
BIFURCATION ANALYSIS OF AN SIR EPIDEMIC MODEL

WITH SATURATED TREATMENT FUNCTION

by

Phuc Ngo, BSc, Ryerson University, 2015

A thesis presented to Ryerson University

in partial fulfilment of the

requirements for the degree of

Master of Science

in the Program of

Applied Mathematics

Toronto, Ontario, Canada, 2017

c©Phuc Ngo, 2017



Author’s Declaration

I herby declare that I am the sole author of this thesis. This is a true copy

of the thesis, including any required final revisions, as accepted by my exam-

iners. I authorize Ryerson University to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopy-

ing or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of the scholarly research.

I understand that my thesis may be made electronically available to the

public.

Phuc Ngo

Department of Mathematics

Ryerson University

ii



BIFURCATION ANALYSIS OF AN SIR EPIDEMIC MODEL

WITH SATURATED TREATMENT FUNCTION

Phuc Ngo

Master of Science, 2017

Applied Mathematics Program

Ryerson University

ABSTRACT

In this thesis we investigate the dynamics and bifurcation of SIR epidemic

models with horizontal and vertical transmissions and saturated treatment

rate. It is proved that such SIR epidemic models always have positive disease

free equilibria and also have three positive epidemic equilibria. The ranges

of the parameters related in the model were found under which the equilibria

of the models are positive. By applying the qualitative theory of planar

systems, it is shown the disease free equilibria is a saddle, stable node and

globally asymptotically stable. Furthermore, it is also shown that the interior

equilibria are saddle, saddle node or saddle point.
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List of Abbreviations

S Susceptible; individuals not infected but who are capable

of contracting the disease and becoming infective.

I Infected; individuals who are infected and infectious, capa-

ble of transmitting the disease to others.

R Removed; individuals who have had the disease and have

recovered, and who are permanently immune, or are iso-

lated until recovery and permanent immunity occur.

b The birth rate of the susceptible population, which is as-

sumed to equal the death rate.

d The natural death rate

r The recovery rate of the infective individuals.

p The proportion of offspring’s of infective parents that are

susceptible individuals and p ∈ [0, 1] .

q The fraction of the infected unborn or newly born offspring

of the infective parent and q ∈ [0, 1] .

KMK The Kermack Mckendrick model.

ay
1+cy

The removal rate of the infected individuals.
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Chapter 1

Introduction

Many infectious diseases exist in our society such as: Chickenpox, smallpox,

AIDS, H1N1... that may have tremendous effects on individuals. For exam-

ple, during the Bubonic Plague also known as the Black Death, an epidemic

in Europe first occurring between 1348 to 1350 about thirty to sixty percent

of the European population were wiped out. In 1520 a smallpox epidemic

caused half of the population of the Aztec to perish. A recent epidemic

caused by severe acute respiratory syndrome (SARS), in 2003 affected more

than five thousand people. Another example is the H1N1 Influenza pandemic

that occurred in 2009.

Many theories were developed during the nineteenth century, from Hamer

model(1906) and Ross model (1911), Anderson-May, Dietz, where these mod-

els become more concrete as time progresses. Many questions arise when our

society is faced with a new type of disease such as: factors effecting the

spread of the disease, which individuals to treat, how to stabilize the spread
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of the disease and how to terminate it. In order to understand these epidemic

system characteristics mathematical modeling can be used.

1.1 Objectives

The primary objective of this thesis are:

1. Modify the previous SIR epidemic model and study the dynamical be-

haviours.

2. To find the conditions of the parameters involved in the model to pro-

viding the positive equilibria and study the qualitative behaviour at

each equilibrium.

1.2 Methodology

We are interested in the study of the epidemic model with a saturated treat-

ment function. After we modify the previous SIR epidemic model by adding

the saturated treatment function ay
1+cy

, we will then reduce the new sys-

tem from three non-linear differential equations to two non-linear differential

equations. We will find all the ranges of parameters to ensure that all equilib-

ria are positive and then we will determine the stability of the SIR epidemic

model for each of its equilibria.
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1.3 Thesis organization

The purpose of the thesis is to find the total number of equilibria, to inves-

tigate the phase portraits near the equilibria and to understand whether the

disease will spread or persist for our model of interest.

In Chapter 1, there will a brief introduction to the epidemiology, problems

and the explanations of the thesis objectives.

In Chapter 2, we will introduce the definitions, mathematical theory,

terminology and methods that we will use to analyze the results of the model.

Chapter 3 and 4 contain the main results of the thesis and chapter 5

contains the conclusion of our model.
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Chapter 2

Theory of dynamical systems

2.1 Introduction

We will present the mathematical theories and techniques that are useful

to study non-linear differential equations. It will be useful to interpret the

biological meaning of the epidemic model. In order to understand and to

analyze the model we need to study the equilibrium points of the system.

For example, if there exists an equilibrium point of the form (S, 0), then it

can represent the disease-free states of an epidemic model.

We consider the following two dimensional planar systems ẋ(t) = f (x(t), y(t)),

ẏ (t) = g (x(t), y(t)) ,
(2.1.1)

subject to the initial value condition:

(x(0), y(0)) = (x0, y0), (2.1.2)
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where f, g ∈ C1(R2).

2.1.1 Definition of autonomous differential equation

An autonomous system or autonomous differential equation is a system of

ordinary differential equations has the form ẋ(t) = f(x(t)) which does not

explicitly depend on the independent variable where x takes values in n-

dimensional and t is usually time.

2.1.2 Equilibrium

An equilibrium point of a dynamical system generated by an autonomous

system of differential equations is a solution that does not change with time.

In SIR model, all the parameters and equilibrium points must be positive in

order to have biological meaning. If it is negative, then the solution tends to

extinction.

The autonomous dynamical system has the form ẋ = f(x, y),

ẏ = g(x, y),
(2.1.3)

Definition 2.1.1. [2] A point (x̄, ȳ) ∈ R2
+ is an equilibrium point of (2.1.3)

if it satisfies f(x̄, ȳ) = 0 and g(x̄, ȳ) = 0. An equilibrium point (x̄, ȳ) of

(2.1.3) is said to be positive if (x̄, ȳ) ∈ P where

P = {(x̄, ȳ) ∈ R2 : x̄ ≥ 0 and ȳ ≥ 0},

and to be an interior equilibrium point if x̄ > 0 and ȳ > 0.
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2.1.3 Phase plane analysis

As mentioned earlier in the introduction part, we need to understand the

theory behind the dynamic behaviours of a system of two differential equa-

tions. We need to study the local stability through phase plane analysis near

equilibrium point. One way to do that is to linearize a non-linear system

about an equilibrium point.

Definition 2.1.2. [3, 6] Linearization refers to finding the linear approxi-

mation to a function at a given point. In the study of dynamical systems,

linearization is a method for assessing the local stability of an equilibrium

point of a system of nonlinear differential equations.

It is a technique that has been used for studying linear system to analyze the

behaviour of a non-linear function near the fixed point.

Let the system of (2.1.3) be a non-linear system . We will expand the

function f and g by using Taylor formula. Now, we are going to apply a

small perturbation with u = x− x̄ and v = y − ȳ. Then

du

dt
= f(x̄, ȳ) + fx(x̄, ȳ)u+ fy(x̄, ȳ)v + fxx(x̄, ȳ)

u2

2
+ ...,

dv

dt
= g(x̄, ȳ) + gx(x̄, ȳ)u+ gy(x̄, ȳ)v + gxx(x̄, ȳ)

u2

2
+ ...,

where

fx(x̄, ȳ) = ∂f(x,y)
∂x
|x=x̄,y=ȳ and gx(x̄, ȳ) =

∂g(x, y)

∂x
|x=x̄,y=ȳ and so on.

We will neglect the partial derivatives of the terms of order greater or equal

to two. Recall from definition (2.1.1), the equilibria of the system (2.1.3) are

solution (x̄, ȳ) that satisfy f(x̄, ȳ) = 0 and g(x̄, ȳ) = 0.
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The system linearized about the equilibrium (x̄, ȳ) is [6]

dA

dt
= JA,

where A = (u, v)T and J is the Jacobian matrix evaluated at the equilibrium.

