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Where e is an experimentally determined constant that depends on the impeller type.

Solomon et al. (1981) developed a physical model based on a torque balance for estimating the

cavern diameter, D _. In developing this model, the following assumptions were made: the cavern

shape was assumed to be spherical, a motion at the cavern boundary was assumed to be
predominantly tangential and the stress imparted by the impeller at the cavern boundary was
equal to the fluid yield stress. Based on these assumptions and by balancing the torque on the

cavern walls to that on the impeller shaft, the following equation was developed:

(4N D’
(%) ZE e j[erD ] 2.17)

Elson et al. (1986) modified the model developed by Solomon ef al. by assuming that the cavern

shape can be described by a right circular cylinder with height, H_ centered upon the impeller:

(D. /D)’ ={/n2[%+ Z HN"[BNT\—D?J (2.18)

Equation (2.18) was proposed for the case where the cavern has not grown up the side wall of the
vessel.

The ratio of height to diameter of the cavern, also known as the aspect ratio, varies with impeller
type and has been found to range from 0.4 for radial flow rushton turbines to 0.75 for axial flow

marine propellers (Elson, 1990; Galindo and Nienow, 1992).

24




Chapter 2 Literature Review

After the cavern has grown up to the side wall, the rate of increase of the cavern height H_, with

impeller rotational speed is expressed as follows (Galindo and Nienow, 1992; Amanullah et al.,

1998):

H.
o @ N’ (2.19)

The exponent p is a function of impeller type (Galindo and Nienow, 1992; Galindo et al., 1996).
Values of p ranging from 0.76 for the marine propeller to 0.88 for the Rushton turbines have

been found (Elson, 1990b).

More recently, Amanullah et al. (1998) developed an axial force model for evaluating the cavern
diameter. This model was developed by taking the total momentum imparted on the fluid as the
sum of both the tangential and axial force components. Assuming a spherically shaped cavern
and replacing the average shear stress at the impeller boundary with the yield stress, the

following expression for calculating cavern diameter was obtained:

2 242
3Gl
D 3N\ &~° T,

In addition, to assess the mixing performance of different impellers in terms of the size of cavern
that they generate, the volume of cavern produced per unit of power input can be calculated and

compared for each impeller. Since the cavern size is assumed to be cylindrical, the volume of

cavern, V., is givenby V. =7z(D, /2)’ H ..

C
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3 Computational Fluid Dynamics

31 Theory

CFD is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions and
related phenomena by solving the mathematical equations that govern these phenomena using a
numerical algorithm (Ford, 2004). Computational fluid dynamics provides relevant data required
for conceptual studies of new designs, detailed product. The mathematical equations that govern
fluid flow take the form of transport or conservation equations. These equations namely the
continuity equations and the Navier Stokes equations describe the changes in the fluid that occur
over time due to convection, diffusion, and sources or sinks of the conserved or transported
quantity.

The continuity and Navier Stokes equations are statements of conservation of mass and
momentum in each of the three component directions respectively. The continuity and

Navier Stokes momentum equations and are written out as follows:

%§+div(pu)=0 (3.1)
—aa—t(pu)+div(puu):div(ﬂ grad u)_%f.mm (3.22)
%(pu)+ div(puv)=div(u grad v)- —g—;)— + S (3.2b)
2 (pu)+ divlpun) =div(u - grad )= 45, (3.20)
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where (4 is the viscosity, u, v and w are velocity components in the x, y and z directions, P is

the pressure, div(u grad u), diviu grad v) and div(u grad w) are the diffusive flux

of the transported species in the x, y and z directions respectively. The same definition would

apply to the diffusive flux of the transported species in the y and z directions.

Equations (3.1) and (3.2a-c) describe the continuous movement of fluid in space and time.
Numerical solution of these equations requires discretization of the fluid domain and governing

equations.

The concept of discretization can be explained by introducing a general variable, ¢ as the
dependent variable. In general, this variable is a function of the three space coordinates and time
(¢ =@(x,y,2,t)). A numerical method seeks to determine the values of the dependent variable at
a finite number of locations or grid points in the fluid domain. To accomplish this, a set of
algebraic equations involving the unknown values of the dependent variable at the grid points
and an algorithm for solving these set of algebraic equations are required. These algebraic
equations are derived from the differential equations governing ¢ by dividing the fluid domain
into subdomains. An assumed profile of ¢ over each subdomain makes the derivation of the
algebraic equations from the differential equations possible.

Therefore, both the fluid domain and the differential equations governing ¢ are discretized.

