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ABSTRACT 

Development of a Soot Concentration Estimation Library for Industrial Combustion 

Applications Using Lagrangian Parcel Tracking 

Master of Applied Science, 2017 

Raymond Alexander 

Mechanical Engineering 

Ryerson University 

Soot emissions from combustion devices are known to have harmful effects on the 

environment and human health. This project leverages existing knowledge in soot modelling and 

soot formation fundamentals to develop a stand-alone, computationally inexpensive soot 

concentration estimator to be linked to CFD simulations as a post-processor. The estimator consists 

of a library generated using the hystereses of soot-containing fluid parcels, which relates soot 

concentration to the aggregated gas-phase environment histories to which a fluid parcel has been 

exposed. The estimator can be used to relate soot concentration to computed parcel hystereses 

through interpolation techniques. The estimator shows the potential ability to produce accurate 

predictions with very low computational cost in laminar coflow diffusion flames. Results also 

show that as flame data representing a broader set of conditions is added to the library, the 

estimator becomes applicable to a wider range of flames. 
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CHAPTER 1 – INTRODUCTION 

1.1. Motivation 

Canada’s total energy consumption in 2012 was 2.3 percent of the global amount. 

Furthermore, Canada ranks among the highest in energy consumption on a per capita basis [1]. 

This large energy demand can be partially attributed to Canada’s cold climate for which more 

energy is needed to heat homes and businesses. Also, people are required to travel further distances 

due to Canada’s large land mass and sparse population, which increases the energy demand of the 

transportation sector. Combustion processes have a key role in burners, power production devices, 

and the transportation industry. Although there has been a recent global trend to develop renewable 

clean energy sources such as hydro-electricity as well as wind and solar power, natural gas 

consumption is still projected to increase by 2040 [1]. While global coal consumption has steadily 

decreased in recent years, over 5000 Mtce is still being consumed [2]. Furthermore, energy 

consumption related to air transport is expected to double by 2040 [3]. The increasing rate of air 

transportation is alarming since there is currently no feasible energy substitute for the high energy 

content of jet fuel. Therefore, a heavy reliance on fossil fuels can be expected for the next few 

decades. 

In accordance with the Paris Agreement of 2016 [4], governments around the world have 

committed to mitigating their impact on climate change by reducing their harmful pollutant 

emissions that include Green House Gases (GHG). The majority of Canada’s damaging emissions 

are the result of combustion of fossil fuels that include crude oil, natural gas, coal, gasoline, jet 

fuel and diesel. In 2013, it was estimated that 81 percent of Canadian GHG emissions were the 

result of combustion of fossil fuels [1]. The remaining emissions come from non-energy sources 
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such as agricultural and industrial processes, and waste handling. Although GHG emissions are 

the main focus of the Paris Agreement, black carbon particulate (soot) is another dangerous 

byproduct of combustion processes involving hydrocarbon fuels.  

The emission of combustion-generated soot is a serious threat to human health and a 

growing concern. Populations living in dense urban areas, especially near airports, are at a greater 

risk to suffer health defects. It has been shown that aircraft engines emit the highest amount of soot 

and the largest soot particles with the lowest oxidative reactivity during takeoff [5]. Populations 

exposed to higher concentrations of soot particulate show higher rates of lung and heart diseases 

because of high concentrations of pollutants that contain compounds such as nitrogen oxides, 

carbon monoxide, and soot particles in the atmosphere [6, 7]. Furthermore, both small and large 

soot particles can cause significant environmental problems. Small soot particles in the atmosphere 

absorb sunlight and warm the surrounding air, while larger and darker particles that fall to the 

ground accelerate the melting of snow and ice, since dark particles absorb sunlight [8, 9]. This 

acceleration increases the rate of which water levels rise. Radiative forcing is the difference 

between the energy from the sun that enters the Earth’s atmosphere and the energy that is reflected 

back into space. Jacobson [10] estimated the direct radiative forcing caused by soot to be 0.55 

W/m2. This forcing impact would rank soot as the second leading contributor to climate change 

behind CO2, which is estimated by the Intergovernmental Panel on Climate Change (IPCC) to have 

a radiative forcing impact of 1.56 W/m2 [11]. Although the level to which soot is contributing to 

climate change is disputed, it is acknowledged that soot emissions are a significant source of 

climate change [12, 13]. As a consequence, stricter soot emission regulations are being imposed 

and more are expected in the near future [14]. 
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Industries and combustion device designers are being required to reduce soot particles 

emitted from combustion. Therefore, searching for and developing techniques to reduce soot 

formation and emissions has become an important concern for researchers and industry. 