Lets recall some results on phase portraits of planar systems near equilib-

ria in the qualitative theory [2, 4, 5]. Let us denote by A(x, y) the Jacobian

matrix of f and g at (x, y), that is

A(x, y) =


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y

 , (2.1.4)

and by |A(x, y)| and tr(A(x, y)) the determinant and the trace of A(x, y)

respectively.

The characteristic polynomial of A(x, y) is

λ2 − tr(A(x, y)) + det(A(x, y)).

The solutions of a planar system near its equilibria (x, y) can be stud-

ied by the eigenvalues of A(x, y) which can be determined by |A(x, y)| and

tr(A(x, y)).

[24] The Figure 2.1 illustrates the classification schemes of a non-linear

system that has been linearized to linear system . The stability diagram in

the (T,∆) plane, where T = tr(A(x, y)) and ∆ = det(A(x, y)), and ∆ = T .
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Figure 2.1: [7] The stability diagram of non-linear system.
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2.1.4 Classification scheme of stability

The following classification schemes can be found in [2, 4, 5] and have been

used in [2, 4, 5].

Lemma 2.1.1. [2] If (x0, y0) is an equilibrium of (2.1.1), then the following

assertions hold.

(i) If |A(x0, y0)| < 0, then (x0, y0) is a saddle of (2.1.1).

(ii) If |A(x0, y0)| > 0, (tr(A(x0, y0)))2−4|A(x0, y0)| ≥ 0 and tr(A(x0, y0)) 6= 0,

then (x0, y0) is a node of (2.1.1); it is stable if tr(A(x0, y0)) < 0 and unstable

if tr(A(x0, y0)) > 0.

(iii) If |A(x0, y0)| > 0, (tr(A(x0, y0)))2 − 4|A(x0, y0)| < 0 and tr(A(x0, y0)) 6=

0, then (x0, y0) is a focus of (2.1.1); it is stable if tr(A(x0, y0)) < 0 and

unstable if tr(A(x0, y0)) > 0.

Lemma 2.1.2. [2] Let (x0, y0) be an equilibrium of (2.1.1). Assume that

|A(x0, y0)| = 0, tr(A(x0, y0)) 6= 0 and (2.1.1) is equivalent to the following

system 
u̇ = p(u, v),

v̇ = %v + q(u, v)

(2.1.5)

with an isolated equilibrium point (0, 0), where % 6= 0,

p(u, v) =
∑∞

i+j=2,i,j≥0 aiju
ivj and q(u, v) =

∑∞
i+j=2,i,j≥0 biju

ivj are convergent

power series. If a20 6= 0, then (x0, y0) is a saddle-node of (2.1.1).

The graphs and illustration of the Lemma (2.1.1) and (2.1.2) are provided

below:
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(a) Stable node − the

solution will flow into

the origin or the solution

will approach the equi-

librium regardless of the

starting point.

(b) Unstable node -the

solution will not con-

verge to the equilibrium,

unless it starts at the

equilibrium.

(c) Center -the solu-

tion will neither ap-

proach nor move away

from the equilibrium

(d) Saddle point -the so-

lution will not converge

to the equilibrium

(e) Stable Spiral -the so-

lution starts from any

point other than the

equilibrium, it spirals

into the equilibrium .

(f) Unstable Spiral -the

solution starts from the

fixed point and then spi-

rals away from the equi-

librium.

Figure 2.2: Phase portrait diagram
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Lemma 2.1.3. [23] Assume that each positive solution of (2.1.1)-(2.1.2) with

(x0, y0) ∈ R2
+ is contained in a bounded closed subset B of R2. Assume that

B contains only one equilibrium (x∗, y∗) of the system (2.1.1) and (x∗, y∗)

belongs to the boundary of B. Then each positive solution of (2.1.1)-(2.1.2)

converges to (x∗, y∗).
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Chapter 3

Introduction to epidemic model

3.1 Introduction

The first section of this chapter is devoted to the back ground of the epidemic

models. In disease modelling, there are two types of models: Simple and

detail. In the simple epidemic model a constant population size N is assumed

and there are no deaths or movement of population to affect the population

size. Also, many epidemics have short time life span as compared to the

life span of the individuals in the population so the population size N is

constant.

Detail models are designed for specific circumstances including short term

prediction and allow for a variety of situations such as vaccinations and

quarantine.

The first introduces the SIR model which is simple and ignores vital dy-

namics and SIR model with vital dynamics. This will include the mechanism
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of the model and its first pioneer that came up with the model. In the second

part of this chapter we will present our model of interest. The model is an

expansion of the work from [8]

3.2 The beginning of mathematical epidemi-

ology

1. Daniel Bernoulli formulated and solved a model for smallpox in 1760.

Using his model, he evaluated the effectiveness of inoculating of healthy

people against the smallpox virus.

2. William Hamer formulated and analyzed a discrete time model in 1960

to understand the recurrence of measles epidemics.

3. Ronald Ross developed differential equation models for malaria as a

host vector disease in 1911.

4. Kermack and McKendrick introduced a new epidemic model known

as an SIR model, which is also commonly referred to as the Kermack

McKendrick model (KMK).

13



3.2.1 The SIR model without vital dynamics

The following is the model of Kermack and McKendrick ( The SIR model

without vital dynamics)


dS
dt

= −β SI
N
,

dI
dt

= β SI
N
− rI,

dR
dt

= rI,

(3.2.1)

The next assumption of this simple model is that the population is subdivided

into three subgroups S, I and R where:

S Susceptible; individuals not infected but who are capable

of contracting the disease and becoming infective.

I Infected; individuals who are infected and infectious, capa-

ble of transmitting the disease to others.

R Removed; individuals who have had the disease and have

recovered, and who are permanently immune, or are iso-

lated until recovery and permanent immunity occur.

N Total population size.

β
N
S The average number of adequate contacts made by an in-

fected individual resulting in an infection of a susceptible

individual per time.

β
N
SI The number of infections caused by all infected individuals

per time.

β The average number of adequate contacts made by an in-

fected individual per time.

14



r The recovery rate of the infective individuals.

µ The per capita death rate, and the population level birth

rate.

3.2.2 The SIR model with vital dynamics

The differential equations for the SIR model with vital dynamics is
dS
dt

= µ− βSI − µS,
dI
dt

= βSI − rI − µI,
dR
dt

= rI − µR,

(3.2.2)

There are some drawbacks in the two classic models (3.2.1) and (3.2.2):

1. The total population size remains constant in the two classic models

2. They assume that the population is uniform and homogeneously mix-

ing. However, mixing depends on many factors including age which is

not taken into account by any of the model.

3. The model (3.2.1) assumes no birth-rate or natural death-rate, or treat-

ment. The model SIR without vital dynamics assumes only horizontal

transmission. That is individuals can only be infected by direct contact.

A new SIR epidemic model with vertical and horizontal transmission is in-

vestigated by Xinzhu Meng and Lansun Chen [10]. The vertical transmission

is the passing of the infection from from a parent to an unborn offspring.

In [10], they also introduced a birth rate b which is also equal to the death

15



rate d

The following sections introduces the model of Xinzhu Meng and Lansun

Chen [10] and how it is constructed, and our modification on the model.

3.3 Construction the model and modification

Following is the model (2.1) in [10]
Ṡ = −βSI − dS + pbI + b(S +R),

İ = βSI − dI − rI + qbI,

Ṙ = rI − bR,

(3.3.1)

The terminology of all parameters were defined earlier and the population has

a constant size. We can normalize the population, so S(t) + I(t) +R(t) = 1.

S, I, R are taken as proportions and using S+ I = 1−R. This together with

p+ q = 1 reduce the system (3.3.1) to following 2-dimensional system


ẋ = b− βxy − bx− qby := f(x, y),

ẏ = βxy − by − ry + qby := g(x, y),

(3.3.2)

where x(t) = S(t) and y(t) = I(t).

We modify the model by adding a saturated treatment function ay
1+cy

to

the second equation of the system (3.3.2). Then system (3.3.2) becomes: ẋ = b− βxy − bx− qby := f(x, y),

ẏ = βxy − by − ry + qby − ay
1+cy

:= g(x, y),
(3.3.3)

where a ≥ 0, c ≥ 0.
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3.4 Previous results

The SIR models with a = q = 0 then model (3.3.3) is the SIR model with

horizontal transmissions and it was considered by Hethcote [9].

