
Numerical studies of Implicit Tau Leaping

methods for stochastic biochemical

systems

by

Fauzia Jabeen

Master of Science in Bioinformatics, Muhammad Ali Jinnah, 2013

Master of Science in System Engineering, Quaid-i-Azam, 2000

Master of Science in Physics, Punjab, 1997

Bachelor of Science, Punjab, 1994

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Applied Mathematics

Toronto, Ontario, Canada, 2018

c©Fauzia Jabeen, 2018



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

I understand that my thesis may be made electronically available to the public.

ii



Numerical studies of Implicit Tau Leaping methods for stochastic

biochemical systems

Master of Science, 2018

Fauzia Jabeen

Applied Mathematics

Ryerson University

Abstract

Deterministic models of chemical reactions systems have been used successfully in studying

chemical kinetics problems. However, in biochemical systems (e.g. cellular systems in biol-

ogy), small molecular population sizes of some key reacting species can lead to results that

cannot be predicted by the traditional deterministic models. It has been found that such

processes involve intrinsic randomness that can be better modeled by stochastic models.

Chemical Master Equation (CME) is an accurate stochastic model of well-stirred biochemi-

cal systems. We investigate reliable and efficient simulation methods for the CME, namely

the implicit tau-leaping method. The tau-leaping algorithms were tested on several models

of practical interest such as the Schlögl model and the Goldbeter-Koshland switch and com-

pared to the exact methods. We observed that, for systems not reaching steady state, the

implicit tau-leaping strategy is accurate.
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of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Chapter 1

Introduction

The last few decades have witnessed a tremendous growth in the field of biological sciences,

especially at the cellular level. A lot of attention has been paid to biochemical processes

taking place at the molecular level. For example, “gene expression” is a process in which the

hereditary information stored in sequence of DNA, called genes, is transcripted on and trans-

ported through a messenger RNA (mRNA) and eventually translated to produce proteins or

RNA [1]. Proteins are macro-molecules performing many different functions in different cells.

A single mRNA can be used a number of times to produce different types of proteins. It is

interesting to note that the nucleus of every somatic cell (i.e. every cell in a macroorganism

except the reproduction cells) contains the entire genome for that organism. Red blood cells

(RBCs), muscle cells, neurons are all different types of cells, but the nuclei of all those cells

contain the entire genome for that individual. Gene expression processes taking place in the

nucleus of each of those different cells produces only those proteins that are required for the

structural integrity and functioning of that cells. Hemoglobin (a protein used in RBCs to

carry oxygen) is only produced in RBCs and not in the neurons. In this sense, the gene

expression processes taking place within the nuclei are highly regulated processes.

In 1976, Spudich and Koshland [22], while working on isogenic (genetically identical)

bacteria grown in homogeneous nutrient and environment conditions, found that individual
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CHAPTER 1. INTRODUCTION1.1. STOCHASTIC VS. DETERMINISTIC MODELLING

bacteria retain individual (and yet different) swimming patterns throughout their life cycle.

They attributed this phenomenon to the Poissonian variations in the low number of molecules

available during the cell division and gene expression processes. They estimated that there

were only 6 − 14 mRNA molecules per bacteria cell. This was the first time the stochastic

effects were observed experimentally, due to the intrinsic random noise in cellular processes

involving very small number of molecules [32].

There has been a growing awareness and evidence that stochasticity plays an essential role

in the biochemical processes taking place at the cellular level [29, 31, 23]. In 2002, Elowitz and

his coworkers [25], in their landmark experiment were successful in separating and measuring

intrinsic and extrinsic (external environmental) noise by studying two flourescent (colored)

proteins in an isogenic population of E-coli bacterial cells.

The stochasticity due to the random intrinsic noise in the low molecular population levels,

plays an important role in biochemical reactions taking place at the cellular level [29, 30, 31].

There has been a great demand to develop mathematical models and computation approaches

for the quantitative analysis and assessment of the biological (in-vivo) experiments. This is

the main topic of this thesis.

1.1 Stochastic vs. Deterministic Modelling

Mathematically models of the biochemical processes taking place at the cellular level, may be

deterministic or stochastic. The former is based on the use of ordinary differential equations

(ODEs) to represent time variations in the concentrations (moles per unit volume) of the

reacting species and it is called the reaction rate equation (RRE). The later approach is

more accurate for systems involving low molecular counts in some species. The effects of

the intrinsic noise have not been considered significant enough to have any overall effect

on the outcomes of chemical experiments [24, 3]. The deterministic approach was found to

be sufficient for a variety of biochemical situations. This approach was used, for example,

2



CHAPTER 1. INTRODUCTION 1.2. LITERATURE SURVEY

for decribing enzyme kinetics following chemical laws of mass action and rate equations,

and is still taught in standard biochemistry textbooks [3, 4]. Such models have been found

successful for systems with large number of molecules, involving concentrations in enzymatic

reactions that take place in the cytoplasm or reacting solutions in test tubes. At this scale,

the statistical noise can be ignored as compared to the average behavior of the molecules.

Continuous real valued variables are used in this framework of deterministic modelling.

As the number of molecules becomes small, the intrinsic noise may increases. Due to

the random nature of molecular interactions, the number of molecules of different species

reacting biochemically changes abruptly. Stochastic and discrete variables need to be used

at this scale. Stochastic models are required in situation arising e.g., in gene expression

reactions [29]. In this thesis, we are interested in investigating these stochastic models at

the scale with small number of molecules in some species.

Between these two extremes of the number of molecules, an intermediate scale exists.

At this scale, the intrinsic noise is just becoming significant enough, while the system can

still be measured in terms of continuous real valued variables. Continuous stochastic models

based on stochastic differential equations are used at this intermediate scale [10].

1.2 Literature Survey

The field of biochemical kinetics (involving the study of the rates of biochemical reactions

taking place in living organisms under different conditions) has been strongly associated with

chemical kinetics in chemistry. Chemical reactions have been studied under laboratory (test

tube) conditions in terms of concentrations in moles per volume [3, 4]. Ever since Ludwig

Wilhelney (1850) introduced the use of ODEs to model chemical reaction kinetics for the first

time, the continuous deterministic approach has been very successfully used to solve a large

number of problems in chemistry [34, 13]. It is no surprise that this approach was considered

to solve biochemical kinetic problems as well. In fact, probably, the first biochemical kinetic

3



CHAPTER 1. INTRODUCTION 1.2. LITERATURE SURVEY

problem involving enzymes, (known as the Michaelis-Menton model), was studied in 1913

using ODEs. Little attention was paid to the fact that chemical reactions involve discrete

molecules that move around quite randomly interacting with each other through elastic

collisions and sometimes via inelastic collisions involving chemical reactions.

Some work was initiated during 1950’s and 60’s to model chemical reactions using stochas-

tic approach based on Markovian jump processes. Initial formulation of the Chemical Master

Equation (CME) was carried out by McQuarrie in 1967 [35]. The CME is a set of differen-

tial equations giving the time rate of change of probabilities of a chemically reacting system

being in each possible state of the system. A more rigorous mathematical treatment of the

CME was provided by Gillespie in 1992 [36]. Oppenheim et.al. [37] in 1969 demonstrated

and Kurtz [38] proved later in 1972, that the stochastic model based on a Markov chain con-

verges to the deterministic ODE model under the thermodynamic limit of infinite volume Ω

and infinite number of molecules N while keeping their ratio N/Ω and temperature fixed.

The stochastic formulation based on the CME gives full description of the big chemically

reacting system. At each point in time, each probabilistic differential equation represents

one possible state of the system. The number of possible states can increase exponentially,

making the solution of the CME very complex and mathematically intractable [32].

To simulate the CME, Gillespie proposed two Monte Carlo method based algorithms

called the first reaction method in 1976 [39] and the direct method in 1977 [40]. The direct

method is also called the Stochastic Simulation Algorithm (SSA) or Gillespie’s algorithm.

In the first reaction method, a random event time is generated for each reaction from the

exponential distributions of each reaction channel. In the direct method, the time to next

reaction along with the index of that reaction are simulated. Gillespie established that the

two algorithms are equivalent. The SSA exactly simulates the CME in the sense that the

probability distribution obtained by running very large (infinty) number of trajectories using

the SSA will be identical to the one obtain from the CME. The SSA did not get much atten-

tion initially until the work of McAdams and Arkin [29] in 1997 established the importance

4
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of stochastic mechanisms in gene expression, some two decades later. Gillespie’s algorithm

has been extensively used ever since in biochemical kinetic problems [32]. The computa-

tional cost of Gillespie’s algorithm becomes prohibitively high in situations where chemical

reactions take place at very fast rates for a large number of chemical species participating in

the biochemical process. The algorithm simulates every reaction event, and the time taken

between such events becomes very small.

A solution to reduce the high computational cost of the SSA was suggested by Gillespie

[11] in 2001 via the use of the tau-leaping approach. The tau-leaping algorithm gives much

faster results but at the cost of losing exactness of the SSA. A fixed time step τ is chosen

so that more reactions can take place during this time interval. The number of reactions of

a certain type over this step interval can be estimated using a Poisson distribution with a

parameter equal to the product of τ and the reaction propensity. The time step τ is chosen

in such a way that the leap condition of very small variations in the propensity functions

during this interval is ensured. Gillespie’s tau-leaping method is also called the explicit tau-

leaping. This approximate approach is inefficient on stiff systems. Biochemical systems are

often stiff, having both fast and slowly varying components. Usually, the fast reactions are

transient and they settle down quite rapidly as compared to the slow reactions. To model

them properly, a small tau-leap is required which slows down the explicit tau-leap simulation

and increases the simulation time dramatically.

Rathinam et.al [15] proposed the implicit tau-leaping method in 2003 to deal with stiff

systems, having both slow and fast time scales. They modified the explicit tau-leaping

method by using the Poissonian stochastic term at the begining of the time step and the

deterministic term at the end of the step. A converged state of the system is evaluated

iteratively using, for example, Newton’s method before moving on to the new time step. For

the situations when the number of the molecules becomes very large and the stochastic com-

ponent becomes less significant, the explicit tau-leaping method reduces to Euler’s method

and the implicit tau leaping method reduces to the implicit Euler’s method for solving ODEs

5
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[8].

Cao and Petzold (2005) found that the implicit tau-leaping damps the stochastic noise

and reduces the variances for large time steps as compared to the SSA simulations [21]. They

proposed a trapezoidal tau-leaping method based on the trapezoidal rule for solving ODEs.

Tau-leaping methods also provides the first step towards the link between discrete stochas-

tic CME/SSA model and the continuous-deterministic RRE/ODE model. Under the assump-

tions that the time step τ satisfies the leap condition (propensity functions variations are

very small) and that the product of τ with the propensity functions is large, the Poissonian

stochastic term can be replaced by a term with a normal distribution. This leads to a sys-

tem of stochastic differential equations (SDE) discretized using the Euler-Maruyama method

[14]. This set of SDEs is called the Chemical Langevin Equation (CLE) and this model is

applicable for systems with large molecular counts [13, 41].

If we consider a system where the stochastic intrinsic noise could be ignored due to the

large number of molecules such that the ratio of the number of molecules with volume is

fixed under constant thermodynamic conditions, then the CLE is reduced to a set of ODEs

representing the reaction rate equations [13, 14]. This is inline with the original findings of

Oppenheim et.al [37] and Kurtz [38].

1.3 Thesis Focus and the Findings

The focus of this thesis is to implement and study the stochastic simulation methods for

biochemically reacting systems. Different tau-leaping approaches are compared with the

SSA simulations.

Previously, it has been stated that the SSA/tau-leaping interlacing is important to main-

tain correct statistics of implicit tau-leaping method for all well-stirred biochemical systems,

as the implicit tau-leaping method alone damps the noise in the fast system variables [15].

We made the following important observation.

6



CHAPTER 1. INTRODUCTION 1.4. OUTLINE OF THE THESIS

For models not reaching a steady state (e.g. bistable systems, systems with large noise)

interlacing is not needed, as the Implicit tau-leaping strategy is accurate by itself.

This observation has been tested by conducting simulations for several models including

the Shlögl model, and the Goldbeter-Koshland switch. For models reaching a steady-state,

such as the decay-dimerization system, the noise in the fast dynamics is reduced.