Experimentally testing possible solutions for jet engines and gas turbines is extremely expensive 

so a modelling approach is preferred. However, the modelling of soot in industrial combustion 

devices can be quite challenging. Soot evolution is an exceedingly complex phenomena for which 

there are still many unknowns being currently researched. Soot emissions are measured in parts 

per million (ppm). The small values of soot emissions make it very difficult to generate predictions 

that are correct to the same order of magnitude. Lastly, the complex geometries of gas turbines or 

engines require a tremendously high mesh count to resolve turbulent mixing. Consequently, 

implementing a detailed soot model into the simulation to achieve accurate predictions will require 

immense computational resources. 

1.2. Motivation and Objectives 

In the design of industrial combustion devices, such as engines, detailed numerical 

modelling and Computational Fluid Dynamics (CFD) simulations have become commonplace. 

Current capabilities allow for simulation of the chemical reactions, ignition, and burning of fuels 

in turbulent flow inside realistic engine geometry at high, but tractable computational cost. Data 

from these simulations aid in the engine design, construction, and improvement processes. 

However, the inclusion of soot formation within these simulations is challenging, and if it is to be 

reliably accurate, it incurs an intractably high computational cost. Thus, it is a major objective of 

the combustion industry and research community to develop novel numerical techniques to model, 

predict, or estimate soot concentrations. The objective of this work is to develop a soot 

concentration (volume fraction) estimator to be used as a post-processor of CFD data, to aid 
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combustion device designers in reducing emissions. This thesis does not propose a new model for 

soot formation and oxidation, rather it seeks to develop a system of library generation that can be 

used to estimate soot properties using correlations and interpolation. The goal of this technique is 

to produce reasonably accurate predictions of soot concentration with low computational cost and 

without modelling the physical processes and phenomena. These objectives are in stark contrast to 

the prevailing literature which overwhelmingly emphasizes model development and striving for 

more computationally efficient modelling techniques. The main focus of the present study is to 

investigate the predictive capabilities of the estimation library for laminar coflow diffusion flames 

of varying dilution and pressures. 

1.3. Outline 

Chapter 2 of this thesis presents background information and literature review related to 

soot formation theory and current soot modelling techniques. Chapter 3 discusses the methodology 

used to develop and utilize the soot concentration library. Chapter 4 presents the results of testing 

the soot concentration estimation library for the various flames considered. Lastly, Chapter 5 

discusses the conclusions of the thesis and presents recommendations for future work. 
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CHAPTER 2 – BACKGROUND RESEARCH AND LITERATURE 

REVIEW 

2.1. Soot Formation Theory 

Soot particle physics is considered to be extremely complex. Soot formation is viewed to 

proceed in a four-step sequence: formation of precursor species, particle inception, surface growth 

and particle agglomeration, and particle oxidation. In diffusion flames, soot has been observed to 

form in regions of temperature ranging between 1300 K and 1600 K [15]. In the first step, fuel is 

decomposed then grows into polycyclic aromatic hydrocarbons (PAH). Although specific soot 

precursors and detailed chemical mechanisms are still the subject of current research, it is 

acknowledged that the formation of ring structures and their growth through reactions with 

acetylene are important processes [16, 17]. The particle inception step involves the growth of the 

rings by both chemical means and coagulation. As small primary soot particles are exposed to 

many species in a flame, they experience surface growth and agglomeration. Lastly, the soot 

particle passes through an oxidizing region where it incurs destruction. If all the soot particles are 

oxidized, the flame is termed nonsooting, whereas incomplete oxidation yields a sooting flame. 

The amount of soot formed in a diffusion flame is highly dependent on the fuel type. A fuel with 

higher carbon content will generally produce more soot. 

2.2. Soot Modelling Overview 

Soot formation has been one of the most important issues related to combustion devices. 

Therefore, it has been widely studied for many years. Although studying soot formation always 

has been important, because of the complexity of its modelling, it is not understood well. Studies 

on soot formation processes are mostly focused on investigating the relationship of hydrocarbon 
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fuels to soot, the science behind this relationship, and how it effects soot production in different 

combustion process. The amount of soot particles formed depends on the combustion process, 

temperature, pressure and also the species which exist in the process. Furthermore, the final mass 

of particles emitted from the system could vary based on the particle after-burning process and 

oxidation, which depends on the combustion conditions [18]. 