Numerical simulation of the flow field is simplified considerably by noting that the equations
governing fluid flow are similar enough that they can be represented by a single equation in

terms of the general variable, ¢ introduced earlier:
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a(aL[@ +div(pgu)=div(l  grad ¢)+S, (3.3)

¢ could either be a velocity component (Navier Stokes equations), or tracer concentration or 1 in .

the case of the continuity equation (Jaworski and Dudczak, 1998; Patankar, 1980). The first term

on the right hand side is the diffusive flux of ¢ (I" is the diffusion coefficient which would
be uin the case of the momentum equation), the second term on the left hand side is the

convection term. The rate of change term and the source term (representing all other

contributions including the pressure gradient) are the first term on the left side and the second

term on the right hand side of Equation (3.3) respectively.
Three different methods form the basis for approximating the derivatives that appear in the
differential equation by simple functions and obtaining the discretized equations from Equation

(3.3) (Versteeg and Malalasekera, 1995). They are the finite element, finite difference and finite

volume methods.
The CFD software used in this work, Fluent, uses a finite volume based technique to discretize

the differential equations; therefore, this method will be described in more detail.

3.1.1 Finite Volume Method

The first step in the finite volume method is to divide the fluid domain into discrete control
volumes with each control volume surrounding a grid or nodal point. This step is also referred to
as grid generation. Grid generation is accomplished using a grid or mesh containing elements of

many shapes and sizes. If the flow domain is two dimensional (i.e., function of two space
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coordinates), the elements are usually quadilaterals or triangles. For a three dimensional domain,
the elements could be tetrahedra, prisms, pyramids or hexahedra (Paul et al., 2004)

The differential equations are then integrated over each control volume and the unknown terms
in the resulting integral equation are substituted by finite-difference type approximations. This
step transforms the integral equations into a set of algebraic equations. The algebraic equations

are then solved iteratively to obtain the profile of ¢ in the flow domain.

For illustrative purposes, if the one dimensional steady state flow involving convection and
diffusion is considered (without any sources), and integration is carried out over the control

volume surrounding the node P as shown in Figure 3.1:

4, —> —
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Figure 3.1 Depiction of a control volume around node P; Neighboring nodes are designated W and E

the following integral equation results:

(pug), —(pug), = (F%;j —(F%j (3.4)

Where e and w are the control volume faces.

It is usually convenient to define two variables, F and D to represent the convective mass flux

per unit area and the diffusion conductance at the cell faces:

F = pu and D=— (3.5)

29



Chapter 3 Computational Fluid Dynamics

Equation (3.4) can now be rewritten as:

Fe¢e - Fw¢w = De (¢E _¢P)_ Dw(¢P _¢W) (36)

A number of methods or discretization schemes exist for approximating the diffusive and
convective terms at the control volume faces in Equation (3.4). They include central
differencing, upwind differencing scheme, the hybrid differencing scheme, the power law
scheme and higher order differencing schemes such as the Quadratic Upwind differencing
scheme (QUICK). A brief summary of each of these schemes is presented to highlight their
features and provide some background that would be necessary to decide on the numerical

scheme to implement in the CFD simulations.

Central Differencing Scheme

This scheme uses linear approximations to calculate the convective and diffusive fluxes at the

control volume faces, e and w (see Figure 3.1), i.e.:

_ ¢p — ¢E
9, = B (3.7)

_ ¢W B ¢P
9, = Ty

The same procedure is followed to evaluate the diffusive fluxes:

d¢e =0 —9» (3.8)
d¢W =@p — Oy
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These approximations are then substituted back into the integral equation (Equation (3.4)) to

give the discretized or algebraic equation

The algebraic equation usually has the following general form:

ap¢p = Zanb nb + b (39)

where ¢, and ¢,, are the dependent variables at the grid point of interest and the neighbor grid

points respectively and b is the linearized source term. The expressions for the linearized

coefficients a,and a,, vary depending on the discretization scheme employed.

nb

However, for situations involving combined convection and diffusion, the central differencing
scheme has been found to deviate substantially from the exact solution to the differential
equation. Even though it is commonly held that when the number of computational cells used in
a numerical simulation is large (approaching infinite), the numerical results are exactly the same
as the true solution of the transport equation regardless of the discretization scheme used, the
reality is that an infinite number of cells can never be used in a numerical problem (because it
would make the computation time unacceptably long), so that the results can only be physically
accurate when the discretization scheme has the following three fundamental properties:

conservativeness, boundedness and transportiveness.
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Conservativeness means that the flux of ¢ leaving a control volume face must be equal to the
flux of ¢ entering an adjacent control volume through the same face. This criterion will ensure

the conservation of ¢ for the whole solution domain.

Boundedness will ensure that when the resulting algebraic equations are solved iteratively using
a suitable solution technique, a converged solution will be obtained. A discretization scheme that

obeys this criterion will satisfy the following characteristic, known as the Scarborough criterion:

Z ‘a”,, {Sl at all nodes
= (3.10)

’ < 1lat one node at least
P

Another requirement for boundedness is that all coefficients must have the same sign (usually

positive).

pul

Transportiveness means that changes in the Peclet number (P, = T: measure of the relative

strengths of convection and diffusion) should be accurately reflected in the directionality of
influencing (based on the flow direction) by the conditions at one node on the conditions at

another node.

In view of these properties, the central differencing scheme fulfills the conservativeness criterion
and partially fulfills the boundedness criterion (except for the possibility that some of the

coefficients may be negative depending on whether convection dominates over diffusion) and

fails the transportiveness criterion at high Peclect numbers.
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Therefore, it became necessary to introduce other discretization schemes with favorable

properties.