When a = 0 and q ∈ (0, 1) then model (3.3.3) is the SIR model only with

horizontal and vertical transmissions and it was considered by Meng and

Chen [10]. As well as Luo, Zhu and Lan with constant treatment rates [11].

In [10], they showed that the dynamical system (3.3.2) has two equilibrium

points. The first one is disease free equilibrium (S∗0 , I
∗
0 ) = (1, 0) and the

second equilibrium point is (S∗1 , I
∗
1 ) =

(
1
R0
, b(R0−1)
β+(b−pd)R0

)
where R0 = 1

pd+r
= 1

S∗
1

is a basic reproductive number of the epidemic.

They proved that the disease-free equilibrium (S∗0 , I
∗
0 ) is unstable or lo-

cally stable under some conditions of the parameters. They also proved that

the positive interior equilibrium (S∗1 , I
∗
1 ) can be unstable or locally stable.

3.5 Positive equilibria of the model (3.3.3)

In this section, we will find all the equilibria of (3.3.3) and provide conditions

on the parameters involved in (3.3.3) under which the equilibria are positive.

Recall that (x, y) ∈ R2 is an equilibrium of (3.3.3) if it satisfies f(x, y) = 0

and g(x, y) = 0. An equilibrium point (x, y) is said to be positive if x, y ≥ 0;

it is a positive interior equilibrium if x, y > 0.

17



Consider the following system b− βxy − bx− bqy = 0

βxy − by − ry + bqy − ay
1+cy

= 0
(3.5.1)

Notation: Let

η := η(b, r, q) = b(1− q) + r, q1 = (b+ r − β)b−1.

We need the following necessary and sufficient conditions of the parame-

ters before find all the positive equilibria.

Lemma 3.5.1. (1) β < η if and only if either r ≤ β < b+ r and 0 ≤ q < q1

or β < r and 0 ≤ q ≤ 1.

(2) η < β if and only if b + r < β and 0 ≤ q ≤ 1 or r < β ≤ b + r and

q1 < q ≤ 1.

(3) η ≤ β if and only if either b + r < β and 0 ≤ q ≤ 1 or r ≤ β ≤ b + r

and q1 ≤ q ≤ 1.

(4) η ≤ β < η + b if and only if either b + r < β < 2b + r − qb and

0 ≤ q ≤ 1 or r ≤ β ≤ b+ r and q1 ≤ q ≤ 1.

(5) β = η if and only if r ≤ β ≤ b+ r and q = q1.

Notation: Let

η = b+ r − bq, q1 =
b+ r − β

b
.

Proof. From the definition of η then

η − β = b+ r − bq − β = (b+ r − β)− bq

= b

[
b+ r − β

b
− q
]

= b(q1 − q)
(3.5.2)

18



and

η − β + b = b(q1 − q) + b = b(q1 − q + 1) (3.5.3)

1) It is easy to verify if r ≤ β < b + r then 0 < q1 < 1 and if β = r then

q1 = 1. This together with 0 ≤ q < q1 and equation (3.5.2) imply the result.

If β < r then q1 > 1 > q since q ∈ [0, 1]. This together with (3.5.2) imply

the result.

2) If b+ r < β then

q1 =
b+ r − β

b
< 0

imply

q1 − q < 0− q < 0

since q ∈ [0, 1]. This together with equation (3.5.2) imply the result.

If r < β ≤ b+r then 0 ≤ q1 < 1. This together with q1 < q ≤ 1 and equation

(3.5.2) imply the result.

3) If b+ r < β then

b+ r − bq < β − bq < β

or η < β. This together with q = q1 and equation (3.5.2) imply the result.

4) If b+ r < β we obtained η < β and q1 < 0 from (3). Moreover

2b+ r − bq = b+ r − bq + b = η + b

so if β < 2b+ r − bq then β < η + b then the result holds.

If r ≤ β ≤ b + r then 0 ≤ q1 ≤ 1 and 1 − q ≥ 0 since q ∈ [0, 1]. The result

follows from equation (3.5.3).

5) If r ≤ β ≤ b+ r then 0 ≤ q1 ≤ 1. This together with q = q1 and equation

(3.5.2) imply η = β
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Lemma 3.5.2. Assume that a, b, c, r, β > 0 and q ∈ [0, 1] then

1) Disease equilibrium (1, 0) always exists.

2) If (x, y) ∈ R2
+ is an positive equilibrium of (3.3.3), then y satisfies the

following equation

β (b+ r) cy2+[β (a+ b+ r)− b (β − η) c] y+b (a− β + η) = 0. (3.5.4)

3) Equation (3.5.4) is equivalent to the following equation(
y +

[β (a+ b+ r)− b (β − η) c]

2β (b+ r) c

)2

− ∆ (c)

4β2(b+ r)2c2
= 0 (3.5.5)

where

∆ (c) = [β (a+ b+ r)− b (β − η) c]2 − 4βbc (b+ r) (a− β + η) (3.5.6)

Proof. From second equation of (3.5.1):

βxy − by − ry + bqy − ay

1 + cy
= 0⇔ y

(
βx− b− r + bq − a

1 + cy

)
= 0

1) y = 0 then x = 1: This is a disease free equilibrium (1, 0)

2) y 6= 0 (y > 0) then

βx− b− r + bq − a

1 + cy
= 0⇔ βx = b+ r − bq +

a

1 + cy

and also imply

x =
b+ r − bq

β
+

a

β (1 + cy)
.
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Substitute those values to the first equation of (3.5.1), we have

b−
(
b+ r − bq +

a

1 + cy

)
y − b

[
b+ r − bq

β
+

a

β (1 + cy)

]
− bqy = 0

b−
(
b+ r +

a

1 + cy

)
y − b

[
b+ r − bq

β
+

a

β (1 + cy)

]
= 0

b− (b+ r) y − ay

1 + cy
− b (b+ r − bq)

β
− ab

β (1 + cy)
= 0

βb (1 + cy)− β (1 + cy) (b+ r) y − aβy − b (1 + cy) (b+ r − bq)− ab = 0.

Expand and re-arrange the equation above, together with η = b+ r− bq, we

end up with equation (3.5.4)

β (b+ r) cy2 + [β (b+ r + a)− b (β − η) c] y + b (a− β + η) = 0

3) By completing square on (3.5.4) we get,

β (b+ r) cy2 + [β (b+ r + a)− b (β − η) c] y + b (a− β + η) = 0

y2 +

[
β (b+ r + a)− b (β − η) c

β (b+ r) c

]
y +

b (a− β + η)

β (b+ r) c
= 0[

y +
β (b+ r + a)− b (β − η) c

2β (b+ r) c

]2

−

[(
[β (b+ r + a)− b (β − η) c]

2β (b+ r) c

)2

− b (a− β + η)

β (b+ r) c

]
= 0

Since(
[β (a+ b+ r)− b (β − η) c]

2β (b+ r) c

)2

− b (a− β + η)

β (b+ r) c

=
[β (a+ b+ r)− b (β − η) c]2 − 4βbc (b+ r) (a− β + η)

4β2(b+ r)2c2
=

∆(c)

4β2(b+ r)2c2
.

Therefore equation (3.5.2) is equivalent equation (3.5.5) with the value of

∆(c) defined above.
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Notation: Let

∆0 : = 4β2b2a(b+ r)(β + bq) (a− β + η) ,

c0 : =
β(a+ b+ r)−

√
∆(c)

b(β − η)
,

c1 : =
βb[a(β + bq)− (b+ r)(β − η − a)]−

√
∆0

b2(β − η)2 ,

c2 : =
βb[a(β + bq)− (b+ r)(β − η − a)] +

√
∆0

b2(β − η)2 .

Lemma 3.5.3. 1) ∆0 > 0 if and only if β > η and a > β − η or β ≤ η

and a > 0.

2) ∆0 = 0 if and only if β > η and a = β − η.

3) ∆0 < 0 if and only if β > η and 0 < a < β − η.

Proof. By definition of ∆0 we have

∆0 := 4β2b2a(b+ r)(β + bq) (a− β + η).

1) If β > η and a > β − η or β ≤ η and a > 0 then (a− β + η) > 0 then

implies ∆0 > 0.

2) If β > η and a = β − η, then (a+ η − β) = 0,then implies ∆0 = 0.

