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ABSTRACT 

 
EXPERIMENTAL IMPLEMENTATION OF  

ARTIFICIAL NEURAL NETWORK-BASED  

ACTIVE VIBRATION CONTROL & CHATTER SUPPRESSION  

 
Yong Xia 

Doctor of Philosophy, 2010 

Mechanical Engineering, Ryerson University 

 

Vibration control strategies strive to reduce the effect of harmful vibrations such 

as machining chatter. In general, these strategies are classified as passive or active. While 

passive vibration control techniques are generally less complex, there is a limit to their 

effectiveness. Active vibration control strategies, which work by providing an additional 

energy supply to vibration systems, on the other hand, require more complex algorithms 

but can be very effective. In this work, a novel artificial neural network-based active 

vibration control system has been developed. The developed system can detect the 

sinusoidal vibration component with the highest power and suppress it in one control 

cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be 

suppressed. With artificial neural networks trained to cover enough frequency and 

amplitude ranges, most of the original vibration can be suppressed. The efficiency of the 

proposed methodology has been verified experimentally in the vibration control of a 

cantilever beam. Artificial neural networks can be trained automatically for updated time 

delays in the system when necessary. Experimental results show that the developed active 

vibration control system is real time, adaptable, robust, effective and easy to be 
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implemented. Finally, an experimental setup of chatter suppression for a lathe has been 

successfully implemented, and the successful techniques used in the previous artificial 

neural network-based active vibration control system have been utilized for active chatter 

suppression in turning.  
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CHAPTER 1 

INTRODUCTION 

 

1.1  Vibration Control 

Vibration is present in many dynamic mechanical systems. Vibration control is 

the effort to reduce the negative effects of vibration effectively. 

Two main groups of vibration control methods are passive and active methods [1, 

2]. Other vibration control methods, e.g., semi-active and other hybrid methods, can be 

considered as a combination of passive and active methods. 

1.1.1 Passive Methods 

Passive vibration control methods include elimination of additional energy 

sources, eliminating or decreasing input forces and isolation from external disturbances 

[1]. Examples include balancing, reduction of mass, substitution of rolling bearings by 

sliding ones, etc. The parametric modifications lead mainly to changes of mass and 

stiffness elements. The structural modifications deal with introducing additional 

constraints to the system or modification of existing ones (i.e., continuity interruption of 

vibrator structure via introduction of intermediate elements), or addition of vibration 

eliminators [1]. Damping is also an important parameter but usually takes secondary 

consideration. It works by dissipation of mechanical energy that is converted to heat [1]. 

Therefore, it may cause the decrease of general working efficiency in some areas, e.g., 

for machines. The ideal device should run with minimal damping values. In cases when 

undesirable vibrations cannot be eliminated via structural or parameteric changes, 

damping may be introduced. Additional damping is usually provided by materials with 

appropriate damping values, frictional joints, additional dampers, etc. 
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Unfortunately, the use of passive vibration control methods is not effective 

because of inefficiency in the range of low frequencies, sensitivity on application 

conditions, lack of robustness, and increased size and weight. On the other hand, these 

methods allow dissipation of a great deal of vibration energy in the range of sufficiently 

high frequencies (energy dissipation increases with decrease of passive elements 

stiffness) [1, 2]. 

Better vibration control results may be achieved by using active methods. 

1.1.2 Active Methods 

Active vibration control (AVC) methods work by providing an additional energy 

supply to vibration systems. These methods alleviate the problems of contradictory 

requirements imposed on passive vibration control techniques, such as efficiency of 

device operation, low frequency vibration, dynamic stability, stiffness, etc. The 

additional energy supply can produce a force that compensates the forces that account 

for vibrations. To reduce the vibration, the additional energy should have appropriate 

power, frequency and phase, relative to existing vibration forces. AVC methods can 

change the system parameters in an active way. Some commonly utilized AVC methods 

include adaptive filter control, Proportional-Integral-Derivative (PID) control, fuzzy 

logic control and artificial neural network (ANN)-based control. As the vibration control 

method used in this research, the AVC method will be introduced in detail in chapter 2. 

AVC is a highly multidisciplinary field with elements from structural dynamics, 

signal processing, materials science, mechanical vibration, actuator and sensor 

technology. The applications of AVC are also diverse. The following are some example 

areas for AVC application. 

Chatter is a machining process instability resulting from self-excited vibration 

caused by the interaction of the chip removal process and the structure of the machine 

tool. Chatter occurs especially when machining flexible parts such as turbine blades, or 
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when machining deep features using slender end mills. Chatter can limit metal removal 

rates (productivity), cause poor surface finish, and accelerate tool wear. There has been a 

considerable research effort concerned with the suppression of chatter. Applying 

ANN-based AVC in machining chatter suppression is discussed in much more detail 

later in this thesis. 

Active noise control is an attractive means to achieve large amounts of noise 

reduction in a small package, particularly at low frequencies. Current applications 

include: control of aircraft interior noise by use of lightweight vibration sources on the 

fuselage and acoustic sources inside the fuselage; reduction of helicopter cabin noise by 

active vibration isolation of the rotor and gearbox from the cabin; attenuation of 

unavoidable noise in automobiles (electronic mufflers, engine mounts, and so on). 

AVC can be used for suppressing the vibrations within a building generated by 

high winds or an earthquake, for reduction of sway in tall buildings and vibration of 

construction machinery, and to prevent large bridges from damage by flutter [1, 2]. 

AVC has also been used in vibration-sensitive machines. Examples include 

surgical microscopes, electronic equipment, lasers, MRI units, scanning electron 

microscopes, and computer disk drives. 

AVC can also be used in transportation equipment, life sciences, marine, 

semiconductor industry, and many other areas as well. 

1.1.3 Hybrid Methods 

There are other vibration control methods that can be considered as a 

combination of passive and active methods. One of these methods is called semi-active 

vibration control and includes passive elements where elastic and damping forces may 

be changed depending on the conditions. Such methods require an external energy 

source with much lower power requirements. 



 4  

Another hybrid method uses both active and passive elements. The active part 

operates in the low frequency range and the passive one in the higher frequency range. 

Considering the superior capabilities of active methods over passive methods, in 

this research, AVC will be utilized. However, there are some technical challenges 

associated with the implementation of AVC. For example, adaptive filter control and 

PID control can only work effectively for linear vibration problems; most implemented 

artificial neural network (ANN)-based control methods rely on the plant output as the 

feedback signal and therefore have to solve the time-delay problem, which leads to the 

complexity of the control systems (see chapter 2 for details). This AVC research is 

working on dealing with these challenges. 

 

1.2  Chatter Suppression 

Machine tool vibration suppression techniques have been studied for many years 

because excessive vibrations often result in poor surface finish, reduced tool life and 

severe acoustic noise in work environment. Among those vibrations, chatter is the most 

problematic limiting factor of machining, especially with high spindle speeds and long 

reach cutters, such as a boring bar.  

Chatter is a violent relative vibration between a cutting tool and a workpiece. 

Chatter falls into two categories, forced and self-excited. Forced chatter is due to the 

unbalance of rotating members, such as unbalanced driving system, servo instability, or 

impacts from a multi-tooth cutter. Self-excited chatter consists of two types, i.e., primary 

(or non-regenerative) type and regenerative type [3]. Regenerative chatter frequently 

occur in boring operation due to the low stiffness and low damping property of a slender 

boring bar itself. 

The regenerative type of self-excited chatter is due to the interaction of the 
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cutting force and the workpiece surface undulations produced by previous tool passes. 

Its amplitude increases with the progress of cutting [3]. Regenerative chatter is found to 

be the most detrimental phenomena in most machining process [4]. Hence, methods to 

suppress it have been the focus of many studies. 

Generally, chatter suppression methods fall into two categories, passive and 

active methods. Other methods, e.g., semi-active and hybrid methods, can be considered 

as a combination of passive and active methods.  

Passive methods include enhancing the system’s dynamic stiffness and damping, 

elimination of additional energy sources, eliminating or decreasing input forces and 

isolation from external disturbances [5]. 

Active methods work by providing an additional energy supply to vibration 

systems. To suppress chatter, the additional energy should have appropriate power, 

frequency and phase, relative to existing chatter forces. The actual active chatter 

suppression methods are diverse and some examples will be introduced in the next 

chapter. 

 

1.3  Objective 

The objective of the current work is to develop a robust real-time adaptable AVC 

system to detect and suppress the vibration of a cantilever beam, and utilize similar 

techniques used in the AVC system in an active chatter suppression (ACS) system for 

turning. The effectiveness of both systems is verified through experiments. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Active Vibration Control 

The research in active vibration control (AVC) has been expanding since Lueg’s 

work in 1930s [6], and especially rapidly in the past three decades. 

AVC is achieved by using a control source to introduce a secondary (control) 

disturbance into a system to cancel the existing (primary) disturbance, thus resulting in 

an attenuation of the original vibration [1]. These secondary sources are interconnected 

through an electronic system using a specific signal-processing algorithm for a particular 

cancellation scheme. To explain the concept of AVC, a classical application of active 

noise control is always used as an example as in [2]. The principle of destructive 

interference used is not only limited to the control of acoustic waves, but also 

successfully applied to the control of other vibration. 

The classical application is the active control of sound waves in a small duct, 

which is shown in Figure 2-1. An actuator (a loudspeaker) and two sensors (two 

microphones in this case) are used. Sensor A, which is called a reference sensor, is used 

to measure the advanced information on the disturbance sound wave that propagates in 

the duct, and sensor B, which is called an error sensor, is used to monitor the 

performance of the active sound control system, thus providing feedback to a control 

algorithm. To keep this example simple, sensor A is assumed to be not coupled with the 

actuator, so sensor A only measures the disturbance sound field. The control structure of 

Figure 2-1 is called “feedforward”, because the controller feeds the actuator with a signal 

based on the advanced information obtained from sensor A. If the controller works 
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properly, the signal sent to the actuator will generate a sound wave, which will cancel 

the disturbance sound wave at the location of sensor B. Because only plane wave 

propagation is considered in such a small duct commonly, the sound field will be 

uniform in any section of the duct, and the sound will be reduced from sensor B to the 

end of the duct. Details of active sound control theory and applications can be found in 

[2].  

Compared with AVC, passive vibration control methods suppress vibration by 

using energy absorbing dampers to consume energy input or by changing the system 

structures or conditions to reduce the energy inputs or generated energy. 

   

  

      Figure 2-1: Active control of sound waves in a duct [2] 

The concept of AVC has been known for more than 60 years. The basic ideas of 

AVC were proposed in 1936, when Paul Lueg first described the design of active noise 

control in a patent published in the United States. Even though the concept is simple, it is 

only with the development of low-cost fast digital signal processing (DSP) systems 

during the last 20 years that the implementation of practical active sound and vibration 

control systems has become feasible. It is desirable for the vibration canceller to be 

digital, where signals from electroacoustic or electromechanical transducers are sampled 

and processed in real time using DSP systems. Digital technology is well suited for 
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adaptive control systems or control configurations where a lot of precision is required in 

order to achieve good performance. 

The continuous progress of AVC involves the development of improved adaptive 

signal processing algorithms, transducers, and DSP hardware. Since the characteristics 

of the vibration source and the environment are time varying, the frequency content, 

amplitude, phase, and vibration velocity of the undesired vibration are not stationary. An 

AVC system must therefore be adaptive in order to cope with these variations. AVC 

systems can be used in linear or nonlinear control problems. 

For linear control problems, adaptive filters combined with some algorithms are 

always used. Adaptive filters adjust their coefficients to minimize an error signal and can 

be realized as finite impulse response (FIR), infinite impulse response (IIR), lattice, and 

transform-domain filters [6]. The FIR filter is also called a transversal filter and the IIR 

filter is also called a recursive filter. The algorithms used for adaptive filters are 

generally based on gradient descent algorithms. Examples are least-mean-square (LMS) 

and filtered-X LMS algorithms. For nonlinear control problems, many researchers have 

focused on neural networks combined with some specific algorithms, such as the 

standard gradient descent backpropagation algorithm. Moreover, neural networks proved 

experimentally to be robust for not only nonlinear control but also linear control [7]. 

Some commonly used architectures and algorithms in AVC will be introduced in a latter 

section. 

More sophisticated algorithms allow faster convergence and greater vibration 

suppression and are more robust with respect to interference. A good review of the 

different control techniques that have been used for the active control of sound and 

vibration can be found in [6, 8-11]. The development of improved DSP hardware has 

allowed these more sophisticated algorithms to be implemented in real-time to improve 

system performance. 
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2.2 Control Strategies 

Basically, in the area of AVC, there are two kinds of control strategies: 

feedforward and feedback [1, 2, 6]. 

2.2.1 Feedforward Control 

  The noise suppression example in the preceding section is a feedforward 

control strategy application. The principle of feedforward control is presented in Figure 

2-2. Feedforward controllers rely on the availability of a reference signal correlated to 

the primary disturbance. This signal is passed through an adaptive controller. The output 

of the controller is applied to the system by secondary sources. The filter coefficients are 

adapted in such a way that the error signal at one or several critical points is minimized. 

The idea is to produce a secondary disturbance such that it cancels the effect of the 

primary disturbance at the location of the error sensor. 

     

         Figure 2-2: Principle of feedforward control [12] 

One important point to note is that the signal must be received by the controller 

in sufficient time for the required control signal to be generated and output to the 

control/secondary source when the disturbance (from which the reference signal was 

generated) arrives. Systems, for which the active control system produces the control 

signal at the downstream location at the same time that the primary signal arrives, are 
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referred to as “causal”. Causality is a condition that all feedforward designs must satisfy 

if the vibration to be controlled is not periodic [8]. As will be discussed in section 2.3, 

the reason why most transfer function models utilize tapped delay lines is to enable the 

modeling of the explicit system time delays to maintain causality within the control 

schemes. If the vibration to be controlled is periodic, it is possible to get a similar 

outcome without satisfying causality if the control signal output and the arriving 

disturbance have a phase difference equal to an integer number of periods. 

Another point to note is that there is no guarantee that the global response is also 

reduced at other locations and, unless the response is dominated by a single mode, there 

are places where the response can be amplified; the method can therefore be considered 

as a local one, in contrast to feedback which is global (as will be discussed in the 

following section). 

2.2.2 Feedback Control 

Feedback control is a control system which monitors its effect on the system it is 

controlling and modifies its output accordingly. The principle of feedback control is 

presented in Figure 2-3. The output y of the system is compared to the reference input x 

and the error signal, e = x - y, is passed into a compensator H(s) and applied to the 

system G(s). The design problem consists of finding the appropriate compensator H(s) 

such that the closed-loop system is stable. Feedback on how the system is actually 

performing allows the compensator (controller) to dynamically compensate for 

disturbances, d, to the system. 

      

         Figure 2-3: Principle of feedback control [12] 
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2.2.3 Feedforward vs. Feedback 

Generally, a feedforward control system should be implemented whenever it is 

possible to obtain a suitable reference signal because of its inherent stability 

characteristics and usually superior performance to a feedback control system [1, 6]. The 

use of feedback control has been popular in the area of structural vibration because of its 

ability to damp structural vibrations without the need to be able to measure a reference 

signal in advance [1, 2, 6, 8]. 

There is no direct connection between the output of the system and the actual 

conditions encountered in feedforward control, which means the system does not and 

cannot compensate for unexpected disturbances. Moreover, a suitable reference signal is 

not always available. 

 

2.3 Control System Design 

Many of the electronic systems utilized in control schemes derive control inputs 

for secondary sources (as in Figure 2-2) via modified adaptive signal processing 

architecture/algorithm combinations. Since the characteristics of input signal and system 

response are unknown, or may be slowly changing with time, the controller must “learn”, 

and be able to “relearn” to cope with changes in the signal structure. Basically, there are 

two kinds of such architecture/algorithm combinations: linear filter combinations and 

nonlinear combinations. 

2.3.1 Linear Filter Architecture/Algorithm Combinations 

  Many of today’s implementations of active control use adaptive linear 

filtering techniques. With the advances in digital technology over the past several 

decades, adaptive DSP has become a firmly established field, encompassing a wide 
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range of applications. One of the most common forms of adaptive architecture/algorithm 

linear filter combinations is the filter-based controller adapted by using Least Mean 

Square (LMS)-based algorithms (discussed in section 2.3.1.2) [8]. The aim of the 

adaptation algorithm is to adapt the filter coefficients such that the error signal is 

minimized. 

2.3.1.1 Adaptive Filters 

Adaptive filters can be realized as (transversal) finite impulse response (FIR), 

(recursive) infinite impulse response (IIR), lattice, and transform-domain filters [8-11] 

and [13-14]. Two primary types of digital filters used in (DSP) applications are FIR 

filters and IIR filters [8]. 

2.3.1.1.1 FIR Filters 

Figure 2-4 shows the structure of a transversal FIR filter with N taps adjustable 

weights. The Z-1 block represents a unit sample of delay. The impulse response is 

"finite" because there is no feedback in the filter. The FIR filter is obtained by 

combining a tapped delay line with a linear network [8]. 

 

         Figure 2-4: Transversal FIR Filter structure 

The tap-weight vector, w(n), is represented as w(n) = [w0(n), w1(n), …, wN-1(n)]T; 

the tap-input vector, x(n), is represented as x(n) = [x(n), x(n-1), …, x(n-(N-1))]T; the FIR 
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filter output, y(n), can then be expressed as 
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where n is the time index and N is the order of the filter.    

2.3.1.1.2 IIR Filters 

Another primary digital filter used in DSP application is IIR. The impulse 

response is "infinite" because there is feedback in the filter. An IIR filter produces an 

output, y(n), which is the weighted sum of the current and past inputs, x(n), and past 

outputs. Figure 2-5 is a generic IIR digital filter and equation (2-2) shows how to 

calculate the output of the filter [15]. 

y(n) = g[x(n) + a1 x(n-1) + ... + aN x(n-N)+ b1 y(n-1) + ... + bM y(n-M)]   (2-2) 

If the generic IIR filter in Figure 2-5 does not operate on the past values of the 

output, i.e., it would only have non-zero ai coefficients in the above equation, but all bj 

coefficients would be zero, then it changes to a FIR filter as shown in Figure 2-4. 

 

     

             Figure 2-5: A generic IIR digital filter [31] 
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2.3.1.1.3 FIR Filters vs. IIR Filters 

The FIR filter and The IIR filter have their separate advantages and 

disadvantages. Overall, though, the advantages of the FIR filter outweigh its 

disadvantages, so it is used much more than the IIR filter [8]. Compared to the FIR filter, 

the IIR filter can achieve a given filtering characteristic using less memory and 

calculation than a similar FIR filter. However, compared to IIR filters, FIR filters have 

more advantages as listed below [16]: 

•  They can easily be designed to be "linear phase"; 

•  They are simple to implement; 

•  They are suited to multi-rate applications; 

•  They have desirable numeric properties; and 

•  They can be implemented using fractional arithmetic. 

2.3.1.2 Adaptation Algorithms 

There are many possible adaptation algorithms, and one of the most useful 

algorithms is the LMS algorithm [8, 10, 13]. Many LMS-based algorithms and their 

variants exist. This section focuses on the LMS algorithm and an LMS-based algorithm, 

i.e., the filtered-x LMS algorithm for FIR filters. 

2.3.1.2.1 FIR Filters / LMS Algorithm Combination   

Figure 2-6 shows a block diagram of an adaptive filter system identification 

model. The unknown system is modeled by an FIR filter with adjustable coefficients. 

Both the unknown system and the FIR filter model are excited by an input sequence x(n). 

The adaptive FIR filter output y(n) is compared with the unknown system output d(n) to 

produce the error signal e(n). The error signal represents the difference between the 

unknown system output and the model output. The error e(n) is then used as the input to 
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an adaptive control algorithm, which corrects the individual tap weights of the filter. 

This process is repeated through some iterations until the error signal e(n) becomes 

sufficiently small. The resultant FIR filter response now represents that of the previously 

unknown system. 

    

    Figure 2-6: Adaptive filter system with a controller based on the LMS [11] 

The LMS algorithm adjusts the weights and biases of the FIR filter so as to 

minimize the mean square error. LMS algorithm is an example of supervised training, in 

which the learning rule is provided with a set of examples of desired network behavior: 

}{},...,,{},,{ ,2211 qq txtxtx . Here qx is an input to the network, and qt is the corresponding 

target output. As each input is applied to the network, the network output is compared to 

the target. The error is calculated as the difference between the target output and the 

network output. The Mean Square Error (MSE) to be minimized is 

∑ ∑
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22 ))()((1)(1           (2-3) 

The LMS algorithm is initialized by setting all the weights to zero at time k=0. 

Tap weights and bias are updated using the relationship [11, 13] 

w(k+1) = w(k) + 2μ e(k)x(k)             (2-4) 
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b(k+1) = b(k) + 2 μ e(k)               (2-5) 

where w(k) represents the tap weights of the transversal filter, e(k) is the error signal, x(k) 

represents the tap inputs, b(k) is the bias, and the factor μ  is a convergence factor (also 

called the learning rate or the step length) whose value influences the amount by which 

the weight vector is altered at each iteration. To ensure convergence, μ  should satisfy 

the condition [11]: 

0 < μ  < (1 / maxλ )               (2-6) 

where maxλ  is the maximum eigenvalue of the input correlation matrix. 

2.3.1.2.2 FIR Filters / Filtered-x LMS Algorithm Combination 

Another popular adaptive architecture/algorithm combination is the FIR 

filter/filtered-x LMS algorithm combination. The filtered-x LMS algorithm is also called 

the multi-error LMS algorithm or multi-channel LMS algorithm, which is an extension 

of the LMS algorithm. 

In Figure 2-6, the output of the FIR filter is an estimate of the unknown system. 

However, in real control applications, the adaptive filter works as a controller controlling 

dynamic systems, which contain actuators, amplifiers, etc. The estimate in this case can 

thus be considered as the output signal from a dynamic system, i.e., a forward path as in 

Figure 2-7. Since there is a dynamic system between the filter output and the estimate, 

the direct LMS algorithm is likely to be unstable in this application due to the phase shift 

(delay) introduced by the forward path [2]. In this case, a model of the forward path can 

be introduced to filter the reference signal to the adaptive algorithm as in Figure 2-7. The 

compensated adaptive algorithm obtained is the filtered-x LMS algorithm [13]. 