Upwind Differencing Scheme

This scheme attempts to acquire the transportiveness property by stipulating that taking into
account the flow direction, the convected value of ¢ at a control volume face is equal to the
value at the upstream node.

Thus, the upwind scheme possesses the transportiveness, boundedness and conservativeness
properties. However, this scheme gives misleading results at large values of the Peclet number
because it overestimates diffusion (false diffusion) at large Pe numbers (Patankar, 1980), and for

lower Peclet numbers, it is not as accurate as the central difference scheme (Ranade et al., 1989).

Hybrid Differencing Scheme

The hybrid scheme as the name implies is a combination of two schemes; the central
differencing and the upwind schemes. This scheme evaluates the convective flux through each
control volume face based on the Peclet number at that control volume face. For Peclet numbers
less than 2 (the value of the Peclet number at which the central differencing scheme fails the
transportiveness criterion), the central differencing scheme is used for the approximations and at

Pe numbers greater than 2, the upwind differencing scheme is used.
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Power law Scheme
The power law scheme is a better alternative to the hybrid scheme. It sets the diffusion equal to
zero when the Peclet number exceeds the value of 10. For Pe values between zero and 10, the

convective flux is approximated using a polynomial expression.

Higher order differencing schemes

With the exception of the central differencing scheme, the accuracy of the hybrid and upwind
schemes is first order in terms of the Taylor series truncation error. Therefore, even though these
schemes possess the transportiveness property and are very stable, they are prone to numerical
diffusion errors. These errors can be minimized by using higher order differencing schemes such
as the QUICK scheme.

The QUICK scheme has a third order accuracy in terms of the Taylor series truncation error. The
value of ¢ at the control volume face is calculated using a quadratic function passing through
three points: two bracketing nodes (one on each side of the face) and an upstream node. The
QUICK scheme is more accurate than the central differencing, upwind or hybrid schemes, but

can give undershoots and overshoots compared to the exact solution to the differential equations.

3.1.2 Calculation of the Flow Field

As mentioned earlier, discretization yields a finite set of coupled algebraic equations that need to
be solved iteratively to give a distribution of ¢ at nodal points (Versteeg and Malalasekera,
1995). However, there is still some difficulty with the calculation of the velocity field. The
momentum equations for the velocity components still contain an unknown pressure gradient

that forms a part of the source term. As such, the discretized momentum equations can only be
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solved when the pressure field is specified in some manner. The only specification for the
pressure field that is available is an indirect one: when the correct pressure field is substituted
into the momentum equations, the resulting velocity field will satisfy the continuity equation.

As a result, the calculation of the flow field has been achieved through the development of
algorithm known as SIMPLE (Semi-Implicit Method for Pressure-Linked Equations). In a
nutshell, the SIMPLE algorithm starts by guessing a pressure field and substituting the guessed
pressure field into the momentum equations which are then solved to obtain guessed velocity
components. As per the indirect specification of the correct pressure field, the guessed pressure
field is improved using the continuity equation as a pressure correction equation. The corrected
pressure is in turn used to correct the guessed velocity field (via a velocity correction formula).
This procedure (with the corrected pressure as the new guessed pressure) is repeated until the
resulting velocity field satisfies the continuity equation.

Other algorithms have been proposed to improve the SIMPLE algorithm since this algorithm
neglects the effect of neighbor-point velocity corrections which results in a pressure correction
equation that does not do a good job of correcting the velocities.

The SIMPLER (SIMPLE-Revised) algorithm is an improved version of the SIMPLE algorithm
that uses the discretized continuity equation to derive a discretized pressure equation based on
pseudovelocities that are composed of the neighbor point velocities and contains no pressure.
The SIMPLER algorithm also improves the rate of convergence of the SIMPLE algorithm.

The SIMPLEC (SIMPLE-Consistent) algorithm further improves the SIMPLE algorithm by
manipulating the momentum equations such that the velocity correction equations omit terms
that are less significant than those omitted by SIMPLE. However, it follows the same sequence

of steps as in the SIMPLE procedure.
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The PISO (Pressure Implicit with Splitting of Operators) algorithm is an extension of the

SIMPLE algorithm with a further corrector step to enhance it.

3.1.4 Solution of the Algebraic Equations

The process of discretizing the transport equations yields a system of linear algebraic equations
which need to be solved to obtain a profile of the transported quantity in the flow domain. There
are two families of solution techniques for linear algebraic equations: direct methods and indirect
(iterative) methods. Iterative methods are generally considered to be more economical than direct
methods for solving large system of equations because the latter requires the storage of all the
coefficients in the set of equations in the computer memory, whereas, iterative methods require
the storage of only the nonzero coefficients in the computer memory. Also, direct methods are
slow to converge when the system of equations is large. Therefore, they are not considered
suitable for general CFD procedures. Iterative methods involve the repeated application of a
simple algorithm until a solution that is close to the correct solution of the algebraic equations is
obtained (convergence). A number of iterative methods exist of solving linear algebraic

equations:

Gauss-Siedel point by point method: This method is regarded as the simplest of all iterative
methods. It involves the calculation of the values of the dependent variable by visiting each grid
point in a certain order. As each grid point is visited, the corresponding value of the dependent

variable is altered as follows:
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a” ”*+b
¢pzz ba ’ (3.11)

4

where the discretization equation is given by equation (3.6). ¢, is the value of the dependent

variable at the visited grid point that we wish to calculate and ¢”h* is the neighbor point value

present in the computer storage. When all the grid points have been visited in this way, one

iteration has been completed.