3) If β > η and 0 < a < β − η then (a− β + η) < 0 then implies ∆0 < 0.
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Lemma 3.5.4. Assume that η < β and β − η ≤ a or β ≤ η and a > 0, then

the following assertions hold,

1) ∆(c) > 0 if and only if 0 < c < c1 or c > c2.

2) ∆(c) < 0 if and only if c1 < c < c2.

3) ∆(c) = 0 if and only if c = c1 or c = c2.

By definition of equation ∆ (c) from (3.5.6), we expand the value of ∆ (c)

∆ (c) = b2(β − η)2c2 − 2βb [(β − η) (a+ b+ r) + 2 (b+ r) (a− β + η)] c+ β2 (a+ b+ r)

= b2(β − η)2c2 − 2βb [(β − η) (a− b− r) + 2a (b+ r)] c+ β2 (a+ b+ r)

= b2(β − η)2c2 − 2βb [a (β − η)− (β − η) (b+ r) + 2a (b+ r)] c+ β2 (a+ b+ r)

= b2(β − η)2c2 − 2βb [a (β − η + 2b+ 2r)− (β − η) (b+ r)] c+ β2 (a+ b+ r)

= b2(β − η)2c2 − 2βb [a (β + bq + b+ r)− (β − η) (b+ r)] c+ β2 (a+ b+ r)

= b2(β − η)2c2 − 2βb [a (β + bq) + a (b+ r)− (β − η) (b+ r)] c+ β2 (a+ b+ r)

= b2(β − η)2c2 − 2βb [a (β + bq)− (b+ r) (β − η − a)] c+ β2 (a+ b+ r)

therefore

∆(c) = b2(β − η)2c2−2βb [a (β + bq)− (b+ r) (β − η − a)] c+β2(a+ b+ r)2.

(3.5.7)

By completing square of equation (3.5.7)

∆ (c) = b2(β − η)2

[
c− βb [a (β + bq)− (b+ r) (β − η − a)]

b2(β − η)2

]2

+ β2(a+ b+ r)2 − b2(β − η)2

(
βb [a (β + bq)− (b+ r) (β − η − a)]

b2(β − η)2

)2
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however

[β (a+ b+ r)]2 − (βb [a (β + bq)− (b+ r) (β − η − a)])2

b2(β − η)2

=

[
β (a+ b+ r)− βb [a (β + bq)− (b+ r) (β − η − a)]

b(β − η)

]
[
β (a+ b+ r) +

βb [a (β + bq)− (b+ r) (β − η − a)]

b(β − η)

]
since [

βb (a+ b+ r) (β − η)− βb [a (β + bq)− (b+ r) (β − η − a)]

b(β − η)

]
=

[
βb [(a+ b+ r) (β − η)− [a (β + bq)− (b+ r) (β − η − a)]]

b(β − η)

]
=
βb [a(β − η − β − bq − b− r) + 2 (b+ r) (β − η)]

b(β − η)

=
βb [a(bq − b− r − bq − b− r) + 2 (b+ r) (β − η)]

b(β − η)

=
βb [−2a (b+ r) + 2 (b+ r) (β − η)]

b(β − η)
=

2βb (b+ r) (β − η − a)

b(β − η)

and[
βb (a+ b+ r) (β − η) + βb [a (β + bq)− (b+ r) (β − η − a)]

b(β − η)

]
=

[
βb [(a+ b+ r) (β − η) + [a (β + bq)− (b+ r) (β − η − a)]]

b(β − η)

]
=
βb [a(β − η) + (b+ r) (β − η) + a (β + bq)− (b+ r) (β − η) + a (b+ r)]

b(β − η)

=
βb [a(2β + bq − b− r + bq + b+ r)]

b(β − η)
=

2βab (β + bq)

b(β − η)

therefore

∆ (c) = b2(β − η)2

[
c− βb [a (β + bq)− (b+ r) (β − η − a)]

b2(β − η)2

]2

− ∆0

b2(β − η)2 .

(3.5.8)
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Together with lemma (3.5.3) then we have

∆ (c) = b2(β − η)2

([
c− βb [a (β + bq)− (b+ r) (β − η − a)]

b2(β − η)2

]2

− ∆0

b4(β − η)4

)

= b2(β − η)2

([
c− βb [a (β + bq)− (b+ r) (β − η − a)]

b2(β − η)2

]2

−
[ √

∆0

b2(β − η)2

])

= b2(β − η)2

[
c− βb [a (β + bq)− (b+ r) (β − η − a)]

b2(β − η)2 −
√

∆0

b2(β − η)2

]
[
c− βb [a (β + bq)− (b+ r) (β − η − a)]

b2(β − η)2 +

√
∆0

b2(β − η)2

]
= b2(β − η)2

[
c− βb [a (β + bq)− (b+ r) (β − η − a)]−

√
∆0

b2(β − η)2

]
[
c− βb [a (β + bq)− (b+ r) (β − η − a)] +

√
∆0

b2(β − η)2

]
thus

∆ (c) = b2(β − η)2 (c− c1) (c− c2.) (3.5.9)

Under the condition η < β and β − η ≤ a or β ≤ η and a > 0 it is easy to

verify that 0 < c1 < c2. This together with lemma (3.5.4) imply the results.

Lemma 3.5.5. Assume that a, b, c, β, r > 0, q ∈ [0, 1]. If either r ≤ β < b+r

and 0 ≤ q ≤ q1 or 0 < β < r and 0 ≤ q ≤ 1, then system (3.3.3) has no

positive equilibria.

Proof. Under the condition r ≤ β < b + r and 0 ≤ q ≤ q1 or 0 < β < r and

0 ≤ q ≤ 1 we have by lemma (3.5.1) (1), β ≤ η. By equation (3.5.4) and the

fact that β ≤ η we have

βc(b+ r)y2 − [bc(β − η)− β(b+ r + a)]y + b(a+ η − β) > b(a+ η − β) > 0.
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Thus no value of y > 0 can satisfy equation (3.5.4). So that the system

(3.3.3) has no positive equilibrium points.

We now give the main result of this section.

Theorem 3.5.6. Assume that 0 < η < β and 0 < β − η ≤ a then the

following assertions hold

1) If c > c2, then system (3.3.3) has two positive interior equilibria (x1, y1)

and (x2, y2) where

y1 =
bc(β − η)− β(b+ r + a)−

√
∆(c)

2βc(b+ r)
, y2 =

bc(β − η)− β(b+ r + a) +
√

∆(c)

2βc(b+ r)
(3.5.10)

and

x1 =
η(1 + cy1) + a

β(1 + cy1)
, x2 =

η(1 + cy2) + a

β(1 + cy2)
. (3.5.11)

(2) If c = c2 then system (3.3.3) has one positive interior equilibrium (x∗, y∗)

where,

x∗ =
η(1 + cy∗) + a

β(1 + cy∗)
, y∗ =

bc(β − η)− β(b+ r + a)

2βc(b+ r)
. (3.5.12)

(3) If 0 < c < c2 then (1, 0) is a positive disease free equilibrium of system

(3.3.3).

Proof. By lemma (3.5.2) (2) we have that if (x, y) is an equilibrium point of

system (3.3.3) then y is a solution of equation (3.5.2). It is easy to verify

that y1 and y2 given in (3.5.10) are the only solution of (3.5.4). Substituting
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y1 and y2 into the second equation of (3.5.1) and solving for x give x1 and

x2 respectively. Moreover by definition of c2 and c0 we have

c2 − c0 =

(
βb[a(β + bq)− (b+ r)(β − η − a)] +

√
∆0

b2(β − η)2

)
−

(
β(b+ r + a)−

√
∆(c)

b(β − η)

)

=
βab (β + bq + b+ r − β + η)− 2βb(b+ r)(β − η) +

√
∆0 + b(β − η)

√
∆(c)

b2(β − η)2

=
βab (bq + b+ r + b+ r − bq)− 2βb(b+ r)(β − η) +

√
∆0 + b(β − η)

√
∆(c)

b2(β − η)2

=
2βab (b+ r)− 2βb(b+ r)(β − η) +

√
∆0 + b(β − η)

√
∆(c)

b2(β − η)2

=
2βb(b+ r) (a− β + η) +

√
∆0 + b(β − η)

√
∆(c)

b2(β − η)2

so that

c2 − c0 =
2βb(b+ r) (a− β + η) +

√
∆0 + b(β − η)

√
∆(c)

b2(β − η)2
(3.5.13)

By (3.5.10) we have

y1 =
[b (β − η) c− β (a+ b+ r)]−

√
∆ (c)

2β (b+ r) c
=

b (β − η)

[
c−

(
β(a+b+r)+

√
∆(c)

)
b(β−η)

]
2β (b+ r) c

or

y1 =
b (β − η) (c− c0)

2β (b+ r) c
.