1.4 Outline of the Thesis

The outline of the thesis is as follows: Chapter 2 gives the detailed background for the CME,

SSA, tau-leaping methods, CLE and RRE. Tau leaping methods are described in detail in

Chapter 3. Numerical results are given for several models in Chapter 4. Chapter 5 discusses

the results of the thesis and recommendations for future work.

7



Chapter 2

Background

In this chapter, we introduce the modeling of the chemical reactions taking place in biochem-

ical systems under the well-stirred assumption. We discuss the widely used model of the

Chemical Master Equation (CME) in detail, followed by its solution with exact Monte-Carlo

Method known as the Stochastic Simulation Algorithm (SSA). The approximatic stochastic

simulation technique for solving the CME, the tau-leaping method, is introduced. Different

tau-leaping methods are presented in the next chapter. We also derive the Chemical Langevin

Equation (CLE) and a numerical scheme for solving it, the Euler Maryama method. The

reaction rate equation (RRE) model is derived for a system in thermodynamic limit.

2.1 Well-Stirred Biochemical Systems

We consider a biochemical system consisting of N chemical species {S1, S2, · · · , SN}. These

molecules interact with each other through M chemical reactions {R1, R2, · · · , RM}. We

assume that the molecules are confined to a constant volume Ω, in thermal equilibrium, at

fixed temperature T . The system is assumed well-stirred. The overall state of the biochemical

8



CHAPTER 2. BACKGROUND 2.1. WELL-STIRRED BIOCHEMICAL SYSTEMS

system can be represented by the state vector,

X(t) =


X1(t)

X2(t)
...

XN(t)

 (2.1)

where Xi(t) is a nonnegative integer giving the number of molecules of species of type Si

present at time t.

When a chemical reaction takes place, a molecule of species A may, for example, combine

with a molecule of species B to produce a new molecule of species C. Depending on the nature

of the chemical reaction, molecules of the same species can combine together or decompose

into other molecules. Also the chemical reactions could be reversible. The various types of

chemical reactions are discussed in Section 2.2. We assume that the number of molecules of

each species present in the system at the initial time t = 0 are given. In other words, the

initial state of the system X(t) at t=0 is completely known. As the molecules move around

the system, interacting with each other, their number changes, resulting into a change of the

state of the system. Our aim is to describe how the number of molecules (and hence the

state X(t)) evolve as time progresses.

To model this problem, in principle, both the position and velocity of each molecule

changing with time should be considered under the laws of physics. In this regard, we need

to keep track of every molecular collision and the outcome of every interaction. However,

this approach becomes computationally too expensive, when the overall number of molecules

becomes too large and/or when the molecular dynamics over a long period of time is of

interest. To simplify, the biochemical system is considered to be well stirred. This means

that we are ignoring the spatial positions and velocities of individual molecules in the system

and are only interested in their counts at a particular instant t in time. The well-stirred

system appromixation leads us to consider that the majority of the molecular collisions are

9



CHAPTER 2. BACKGROUND2.2. STOCHASTIC AND DETERMINISTIC MODELING

non-reactive (elastic) in nature, resulting:

• in random but uniform distribution of molecules within the volume Ω after the majority

of collisions are elastic in nature, and

• in random velocities of the molecules following a Maxwell-Boltzmann distribution of

thermal equilibrium.

This approximation greatly simplifies the problem. We, therefore, are able to ignore most

of non-reactive molecular collisions and concern overselves only with the events involving

changes due to chemical interactions between the molecules.

2.2 Stochastic and Deterministic Modeling

Traditionally, deterministic formulations have been used to model the behaviour of biochem-

ical systems with fair amount of success. This usually involves setting up of a set of N

ordinary differential equations (ODEs) for the N chemical species participating in the bio-

chemical process. Each ODE expresses the time rate change of the molecular concentrations

(i.e. number of molecules per unit volume, Xi(t)
Ω

) as a function of the concentration of all

the species along with the chemical rate constants:

dXi

dt
= fi(X1, X2, ......., XN) (2.2)

These equations are called the ”Reaction Rate Equations” (RREs). The analytic solution of

these equations may be obtained only for a few modelled situations. For realistic problems

involving large number of reacting species, numerical methods are employed to solve them

computationally. The numerical solutions obtained for the deterministic model of the RRE

are generally,

1. Single valued (same number of molecules per unit volume is obtained on repeated runs

of the numerical solution).

10
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2. Real valued (the molecular concentration and hence the number of molecules always

turns out to be real valued rather than integer).

3. The number of molecules changes continuously as a function of time (this infers directly

from the original ODE’s that is a continuous deterministic model in time).

Both experimental and theoretical studies conducted during the late ninteen nineties and

over the turn of century give conclusive evidence that statistical random noise must be taken

into account for biochemical systems involving small number of big molecules at the cellular

level [23, 28, 29, 30, 31].

Remark. Before going into details of stochastic modeling of well-stirred biochemical reac-

tions, some of the relevant terms are defined and explained here.

The number of molecules corresponding to a particular species change over times, as

different (or sometimes same) molecules react chemically. Each chemical reaction Rj can be

characterized in terms of the state-change vector νj and the propensity function aj of the

reaction.

State Change Vector In the state change vector

νj =



ν1j(t)

ν2j(t)
...

νij(t)
...

νNj(t)


(2.3)

νij represents the change in the Si, ith species number of molecules, as the chemical reaction

Rj takes place. Therefore, if the system is in state x and one Rj chemical reaction takes

place, the state of the system changes from x to x + νj.

11
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Propensity Function The propensity function is defined as:

aj(x)dt = the probability, given that X(t) = x, such that one Rj will occur somewhere

inside the volume Ω in the next infinitesimal time interval from time t to time t+ dt. (2.3)

Reaction Types The chemical reactions are considered to be distinct and instantaneous

in nature. They are generally of two types: unimolecular and bimolecular.

Unimolecular reactions involves a single molecule as

Sm
cj−→ something,

while bimolecular reactions involve two molecules

Sm + Sn
cj−→ something.

Trimolecular and other higher order reactions are considered to be made up sequences of

two or more reactions of unimolecular or bimolecular type. The propensity function for both

unimolecular and bimolecular reactions may be derived from the laws of chemical kinetics.

• For a unimolecular reaction, if there are xm molecules of a species Sm in the system,

then the probability that some one of them will undergo the unimolecular reaction in

the next infinitesmial time step dt is xmcjdt, where cj is the reaction rate constant

for this chemical reaction. Therefore, the propensity function for the unimolecular

reaction is aj(x) = cjxm.

• For a bimolecular reaction in which molecules from two distinct species Sm and Sn

react to produce something, the probability that one of the (xm, xn) pairs inside the

volume Ω will react in the next dt is xmxncjdt, where cj is the reaction rate constant

for this type of chemical reaction. Therefore, the propensity function in this case is

12
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aj(x) = cjxmxn. In the particular case, when the two molecular species are the same,

the number of distinct molecular pairs of Sm molecules is 1
2
xm(xm − 1) and hence the

propensity function becomes aj(x) = cj
1
2
xm(xm − 1).

Now let us look into stochastic modeling of biochemical reactions on well-stirred systems.

2.2.1 Markov Processes

A stochastic process possessing the property that given the current state of the system, its

future behaviour does not depend on the past states, is called a Markov Process named after

the Russian mathematician Adre Markov (1856-1922). In other words, if the time evolution

of a Markov process needs to be predicted, then only the information about the current state

of the system is needed (and no information about the past states is required). When the

system transits from one state to another in a Markov process, a ”Markov Chain” of events is

created. It must be pointed out that the dynamic behavior of many biochemical systems can

be accurately modelled with the help of Markov processes. In particular, we are interested

in the processes involving discrete state changes in continuous time (i.e., a continuous-time

stochastic process involving random variables indexed by a continuous-time variable).

To formalize, let us consider a Markov process that can be in one of the states from the

state space S = {1, 2, ........, r}. Let the state of the system at any time t be X(t) = x ∈ S.

At a later time, t + t′, the system instantaneously jumps to state X(t + t′) = y ∈ S. The

future time evolution of the system is characterized by the transition kernel

K(x, t, y, t′) = P(x, y)

13
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where the transition probability matrix P(., .) is defined as

P =


P(x1, x1) P(x1, x2) . . . P(x1, xr)

P(x2, x1) P(x2, x2) . . . P(x2, xr)
...

...
. . .

...

P(xr, x1) P(xr, x2) . . . P(xr, xr)

 (2.4)

such that P(x, y) is the conditional probability

P(x, y) = Pr(X(t+ t′) = y|X(t) = x), x, y ∈ S, t ∈ [0,∞)

Here P is an r × r matrix (a real valued function on S × S) satisfying

P(x, y) ≥ 0 x, y ∈ S (2.5)

and ∑
y∈S

P(x, y) = 1 x, y ∈ S (2.6)

This means that the elements of this matrix are always nonnegative real numbers by equation

(2.5) and that the sum of the elements in any row of this matrix is 1 by equation (2.6). The

matrix P(., .) is called a Markov or Stochastic matrix.

If the transition kernel K does not explicitly depend on t, the Markov process is called

homogeneous and the transition kernel can be expressed as

K(x, y, t′) = P(t′). (2.7)

For t′ = 0, the transition probability matrix is an identity matrix,

P(0) = I, (2.8)

14



CHAPTER 2. BACKGROUND2.2. STOCHASTIC AND DETERMINISTIC MODELING

as there will be no transition from one state to another (different) state, with zero time

interval.

Chapman Kolmogorov Equation

According to the Chapman Kolmogorov Theorem [2], if Xn, where n = 0, 1, 2, ......... is a

homogeneous Markov Chain, then

Pr(Xm+n = j|X0 = i) =
∑
k∈S

Pr(Xm+n = j|Xm = k)Pr(Xm = k|X0 = i) (2.9)

In other words, the conditional probability that the Markov process transits from state i to

state j in m+ n steps is equal to the sum of the product of the conditional probabilities of

reaching an intermediate state k from i in m steps and from state k to j in n steps. Equation

(A.1) is also called the Chapman Kolomogorov equation. For completeness, the proof is given

in Appendix A. Therefore, the transition kernel in equation (2.7) can be written as

K(i, j, t+ t′) =
r∑

k=1

K(i, k, t)K(k, j, t′) (2.10)

or, in terms of transition probability (stochastic) matrix, as

P(t+ t′) = P(t)P(t′) = P(t′)P(t). (2.11)

Transition Rate Matrix (Propensity Matrix)

The transition rate matrix Q is defined as the derivative of P(t′) with respect to time at

t′ = 0, i.e.,

Q =
dP(t′)

dt′

∣∣∣∣
t′=0

(2.12)
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= lim
δt→0

P(δt)− P(0)

δt

= lim
δt→0

P(δt)− I
δt

(2.13)

Rearranging above, we obtain the infinitesimal transition matrix

Qdt = P(dt)− I

P(dt) = Qdt+ I (2.14)

As P(dt) is a stochastic matrix, the rate matrix Q must satisfy:

1. the off-diagonal elements of P(dt) and Qdt must be the same,

2. the rows of Q must sum to zero.

Forward Kolmogorov Equation The rate of change of the stochastic matrix with time

can be written as (see also [2] for details)

dP(t)

dt
= lim

δt→0

P(t+ δt)− P(t)

δt

= lim
δt→0

P(t)P(δt)− P(t)

δt
using equation (2.11)

= P(t) lim
δt→0

P(δt)− I
δt

= P(t)Q using (2.13).

Thus,
dP(t)

dt
= P(t)Q. (2.15)

Or, in terms of the transition kernel,

dK(i, j, t)

dt
=

r∑
k=1

K(i, k, t)qkj (2.16)

This is called Kolmogorov’s forward equation.
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Backward Kolmogorov Equation [2] We begin again with the rate of change of the

stochastic matrix with respect to time as

dP(t)

dt
= lim

δt→0

P(t+ δt)− P(t)

δt

Using equations (2.11) and (2.13), we derive

P(t+ δ(t)) = P(δt)P(t)

dP(t)

dt
= lim

δt→0

P(δt)P(t)− P(t)

δt

= lim
δt→0

P(δt)− I
δt

P(t)

= QP(t) By using equation(2.13)

(2.17)

In terms of the transition kernel, we can write

dK(i, j, t)

dt
=

r∑
k=1

qi,kK(k, j, t) (2.18)

This is called Kolmogorov’s backward equation.