Line by Line Method: This method is a combination of the Gauss Siedel point by point method
and the TDMA (TriDiagonal-Matrix Algorithm) method for one-dimensional situations. For
three dimensional problems, the TDMA method is applied line by line on a selected plane and
then repeated for another plane. The essence of this method can be understood by considering a
particular line and the discretization equations for the grid point along the chosen line. These
equations contain the values of the dependent variable from neighboring lines in the same
direction. Assuming that the values of the dependent variable at the grid points are known from
their latest values, they can be substituted into the discretization equations which would make
these equations look like one dimensional equations. The method of TDMA for one-dimensional

equations can then be applied to solve the equations along the chosen line.

3.2  CFD in Stirred Tanks

Numerical simulation of stirred vessels is complicated because of the inherent unsteady flow
structure. The presence of baffles in the stirred tank further complicates the simulation of the
flow field in the mixing vessel since the relative motion between the stationary baffles and the

rotating impeller blades has to be incorporated to order to completely simulate the flow field
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(Brucato et al, 1998; Perng and Murthy, 1993; Deglon and Meyer, 2006; Sommerfeld and

Deéker, 2004). The simplest approach has been to treat the flow field in the vessel as stationary
with experimentally determined impeller boundary conditions specified as inputs to the outer
cylindrical surface of the region swept by the impeller (Sommerfeld and Decker, 2004; Ranade,
1997; Javed et al., 2006). Alternatively, the action of the impeller is represented as body forces
using distributed sources of momentum (Luo et al., 1993). However, these approaches are
inherently limited since their applicability depends on the availability of experimental data so
that they cannot be used to screen alternative mixer configurations (Ranade and Dommeti, 1997).
In addition, they fail to take into account the details of the flow between the impeller blades,

which may be necessary for a realistic simulation of the hydrodynamics in mixing vessels

(Ranade, 1997).

Attempts have been made to capture the details of the flow between the impeller blades by
simulating the full time varying flow within and outside the impeller region using a combination
of moving and deforming grids. The two impeller modeling methods developed for this purpose
are the Multiple Frame of Reference (MRF) method and the sliding mesh method.

The MRF method involves resolving the impeller geometry by a numerical grid and calculating
the cylindrical region around the impeller in a rotating frame of reference while the rest of the
vessel is calculated in the stationary frame of reference by resolving the vessel geometry and
baffles. The simulations in each of the stationary and rotating regions are conducted under steady
state assumptions in their respective frames of reference. A steady transfer of information takes
place at a predefined interface between the two frames (Oshinowo et al., 2002). The MRF

method is recommended for situations involving relatively weak impeller-baffle interactions
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since the solution with the impeller in one position relative to the blades will be the same as the
solution obtained for a different position (Paul et al., 2004).

The sliding mesh approach developed by Luo et al. (1993) is a time-dependent solution in which
the flow domain is divided into two cylindrical, non-overlapping sub-domains, each gridded
separately. The grid surrounding the impeller moves according to the impeller speed with respect
to the stationary domain (containing the baffles) fixed in the laboratory frame of reference. The
two domains are implicitly coupled at the interface via a sliding mesh algorithm (Montante et al.,
2001; Brucato et al., 1998). Transient simulations are conducted at each time step for each
relative position of the stirrer and baffles (Montante er al., 2001). Using this approach, the
impeller motion is realistically modeled because the grid surrounding the impeller rotates giving
rise to a time-accurate simulation of impeller-baffle interactions. This model represents the most
rigorous solution method for stirred tank simulations (Paul et al., 2004; Brucato et al., 1998).
However, results obtained using the MRF model have been found to be comparable to that
obtained using the sliding mesh impeller model so that the latter is preferred to reduce

computational expenses (Deglon and Meyer, 2006).

Another impeller modeling method is the computational snapshot approach developed by
Ranade and van den Akker, 1994). This method is considered an intermediate to both the MRF
and sliding mesh methods since it attempts to simulate the flow details between the impeller
blades without solving the full time-dependent flow equations (Ranade and Dommeti, 1996).
Instead, simulation of the impeller motion is carried out by keeping the impeller blades fixed at a
particular position with respect to the baffles which is analogous to taking a snapshot of the

rotating impeller (Ranade, 1997; Ranade and Dommeti, 1996). This approach was developed on
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the basis that for most engineering applications, knowledge of the full flow field which becomes
cyclically repeating after a few impeller rotations may not be necessary (Ranade and Dommeti,
1996).