1)If c > c2 then by Lemma (3.5.4) (1) and Theorem (3.5.6) (1), y1, y2 are

solutions of equation (3.5.4).

Since c > c2 then c − c0 > c2 − c0 > 0 because β > η and a ≥ β − η. The

result follows from (3.5.13). Therefore y1 > 0 implies y2 > 0 since y1 < y2.
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Hence (x1, y1) and (x2, y2) are the two positive equilibria of system (3.3.3).

2) If c = c2 then by Lemma (3.5.4) we have ∆(c) = 0 and by (3.5.11) we

have

y1 = y2 = y∗ =
b (β − η) c2 − β (a+ b+ r)

2β (b+ r) c2

=
b (β − η)

[
c2 − β(a+b+r)

b(β−η)

]
2β (b+ r) c2

.

Now

c2 −
β (a+ b+ r)

b (β − η)
=
βb[a(β + bq)− (b+ r)(β − η − a)] +

√
∆0

b2(β − η)2 − β (a+ b+ r)

b (β − η)

=
βb[a(β + bq)− (b+ r)(β − η − a)]− βb (β − η) (a+ b+ r) +

√
∆0

b2(β − η)2

=
βb [a(β + bq)− (b+ r)(β − η − a)− (β − η) (a+ b+ r)] +

√
∆0

b2(β − η)2

=
βb [a(β + bq)− 2(b+ r) (β − η) + a(b+ r)− a (β − η)] +

√
∆0

b2(β − η)2

=
βb [a (β + bq + b+ r − β + η)− 2(b+ r) (β − η)] +

√
∆0

b2(β − η)2

=
βb [2a (b+ r)− 2(b+ r) (β − η)] +

√
∆0

b2(β − η)2

=
2βb (b+ r) (a− β + η) +

√
∆0

b2(β − η)2

or

c2 −
β (a+ b+ r)

b (β − η)
=

2βb(b+ r) (a− β + η) +
√

∆0

b2(β − η)2 .

Hence

y1 = y2 = y∗ =
b (β − η) c2 − β (a+ b+ r)

2β (b+ r) c2

> 0

since β > η and a > β − η.

Substituting y∗ into the second equation of (3.5.1) and solving for x gives x∗.

Hence system (3.3.3) has one positive equilibrium point (x∗, y∗).
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3)We consider the following 3 cases:

i) If c1 < c < c2 then by Lemma (3.5.4) (2), ∆(c) < 0 so that equation

(3.5.4) has no solutions. Hence system (3.3.3) has no positive interior

equilibria.

ii) If c = c1 then by Lemma (3.5.4) (3), ∆(c) = 0 and by (3.5.11), we have

y1 = y2 = y∗ =
b (β − η) c1 − β (a+ b+ r)

2β (b+ r) c1

=
b (β − η)

[
c1 − β(a+b+r)

b(β−η)

]
2β (b+ r) c1

.

Since

c1 −
β (a+ b+ r)

b (β − η)
=

2βb(b+ r) (a− β + η)−
√

∆0

b2(β − η)2

and

c1 −
β (a+ b+ r)

b (β − η)
=

2βb(b+ r) (a− β + η)−
√

∆0

b2(β − η)2

=
[2βb(b+ r) (a− β + η)]2 −∆0

b2(β − η)2 [2βb(b+ r) (a− β + η) +
√

∆0

]
=

[2βb(b+ r) (a− β + η)]2 − 4β2b2a(b+ r) (β + bq) (a− β + η)

b2(β − η)2 [2βb(b+ r) (a− β + η) +
√

∆0

]
=

4β2b2(b+ r) (a− β + η) [(b+ r) (a− β + η)− a (β + bq)]

b2(β − η)2 [2βb(b+ r) (a− β + η) +
√

∆0

]
=

4β2b2(b+ r) (a− β + η) [a (b+ r − β − bq) + (b+ r) (η − β)]

b2(β − η)2 [2βb(b+ r) (a− β + η) +
√

∆0

]
=

4β2b2(b+ r) (a− β + η) [a (η − β) + (b+ r) (η − β)]

b2(β − η)2 [2βb(b+ r) (a− β + η) +
√

∆0

]
=

4β2b2(b+ r) (a− β + η) (η − β) (a+ b+ r)

b2(β − η)2 [2βb(b+ r) (a− β + η) +
√

∆0

]
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so that

c1 −
β (a+ b+ r)

b (β − η)
=

4β2b2(b+ r) (a− β + η) (η − β) (a+ b+ r)

b2(β − η)2 [2βb(b+ r) (a− β + η) +
√

∆0

] .
(3.5.14)

Hence y1 = y2 = y∗ < 0 because β > η and a ≥ β − η.

iii) If 0 < c < c1 then by Lemma (3.5.4) (1) ∆ (c) > 0, then equation

(3.5.4) has 2 solutions indicated at (3.5.10).

By (3.5.10)

y2 =
b (β − η) c− β (a+ b+ r) +

√
∆ (c)

2β (b+ r) c

= −
β (a+ b+ r)− b (β − η) c−

√
∆ (c)

2β (b+ r) c

= − [β (a+ b+ r)− b (β − η) c]2 −∆ (c)

2β (b+ r) c
[
β (a+ b+ r)− b (β − η) c+

√
∆ (c)

] .
By definition of ∆ (c) from (3.5.3) we obtain

y2 = − 4βbc (b+ r) (a− β + η)

2β (b+ r) c
[
β (a+ b+ r)− b (β − η) c+

√
∆ (c)

] .
We also have

β (a+ b+ r)− b (β − η) c+
√

∆ (c) > β (a+ b+ r)− b (β − η) c (3.5.15)

but

β (a+ b+ r)− b (β − η) c = b (β − η)

(
β (a+ b+ r)

b (β − η)
− c
)
. (3.5.16)

Since c < c1 ⇔ −c > −c1 so

β (a+ b+ r)

b (β − η)
− c > β (a+ b+ r)

b (β − η)
− c1.
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From the result (3.5.13) we imply

β (a+ b+ r)

b (β − η)
− c > β (a+ b+ r)

b (β − η)
− c1 > 0. (3.5.17)

From (3.5.14) to (3.5.16) we have

β (a+ b+ r)− b (β − η) c+
√

∆ (c) > 0

or

y2 =
b (β − η) c− β (a+ b+ r) +

√
∆ (c)

2β (b+ r) c
< 0.

Since y1 < y2 and y2 < 0 so that y1 < 0. Hence systems (3.3.3) has no

positive interior equilibrium.
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Chapter 4

Qualitative behaviour analysis

of the equilibria points

From theorem (3.5.6) we have total 3 interior equilibrium points. We will

study the phase portrait and stability of each interior equilibrium point.

Let A(x, y) be the Jacobian matrix of f and g defined in the system (3.3.3).

By (2.1.4) and (3.3.3) we have

A(x, y) =

 −βy − b −βx− qb

βy βx− η − a
(1+cy)2

 (4.0.1)

Together with definition of η = b+ r − bq then we have

|A(x, y)| = βy

(1 + cy)2
[(1 + cy)2(b+ r) + a]− βbx+ b

[
η +

a

(1 + cy)2

]
(4.0.2)

and

tr(A(x, y)) =
β(x− y)(1 + cy)2 − [(b+ η)(1 + cy)2 + a]

(1 + cy)2
. (4.0.3)
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Also, for y > 0, from the second equation of system (3.5.1) we have

βx− b− r + bq − a

1 + cy
= 0⇔ −βx− bq = − a

1 + cy
− b− r

and βx− η = a
1+cy

. Substitute those values above into (4.0.1), we have

A (x, y) =

 −βy − b − a
1+cy
− b− r

βy a
1+cy
− a

(1+cy)2

 =

 −βy − b − a
1+cy
− b− r

βy acy

(1+cy)2


therefore for y > 0

|A(x, y)| = (−βy − b) acy

(1 + cy)2 + βy

(
a

1 + cy
+ b+ r

)
(4.0.4)

and

tr (A(x, y)) = (−βy − b) +
acy

(1 + cy)2 . (4.0.5)

Now we can use the |A (x, y)| and the tr (A (x, y)) from (4.0.2) − (4.0.5)

depends on particular cases.