As shown in section 2.3.1.1.1, the FIR filter output, y(n), can be expressed as 
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equation (2-1). Equation (2-1) can also be written as 

)()()( nxnwny T=                   (2-7) 

where 

TNnxnxnxnx )]1(),...,1(),([)( +−−=                   (2-8) 

is the input signal vector to the adaptive filter and 

T
N nwnwnwnw )](),...,(),([)( 110 −=                         (2-9) 

is the adjustable filter coefficient vector. In control applications, the estimation error 

)(ne  is defined by the difference between the desired signal (desired response) )(nd  

and the output signal from the forward path or plant under control )(nyc : 

)()()( nyndne c−=                   (2-10) 
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where n is the time index, i is the order and *
ic  is the coefficients of the estimated FIR 

filter model of the forward path [10].  
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where )(* nh
C  is the estimated FIR filter model of the forward path. 
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where μ  is a convergence factor (also called learning rate or step length). 

In order to ensure that the filtered-x LMS algorithm is stable, the maximum value 

for the convergence factor µ should be given approximately by [13]: 

µ < 
)]([

2
2 nxNE

                  (2-14)  

where E[x2(n)] is the mean square value of x(n). 

 

Figure 2-7: Adaptive filter system with a controller based on the filtered-x LMS algorithm [13] 

2.3.2 Nonlinear Architecture /Algorithm Combinations 

Even though the combination of a transversal filter using modified LMS 

algorithms has been widely demonstrated to be very useful, it has a potential limitation 

because it is designed for linear control problems. In other words, the control signal, as 

well as the associated measured error signal used in the adaptation process, must be 

linear functions of the reference signal used by the adaptive filter to derive the control 

signal [6]. The linear filter architectures may not perform well in cases where 

nonlinearities are found in an active control system. One of the most common sources of 

nonlinearity in the field of active control of vibration is the actuator. An actuator has 

typically a nonlinear response when it operates with an input signal having an amplitude 
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close to (or above) the nominal input signal value, or when it operates at a frequency 

outside of the normal frequency range of operation (or close to the limits) [18]; a control 

actuator also may have some nonlinear performance characteristic, such as where it 

generates some harmonics and introduces the harmonics into the system, which must be 

compensated for; and where a power based (intensity) error signal is used, which will be 

twice the frequency of the reference signal [6], for example, when some band-pass filters 

are used for the error signal. Another example of nonlinearity in active vibration control is 

when a sinusoidal reference signal is used to derive a signal to control a disturbance 

containing both the reference tone and several harmonics. Nonlinear behaviors can also 

occur when the dynamics of the system to be controlled are nonlinear. 

Therefore, what is desired in these situations is a nonlinear controller, which can 

improve the control performance of a system associated with some form of nonlinearity. 

One such controller arrangement, which has received increased attention in recent years, 

is the artificial neural network (ANN). ANN-based AVC is the focus of this research, so 

ANN architectures and algorithms, and ANN application in AVC will be introduced in 

detail. 

 

2.4 Artificial Neural Network 

An ANN is a system whose architecture is inspired by the arrangement of nerves 

in biological systems and by their operation. An ANN is an extensively parallel 

interconnection of simple neurons that has the ability to learn from its environment and 

store the acquired knowledge for future use [10]. ANNs are used for pattern recognition 

or function approximation. In AVC, ANNs are mostly used for their function 

approximation capability. Properly designed and trained neural networks are capable of 

approximating any linear or nonlinear function to the desired degree of accuracy [10]. A 

strong case can be made that neural network implementation is simply a form of 
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multivariate statistical analysis [6]. 

There are a variety of design and learning techniques to choose from when using 

an ANN. The pattern of connections between the neurons, called network architecture, 

and the method in which the weights of the connections are determined, known as 

learning algorithm, are the elements that characterize an ANN. 

2.4.1 Multilayer Feedforward Neural Network 

The most common ANN architecture used in AVC is the multilayer feedforward 

neural network. Figure 2-8 illustrates an example of the structure of a multilayer 

feedforward neural network, which comprises a layer of input signals, 2 hidden layers 

(layer 1 and layer 2) of neurons, and an output layer (layer 3) of neurons. 

  

 

 Figure 2-8: An example of the structure of a multilayer feedforward neural network [19] 

A multilayer feedforward neural network (see Figure 2-8) comprises a layer of 

input signals, one or more hidden layers of neurons, and an output layer of neurons. A 

layer consists of a single or multiple neurons. Neurons in each layer are connected to all 

neurons in adjacent layers. The network in Figure 2-8 is of the feedforward type, 

wherein the effects of the input signals are propagated through the networks layer by 

layer. Differences between the desired outputs (targets) and the network outputs are the 
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“errors”. The connection strengths (‘weights’) and ‘biases’ are updated during training 

(learning) such that the network produces the desired output for the given input. The 

multilayer feedforward neural networks trained with a back-propagation algorithm are 

compact and provide excellent generalization (i.e., accurate outputs for inputs not 

encountered during training) [10]. Mathematically, neuron j having m inputs is described 

as follows [10]: 

)( jjj vfy =   

jiji

m

ij bxwv +Σ=
=1

                    (2-15) 

where ix  are input signals, jiw  are weights from neuron i to neuron j, jb  is bias, jv  

is the activation potential, jf  is the activation/transfer function and jy  is the output 

signal of the neuron. The bias applies an affine transformation to the linear combination 

of inputs and weights. The type of activation function used determines the neuron output 

for the given weights, inputs and bias. For example, the following activation functions 

are always used [10]: 
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Feedforward networks often have one or more hidden layers of sigmoid neurons 

followed by an output layer of linear neurons. Multiple layers of neurons with nonlinear 

transfer functions allow the network to learn nonlinear and linear relationships between 

input and output vectors. The linear output layer lets the network produce values outside 

the range -1 to +1. However, if the outputs of a network need to be constrained (such as 
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between 0 and 1), the output layer should use a sigmoid transfer function (such as 

log-sigmoid). 

Theoretically, a two-hidden-layer network having a sigmoid first hidden layer 

and a linear second layer can be trained to approximate most functions (linear or 

nonlinear) arbitrarily well [10]. 

2.4.2 Backpropagation Algorithms 

There are many variations of the backpropagation algorithm. The simplest one is 

the gradient descent algorithm, which updates the network weights and biases in the 

direction in which the performance function decreases most rapidly -- the negative of the 

gradient. 

For a given set of inputs to the network, outputs are computed for each neuron in 

the first layer and forwarded to the next layer. The signals propagate on a layer-by-layer 

basis until the output layer is reached. The weights and biases remain unchanged during 

the “forward pass”. The output of the network is compared with the desired value ( jt ), 

and the difference gives the error: 

jjj yte −=                    (2-17) 

Applying the delta rule [10], which adjusts the weights so as to minimize the 

mean square error, the total error (or “error criterion” in some papers) is defined as:  
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where c is the number of neurons in the output layer. 

The error E represents the cost function, and the weights and biases are updated 

to minimize it. The backpropagation algorithm minimizes the cost function in a manner 

similar to the steepest descent method [10]. The computed partial derivatives (sensitivity) 
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∂E/∂wji determine the search direction for updating the weights wji as 
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where α  is the learning rate parameter (step size), k is the current time and (k + 1) is 

the next time step. For stable learning, 

max
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α <                    (2-20) 

where maxλ is the maximum curvature, or the maximum eigenvalue of the Hessian 

matrix [10]. The weights and biases are updated during the “backward pass” starting 

from the output layer, and recursively computing the local gradient for each neuron. 

The gradient descent algorithm can be refined using a ‘momentum term’ that has 

a stabilizing effect on the backpropagation algorithm [10]. By the use of momentum, a 

larger α  can be used, while maintaining the stability of the algorithm. Momentum 

allows a network to respond not only to the local gradient, but also to recent trends in the 

error surface. It also allows the network to ignore small features in the error surface. 

Without momentum, a network may get stuck in a shallow local minimum. With 

momentum, a network can slide through such a minimum [10]. 

In practical application, the two backpropagation algorithms (gradient descent, 

and gradient descent with momentum) are often too slow. Modifications fall into two 

main categories [19]. The first category uses heuristic techniques, which were developed 

from an analysis of the performance of the standard steepest descent algorithm. One 

heuristic modification is the momentum technique, such as variable learning rate 

backpropagation, and resilient backpropagation [19]. The second category of fast 

algorithms uses standard numerical optimization techniques, such as conjugate gradient, 

quasi-Newton, and Levenberg-Marquardt [10]. 
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2.4.3 Learning Methods 

The learning methods include supervised learning and unsupervised learning. In 

supervised learning neural networks are adjusted, or trained, so that a particular input 

leads to a specific target output. In unsupervised learning, there is not a specific target 

output. Unsupervised networks can be used, for instance, to identify groups of data. 

However, in AVC, supervised training methods are commonly used. 

2.4.4 Training Styles 

The training of a neural network is complete when the error (or change in the 

error) reduces to a predetermined small value. ANN training methods comprise batch 

training and incremental training. Batch training of a network proceeds by making 

weight and bias changes based on an entire set (batch) of input vectors. Incremental 

training changes the weights and biases of a network as needed after presentation of each 

individual input vector. Incremental training is sometimes referred to as “on-line” or 

“adaptive” training. 

2.4.5 Normalization 

Before training, it is often useful to scale the inputs and targets so that they 

always fall within a specified range [19]. Neural networks are very sensitive to absolute 

magnitudes. For this reason, the inputs and targets are usually scaled to give each of 

them equal importance and to prevent premature saturation of activation functions. All 

data to an ANN are normalized so that they correspond to roughly the same range of 

values. Normalization has the advantage of mapping the desired range of variable to a 

full working range. 

2.4.6 Improving Generalization 

One problem that occurs during neural network training is called overfitting. The 
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error on the training set is driven to a very small value, but when new data is presented 

to the network the error is large. The network has memorized the training examples, but 

it has not learned to generalize to new situations [19]. 

One method for improving network generalization is to use a network that is just 

large enough to provide an adequate fit [10]. Unfortunately, it is difficult to know 

beforehand how large a network should be for a specific application. The standard ways 

to limit the capacity of an ANN including limiting the number of hidden units, limiting 

the size of weights and stopping the learning before it has time to overfit (early 

stopping).  

In the early stopping method, the available data are divided into three subsets. 

The first subset is the training set, which is used for computing the gradient and updating 

the network weights and biases. The second subset is the validation set. The error on the 

validation set is monitored during the training process. The validation error will 

normally decrease during the initial phase of training, as does the training set error. 

However, when the network begins to overfit the data, the error on the validation set will 

typically begin to rise (see Figure 2-9, which is an example drawn by using MATLAB). 

When the validation error increases for a specified number of iterations, the training is 

stopped, and the weights and biases at the minimum of the validation error are returned. 

The test set error is not used during the training, but it is used to compare different 

models. It is also useful to plot the test set error during the training process. If the error 

in the test set reaches a minimum at a significantly different iteration number than the 

validation set error, this may indicate a poor division of the data set [19]. 

Another way recommended in [19] is Bayesian regularization. Bayesian 

regularization generally provides better generalization performance than early stopping, 

when training function approximation networks [19]. This is because Bayesian 

regularization does not require that a validation data set be separated out of the training 
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data set. It uses all of the data. This advantage is especially noticeable when the size of 

the data set is small. 

  

    Figure 2-9: Early stopping method (drawn by using MatLab)   

2.4.7 Dynamic Neural Network 

Dynamic neural networks are always used to model dynamic systems [10]. A 

dynamic ANN has some time-delayed values of the outputs as its inputs by using tapped 

delay lines (TDL). A TDL is a delay line with at least one “tap”. A delay-line tap extracts 

a signal output from somewhere within the delay line, optionally scales it, and usually 

sums with other taps from the signal output. A tap may be interpolating or 

non-interpolating. A non-interpolating tap extracts the signal at some fixed integer delay 

relative to the input. Tapped delay lines efficiently simulate multiple echoes from the 

same source signal. 

One example of using TDL in a neural network model of a system is shown in 

Figure 2-10 (a). In this example each “Time Delay” operator yields a one-time-step 

delayed version of the input signal, and thereby builds a short-term memory into the 

system. This feature transforms a static ANN to a dynamic ANN whose output is a 
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function of time [9, 20]. 

 

2.5 ANN Applications in AVC 

The idea of using ANNs for nonlinear feedforward control problems was first 

proposed by K. S. Narendra and K. Parthasarathy [21], and then, the investigations into 

it by some other people have been reported (see, for example, [7, 17, 22-25]). Generally, 

multilayer feedforword neural networks adapted using some extensions of the standard 

gradient descent backpropagation algorithm has received the most attention from the 

control community as a potential nonlinear filtering tool [6]. 

In the AVC area, the linear function is generally used for neurons in the output 

layer, and nonlinear functions (such as the sigmoid function) are used for neurons in 

hidden layers. The linear activation function used for output neurons can provide the 

control signals with the capacity to vary over the positive/negative range required for 

control; the nonlinear activation functions used for hidden neurons can provide nonlinear 

control. 

2.5.1 Batch-Training Dynamic ANN-Based AVC 

One example of batch-training dynamic ANN-based AVC is discussed in [25]. A 

Neural Network Identifier (NNI) and a Neural Network Controller (NNC) are used in 

this example (Figure 2-10). The NNI is a model of the system, which is a dynamic neural 

network and used to simulate the response and design the controller. The inputs to the 

NNI include excitation signals, control signals and two delayed values of plant output. 

The activation function is purely linear. The design of the NNC is based on the inversion 

of the plant model (NNI). The NNC has five hidden neurons and a single output neuron, 

which produces the controller voltages. The inputs consist of excitation signals, control 

signals and time-delayed target values. The hidden layer uses the tangent sigmoid 
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activation function (as in equation 2-16), which limits the output to ±1 for large values of 

the activation potential. This has a stabilizing effect on the controller signals. For the 

output neuron, the activation function is purely linear, which provides the control signals 

with the capacity to vary over the positive/negative range required for control. 

 

  

(a) Neural network identifier (NNI).    (b) Neural Network Controller (NNC). 

 Figure 2-10: Neural network identifier and Neural Network Controller in [25] 

The significant feature in this example is the way to train the NNC. The NNI is 

trained in a batch mode, and then is used to train the controller through off-line 

simulation. An adaptive scheme was used for the controller, as shown in Figure 2-11.  

The problem in training the NNC is that no target values (in terms of control 

signals, which are the output of the NNC) are known that would minimize the tip 

acceleration (which is the goal). The significant idea of [25] to solve this problem is by 

defining the target as the sum of control signal and tip acceleration (NNI output, which is 

desired to be zero for vibration suppression). The error is the difference between the 

target value and the NNC predicted value (control signal). The error (the tip acceleration 

in this case) is backpropagated to train the NNC. The NNC weights and biases are 

adjusted after every ten samples of data, which resulted in updated control signals. Once 

the NNC training was complete, it was connected to the plant to obtain controlled 

responses. 
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  Figure 2-11: Training of Neural Network Controller (NNC) in [25] 

In another example, the simplest concept called “Direct Inverse Control” is 

implemented in an ANN-based AVC [24]. The principle of “Direct Inverse Control” is 

that if a process can be described by a function dependent on the past states of the 

system that may be dependent on past inputs and outputs, a network is trained as the 

inverse of the process since that plant can be approximated by an inverse function. The 

inverse model is subsequently applied as the controller for the process by inserting the 

desired output. [24]. 

To design a plant inverse model, input/output data must be collected for the 

operating range and input conditions of the system. To construct a direct inverse neural 

network controller, an ANN to model the inverse of the plant needs to be trained (see 

Figure 2-12). The inputs to the ANN inverse model are the state: x(k) and the change in 

state: dx. The output is the input control signal going to an actuator or shaker. 

After the ANN is trained, it is put into the direct inverse control framework. The 

input to the inverse plant model controller is the current state and the desired state. The 

output of the controller is the input control signal going to an actuator or shaker (see 

Figure 2-13, where D means one time step delay here). 
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Figure 2-12: Inverse system identification in [24] 

Both of the above two examples are claimed to demonstrate the efficiency and 

robustness of batch-training dynamic ANN-based AVC mechanism. 

 

    Figure 2-13: Direct inverse control of a plant in [24] 

2.5.2 On-Line-Training Dynamic ANN-Based AVC 

There has been an intensive interest in on-line-training dynamic ANN-base AVC 

since the idea of using ANN for nonlinear feedforward control problems was first 

proposed by K. S. Narendra and K. Parthasarathy ([7, 17-18, 21]). The commonly used 

feedforward AVC arrangements are similar to the one shown in Figure 2-14. “ANN 1” is 

a neural network controller and “ANN 2” is a neural network model of the plant. 

Reference signals are sent to “ANN 1”. Tapped delay lines are always used as the input 

layer in feedforward neural networks. Tapped delay lines yield time-step delayed 

versions of the input signal, and thereby built short-term memories into systems. This 

feature transforms a static network into a dynamic network whose output is a function of 

time (as discussed in section 2.4.7). Transfer function models utilize tapped delay lines 
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to enable the modeling of the explicit system time delays to maintain causality within the 

control scheme (as discussed in section 2.2.1).  

The reference signals are used by “ANN 1” (neural network controller) to derive 

a set of control signals. Each control signal is modified by some system dependent 

cancellation path transfer function, i.e., “ANN 2” (plant model), before sent to the plant 

through actuators. Each error signal is then the sum of the primary and control 

components (superposition of the signals in the plant environment) and measured by a 

sensor. The error signals are then used by the neural networks for weight adjusting. 

The training of “ANN 2” can be done with classical neural networks algorithms, 

including backpropagation algorithms (with or without momentum), nonlinear 

optimization algorithms (quasi-Newton algorithms, conjugate gradient algorithms) or 

nonlinear identification techniques (nonlinear extended Kalman filtering or 

recursive-least-squares algorithms). A review of these algorithms can be found in [18]. 

The training of “ANN 1” can not be done with those classical algorithms, because of the 

tapped delay lines between the two neural networks. For this kind of on-line-training 

dynamic ANN-based AVC, finding the effective algorithms to train “ANN 1” has been a 

focus of many researches. The combination of multilayer feedforword neural networks 

adapted using some extensions of the standard gradient descent algorithm, together with 

the developments of those modified algorithms, can be found in the literature. 

 

Figure 2-14: Commonly used feedforward active control arrangement 
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One example of such a kind of on-line-training dynamic ANN-based AVC is 

shown in [7], in which two multilayer feedforword neural networks, each having a 

tapped delay line, are used; a modified gradient descent backpropagation algorithm for 

adapting the feedforward neural network which has a tapped delay line is developed, and 

the performance characteristics are assessed experimentally.  

Figure 2-15 represents the two multilayer feedforword neural networks used in 

[7].  Figure 2-15 (a) is an ANN feedforward controller, i.e. “ANN 1” in Figure 2-14; 

and Figure 2-15 (b) is an ANN model of the cancellation path transfer function, i.e. 

“ANN 2” in Figure 2-14. In [7], the control achieved by using a 6x6x1 “ANN 1” (6 

inputs, six nonlinear hidden layer nodes, and one linear output node), together with a 6x1 

“ANN 2” (six inputs and one linear output node). 

As discussed before, in applications of on-line-training dynamic ANN-based 

AVC, in order to derive an algorithm which will facilitate stable adaptation of an 

ANN-based feedforward active control system, the plant model is used to incorporate the 

frequency response characteristics of the control actuator and error sensor, as well as the 

response characteristics of the structural system which separates them, including delays 

due to the finite distance between the source and the sensor. In [7], this plant model is 

modeled as a second neural network, the input of which is the control signals, )(0 kx , 

and the output of which is the feedforward control signals, )(ks , measured at the output 

of the error sensor. A reference input sample at time k, )(kxin , which is in some way 

related to (but not necessarily linearly correlated with) in impending primary disturbance, 

)(kp , is used to derive the set of control signals, )(0 kx . Each error signal is then the 

sum (superposition) of the primary and control components [7]: 

)()()( kskpke jjj +=                 (2-21) 

The error criterion that the controller is to minimize is the sum of the mean square value 
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The gradient estimate used in the adaptive algorithm is [7]: 

∑
−

= ∂
∂

≈Δ
1

0

2 )(eN

n

n

w
kew                   (2-24) 

The impediment to utilizing the standard backpropagation algorithm for 

adapting the controller neural network is the inclusion of the tapped delay line input to 

the transfer function model. The standard backpropagation algorithm cannot be used 

directly in this arrangement since it must backpropagate through a tapped delay line. 

Therefore, the standard gradient descent backpropagation algorithm must be modified to 

enable adaptation of the neural controller for use in feedforward control systems. In [7], 

steepest descent algorithms based on the filtered-x approach were introduced for the 

training of the controller network. In order to derive a modified algorithm, the error 

signals can first be backpropagated from the transfer function model output to the tapped 

delay line if the transfer function model input uses the standard algorithm [7]. The 

outcome shows that it is in fact past and present versions of the nodal outputs which are 

used in updating the controller network weights, and not past and present values of the 

error signals (see [7] for details of the algorithm development). 

One point should be stressed here is that the neural network controller and the 

cancellation path transfer function neural network are inherently different in their 

function, so they must be adapted separately [7]. Once converged, the cancellation path 

transfer function neural network is then simply used as a tool to facilitate stable 

adaptation of the neural network controller and is not modified itself in this process. The 

neural network controller is a “phase inverse” model, whose error signal is defined as the 

sum of its output and the signal whose inverse signal is desired (the superposition of the 

control signal and the primary disturbance in the structural domain); while the 

cancellation path transfer function neural network is a model, whose error signal is based 

on the difference between its output and some desired signal (the system response 
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measured at the error senor output to the control signal input) [7]. 

For this kind of on-line-training dynamic ANN-based AVC, finding the effective 

algorithms to train the ANN controller has been a focus of many researches. For 

example, in [17], an adjoint approach is introduced; and in [18], a heuristic procedure is 

introduced for the development of recursive-least-squares algorithms based on the 

filtered-x and the adjoint gradient approaches, which leads to the development of new 

recursive-least-squares algorithms for the training of the ANN controller. 

 

2.6 Real-Time Concepts for Dynamic ANN-Based AVC 

The following real-time concepts are very important for dynamic ANN-based 

AVC experimental implementation. 

2.6.1 Real-Time Performance 

The most common misconception associated with real-time performance is that it 

increases the execution speed of a program. While this is true in some cases, it actually 

enhances the application by providing more precise and predictable timing 

characteristics. With these enhancements, the exact time when certain events will occur 

can be determined [26]. Real-time performance can be achieved through either hardware 

or software. 