One of the most common approaches to studying soot is the development of modelling 

capabilities of soot formation and oxidation. Fundamentally, modelling enables researchers to 

understand soot formation and oxidation mechanisms better. In industry, combustion device 

designers are looking for soot formation and oxidation models that enable them to improve the 

combustion devices’ efficiency and reduce emissions. This process is achieved through developing 

an understanding of the conditions that lead to soot formation and then tuning engine or device 

conditions to avoid such situations. They try to enhance thermal device performance by improving 

radiative heat transfer, mixing, or by reducing the amount of soot emitting from their devices in 

order to meet more particular environmental standards. Furthermore, flame dynamics simulation 

programs can better predict fire propagation if they use soot formation and oxidation models [19, 

20]. 

Soot formation is considered to be an extremely complex phenomenon that includes 

chemical kinetics, thermodynamics, particle dynamics, heat transfer, and multiphase flow. In order 

to understand this complexity, it is necessary to consider the progress of numerical modelling of 

combustion and soot formation that has been made previously. Early techniques used in the 

literature to model soot include the two-equation formulation [19, 21], the method of moments 

(MOM) [22, 23], and stochastic method [24, 25]. As the understanding of soot formation and 
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computational power have improved over the years, so has the complexity of soot models. Many 

of the works studied have implemented the sectional method to model soot formation and kinetics 

[26-35]. While these works have focused on atmospheric pressure flames, recently studies on 

modelling soot at elevated pressures [36, 37] and micro-gravity have been conducted as well [38]. 

Despite the variation in model types in the literature, there are some common steps of 

modelling soot formation and oxidation. The first component of an accurate model is the prediction 

of the flow field by solving the Navier-Stokes equations. Solving the gas-phase chemistry 

equations, soot-gas chemistry, and soot aerosol dynamics equations are necessary to model soot 

structure as well as nucleation and surface growth/oxidation reactions [36]. Modelling thermal 

radiation by solving radiative heat transfer is also normally needed for accurate temperature field 

prediction [39]. In recent years, many researchers have used these steps in order to model soot 

formation and oxidation [23-27, 29-33, 40]. 

According to Kennedy [20], soot models can be divided into three classifications: empirical 

soot models, semi-empirical soot models, and detailed soot models. Empirical soot models come 

from experimental phenomenological correlations of soot formation rates with combustion 

conditions such as pressure and temperature [41, 42]. These kinds of models are easily 

understandable, easy to implement, and they do not require significant computational cost. The 

low computational cost requirement is the main reason that this kind of modelling is so common 

in the literature related to gas turbines and diesel engines, as the geometrical complexity of these 

devices already pushes the limits of modern computational resources. Although the application of 

the aforementioned models is common, the loss of accuracy and comprehensive understanding 
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into the soot formation processes are its weakness. Empirical models will not be discussed in 

greater detail in this thesis. 

Semi-empirical soot models are purported to incorporate physical phenomena, chemical 

aspects, and also experimental data. Fairweather, Jones, and Lindstedt [43] proposed a two-

equation soot model, which has been used widely. This model neglects the aggregate structure and 

polydispersity of soot particles; thus, although it can give some insight into soot formation 

mechanisms, it is not detailed enough to deliver soot properties such as aggregate structure and 

size distribution. Another weakness of this model type is that it does not involve the resolution of 

PAH chemistry in a detailed manner. Therefore, researchers cannot use this type of model to study 

the interactions of aromatic species and soot. Furthermore, these models require the use of 

empirically tuned parameters, and are not broadly applicable when applied to combustion 

conditions that differ from those for which the model was developed. These models often fail to 

predict trends or even order-of-magnitude values for soot concentrations. The estimator presented 

in this thesis seeks to address this issue by being developed to be applicable to a wide range of 

industrial combustion devices.  

As knowledge of soot formation processes advanced, the complexity of soot models 

increased. Various approaches have been developed for detailed modelling of soot formation under 

simultaneous nucleation, coagulation, oxidation and surface growth processes. Some of the 

methods in the literature that represent these approaches include the abovementioned method of 

moments, sectional method, and stochastic method. Investigating the mean properties and the size 

distribution of soot particles can be achieved using a sectional aerosol dynamics model. Park et 

al., [31] proposed an advanced sectional model that solves two equations (number densities of 
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both primary particles and aggregates) per section, in order to model the evolution and fractal-like 

structure of soot. Soot formation in plug flow reactors [31] and shock tubes [44] have been 

modeled with high accuracy using the aforementioned model in addition to laminar flames [28-

30]. However, it should be noted that the improvement in accuracy of detailed soot models comes 

at the expense of high computational cost. 