We first consider the properties of the disease-free equilibrium (1, 0) of (3.3.3).

Theorem 4.0.1. (1) If 0 < η < β and 0 < a < β − η, then (1, 0) is a saddle

of the system (3.3.3).

(2) If either 0 < β < η and a > 0 or η ≤ β < η+ b and a > β− η, then (1, 0)

is a stable node of the system (3.3.3). Moreover, (1, 0) of the system (3.3.3)

is globally asymptotically stable.

(3) If η ≤ β < η + b, a = β − η and c 6= β
β−η then (1, 0) is a saddle-node of

the system (3.3.3).

Proof. Substitute (x, y) = (1, 0) to (4.0.2) and (4.0.3), we obtain

|A(1, 0)| = b(a+ η − β) (4.0.6)
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and

tr(A(1, 0)) = β − η − a− b. (4.0.7)

1) By (4.0.6), we have |A(1, 0)| < 0. The result follows from Lemma

(2.1.2) (i). Hence (x, y) = (1, 0) is a saddle of (3.3.3).

2) Under each of the conditions (i) and (ii) of theorem (4.0.1) (2), then

|A(1, 0)| > 0 and tr(A(1, 0)) < 0.

We also have

tr(A(1, 0))2 − 4|A(1, 0)| = (β − η − a− b)2 − 4b(a+ η − β)

= (β − η − a)2 − 2b(β − η − a) + b2 + 4b(β − a− η)

= (β − η − a)2 + 2b(β − η − a) + b2

= (β − η − a+ b)2 ≥ 0.

The first result follows from Lemma (2.1.2) (ii). Hence (x, y) = (1, 0) is a

stable node of (3.3.3).

In order to prove (1, 0) of system (3.3.3) is globally asymptotically stable,

we need apply the Lemma (2.1.4). This lemma is a special case of the well-

known Poincare’-Bendixson Trichotomy theorem.

Let B = {(u, v) ∈ R2
+ : u+v ≤ 1}. Then B is a bounded closed subset of R2.

We can see that the equilibrium point (1, 0) of (3.3.3) is in B . Since (1, 0)

is on the boundary of B then every positive solution of (3.3.3) converges

to (1, 0) as t → ∞. Therefore, (1, 0) of (3.3.3) is globally asymptotically

stable.
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3) Since a = β − η, by (4.0.6) and (4.0.7) we have |A(1, 0)| = 0 and

tr(A(1, 0)) = −b < 0. We change the equilibrium point (1, 0) to the origin

(0, 0) by the change of variables u1 = x− 1 and v1 = y. Note that a = β− η.

Then system (3.3.3) becomes
u̇1 = ẋ = b− β(u1 + 1)v1 − b(u1 + 1)− qbv1 = −βu1v1 − b[ (β+qb)

b
v1 + u1]

v̇1 = ẏ = β(u1 + 1)v1 − ηv1 − av1
1+cv1

= βu1v1 +
(β−η)cv21

1+cv1

Let δ = (β + qb)b−1, u2 = u1 + δv1 and v2 = v1, then the last system

becomes

u̇2 = u̇1 + δv̇1 = −βu1v1 − b[
(β + qb)

b
v1 + u1] + δβu1v1 +

(β − η)δcv2
1

1 + cv1

= (δ − 1)βu1v1 − b[
(β + qb)

b
v1 + u1] +

(β − η)δcv2
1

1 + cv1

= (δ − 1)β[u2v2 − δv2
2]− bu2 +

(β − η)δcv2
2

1 + cv2

= −δβ(δ − 1)v2
2 + (δ − 1)βu2v2 +

(β − η)δcv2
2

1 + cv2

− bu2

and

v̇2 = βv2[u2 − δv2] +
(β − η)δcv2

2

1 + cv2

= βv2u2 −
[(β − η)δc− βδ]v2

2 − βδcv3
2

1 + cv2

Let u = v2 and v = u2. Then the above last two equations become,

 u̇ = p(u, v)

v̇ = −bv + q(u, v)

where

p(u, v) = −[(β−η)δc−βδ]u2+βuv+βcδu3−
[
[(β−η)δc−βδ]u2

2−βδcu3
] ∞∑
n=1

(−1)n

n!
(cu)n
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and

q(u, v) = −δ(δ − 1)βu2 + (δ − 1)βuv + (β − η)δcu2

∞∑
n=1

(−1)n

n!
(cu)n

Since % := −b 6= 0 and a20 := −[(β − η)δc − βδ)] 6= 0 provided c 6= β
β−η . It

follows from lemma (2.1.3) that (1, 0) is a saddle-node of system (3.3.3).

Lemma 4.0.2. Assume that a, b, c, r > 0, q ∈ [0, 1], 0 < η < β and a > β−η

then

1) The equation (4.0.4) is equivalent to

|A (x, y)| = y

(1 + cy)2

[
β (b+ r) y2c2 + [2β (b+ r) y − ab] c+ β (a+ b+ r)

]
.

2) If c = c2 then |A (x∗, y∗)| = 0.

3) If c > c2 then |A (x2, y2)| > 0.

Proof.

|A(x, y)| = (−βy − b) acy

(1 + cy)2 + βy

(
a

1 + cy
+ b+ r

)
= y

[
β

(
a

1 + cy
+ b+ r

)
− (βy + b)

ac

(1 + cy)2

]
= y

[
aβ

1 + cy
+ β (b+ r)− βacy

(1 + cy)2 −
abc

(1 + cy)2

]
= y

[
aβ

1 + cy

(
1− cy

1 + cy

)
+ β (b+ r)− abc

(1 + cy)2

]
= y

[
aβ

(1 + cy)2 + β (b+ r)− abc

(1 + cy)2

]
=

y

(1 + cy)2

[
β (b+ r) (1 + cy)2 + a (β − bc)

]
.
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Expand and re-arrange the term inside bracket then we obtain

|A (x, y)| = y

(1 + cy)2

[
β (b+ r) y2c2 + [2β (b+ r) y − ab] c+ β (a+ b+ r)

]
.

(4.0.8)

2) Substitute the value of y∗ from (3.5.11) into equation (4.0.8), we have

|A (x∗, y∗)| = y∗

(1 + cy∗)2

[
β (b+ r) y∗2c2 + [2β (b+ r) y∗ − ab] c+ β (a+ b+ r)

]
.

Since c = c2 then from Lemma (3.5.4) (3) we have ∆(c) = 0.

By definition of ∆(c) from equation (3.5.6) then

[bc (β − η)− β (b+ r + a)]2 = 4βbc (b+ r) (a− β + η) (4.0.9)

since

β (b+ r) y∗2c2 + [2β (b+ r) y∗ − ab] c+ β (a+ b+ r)

=
[bc (β − η)− β (b+ r + a)]2

4β (b+ r)
+ bc (β − η)− abc

=
4βbc (b+ r) (a− β + η)

4β (b+ r)
+ bc (β − η)− abc

= bc (a− β + η) + bc (β − η)− abc = 0

therefore |A (x∗, y∗)| = 0.