2.6.2 Real-Time Operating Systems 

A real-time system is one in which the correctness of the computations not only 

depends upon the logical correctness of the computation, but also upon the time at which 

the result is produced. If the timing constraints of the system are not met, system failure 

is said to have occurred [27]. Microsoft Windows 2000, XP and Vista are all 

general-purpose operating systems, but they are not real-time operating systems [26]. 
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One of the main differences between real-time operating systems and general-purpose 

operating systems is the ability to guarantee a worst-case latency. On a general-purpose 

operating system, an external interrupt could be put into a queue and then serviced later 

after the operating system has finished its current operation and any other interrupts in 

the queue. On the other hand, a real-time operating system can halt its current process to 

handle an interrupt immediately. In essence, the real-time operating system guarantees 

event response within a certain interval [26]. 

2.6.3 Real-Time Control 

With real-time control, a physical system can be monitored and simulated 

continually. Real-time control applications repeatedly perform a user-defined task with a 

specified time interval separating them [26]. 

2.6.4 Real-Time Signal Processing 

Real-time signal processing has many of the same characteristics as real-time 

control. It requires deterministic time intervals between repetitive events [26]. But 

instead of calculating a response, it performs signal processing on the acquired data. In 

dynamic ANN-based AVC applications, point-by-point analysis routines provide much 

better performance. Instead of analyzing blocks of data, these routines maintain a 

memory of previous data and calculate a new output based on the history of the data and 

the current value. Hard real-time performance is necessary in these systems because 

missing input values or even acquiring these values after a small time delay destroys the 

integrity of the historical data for future calculations. 

 

2.7 Challenges in Current AVC Applications 

There are some technical challenges associated with the current AVC 
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applications. As introduced in section 2.3, adaptive filter control systems can only work 

effectively for linear vibration problems. As introduced in section 2.5, most implemented 

ANN-based control methods lead to the complexity of the control systems. 

The previous work tried to deal with these challenges. The proposed 

methodology is introduced in the following section. 

 

2.8 Previous Work in AVC  

The previous work in AVC is presented in [28]. Feedforward control strategy (as 

introduced in section 2.2.1) was utilized in the previous work of AVC design and the 

system did not have to deal with the time-delay problem directly. In a feedforward AVC 

strategy (see Figure 2-16), a controller relies on the availability of a reference signal 

correlated to the primary disturbance, i.e. x(p) in Figure 2-16. This signal is passed 

through the controller. And then, the output of the controller, i.e. x(u), is applied to the 

plant by a secondary source, i.e. Actuator in Figure 2-16. The plant output, i.e. Y in 

Figure 2-16, is the vibration response of the plant measured at some point. 

     

   Figure 2-16: Feedforward AVC strategy in previous work 

An ANN was used as the main part of the controller in the previous work. The 

ANN was used for identification of the system, i.e. as a system model. The system 

model was trained off-line using the system inputs as inputs and the measured vibration 
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responses of the plant at some point of interest as the output. The input signal of the 

plant was also the reference signal to the controller as shown in Figure 2-16. 

Figure 2-17 shows the training process of the ANN model, where x(p) represents 

the primary inputs to the plant, x(u) represents the control inputs to the system and Y is 

the vibration response of the plant measured at some point of interest, which also is the 

expected output of the ANN model. The error, i.e. e, was the difference between the 

measured plant output values, i.e. Y, and predicted values of the ANN model, i.e. Y´. 

The error was backpropagated to train the ANN model. After training the ANN model, 

the model was used in the controller for AVC of the plant. 

 

Figure 2-17: Training of the ANN model in previous work 

To make the AVC system simple to implement, in the previous work, the 

controller was a static ANN controller, which included two main parts (see Figure 2-18). 

The first part was the trained ANN model. The second part was a minimization module 

which generated random control inputs x(u)´ to the ANN model and found the minimum 

ANN model output value. Literally, the controller worked in this way: for given primary 

inputs to the plant, i.e. x(p), the ANN controller generated random control inputs x(u)´; 

the combination of x(p) and x(u)´ were sent to the ANN model as inputs; for each 

combination of x(p) and x(u)´, an output, i.e. y´, was obtained and sent to the 

minimization module; the minimization module found the minimum ANN model output, 

i.e. Y′min, based on the given primary input to the plant and sent the corresponding signal, 
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i.e. x(u)´, to the plant as control signal, i.e. x(u). 

   

          Figure 2-18: Static ANN-based AVC methodology in previous work 

The inputs of the ANN included the primary inputs to the plant, i.e. x(p), and the 

control inputs to the system, i.e. x(u). The output of the ANN model was the vibration 

responses of the plant measured at some point of interest, i.e. Y.  The training data, i.e. 

x(p), x(u) and Y, were obtained by experiments.  

To get a robust neural network model, which means a model affected minimally 

by external sources of variability, the experiments need to be designed first. In the 

previous work, the fractional factorial design [59] was used for the design of 

experiments to obtain training data for the ANN model.  

The minimization module in the ANN controller used simulated annealing and 

resilient propagation algorithms. 

 

2.9 Machining Chatter Suppression 

In the chatter control area, many papers concentrate on chatter control while 
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some focus on chatter detection. This research will comprise both parts but focus on 

chatter control. Therefore, both chatter detection and suppression methods, together with 

regenerative chatter mechanisms, will be reviewed in this section. 

2.9.1 Regenerative Chatter 

The mechanisms that cause regenerative chatter are called “Regeneration of 

Waviness”. Tobias [31] was the first to identify the mechanisms known as regeneration. 

Figure 2-19 shows a two-dimensional metal cutting in turning. Although in many papers 

nowadays the turning process is described as two-degree-of-freedom systems (early 

investigated by Salje [32]), for the sake of simplification, in this figure the dynamic 

model of the turning tool is assumed to be a single-degree-of-freedom lumped parameter 

system whose stiffness and mass are the effective stiffness and mass of the turning tool 

reduced to the point of attachment of the cutting insert. The flexible tool engages the 

workpiece and, due to the cutting force, begins vibrating. This vibration is imprinted on 

the machined surface to leave a specific “wavy” surface on the workpiece. This wavy 

surface varies the instantaneous chip thickness which, in turn, modulates the cutting 

force and the cutter vibration (i.e., a feedback mechanism is produced that can lead to 

self-excited vibrations, or chatter) [33]. Depending on the relationship between the wavy 

surface left by the previous tooth and the current cutter vibration, the resulting 

deflections and forces can grow very large (chatter) or diminish (stable cutting) [33]. 

 

Figure 2-19: Chip thickness variation due to cutter vibrations [33] 
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An example of a stable turning operation is shown in Figure 2-20, where the tool 

vibrations are in phase with the surface left in the previous revolution. This leads to very 

little variation in the instantaneous chip thickness and, therefore, a stable cut even 

though the tool is vibrating. If the new cut leads to a chip with variable chip thickness 

(i.e. waves are out of phase), this would translate as variable forces on the cutting edge 

and eventually as vibration, i.e., regenerative chatter [33]. 

Favorable spindle speeds and chip widths can be selected to avoid chatter by 

using stability lobe diagrams, provided the system dynamics have been characterized 

beforehand. A typical stability lobe diagram example shown in Figure 2-21 is a plot that 

separates unstable combinations of chip width and spindle speed (i.e., those that produce 

chatter) from stable combinations [33]. Stable cuts occur in the region below the stability 

boundary (or combination of all the stability “lobes”), while unstable cuts occur above 

the stability boundary. 

It is often possible to increase the allowable chip width without chatter by 

increasing the spindle speed, rather than slowing down. This counterintuitive behavior is 

one reason that is important to characterize the dynamic response of the cutting tool and 

produce the corresponding stability lobe diagram [33]. 

      

Figure 2-20: Tool vibrations are in phase with previously cut surface [33] 

Upon closer observation of the Stability Lobes, it is evident that maintaining a 

chip width below the blimit will always yield a stable cutting region. The value of blimit 

depends on the dynamic characteristics of the structure, the work piece material, cutting 
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speed and feed, and the geometry of the tool [34]. 

 

               Figure 2-21: Example stability lobe diagram [33] 

It is widely known that machining chatter signals have harmonic shapes [32], and 

their frequencies are around the respective natural frequencies of the machining systems 

[32]. As observed by experimental results of many papers, such as [32] and [35], the 

frequency of a regenerative chatter is around the first natural frequency of the machining 

system and in most cases slightly lower than the natural frequency. 

2.9.2 Chatter Detection 

Over the years, various techniques for on-line detection of chatter have been 

studied to detect chatter rapidly and accurately. In the frequency domain, some studies 

have focused on setting up a proper threshold value for the power spectrum of measured 

dynamic force, sound, acceleration or displacement to detect chatter occurrence [36]. 

The difficulty in determining suitable threshold values has led to artificial neural 

network-based techniques (e.g., [37]), multi-sensor based techniques (e.g., [38]) or the 

combination of both (e.g., [39]). In the transition of cutting dynamics domain, [40] 

proposed that the cutting process contained chaotic dynamics and utilized the premise in 

chatter detection using coarse-grained entropy rate, based on a transition from high 

dimensional to low dimensional dynamics of cutting at the onset of chatter; [41] and [36] 

applied the maximum likelihood (ML) algorithm to estimation of fractal dimension 

using wavelets. 
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However, some methods mentioned above are not suitable for the current 

research objective. In the frequency domain, although ANNs are a potentially powerful 

tool for classification owing to their ability to represent complex patterns by learning, the 

successful application of an ANN is strongly dependent on the proper selection of the 

type of network structure as well as the adequacy of the training data, which are not 

always available for the constantly changing machining environment, such as the 

machining of super alloys in small batches. In the transition of cutting dynamics domain, 

calculations are always complicated and sometimes are not suitable for on-line 

application. 

2.9.3 Chatter Suppression 

Generally, chatter suppression methods fall into two categories, passive and 

active methods. 

2.9.3.1 Passive Methods 

Passive control, compared with active control, exhibits the advantages of easy 

implementation, low cost, and no need for external energy. More importantly, passive 

control methods never drive the controlled system to instability, while the active control 

methods might [5]. 

Passive methods include enhancing the system’s dynamic stiffness and damping, 

elimination of additional energy sources, eliminating or decreasing input forces and 

isolation from external disturbances [5]. Usually passive chatter suppression methods 

include using energy absorbing dampers to consume the energy input (such as using 

damping treatment on a workshop floor), changing the cutting conditions to reduce the 

energy input or by changing the cutting conditions to reduce chatter energy generated 

during the machining process (e.g., detecting and calculating chatter “stability lobes” and 

then adjusting the process parameters, such as speed and feed, to produce a stable cut, as 
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utilized in many papers),  increasing of the rigidity of the machine tool structure by 

redesigning or through the use of dampers [43], changed tool geometry, variation of 

directional factors, etc. (e.g., modifications were made to the tool holders for adding 

dynamic stiffness and damping in [42]). Based on the dynamics of stability lobe 

diagrams, some tunable stiffness, damping [44] or vibration absorber [49], spindle speed 

variation [45] and spindle speed selection [46] strategies have been proposed for 

regenerative chatter suppression. Also, In the case of conventional cutting, chatter is 

very sensitive to the tool geometry, such as the rake angle and the clearance angle [47] 

[48]. 

The use of passive vibration control methods is restricted because of small 

effectiveness in the range of low frequencies, sensitivity-dependent on application 

conditions, lack of robustness, reduction of efficiency, increased size and weight, etc. 

Damping refers to mechanical energy dissipation that is converted to heat [5], so it may 

cause the decrease of general working efficiency in machining. The ideal device should 

run with minimal damping values. On the other hand, because of sensitivity-dependent 

on application conditions and lack of robustness, passive methods suffer from the fact 

that when the machine tool-workpiece configuration changes, the machines have to be 

retuned. However, an online or self-tuning is difficult to achieve with passive methods. 

All these lead to active control consideration. 

2.9.3.2 Active Methods 

Active methods work by providing an additional energy supply to vibration 

systems. The additional energy supply can produce forces that compensate the forces 

that account for chatters. As mentioned, active methods can overcome the limitations 

discussed before. In this section, some recent examples of active chatter control will be 

introduced. 

Active vibration control is typically achieved by incorporating sensor and 
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actuator pairs in the structural design to modify the response via feedback control [35]. 

Once active elements are incorporated into the structure, any type of feedback control 

may be used. The experimental setup of [35] (as shown in Figure 2-22) for a boring 

chatter suppression is the nearest to the experimental setup that will be utilized in this 

research. 

    

     Figure 2-22: Location of the actuators and sensors along the boring bar [35] 

In [50], a method based on a variable-stiffness boring bar containing an 

electrorheological (ER) fluid is utilized to suppress chatter in boring. ER fluids undergo 

a phase change when subjected to an external electrical field, the deformation modes of 

which are dependent on applied electrical field strength and strain amplitude. This 

phenomenon permits the global stiffness and energy-dissipation properties of the bar to 
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be tuned on line by varying the electrical field strength for chatter suppression. 

The chatter suppression method is based on the application of active dampers to a 

slender boring bar in [51]. Chatter vibration signals detected by a sensor are fed to a 

computer. After calculating the chatter frequency and the corresponding phase shift 

parameter, the computer supplies the amplified signals to piezoelectric actuators with the 

same phase as that of the vibration velocity of the boring bar. As a result of this, the 

actuators generate damping forces; that is, they act as active dampers. The experimental 

setup of [51] (as shown in Figure 2-23) can get more working range for the boring bar 

than [35]’s, so it deserves a closer scrutiny in the future. In this setup, eight piezoelectric 

actuators are attached to the boring bar as the active dampers. 

           

 Figure 2-23: Boring bar with active dampers [51] 

A unique boring bar system has been developed in [52]. The system consists of 

three principle subsystems: active clamp (tool holder), instrumented boring bar and 

control electronics. The active clamp is a lathe-mountable body capable of supporting 

bars of varying sizes and articulating them in orthogonal directions from the base of bar 

shank. The instrumented bar consists of a steel shank, standard insert head and imbedded 

accelerometers. Wire harnesses from both the bar and the clamp connect to control 

electronics comprised of amplifiers, a PC-based program manager and two digital signal 

processing boards. All real-time signal processing is based on the principles of adaptive 

filter minimization. The active clamp design of [52] can also provide more working 

range for the boring bar and be able to support bars of varying size, but it is complicated 

and delicate. 
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CHAPTER 3 

METHODOLOGY OF AVC 

 

As stated previously, the first part of the objective of this research is to develop 

an effective adaptable real-time online AVC system to detect and suppress the noisy 

sinusoidal vibration of a cantilever beam. Because of their many advantages, artificial 

neural networks (ANNs) are used to fulfill these requirements. The methodology to be 

introduced in this chapter does not utilize a reference signal correlated to the primary 

disturbance and as such is different from previous work [28], which utilized feedforward 

control strategy. The rationale is that a suitable reference signal is not always available 

and a robust AVC system should be able to monitor its effect on the system it is 

controlling and compensate for unexpected changes. Therefore, feedback control 

strategy is utilized in the current work. As a consequence, the vibration signal needs to 

be detected in the current work. 

The general idea of the AVC methodology in the current work is based on 

Fourier theory. Fourier theory states that any signal, in the current case vibration signals, 

can be expressed as a sum of a series of sinusoids. If a vibration control system can 

detect the sinusoid with the highest power and control this sinusoid in one control cycle, 

and repeat the control cycle to control the sinusoid with the next highest power, then, 

after enough control cycles, most of the original vibration should be controlled. 

Therefore, the general methodology is divided into vibration detection, which detects 

sinusoid parameters, and vibration control, which sends out an accumulated control 

signal to control vibration sinusoids detected in different control cycles. 

The vibration detection methods and the AVC strategy used in the current work 

will be presented. The resilient propagation algorithms used in the AVC system will also 



 48  

be introduced. 

 

3.1  Vibration Detection 

As mentioned at the beginning of this chapter, vibration detection is to detect 

sinusoid parameters because the general methodology in the current work is based on 

Fourier theory, which states that any signal can be expressed as a sum of a series of 

sinusoids. A summary of different methods for detecting sinusoid vibration parameters 

can be found in [53]. Classical methods include the maximization of periodogram (MP) 

and the minimization of the sum of squared error by non-linear least squares (NLS) 

regression. In [54], an algebraic approach is proposed for the fast and reliable, on line, 

identification of the amplitude, frequency and phase parameters in unknown noisy 

sinusoidal signals.  

Generally, the algebraic method uses the algebraic derivative method in the 

frequency domain yielding exact formulae, when placed in the time domain, for the 

unknown parameters. Considering an uncertain sinusoidal signal of the form: 

KtAtx ++= )sin()( φω                      (3-1) 

where A is the unknown amplitude, ω is the unknown frequency, φ is the unknown phase, 

and K is an unknown constant bias perturbation term, the Laplace transform of this signal 

is given by [54]: 
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where s is the complex frequency. After some differentiations, integrations, and integral 

convolutions as shown in [54], the unknown A,ω , and φ can be obtained. If used with 

appropriate filters, the algebraic method can deal with noise very well. 

Since the algebraic approach is fast (can be performed in a quite small time 

interval which is only a small fraction of the first full cycle of the measured sinusoid 

signal), robust with respect to signal measurement noises and able to do the computation 

of amplitudes, frequencies and phases of a linear combination of sinusoids [54], it can be 

utilized in the current work. To get more accurate parameters, especially for frequency, 

the outcomes of the algebraic approach can be applied to classic methods, which require 

extremely precise initial values to ensure convergence. 

 

3.2  The General Vibration Control Strategy 

The general proposed AVC strategy utilized in the current work is shown in Figure 

3-1 [30]. In this strategy, a vibration suppression module relies on the availability of 

detected vibration parameters from the vibration detection module to generate control 

signals, i.e., x(u), which are applied to the plant by secondary sources, i.e., actuators, to 

suppress the vibration. In Figure 3-1, x(p) represents the primary disturbance. The plant 
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output, i.e., Y in Figure 3-1, is the vibration response of the plant measured at the location 

of interest. 

      

Figure 3-1: The general AVC strategy 

In this strategy, the following relation exists: 

)),(),(( tuxpxFY =                             (3-3) 

The vibration suppression module’s task is to synthesize x(u) such that it 

minimizes Y. If a comprehensive, differentiable physical model of plant is available, the 

control signal to the actuator, i.e., x(u), could be determined through an optimization 

method in order to minimize Y. One such optimization method is steepest decent, where: 

k
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−=+ α                           (3-4) 

Here k

k

ux
Y

)(∂
∂  is the gradient of the dynamic model of the plant Y; x(u)k  and x(u)k+1  are 

the values of the control signal in the k and k+1 iterations respectively; and α is the size of 

the steps in the direction of minimization.  
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The calculation of the gradient requires the availability of a differentiable physical 

model. However, comprehensive, differentiable physical models of complex systems 

usually do not exist. In this case, using artificial neural networks (ANN) in the chatter 

suppression module is a good choice because ANNs are known for their function 

approximation capability. As introduced before, properly designed and trained neural 

networks are capable of approximating any linear or nonlinear function to the desired 

degree of accuracy and they are noise tolerant. 

In this work, a vibration suppression module is used to generate a control signal to 

suppress the original vibration at the location of interest. The ideal generated control 

vibration should have the same amplitude and frequency of the original one at that 

location but with a 180-degree phase difference in dominant vibration frequencies. 

 

3.3  Vibration Control Subsystem Design 

The vibration control module is the most critical part of this control system. Figure 

3-2 shows some details of the proposed vibration control subsystem design. 

To generate an “opposite” vibration at the location of interest to suppress the 

original one, an ANN is utilized as an identification model of the plant based on the 

function approximation capability of ANNs.  To make the proposed AVC system robust, 

the ANN model should be used for a relatively stable part of the plant. To generate control 



 52  

signals, the ANN model should work as an inverse model, which means the inputs of the 

ANN model are actually the outputs of the plant, i.e., the parameters of the vibration signal, 

which include amplitude (AI), frequency (FI) and phase (PI), while the outputs of the 

ANN are the parameters of the control signal, which include amplitude (AO), frequency 

(FO) and phase (PO). 

         

          Figure 3-2: Some details of the vibration control module 

Time delay in AVC is very critical. To satisfy causality of different iterations, the 

time delay between the iteration to collect vibration signal parameters and the iteration to 

send out control signal should be considered to get the actual phase input ( IP ′) to the 

ANN. 

Real-time digital signal processing provides precise and predictable timing 

characteristics. Because of the deterministic property of a real-time system, the accuracy 

of running time of a control iteration, or a while loop, can be expected. In the current work, 
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if the running time for each iteration is t, considering the time delay of one control iteration 

and the 180-degree phase difference, the actual phase input ( IP ′  in Figure 3-2) of the 

ANN model should be, 

360))int((180 ××−×++=′ tFItFIPIIP              (3-5) 

 

3.4  Design of the Inverse ANN Model 

As mentioned before, in the proposed AVC system, the ANN is used for function 

approximation and works as an inverse identification model of a relatively stable part of 

the plant. The design of the ANN model is based on the applied AVC strategy and the 

actual experimental setup. Generally, design steps are as follows: First, training data for 

the ANN models are collected via experiments according to the AVC strategy presented 

in previous sections. Then, the training data are analyzed in order to choose a proper 

normalization method. The general network architectures of the ANN models are then 

designed and the suitable learning algorithm is chosen. Finally, the ANN models are 

trained to avoid overfitting. The network architectures may be modified for better 

function approximation based on experimental results.  

An ANN model example based on the proposed vibration suppression subsystem 

design is shown in Figure 3-3. In this example, a multilayer feedforward ANN is utilized. 
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The ANN architecture used here has three inputs, one hidden layer of log-sigmoid neurons 

and one output layer of three log-sigmoid neurons.  

The ideal control signal frequency (FO) should be the same as vibration frequency 

(FI) [29]. Moreover, the input PI can be cancelled if the phase difference (PD) between 

the control signal and the vibration signal is utilized (PD = PI-PO). In this case, the ANN 

can be simplified as shown in Figure 3-4. In the detailed design, the number of hidden 

layers and the number of neurons in each hidden layers are decided by finding out what the 

best numbers are to obtain the smallest mean square error (MSE) for validation data sets. 