2.3 Chemical Master Equation (CME)

We now derive the Chemical Master Equation [36, 2] (CME). We assume that, initially, the

system was in state X(t0) = x0. We define

P (x, t|x0, t0) = the probability that the system state is X(t) = x, given that X(t0) = x0

(2.19)

We are interested in finding out the time-evolution of this probability function, which is

governed by the Chemical Master Equations (CME). To derive this equation, we begin with
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the Kolmogorov’s forward equation (see also Wilkinson, [2]),

d

dt
P (x, t|x0, t0) =

∑
{x′∈M}

qx′,xP (x′, t|x0, t0) (2.20)

whereM is a countable state space and qx′,x is an element of the state transition rate matrix

Q, and is defined by

qx′,xdt = the probability that the transition from state x′ to state x will take place

within the infinitesimal time interval [t, t+ dt)

(2.21)

The Kolmogorov’s forward equation (2.20) can be written as

d

dt
P (x, t|x0, t0) =

∑
{x′∈M}

qx′,xP (x′, t|x0, t0)

=
∑

{x′∈M|x′ 6=x}

qx′,xP (x′, t|x0, t0) + qx,xP (x, t|x0, t0)
(2.22)

Using the property that the rows of Q must each sum to zero [2], we have

∑
{x′∈M}

qx,x′ = 0

=⇒
∑

{x′∈M|x′ 6=x}

qx,x′ + qx,x = 0

=⇒ qx,x = −
∑

{x′∈M|x′ 6=x}

qx,x′

(2.23)
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Substituting equation (2.23) into (2.22), we get

d

dt
P (x, t|x0, t0) =

∑
{x′∈M|x′ 6=x}

qx′,xP (x′, t|x0, t0)−
∑

{x′∈M|x′ 6=x}

qx,x′P (x, t|x0, t0)

=
∑

{x′∈M|x′ 6=x}

[qx′,xP (x′, t|x0, t0)− qx,x′P (x, t|x0, t0)]
(2.24)

It could be noted that the summation is over all transitions (reactions) from j = 1, ...,M ,

and x′ = x− νj. Also that the transition rate matrix elements are propensities such that,

qx,x′ = aj(x)

qx′,x = aj(x− νj)
(2.25)

Therefore, equation (2.24) can be written as

d

dt
P (x, t|x0, t0) =

∑
{x′∈M|x′ 6=x}

[aj(x− νj)P (x− νj, t|x0, t0)− aj(x)P (x, t|x0, t0)] (2.26)

This is called the Chemical Master Equation (CME). It is a set of coupled ordinary differ-

ential equations (ODE) giving the time evolution of the system state, starting from some

initial state at time t0. Time is a continuous variable, while the state of the system changes

discretely, in a stochastic manner. It must be noted here that the state vector is N dimen-

sional and that this number could be large. Also, solving the CME (2.26) means solving a

large set of ODEs, with one ODE for each of the possible states. Arkin et. al. [28] have

reported that, in their model of λ-phage, a realistic population size lead to 1070 possible

states while solving the problem using the Chemical Master Equation.

2.3.1 Stochastic Simulation Algorithm (SSA)

As mentioned earlier, the Chemical Master Equation (CME) is a system of coupled ordinary

differential equations. The size of this system is equal to the number of all possible states
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of the system involving M chemical reactions. Due to this extremely high dimension, the

CME cannot be handled via analytic or computational techniques for most realistic appli-

cations. Alternate approaches have been developed including Gillespie’s algorithm [39, 40],

tau-leaping methods [11] etc. to deal with this challenge.

In this section, the exact solution approach of the stochastic simulation algorithm (SSA)

(also known as Gillespie’s algorithm) is described. The theoretical justifications of the algo-

rithm is presented. This is followed by the description of the algorithm itself along with the

difficulties encountered when using this algorithm.

Derivation of the Gillespie’s Algorithm The main idea behind this exact method is to

simulate one solution trajectory at a time correctly rather than solving the CME for the prob-

ability distribution of all possible states simultaneously. Such trajectories can be simulated

by following the ”exact probability distribution”, reflecting the corresponding probability

distribution given by the CME.

To simulate a trajectory of the system, the entire time span of the trajectory can be

considered to be composed of two types of time intervals:

1. time intervals during which no biochemical reaction takes place,

2. time intervals during which one chemical reaction takes place.

We therefore consider two time intervals as depicted in Figure 2.1 . The first time interval

starts from time t and ends at time [t+ τ). The second interval starts from time [t+ τ) and

ends at time [t+ τ + dτ) where dτ is an infinitesimal time step. Corresponding to these two

intervals, the following two probabilities are defined:

P0(τ |x, t) = the probability that no reaction takes place during the time

interval [t, t+ τ), provided that X(t) = x,
(2.27)

and
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Figure 2.1: Time intervals on a sample trajectory path

p(τ, j|x, t) = the probability that the next reaction takes place during the time

interval [t+ τ, t+ τ + dτ) and that it is the jth reaction, provided that X(t) = x.
(2.28)

The above two events takes place independently, without affecting the occurrance of one

another. This makes possible to replace an “and” with a “product” while working with the

probabilities. Using the definition of the propensity function aj(X(t)), we know that the

probability of the jth reaction taking place in a time step of size dτ is aj(X(t))dτ . The

construction of the propensities for various types of chemical reactions have already been

discussed in Section 2.2. We can now write:

P0(τ + dτ |x, t) = Probability that no reaction takes place over [t, t+ τ + dτ)

= Probability that no reaction occurs over [t, t+ τ)

and no reaction occurs over [t+ τ, t+ τ + dτ)

= Probability that no reaction occurs over [t, t+ τ)

× Probability that no reaction occurs over [t+ τ, t+ τ + dτ)

= Probability that no reaction occurs over [t, t+ τ)

× (1 - sum of probabilities that each reaction

takes place over [t+ τ, t+ τ + dτ))

P0(τ + dτ |x, t) = P0(τ |x, t)

(
1−

M∑
k=1

ak(x)dτ

)
(2.29)

From equation (2.29),

asum(x) =
M∑
k=1

ak(x) then,

P0(τ + dτ |x, t) = P0(τ |x, t) (1− asum(x)dτ) (2.30)

21



CHAPTER 2. BACKGROUND 2.3. CHEMICAL MASTER EQUATION (CME)

Re-arranging, we have

P0(τ + dτ |x, t)− P0(τ |x, t)
dτ

= −asum(x)P0(τ |x, t)

In the limiting case when dτ → 0, we get

dP0(τ |x, t)
dτ

= −asum(x)P0(τ |x, t)

This is an ODE with the initial condition P0(0|x, t) = 1. Solving

dP0(τ |x, t)
P0(τ |x, t)

= −asum(x)dτ

lnP0(τ |x, t) = −asum(x)τ + C

P0(τ |x, t) = e−asum(x)τ+C = Ae−asum(x)×τ

Using the initial condition P0(0|x, t) = 1 gives A = 1. Therefore

P0(τ |x, t) = e−asum(x)τ (2.31)

Now from equation (2.28)

p(τ, j|x, t)dτ = the probability that no reaction takes place over [t, t+ τ)

and that the jth reaction takes place over [t+ τ, t+ τ + dτ)

= the probability that no reaction takes place over [t, t+ τ)

× the probability that the jth reaction takes place over [t+ τ, t+ τ + dτ)

= P0(τ |x, t)× aj(x)dτ.

(2.32)
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From equation (2.31)

p(τ, j|x, t) = e−asum(x)τ × aj(x)

=⇒ p(τ, j|x, t) = aj(x)e−asum(x)τ

We can write this as

p(τ, j|x, t) =
(
asum(x)e−asum(x)τ

)
×
(

aj(x)

asum(x)

)
(2.33)

From equation (2.33), it could be inferred that the joint probability density function p(τ, j|x, t)

is constituted of two density functions. The first density function gives the time τ to the

next reaction with probability density asum(x)e−asum(x)τ . The second gives the index j of the

next reaction having probability density
aj(x)

asum(x)
.

The three propositions (given in Appendix A) results are used in obtaining equations

(2.32) and (2.33) to further derive the Gillispie’s algorithm. Note that (2.33) is the main

equation for deriving the stochastic simulation algorithm (SSA). The equation (A.7) shows

that
aj
asum

corresponds to a discrete random variable, that means picking one reaction with

index j corresponding to the reaction which happens first (see also Appendix A, Proposition

2) to aj(X). The term asum(X)e(−asum(X)τ) is the density function for a continuous random

variable with an exponential distribution. In general, an exponentially distributed random

variable with parameters a > 0 is characterized by the density function

 ae−ax for x ≥ 0

0 otherwise

Hence if X is exponentially distributed with parameter a, then for any 0 < c < d

P (c < X < d) =

∫ d

c

ae−axdx

= e−ac − e−ad
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Now

P (c < X < d) = P (−d < −X < −c)

= P (e−ad < e−aX < e−ac)

= e−ac − e−ad

(2.34)

So the random variable

Z := e−aX

has a uniform (0, 1) distribution. This means that the probability of Z lying in any subinterval

of (0, 1) is given by the length of the subinterval. Hence X may be written as

Z = e−aX

So

X =
1

a
ln(

1

Z
) (2.35)

where Z is uniform (0, 1) with a = asum(X(t)).

The above results and the propositions in Appendix A lead us to the following Monte

Carlo method called Gillespie’s Algorithm [39, 40].

Gillespie’s Algorithm (SSA) We can summarize the stochastic simulation algorithm in

the following steps.

1. Initialize the state vector X = x0 at initial time t0.

2. Calculate the propensity functions and their sum, ak(X) for 1 ≤ k ≤M and a0(X) =∑M
k=1 ak(X)

3. Draw two independent samples r1 and r2 from U(0, 1).
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4. Then calculate the time to the next reaction with the following formula

τ =
1

asum(X(t))
ln

1

r1

5. Calculate the index of the next reaction
∑j−1

k=1 ak(X) < r2a0(X) ≤
∑j

k=1 ak(X)

6. Update system state X ← X + νj and current time from t← t+ τ and go to step 2 or

STOP according to the termination criteria.

Issues Encountered while Executing the SSA

Gillespie’s algorithm is an exact method to solve the CME. However, the main issue while

executing the SSA is the execution time taken to run a sufficiently large number of trajectories

to produce a reasonable statistics. Typically, tens of thousands of trajectories need to be

simulated to produce accurate estimates of the probability distributions.

At each iteration of the algorithm, we need to calculate the time taken for the next

reaction and the reaction index. This involves updating of the propensity functions and

the state vector. The time τ taken until the next reaction depends inversely on the sum

of propensity functions i.e. asum(x). If this sum is large, the time τ becomes small. For a

system with a large number of molecules and having some reactions taking place at large

rate (fast reactions), the propensity function sum ( asum(x)) becomes very large resulting in

a very small time step τ . The simulation execution time becomes large due to very small

time steps τ . Also a large number of random numbers needs to be generated. For systems

of practical interest, due to the enormous number of reaction events encountered when very

fast reactions are present, the detailed construction of every reaction event becomes a very

time consuming task.
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2.3.2 Tau-Leaping Method

In this section, a brief introduction to the tau-leaping method [11] is given. A detailed

description of the leaping methods is presented in Chapter 3. One important topic for

tau-leaping approximate methods is the selection of the time step τ . The time step τ is

chosen such that the leap condition is satisfied. The leap condition ensures that each of the

propensity functions changes only by a small amount over the time step τ .

If τ satisfies the leap condition, then the number of reactions Rj taking place between

[t, t+ τ) may be approximated by a Poisson random variable Pj(aj(X(t))τ) with parameter

aj(X(t))τ . Then the system state may be updated as

X(t+ τ) = X(t) +
M∑
j=1

νjPj(aj(X(t))τ) (2.36)

This represents the tau-leaing method.

Problems Encountered While Using Tau-Leaping Simulations

A number of tau-leaping algorithms have been proposed and used to simulate biochemical

systems approximately [11, 15, 21, 63]. However, there are several problems encountered in

such simulations. Two major issues are:

1. The choice of the time step τ — Determination of the time interval [t, t+τ) in advance

such that the leap condition is satisfied.