3) From the result of Lemma (4.0.2) (1), we have

|A (x2, y2)| = y2

(1 + cy2)2

[
β (b+ r) y2

2c2 + [2β (b+ r) y2 − ab] c+ β (a+ b+ r)
]

Since c > c2 then (x2, y2) is a positive equilibria of the system (3.3.3) by

theorem (3.5.6).
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Let

φ(a, b, c, r, β, y2) = β (b+ r) y2
2c2 + [2β (b+ r) y2 − ab] c+ β (a+ b+ r)

Substitute y2 from (3.5.7) into φ defined above then we have

φ = β (b+ r)

[
b (β − η) c− β (a+ b+ r) +

√
∆(c)

2βc (b+ r)

]2

c2

+ β (a+ b+ r) +

(
2β (b+ r)

[
b (β − η) c− β (a+ b+ r) +

√
∆(c)

2βc (b+ r)

]
− ab

)
c

=

[
b (β − η) c− β (a+ b+ r) +

√
∆(c)

]2

4β (b+ r)
+ β (a+ b+ r)− abc

+
[
b (β − η) c− β (a+ b+ r) +

√
∆(c)

]
=

[
b (β − η) c− β (a+ b+ r) +

√
∆(c)

]2

4β (b+ r)
+ b (β − η) c− abc+

√
∆(c)

since

∆(c) = [b (β − η) c− β (a+ b+ r)]2 − 4βbc (b+ r) (a− β + η)

then[
b (β − η) c− β (a+ b+ r) +

√
∆(c)

]2

=
(

[b (β − η) c− β (a+ b+ r)] +
√

∆(c)
)2

= [b (β − η) c− β (a+ b+ r)]2 + 2 [b (β − η) c− β (a+ b+ r)]
√

∆(c) + ∆(c)

= 2∆(c) + 4βbc (b+ r) (a− β + η) + 2 [b (β − η) c− β (a+ b+ r)]
√

∆(c)
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therefore

φ = β (a+ b+ r)− abc+
[
b (β − η) c− β (a+ b+ r) +

√
∆(c)

]
+

2∆(c) + 4βbc (b+ r) (a− β + η) + 2 [b (β − η) c− β (a+ b+ r)]
√

∆(c)

4β (b+ r)

=
2
√

∆(c)
[√

∆(c) + [b (β − η) c− β (a+ b+ r)]
]

4β (b+ r)

+ b (β − η) c+
√

∆(c)− abc+ bc (a− β + η)

=

√
∆(c)

[√
∆(c) + [b (β − η) c− β (a+ b+ r)]

]
2β (b+ r)

+
√

∆(c)

=
√

∆(c)

[√
∆(c) + [b (β − η) c− β (a+ b+ r)]

2β (b+ r)
+ 1

]
θ(a, b, c, r, β, y1) =

√
∆(c) (cy1 + 1) > 0.

Hence

|A (x2, y2)| = φy2

(1 + cy2)2 > 0

since y2, φ > 0.

Lemma 4.0.3. If β > η, and c = c2 then there exists a0 ∈ (β − η,∞) such

that tr(A(x∗, y∗)) < 0 for a ∈ [β − η, a0)

Proof. Under the condition c = c2, by lemma (??) (3) we have ∆(c) = 0.

Moreover by (3.5.8) we have y1 = y2 = y∗. By the formula of y∗ and c2 we

have,
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c2y
∗ =

bc(β − η)− β(b+ r + a)

2β(b+ r)

=
βb[(β − η)(b+ r + a) + 2(b+ r)(a+ η − β)] +

√
∆0 − βb(β − η)(b+ r + a)

2βb(b+ r)(β − η)

=
2βb(b+ r)(a+ η − β) +

√
∆0

2βb(b+ r)(β − η)

then

(1 + c2y
∗) =

2βb(b+ r)a+
√

∆0

2βb(b+ r)(β − η)
. (4.0.10)

By (3.5.11) and (4.0.5) with (x, y) = (x∗, y∗) we have,

tr(A(x∗, y∗)) =
−(βy∗ + b)(1 + c2y

∗)2 + ac2y
∗

(1 + c2y∗)
2

Substituting, a = β−η, we have by (4.0.10) (1+c2y
∗)2 = 1, thus c2y

∗ = 0

and the above equation becomes

tr(A(x∗, y∗) = −(βy∗ + b) (4.0.11)

It follows from the continuity of tr(A(x∗, y∗)) that there exists an a0 ∈ (β −

η,∞) such that tr(A(x∗, y∗)) < 0 for a ∈ [β − η,∞).

Theorem 4.0.4. If β > η and c = c2, then there exists an a0 ∈ (β − η,∞)

such that the equilibrium point (x∗, y∗) is a saddle node of (3.3.3) for a ∈

[β − η, a0).

Proof. By lemma (4.0.2) (2) and (4.0.11) we have that |A(x∗, y∗)| = 0 and

tr(A(x∗, y∗)) 6= 0 respectively. We change the equilibrium point (x∗, y∗) to
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the origin by the change of variables, u1 = x − x∗ and v1 = y − y∗, then

system (3.3.3) becomes

u̇1 = b− β(u1 + x∗)(v1 + y∗)− b(u1 + x∗)− qb(v1 + y∗)

= −βu1v1 − (βy∗ + b)u1 − (βx∗ + qb)v1 − (βx∗y∗ + bx∗ + qby∗ − b)

= −βu1v1 − (βy∗ + b)u1 − (βx∗ + qb)v1

and

v̇1 = βu1v1 + βu1y
∗ + βv1x

∗ + βx∗y∗ − ηv1 + βv1x
∗ − ηv1 − ηy∗ −

a(v1 + y∗)

1 + c(v1 + y∗)

= βu1v1 + βu1y
∗ + βv1x

∗ − ηv1 − ηy∗ +
[η(1 + cy∗) + a]y∗

1 + cy∗
− a(v1 + y∗)

1 + c(v1 + y∗)

= βu1v1 + βu1y
∗ + βv1x

∗ − ηv1 −
av1

(1 + cy∗)[1 + c(v1 + y∗)]

= βu1v1 + βu1y
∗ +

(βx∗ − η)(1 + cy∗)cv2
1 + (βx∗ − η)(1 + cy∗)2v1 − av1

(1 + cy∗)[1 + c(v1 + y∗)]

= βu1v1 + βu1y
∗ +

(βx∗ − η)(1 + cy∗)cv2
1 + (βx∗ − η)(1 + cy∗)2v1 − av1

(1 + cy∗)2

− (βx∗ − η)(1 + cy∗)αcv3
1 + (βx∗ − η)(1 + cy∗)2αv2

1 − aαv2
1

(1 + cy∗)2 +R2(u1, v1)

= βu1v1 + βu1y
∗ +

aαv2
1

(1 + cy∗)2 +
(βx∗ − η)(1 + cy∗)2v1 − av1

(1 + cy∗)2 +O3(u1, v1)

where

α =
c

1 + cy∗

R2(u1, v1) =
(βx∗ − η)(1 + cy∗)cv2

1 + (βx∗ − η)(1 + cy∗)2v1 − av1

(1 + cy∗)2

∞∑
n=2

(−1)n

n!
(αu)n

and

O3(u1, v1) = R2(u1, v1)
−(βx∗ − η)αcv3

1

1 + cy∗
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Let u2 = u1 and v2 = (βx∗ − η − a
(1+cy∗)2

)u1 + (βx∗ + qb)v1, then we have

u̇2 = −βu2

[
v2 − (βx∗ − η − a

(1+cy∗)2
)u2

βx∗ + qb

]
− (βy∗ + b)u2

− (βx∗ + qb)

[
v2 − (βx∗ − η − a

(1+cy∗)2
)u2

βx∗ + qb

]
= − βu2v2

βx∗ + qb
+

βacy∗

(1 + cy∗)2(βx∗ + ab)
u2

2 − (βy∗ + b)u2 − v2

+ [βx∗ − η − a

(1 + cy∗)2 ]u2

= − βu2v2

βx∗ + qb
+

βacy∗

(1 + cy∗)2(βx∗ + qb)
u2

2 + tr(A(x∗, y∗))u2 − v2

v̇2 =
[(βx∗ − η)(1 + cy∗)2 − a]

(1 + cy∗)2 u̇1 + (βx∗ + qb)v̇1

=

[
(βx∗ − η)(1 + cy∗)2 − a

]
[−βu1v1 − (βy∗ + b)u1 − (βx∗ + qb)v1]

(1 + cy∗)2

+ (βx∗ + qb)

[
βu1v1 + βy∗u1 +

aαv2
1

(1 + cy∗)2 +
(βx∗ − η)(1 + cy∗)2v1 − av1

(1 + cy∗)2 +O3(u1, v1)

]

=
aα(βx∗ + qb)

(1 + cy∗)2 v2
1 +

β(b+ r)(1 + cy∗)2 + a)

(1 + cy∗)2 u1v1

−
(βy∗ + b)

[
(βx∗ − η)(1 + cy∗)2 − a

]
u1

(1 + cy∗)2 + (βx∗ + qb)βy∗u1 + (βx∗ + qb)O3(u1, v1)