 

      

        Figure 3-3: ANN model example 

In experiments to collect training data for the ANN models, only the control actuator 

is utilized to generate the plant vibration, i.e., the primary disturbance x(p) =0. Therefore, 

the inputs of the ANN are AI and FO (FI should be the same as FO). To get a robust 

training, which means a training affected minimally by external sources of variability, the 

experiments to collect training data need to be designed first. In this work, the fractional 
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factorial design [59] is used for the design of experiments to obtain the training data for the 

ANN models as shown in [29]. 

           

                     Figure 3-4: Simplified ANN model 

Considering the time delay between the iteration to collect vibration signal 

parameters and the iteration to send out control signal, the phase of the control signal 

should be: 

PDIPPO −′=                           (3-6) 

where IP ′  can be calculated from equation (3-5), in which PI is known from 

experiments. 

 

3.5  Resilient Propagation 

In the current work, Resilient Backpropagation is used as the training algorithm 

for the ANN model because, although it is not the fastest one, theoretically, it can also 

help to reduce squashing effect of the magnitudes of partial derivatives. 

Resilient propagation (RPROP) performs a local adaptation of the weight updates 

according to the behavior of the error function [55]. Only the sign of the derivative is 

used to determine the direction of the weight update; the magnitude of the derivative has 

no effect on the weight update. The size of the weight change is determined by a 
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separate update-value, ijΔ . The update-value for each weight and bias is increased by 

calculated factors. The adaptive update-value, i.e., ijΔ , evolves during the learning 

process based on its local sight on the error function E according to the following 

learning rule [55]: 
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where +− <<< ηη 10 , and ijw  is the weight from neuron j to neuron i. 

Described in words, the adaptation rule works as follows [55]: every time the 

partial derivative of the corresponding weight ijw  with respect to E changes its sign, 

which indicates that the last update was too big and the algorithm has jumped over a 

local minimum, the update-value is decreased by the factor −η . If the derivative retains 

its sign, the update-value is slightly increased by factor +η  in order to accelerate 

convergence in shallow regions [55]. 

Once the update-value for each weight is adapted, the weight-update itself 

follows a very simple rule: if the derivative is positive (increasing error), the weight is 

decreased by its update-value; if the derivative is negative, the update-value is added 

[55]: 
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However, there is one exception: if the partial derivative changes sign, i.e., the 

previous step was too large and the minimum was missed, the previous weight-update is 

reverted [55]: 
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Due to that “backtracking” weight-step, the derivative is supposed to change its 

sign once again in the following step. In order to avoid a double punishment of the 

update-value, there should be no adaptation of the update-value in the succeeding step. 

 

 

 

 

 

 

 



 58  

CHAPTER 4 

EXPERIMENTAL SETUP OF AVC 

 

The methodology presented in Chapter 3 was evaluated experimentally through 

active vibration control (AVC) of a cantilever beam. The experimental setup is described 

in this chapter. 

 

4.1 Hardware Setup 

Figure 4-1 shows the top view of the hardware setup developed for the 

experiments. The beam is made of plain carbon steel and has the dimensions: 550 mm x 

25 mm x 4.5 mm. Two electromagnetic shakers are used to provide the primary 

disturbance force (shaker 1) and the control force (shaker 2) to the beam. These shakers 

are located at 145 mm and 373 mm from the clamped end, on each side of the beam, 

respectively. Since the shakers have significant mass, and mass loading will lower the 

apparent measured frequency (
m
k

=ω ), to minimize the effect of the shakers on the 

structure, the shakers are attached to the beam through stingers. The stingers serve to 

isolate the shakers from the structure, reduce the added mass, and cause the force to be 

transmitted axially along the stingers. The primary shaker is attached to the beam firmly; 

but the control shaker simply pushes up against the beam. The resulting preload is used 

to maintain contact between the control shaker and the beam. The objective is to 

minimize the vibration of the beam at the proximity sensor location, which is 498 mm 

from the clamped end of the beam. 
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       Figure 4-1: Hardware setup for implementing AVC design 

Two computers are used in the system because LabVIEW Real-Time Developing 

System of National Instruments is used as the main developing software in this project. 

One computer works as a Dedicated Real-Time Target, which integrate the DAQ board 

for analog, digital, counter/timer, and vibration signals. Programs are developed on a 

Windows XP host computer and downloaded to the real-time target via Ethernet. 

Moreover, some time-consuming applications, such as graphing and data recording, are 

implemented on the host computer instead of the target computer. The target computer 

runs a single-kernel RTOS (Real-Time Operating System) for maximum reliability. 

The data acquisition (DAQ) board has four 12-bit analog inputs with a maximum 

sampling rate of 5 Mega-Sample (MS)/s. It also provides two 16-bit analog outputs with 

a maximum update rate of 2.5 MS/s (see Appendix A for the DAQ board specifications). 

Figure 4-2 is a sketch of the experimental hardware setup, which shows some functions 

of the DAQ board. Two analog outputs, i.e., “AO 1” and “AO 2”, and one analog input, 

i.e., “AI”, are used in the experiments. 
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Figure 4-2: Schematic diagram of experimental setup 

 

          Figure 4-3: Photograph of the experimental hardware setup 
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The vibration is measured using an inductive proximity sensor (see Appendix B 

for sensor specifications). The two electromagnetic shakers are driven by two 40W 

amplifiers. Figure 4-3 shows the photograph of the experimental setup as described. 

 

4.2 Software Environment 

In this work, the operation system on the host computer was Microsoft Windows 

XP and LabVIEW Real-Time version 8.5.1 on the target computer. LabVIEW 

Real-Time version 8.5.1 is used for measurement, signal processing and the development 

of user interfaces. MATLAB 2008 is used for neural network design, implementation, 

visualization and simulation, as well as data analysis and some graphing. Microsoft 

Visual C++ 6.0 is used for algorithm implementation and for implementing neural 

networks in the form of Dynamic Link Library (DLL) files. ANSYS 7.0 is used for the 

Finite Element Method (FEM) analysis of the beam vibration. 

Figure 4-4 shows one example of user interfaces developed in the current work. 

In this user interface, the amplitudes, frequencies and phases of the primary and control 

signals can be input by typing or turning the small nubs. The calculated control signal 

parameters, measured analog input maximum peak-peak amplitudes, an artificial neural 

network (ANN) model outputs and the elapsed time of the system are displayed 

numerically. The control, primary and analog input signals are displayed graphically. 

The two FFT graphs show the phases and magnitudes of the analog input signal. 

 

4.3 Signal Processing 

In this work, the Hanning window function is utilized for sinusoidal signals and 

the uniform window function is utilized for white noise signals to correct leakage.  
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The sampling rate can be set to up to 2 MS/s while 1000 S/s is set in some cases, 

e.g., measuring natural frequencies. High sampling rate is good for fast FFT calculation 

[26] and avoiding aliasing and improving measurement accuracy even with very a short 

sampling time, such as 25 ms. According to Shannon’s sampling theorem, to avoid 

aliasing, the signal should be sampled at a rate at least two times of the highest 

frequency in the signal [1]. As will be discussed in the following chapter, the highest 

frequency in the signals of the current work is less than 100 Hz. Therefore, the sampling 

rate is good enough to avoid aliasing and improve measurement accuracy even with a 

very short sampling time. Aliasing can also be avoided in signals containing many 

frequencies by subjecting the analog signal to an antialiasing filter [5]. 

 

 
         Figure 4-4: An example of user interfaces used in the current work 
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4.4 Bending Vibration Analysis of the Beam 

In the proposed experimental setup, the vibration of the cantilever beam in the 

direction perpendicular to its length is considered. Such vibrations are known as 

transverse or flexural vibrations. 

The cantilever beam of this experiment can be considered an Euler-Bernoulli 

beam because its length/width≥ 10 and length/thickness≥ 10 [1]. Therefore, the effects 

of shear deformation and rotary inertia are ignored in the vibration analysis.  

When the energy dissipation of the beam is taken into consideration, the damping 

ratios nζ  (the nth modal damping ratio) are chosen based on experience or on 

experimental measurements. Usually, nζ  is a small positive number between 0 and 1, 

with most common values of nζ ≤ 0.05 [5]. The damped natural frequency is: 

21 nndn ζωω −=                (4-3) 

where nω  is the undamped natural frequency.  

If the energy dissipation of the beam (see Figure 4-5) is ignored, the natural 

frequency nω  and the mode shape )(xX n  of the beam can be calculated as [5]: 

 

              Figure 4-5: A cantilever beam 

AEInn ρβω /2=                (4-4) 
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where lnβ  are called the weighted frequencies, l is the length of the beam, E is the 

Young's elastic modulus for the beam, I is the cross-sectional area moment of inertia, 

and ρ  is the density of the beam. 

From [5], the following parameters can be found: 

l1β =1.87510407; l2β =4.69409113; l3β =7.85475744; … 

1σ =0.7341;  2σ =1.0185; 3σ =0.9992; … 

For the beam used in the current work, 

l = 0.55m;  

E≈2x1011N/m2 ; [56]  

I = (1/12)(2.5x10-2)(4.5x10-3)3 ≈1.9x10-10 m4; [58] 

ρ ≈  7.84x103 Kg/m3; [57] 

A= (2.5x10-2)(4.5x10-3)=1.125x10-4m2 . 

So the first three natural frequencies can be calculated by equation 4-4 as: 

1ω ≈76.7 rad/s,  f1 = 
π
ω
2

1 ≈12.20 Hz 

2ω ≈477.3 rad/s,  f2 = 
π
ω
2

2 ≈75.96 Hz 

3ω ≈1337.1 rad/s, f3 = 
π
ω
2

3 ≈212.80 Hz 

 



 65  

The first three mode shapes are plotted in Figure 4-6. 

    

(a) Mode 1  

 

(b) Mode 2 

         Figure 4-6 (a-b): The first three mode shapes of the cantilever beam 
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          (c) Mode 3 

       Figure 4-6 (c): The first three mode shapes of the cantilever beam 

 

4.5 Natural Frequencies of the Overall System 

The method used to measure the natural frequencies of the whole experimental 

system including the beam and two shakers is via sending uniform white noise signals to 

the shakers and analyzing the corresponding Fast Fourier Transform (FFT) responses of 

the system at the sensor location, as shown in Figure 4-7. 

Uniform white noise generates a signal that contains a uniformly distributed, 

pseudorandom pattern whose values are in the range [-a: a], where a is the absolute 

value of amplitude [26]. Ideal white noise has equal power per unit bandwidth, resulting 

in a flat power spectral density across the frequency range of interest. Figure 4-8 shows 

the FFT response of the system output when uniform white noise (a = 0.01V) is sent to 

the primary shaker alone; to the control shaker alone; and to both shakers respectively. 

There is almost no jitter for the spectra of (a); but there are many jitters for the spectra of 
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(b) and some jitters for the spectra of (c). However, the graphs show that the first natural 

frequency is around 34 Hz and the second natural frequency is around 130 Hz. Because 

of spectral leakage, 34 Hz and 130 Hz are approximate values of the first and second 

natural frequencies. 

         

          Figure 4-7: Interface of system natural frequency measurement 

The main reason for the complex behavior of the system is the control shaker 

(actuator). The control shaker makes the FFT spectra of the system output jitter, because 

it is not firmly attached to the beam. It simply pushes up against the beam (see section 

4.1). When the amplitude of vibration of the beam is large, the control shaker may lose 

contact with the beam, and therefore makes the system more complicated by introducing 

nonlinearity. 

To test the efficiency of this natural frequency detection system, a magnet of 145 

grams was attached to the beam at 280 cm and 518 cm from the clamped end of the 

beam separately. After running the program, the new first natural frequencies changed to 

32Hz and 25 Hz respectively, as shown in Figure 4-9. 
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(a) Uniform white noise (a = 0.01V) is sent to the primary shaker only 

            

(b) Uniform white noise (a = 0.01V) is sent to the control shaker only 

             

           (c) Uniform white noise (a = 0.01V) is sent to both shakers 

          Figure 4-8: Measuring the system natural frequencies via experiments 
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     Figure 4-9: First natural frequency measurement outcomes 

 

4.6 Introducing Nonlinearity to the System 

For the purpose of testing performance of the system for nonlinear control 

problems, nonlinearity is introduced into the experimental arrangement. This can be 

done in two different ways (see Figure 4-10) in the experimental setup. The first way is 

by not attaching the control source shaker to the beam, but simply pushing it up against 

the beam. The resulting preload is used to maintain contact between it and the beam. By 

increasing the driving force of the primary disturbance, the control shaker must also 

drive harder to suppress the primary disturbance, which in this case will cause the 

control shaker to rattle as it loses the contact with the beam, and therefore will make the 
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resultant error signal spectrum “noisier”. 

 

                    Figure 4-10: Two ways to introduce nonlinearity 

The effect of the first way is shown by the two graphs in Figure 4-11, which are 

produced when a sinusoidal signal (50Hz) is sent to the control shaker only. When the 

control shaker is driven soft (0.005V), the resultant error signal spectrum is very clean, 

as shown in Figure 4-11 (a). Only the 50Hz peak (magnitude > 0.046) is evident, and all 

the other peaks are too small (magnitudes < 0.002) to be compared with this one. The 

small 60Hz peak is due to electrical noise, the small 100Hz peak is the first harmonic of 

50Hz signal and the small 120Hz peak is the first harmonic of the electrical noise. 

However, when the control shaker is driven harder (0.1V), the resultant error signal 

spectrum becomes “noisier” with the comparable harmonics of the signal, as shown in 

Figure 4-11 (b).  

The second way for introducing nonlinearity is by bandpass filtering the analog 

input signal from the sensor to provide a slight bias to the higher frequency harmonics, 

e.g., 100 Hz, thus exaggerating the relative importance of the harmonics in the spectrum. 
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  (a) driven soft (a = 0.005V)       (b) driven hard (a = 0.1V) 

  Figure 4-11: Spectrum comparison between driving the control shaker soft and hard 

  

 

 

 

 

 

 

 

 

 

 



 72  

CHAPTER 5 

EXPERIMENTAL IMPLEMENTATION OF AVC 

 

5.1 AVC System Design 

Based on the methodology and the experimental setup, the designed AVC system 

to generate a control signal is shown in Figure 5-1. This control system can modify the 

control signal online in every control cycle (one control cycle could include one or more 

than one control iterations) in the following way: 

1. The system can repeat all calculations in one control iteration and generate a 

current control signal (e.g., with parameters of FO, AO, and PO) based on the detected 

vibration situation (e.g., FI, AI, and PI) of this current iteration; 

2. As shown in Equation (5-1), the current control signal is added to the accumulated 

control signal, i.e., (control signal)n of the nth control cycle, which is a combination of all 

previous continuous control signals, to get an updated control signal, i.e., (control 

signal)n+1, in the Signal Combination module (the control signal of the first control cycle is 

zero); 

(control signal)n+1 = (control signal)n +current control signal             (5-1) 

3. The new updated control signal, i.e., (control signal)n+1, is sent out to the actuator 

at the beginning of the next iteration; and 
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4. At the same time, this updated control signal becomes the “accumulated control 

signal” in the next control cycle.  

Therefore, the actual control signal sent to the actuator is an accumulation of all 

previous generated control signals, which are all continuous. One control cycle should 

include more than one control iterations to avoid unstable transient conditions after the 

modification of the actual control signal and to get more accurate measurements of 

vibration. In current work, a control cycle could be 25 ms, which means a new control 

signal could be generated as fast as in every 25 ms in the current setup. 

     

           Figure 5-1: The AVC system in current work 

The parameters of the control signal, i.e., AO, FO, and PO, can be obtained from 

ANN outputs and the equations in the previous section. The phase difference between the 
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control signal in programming and the actual control signal at the connector block is 

considered because the difference may not be the same when the system restarts. 

 

5.2 ANN Training Data 

As discussed in Chapter 3, after the control strategy is set up, the first step to 

design the ANN model is to collect training data based on the control strategy and 

experimental setup. The training data should be collected via experiments based on the 

control strategies and the experimental setup. To get a robust training, which means a 

training affected minimally by external sources of variability, the experiments to collect 

training data need to be designed first. 

Generally, experiments are used to study the performance of processes and 

systems. The process or system can be represented by the model shown in Figure 5-2. 

The process transfers some inputs into an output that has one or more observable 

responses [59]. Some of the process variables (factors) x1, x2, …, xp are controllable, 

whereas other variables z1, z2, …, zq are uncontrollable. 

  

Figure 5-2: General model of a process or system [59] 
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The objectives of the experiment may include the following: 

1. Determining which factors are most influential on the response y; 

2. Determining where to set the influential x’s so that the response y is almost 

always near the desired nominal value; 

3. Determining where to set the influential x’s so that variability in y is small; 

4. Determining where to set the influential x’s so that the effects of the 

uncontrollable variables are minimized. 

The general approach to planning and conducting the experiment is called the 

experimental design. There are several strategies that an experimenter could use, such as 

best-guess approach, one-factor-at-a-time, factorial design and fractional factorial design 

[59]. 

The fractional factorial design is a variation of basic factorial design in which 

only subsets of the runs are made and it considers the interaction among the factors [59]. 

In this project, the fractional factorial design is used for the design of experiments to 

obtain the training data for the ANN model. The objective of the experiments in the 

current work is to determine the influence of the controllable factors, i.e., control signal 

parameters, i.e., AO, FO and PO, to the response, i.e., the sensor signal parameters, i.e., 

AI, FI and PI. Therefore, there should be three controllable factors, i.e., AO, FO and PO, 

with different levels. In this case, an orthogonal array for three factors with different 

levels should be used in the experiment design. However, as introduced in section 3.4, 

by using phase difference, i.e., PD, the controllable factors can be reduced to two, which 

are AO and FO. For only two factors with different levels, the design of experiments is 

straight, which is to find all combinations of the two factors with different levels. 

The data ranges are decided by the regions of interest for each variable and 

hardware performance limitations. After some modifications to strengthen stingers of the 
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experimental setup (as shown in Figure 4-1), the first natural frequency of the system 

was found to be around 38 Hz and the second natural frequency was around 137 Hz. 

Since the frequency response ranges for the two amplifiers are 20 Hz to 30 KHz, and the 

vibration frequency range of interest is 25 Hz to 55 Hz in the current work, the 

frequency range 25 Hz to 55 Hz is used for the control signal. To find out the proper 

amplitude ranges for the signals sent to the shakers, many experiments were undertaken. 

Considering the measurement range of the sensor and the hardware setup, according to 

the results of these experiments, the peak amplitude range for the control signal sent to 

the actuator is set to from 0.002 V to 0.038 V for frequencies around the first natural 

frequency of the system and from 0.002 V to 0.1 V for other frequencies. For 

frequencies around the first natural frequency of the system, the vibration amplitude of 

the beam at the sensor location increases much faster with the increase of the control 

signal amplitude and the steel beam may hit the sensor if the control signal amplitude is 

larger than 0.038 V. The phase difference range can be set to from -180 degree to 180 

degrees.  

To reduce harmful effects, e.g., the squashing effect, of using sigmoid transfer 

functions in the hidden layer and the output layer of the ANN model, and normalization, 

the above data ranges can be divided into several sub-ranges, e.g., the original frequency 

range can be divided into three smaller sub-ranges: 25 Hz to 35 Hz, 35 Hz to 40 Hz and 

40 Hz to 55 Hz. The control signal amplitude range sent to the actuator is set to from 

0.002 V to 0.038 V for the frequency range 35 Hz to 40 Hz and from 0.002 V to 0.1 V 

for the other two frequency ranges. ANN models are trained separately for different 

sub-ranges. Moreover, Resilient Backpropagation (RPROP) algorithm is utilized to train 

ANN models because, although it is not the fastest one, theoretically, it can also help to 

reduce squashing effect of the magnitudes of partial derivatives. 
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5.3 Normalization 

The values of all the data must be normalized for efficient processing by the 

ANN (see section 2.4.5). In the current work, all the experimental input and output data 

are positive values. The data are normalized to a range of 0.1 to 0.9 by using the 

following equation: 

1.08.0
minmax

min +
−

−
∗=

xx
xxxscaled              (5-2) 

where x is the real value, scaledx  is the normalized value, minx  is the minimum value 

and maxx  is the maximum value of one input or output. 

 

5.4 ANN Architecture 

In this work, multilayer feedforward ANNs are utilized (see section 2.4.1). To 

find the suitable number of neurons in the hidden layer, many experiments have been 

done to see how many neurons in the hidden layer can provide the smallest Mean Square 

Error (MSE) for validation data sets (see section 2.4). Early stopping and Bayesian 

regularization methods are used in MATLAB to improve generalization in these 

experiments (see section 2.4.6). Test data sets are also used to compare different models.  

The best ANN architecture found via experiments for the AVC system is similar 

to the example shown in Figure 3-3. It is a multilayer feedforward ANN, which has two 

inputs (i.e., AI and FI), one hidden layer of 12 log-sigmoid neurons and one output layer 

of two log-sigmoid neurons for two outputs (i.e., AO and PD). The smallest MSE 

obtained for validation data sets of this architecture is 0.058% in the current work. The 

output layer uses a log-sigmoid transfer function because the outputs of the ANNs are 

supposed to be constrained to a range of 0 to 1 and it is a good choice in the architecture 
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for the current experiment setup [5]. This ANN architecture provided the smallest Mean 

Square Error (MSE) and has very good performance for generalization in experiments. 

For the same experimental setup, the ANN architecture did not change, but the weights 

between neurons changed for different data sub-ranges after training. 

 

5.5 Training Algorithms 

A number of different training algorithms were examined. The training speed is 

not very critical in the current work, because after the ANN is trained, it is then used as a 

part of the controller and is not modified in the control process. Moreover, when using 

early stopping to improve generalization, an algorithm that converges too rapidly should 

not be used [19]. 

Multilayer networks typically use sigmoid transfer functions in the hidden layers. 

These functions are often called "squashing" functions, since they compress an infinite 

input range into a finite output range [19]. Sigmoid functions are characterized by the 

fact that their slope must approach zero, as the input gets large. This causes a problem 

when using steepest descent to train a multilayer network with sigmoid functions, since 

the gradient can have a very small magnitude; and therefore, cause small changes in the 

weights and biases, even though the weights and biases are far from their optimal values 

[19]. In MATLAB, the resilient backpropagation training algorithm is used to eliminate 

these harmful “squashing” effects of the magnitudes of the partial derivatives. 