In addition to the impeller rotation model, CFD modeling of stirred tanks requires the selection

of an appropriate grid resolution and discretization scheme (Deglon and Meyer, 2006).

3.2.1 Grid Resolution

There is a consensus that in general, the larger the number of cells used in a CFD simulation, the
higher the accuracy of the predictions. More specifically, optimal meshes are defined as non-
uniform, i.e., finer in areas where large variations occur and coarser in regions with smaller
gradients (Versteeg and Malalasekera, 1995).

A number of authors have attempted to improve the accuracy of the numerical predictions by
using refined meshes. Some of the important findings are summarized below.

Ranade (1997) used a large number of computational cells (more than double that used in recent
studies) to simulate the flow generated by the Rushton turbine in the laminar regime and
observed that the power numbers in the turbulent regime were underpredicted by 20%. One of
the reasons for the observed underprediction was thought to be as a result of inadequate grid
resolution. As well, his grid was unable to capture the full details of the trailing vortices behind
the impeller blades, a result he obtained in an earlier study (Ranade and Dommeti, 1996) and
which he attributed to the use of relatively coarse grids. He concluded that further grid

refinement was necessary to obtain better predictions in the turbulent regime.
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Deglon and Meyer (2006) studied the effect of grid resolution on CFD predictions of the flow
field, power number and mean velocity and observed that as the grid resolution is increased, the
power number predictions (as compared to experimental measurements) also improve by about
20% between the coarsest and finest grids used. They also concluded from their studies that the
predicted velocity profiles were improved by using finer grids although the dependence of the
velocity predictions on the grid resolution were not observed to be as strong as that for the power

number.

Bujalski et al. (2002) employed a finer mesh in the areas of high velocity gradients in the mixing
tank (to give a total of 115,444 cells) and obtained smaller homogenization numbers (compared
with results obtained using a structured mesh with 71344 computational cells) which were closer
to the experimental measurements. There was also a two-fold reduction in the difference between

the experimental and predicted power numbers with grid refinement.

Kukukova et al. (2005) studied the influence of grid density on the simulated results and
concluded that the best results (in comparison with experimental measurements) were obtained
when the grid was refined in the impeller region with a structured grid elsewhere in the mixing

tank where gradients were not expected to be large.

Errors due to inadequate grid resolution can be eliminated by conducting grid independence
studies. Grid independence involves successive grid refinement of an initially coarse grid until
no changes in key results are observed (Versteeg and Malalasekera, 1995; Deglon and Meyer,

2006). For example, Shekhar and Jayanti (2003) performed simulations on an initial grid
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consisting of 298,368 cells and then performed additional simulations on a grid consisting of
440,832 cells (32% cell increase) and observed insignificant deviations in the results obtained
from each of these grids. Therefore, they utilized the smaller grid size for the rest of their

research to reduce computational requirements.

3.2.2 Discretization Scheme

Deglon and Meyer (2006) studied the effect of grid discretization on power consumption and
mean velocity field predictions and observed that higher order discretization schemes provided
better power number predictions with the QUICK discretization scheme providing the best
power number predictions (10% lower than experimental values) compared with first order
upwind discretization scheme.

Aubin et al. (2004) studied the effect of the discretization scheme on the power consumption and
circulation times and observed that both the first order upwind discretization scheme and the
QUICK scheme under predict the power number. For the circulation time, there was little effect
of the discretization scheme on the results, even though the QUICK scheme gave the best value

of the circulation time.

Brucato et al (1998) carried out comparisons between the first order upwind and QUICK
discretization schemes and concluded that on the finest grids, the numerical predictions are not

vastly different for both of these schemes.
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3.3  CFD measurements of Mixing Time in Stirred Tanks
The application of CFD to the measurement of mixing times in stirred tanks is a growing field.

Some of the work conducted by some researchers in the mixing area is presented below.

Sahu et al. (1999) used a zonal modeling technique to predict the flow field generated by five
axial flow impellers. The predicted flow field was then used to estimate the mixing time for these
impellers by solving conservation equation for the tracer. The mixing time was taken as the time
taken for the tracer to reach within 99% of the completely mixed tracer concentration. They
observed that the modeled mixing times compared well with the experimental mixing times to
within 5-10% and they went further to state that perfect agreement may be assumed since

experimentally measured values of mixing time have an inherent standard deviation of 5-10%.

Montante and Magelli (2004) sought to investigate the capability of CFD tools to correctly
forecast the homogenization process and mixing time results. Modeling a multiple Rushton
impeller system in the commercial CFD code, CFX-4, they studied the influence of impeller
spacing and turbulent Schmidt number on the mixing time and concluded that overall, CFD is
able to correctly predict the homogenization dynamics, mixing time as well as the effect of
impeller number and spacing on mixing performance.