2. The tau-leaping methods should be applied if τ can be chosen large enough such that

a large number of reactions happen between [t, t + τ), so that the leaping method is

much more efficient than the SSA.
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2.4 Chemical Langevin Equation

Paul Langevin (1872-1946), a French physicist, developed the Langevin equation to describe

the Brownian motion of a particle in a fluid. The form of Langevin equation used in modeling

of chemically reacting systems showing stochastic behavior is called the Chemical Langevin

equation (CLE)[41]. This section begins with an introduction to stochastic differential equa-

tions. This is followed by the derivation of the Chemical Langevin equations for a well stirred

biochemically reacting system. A comparison of the CME and the CLE models concludes

this section.

2.4.1 Stochastic Differential Equations

Brownian Motion / Weiner Process The Brownian motion also called the Weiner process

is a continuous-time stochastic process W (t) (0 ≤ t ≤ T ) satisfying:

1. At time t = 0, W (0) = 0 with probability 1.

2. For any 0 ≤ s < t < u < v ≤ T the increments W (t) −W (s) and W (v) −W (u) are

independent random variables.

3. For any 0 ≤ s ≤ t ≤ T the increment W (t) −W (s) has a normal distribution with

mean zero and variance (t− s). In other words,

W (t)−W (s) ∼
√
t− sN(0, 1)

where N(0, 1) represents a normally distributed random variable with zero mean and

unit variance.

For numerical simulation purposes, the continuous time variable is discretized over the whole

time interval [0, T ] of the simulation such that tj = jδt where j = 1, 2, ......, N and δt = T/L
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for some positive interger L. Corresponding to each tj, the Wiener process is generated such

that Wj = W (tj) with W0 = W (t0) = 0. Also from conditions (2) and (3) above

Wj = Wj−1 +
√
δtN(0, 1) j = 1, 2, ....., N

where N(0, 1) is drawn from a normal distribution with zero mean and unit variance.

Stochastic Calculus and Stochastic Integrals For dynamical systems without noise,

the time evolution of the system is often modeled using ordinary differential equations.

In case of stochastic systems, the problem often involves stochastic differential equations.

The Brownian motion (or the Weiner process) is not differentiable in the traditional sense.

Therefore, stochastic calculus is used for this purpose. There are two main approaches

used in this calculus called Itô stochastic calculus and Stratonovich stochastic calculus. The

approaches are equivalent and can be converted into one another [10].

Itô’s Approach Named after the Japanese mathematician Kiyosi Itô (1915-2006), in

this approach, Itô integrals and the change of variable formula (chain rule for stochastic

variables) called Itô lemma are used. An Itô process is defined as an adapted stochastic

process that can be expressed as

X(t) = X(0) +

∫ t

0

f(X(t))dt+

∫ t

0

g(X(s))dW (s) (2.37)

where f and g are scalar functions, X(t) is a random variable with the initial condition X(0)

and W (s) is a Weiner process. According to Itô lemma (stochastic chain rule), if f is twice

diferentiable and X is an Itô process, then

df(X(t)) = f ′(X(t))dX(t) +
1

2
f ′′(X(t))g2(t)dt (2.38)

In ordinary calculus, the integral
∫ T

0
h(t)dt for a suitable scalar function h(t) is approximated

28



CHAPTER 2. BACKGROUND 2.4. CHEMICAL LANGEVIN EQUATION

by the Reimann sum
N−1∑
j=0

h(tj)(tj+1 − tj)

where tj = jδt represents the discretized grid for the time interval [0, T ] for j = 0, 1, 2, ....., N .

We can write ∫ T

0

h(t)dt = lim
δt→0

N−1∑
j=0

h(tj)(tj+1 − tj)

For a Weiner process W (t), the stochastic integral
∫ T

0
h(t)dW (t) can be approximated as the

sum ∫ T

0

h(t)dW (t) ∼
N−1∑
j=0

h(tj)(W (tj+1)−W (tj)) (2.39)

This is called the Itô integral formula.

Stratonovich Approach This approach is named after the Russian mathematician

Stratonovich (1930-1997). This approach is usually used in Physics, where physical laws

are being considered. Unlike the Itô approach, in this approach Stratonovich integrals are

defined such that the ”chain rule” (change of variables in differentiation) of the ordinary

calculus holds. In the Stratonovich approach, the Reimann sum approximation

∫ T

0

h(t)dt = lim
δt→0

N−1∑
j=0

h(
tj + tj+1

2
)(tj+1 − tj)

for calculating integrals is extended to determine the stochastic integral

∫ T

0

h(t)dW (t) ∼
N−1∑
j=0

h(
tj + tj+1

2
)(W (tj+1)−W (tj)) (2.40)

Stochastic Differential Equations An ordinary differential equation (ODE) for a

continuous function X(t) is usually written as

dX(t)

dt
= f(x(t))

29



CHAPTER 2. BACKGROUND 2.4. CHEMICAL LANGEVIN EQUATION

with the initial condition x(t0) = x0, for a well defined function f(x). It has the solution

X(t) = x0 +

∫ t

0

f(X(s))ds

A stochastic differential equation (SDE) for a random variable X(t) can be written as

dX(t) = f(X)dt+ g(X)dW (t) (2.41)

with the initial condition X(t0) = X0 . Here f and g are scalar functions while X(t) and

W (t) are stochastic processes. It can be solved using the integral equation

X(t) = X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dW (s) (2.42)

2.4.2 Derivation of the Chemical Langevin Equation

With the background presented in Section 2.4.1, we (can now) derive the Chemical Langevin

Equation for biochemical kinetics problems. In this thesis, Gillespie’s approach [41] has been

followed. An approach based on findng first and second moments of the CME using para-

metric equation has also been adopted [16] to derive the CLE. The details of this approach

are given in the articles [10, 6].

Gillespie’s Approach The tau-leaping methods introduced in Section 2.3.2 plays a

very important role of connecting the discrete, stochastic CME/SSA formulation with the

continuous deterministic RRE/ODE (reaction rate equations) formulation via continuous

stochastic formulation of the Chemical Langevin equation. In the tau-leaping method, a

time step of size τ > 0 is chosen small enough such that the leap condition is satsfied, that

is the propensity functions aj(X(t)) remaining almost constant during the interval [t, t+ τ).

The probability of occurrence of the reaction Rj during this interval is given by a Poisson

distribution with parameter aj(X(t))τ . Then, the state of the system may be approximated
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by

X(t+ τ) = X(t) +
M∑
j=1

νjPj(aj(X)τ)

This is the explicit form of the tau-leaping method. Here X(t) is a discrete stochastic

variable. If the time step τ may be chosen large enough, such that aj(X)τ � 1, then

the Poisson distribution may be approximated by a normal distribution with the mean and

variance both equal to aj(X)τ . i.e.,

Pj(aj(X)τ) −→ N(aj(X)τ, aj(X)τ),

or

Pj(aj(X)τ) ≈ aj(X)τ +
√
aj(X)τZj (2.43)

where Zj represents independent normal distributions with mean zero and variance 1. It

should be noted that the Poisson distribution is discrete random variable. The Gaussian

distribution is continuous and with real values that could be both positive and negative.

Under the assumption aj(X)τ � 1 for all 1 ≤ j ≤M , and denoting the normal distribution

with mean µ and variance σ2 by N(µ, σ2), we derive

Pj(aj(X)τ) ≈ Nj(aj(X)τ, aj(X)τ)

The discrete stochastic variable X(t) representing the number of molecules becomes a con-

tinuous stochastic variable. It follows from the explicit tau-leaping formula
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X(t+ τ) = X(t) +
M∑
j=1

Nj(aj(X)τ, aj(X)τ)νj

= X(t) +
M∑
j=1

[
aj(X)τ +

√
aj(X)τNj(0, 1)

]
νj

= X(t) +
M∑
j=1

νjaj(X)τ +
M∑
j=1

νj

√
aj(X)Nj(0, 1)

√
τ

(2.44)

Taking τ → dt in equation (2.44), we obtain

dX(t) =
M∑
j=1

νjaj(X)dt+
M∑
j=1

νj

√
aj(X)dWj(t) (2.45)

where Wj are independent Weiner processes. This is a stochastic differential equation called

the Chemical Langevin Equation (CLE). This model is valid when the molecular counts

of each species is sufficiently large . Note that the CLE is an N−dimensional stochastic

differential equation which is a reduction of the CME in the regime of large molecular

numbers.

2.4.3 Euler-Maruyama Method

Given a stochastic differential equation (SDE) in the form (2.41)

dX(t) = f(X)dt+ g(X)dW

with X(0) = X0 and 0 ≤ t < T . Its solution can be written in the integral form (2.42)

X(t) = X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dW (s)

To solve this equation numerically, we discretize the time interval [0, T ] using τ = T/L for

some positive integer L. Let us denote X(jτ) = Xj for j = 0, 1, 2, ....., L − 1. Then we can
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approximate

Xj+1 = Xj + f(Xj)δt+ g(Xj)(W ((j + 1)τ)−W (jτ)) j = 1, 2, ....., L (2.46)

This is the Euler-Maruyama (EM) method for numerically solving this SDE. It could be

noted that for g ≡ 0, the above method becomes Euler’s method for solving ODEs. In case

of the CLE (2.45), the Euler-Maruyama method gives

X(t+ τ) = X(t) + τ
M∑
j=1

νjaj(X(t)) +
√
τ

M∑
j=1

νj

√
aj(X(t))Nj(0, 1) (2.47)

The continuous stochastic variable X(t) is estimated at the discrete instants of time

{0, τ, 2τ, ....., (L − 1)τ} giving the sequence of random numbers {X0, X1, ....., XL−1}. The

computational algorithm for numerically solving the CLE using the Euler-Maruyama method

follows these steps.

Step 0 Initialize the number of species M , number of molecules for each species Xj(0), stoi-

chiometric coefficients νj and propensities aj(X(0)) for j = 1, 2, ......,M

Step 1 Draw M independent samples from the zero mean, unit variance normal distribution

Zj ∼ Nj(0, 1), for j = 1, 2, ......,M

Step 2 Calculate

X(t+ τ) = X(t) + τ

M∑
j=1

νjaj(X(t)) +
√
τ

M∑
j=1

νj

√
aj(X(t))Zj

Step 3 Update time t← t+ τ

Step 4 Check for the stopping criteria t ≥ T . If false return to Step 1, otherwise stop.

A comparison of the models based on the Chemical Master Equation (CME) and the reduced

Chemical Langevin Equation (CLE) model is given in Table 2.2.
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CME CLE
A microscopic, discrete,
stochastic model

A macroscopic, continuous,
stochastic model

Model is represented as a set
of linear ODEs

Model is represented as a set
of nonlinear SDEs.

One ODE for each state
of the system

One SDE for each chemical species
of the system

State space and hence the number
of ODEs is very large

Reduced dimensions of the system
(equal to the number of
chemical species)

Number of molecules is strictly
represented as nonnegative integer

Real valued random variables
represent the number of molecules

Probability distributions over a
large number of discrete states
are used

Continuous probability distribution
for each chemical species is used

Completely stochastic in nature,
the system jumps from one
state to another randomly

Contains the stochastic as well
as deterministic components as parts
of the SDEs

Table 2.2: Comparison of the CME and the CLE Models

There is an intermediate regime between the discrete stochastic (CME) and continuous

deterministic (RRE) regimes where the intrinsic noise is still important but the number of

molecules is large enough to describe the biochemical reaction kinetics by continuous models.

This regime is treated with the CLE. Since the number of molecules is large (few hundreds

or more), the size of the state space becomes too large to be handled by most computational

algorithms based on CME. Methods based on using CLE are employed in this regime [16, 41].

2.5 Reaction Rate Equation (RRE)

Chemical reactions performed as experiments at the laboratory scale (macroscopic scale) are

typically modelled using a set of coupled ordinary differential equations called the reaction

rate equations (RRE). The amount of a chemical species is measured in terms of the con-

centration (moles per litre and written as M). The number of molecules in one mole of a
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chemical species is given by the Avogadro’s number ηA = 6.023 × 1023 molecules per mole.