The resilient backpropagation training algorithm was found to be a good choice 

since it can help to reduce the harmful effects of using sigmoid transfer functions in the 

hidden layer and output layer of the ANN model.  

After the ANN model is trained, it works in the controller of the AVC system as 

shown in Figure 5-1. The performance of this AVC system has been evaluated 
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experimentally. 

 

5.6 Experimental Results 

In order to evaluate the performance of the AVC system experimentally, a noisy 

sinusoidal signal was sent to the primary shaker to generate beam vibration. The controller 

was turned on several seconds after the start of the vibration to allow steady state to 

prevail. 

All the analog input and analog output signals, and FFT (magnitude and phase) are 

displayed on user interfaces graphically only on a host computer and let the target 

computer work as a dedicated real-time system. The sampling rate for data analysis was 

200000 Hz.  

Figure 5-3 shows five examples of the beam vibration at the sensor location in the 

first 7.5 seconds. The figures are grabbed from a user interface directly. The Y-axis of 

Figure 5-3 shows amplitudes of sensor signals, which are analog inputs of the data 

acquisition system. In all the experiments, the primary shaker was driven with a primary 

noisy sinusoidal signal from the beginning. After about 2.75 seconds, a control signal was 

generated and sent to the control shaker, but with only about a fraction, e.g., around 70%, 

of the calculated amplitude to get some vibration remained for a second control signal to 

check out the adaptability of the AVC. Then, after about 1.5 seconds a new control signal 
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was generated based on the current vibration status and added to the original control signal 

sent to the control shaker. 

In Figure 5-3 (a), for the primary signal, the frequency is about 32.33Hz, the 

amplitude is about 0.038V, and the signal-to-noise ratio (S/N) is about 40; In Figure 5-3 

(b), for the primary signal, the frequency is about 38.38Hz, which is close to the first 

natural frequency, the amplitude is about 0.028V, and the S/N is about 40; In Figure 5-3 

(c), for the primary signal, the frequency is about 43.58Hz, the amplitude is about 0.070V, 

and the S/N is about 35; In Figure 5-3 (d), for the primary signal, the frequency is about 

33.07Hz, the amplitude is about 0.099V, and the S/N is about 38; In Figure 5-3 (e), for the 

primary signal, the frequency is about 28.88Hz, the amplitude is about 0.059V, and the 

S/N is about 35.  

Figure 5-3 (a) shows that the amplitude of the vibration was reduced from about 

0.58V (peak to peak) to about 0.1V, which represents about 82.7% reduction of the beam 

vibration at the sensor location; Figure 5-3 (b) shows that the amplitude of the vibration 

was reduced from about 2.88V to about 0.5V, which represents about 82.6% reduction of 

the beam vibration at the sensor location; Figure 5-3 (c) shows that the amplitude of the 

vibration was reduced from about 2V to about 0.45V, which represents about 77.5% 

reduction of the beam vibration at the sensor location; Figure 5-3 (d) shows that the 

amplitude of the vibration was reduced from about 1.8V (peak to peak) to about 0.32V, 

which represents about 82.2% reduction of the beam vibration at the sensor location; 
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Figure 5-3 (e) shows that the amplitude of the vibration was reduced from about 0.65V 

(peak to peak) to about 0.13V, which represents about 80% reduction of the beam 

vibration at the sensor location. Generally, around 80% reduction in vibration amplitudes 

can be achieved in all experimental results in this work. 

          

                                            (a)         

          

          (b) 

    

          (c) 

       Figure 5-3 (a)-(c): Beam vibration control outcome examples 
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          (d) 

     

          (e) 

            Figure 5-3 (d)-(e): Beam vibration control outcome examples 

For the same primary noisy sinusoidal signal as in the above five examples, 

without reducing the first calculated control signal amplitude, the system can get almost 

the same vibration amplitude reduction right after the first control signal. These examples 

show the online adaptive ability of the system.  

Experimental results have also shown that the designed AVC system eliminates 

the sensitivity to time delays. Some experiments have been executed by changing the 

position of the control shaker or the point of interest, i.e., the sensor location, and therefore 

changing the time delays. After each modification, an initialization program can be run to 

collect training data and train the ANN model automatically based on the new 
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experimental setup, and therefore absorbs the information of new time delays. After 

retraining, the AVC can work as well as before. For example, Figure 5-3 (a) shows a 

reduction of 82.7% in vibration amplitude when the primary vibration of the beam was at 

32.33 Hz. After moving the sensor to another location (478 mm from the clamped end of 

the beam) and retraining the ANN, the AVC system can still get a reduction around 82%. 

The experimental outcomes did not show reduction of the AVC system ability caused by 

time delay changes. Some other random changes in time delay, i.e., the position change of 

the primary shaker, do not reduce the control ability of a given AVC system, which means 

the ANN model does not need to be retrained. 

Many papers and books, e.g., [6], have already demonstrated the ability of ANN 

control systems to deal with nonlinearity because of the nature of ANNs. Although the 

ANN used in the current work is not designed for dealing with nonlinearity, the AVC 

system has proved to be able to deal with nonlinearity as long as the vibration frequency 

can be measured accurately. In the above experiments, as mentioned before, the primary 

shaker can also be simply pushed up against the beam to introduce nonlinearity into the 

experimental setup. By increasing the driving force of the primary disturbance, the 

primary shaker rattles as it loses the contact with the beam, and therefore will make the 

resultant error signal spectrum noisier. To check the ability of the AVC system in dealing 

with nonlinearity, some experiments were completed with the primary shaker pushed up 

against the beam. The results of these experiments are almost the same as the results 
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shown above. In most cases, for the same inputs, the outcome differences of the two 

different setups are within 8%. For example, when the frequency of the primary signal is 

about 45.88Hz and the amplitude is about 0.27V, a reduction of 57.9% of the beam 

vibration at the sensor location was obtained when the primary shaker was simply pushed 

up against the beam; when the primary shaker was attached to the beam, for the same 

primary signal, the reduction was around 59%. 

 

5.7 Discussion 

The experimental results show that the proposed AVC system works effectively. 

The ANN controller of the modified AVC system can reduce the root mean square (RMS) 

vibrations by about 80%. The reductions in the RMS vibrations have a very significant 

effect on the fatigue life of a structure in practical application. Generally, reducing the 

RMS vibrations by just 10% doubles the fatigue life [25]. 

By using a real-time environment, the designed AVC system was used to repeat 

the vibration detection and control loop in every 25 ms and worked very well. The system 

is real-time adaptable. The repetition of adding new control signals can also be set up at 

any specific time during online control. 

The AVC system is also robust when the experimental setup changes. When the 

setup changes, the AVC system can collect training data and train the ANN model 
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automatically via running a calibration or initialization program and then the system is 

prepared for AVC of the new setup.  

At the present time, the AVC system has proved to be able to deal with noisy 

sinusoidal vibrations. Its ability to deal with more complicated signals can be tested in the 

future. 
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CHAPTER 6 

APPLICATION TO CHATTER SUPPRESSION 

 

As mentioned previously, the objective of the current work is to develop an 

effective adaptable real-time online AVC system to detect and suppress the noisy 

sinusoidal vibration of a cantilever beam, and utilize the similar techniques in machining 

chatter control. The designed AVC system has proved to be able to deal with noisy 

sinusoidal vibrations effectively, as introduced in previous chapters. In the next few 

chapters, the methodology for design and implementation of such an active chatter 

suppression (ACS) system will be presented.  

 

6.1 Chatter Detection Methodology 

As mentioned in Chapter 2, it is widely known that machining chatter signals 

have harmonic shapes, and their frequencies are around the respective natural 

frequencies of the machining systems [32]. As observed by experimental results of many 

researchers, the frequency of a regenerative chatter is around the first natural frequency 

of the machining system and in most cases slightly lower than the natural frequency [32, 

35]. Therefore, the vibration detection techniques used in the designed AVC system can 

be utilized as a part of the chatter detection sub-system of the proposed ACS system. 

As reviewed in section 2.9.2, over the years, various techniques for on-line 

detection of chatter have been studied to detect chatter rapidly and accurately. In most 

cases, suitable threshold values need to be determined based on experimental results. 

The chatter detection sub-system should be able to decontaminate the sensor signal and 

recognize the chatter omen.   
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6.1.1 Chatter Detection Sub-System for Two Actuator/Sensor Pairs 

Considering current research objectives, the accelerations of both horizontal and 

vertical directions from the bending vibration of the cutting tool should be measured. 

Using the coherence function between the two accelerations provides a good choice 

because it is simple and yet effective [38]. This approach provides an easy way of setting 

threshold values for chatter detection because it has been found that the two 

accelerations are highly correlated at the chatter frequency, resulting in a sharp increase 

in their coherence function to a value approaching unity [38]. 

As introduced in Chapter 1, the proposed ACS system could utilize two 

actuator/sensor pairs: one pair to control motions parallel to the axis of the workpiece 

(x-direction) and the other pair to control motions in the direction tangent to the 

machined surface (y-direction). The horizontal (x-direction) & vertical (y-direction) 

accelerometers (the sensors) would be glued to the cutting tool at the location of the 

insert, i.e., the location of interest. By using two sensors, two crossed accelerations, i.e., 

horizontal and vertical accelerations, from the bending vibration of the cutting tool at the 

location of the insert will be measured.  

The proposed chatter detection sub-system is shown in Figure 6-1. There are four 

inputs of the chatter detection sub-system:    

1. Measured horizontal acceleration signal: x-signal; 

2. Measured vertical acceleration signal: y-signal; 

3. Measured first natural frequency of the tool system in the horizontal direction: fNx ; 

4. Measured first natural frequency of the tool system in the vertical direction: fNy .  

The outputs of the chatter detection sub-system include the following: 

1. Horizontally oriented chatter frequency fx  ;  
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2. Vertically oriented chatter frequency  fy ; 

3. Horizontally oriented chatter amplitude: Ax ; 

4. Vertically oriented chatter amplitude: Ay ;   

5. Horizontally oriented chatter phase: Px ;  

6. Vertically oriented chatter phase: Py . 

As shown in Figure 6-1, the measured horizontal and vertical acceleration signals, 

i.e., x-signal and y-signal, have been converted to corresponding digital signals, i.e., 

x-digital signal and y-digital signal. Then, after Digital Signal Processing (DSP), the 

value of the coherence function of x-digital signal and y-digital signal, i.e., 2
xyγ  and the 

amplitude and phase FFTs of both x-digital signal and y-digital signal can be obtained. 

The system will compare the maximum of 2
xyγ , i.e., max

2 )( xyγ , in the whole frequency 

range, with a threshold, e.g., T (based on experimental results, T should be close to 

unity), in each control iteration, as shown in Figure 6-1. If max
2 )( xyγ  is bigger than the 

threshold, which means that 1)( max
2 ≈xyγ , the system will find out the corresponding 

frequency of the max
2 )( xyγ  value, i.e., fm. 

The range of the chatter frequency is estimated by using the measured first 

natural frequencies of the tool system in the horizontal and vertical directions, i.e., fNx 

and fNy. In Figure 6-1, the range is (fmin,  fmax), where fmin is Ml times the smaller one of fNx 

and fNy, and fmax is Mh times the bigger one. Ml and Mh are the coefficients chosen based 

on experimental results, e.g., Ml = 0.7 and Mh = 1.1. 

Then, if fm falls in the range, which means fmin< fm < fmax, the system will calculate 

the six outputs, i.e., fx, fy, Ax, Ay, Px and Py. fx and fy are the corresponding frequencies in 

x-direction and y-direction which have the maximum FFT amplitudes. Ax, Ay, Px and Py 
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can be obtained based on FFT calculations. 

 

  

  Figure 6-1: The proposed chatter detection sub-system for two actuator/sensor pairs 

6.1.2 Chatter Detection Sub-System for One Actuator/Sensor Pair 

When there is only one actuator/sensor pair, chatter can be detected when a 

pre-specified threshold is reached. The parameters of the chatter signals will be obtained 

and then used by the chatter suppression sub-system. However, it is difficult to 

determine the proper threshold values beforehand. 

In [36], an on-line chatter detection methodology is proposed based on the 
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maximum likelihood algorithm using wavelets. A cutting process is assumed as a 

nearly-1/f process andγ , which is the spectral parameter related to the self-similarity 

parameter, is used as a chatter index. To find the proper threshold value ofγ , surface 

roughness data were recorded with a profilometer and used as a basis for determining the 

chatter occurrence. The proposed proper threshold value of γ  for reliable chatter 

detection for turning processes is -0.5. Moreover, it is claimed that the proposed index is 

independent of cutting conditions, and is accurate and appropriate for on-line chatter 

detection. 

The on-line chatter detection methodology in [36] can be utilized when only one 

actuator/sensor pair is used in one direction, e.g., the vertical direction, as shown in 

Figure 6-2. The only input of the chatter detection sub-system is the measured vertical 

acceleration signal: y-signal. The outputs of the chatter detection sub-system are the 

measured frequency fy, amplitude Ay and phase Py when chatter is detected. 

As shown in Figure 6-2, in every control iteration, the measured vertical 

acceleration signal, i.e., y-signal, has been converted to a corresponding digital signal, 

i.e., y-digital signal. After Digital Signal Processing (DSP), which includes the applied 

algorithm in [36] and FFT analysis, the value of the chatter index γ  of y-digital signal 

and the amplitude and phase FFT’s of y-digital signal can be obtained. When γ  is 

bigger than -0.5, the sub-system will send out the measured frequency fy, amplitude Ay 

and phase Py, which are the corresponding parameters with the maximum value in the 

amplitude FFT of y-digital signal in that control iteration. 

There are other methods to detect chatter, as reviewed in section 2.9.2. For most 

of these, the critical point is to choose a threshold based on experiments. The researchers 

provided some suitable threshold values based on their experiment results. Most 

proposed threshold values are also claimed to be independent of cutting conditions, 
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)),(),(( tuxpxfY =                               (6-1) 

The chatter suppression module is used for minimizing Y. In order to minimize Y, 

the control signal to the actuator, i.e., x(u), can be determined through an optimization 

method such as steepest decent, where 

k

k
kkk

ux
Yuxux

)(
)()( 1

∂
∂

−=+ α                                                    (6-2) 

where k

k

ux
Y

)(∂
∂ is the gradient of the dynamic model Y; kux )( and 1)( +kux are the values 

of the control signal in the k and k+1 iteration; and α  is the size of the steps in the 

direction of minimization. The calculation of k

k

ux
Y

)(∂
∂  depends on availability of a 

differentiable model.  

However, a comprehensive physical model of a complex system usually does not 

exist. In this case, using artificial neural networks in the chatter suppression module is a 

good choice because ANNs are known for their function approximation capability. As 

introduced before, properly designed and trained neural networks are capable of 

approximating any linear or nonlinear function to the desired degree of accuracy and 

they are noise tolerant.  

6.2.2 Chatter Suppression Subsystem Design 

The design of the chatter suppression subsystem is based on the techniques 

utilized in the AVC subsystem design (see section 3.3).  

Figure 6-5 shows some details of the proposed chatter suppression sub-system. 

The inputs of this sub-system, i.e., fx,  fy,  Ax, Ay, Px and Py, are the outputs of the proposed 

chatter detection sub-system, as shown in Figure 6-1. The outputs of the proposed 

chatter suppression sub-system, i.e., fxu,  fyu,  Axu, Ayu, Pxu and Pyu, which are also the 
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parameters of control signals, i.e., x(u) in Figure 6-3, are sent to corresponding actuators 

to suppress the detected chatter. PD is the phase difference as described in the next 

section. The purpose of the chatter suppression subsystem is to generate an “opposite” 

vibration of the cutting tool at the location of interest to suppress the original one. 

Therefore, the vibration generated by each control signal at the sensor location should be 

out of phase with the chatter signal in each direction, while the amplitude and the 

frequency of the vibration generated by the control signal at the sensor location should 

be the same as the chatter’s in this direction. In this way, the chatter in this direction will 

be suppressed. The same control strategy will be applied in both directions.  

 

 

      Figure 6-5: Proposed chatter suppression sub-system 

To generate an “opposite” vibration at the location of interest to suppress the 

original one, an ANN is utilized at each direction as an identification model of the plant 

based on the function approximation capability of ANNs. Some current active vibration 

control systems use ANNs as the whole system identification models and use offline 

training method to train the ANNs. However, as mentioned previously, the primary 
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disturbance, i.e., x(p) in Figure 6-3, includes the sharpness and parameters of the insert, 

the workpiece shape and material, depth of cut, cutting speed, as well as many other 

factors. Among these factors, some keep changing during cutting. Therefore, using such 

an ANN that is offline-trained to be an identification model of such a changeable system 

cannot be robust. To make the proposed ACS system robust, the ANN model should be 

used as the identification model of a relatively stable part of the system during cutting. In 

the proposed experimental setup, which will be presented in the next chapter, the tool 

system (which includes the tool holder, the boring bar, the actuators and the sensor) is 

very stable. Therefore, this tool system is chosen as the model for the ANNs in the 

current work.  

Time delay in ACS is very critical. As discussed in section 3.3, to satisfy causality of 

different iterations, the time delay between the iteration to collect vibration signal 

parameters and the iteration to send out control signal should be considered. 

To generate control signals, the ANN model should work as an inverse model, 

which means the inputs of the ANN model are actually the outputs of the plant, as 

discussed in section 3.3. 

6.2.3 Design of the Inverse Artificial Neural Network Models 

The design of the inverse ANN models is very similar to design for the AVC 

system, as presented in section 3.4. 

The ANNs are used for function approximation and work as the inverse 

identification models of the cutting tool system. The design of the ANN models is based 

on the applied ACS strategy and the actual experimental setup. Generally, the design 

steps are as follows: First, training data for the ANN models are collected via 

experiments according to the ACS strategy presented in the previous section. Then, the 
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training data are analyzed in order to choose a proper normalization method. The general 

network architectures of the ANN models are then designed and the suitable learning 

algorithm is chosen. Finally, the ANN models are trained to avoid overfitting. The 

network architectures may be modified for better function approximation based on 

experimental results. 

As the first step to design ANN models after the control strategy is set up, 

training data should be collected based on the control strategy and experimental setup. In 

experiments to collect training data for the ANN models, only the control actuators work 

to generate the tool vibration. To get a robust training, which means a training affected 

minimally by external sources of variability, the experiments to collect training data need 

to be designed first. In this project, the fractional factorial design [59] is used for the 

design of experiments to obtain the training data for the ANN models as shown in [29]. 

Moreover, the experiments are carried out at frequencies around the first natural 

frequencies of the tool system because, as discussed before, the chatter frequencies are 

always around the first natural frequencies of the tool system. 

An ANN model for chatter suppression in horizontal direction is shown in Figure 

6-6. This model shows an example based on the results in [29, 30]. The ANN 

architecture used here has three inputs, one hidden layer of log-sigmoid neurons and one 

output layer of three log-sigmoid neurons (because there are three outputs). The output 

layer uses a log-sigmoid transfer function because the outputs of the ANNs are 

constrained to a range of 0 to 1. In the detailed design, the number of hidden layers and 

the number of neurons in each hidden layers are decided by finding out the optimal 

number to obtain the smallest mean square error (MSE) for validation data sets. 

In experiments undertaken to collect training data for the ANN models, only the 

control actuators are active to generate the plant vibrations, i.e., the primary disturbance 

x(p) =0. Therefore, the ANN model can provide the information about the kind of control 
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signal (fxu, Axu, and Pxu) needed to get the specific vibration signal (fx, Ax, and Px) from the 

sensor. The ideal control signal frequency (fxu) should be the same as vibration frequency 

(fx). Moreover, the input Px can be cancelled if the phase difference (PD) between the 

control signal and the vibration signal is utilized (PD = Pxu – Px). In this case, the ANN can 

be simplified as shown in Figure 6-7. There are only two inputs (i.e., Ax and fx) and two 

outputs (i.e., Axu and PD) for the ANN. In the detailed design, the number of hidden layers 

and the number of neurons in each hidden layers are decided by finding out what the best 

number of hidden nodes are to obtain the smallest Mean Square Error (MSE) for 

validation data sets. 

The ANN model for chatter suppression in vertical direction can be designed in the 

same way. 

     

Figure 6-6: The proposed ANN model for chatter suppression in horizontal direction 

 

              

                   Figure 6-7: Simplified ANN model 
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Based on the similarity of the ACS subsystem design and the AVC subsystem 

design (section 3.3 - 3.4), by using equation (3-5) and (3-6), in Figure 6-5, Pxu and Pyu can 

be obtained as: 

PDtftfPP xxxxu −××−×++= 360))int((180             (6-4) 

PDtftfPP yyyyu −××−×++= 360))int((180             (6-5) 

where t is the running time of each control iteration. fxu is set to the same as fx and fyu is set 

to the same as fy. Axu and Ayu can be obtained from the ANN model directly.  
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CHAPTER 7 

EXPERIMENTAL SETUP OF ACS 

 

The methodology presented in Chapter 6 will be evaluated experimentally 

through active chatter suppression (ACS) in turning on a lathe. The experimental setup is 

described in this chapter. 

 

7.1  Hardware Setup 

Figure 7-1 shows the proposed hardware setup for the experiments. The proposed 

lathe is a two-axis engine lathe. The square tool bar (8 mm x 8 mm) is made of plain 

carbon steel and has a total length of 208 mm with one turning insert on one end and one 

boring insert on another end. In Figure 7-1, the turning insert is used and the overhang 

length of the tool bar is 108 mm, as measured from clamped end to the cutting edge of 

the tool bar. As discussed in the previous chapter, the proposed control system should be 

comprised of two actuator/sensor pairs: one pair to control motions parallel to the axis of 

the workpiece (x-direction) and the other pair to control motions in the direction tangent 

to the machined surface the revolving workpiece (y-direction). The horizontal 

(x-direction) & vertical (y-direction) accelerometers (sensors) can be glued to the cutting 

tool at the location of the insert because this is the location of interest. By using two 

sensors, two crossed accelerations, i.e., horizontal and vertical accelerations, from the 

bending vibration of the cutting tool at the location of the insert will be measured. The 

actuators should be attached to the boring bar at the location close to the clamped end of 

the tool bar to get maximum working range of the boring bar. The actuators simply push 

up against the tool bar. The resulting preload is used to maintain contact between the 
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control shaker and the beam. 