Montante et al. (2005) utilized two commercially available CFD codes, CFX and Fluent to study
the homogenization process and obtain mixing time results. In addition to investigating the
capability of these codes to produce accurate results, they also sought to develop a consistent
computational procedure that could be confidently applied to both Newtonian and non-

Newtonian pseudoplastic liquids. Using the Sliding Grid method in CFX-4, and the multiple
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reference frame method in Fluent 6 to model the mixing of multiple down pumping 45° pitched
blade turbines in a baffled stirred tank, they observed that CFD provides a good picture of the
homogenization process, but the actual mixing time results were overestimated by 11-40%

(depending on the measuring position) when compared with experimental results.

Bujalski et al. (2002) assessed the CFD predictions of mixing time by comparing the numerical
results with experimental data. In an earlier work, they had used the Sliding mesh method in the
Fluent CFD code (version 4.4.7) to obtain mixing time predictions for a stirred tank equipped
with two Rushton turbines, and observed that the predictions were 2 to 3 times longer than
experimental values. Therefore, using a refined mesh, employing the MRF method and using a
newer version of the Fluent code, better agreement of the dimensionless mixing time predictions
with experimental values were obtained.

These authors also investigated the effect of the radial position of the tracer addition point on
simulated mixing time results. Using the commercial CFD software, CFX 4.3 to predict the flow
field and mixing times and the sliding mesh method, they found that CFD simulations over-
predicted the mixing times by a factor of approximately 2. The tracer addition point was found to
have a strong effect on the simulated mixing time results, an observation that was inconsistent

with experimental findings. In general, a tracer addition point that was closer to the sliding mesh

boundary gave shorter simulated mixing times (Bujalski et al., 2002). Osman and Varley (1999)
also obtained mixing times from CFD that were approximately twice as long as the experimental
mixing times.

Javed et al. (2006) attempted to analyze the discrepancies between experimental and simulated

mixing results by simulating both the mixing measurements and hydrodynamics and comparing
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the predicted results with experimental mixing time measurements. Using the Fluent CFD code
to model the stirred tank containing water and equipped with a 6-bladed Rushton turbine they
observed good agreement between predicted and measured tracer concentration profiles. The
local and global mixing times for homogenization levels of 95% and 99% were found to be 16%

shorter than the corresponding experimental values.

Objectives

From the literature review, it is clear that the mixing performance of impellers in highly viscous
shear thinning fluids possessing a yield stress needs to be investigated as little research as been
devoted to the numerical simulation of homogenization in stirred tanks containing non-
Newtonian fluids. A study of the effect of mixing system configuration, fluid properties and
power consumption on the mixing time represent necessary steps towards optimization of the
mixing system.

Therefore, the objective of this work is to study the effect of the following parameters on the

mixing time of a tracer injected into aqueous solutions of xanthan gum:

Power Consumption

e Impeller clearance from tank bottom
e Impeller type

e  Yield stress

e Impeller speed
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CFD has become a useful tool in the study of mixing systems. It will be utilized in conjunction

| with experiments to provide a complete understanding of the mixing process and aid mixing
system design. Since CFD modeling of yield stress fluid mixing is limited, this work should
provide useful data which can be used to assess the capability of CFD tools to predict the

homogenization process (and the resulting mixing time) of such complex fluids.
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4. Experimental

4.1 Experimental Setup

The experimental setup (Figure 4.1) used in this work consists of a transparent acrylic cylindrical
tank of outer diameter, T = 40 cm and height equal to 60 cm. The flat-bottomed tank was fitted
with four equally spaced flat baffles each with a width, w, equal to 10% of the tank diameter and
height equal to the tank height. The baffles destroy undesirable vortices created due to the swirl
of the fluid in the mixing tank and help promote good mixing. The fluid height, H was
maintained constant at a height equal to the tank outer diameter, T.

Three axial flow impellers were utilized in the experiments: 4-bladed 45° Pitched Blade Turbine,
the Marine Propeller and the Lightnin A320 impeller, each having a diameter, D of 15.5 cm. This
diameter is defined as the diameter of the circle that encloses the projection of the impeller onto
a plane.

The impellers were mounted on a centrally located 2.54 cm diameter shaft and driven by a 2 hp
motor mounted on the shaft (Neptune Chemical Pump Co., Lansdale, PA). The clearance of the
impeller (distance from the midpoint of the impeller to the vessel bottom) was varied from 13.5
cm to 20 cm

Torque measurements were obtained using a torquemeter (Hoskin Scientific Limited, Burlington,
ON) operating in the range 0-20 Nm and recorded by the data acquisition system. The impeller
rotational speeds were measured using a hand-held digital Tachometer.

Mixing time experiments were conducted using a Model 226 conductivity probe (Rosemount®
Analytical, Irvine, CA) placed 6cm below the fluid surface, midway between the shaft and vessel
wall. The variation of conductivity with time was also recorded using the data acquisition

system.
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Figure 4.1 Schematic of Experimental Set up
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4.2  Materials

Xanthan Gum Powder was used for the preparation of three aqueous xanthan gum solutions of
concentrations 0.5 wt%, 1 wt% and 1.5 wt%. The xanthan gum powder was obtained from
Archer Daniels Midland Company (Decatur, IL). Table salt was used for the preparation of the

tracer solution used in the mixing time experiments.