If Ω is the volume, then the concentration yi(t) of a chemical species in moles per litre can

be converted into Xi(t) molecules as

Xi(t) = yi(t)× ηA × Ω (2.48)

To determine the RREs, the law of mass action and rate law are used. The reaction rate is

given in terms of the change in the concentration of a reactant divided by the stoicheometric

coefficient. For example, in a chemical reaction,

nA+mB −→ product (2.49)

The reaction rate is given by

r = − 1

n

∆A

∆t
= − 1

m

∆B

∆t
(2.50)

The instantaneous reaction rate is given by

r = − 1

n

dA

dt
= − 1

m

dB

dt
(moles per litre per second) (2.51)

The negative sign is used as in the reaction, the reactants (A or B above) are being

consumed (i.e. dA
dt

or dB
dt

are negative), making the overall reaction rate positive. According

to the rate law, for simple reactions, the reaction rate is proportional to the concentrations

of the reactants raised to some power. For example, in case of reaction (2.49), the rate law

gives

r = kAnBm (2.52)

It must be emphasized here that the above form of the rate law holds for simple reactions.

For complex (multi-step) reactions the overall form of the rate law is diffrent from (2.52),
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and the powers could be different from stoichiometric coefficients n and m. In practical situ-

ations, a complex reaction is decomposed into simple reactions, or the rate law is determined

experimentally. In case of equation (2.52), the order of the reaction is n + m (sum of the

stoicheometric coefficients) and k is the constant of proportionality called the rate constant.

The units of the rate constants k depend upon the order of the reaction. For a first order

reaction

A −→ product

the units of the rate constant can be determined from the rate law

−dA
dt

= kA

=⇒ M

sec
= [k]×M =⇒ [k] = sec−1 (2.53)

For a second order reaction,

A+B −→ product,

the rate law gives

−dA
dt

= kAB

=⇒ M

sec
= [k]×M ×M =⇒ [k] = M−1sec−1 (2.54)

i.e., the units of k are in moles per second.

CLE and the thermodynamic limit Assume now that the system volume Ω and the

species population size Xi(t) increase to infinity (keeping the temperature constant) such

that Xi(t)
Ω

remains constant. This is called thermodynamic limit. The two terms on the

right hand side of the CLE (2.45) behave differently in the thermodynamic limit. The first

term (deterministic) grows with the size of the system, while the second term (stochastic)

increases as the square root of the system size. Overall, the deterministic term dominates
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and the stochatic term can be neglected, to give

dy(t)

dt
=

M∑
j=1

νjaj(y(t)) (2.55)

This is the reaction rate equation (RRE), where y(t) represents the continuous, real val-

ued, deterministic variable. It must be noted that in equation (2.55), the propensity func-

tions aj(y(t)) uses rate constants cj’s, while the reaction rate equation written at macroscopic

scale, the rate constants kj’s are used.

Relationship between the Macroscopic and Microscopic Rate Constants To

determine the relation between the macroscopic rate constants kj’s and the microscopic rate

constants cj’s, we use the study of the following reaction types.

First Order Reactions

Sm
kj−→ product

According to the rate law, the deterministic rate is

−dym
dt

= kjym (2.56)

In terms of the number of molecules using equation (2.48)

− 1

ηAΩ

dXm

dt
= kj

Xm

ηAΩ

=⇒ dXm

dt
= −kjXm (2.57)

Using the RRE (2.55)
dXm

dt
= νaj(Xm)

= (−1)cjXm

(2.58)
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Equating the right hand side of equations (2.57) and (2.58), we get

cj = kj (2.59)

Second Order Reactions

Sm + Sn
kj−→ product m 6= n (2.60)

In this case, the rate law gives

−dym
dt

= kjymyn (2.61)

Converting the concentrations into the number of molecules

− 1

ηAΩ

dXm

dt
= kj

Xm

ηAΩ

Xn

ηAΩ

=⇒ dXm

dt
= − kj

ηAΩ
XmXn (2.62)

Using the RRE (2.55), we get

dXm

dt
= νajXm

= (−1)cjXmXn

(2.63)

and thus from (2.62) and (2.63), we obtain

cj =
kj
ηAΩ

(2.64)
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Table 2.3: RRE and Rate constants for different types of reactions

Reaction

Order
Scale Reaction Propensity cj vs kj

First Order

Microscopic

/molecular
Sm

cj−→ product kjym
cj = kj

Macroscopic

/molar
Sm

kj−→ product cjXm

Second Order

Microscopic

/molecular
Sm + Sn

cj−→ product kjymyn
cj =

kj
ηAΩ

Macroscopic

/molar
Sm + Sn

kj−→ product cjXmXn

Dimerization

Microscopic

/molecular
Sm + Sm

cj−→ product 2kjy
2
m

cj =
2kj
ηAΩ

Macroscopic

/molar
Sm + Sm

kj−→ product 2cjXm(Xm − 1)

Dimerization Reactions

Sm + Sm
kj−→ something

The deterministic rate law gives

−1

2

dym
dt

= kjy
2
m

In terms of the number of molecules, we can write

−1

2

1

ηAΩ

dXm

dt
= kj

X2
m

η2
AΩ2
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=⇒ dXm

dt
= − 2kj

ηAΩ
X2
m (2.65)

From the RRE (2.55)
dXm

dt
= νcj

Xm(Xm − 1)

2

dXm

dt
= (−2)cj

Xm(Xm − 1)

2

dXm

dt
= cjXm(Xm − 1) ∼ cjX

2
m (2.66)

and therefore from equations (2.65) and (2.67), we have

cj ≈
2kj
ηAΩ

(2.67)

and for zeroth order function the propensity function is given as

aj(X, cj) = cj

Table 2.3 summarizes the types of reactions along with the propensities in concentrations and

molecular forms and the relationship between the rate constants used. So the RRE, under

simplified assumptions, is a reduction of the CME model, when there are very large numbers

of molecules of each species present in the system. However, in general, the solution of the

RRE may not be the average solution of the CLE or the CME. Indeed, for non-independent

random variables X, Y , in general,

E[XY ] 6= E[X]E[Y ]

Let us now consider the time derivative of the expected value E(X(t)). From taking the
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expectation in the Chemical Master equation 2.26, we derive

∂

∂t
E(X(t)) =

∂

∂t

∑
X∈M

Xp(X, t)

=
∑
X∈M

X
∂

∂t
p(X, t)

=
∑
X∈M

X
M∑
j=1

[aj(X − νj, cj)p(X − νj, t)− aj(X, cj)p(X, t)]

=
M∑
j=1

[∑
X∈M

Xaj(X − νj, cj)p(X − νj, t)−
∑
X∈M

Xaj(X, cj)p(X, t)

]

=
M∑
j=1

[∑
X∈M

(X + νj)aj(X, cj)p(X, t)−
∑
X∈M

Xaj(X, cj)p(X, t)

]

=
M∑
j=1

[E((X(t) + νj)aj(X(t), cj))− E(Xtaj(X(t), cj))]

=
M∑
j=1

E(νjaj(X(t), cj))

=
M∑
j=1

νjE(aj(X(t), cj))

(2.68)

If all reactions are of zero or first order, then we can use the linearity of expectation to get

E(aj(X(t), cj)) = aj(E(X(t), cj))

By substituting it into (2.68), we obtain

∂

∂t
E(X(t)) =

M∑
i=1

νjaj(E(X(t), cj)) (2.69)
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Now denoting the average state vector by y(t) = E(X(t)) we get,

d

dt
y(t) =

M∑
i=1

νjaj(y(t), cj)

or
d

dt
y(t) = νa(y(t), c) (2.70)

which is the reaction rate equation. We remind the reader that in the above equation, ν is

the stoichiometric matrix, a is the vector of propensity functions and c is the stochastic rate

constant vector.

So when all reactions are zero and first order, the deterministic solution will correctly

describe the expected value of the solution of CME. However, it will not give any insight

into variability. Moreover, the average solution of the CME may be different from the RRE

solution if reactions of order 2 or higher are present in the system.
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Chapter 3

Tau-Leaping Methods

The exact Monte Carlo methods for solving the Chemical Master Equation, like the SSA,

simulate every reaction in the system to form a solution trajectory. Often, these exact

methods are computationally very expensive for realistic biochemical processes involving

fast reactions, as pointed out in Section 2.3.1. To overcome these high computational costs,

approximate solution methods were proposed such as the tau-leaping methods [11, 15, 21].

Tau-leaping methods with their various aspects are described in this Chapter. The details

of the three important tau-leaping approaches, namely the explicit [11], implicit [15] and

trapezoidal [21] tau-leaping strategies, are given. The algorithms of these methods are

presented here while the numerical results are given in chapter 4.

3.1 What is Tau-Leaping?

Consider a well-stirred biochemically reacting system as described in Section 2.1. A schematic

diagram of the time evolution of the Sk molecular population, Xk(t), is illustrated in Figure

3.1. Starting with the initial population Xk(t0), the number of molecules changes at succes-

sive instants t1, t2, t3, . . .. At each of these time instants, a biochemical reaction involving

species k takes place that changes the number of molecules, Xk(t). Let us label these chem-
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Figure 3.1: A schematic diagram of the SSA trajectory for Xk(t)

ical reactions j1, j2, j3, . . . respectively. Each of these labels can take up a value from 1 to

M , corresponding to the chemical reactions R1, R2, R3, . . . , RM . A ”history axis” consisting

of the pairs (t, j) completely describe a realization of time evolution of X(t). If we only

monitor the history axis, the complete trajectory of Xk(t) can be constructed starting from

the initial value Xk(t0).

In the (exact) SSA procedure, the stepping in time occurs randomly, in accordance with

the accuracy of each reaction. Refer to Figure 3.1 and consider subdividing the time-axis

in fixed time intervals of length τ . It can be noticed that a number of reactions of different

types affecting Xk(t) take place during an interval of length τ . If the reactions are fast,

the number of reaction events per interval of step τ will be large. For slow reactions, the

number of reactions per τ interval will be smaller. Knowing the exact SSA trajectory and

the history axis, we can exactly determine the population size at the end of each τ interval.

In simulations, we are not interested in the entire history axis. Rather, the information on
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the number of molecules Xk(t) at the end of each interval of length τ is sufficient. The

question arises: can we determine Xk(t) at the end of τ interval? If so, and if we can leap

over many reaction over the time step τ , then significant speed up gains of the simulation

are obtained.

Let us assume that K reactions took place during [t, t+ τ). Then

X(t+ τ) = X(t) + νj1 + νj2 + ......νjk (3.1)

where each of j1, j2, ......, jk can take up values from 1 to M . If we collect the reactions of

same type and R1 occured L1 times, R2, L2 times, and so on, then equation (3.1) can be

written as

X(t+ τ) = X(t) + ν1L1 + ν2L2 + ......νMLM ,

thus,

X(t+ τ) = X(t) +
∑
j=1

νjLj, (3.2)

where Lj is the number of times reaction Rj took place during the interval [t, t + τ), to

change Xk(t) by the state-change vector νj. If we could estimate all Lj, over [t, t+ τ) then,

we can estimate Xk at t + τ knowing Xk(t). The method to estimate Lj was proposed by

Gillespie in the form of the explicit tau-leaping algorithm [11].

3.2 Explicit Tau-Leaping

Let us assume that τ > 0 is some time step and

Lj(τ |x, t) = the number of reactions of type Rj that took place during the interval

[t, t+ τ) provided that X(t) = x.

(3.3)
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Then, the number of molecules at the end of the leap are given by

X(t+ τ) = x +
M∑
j=1

νjLj(τ |x, t). (3.4)

We are interested in finding a good approximation for Lj(τ |x, t). Recall that the product

aj(X(t))dt gives the probability that the reaction Rj will fire during [t, t+dt) for an infinites-

imal step dt. If aj(X(t)) does not change significantly during [t, t + τ), then aj(X(t))τ is a

good average estimate of the number of Rj reactions fired during this interval. In fact, draw-

ing from a Poisson distribution with mean (and variance) aj(X(t))τ is a good approximation

for Lj(τ |x, t). According to Gillespie [11], the following condition is sufficient.

Leap Condition: Choose τ > 0 small enough such that during the interval [t, t + τ), no

individual propensity function aj(X(t)) changes significantly.