   

   Figure 7-1: The hardware setup for implementing active chatter suppression 

Since the proposed location for the actuators is close to the clamped end of the 

tool bar, the force required to actuate the bar near its base is substantial while the travel 

range required is small. Therefore, induced strain actuators are good choices for the 

current application. On today’s market, among the available induced strain actuators, 

both those fashioned from magnetostrictive materials, such as Terfenol-D, and 

piezo-stack actuators can work in this setup. Terfenol-D actuators have the advantages 

that they can be driven using standard audio-type power amplifiers [25], have a higher 

energy density and more durable. However, Terfenol-D actuators are always much 

bigger than piezoelectric actuators. Considering the small size of the lathe and the boring 

bar used in the current work, to get enough working range of the tool, piezoelectric 

actuators are the better choice if they can provide enough force and travel range. Based 

on calculation, P-830.30 piezo actuator (see Appendix C for the actuator specifications) 
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is chosen for the ACS system. 

There are two choices for the amplifier for the selected piezo actuator (P-830.30 

of Physik Instrumente GmbH & Co.), which are E-610 Piezo Amplifier/Controller and 

E-617 High-Power Piezo Amplifier. Considering the probable working frequencies and 

the electrical capacitance of the actuator, the more versatile one, i.e., E-617 High-Power 

Piezo Amplifier, was chosen. 

Also considering the small size of the lathe and the boring bar used in the current 

work, a small, adhesive mounted piezoelectric accelerometer was chosen for measuring 

the tool vibration. After investigation, choices were narrowed down to several 

accelerometers with acceleration range of ± 5G (1 G = 9.80665 m/s2), ± 50G and ±

500G. Accelerometers with acceleration range of ± 5G and ± 50G were originally 

favored because based on the experimental setup it was assumed that the maximum 

acceleration should be several G only. In this case accelerometers with acceleration 

range of ± 5G and ± 50G would provide higher measurement accuracy. However, 

accelerometers with acceleration range of ± 5G and ± 50G are too big for the current 

experimental setup. Calculation also showed that the maximum acceleration could be 

larger than the assumption. Therefore, an accelerometer with acceleration range of    

± 500G (8778A500M14 of Kistler Co., see Appendix D for the accelerometer 

specifications) was chosen for measuring the vibration. This accelerometer is only about 

φ 5.8mm x 4.3mm in size and weighs only 0.4 gm, which is suitable for the size of the 

boring bar and can reduce unwanted mass-loading effects. 

The capabilities of the accelerometer, the actuator and amplifiers in the current 

experimental setup still needed to be verified. Therefore, only one pair of 

accelerometer/actuator was purchased for the current work.  

The data acquisition (DAQ) board (see Appendix A for the DAQ board 

specifications) is the same board used in the AVC system, which has four 12-bit analog 
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inputs with a maximum sampling rate of 5 MS/s. It also provides two 16-bit analog 

outputs with a maximum update rate of 2.5 MS/s. Figure 7-2 is a sketch of the 

experimental hardware setup, which also shows some functions of the DAQ board. Two 

analog outputs, i.e., “AO-1” and “AO-2”, and two analog inputs, i.e., “AI-1” and “AI-2”, 

can be used in the experiments. 

    

         Figure 7-2: Schematic diagram of experimental setup 

Two computers were used in the system because LabVIEW Real-Time was used 

as the main developing software in this work. One computer worked as a dedicated 

real-time target, which integrated the DAQ board for analog, digital, counter/timer, and 

vibration signals. Programs were developed on a Windows XP host computer and 

downloaded to the real-time target via Ethernet. Moreover, some time-consuming 

applications, such as graphing and data recording, were implemented on the host 

computer instead of the target computer. The target computer ran a single-kernel RTOS 

(real-time operating system) for maximum reliability. 

To mount the P-830.30 piezo actuators properly, a toolholder was designed and 

built. Figure 7-3 shows two views of the designed toolholder. The actuator can be 
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mounted in both vertical and horizontal directions. Two setscrews were used to hold the 

tool bar and a set of bolt/nut/lock washer was used to add preload on the actuator in each 

direction.  

   

                Figure 7-3: Two views of the designed toolholder 

In the toolholder design, the distance between the setscrew and the actuator is  

25 mm. The overhang length of the tool bar is 108 mm, as measured from the setscrew 

that holds the bar in the tool holder to the cutting edge of the turning insert (see Figure 

7-1). To check the ability of the actuator for the designed toolholder some calculations 

have been done to estimate the properties. The tool bar is considered as the cantilever 

beam in Figure 7-4, where 

L=108 mm (cutting point);  

l = 25 mm (actuator point);  

E (Young’s modulus) = 2x1011 N/m2 (30000 kpsi);  
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b = d = 8 mm (square tool bar: 8 mm x 8 mm);  

I (Moment of Inertia of the cross section) = 
12

3bd ≅  3.4133 x10-10 m4 [5];  

P = 1000 N (see Appendix C for the actuator specifications). 

 

     

 Figure 7-4: Schematic diagram of the tool bar 

To find out the maximum displacement, bδ , at the cutting point that can be obtained by 

the force applied by the actuator, the following equation can be used [5]: 

P =
)3(

6
2 lLl

EIb

−
δ                    (7-1) 

By solving the equation, the maximum displacement can be obtained, which is about 

0.456 mm. This is larger than the displacement at the cutting point during turning in 

most cases [3]. 

Figure 7-5 shows two photographs of the experimental setup as described. 

In the current work MAXNC T2 lathe was used. This is a two-axis mini-CNC 

engine lathe with a 1/2 HP Spindle Motor and Spindle speeds from 0 to 1500 RPM. Only 

one piezo accelerometer and one piezo actuator was utilized in the current setup. The 

workpieces were aluminum with the size of about φ 25 mm x 118 mm. 
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        Figure 7-5: Two photographs of the experimental hardware setup 
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7.2  Software Environment 

The operation system on the host computer was Microsoft Windows XP and 

LabVIEW Real-Time version 8.5.1 on the target computer. LabVIEW Real-Time 

version 8.5.1 was used for measurement, signal processing and the development of user 

interfaces. MATLAB 2008 was used for some neural network design, implementation, 

visualization and simulation, as well as data analysis and some graphing. Microsoft 

Visual C++ 6.0 was used for algorithm implementation and for implementing neural 

networks in the form of dynamic link library (DLL) files. 

Figure 7-6 shows one example of user interfaces developed in the current work. 

The interfaces can only be shown on the host computer. 

   

 

    Figure 7-6: An example of a part of a user interface used in the current work 
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CHAPTER 8 

EXPERIMENTAL IMPLEMENTATION OF ACS 

 

8.1  AVC System Design 

Based on the methodology and the experimental setup, the designed AVC system 

to generate a control signal is shown in Figure 8-1. This control system can modify the 

control signal online in every control cycle (one control cycle could be one or more than 

one control iterations) in the following way: 

1. The system can repeat all calculations in one control iteration and generate a 

current control signal (e.g., with parameters of fxu,  Axu, and Pxu) based on the detected 

vibration situation (e.g., fx,  Ax, and Px) of this current iteration; 

2. The current control signal is added to the accumulated control signal, which is a 

combination of all previous continuous control signals, to get an updated control signal in 

the Signal Combination module (the control signal of the first control cycle is zero); 

3. The new updated control signal is sent out to the actuator at the beginning of the 

next iteration; and 

4. At the same time, this updated control signal becomes the “accumulated control 

signal” in the next control cycle.  
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Therefore, the actual control signal sent to the actuator is an accumulation of all previous 

generated control signals, which are all continuous. One control cycle should include 

more than three control iterations to avoid unstable transient conditions after the 

modification of the actual control signal, and therefore to get more accurate measurements 

of vibration. In current work, a control cycle includes five or more iterations. One control 

cycle could be 25 ms, which means a new control signal could be generated as fast as in 

every 25 ms in the current setup. 

 

             Figure 8-1: The AVC system in current work 

The parameters of the control signal, e.g., fxu,  Axu, and Pxu, can be obtained from 

ANN outputs and the “delay estimate” module by using the equations in section 6.2.  
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Before the ACS system can work during cutting, the first natural frequencies of the 

system should measured by using the system natural frequency measurement techniques 

used in the AVC system, as introduced in section 4.5, and the ANN models need to be 

trained. The system natural frequency measurement and ANN training can be done 

automatically by running a preliminary program before cutting. One piezo accelerometer 

and one piezo actuator is utilized in the current work. The first natural frequency of the 

tool system in the vertical direction is about 488 Hz and in the horizontal direction is about 

423 Hz. 

 

8.2  Artificial Neural Network Training 

The detailed steps to train the ANN models of the ACS system are presented in 

section 6.2.3. The ANNs are used for function approximation and work as the inverse 

identification models of the tool system. The design of the ANN models is based on the 

applied ACS strategy and the actual experimental setup. Generally, the design steps are 

as follows: First, training data for the ANN models are collected via experiments 

according to the ACS strategy presented in the previous section; Then, the training data 

are analyzed in order to choose a proper normalization method; The general network 

architectures of the ANN models are then designed and the suitable learning algorithm is 

chosen; Finally, the ANN models are trained to avoid overfitting. The network 

architectures may be modified for better function approximation based on experimental 

results. 

The Simplified ANN models are shown in Figure 8-2. As the first step to design 

ANN models after the control strategy is set up, training data should be collected based 
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on the control strategy and experimental setup. In experiments to collect training data for 

the ANN models, only the control actuator work to generate the tool vibration. To get a 

robust training, which means a training affected minimally by external sources of 

variability, the experiments to collect training data need to be designed first. In this 

project, the fractional factorial design [59] is used for the design of experiments to obtain 

the training data for the ANN models as shown in [29]. Moreover, the experiments will 

be done at frequencies around the first natural frequencies of the tool system because, as 

discussed before, the chatter frequencies are always around the first natural frequencies 

of the tool system. 

  

       Figure 8-2: Simplified ANN models in ACS 

As discussed in Chapter 6, a multilayer feedforward ANN is utilized, as shown in 

Figure 6-8, which shows the ANN model for horizontal direction. The ANN architecture 

used here has three inputs, one hidden layer of log-sigmoid neurons and one output layer 

of three log-sigmoid neurons (because there are three outputs). The output layer uses a 

log-sigmoid transfer function because the outputs of the ANNs are supposed to be 

constrained to a range of 0 to 1. The number of hidden layers and the number of neurons 

in each hidden layers are decided by finding out what the best numbers are to obtain the 

smallest Mean Square Error (MSE) for validation data sets. The ANN model for chatter 

suppression in vertical direction will be designed in the same way. 

The objective of the experiments in the current work is to determine the influence 

of the controllable factors, e.g., the horizontal chatter frequency (fx) and the horizontal 
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chatter amplitude (Ax), to the response, e.g., the horizontal control signal amplitude (Axu) 

and the phase difference (PD). The data ranges are decided by the regions of interest for each 

variable and hardware performance limitations. Since the first natural frequency of the 

tool system in the vertical direction is about 488 Hz and in the horizontal direction is about 

423 Hz, based on the results of many other papers, such as [35, 38], the chatter frequency 

should be around 423 Hz to 488 Hz. Therefore, the region of interest for frequency can be 

set to 400 Hz to 500 Hz, and the frequency response range of the amplifier of the piezo 

actuator can cover this range with maximum work load (as shown in Figure 8-3, which 

shows the operating limits of E-617 High-Power Piezo Amplifier [60], while the Electrical 

Capacitance of the piezo actuator, i.e., P-830.30, is 4.5 µF). When two pairs of 

accelerometer/actuator are utilized, the frequency range 400 Hz to 500 Hz can be used to 

train the ANN models and also used in the Chatter Detection Module, i.e., setting  fmin  = 

400 Hz and fmax = 500 Hz, as discussed in section 6.1.1. The analog output amplitude range 

is 0 V to 10 V for safety reasons. To find out the proper amplitude ranges to train the ANN 

models, cutting experiments should be undertaken. Considering the measurement range of 

the sensor and the hardware setup, according to results of experiments, the amplitude 

range for the control signal sent to the actuator was set to be from 0.01 V to 5 V.  

As mentioned before, the values of all the data must be normalized for efficient 

processing by the ANN (see section 2.4.5). In the current work, all the experimental 

input and output data are positive values. The data are also normalized to a range of 0.1 

to 0.9 by using equation (5-2). 
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 Figure 8-3: Operating limits with various PZT loads (capacitance is measured in µF) [60] 

As discussed in [29], to reduce harmful effects, e.g., the squashing effect, of using 

sigmoid transfer functions in the hidden layer and the output layer of the ANN model, and 

normalization, the above data ranges can be divided into several sub-ranges, e.g., the 

original frequency range can be divided into four smaller sub-ranges: 400 Hz to 420 Hz, 

420 Hz to 440 Hz, 440 Hz to 480 Hz, and 480 Hz to 500 Hz. About 100 sets of data are 

collected for each sub-range. ANN models are trained separately for different sub-ranges. 

Moreover, Resilient Backpropagation (RPROP) algorithm is utilized to train ANN models 

because, although it is not the fastest one, theoretically, it can also help to reduce 

squashing effect of the magnitudes of partial derivatives (see Chapter 5 for details). 

To find the best ANN architecture (the number of hidden layers and the number 
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of neurons in each hidden layer), many experiments have been done. The results and 

experiences in [29, 30] were used as guidelines. The best ANN architecture can provide 

the smallest Mean Square Error (MSE) for validation data sets (see section 2.4). Early 

stopping and Bayesian regularization methods were used in MATLAB to improve 

generalization in these experiments (see section 2.4.6). Test data sets were also used to 

compare different models. The best ANN architecture found via experiments for the 

ACS system was similar to the example shown in Figure 6-8. It is a multilayer 

feedforward ANN, which has two inputs, one hidden layer of 15 log-sigmoid neurons 

and one output layer of two log-sigmoid neurons. The MSE of validation data sets for 

this architecture was about 0. 057%. The output layer uses a log-sigmoid transfer 

function because the outputs of the ANNs are supposed to be constrained to a range of 0 

to 1. This ANN architecture provides the smallest Mean Square Error (MSE) and has 

very good performance for generalization in experiments. For the same tool setup, the 

ANN architecture does not change, but the weights between neurons change for different 

data sub-ranges after training. 

 

8.3  Experimental Results 

In the current work, for the reasons mentioned in section 7.1, only one pair of piezo 

accelerometer/actuator was utilized. The original workpieces were aluminum with the 

dimensions of φ 25 mm x 118 mm. 

8.3.1 Chatter Frequencies and Amplitudes 

As mentioned in previous chapters, it is widely known that machining chatter 

signals have harmonic shapes and their frequencies are around the respective first natural 
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frequencies of the machining systems [32]. Also, in some chatter suppression papers with 

experimental data, e.g., [35, 36, 38], the chatter frequencies are in the range of 120 Hz to 

550 Hz, which is around the respective first natural frequencies of the machining systems 

studied. However, in the current work, the experiment results show that the chatter 

frequencies are very different from the respective first natural frequencies of the 

machining system. 

To measure the first natural frequencies of the tool system in vertical direction and 

in horizontal direction, the techniques used in section 4.5 are utilized and the frequencies 

are measured while the lathe is not running. The first natural frequency of the tool system 

in the vertical direction was about 488 Hz and in the horizontal direction was about    

423 Hz. Then, the frequencies of the lathe, while its spindle was turning at different speeds 

from about 200 RPM to 1500 RPM but without cutting, were measured. The frequency 

measured from the sensor at the insert location of the tool in the vertical direction was 

about 470 Hz to 490 Hz and in the horizontal direction about 400 Hz to 420 Hz in most 

cases and in most iterations (the measured frequency changes in different iteration in the 

same experiment too). As an example, Figure 8-4 shows the signal from the sensor and the 

amplitude FFT measured in vertical direction when the spindle of the machine is turning 

without cutting. In the figures, the unit for time is second, for amplitude is volt, for 

frequency is Hz and for magnitude is volt. 
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In horizontal direction, when chatter happens, the measured frequency was more 

scattered than in vertical direction, but a large part of the measurements is between 2600 

Hz and 2800 Hz. As an example, Figure 8-6 shows the signal from the sensor and the 

amplitude FFT measured in horizontal direction when the machine was cutting with 

chatter. In the experiment shown in Figure 8-6, the spindle speed was about 500 RPM and 

Feed=1, while the cutting depth was 0.02 inch. Experiment results show that when the 

cutting depth is bigger, a larger part of the power is between 2600 Hz and 2800 Hz. 

 

               

              (a) Without chatter 

     Figure 8-5 (a): Comparison of vertical signals when the machine is cutting without and with chatter 
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(b) With chatter 

    Figure 8-5 (b): Comparison of vertical signals when the machine is cutting without and with chatter 

From experiments, as shown in the amplitude FFT figures above, it can be seen that 

most power falls into the range of 2500 Hz to 2800 Hz when chatter happens, especially in 

vertical direction (2500 Hz to 2550 Hz). And there is much more power in vertical 

direction than in horizontal direction when chatter happens, which can be seen by 

comparing Figure 8-5 (b) and Figure 8-6. The scales of Y-axis in these two figures are 

very different because “auto scale” was used in programming to provide as much 

information for signals as possible.  
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In all the experiments in this work, although the proportion of the power in 

horizontal direction to the power in vertical direction may change with different cutting 

conditions, for the same cutting conditions, when chatter happened, there was always 

more power in vertical direction than in horizontal direction. 

 

    

   Figure 8-6: Signal from the sensor and the amplitude FFT in horizontal direction with chatter 

8.3.2 Chatter Signal Waveforms 

The signals from the sensor (accelerometer) in the experiments when chatter 

happens have shown more complexity than expected: First, as shown in the previous 

section, the chatter frequencies in vertical direction and in horizontal direction are very 

different from the first natural frequencies of the machine in the respective directions, and 
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they are also different from each other. Second, the chatter frequencies are changing in 

different iterations, which means from time to time, within ranges, as shown in Table 8-1, 

which is a part of the recorded data of the same experiment to obtain data for Figure 8-5 

(b). In that experiment, iteration time was 0.25 second. The measured frequencies are the 

highest amplitude FFT frequencies. Moreover, the waveforms also show complexity. As 

an example, Figure 8-7 shows some details of Figure 8-5 (b). As shown in the detailed 

waveforms, the chatter signal waveforms include many big “waves”.  

These big waves are irregular with changing amplitudes, shapes and sizes. One big 

wave can include many cycles of the measured frequencies shown in Table 8-1. As 

mentioned before, when chatter happens, the measured frequency was between 2500 Hz 

and 2600 Hz in most cases, while the measured frequency carries the most of the vibration 

power. Therefore, these big waves are not chatter signals. The chatter frequency should be 

the measured frequency, and this was verified by experiments as will be discussed later in 

this chapter (see the chatter pattern in Figure 8-10). 

The irregular big waves are a problem for chatter suppression. The possible 

reasons for the big waves could be using an unstable mini lathe and the bending of the 

workpiece without using a tailstock. Experiment results also show that when cuttings were 

made close to the clamped end of the workpiece, the sizes of big waves were reduced as 

will be discussed later in this chapter (see Figure 8-8 and Figure 8-9). Based on the current 

experimental setup, the effect of the big waves was considered in chatter suppression. 
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      Table 8-1: A part of the recorded data of the same experiment to get Figure 8-5 (b) 

Measured 
Frequency 

Measured 
Amplitude 

Measured   
Phase 

Time 
 

480.6740677  0.0023948 84.9828755 0.4389858 

480.3943971  0.0027641 43.839986 0.6887331 

480.3387916  0.0026016 29.248589 0.9387803 

481.0432105  0.0028186 ‐38.9911723 1.1887274 

507.8809118  0.1338728 94.2326464 1.4387722 

2514.916098  1.3256609 13.8462919 1.6887398 

2523.018426  0.9135309 70.9902876 1.9388185 

2523.018426  0.9135309 70.9902876 2.1887345 

2525.412902  0.6949867 ‐113.4761672 2.4387789 

2525.412902  0.6949867 ‐113.4761672 2.6887593 

2525.734173  0.6156788 99.7905283 2.938765 

2530.430332  0.6663986 132.4818191 3.1887803 

2534.152818  0.4751391 ‐70.2069631 3.4387655 

2521.163563  0.5687808 163.9875793 3.6887302 

2521.163563  0.5687808 163.9875793 3.9387593 

2523.215564  0.4669578 ‐2.6812284 4.1887589 

2517.355924  0.574584 ‐8.6912755 4.4387722 

2502.732945  0.3639981 27.3728908 4.6887398 

2519.134118  0.5924571 ‐129.3306842 4.9387846 

2522.383833  0.684596 143.4411053 5.1887531 

2518.965176  0.5735396 ‐234.470592 5.4387703 

2518.965176  0.5735396 ‐234.470592 5.6887903 

2522.097605  0.6198768 151.0523919 5.938786 

2522.097605  0.6198768 151.0523919 6.1887598 

2517.740162  0.5237959 ‐105.9861235 6.4388204 

2521.381382  0.7792558 24.5645912 6.6887798 

2522.588411  0.6057447 ‐134.1329803 6.9388089 

2523.109188  0.7111996 ‐107.569697 7.1887765 

2523.109188  0.7111996 ‐107.569697 7.4388022 

2514.060218  0.5959324 61.2454347 7.688756 

2521.775586  0.7511755 50.7832018 7.9387913 

2520.333803  0.4253547 143.2432826 8.1887226 

2523.011076  0.4524108 44.6645453 8.4388232 

2536.693248  0.4040842 46.1623357 8.6887689 
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(a) 5.5 to 7 second 

 

 

(b) 5.5 to 5.7 second 

 

 

(c) 5.58 to 5.63 second 

Figure 8-7: Some details of Figure 8-5 (b) 



 123  

8.3.3 Chatter Detection 

The chatter detection module has been developed based on the methodologies 

presented in section 6.1. However, as shown in the section 8.3.1, the chatter frequencies in 

vertical direction and in horizontal direction are very different from the first natural 

frequencies of the machine in the respective directions, and they are also different from 

each other.  The actual chatter frequencies in the two directions, while they are still close 

to each other, are much larger than the first natural frequencies of the machine in 

respective directions. Therefore, there should be some modifications in the original design 

as in section 6.1.1 if two pairs of accelerometer/actuator are used. 

First, in Figure 6-1,  fmin  and  fmax should not be decided by fNx and fNy any more. 

Based on the experiment results, fmin  and  fmax should be decided by the range of 2500 Hz 

to 2800 Hz (substituting fNx and fNy with 2500 Hz and 2800 Hz). 