=
aα(βx∗ + qb)

(1 + cy∗)2 v2
1 +

β(b+ r)(1 + cy∗)2 + a)

(1 + cy∗)2 u1v1 + (βx∗ + qb)O3(u1, v1)

=
aα(βx∗ + qb)

(1 + cy∗)2

[
v2(1 + cy)2 − [(βx∗ − η)(1 + cy∗)2 − a]u2

(1 + cy∗)2(βx+ qb)

]2

+
β(b+ r)(1 + cy∗)2 + a

(1 + cy∗)2 u2

[
v2(1 + cy)2 − [(βx∗ − η)(1 + cy∗)2 − a]u2

(1 + cy∗)2(βx+ qb)

]
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+ (βx∗ + qb)O3(u2, v2)

= ζ1v
2
2 + ζ2u2v2 + ζ3u

2
2 + (βx∗ + qb)O3(u2, v2)

where

ζ1 =
αa

(1 + cy∗)2(βx+ qb)

ζ2 =
[β(b+ r)(1 + cy∗)2 + a]

(1 + cy∗)2(βx∗ + qb)
− 2αa[(βx∗ − η)(1 + cy∗)2 − a]

(1 + cy∗)2

ζ3 = − [β(b+ r)(1 + cy∗)2 + a][(βx∗ − η)(1 + cy∗)2 + a]

(1 + cy∗)4(βx∗ + qb)

By lemma (4.0.3) we have that for a ∈ [β − η, a0), tr(A(x∗, y∗)) 6= 0.

Let u3 = tr(A(x∗, y∗))u2 − v2 and v3 = v2, then the above system becomes

u̇3 = tr(A(x∗, y∗))u̇2 − v̇2

= −β tr(A(x∗, y∗)))

βx∗ + qb
u2v2 +

βacy∗ tr(A(x∗, y∗))

(1 + cy∗)2(βx∗ + qb)
u2

2 + tr (A(x∗, y∗))2u2

− tr(A(x∗, y∗))v2 − ζ1v
2
2 − ζ2u2v2 − ζ3u

2
2 − (βx∗ + qb)O3(u2, v2)

= −
[
β tr(A(x∗, y∗))

βx∗ + qb
+ ζ2

]
u2v2 +

[
βacy∗ tr(A(x∗, y∗))

(1 + cy∗)2(βx∗ + qb)
− ζ3

]
u2

2

+ tr (A(x∗, y∗))2u2 − tr(A(x∗, y∗))v2 − ζ1v
2
2 − (βx∗ + qb)O3(u2, v2)

= −
(
β tr(A(x∗, y∗)) + ζ2(βx∗ + qb)

(βx∗ + qb)
v3

[
u3 + v3

tr(A(x∗, y∗))

])
+ u3 + ζ1v

2
3

− (βx∗ + qb)O3(u3, v3) +

[
βacy∗ tr(A(x∗, y∗))

(1 + cy∗)2(βx∗ + qb)
− ζ3

] [
u3 + v3

tr(A(x∗, y∗))

]2
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Let u = v3 and v = u3, then the above becomes

u̇ =
tr(A(x∗, y∗))2ζ1 + tr(A(x∗, y∗))ζ2 + ζ3

tr(A(x∗, y∗))2
u2 +

tr(A(x∗, y∗))ζ2 + 2ζ3

tr(A(x∗, y∗))2
uv

+
ζ3

tr(A(x∗, y∗))2
v2 + (βx∗ + qb)O3(v, u)

v̇ = v −
[β tr(A(x∗, y∗)) + ζ2(βx∗ + qb)

(βx∗ + qb)
u[

v + u

tr(A(x∗, y∗))
] + ζ1u

2 − (βx∗ + qb)O3(v, u)

+
[ βacy∗ tr(A(x∗, y∗))

(1 + cy∗)2(βx∗ + qb)
− ζ3

]
[

v + u

tr(A(x∗, y∗))

]2
Where, % := −1 6= 0, the result follows from lemma (2.1.2).

Theorem 4.0.5. Assume b, r > 0, c > c2, q ∈ [0, 1], η < β and β − η ≤ a

then the equilibrium point (x1, y1) is a saddle point of system (3.3.3)

Proof. From the result of Lemma (4.0.2) (1), we have

|A (x1, y1)| = y1

(1 + cy1)2

[
β (b+ r) y1

2c2 + 2 [β (b+ r) y1 − ab] c+ β (a+ b+ r)
]

Since c > c2 then (x1, y1) is a positive equilibria of the system (3.3.3) by

Theorem (3.5.6).

Substitute y1 from (3.5.10) into |A (x1, y1)| then we have

|A (x1, y1)| = y1

(1 + cy1)2

[
β (b+ r) y1

2c2 + [2β (b+ r) y1 − ab] c+ β (a+ b+ r)
]

Let

θ(a, b, c, r, β, y1) = β (b+ r) y1
2c2 + [2β (b+ r) y1 − ab] c+ β (a+ b+ r) .

Consider the expression inside the square bracket together with value of y1

from (3.5.10).
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θ = β (b+ r)

[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

2βc (b+ r)

]2

c2

+ β (a+ b+ r) +

(
2β (b+ r)

[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

2βc (b+ r)

]
− ab

)
c

=

[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

]2

4β (b+ r)
+ β (a+ b+ r)− abc

+
[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

]
=

[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

]2

4β (b+ r)
+ b (β − η) c− abc−

√
∆(c)

Since[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

]2

=
(

[b (β − η) c− β (a+ b+ r)]−
√

∆(c)
)2

= [b (β − η) c− β (a+ b+ r)]2 − 2 [b (β − η) c− β (a+ b+ r)]
√

∆(c) + ∆(c)

= ∆(c) + 4βbc (b+ r) (a− β + η)− 2 [b (β − η) c− β (a+ b+ r)]
√

∆(c) + ∆(c)

= 2∆(c) + 4βbc (b+ r) (a− β + η)− 2 [b (β − η) c− β (a+ b+ r)]
√

∆(c)

where ∆(c) was defined from (3.5.6), so that

θ = β (a+ b+ r)− abc+
[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

]
+

2∆(c) + 4βbc (b+ r) (a− β + η)− 2 [b (β − η) c− β (a+ b+ r)]
√

∆(c)

4β (b+ r)

=
2
√

∆(c)
[√

∆(c)− [b (β − η) c− β (a+ b+ r)]
]

4β (b+ r)

+ b (β − η) c−
√

∆(c)− abc+ bc (a− β + η)
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=

√
∆(c)

[√
∆(c)− [b (β − η) c− β (a+ b+ r)]

]
2β (b+ r)

−
√

∆(c)

=
√

∆(c)

[√
∆(c)− [b (β − η) c− β (a+ b+ r)]

2β (b+ r)
− 1

]

=
√

∆(c)

−
[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

]
2β (b+ r)

− 1


= −

√
∆(c)


[
b (β − η) c− β (a+ b+ r)−

√
∆(c)

]
2β (b+ r)

+ 1


By (3.5.10) imply

cy1 =
b (β − η) c− β (a+ b+ r)−

√
∆(c)

2β (b+ r)

so

|A (x1, y1)| = θy1

(1 + cy1)2 < 0

since θ < 0 and y1 > 0. The result follows from Lemma (2.1.1) (1).
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Chapter 5

Conclusion

In this thesis the SIR epidemic model with saturated treatment function is

investigated with the restriction of all positive parameters involved. We find

the number of equilibria for the model and there always exist a disease-free

equilibrium. If η < β, a ≥ β − η and c > c2 then we have two positive

equilibria (x1, y1) and (x2, y2) or if c = c2 then we have only one positive

equilibria (x∗, y∗). We showed that under suitable conditions the disease free

equilibrium can be a saddle, stable node or saddle node.

For (x∗, y∗) we also provided sufficient conditions on the parameters such

that (x∗, y∗) is a saddle node and we also proved (x1, y1) is a saddle of the

system (3.3.3).

Since we cannot determine whether (x2, y2) is a node, stable node or focus so

that we are unable to analyze the global stability of (x2, y2). It might require

a higher level of knowledge like using Dulac criterion and Poincare- Bendixon

theorem and Lyapunov function which is also the goal of my future study.
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