Under the leap condition, Lj(τ |x, t) can be approximated as

Lj(τ |x, t) ∼ Pj(aj(x)τ) (3.5)

if X(t) = x. Here Pj(aj(x)τ) are independent Poisson random variables with means (and

variances) aj(x)τ . Then equation (3.4) can be written as

X(t+ τ) = x +
M∑
j=1

νjPj(aj(x)τ). (3.6)

This is called the explicit tau-leaping method [11]. As discussed in Section 2.1, this strategy

has similarities with the Euler’s method applied to the RRE, which is an ODE. Euler’s

method has been developed to solve non-stiff system of ODEs. By contrast, the implicit

Euler method was developed to efficiently approximate the solution of stiff systems. As

expected, the tau-leaping formula given in equation (3.6) is not efficient for stiff systems (as

discussed in Section 3.3). Therefore, it is called the ’explicit’ tau-leaping method.

46



CHAPTER 3. TAU-LEAPING METHODS 3.2. EXPLICIT TAU-LEAPING

3.2.1 Algorithm for Explicit tau-Leaping

The algorithm for the explicit tau-leaping scheme can be summarised as:

Step 1 Initialize the state vector x = x0 for time t = t0 and other system parameters.

Step 2 Choose an approximate value for the leap size τ .

Step 3 Calculate the propensities aj(x) for j = 1, 2, ...,M

Step 4 Draw M , Poisson random numbers lj with mean (and variance) aj(x)τ each i.e.,

lj = P(aj(x)τ) for j = 1, 2, ........,M.

Step 5 Update the system state using the explicit tau-leaping formula:

x← x(t) +
M∑
j=1

νjLj

Step 6 Update the current time from t← t+τ . If the updated time is less than the simulation

end time, go to Step 3, otherwise STOP.

3.2.2 How accurate is the explicit tau-leaping strategy?

When the exact approach of the SSA is replaced by the (faster) explicit tau-leaping method,

accuracy is lost. This loss of accuracy is due to the following (see also [32]):

(i) We do not know the exact number of reactions that take place during the tau-leap

interval, we approximate these numbers.

(ii) We do not calculate, when a reaction took place during the tau-leap interval. Therefore,

the variations in the state vector are not known during this time interval.
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(iii) The occurence of a reaction changes the state vector. The increase or decrease in the

number of molecules of one species influences the probability of occurrence of other

reactions.

Another way to analyze the loss of accuracy and the speed-up, is through comparing the size

of τ with the that of the SSA:

(a) None of the propensity functions aj, for j = 1, 2, ......,M depend upon X(t) (triv-

ial case). In this situation, the leap condition is always satisfied for any τ and the

τ−leaping method will be exact.

(b) The propensity functions are linearly or quadratically dependent on the molecular

populations. If there are large number of molecules, reactions changing these numbers

by one or two molecules will not significantly change the propensities. Therefore, the

tau-leap method can run faster than the exact SSA.

(c) For a leap size τ comparable or less than the inverse of the sum of propensities (i.e.

1∑M
j=1 aj

), we approach the Gillespie algorithm simulation and there is no gain in com-

putational time.

3.3 Implicit Tau-Leaping

Stiffness is an attribute of many biochemical systems in which reactions operate over very

different time scales, for instance “fast” and “slow”, where the “fast” time scale is stable.

Initially, a system follows a transient mode, which is short and rapid. The system then

quickly moves into the slow reaction mode, which determines the overall long time dynamics

of the system. Stiffness of a system requires both deterministic and stochastic models be

solved using numerical methods designed specifically for such systems. Both the SSA and

the explicit tau-leaping algorithms are inefficient for stiff systems [7, 15]. We first discuss
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how stiffness is treated numerically in systems modelled using ODEs. The approach is then

extended to the discrete-stochastic systems.

3.3.1 Stiffness in Continuous Deterministic ODE Systems

A stiff system is considered to be in a sort of equilibrium (but may not be in static) state.

When any of the system variables are slightly perturbed, the system responds quite rapidly

to get back to the equilibrium state. The stiff systems have a long (slow) quasi equilibrium

phase and a transient (fast) short time phase after a perturbation or at the start up. The

stiffness of the system depends upon how well distinct these two phases are. Consider an

ODE model representing a stiff system:

dx

dt
= f(x, t), x(0) = x0 (3.7)

The numerical solution for this system can be obtained using the ”explicit Euler method”

using

x(t+ τ) = x(t) + τ f(x(t), t) (3.8)

The accurracy of the solution x at time t+ τ depends on the value of the time step τ . The

solution will approach the exact solution (more accurate) as τ gets smaller.

For large τ , the solution deviates away from the exact solution, resulting in large errors.

In case of stiff systems, where the fast time scale is dominant at the begining, we need to

use small τ for maintaining the statisticity of the simulation [7]. The stepsize taken by the

explicit numerical method is restricted by the fast mode of the solution.

This restriction on the explicit Euler method makes it very slow as time steps greater

than the time scale of the fast mode lead to unstable results. Can we use large time steps

without causing numerical instability? The answer to this question lies in the use of ”the

implicit Euler method” [70]. This method approximates the derivative employing a back-

ward difference formula instead of the forward difference formula used by the explicit Euler
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method. Therefore, instead of equation (3.8), we consider

x(t+ τ) = x(t) + τ f(x(t+ τ), t+ τ). (3.9)

This strategy requires to find x(t + τ) iteratively using, for example, Newton’s method for

solving the implicit equation (3.9). This iterative process is repeated at every time step. This

technique allows us to obtain stable numerical solutions using large time steps τ , making

the implicit Euler’s method more efficient than the explicit Euler scheme for stiff problems.

Remark that, the implicit Euler’s method is unconditionally stable.

3.3.2 Stiffness in Discrete-Stochastic Chemical Kinetics: Implicit

Tau-Leaping Method

The tau-leap size limitation of the explicit tau-leaping scheme for stiff problems was overcome

by the implicit tau-leaping method proposed by Rathinam (2003)[15]. In the explicit tau-

leaping strategy (3.6), the Poisson random variable P(aj, τ) are evaluated at the start of

the time step X(t). In the implicit tau-leaping scheme, this Poisson random variable is

considered to be made up of two parts:

1. The first part being the mean value ajτ of Pj.

2. The second part being the zero mean random variable Pj − ajτ .

The first part is evaluated at the unknown state X(t+ τ) and the second part at the known

state X(t), to give the implicit tau-leaping method:

X(t+ τ) = x +
M∑
j=1

(τaj(X(t+ τ)) + Pj(aj(x)τ)− τaj(x)) νj (3.10)

given that X(t) = x. The random variables Pj are statistically independent. As in the case

of the implicit Euler method for the deterministic case, equation (3.10) is required to be
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solved iteratively using a variant of Newton’s method for the solution of nonlinear systems

of equations.

In case of large molecular number, the Poisson distribution is approximated by the Nor-

mal distribution to give

X(t+ τ) = x + τ

M∑
j=1

νjaj(X(t+ τ)) +
√
τ

M∑
j=1

νj

√
aj(x(t))Nj(0, 1) (3.11)

In the thermodynamic limit, the stochastic term can be ignored to give

X(t+ τ) = X(t) + τ
M∑
j=1

νjaj(X(t+ τ)), (3.12)

which is the implicit Euler method for solving the deterministic RRE. Rathinam et.al. [15]

and Gillespie et.al. [7] noted that the natural fluctuations of the fast variables are damped

out by the implicit tau-leaping method due to the use of large time step. According to [15],

this observation applies to all well-stirred biochemical systems.

3.3.3 Implicit Tau-Leaping Algorithm

Starting with the implicit tau-leaping formula (3.10), we introduce

Z(t) = x +
M∑
j=1

[Pj(aj(x)τ)− τaj(x)]νj (3.13)

such that ∂Z/∂Y = 0, where Y = X(t+ τ). Then equation (3.10) can be written as

G(Y) = −Y + Z +
M∑
j=1

[νjaj(Y)τ ] = 0 (3.14)
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According to the Newton’s method,

Y(n+1) = Yn −
[
J(Y(n))

]−1
G(Y(n)), (3.15)

where the Jacobian matrix J is given by

J(Y) =


∂G1

∂Y1

∂G1

∂Y2
. . . ∂G1

∂YN

∂G2

∂Y1

∂G2

∂Y2
. . . ∂G2

∂YN
...

... . . .
...

∂GN

∂Y1

∂GN

∂Y2
. . . ∂GN

∂YN

 (3.16)

In the implicit tau-leaping, equation (3.15) is solved iteratively with some stopping criteria

(such as the desired tolerance level is achieved) to obtain the state vector at the end of

tau-leap interval. The steps involved for implementing the implicit tau-leaping scheme are

summarized in the following.

1. Initialize the state vector x = x0 at time t = t0. Other system parameters including

the rate parameters, the steps 5 and 6, the tolerance ε are specified.

2. Calculate Z(t) using equation (3.13) by generating M Poisson random numbers with

means aj(x)τ for j = 1, 2, ......,M .

3. Determine the vector G(Y) with the initial guess of Y as x using (3.14)

4. Calculate the Jacobian matrix using (3.16).

5. Update Y using (3.15)

6. Check if error is below the tolerance ε. If the error is larger, go to step (2) with x = Y.

Otherwise store the state vector Y and CONTINUE.

7. Update current time from t to t + τ . If the updated time is less than the simulation

end time, goto step (2), otherwise STOP.
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3.4 Trapezoidal Tau-Leaping Method

To overcome the damping effect (the variance generated is much smaller than the exact value

for large step sizes) of the implicit tau-leaping scheme, Cao and Petzold [21] proposed the

trapezoidal tau-leaping in 2005. They extended the idea of the trapezoidal rule for solving

numerically ODEs to modify the implicit tau-leaping. The trapezoidal rule was selected for

the following reasons:

1. The explicit and implicit Euler formulae are both first order accurate, while the trape-

zoidal rule is second order accurate, when applied to ODEs.

2. The trapezoidal rule is A-stable [70, 71] while the implicit Euler method is L(linearly)

stable.

3. The trapezoidal rule does not suffers from the damping effect.

To obtain the trapezoidal tau-leaping method, consider the implicit tau-leaping scheme

(3.10) and replace τ by τ
2

in the two summation terms appearing on the right hand side:

X(t+ τ) = x +
M∑
j=1

[τ
2
aj(X(t+ τ)) + Pj(aj(x)τ)− τ

2
aj(x)

]
νj, (3.17)

given X(t) = x. This is the trapezoidal tau-leaping method. The only difference between this

method and the implicit tau-leaping is in terms of the coefficients of aj(x) and aj(X(t+ τ)),

M Poisson random numbers are generated and Newton’s iterative method is used to obtain

the update state vector at the end of each leap. The summation on the right hand side of

equation (3.17) gives a real number which needs to be rounded to the nearest integer to give

the state vector X(t+ τ).
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3.4.1 Trapezoidal Tau-Leaping Algorithm

Following the steps laid down in [21], the trapezoidal tau-leaping algorithm can be summa-

rized as:

1. Initialization: Set the initial number of molecules x = x0, at time t = 0; set the leap

size τ and other system parameters.

2. Calculate the propensity functions aj(x) for j = 1, 2, .......,M .

3. Generate M independent Poisson random numbers Pj(aj(x)τ) with mean aj(x)τ .

4. Solve equation (3.17) using Newton’s method.

5. Calculate

Lj = ROUND
([
P(aj(x)τ)− τ

2
aj(x) +

τ

2
aj(X(t+ τ))

])
(3.18)

where ROUND(c) function rounds each element of c to the nearest integer. In case of

tie, it will round the element to the largest integer.

6. Update the state of the system using

X← x +
M∑
j=1

Ljνj (3.19)

and update t← t+ τ .

7. Check if t has reached the end of the simulation. STOP if yes, otherwise go to step

(2).
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Chapter 4

Numerical Results and Discussion

In this Chapter, we study the accuracy of the tau-leaping methods and, in particular, of the

implicit tau-leaping method. In [15], it was stated that the implicit tau-leaping strategy is

damping the noise in the fast variables for all models of well-stirred biochemical systems.

However, we observed that this is not the case for biochemically reacting systems which do

not reach a steady state, but have a different qualitative behavior. Examples include models

with bi-stability where, due to the noise some paths switch between deterministic steady-

states. Our claim is, that for these systems, the implicit tau-leaping methods are accurate

in both fast and slow variables.