Second, in Figure 6-1, the threshold T of max
2 )( xyγ  must be set based on experiment 

results since chatter frequencies are different in the two directions, although they are close 

to each other. 

The developed chatter detection module works well for simulated signals. However, 

modifications need to be made based on experiments. Since only one set of piezo 

accelerometer and piezo actuator was utilized in the current work, the chatter detection 

methods in frequency domain, as introduced in section 2.9.2 and section 6.1.2, were more 

suitable. 
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8.3.4 Chatter Suppression 

Based on the experiment results, some modifications must be made for the chatter 

suppression sub-system.  

8.3.4.1 Modifications in ANN Model Training 

Since the chatter frequencies in vertical direction and in horizontal direction are very 

different from the first natural frequencies of the machine in the respective directions, the 

ANN models need to be re-trained. Compared with the training in section 8.2, in which the 

region of interest for frequency was set to 400 Hz to 500 Hz, based on the experiment 

results, the range of 2300 Hz to 3000 Hz is used as the region of interest for frequency or 

added to the region of interest for frequency.  

In section 8.2, the amplitude range for the control signal sent to the actuator was set 

to from 0.01 V to 5 V while the available safe range was from 0 V to 10 V. However, for a 

frequency range of 2300 Hz to 3000 Hz, as shown in Figure 8-3, the available safe range 

of the control signal is only 0 V to about 1.5 V. To find out the actual proper amplitude 

ranges to train the ANN models, cutting experiments should be undertaken. According to 

the results of some experiments, the amplitude of the control signal sent to the actuator 

may need to be larger than 1.5 V, which means that a better amplifier or an actuator with 

electrical capacitance less than 0.9 µF should be used. Therefore, the amplitude range of 

the control signal sent to the actuator is set to from 0.01 V to 1.5 V for the new frequency 

range of interest because of the limitation of current hardware. 
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The ANN models were trained in the same way as introduced in section 8.2. As 

mentioned before, the values of all the data are normalized to a range of 0.1 to 0.9 by 

using equation (5-2). To reduce harmful effects, e.g., the squashing effect, of using 

sigmoid transfer functions in the hidden layer and the output layer of the ANN model, 

and normalization, the above data ranges can be divided into several sub-ranges, e.g., the 

original frequency range can be divided into five smaller sub-ranges: 2300 Hz to 2500 

Hz, 2500 Hz to 2600 Hz, 2600 Hz to 2700 Hz, 2700 Hz to 2800 Hz and 2800 Hz to 3000 

Hz. ANN models are trained separately for different sub-ranges. Moreover, Resilient 

Backpropagation (RPROP) algorithm is utilized to train ANN models. The best ANN 

architecture found via experiments is also a multilayer feedforward ANN, which has two 

inputs, one hidden layer of 15 log-sigmoid neurons and one output layer of two 

log-sigmoid neurons. The MSE of validation data sets for this architecture was about 

0.07%. Also, for the same tool setup, the ANN architecture does not change, but the 

weights between neurons change for different data sub-ranges after training. 

8.3.4.2 Chatter Suppression Analysis and Processing  

The piezo actuator and the designed toolholder worked very well, as shown in the 

ANN model training data collection. When a sinusoidal signal is sent out to the actuator, a 

sinusoidal signal with excellent shape of the same frequency can be obtained from the 

sensor, which means a sinusoidal vibration of the tool is generated. However, actual 

chatter control experiments did not show satisfying outcomes.  

One possible reason is the complexity of the signals from the sensor when chatter 

happens in the current work, as shown in section 8.3.2. Figure 8-8 also shows this 

complexity. In the experiment to obtain data for Figure 8-8, the spindle speed was about 
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500 RPM and Feed=1 (setting of MAXNC T2, about 0.015 inch/second without relation to 

the spindle speed here), while the cutting depth was about 0.02. Figure 8-8 (a) shows the 

first 20 seconds of the sensor signal; Figure 8-8 (b) shows the sensor signal between 7.7 

second and 7.9 second; Figure 8-8 (d) shows the first 20 seconds of the filtered signal of 

the original sensor signal by using a 2539-2539.1 Hz bandpass IIR filter (the rationale to 

use this band was that this is the range with highest FFT amplitude in the general 

amplitude FFT at specific time); while Figure 8-8 (c) and Figure 8-8 (e) are the 7.73-7.75 

second signals of the original sensor signal and the filtered signal. Figure 8-8 (b) shows 

clearly that the sensor signal includes big waves. With these big waves, the amplitudes 

always change between very large and very small rapidly, even within the same iteration. 

However, in the chatter suppression system, within the same iteration, the control signal 

does not change, while the control signal could be a combination of many sinusoidal 

signals. Therefore, the signal complexity is one reason for the unsatisfactory chatter 

control experiment outcomes. This problem cannot be solved by just setting a very small 

iteration time because, first, if iteration time is too small, measurement accuracy will 

become worse; second, the machine system needs time to reach relatively stable status. 

The inconsistency of the chatter signals for the experimental setup can be traced to 

the lathe used for data collection. The lathe used in the current work is a mini lathe without 

a tailstock. The cutting conditions required to generate chatter were too aggressive for the 

construction of the lathe as shown in high frequency vibrations. Without the support of a 
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tailstock, the force of the tool on the workpiece would cause it to bend away from the tool, 

producing unexpected signal signatures. Experiments also show that when the cutting is 

closer to the clamped end of the workpiece, the waves in the chatter signal are smaller. 

      

    (a) The first 20 seconds of the original sensor signal 

    

     (b) The original sensor signal between 7.7 second and 7.9 second 

     

(c) The original sensor signal between 7.73 second and 7.75 second 

Figure 8-8 (a)-(c): Waveforms of the original signal and the filtered signal of a chatter example 
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                   (d) The first 20 seconds of the filtered signal 

             

     (e) The filtered signal between 7.73 second and 7.75 second 

   Figure 8-8 (d)-(e): Waveforms of the original signal and the filtered signal of a chatter example 

 By comparing Figure 8-8 (c) and Figure 8-8 (e), which are the 7.73-7.75 second 

signals of the original sensor signal and the filtered signal, it is obvious that the filtered 

signal is “cleaner”. The original signal can be considered as a combination of many 

sinusoidal signals, while it has big waves, big changes in amplitude, frequency and phase. 

However, the filtered signal is an excellent continuous sinusoidal signal without 

noticeable phase change, and in a small duration, its amplitude does not change as much as 

the original signal. Moreover, the waves in the filtered signal could be smaller on a regular 
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lathe with a tailstock. In that case, the filtered signal will be similar to the vibration signal 

in the AVC system, which is a noisy sinusoidal signal as discussed in Chapter 3. 

Therefore, this kind of signal can be suppressed by using the designed chatter suppression 

system. 

As shown in Table 8-1, the measured frequency changes in different iteration in 

the same experiment; also as shown in amplitude FFT graphs, the highest amplitude 

covers a range. This means only suppressing the filtered signal shown in Figure 8-8 is not 

enough. However, this should not be a problem for the designed ACS system because one 

strength of the system is that the system can generate a current control signal based on the 

current iteration measurements and add the current control signal to the original control 

signal to send to the actuator at the beginning of the next iteration as a new control signal 

(as discussed in Chapter 6).  

8.3.4.3 Chatter Suppression Experiment Results  

To reduce the effect of large amplitude vibrations resulting from excessive shaking 

of the lathe, cuttings were made close to the clamped end of the workpiece. Some chatter 

signals show that the sizes of big waves were reduced. Then, the designed chatter 

suppression system was used to control chatter signals with relatively regular pattern 

offline. Figure 8-9 shows two examples of offline control outcomes (the control system 

started to send out control signals after 10 seconds). These examples show that about 50% 

reduction in the vibration amplitude at the sensor location can be achieved. 
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        Figure 8-9: Examples of control outcomes 

Next, the chatter suppression system was applied during cutting when chatter 

happened. As mentioned before, there is only one set of piezo accelerometer and piezo 

actuator. Since there is more power in vertical direction than in horizontal direction when 

chatter happens, which can be seen by comparing Figure 8-5 (b) and Figure 8-6, as 

discussed in section 8.3.2, the set of piezo accelerometer and piezo actuator is mounted in 

the vertical direction. The cuttings are close to the clamped end of the workpiece. Figure 

8-10 shows that some outcomes are acceptable when chatter patterns are relatively 

regular. Before applying control, many small horizontal chatter stripes are visible on the 

workpiece surface. By counting the number of the small chatter stripes for one revolution, 

the chatter frequency can be calculated. In the experiment to get Figure 8-10, cutting is 
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very close to the clamped end of the workpiece; the spindle speed was about 500 RPM; 

Feed=1 (setting of MAXNC T2, about 0.015 inch / second without relation to the spindle 

speed here); and the cutting depth was about 0.02 inch. Since there are about 300 small 

stripes for one revolution, the chatter frequency can be calculated as about 2500 Hz. After 

control, on the workpiece surface, the small chatter stripes are almost gone and only trails 

of the tool are obvious.                 

   

          Figure 8-10: An example of good control outcome 
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Taking a close look at Figure 8-10, the depth of the grooves after control appear 

deeper than the chatter patterns before control was activated. Without chatter there is more 

power available for the cutting edge to cut deeper grooves.  

Figure 8-11 shows that some outcomes are unsatisfactory when the chatter pattern 

is irregular, which means the waves in the chatter signal, as mentioned in section 8.3.2, are 

very irregular and choppy. In the experiment to get Figure 8-11, cutting is closer to the free 

end of the workpiece; the spindle speed was about 500 RPM; Feed=1.5 (setting of 

MAXNC T2, about 0.02 inch / second without relation to the spindle speed here); and the 

cutting depth was about 0.03 inch. 

                 

        Figure 8-11: An example of unsatisfying control outcomes 
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8.4  Discussion 

The experimental results show that the proposed ACS system can work when the 

chatter signals are regular, i.e., when cuts were made close to the clamped end of the 

workpiece and the big waves in chatter signals are not significant. By using a real-time 

developing environment, the designed ACS system can repeat the vibration detection and 

control loop as fast as in every 25 millisecond. The designed ACS system is a real-time 

online control system.  

The ACS system is also robust when the experimental setup changes. When the 

setup changes, the ACS system can collect training data and train the ANN model 

automatically via running a calibration or initialization program before cutting and then 

the system is ready for the ACS of the new setup. 

The system can always modify the control signal based on the feedback from the 

sensor after a specific time (one or more control iterations). As presented in Chapter 6 and 

section 8.1, the control system can repeat all calculations and generates a current control 

signal based on the detected vibration situation of current control iteration. This current 

control signal is added to the accumulated control signal, which is a combination of all 

previous continuous control signals, to get an updated control signal. The new updated 

control signal is sent out to the actuator at the beginning of the next iteration. This updated 

control signal becomes the “accumulated control signal” in the next control cycle. 

Therefore, the actual control signal sent to the actuator is an accumulation of all previous 
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generated control signals, which are continuous. One control cycle may include more than 

one control iteration to avoid unstable transient conditions after the modification of the 

actual control signal, and therefore to get more accurate measurements of vibration.  

In the current work, the experiment results show that the chatter frequencies were 

different from the respective first natural frequencies of the machining system (see 

section 8.3 for details). While the first natural frequency of the tool system in the vertical 

direction is about 488 Hz and in the horizontal direction is about 423 Hz, when chatter 

happens, in most cases, the measured frequency in vertical direction is between 2500 Hz 

and 2600 Hz, and in horizontal direction is between 2600 Hz and 2800 Hz. More 

complexities of chatter signals of the current experimental setup are shown in section 

8.3.  

The reasons for the complexities could be investigated by comparing the 

performances of the current lathe and a regular lathe with a tailstock. Moreover, the 

designed ACS system can be tested on a regular lathe with a tailstock. For a mini lathe 

without a tailstock, the cutting conditions required to generate chatter may be too 

aggressive. Without the support provided by using a tailstock, the force of the tool on the 

workpiece would cause it to bend away from the tool, producing unexpected signal 

signatures. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

9.1  Contributions 

A novel artificial neural network (ANN)-based active vibration control (AVC) 

technique has been developed. The developed AVC system can detect the vibration 

frequency with the highest power and suppress this sinusoidal signal in one control cycle. 

In subsequent cycles, vibration frequencies of next level of power will be suppressed. 

Technically, if the ANNs can be trained to cover enough frequency and amplitude ranges, 

after enough control cycles, most of the original vibration could be suppressed. The 

ANNs can be trained automatically for updated time delays for any changes in the 

system. The AVC system is experimentally verified to be effective, real-time, adaptable, 

robust, and easily implemented. 

When applied to a machining chatter suppression system, the developed 

methodology can provide advantages over many other chatter suppression methods. 

Since it works without increasing the damping of the machine tool, it does not cause a 

decrease of efficiency. Unlike many other methods where a change in tool-workpiece 

configuration requires off-line changes in the system, the designed system in this work is 

online, adaptable and can self-tune. Using a feedback structure, the proposed 

methodology can deal with unexpected disturbances. Some active suppression methods 

use linear adaptive architecture/algorithm combinations and therefore cannot deal with 

nonlinearities while more capable ANNs are used in the proposed methodology. 

Moreover, compared with some other ANN-based active control methods, the proposed 

methodology can deal with time delay and be implemented in an easier way. 
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The proposed methodology can be used in lights-out machining systems where 

machines are kept running through a second or third shift without adding manpower. 

9.2  Conclusions 

In this work, an experimental AVC system, which includes hardware setup and 

real-time software development environment, has been successfully implemented. The 

efficiency, real-time execution, adaptability and robustness of the proposed methodology 

have been verified experimentally in the vibration control of a cantilever beam. 

In addition, an experimental setup for the chatter suppression of a turning tool 

has been successfully implemented. The ANN-based AVC techniques have been utilized 

for active chatter suppression (ACS) for a mini-lathe. While chatter signals can be very 

irregular in the current work, experimental results show that the proposed ACS system 

can work for chatter signals with regular pattern. 

Although the efficiency of the designed methodology has been verified 

experimentally, there are some limitations for it in applications. One limitation comes 

from ANNs used in the system. Since the errors of ANNs cannot be eliminated 

completely, there will always be some residual vibrations after control. Some limitations 

also come from hardware. For example, actuators and amplifiers usually have their 

working frequency and amplitude ranges. Therefore, if components of vibrations to be 

controlled are out of the working ranges, the vibrations cannot be eliminated completely. 

 

9.3  Future Work 

The ability of the proposed methodology should be tested on a production lathe 

for turning and boring operations. This will require much stronger actuators and custom 

built toolholders. 
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The chatter problems in milling operations are more complex because of the 

discontinuity of the cutting action. Nevertheless, the proposed methodology in this work 

can be adapted to this problem with some modifications including signal processing. 
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     S Series Multifunction DAQ Specifications 
 
 
Specifications – PCI-6110, PCI-6111 
These specifications are typical for 25 °C unless otherwise noted. 

Analog Input 
Accuracy specifications .............................  See  Table 2, page  199 
Input Characteristics 
Number of pseudodifferential inputs: 

PCI-6110 ...............................................  4 
PCI-6111 ...............................................  2 

Resolution ..................................................  12 bits, 1 in 4,096 
Maximum Sampling  Rate 

6110/6111.............................................   5 MS/s 
Minimum  sampling rate .............................  1 kS/s 
Streaming-to-disk rate  6110/6111..............  8 MS/s,  system dependent 
Input signal ranges 

 

Input Range 
(Software, Selectable per Channel)  

Bandwidth (MHz)
±42  V 5.5
±20  V 4.4
±10  V 7.2
±5  V 4.8
±2  V 4.8
±1  V 4.4

±500  mV 4.4
±200  mV 4.1

 
Input coupling ............................................  DC or AC (software selectable) 
Maximum working  voltage  for all analog  input channels 

 

Input 
Channels Range Maximum Working Voltage

(Signal + Common Mode)
ACH<0..3>+ 200 mV to 10 V 

20 to 50 V Should  remain  within  ±11 V of ground 
Should  remain  within  ±42 V of ground

ACH<0..3>- All Should  remain  within  ±11 V of ground

Overvoltage protection 
On/Off...................................................   ±50  V 

Inputs  protected ........................................   ACH<0..3>+, ACH<0..3>- 
FIFO Buffer Size 

6110/6111.............................................   8,192  Samples 
Data transfers ............................................  DMA, interrupts, programmed I/O 
DMA modes .............................................. Scatter-gather (single transfer, 

demand transfer) 
Transfer Characteristics 
Relative  accuracy ......................................   ±0.5  LSB typical, ±1 LSB maximum 
DNL ............................................................  ±0.3  LSB typical, ±0.75  LSB maximum 
No missing codes ......................................  12 bits, guaranteed 
Spurious free  dynamic  range  (SFDR), DC to 100 kHz 

Range SFDR (dB) 
200 mV to 10 V 75 

20 to 42 V 70 

 
 
CMRR, DC to 60 Hz 
 

Range CMRR (dB)
200  mV 72
500  mV 70

1 V 67
2 V 62
5 V 56

10 V 50
20 to 42 V 35

 
Dynamic Characteristics 
Interchannel skew .....................................  1 ns typical; fin = 100 kHz, 10 V range 
System noise  (LSBrms, not including quantization) 
 

Range Noise
200 mV 1.0
500 mV 0.6

1 to 50 V .05

Crosstalk ....................................................   -80 dB, DC to 100 kHz 

Analog Output 
Output Characteristics 
Number of channels ..................................  2 voltage  outputs 
Resolution 

6110/6111.............................................   16 bits, 1 in 65,536 
Maximum update rate 

1 channel ..............................................   4 MS/s,  system dependent 
2 channel ..............................................   2.5 MS/s,  system dependent 

Type of DAC...............................................   Double  buffered, multiplying 
FIFO Buffer Size 

6110/6111.............................................   2,048  Samples 
Data transfers ............................................  DMA, interrupts, programmed I/O 
DMA modes .............................................. Scatter-gather (single transfer, 

demand transfer) 
Transfer Characteristics 
Relative  accuracy ......................................   ±4 LSB typical, ±8 LSB maximum 
DNL ...........................................................  ±2 LSB typical, ±8 LSB maximum 
Voltage Output 
Ranges .......................................................  ±10  V 
Output coupling .........................................  DC 
Output impedance .....................................  50 Ω ±5% Short 
circuit current ...................................  ±27  mA typical Output 
stability ..........................................  Any passive load 
Protection...................................................   Short-circuit  to ground 
Power-on state...........................................   0 V, ±400  mV 
Dynamic Characteristics 
Settling  time  and slew  rate 

Setting Time for Full-Scale  Step Slew Rate 
300 ns to ±0.01% 300 V/µs 

 
Effective  number of bits (ENOB) ...............  11.0  bits, DC to 100 kHz 
Amplifier Characteristics 
Input impedance 

ACH<0..3>+ to ACH <0..3> - 
Normal powered on ........................  1 MΩ in parallel with 100 pF 
Powered off ....................................  1 MΩ minimum 
Overload ..........................................  1 MΩ 

Impedence to ground 
ACH<0..3>-  to ground  ....................  10 nF 

Input bias current .......................................  ±200  pA 
Input offset current ....................................  ±100  pA 

 
Noise ..........................................................  1 mVrms, DC to 5 MHz 
Glitch energy (at mid-scale transition) 

Magnitude ............................................   350 pV 

Digital  I/O 
Number of channels ..................................  8 input/output 
Compatibility ..............................................  5 V TTL/CMOS 
Power-on state...........................................   Input (high impedance) 
Data Transfers 

6110/6111.............................................   Programmed I/O 
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      S Series Multifunction DAQ Specifications 
 
 

Specifications – PCI-6110, PCI-6111 (continued) 
Digital logic levels 

 

Level Minimum  (V) Maximum (V)
Input low voltage 
Input high voltage 0 

2.0 0.8 
5.0

Output low voltage (Iout = 24 mA) 
Output high voltage (Iout = 13 mA) 

– 
4.35 

0.4 
– 

 
Timing I/O 
General-Purpose Up/Down Counter/Timers 
Number of channels ..................................  2 
Resolution ..................................................  24 bits 
Compatibility ..............................................  5 V TTL/CMOS 
Digital logic levels 

 

Level Minimum  (V) Maximum (V)
Input low voltage 
Input high voltage 0 

2.0 0.8 
5.0

Output low voltage (Iout = 5 mA) 
Output high voltage (Iout = 3.5 mA) 

– 
4.35 

0.4 
– 

Base  clocks  available .................................  20 MHz and 100 kHz 
Base  clock accuracy................................... ±0.01% 
Maximum source frequency ......................  20 MHz 
External  source selections .........................  PFI <0..9>, RTSI <0..6>, analog 

trigger;  software selectable 
External  gate  selections.............................  PFI <0..9>, RTSI <0..6>, analog 

trigger;  software selectable 
Minimum  source pulse  duration ................  10 ns,  edge-detect mode 
Minimum  gate  pulse  duration....................  10 ns,  edge-detect mode 
Data transfers ............................................  DMA, interrupts, programmed I/O 
DMA modes .............................................. Scatter-gather (single transfer, 

demand transfer) 
Frequency Scaler 
Number of channels ..................................  1 
Resolution ..................................................  4 bits 
Compatibility ..............................................  5 V/TTL 
Digital logic levels 

 

Level Minimum  (V) Maximum (V)
Input low voltage 
Input high voltage 0 

2.0 0.8 
5.0

Output low voltage (Iout = 5 mA) 
Output high voltage (Iout = 3.5 mA) 

– 
4.35 

0.4 
– 

Base  clocks  available .................................  10 MHz, 100 kHz 
Base  clock accuracy................................... ±0.01% 
Data transfers ............................................  Programmed I/O 

Triggers 
Analog Triggers 
Number of triggers ....................................  1 
Purpose 

Analog input .........................................  Start  and stop  trigger,  gate, clock 
Analog output .......................................  Start  trigger,  gate, clock 
General-purpose counter/timers...........  Source, gate 

Source 

PCI-6110  ACH<0..3>, PFI0/TRIG1 
PCI-6111  ACH<0..1>, PFI0/TRIG1 

 
 
Digital Triggers 
Number of triggers ....................................  2 
Purpose 

Analog input .........................................  Start  and stop  trigger,  gate, clock 
Analog output .......................................  Start  trigger,  gate, clock 
General-purpose counter/timers...........  Source, gate 

Source ........................................................   PFI<0..9>, RTSI<0..6> 
Slope ..........................................................  Positive  or negative; 

software selectable 
Compatibility ..............................................  5 V TTL 
Response ...................................................  Rising or falling edge 
Pulse  width ................................................  10 ns minimum 

External input for digital or analog trigger  (PFI0/TRIG1) 
Impedance .................................................  10 kΩ 
Coupling .....................................................  DC or AC 
Protection 

Digital trigger ........................................  -0.5 to Vcc + 0.5 V 
Analog trigger 

On/off/disabled ................................  ±35  V 

Calibration 
Recommended warm-up time ...................  15 minutes 
Calibration Interval .....................................  1 year 
Onboard calibration  reference 

DC Level ...............................................  5.000  V (±3.5  mV); actual 
value stored in EEPROM 

Temperature coefficient .......................  ±0.6  ppm/°C  maximum 
Long-term  stability................................  ±6 ppm/√1,000h 

RTSI 
Trigger lines................................................  7 

Bus Interface 
PCI .............................................................  Master, slave 

Power Requirements 
 

Device +5 VDC (±5%) Power Available at I/O Connector
PCI-6110 3.0 A +4.65 to 5.25  VDC, 1 A 
PCI-6111 2.5 A +4.65 to 5.25  VDC, 1 A 

Physical 
Dimensions 

Not including connectors......................  31.2  by 10.6  cm (12.3 by 4.2 in.) 
I/O connector .............................................  68-pin male  SCSI type 

Environment 
Operating temperature ..............................  0 to 45 °C 
Storage temperature..................................  -20 to 70 °C 
Relative  humidity .......................................  10 to 90%,  noncondensing 

Certifications and Compliances 
CE Mark Compliance 
 
1 Bandwidth specifications are for signals  on the  (+) input with the  (-) input at 
DC ground.  The (-) input is slew  rate  limited to 24 V/µsec and has  an additional 
10 nF capacitance to ground. 