4.2.1 Xanthan Gum

Introduction and Structure

Xanthan gum is a high molecular weight extracellular polysaccharide produced by the
submerged fermentation of bacteria of genus Xanthomonas, usually Xanthomonas campestris.
The unique rheological properties of xanthan gum solutions namely the high viscosity it imparts
to aqueous solutions and the stability of the apparent viscosity of the resulting solutions over
wide ranges of temperature, pH and ionic strength (Garcia-Ochoa and Casas, 1994) have been
exploited in food, petrochemical and pharamaceutical applications and oil recovery (Galindo and
Nienow, 1993; Whitcomb and Macosko, 1978, Amanullah et al, 1998).

A xanthan gum molecule has a backbone similar to that of cellulose with trisaccharide side
chains attached to alternate sugar residues on the main chain (Katzbauer, 1998; Garcia-Ochoa

and Casas, 1994). Its molecular weight is usually reported as 2x10° Da (the Dalton (Da) is a

-24

measure of molecular weight or mass; one hydrogen atom has a mass of 1.66x10™"" g or 1 Da).

The secondary structure (i.e., backbone conformation) of xanthan gum is reported to consist of a
five-fold helical structure.
The high viscosities of xanthan gum aqueous solutions result from the interaction between the

molecules in solutions. In aqueous solutions, xanthan gum undergoes a conformational transition
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from a disordered chain conformation (coil shape) at elevated temperatures and low ionic
strength to an ordered shape (double stranded/dimeric or helix) at higher salt concentrations

(Garcia-Ochoa and Casas, 1994; Casas et al., 2000).

Rheology
Aqueous solutions of xanthan gum are shear thinning (Funahashi et al., 1987; Hannote et al.,
1991; Katzbauer, 1998) and exhibit a yield stress (Moore et al., 1995). The rheology of xanthan
gum solutions has been modeled using the power law, Casson and the Herschel-Bulkley
| rheological models, where the Casson model is generally used to fit shear-stress vs. shear rate
! data at low shear rates (Amanullah, 1998; Elson et al., 1986; Torrestiana et al., 1991). Solomon
et al. (1981) found that the rheological data for xanthan gum were well fitted with the Herschel
Bulkley equation over the whole shear rate range (0.01s" to 1000s™).
For the measurement of yield stresses when the power law model was used, Galindo and Nienow

(1992, 1993) and Hannote et al. (1991) used a stress relaxation technique proposed by the latter.

4.3  Impeller Specifications

4.3.1 Pitched Blade Turbine

The pitched blade turbine used in this work has four 45 degree angle blades, which is the most
common pitched blade turbine blade angle, and an outer diameter of 15.5 cm. The impeller was
rotated to give a downward direction of pumping, which is the typical pumping direction

employed with pitched blade turbines. These impellers can be made up pumping only by

reversing the direction of rotation or changing the blade angle (Dickey, 2001).
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4.3.2 Marine Propeller
For this work, a marine propeller with three blades and an outer diameter of 15.5cm was used.
The impeller pitch was 1.5. Pitch is defined as the theoretical distance traveled by the blades in a

single rotation of the propeller (Dickey, 2001).

4.3.3 Lightnin A320
The A320 impeller (Lightnin) with three blades and an outer diameter of 15.5cm was used in this
work. The A320 is an axial flow impeller that has been recommended for higher viscosity

applications requiring high flow in the transitional regime.

Photos of the PBT impeller, marine propeller and A320 impeller are shown in Figure 4.2.

Table 4.1 summarizes the specifications of these three impellers in terms of the power number

Qimpeller

D3

(Np) and flow number, Ng (N, =

; where Q is the impeller pumping capacity (Paul

impeller

et al., 2004))

Table 4.1: PBT, Marine Propeller and A320 Impeller Specifications

Impeller Type Np Ny
PBT 0.66 0.42
Marine Propeller 1.16 0.47
A320 0.63 0.64
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Figure 4.2: PBT, marine propeller and A320 Impeller used to study mixing in yield stress fluids
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44  CFD Model

The preprocessor software Mixsim version 2.1 together with Fluent (version 6.3) was used to
model the experimental setup and solve the flow field. Once the flow field was numerically
calculated, the model was transported to Fluent where the homogenization of an inert tracer in
the flow field was simulated to obtain homogenization curves and numerical mixing time results.
The MRF impeller rotation model, power law and second order discretization schemes for
momentum and pressure respectively, the SIMPLEC algorithm for pressure-velocity coupling
and the Gauss Siedel point by point method (see pp. 29-36 for more information) were used for
all the numerical calculations of the flow field. For tracer homogenization simulations, the power

law discretization scheme was used to solve the species transport equation.
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5. Procedure

5.1 Experimental

5.1.1 Xanthan Gum Solution Preparation

? To prepare xanthan gum solutions of the required concentration, the mixing tank was filled with
tap water to a height H = 40 cm (diameter of mixing tank). With the étirrer on, xanthan gum
powder was added slowly to the water in the tank in the region close to the impeller. The mass of
xanthan gum powder used depends on the desired xanthan gum solution concentration as shown

| in Table 5.1 below:

Table 5.1 Mass of Xanthan Gum Powder used to prepare each batch of the 0.5 wt%, 1.0 wt% and 1.5 wt%

, So;l:;:ll:an Gum Solution Concentration (wt %) Mass of Xanthan Gum Powder (g)
i 0.5 ‘ 218.28

1.0 435.32

1.5 656.28

The resulting solution was stirred continuously for two hours to achieve a homogeneous xanthan

gum solution. To investigate the effect of yield stress and clearance on the mixing time, the PBT

impeller was used.