4.1 The Schlögl Model

The Schlögl model [72, 73, 74] serves as an excellent example of a chemically reacting sys-

tem showing bi-stable behavior. The Schlögl reacting system is composed of three chemical

species (labeled A, B and S) reacting through four chemical reactions. The chemical reac-

tions along with their respective propensities are given in Table 4.1. The number of molecules

of the species A and B are kept constant during the entire time span of the experiment. If

XA, XB and X represent the number of molecules of the three species A, B and S, then the
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state vector X can be written as

X =


X

XA

XB


The stoichiometric matrix ν, for the reacting system will be:

ν =


1 −1 1 −1

−1 1 0 0

0 0 −1 1

 ,

where the four columns of the stoichiometric matrix ν represent the four state change vectors

ν1, ν2, ν3 and ν4 corresponding to the four reactions R1, R2, R3 and R4, respectively.

Case Reaction Propensity

1 R1 : A + 2 S
c1−−→ 3 S a1(X) = c1XAX(X − 1)/2

2 R2 : 3 S
c2−−→ A + 2 S a2(X) = c2X(X − 1)(X − 2)/6

3 R3 : B
c3−−→ S a3(X) = c3XB

4 R4 : S
c4−−→ B a4(X) = c4X

Table 4.1: The reactions and propensities in the Schlögl model.

For our simulations, the number of molecules of species A and B have been taken to be

XA = 105 and XB = 2 × 105, respectively. The initial number of molecules of species S is

X(0) = 250. The stochastic reaction rate parameters are c1 = 3×10−7, c2 = 10−4, c3 = 10−3

and c4 = 3.5. The interval of integration is [0, 4].

We begin with the continuous deterministic description of this model. According to the

RRE (2.55)

dy(t)

dt
=

M∑
j=1

νjaj(y(t))

where the number of molecules are represented by a continuous real-valued variable y(t).
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For the Schlögl model, there is only one reacting species which varies in time, namely S.

Therefore, the RRE can be written as

dy(t)

dt
= ν11a1(y(t)) + ν12a2(y(t)) + ν13a3(y(t)) + ν14a4(y(t)) (4.1)

Substituting the stoichiometric coefficients, we derive

dy(t)

dt
= a1(y(t))− a2(y(t)) + a3(y(t))− a4(y(t))

After substituting the propensity functions according to Table 4.1 and simplifying, we get

dy(t)

dt
= −

(c2

6

)
y3 +

(
c1XA

2
+
c2

2

)
y2 −

(
c1XA

2
+
c2

3
+ c4

)
y + c3XB (4.2)

The following ODE is obtained after substituting the constant parameter values,

dy(t)

dt
= −1.666667× 10−5y3 + 1.505× 10−2y2 − 3.515033y + 200 (4.3)

The right hand side of this ODE is a cubic polynomial with three roots: r1 = 84.7902,

r2 = 248.3536 and r3 = 569.8562 as shown in Figure 4.1. The middle root r2 corresponds to

the unstable equilibrium, while the other two (r1 and r3) represent the two stable equilibrium

values. Therefore, the Schlögl model serves as an excellent example of a bistable system. This

bistable behavior is shown in Figure 4.2, where the solution of equation (4.3) was plotted

with slightly different values of the initial number of molecules (X0 = 248 and X0 = 249).

It can be noticed that the solutions converge to the two stable equilibrium roots r1 and r3.

An interesting question can be asked at this stage: At some randomly chosen instant of

time, near which of the two stable states, will the system be? To answer this question, we

solve the RRE (4.3), repeatedly with different initial conditions. The results are shown in

the form of a family of curves shown in Figure 4.3, all being converging to either of two stable
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Figure 4.1: The deterministic rate of change of molecules with time using the RRE for the Schlögl model,
indicating the roots of the rate function.

states. It can be noted that, if the system starts with an initial value X0 < r2 (the unstable

equilibrium root value), then it always converges to the stable state corresponding to the

root r1. Similarly, if X0 > r2, the system always converges to the stable state corresponding

to the root r3. Therefore, deterministically, it is the initial condition that dictates the future

behavior of the system. Once the system is in any of the two stable states, it stays in that

state. There is no question of jumping of the system from one state to the other.

We now turn to the discrete, stochastic model of the CME for this system. We first run

the SSA simulation for the Schlögl model from time t = 0 to t = 10. Figure 4.4 shows ten

trajectories with X0 = 250 as the initial condition. Each trajectory represents the state of

the system as it evolves in time. A closeup of one of the trajectories is shown in Figure 4.5.

As expected, the state of the system does not follow a smooth continuous curve (as was found

in the deterministic case). The number of molecules changes abruptly at random moments

in time, resulting in jumps in the state of the system. Figure 4.4 shows reapeated runs of the
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Figure 4.2: Continuous, deterministic solution of the Schlögl model showing bi-stability of the system.

SSA and each time a new trajectory is formed. This is unlike the deterministic case, where

only one trajectory is formed on repeated runs of the RRE simulation with the same initial

condition. Starting with the same initial condition, a trajectory for the stochastic model can

evolve into any of the two stable states.

The SSA was run with different initial number of molecules (taken from the set):

{50, 100, 150, 230, 248, 270, 00, 400, 450, 500}

The simulation results are shown in Figure 4.6. For initial values far away from the unstable

equilibrium point (r2), the SSA trajectories converge toward either of the two stable states

(r1 or r3, but not both) that is nearer to the initial value. However, as the initial number

of molecules approach the unstable equilibrium value (r2), the chance that the system can

converge to any of the two stable states increases. We can determine the probability that

the system will converge to a stable state.
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0 2 4 6 8 10 12 14 16 18 20

time t

0

100

200

300

400

500

600

N
u

m
b

e
r 

o
f 

m
o

le
c
u

le
s
 y

(t
)

Figure 4.3: The RRE solutions of the Schlögl model using different initial conditions.

Another interesting behavior found in the stochastic modeling is that of State Switching,

whereby a system being in one of the stable states for some time, spontaneously changes

to the other state. This is unlike the behaviour for the deterministic model, where once a

system converges to a stable state, it does not switch to the other state at a later time. We

ran the SSA simulations for a longer period of time (from t = 0 to t = 40) and have observed

the switching of state (as shown in Figure 4.7). The simulations show a trajectory where

the system (after attaining the upper stable state) suddenly switches to the lower stable

state. This behavior is only possible due to the intrinsic noise of the system. This is in total

contrast with the deterministic picture (see Figure 4.3).

We also simulated the Schlögl model with the explicit tau-leaping method. The state

switching was also observed in the simulation results as shown in Figure 4.8. In this case, for

one of the trajectories, after attaining a stable state, the system moves spontaneously from

the lower stable state to the upper stable state. This shows that even with approximate

stochastic simulations, the intrinsic noise of the system plays its role and the system exhibits
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Figure 4.4: Several trajectories of the Schlögl model simulated with the SSA.
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Figure 4.5: Markov jumps in an SSA solution of the Schlögl model.
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the state switching behavior.

We have implemented the three tau-leaping methods (i.e., explicit, implicit and trape-

zoidal tau-leaping) along with the SSA as discussed in Chapter 3 in MATLAB R©. All simu-

lations were carried out for 104 trajectories for each method. Each trajectory was obtained

for the time interval from t = 0 to t = 4. A leap of size τ = 0.0125 was used in all the sim-

ulations using tau-leaping methods. The probability distributions generated using the SSA,

the explicit, implicit and trapezoidal tau-leaping strategies with fixed stepsize of τ = 0.0125

are shown in Figure 4.9. The approximate tau-leaping methods closely follows the SSA re-

sults. Compared to the other two tau-leaping methods, the trapezoidal tau-leaping method

overshoots at some values of X near the two peaks. Moreover, the mean and standard de-

viations of the number of S molecules are calculated for 10,000 trajectories obtained using

the three tau-leaping methods. The mean values as functions of time obtained from the

three tau-leaping methods along with the corresponding values obtained from the SSA are

plotted in Figure 4.10. The approximate mean values are very close to those from the SSA

runs. The standard deviations obtained for all four methods as functions of time are shown

in Figure 4.11.

The interesting thing to note is that the standard deviations obtained with the tau-leaping

methods match very well with those obtained with the SSA. Therefore, it is inferred that

the implicit tau-leaping method by itself gives results comparable to those of the trapezoidal

tau-leaping method which is considered to be a higher order method (see Chapter 3). The

mean values obtained using the implicit tau-leap strategy are also found to be very close to

those obtained with the trapezoidal tau-leap method as shown in Figure 4.10.

Thus, for this bi-stable model, the noise is not damped by the implicit tau-leaping strategy

and no additional technique is required to maintain accuracy.
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Figure 4.6: SSA solutions of the Schlögl model with different initial conditions.
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Figure 4.7: The state switching in some SSA trajectories for the Schlögl model. Only 10 trajectories are
shown.
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Figure 4.8: The state switching in explicit tau-leaping trajectories of the Schlögl model. 10 trajectories
are shown.

64



CHAPTER 4. NUMERICAL RESULTS AND DISCUSSION4.1. THE SCHLÖGL MODEL

0 100 200 300 400 500 600 700 800

X

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
ro

b
a
b
ili

ty

SSA

-Leaping Explicit

-Leaping Implicit

-Leaping Trapezoidal

Figure 4.9: Schlögl model: Comparison of the probability distributions at T = 4 obtained using 10,000
simulations with the SSA and the τ -leaping methods.
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Figure 4.10: Schlögl Model: Comparison of the mean values as functions of time, for 10,000 trajectories
using the SSA and the τ -leaping methods.
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Figure 4.11: Schlögl Model: Comparison of the standard deviation values as functions of time for 10,000
trajectories using the SSA and the τ -leaping methods.

4.2 The Goldbeter-Koshland Switch

Goldbeter and Koshland (1981) studied this biochemically reacting system involving protein

modification by effector and modifying enzymes [75]. This system, also called the Goldbeter-

Koshland switch (GK switch), consists of a pair of substrate (S)- product (P ) proteins

that are interconverted by two enzymes (E1 and E2), making two intermediate compound

molecules (K1 and K2). The GK switch was studied by Melykuti et al [16] using stochastic

modeling. Ahn et. al. [76] also implimented the GK switch using the SSA, the explicit and

the implicit tau leaping methods with a different set of initial conditions. The GK switch

consists of N = 6 chemically reacting species subjected to M = 6 chemical reactions. The

chemical reactions along with the propensity functions are given in Table 4.2. The state of the

system is represented by the vector (X1, X2, X3, X4, X5, X6)T , where Xj for j = 1, 2, · · · , 6

are the number of molecules of the reacting species corresponding to (S,E1, K1, P, E2, K2).
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Label Reaction Propensity

R1 S1 + S2
c1−−→ S3 a1(X) = c1X1X2

R2 S3
c2−−→ S1 + S2 a2(X) = c2X3

R3 S3
c3−−→ S4 + S2 a3(X) = c3X3

R4 S4 + S5
c4−−→ S6 a4(X) = c4X4X5

R5 S6
c5−−→ S4 + S5 a5(X) = c5X6

R6 S6
c6−−→ S1 + S5 a6(X) = c6X6

Table 4.2: The Goldbeter-Koshland switch parameters.

The stoichiometric matrix is given by:

ν =



−1 1 0 0 0 1

−1 1 1 0 0 0

1 −1 −1 0 0 0

0 0 1 −1 1 0

0 0 0 −1 1 1

0 0 0 1 −1 −1


where the six columns of the matrix ν represent the six state change vectors ν1, ν2, ν3, ν4,

ν5 and ν6 for the six reactions R1, R2, R3 , R4 , R5 and R6, respectively.

The reaction rate constant values used to simulate the GK switch are: c1 = 0.05, c2 = 0.1,

c3 = 0.1, c4 = 0.01, c5 = 0.1 and c6 = 0.1. The initial state of the system is considered

to be (110, 100, 30, 30, 100, 30)T . Ten trajectories using the SSA, the explicit, the implicit

and the trapezoidal tau-leaping schemes are plotted in Figure 4.12 for the substrate S (X1)

and in Figure 4.13 for the product P (X4). The trajectories obtained using the tau-leaping

methods are similar to those using the SSA.