 
Level 

Internal  source, ACH<0..3>  .................   ±Full-scale 
External  source, PFI0/TRIG1 ................  ±10  V 

Slope ..........................................................  Positive  or negative; software-selectable 
Resolution ..................................................  8 bits, 1 in 256 
Hysteresis ..................................................   Programmable Bandwidth (-3 dB) 

Internal  source, ACH<0..3>  .................  5 MHz 
External  source, PFI0/TRIG1 ................  5 MHz 
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AE Series M8 Analog Inductive Prox Selection Chart 
 
Part Number 

 
Price Sensing 

Range 
 

Housing 
 

Output Connection Dimensions

AE9-10-1A check 0 to 4.0mm 
(0-0.157in) 

 
Shielded 

 
0-10VDC 2m (6.5’) axial cable Figure 1

AE9-10-1F check M8 (8mm) connector Figure 2

Specifications 
 AE9-10-1*
Output Type 0-10VDC
Resolution  1µm
Repeat Accuracy ±0.01mm
Material  Correction Factors See Proximity  Sensor Terminology
Operating Voltage 15-30VDC
Ripple  20%
No-load Supply Current  10mA
Voltage Output Minimum  Load 1kO
Voltage Drop  2.0 V
Time Delay Before Availability  50ms
Input Voltage Transient Protection Up to 30VDC
Input Power Polarity Reversal Protection Yes
Output Power Short-Circuit Protection Yes (switch autoresets after overload is removed)
Temperature Range -25° to +70° C (-13° to 158° F)
Temperature Drift  10% Sr
Protection Degree (DIN 40050) IEC IP67
Housing Material Chrome-plated brass
Sensing Face Material PBT
Tightening Torque 4Nm (0.71lb./in.)
Weight (cable/M8 connector) 50g (1.76 oz.) / 20g (0.71 oz.) 2.

36
”/ 

m
m

 

.2
4”

/ 
6 

m
m

   
 8

.5
 m

m
 

 
AE SERIES  ANALOG   INDUCTIVE  PROXIMITY   SENSORS 

M8 (8mm) metal – analog output 
• 4 models available 
• Compact metal housing 
• Axial cable or M8 quick-disconnect models 
• IP67 rated 

 
 
 
 
 
 

Dimensions 
Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wiring diagrams 
 

 
 

Connector 
 
 

 
6.5mm 

 
 
 
 
 
M8x1 
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PTFE PTFE 

 
 
 

 
 
 
 
 

P-810  dimensions in mm. Two  0.1 m long teflon 
insulated pigtails. Length L: see table. Max.  
torque at top  piece: 0.08 Nm. 

P-830  dimensions in mm. Two  0.1 m long 
teflon insulated pigtails. Length L: see table. 
Max.  torque at top  piece: 0.2 Nm. 

 
 

 
 
 
 
Technical Data and Product  Order Numbers 

 

Order 
number 

Travel 
range  for 
0 to 100 V 
[µm] ±20 %  

*Resolution 
[nm] 

**Static large-
signal 
stiffness 
[N/µm] ±20 % 

Push- / 
pull force 
capacity 
[N] 

Electrical 
capacitance 
[µF] ±20 %  

Dynamic operating 
current  coefficient 
[µA / (Hz • µm)] 

Resonant 
frequency 
(unloaded) 
[kHz] ±20 %  

Mass 
[g] ±5 %  

P-810.10 15 0.15 14 50 / 1 0.3 3.0 22 4 
P-810.20 30 0.3 7 50 / 1 0.7 3.0 15 6 
P-810.30 45 0.45 4 50 / 1 1.0 3.0 12 8 
P-830.10 15 0.15 57 1000  / 5 1.5 12.5 23 10 
P-830.20 30 0.3 27 1000  / 5 3.0 12.5 14 16 
P-830.30 45 0.45 19 1000  / 5 4.5 12.5 10 21 
P-830.40 60 0.6 15 1000  / 5 6.0 12.5 8.5 27 
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Ceramic Shear Accelerometer Type 8778A500... 
 
Ultra Miniature, 0.4 Gram Weight, Voltage Mode Accelerometer 

 
 

Small, light weight  general  purpose   accelerometer for  vibration 
measurements in wide  range  of  applications.  Available in two 
cable versions, the standard with a permanent attached cable and 
the M14 with a field replaceable  twisted wire pair. 

 Type 8778A500sp 

 
• Low impedance, voltage mode 
• Ultra low base strain and thermal transient  response 
• Wide frequency  response, 2 ... 9000 Hz (±5 %) 
• Ground isolated assembly 
• High 10 mV/g sensitivity 
• Conforming  to CE 

 
 
 
 
 
 
 
0.39 

 
 
 
 
Type 8778A500M14sp 
 
 

10-32  neg. 

 
Description 
The Type 8778A500... and  8778A500M14 are  high  frequency, 
ultra miniature, light weight accelerometers that contain uniquely 
designed  ceramic  shear  sensing  element. The shear  mode  ele- 
ment  design  provides  an  immunity  to  thermal  transients,  base 
strain and transverse  motion. 

 
 

ø0.23 
 
 
 
0.17 

 
 
 
 
coaxial cable 
conductor is positive, 
shield is negative 

 
 
shrink tubing 

 
 
 
 
1/4" Hex 

 
An internal microelectronic  Piezotron®  signal conditioning  circuit 
converts  the  charge  developed in the  ceramic element  as a re- 
sult  of  the  accelerometer  being  subjected  to  a  vibration,  into 
a useable  high  level voltage  output signal at  a low impedance 
level. The standard Type 8778A500... accelerometer includes an 
integral Teflon®  jacketed 3 ft long cable terminated with a 10-32 
neg. connector while the M14 version features a field replaceable 
twisted  wire pair and connector. The units are designed  for wax 
or adhesive  mounting and  is supplied  with a custom  wrench  to 
facilitate removal  after  testing.  Power  to the  Type 8778A500… 
accelerometers can be provided  by any Kistler coupler Type 51... 
or by any  industry  standard voltage  mode  IEPE  (Integral  Elec- 
tronic Piezo-Electric) power  supply/coupler. 

 
Length 

user specified 
 
 

0.13 mounting surface 
 
 
 
 
36AWG twisted  pair 
 

0.40 

 
 
 
 
 
 
Type 8778A500sp 

 
Application 
The light weight,  low profile and small size of the accelerometer 
Type 8778A500… makes it ideal for: precision vibration measure- 
ments;  modal analysis on small, thin walled structures  or where 
space is limited and mass loading is of primary concern. 
Typical applications included PC Board stress screening and critical 
component evaluation  on disk drive assemblies. 

 
ø0.23 
 
 
 
 
 

0.17 

 
10-32  neg.  1/4" Hex 

 

 
 
 
 
 

Length 
user specified 

 
0.13 mounting surface 

 
 
 
 
 
 
 
 
shrink 
tubing 

 
 
 

 
Type 8778A500M14sp 
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Specification Unit Type 8778A500...
Acceleration range g ±500
Acceleration limit gpk ±750
Threshold (noise 100 µVrms), nom. grms 0.01
Sensitivity, ±5 % mV/g 10
Resonant  frequency  mounted, nom. kHz 70*
Frequency response, ±5 % Hz 2 … 9000*
Amplitude non-linearity %FSO ±1
Time constant, nom. s ≥0.3
Transverse sensitivity, nom. (max. 5) % 3

Base strain sensitivity @ 250 µe g/µe 0.009*
Shock limit (1 ms pulse) gpk 5000
Temperature coefficient of sensitivity %/°F –0.08
Operating temperature range 
(4 mA supply current) 

°F –65 … 250

Bias, nom. VDC 11
Impedance Ω ≤100
Voltage full scale V ±5

Voltage VDC 18 … 30
Constant current mA 2 ... 20 Solder pins/no cable M14  

10-32  neg./integral coax cable sp 
 10-32  neg./repairable twisted pair cable M14sp 

Sensing element Type ceramic-shear
Case/base material Aluminum/hard 

anodized/Titanium

Degree of protection case/connector Type epoxy
Connector-terminates Type 10-32  neg.
Ground isolation, min. MΩ 10
Weight (excluding cable) grams 0.4
Mounting Type adhesive/wax

 
 
 

 
 

Technical Data The recommended adhesives to be placed between the accelero- 
meter’s base and the test object surface include: 

 
• Petro wax, Type 8432 
• Loctite 430 general purpose  for adhesion  to metals 
• Loctite 495 general purpose  for adhesion  to other materials 

 
Note:  Removal of an adhesively  mounted unit is extremely  dif- 
ficult and care should be exercised during the removal process. An 
appropriate adhesive solvent and the Type 1378 custom designed 
removal wrench  should be used to twist the accelerometer off of 
the test object. 

 
Environmental 

 
 
 
 
 
 
 

Output 

 
Included Accessories  Type 
• Petro wax  8432 
• Removal wrench  1378 
 
Optional Accessories  Type 
• Connecting cable for low impedance sensors  1761B 
• Cable kit (needed to connect  Type 8778A500...  1764A 

to Kistler couplers) 
 
 
 

Source 
Ordering Key 
 
Connector/Cable 

 
Type 8778A500 

 
 

Construction 
 
 
 
 

Related Accelerometers  Type 
• integral cable, 1.6 gram weight  8728A500 
• top 10-32  connector, 1.9 gram weight  8730A500 
• integral cable, 1.1 gram weight  8732A500 
• integral cable, 1.1 gram weight with  8734A500 

mounting flange 
 
 
 

The Type 8778A500… can be attached to the  test  structure  by 
adhesive  or wax.  The accelerometer’s side cable  facilitates  ori- 
entation in confined  areas.  Reliable and accurate  measurements 
require that the mounting surface be clean and flat. The operating 
instruction  manual  for  the  accelerometer Type  8778A...  (002- 
085)  provides  detailed  information  regarding  mounting surface 
preparation. 
 
 
 
  
 
 
 

144 
                       

 



 145  

REFERENCES 

 

1. C. R. Fuller, S. J. Elliott, and P. A. Nelson, “Active Control of Vibration,” Academic, 

New York, 1995. 

 

2. S. J. Elliott and P. A. Nelson, “Active noise control,” IEEE Signal Processing Mag., 

vol. 10, pp. 12–35, 1993. 

 

3. G. Tlusty, “Manufacturing Processes and Equipment”, Prentice Hall Inc., NJ, 2000. 

 

4. S. A. Tobias, “Machine-Tool Vibration”, Blackie and Sons Ltd., Scotland, 1965.  

 

5. D. J. Inman, “Engineering Vibration,” Prentice-Hall, Englewood Cliffs, NJ, 1994. 

 

6. C. H. Hansen and S. D. Snyder, “Active Control of Noise and Vibration,” E&FN 

Spon, London, U.K., 1997. 

 

7. S. D. Snyder and N. Tanaka, “Active Control of Vibration Using a Neural Network,” 

IEEE Transactions on Neural Networks, Vol. 6, No. 4, pp. 819-828, July 1995. 

 

8. B. Widrow and S. D. Stearns, “Adaptive Signal Processing,” Prentice-Hall, 

Englewood Cliffs, NJ, 1985. 

 

9. S. Haykin, “Adaptive Filter Theory,” 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 

1996. 

 



 146  

10. M. Hagan and H. Demuth, “Neural Network Design,” PWS Publishing Co., Boston, 

MA, 1996. 

 

11. S. M. Kuo and D. R. Morgan, “Active Noise Control Systems: Algorithms and DSP 

Implementations,” Wiley, New York, 1996. 

 

12. http://www.micromega-dynamics.com/vibration-strategies.htm  

 

13. L. H°akansson, “The Filtered-x LMS Algorithm,” University of 

Karlskrona/Ronneby, Sweden. 

 

14. J. J. Shynk, “Adaptive IIR Filtering,” IEEE Acoust. Speech Signal Processing Mag., 

pp. 4–21, 1989. 

 

15. http://soundlab.cs.princeton.edu/learning/tutorials/DSP/DSP.html 

 

16. http://www.dspguru.com/info/faqs/fir/basics.htm 

 

17. M. Bouchard, B. Paillard, and C. T. LeDinh, “Improved Training of Neural 

Networks for the Nonlinear Active Control of Sound and Vibration,” IEEE 

Transactions on Neural Networks, Vol. 10, No. 2, pp. 391-401, March 1999. 

 

18. M. Bouchard, “New Recursive-Least-Squares Algorithms for Nonlinear Active 

Control of Sound and Vibration Using Neural Networks,” IEEE Transactions on 

Neural Networks, Vol. 12, No. 1, pp. 135-147, January 2001. 

 

19. http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/ 



 147  

20. S. Haykin, “Neural Networks: A Comprehensive Foundation,” 2nd ed., Prentice-Hall, 

Englewood Cliffs, NJ, 1999. 

 

21. K.S. Narendra and K. Parthasarathy, “Gradient methods for the optimization of 

dynamical systems containing neural networks,” IEEE Trans, Neural Networks, Vol. 

2, pp. 252-262, 1991. 

 

22. T. Insperger, G. Stepan, P.V. Bayly, and B.P. Mann, “Experimental Investigation of 

Active Vibration Control Using Neural Networks and Piezoelectric Actuators,” 

Institute of Physics Publishing, February 2001. 

 

23. W. C. Choi and N. W. Kim, “Experimental Study on Active Vibration Control of a 

Flexible Cantilever Using an Artificial Neural-network State Predictor,” Multimedia 

Institute, LG Electronics Ltd, 16 Umyon-dong, Sucho-go, 137-240, August 1996. 

 

24. G. C. M. Deabreu, R. L. Teixeira and J. F. Ribeiro, “A Neural Network-Based Direct 

Inverse Control for Active Control of Vibrations of Mechanical Systems,” IEEE 

1522-4899, 2000. 

 

25. R. Jha and J. Rower, “Experimental investigation of active vibration control using 

neural networks and piezoelectric actuators,” Institute of Physics Publishing, 

November 2002. 

 

26. http://ni.com/ 

 

27. http://msdn.microsoft.com/library/ 



 148  

28. Y. Xia and A. Ghasempoor, “Neural network-based active vibration control,” Dig. 

21st Canadian Congress of Applied Mechanics, Canada, 2007. 

 

29. Y. Xia and A. Ghasempoor, “Adaptive active vibration suppression of flexible beam 

structures,” Pro. of the Ins. of Mech. Engineers, Part C: Journal of Mechanical 

Engineering Science, Vol. 222, No. 3, pp.357-364, 2008. 

 

30. Y. Xia and A. Ghasempoor, “Active Vibration Suppression Using Neural Networks,” 

Proceedings of the World Congress on Engineering 2009, WCE 2009, London, U.K. 

July, 2009. 

 

31. S. A. Tobias, “Machine-Tool Vibration”, Blackie and Sons Ltd., Scotland, 1965. 

 

32. E. Salje, “Self-Excited Vibrations of Systems with Two Degrees of Freedom”, 

Transactions of the ASME, Vol. 78, pp. 737–748, 1956. 

 

33. http://highspeedmachining.mae.ufl.edu  

 

34. G. Tlusty, “Manufacturing Processes and Equipment”, Prentice Hall Inc., NJ, 2000. 

 

35. J. R. Pratt and A. H. Nayfeh, “Chatter Control and Stability Analysis of a Cantilever 

Boring Bar Under Regenerative Cutting Condition”, Phil. Trans. R. Soc. Lond. A 

359, pp. 759–792, 2001. 

36. T. Choi and Y. C. Shin, “On-Line Chatter Detection Using Wavelet-Based Parameter 

Estimation”, Journal of Manufacturing Science and Engineering, Vol. 125, pp. 21-28, 

2003. 

 



 149  

37. M. Wang and R. Fei, “On-Line Chatter Detection and Control in Boring Based on an 

Electrorheological Fluid”, Mechatronics, Vol. 11, pp. 779-792, 2001. 

 

38. X. Q. Li, Y. S. Wong and A. Y. C. Nee, “Tool Wear and Chatter Detection Using the 

Coherence Function of Two Crossed Accelerations”, Int. J. Mach. Tools Manuf., Vol. 

37, No. 4, pp. 425-435, 1997. 

 

39. I. N. Tansel, A. Wagiman and A. Tziranis, “Recognition of chatter with neural 

networks”, Int. J. Mach. Tools Manufact. 31: 539-552, 1991. 

 

40. J. Gradisek, E. Govekar and I. Grabec, “Using Coarse-grained Entropy Rate to 

Detect Chatter in Cutting”, J. Sound Vib., Vol. 214, No. 5, pp. 941–952, 1998. 

 

41. G. W. Wornell, “Signal Processing with Fractals; A Wavelet-based Approach”, 

Prentice Hall, Upper Saddle River, NJ, 1996. 

 

42. Z. Y. Kelson, and W. C. Hsueh, “Suppression of Chatter in Inner-Diameter Cutting”, 

JSME Int. J. Series C: Dyn., Cont. Robot., Design, Manuf., Vol. 39, No. 1, pp. 25-36, 

1996. 

 

43. Satoshi Ema and Etsuo Marui, “Suppression of chatter vibration of boring tools 

using impact dampers”, International journal of machine tools & manufacture, Vol. 

40, pp. 1141–1156, 2000. 

 

44. A. H. Slocum, E. R. Marsh and D. H. Smith, “A new damper design for the machine 

tool structure: the replicated internal viscous”, Precision Engineering, Vol. 16, No. 3, 

pp. 174-183, 1994. 



 150  

45. Y. S. Liao and Y. C. Young, “A new on-line spindle speed regulation strategy for 

chatter control”, International journal of machine tool & manufacturing, Vol. 36, No. 

5, pp. 651-660, 1996. 

 

46. S. Smith and T. Delio, “Sensor-based chatter detection and avoidance by spindle 

speed selection”, ASME, Journal of Engineering for Industry, Vol. 114, pp. 486–492, 

1992. 

 

47. C. R. Liu and T. M. Liu, “Automated Chatter Suppression by Tool Geometry 

Control”, ASME, Journal of Engineering for Industry, Vol. 107, pp. 95–98, 1985. 

 

48. Y. S. Tarng, H. T. Young and B. Y. Lee, “An Analytical Model of Chatter Vibration 

in Metal Cutting”, International Journal of Machine Tools & Manufacture, Vol. 34, 

pp. 183–197, 1994. 

 

49. Y. S. Tarng, J. Y. Kao and E. C. Lee, “Chatter suppression in turning operations with 

a tuned vibration absorber”, Journal of Materials Processing Technology, Vol. 105, 

pp. 55-60, 2000. 

 

50. M. Wang and R. Fei, “Improvement of machining stability using a tunable-stiffness 

boring bar containing an electrorheological fluid”, Smart Mater., Struct., Vol. 8, pp. 

511–514, UK, 1999. 

 

51. H. Tanaka and F. Obata, “Active Chatter Suppression of Slender Boring Bar Using 

Piezoelectric Actuators”, JSME International Journal, Series C: Dynamics, Control, 

Robotics, Design and Manufacturing, Vol. 37, pp. 601-606, 1994. 

 



 151  

52. D. R. Browning, I. Golioto, and N. Thompson, “Active Chatter Control System for 

Long-Overhang Boring Bars”, Lucent Technologies/Bell Labs, Whippany N.J., 2004. 

 

53. P. Stoica, “List of references on spectral line analysis,” Signal Processing, Vol. 31, 

pp. 329–340, 1993. 

 

54. J. R. Trapero, H. Sira-Ramirez, and V. Feliu-Batlle, “An algebraic frequency 

estimator for a biased and noisy sinusoidal signal,” Signal Processing, Vol. 87, pp. 

1188–1201, 2007. 

 

55. M. Riedmiller, and H. Braun, “A Direct Adaptive Method for Faster 

Backpropagation Learning: The RPROP Algorithm,” Proceedings of the IEEE 

International Conference on Neural Networks, San Francisco, 1993. 

 

56. http://www.engineeringtoolbox.com/ 

 

57. http://www.mcelwee.net/html/densities_of_various_materials.html 

 

58. http://darkwing.uoregon.edu/~struct/courseware/461/461_lectures/461_lecture28/461

_lecture28.html 

 

59. D. C. Montgomery, “Design and Analysis of Experiments,” 5th ed., John Wiley & 

Sons, 2001. 

 

60. http://www.physikinstrumente.com/ 

 


	Ryerson University
	Digital Commons @ Ryerson
	1-1-2010

	Experimental implementation of artificial neural network-based active vibration control & chatter suppression
	Yong Xia
	Recommended Citation