The density of the resulting solution was measured using a picnometer.
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5.1.2 Rheological Measurements

The rheology of the test fluids was measured using a Bohlin CVO Rheometer (Malvern
Instruments Limited, UK) in the shear rate range 0.04 s'-230s".

The shear stress versus shear rate data obtained using the rheometer (see Figure 5.1) were fit to
the Herschel Bulkley rheological equation for shear stress (Equation (2.7) to obtain model
parameters for the 0.5 wt%, 1 wt% and 1.5 wt% xanthan gum solutions used in this work (Table
5.2). This fitting of the rheological data was facilitated by the curve fitting tool in the data
acquisition software of the rheometer which allowed for the data to be automatically fit once the

desired rheological model had been selected.
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Figure 5.1: Shear stress versus shear rate for 0.5 wt%, 1.0 wt% and 1.5 wt% xanthan gum solutions
measured using a Bohlin rheometer
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Table 5.2: Rheological Parameters obtained from fitting rheological data (Figure S.1) to Equation (2.7)

Concentration (wt %) 7 . [Pa] K [Pa.s"] n -] p [kg / m® ]

0.5 1.789 3 0.11 997.36

| 1.0 5.254 8 0.12 991.80
1.5 7.455 14 0.14 989.76

5.1.3 Power Consumption measurements
Power consumption for each impeller type and xanthan gum solution concentration was
p p yp g
i calculated from torque measurements obtained at each impeller rotational speed. From the

| measured torque values, M, , a residual torque value due to the shaft guiding system, M, was

m?
g subtracted to obtain corrected torque measurements, M . The residual torque was measured by
running the mixing system in air for every measurement.

M =M -M (5.1

4 m r

The Power consumption was then calculated according to Equation (2.9) using M _.

5.1.4 Mixing time measurements

Mixing time experiments were conducted by injecting a tracer prepared by dissolving 30g of
NaCl in 60m] of xanthan gum solution.

At time t = 0, with the stirrer on and the Labview data acquisition system turned on, the tracer
was injected into the bulk xanthan gum solution. The mixing progress was monitored by means
of the conductivity-time graphs generated automatically by the program. Once no change in the

conductivity of the solution with time was observed, data collection was discontinued. The
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mixing time was determined as the time taken for the conductivity to reach within + 2% of the
final steady state conductivity value (Figure 5.2).

To introduce the least disturbance to the flow field, the probe was kept in a slant position in
between two baffles (approximately 45 degrees to the horizontal) and at least two inches away
from the inner vessel wall as specified by the probe manufacturers to eliminate wall effects.
Mixing time measurements were conducted for 0.5%, 1% and 1.5% xanthan gum solutions. They
were also conducted at impeller clearances C1=H/3, C2=2H/5, C3=H/2 and for the pitched blade
turbine, marine propeller and Lightnin A320. Each measurement was repeated three times from

which the mean and standard deviation were calculated.
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Figure 5.2 Experimental Determination of Mixing Time for PBT rotating at N = 450rpm mixing 1% xanthan
gum solution at C3 = 20cm
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5.2 Numerical

5.2.1 Model Set up and Flow field calculation

The dimensions of the mixing tank, shaft and impeller was defined in Mixsim 2.1. The flow
regime was specified as laminar, and rheological parameters of the solution (Table 2) were
specified in the Herschel Bulkley model in Mixsim 2.1. In Mixsim 2.1, when the Herschel
Bulkley model is specified as the viscosity model, the fluid viscosity is calculated via the

following equation (Fluent Inc., 2006):

K{y[ﬂ j }
: /Mo

u, = , (52)
4

where 4, is the yielding viscosity defined as the viscosity of the fluid before the yield stress has

been exceeded (Fluent Inc., 2006). It was calculated for each xanthan gum solution by dividing

the yield stress with the corresponding shear rate, %, ,i.e., 4, = — and is tabulated below:
Yo

Table 5.3: Calculated values of yielding viscosity for 0.5wt %, 1.0wt% and 1.5wt% xanthan gum solutions

Concentration (wt %) M, [Pa.s]
0.5 13.30
1.0 22.61
1.5 32.36

Profiles of the molecular viscosity as calculated in Mixsim (using Equation (5.2)) for each

rotational speed of the marine propeller and pitched blade turbine impeller is shown below:
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