Figure 4.14 shows the probability distributions obtained from simulating the three tau-

leaping methods and the SSA for all the chemical species. Each simulation was carried out
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(a) SSA trajectories.
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(b) Explicit tau-leaping
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(c) Implicit tau-leaping
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Figure 4.12: Goldbeter Koshland switch - Ten trajectories for the substrate S (X1) as a function of time,
using the SSA and the tau-leaping methods.
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(a) SSA trajectories.
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(b) Explicit tau-leaping
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(c) Implicit tau-leaping
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(d) Trapezoidal tau-leaping

Figure 4.13: Goldbeter Koshland switch - Ten trajectories for the product P (X4) as a function of time,
using the SSA and the tau-leaping methods.
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for 10,000 trajectories. Each trajectory was obtained from t = 0 to t = 5. A step size

τ = 0.005 was used for the three tau-leaping methods. More oscillations in the explicit and

the trapezoidal tau-leap are found near the peak values of the probability distributions. The

implicit tau-leaping method gives results closer to those obtained with the exact SSA near

the peak values.

The mean and the standard deviation of the number of molecules as functions of time

are estimated for 10,000 trajectories obtained with the SSA and the tau-leaping methods.

These means and standard deviations are plotted for each reacting species in Figures 4.15

and 4.16. The tau-leaping estimations of the mean and standard deviation Xi-values match

closely those computed using the exact SSA. It can be inferred that the implicit tau-leaping

gives very accurate results compared to the exact strategy.

In conclusion, for this model, the implicit tau-leaping scheme does not reduce the noise

in the system, as predicted in [15].
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Figure 4.14: Goldbeter-Koshland switch - Comparison of probability distributions for all 6 species using
104 trajectories for each of the SSA, explicit, implicit and trapezoidal tau-leaping methods computed at T
= 5.
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Figure 4.15: Goldbeter-Koshland switch - Comparison of the mean values for all 6 species as functions of
time, using 104 trajectories for each of the SSA, explicit, implicit and trapezoidal tau-leaping methods.
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Figure 4.16: Goldbeter-Koshland switch - Comparison of the standard deviation values for all 6 species as
functions of time, using 104 trajectories for each of the SSA, explicit, implicit and trapezoidal tau-leaping
methods. 73
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4.3 Decay Dimerization

This model was originally proposed by Gillespie [11] in 2001 and used by Rathinam [15] in

2003. There are N = 3 chemical species interacting through M = 4 chemical reactions. The

reactions along with the propensities functions are given in Table (4.3). The reaction R1 is

an irreversible isomerization. The species S1 decays with a rate constant c1. Reactions R2

and R3 form a reversible dimerization of the monomer S1 into an unstable dimer S2. The

unstable dimer can also convert into a stable species S3. The rate constants c2 and c3 are

large compared to the other two rate constants. Therefore the reactions R2 and R3 take

place at a faster rate. The presence of both fast and slow scales makes the problem of decay

dimerization a stiff problem.

Label Reaction Propensity

R1 S1
c1−−→ 0 a1 = c1X1

R2 S1 + S1
c2−−→ S2 a2 = c2X2(X2 − 1)/2

R3 S2
c3−−→ S1 + S1 a3 = c3X2

R4 S2
c4−−→ S3 a4 = c4X2

Table 4.3: The toggle switch parameters.

Figure 4.17 shows three representative trajectories when the SSA is run for this problem

from t = 0 to t = 0.2 with rate constants c1 = 1.0, c2 = 10.0, c3 = 1000.0 and c4 = 0.1. The

initial number of molecules of the three species are X1(0) = 400, X2(0) = 798 and X3(0) = 0.

The stoichiometric matrix is given by:

ν =


−1 −2 2 0

0 1 −1 −1

0 0 0 1


The figure indicates a fast decrease in the number of molecules of species S1 and S2 and a slow
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growth in the number of molecules of the stable species S3. Figure 4.18 and Figure 4.19 give

a comparison of the probability distributions for S1 and S2 species using 10,000 trajectories

of the SSA and implicit tau-leaping method. The results indicate that the implicit tau-

leaping method accurately models the non-steady state behavior of the system. Therefore,

it could be inferred that for the non-steady state part of stiff problems, the implicit tau-

leaping method is itself accurate and it does not require an interlacing with the exact SSA.

The implicit tau-leaping gives a speed up of two orders of magnitude compared to the SSA

simulation.
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Figure 4.17: Decay Dimerization - SSA trajectories.
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Figure 4.18: Decay Dimerization - Comparison of the probability distribution of S1 using 10,000 trajectories
of the SSA and the implicit tau-leaping.
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Figure 4.19: Decay Dimerization - Comparison of the probability distribution of S2 using 10,000 trajectories
of the SSA and the implicit tau-leaping.
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Chapter 5

Conclusion and Future Work

Stochastic modeling of biochemical processes at the level of a single cell is an important

area of research. In particular, cellular processes involving some molecular species in low

numbers (e.g. DNA or RNA) necessitate stochastic models for an accurate description of the

behaviour. However, stochastic models are expensive to simulate, thus effective numerical

methods to approximate their solution are desirable. Among the stochastic models of well-

stirred biochemical system, among the most accurate and widely used, is the Chemical

Master Equation. For the Chemical Master Equation, Gillespie proposed an exact Monte

Carlo method, namely the stochastic simulation algorithm. This method is expensive on

practical application, when fast reactions are present. Approximate tau-leaping strategies

for the CME were developed.

In this thesis, three tau-leaping methods to find approximate solutions for CME have been

investigated. The explicit tau-leaping method has improved the computational efficiency

compared to the exact SSA for nonstiff models. The implicit and trapezoidal tau-leaping

methods are stable for stiff systems having both slow and fast scales and more efficient than

the SSA and explicit tau-leap strategies.

We studied in detail the behavior of the implicit tau-leaping method. Previous work stated

that the implit tau-leaping scheme damped the noise in the fast variables. However, we
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observed that, for systems not reaching steady-state, the implicit tau leaping scheme is

accurate for all variables.

We tested the behavior of the implicit tau-leaping method on two models not reaching

a steady state: the Schlögl model (a bi-stable system) and the Goldbeter-Koshland switch

(a stochastic switch system), both with large levels of noise and not reaching a steady-state.

We compared the implicit tau-leaping simulation results with those of the SSA and other

tau-leaping strategies and found that all variables (slow and fast) were accurately estimated.

By contrast, the implicit tau-leaping method reduces the noise of the fast variables for

systems reaching a steady-state, as previously observed in the literature. We illustrated this

by testing on a decay-dimerization model.

Stochastic simulation of biochemical reaction systems is a broad area. The development of

efficient and accurate simulation algorithms to solve problems of practical interest modelled

using the CME remains an active area of research. In the tau-leaping methods, the choice

of the stepsize plays an important role in improving the efficiency of the simulations. This

is one area where in which the current work can be extended in the future.
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Appendix A

Propositions

In this appendix, we have defined the terms used in this thesis.

Chapman Kolmogorov Equation / Theorem

According to Chapman Kolmogorov theorem, if Xn, where n = 0, 1, 2, ......... is a homoge-

neous Markov Chain, then

Pr(Xm+n = j|X0 = i) =
∑
k∈S

Pr(Xm+n = j|Xm = k)Pr(Xm = k|X0 = i) (A.1)

In other words, the conditional probability that the Markov process transits from state i to

state j in m+ n steps is equal to the sum of the product of the conditional probabilities of

reaching an intermediate state k from i in m steps and from state k to j in n steps. Equation

(A.1) is also called Chapman Kolomogorov Equation. For the complete sake, the proof is

given in appendix A
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Proof The left hand side can be written (introducing that the Markov process passes

through an intermediate state K ) as:

Pr(Xm+n = j|X0 = i) = Pr(Uk∈S(Xm+n = j,Xm = k)|X0 = i)

= Pr(Uk∈S(Xm+n = j,Xm = k|X0 = i))

(conditional probability distribution over addition)

=
∑
k∈S

Pr(Xm+n = j,Xm = k|X0 = i)

(countable additivity)

=

∑
k∈S Pr(Xm+n = j,Xm = k,X0 = i)

Pr(X0 = i)

(conditional probability definition: Wilkinson Def 3.4)

=

∑
k∈S Pr(Xm+n = j,Xm = k,X0 = i)

Pr(X0 = i)
× P(Xm = k,X0 = i)

P(Xm = k,X0 = i)

=

∑
k∈S Pr(Xm+n = j,Xm = k,X0 = i)

Pr(X0 = i)
× P(Xm = k,X0 = i)

P(Xm = k,X0 = i)

=

∑
k∈S Pr(Xm+n = j,Xm = k,X0 = i)

Pr(Xm = k,X0 = i)
× P(Xm = k,X0 = i)

P(X0 = i)

(using conditional probability definition: Wilkinson Def 3.4)

=
∑
k∈S

Pr(Xm+n = j|Xm = k,X0 = i)× Pr(Xm = k|X0 = i)

(using the definition of Markov processes)

=
∑
k∈S

Pr(Xm+n = j|Xm = k)Pr(Xm = k|X0 = i)

= R.H.S

Propositions used in SSA

So far we know that the number of reactions occuring in a short time interval is approx-

imately Poisson (large number of reactions (i.e. n is large) and probability of each reaction

is very small (i.e. p is very small)). The number of reactions in different intervals are inde-
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pendent of one another as well.

Proposition Consider a Poisson process with rate λ. Let T be the time to the first event

(after zero). Then

T ∼ Exp(λ)

Proof Let Nt be teh number of events in teh interval (0, t] for given fixed t > 0. By

definition of Poisson

Nt ∼ Po(λt)

Consider the cumulative distribution function (CDF ) of T ,

FT (t) = P (T ≤ t)

= 1− P (T > t)

= 1− P (Nt = 0)

= 1− (λt)0e−λt

0!

= 1− e−λt

This is the distribution function of an Exp(λ) random quantity.

T ∼ Exp(λ) (A.2)

So the time to first event of a Poisson process is an exponential random variable. But then

using the independence properties of the Poisson process, it should be reasonably clear that

the time between any two such events has the same exponentail distribution. Thus the times

between events of the Poisson process are exponential.

Using equation (A.2) we have

Xi ∼ Exp(ai)
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where Xi for i = 1, 2, 3, ......, n are independent variables.

Here we use another proposition which states that

Proposition If Xi ∼ Exp(ai), i = 1, 2, ......, n are independent random variabes, then

X0 ≡ min
i
{Xi} ∼ Exp(asum(X)) (A.3)

where

asum(X) =
n∑
i=1

ai(X)

Proof :

We know that X ∼ Exp(a) so we have P (X > x) = e−λx. Then

P (X0 > x) = P (min
i
Xi > x)

= P ([X1 > x]
⋂

[X2 > x]
⋂

..............
⋂

[Xn > x])

=
n∏
i=1

P (Xi > x)

=
n∏
i=1

e−aix

= e−x
∑n

i=1 ai

= e−asumx

So

P (X0 ≤ x) = 1− e−asumx (A.4)

and hence

X0 ∼ Exp(asum(X)) (A.5)

Lemma Suppose that X1 ∼ Exp(ai) and X2 ∼ Exp(aj) are independent random vari-

82



APPENDIX A. PROPOSITIONS

ables. so

P (X1 < X2) =

∫ ∞
0

P (X1 < X2|X2 = y)f(y)dy

=

∫ ∞
0

P (X1 < y)f(y)dy

=

∫ ∞
0

(1− e−aiy)aje−ajydy

=
ai

ai + aj

=
ai
asum

(A.6)

so we can say

P (X1 < X2) =
ai(X)

asum(X)
(A.7)

Using Lemma 1, we can make the following proposition

Proposition If Xi ∼ Exp(ai), where i = 1, 2, 3, ......, n are independent random variables,

let j be the index of the smallest of the Xi. then j is a discrete random variable with PMF

πi =
ai
asum

, i = 1, 2, ...., n (A.8)

where

asum =
n∑
i=1

ai

Proof :

πj = P (Xj < min
i 6=j
{Xi}) (A.9)

where

Y = min
i 6=j
{Xi}

so that

Y ∼ Exp(a−j)
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where

a−j =
∑
i 6=j

ai

Using equation (A.7), we can write

=
aj

aj + a−j

=
aj
asum

πj =
aj
asum

(A.10)

This gives the likelihood of a particular exponentail random quantity of an independent

collection being the smallest. By using (A.5)(A.7) and (A.10), (??) can be written in the

standard form as:

p(τ, j|x, t) =

(
aj(x)

asum(x)

)
asum(x)e−asum(x)τ (A.11)
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