For designing industrial combustion devices, detailed CFD simulations are typically 

utilized. Commonly used models include the flamelet approach [45] and inter-layer diffusion 

model [46]. These models are capable of simulating chemical reactions, the burning of fuels, 

ignition and other flow/combustion processes in a real engine. Combustion device designers can 

use the data from simulations to evaluate potential design modifications and make product 

performance more efficient. As mentioned previously, studying and simulating soot formation has 

high computational cost, and is considered to be quite challenging; as a result, it is neglected in 

most industrial device simulations. This is the main issue the work in this thesis attempts to 

address. The next few sections will discuss semi-empirical and detailed soot models in greater 

detail. 

2.3. Two-Equation Soot Model Overview 

The two equations of the semi-empirical soot model consist of one equation for the soot 

volume fraction or soot density, and the other equation for the soot number density. This model 

has been used extensively in the literature to model soot formation in diesel flames [47-49]. The 

two equations take the general form as follows: 
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 𝑑𝜌𝑦%
𝑑𝑡 = 𝛼( + 𝛼* − 𝛼, − 𝛼- Eq. (2.3.1) 

   

 𝑑𝑁
𝑑𝑡 = 𝛽( − 𝛽* Eq. (2.3.2) 

 

where 𝜌𝑦% is the soot species density and N is the soot number density. Inception, surface growth, 

oxidation via O2, and oxidation via OH are denoted as 𝛼(, 𝛼*, 𝛼,, and 𝛼-, respectively in Equation 

2.3.1. Inception and coagulation are denoted as 𝛽( and 𝛽*, respectively in Equation 2.3.2. This 

model is able to reduce computational cost by using empirical models for the source terms of 

Equations 2.3.1 and 2.3.2. 

The work of Leung et al., [50] uses such an approach to predict soot formation in non-

premixed flames. They consider soot inception to be exponentially dependent on temperature and 

linearly dependent on acetylene concentration. Surface growth is also considered to be 

exponentially dependent on temperature and linearly dependent on acetylene concentration but 

also a function of surface area, which is based on the number density and density of soot. Their 

soot oxidation model is based on the work of Lee et al., [51] and is an exponential function of 

temperature, a function of surface area, and a linear function of oxygen concentration. As for the 

source terms in Equation 2.3.2, soot nucleation is used for 𝛽( and agglomeration is used for 𝛽*. 

Agglomeration is modeled to have a square dependence on number density and a linear 

dependence on temperature. The results of the work showed qualitative and quantitative agreement 

for soot volume fraction, particle growth, and number density in ethylene diffusion flames at 

atmospheric conditions.  
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For a review of more recent applications of the two-equation soot model, the work of Cai 

et al., [52] should be considered. This work aims to predict soot in both hydrocarbon diesel and 

biodiesel engine combustion with the same model. The general theory of the model follows the 

same approach discussed previously. For further detail into which models were used for the source 

terms, refer to [52]. After reviewing the two-equation soot model of Cai et al., [52], the strengths 

and weaknesses of this soot model may be examined. A sensitivity analyses of the tuning 

parameters showed that soot volume fraction had the highest sensitivity when changes to the tuning 

parameters associated with surface growth were made. This result would indicate that surface 

growth is the more dominant mechanism for soot formation. This model was also able to predict 

soot fields within an order of magnitude of measured data for diesel and biodiesel jets. However, 

the accurate predictions were only possible once all the tuning parameters had been optimized for 

burner geometry and fuel type, which demonstrates the limitations of the two-equation soot model. 

It cannot be applied to a wide variety of applications without altering the tuning parameters. With 

advances in computing power, it would seem that the use of semi-empirical soot models will begin 

to decline. The advantage of the two-equation soot model is the reduction of computational cost 

but that comes at the expense of loss of predictive accuracy. As computers become more powerful, 

engineers are less likely to make that trade-off. 

2.4. Method of Moments Soot Model Overview 

To review how soot formation is modeled using the MOM, the work of Zhong et al., [23] 

is investigated. This study proposed a comprehensive and reduced chemical mechanism for a 

three-dimensional combustion simulation, describing the formation of PAHs in a direct-injection 

diesel engine. Zhong et al., [23] model soot formation by solving the Smoluchowski master 
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equation with the MOM. Using this approach, the dynamics of soot formation can be described by 

the following equations: 

 

 𝑑𝑀1

𝑑𝑡 = 𝑅1 − 𝐺1 Eq. (2.4.1) 

 

 𝑑𝑀(

𝑑𝑡 = 𝑅( +𝑊( Eq. (2.4.2) 

 

 𝑑𝑀*

𝑑𝑡 = 𝑅* + 𝐺* +𝑊* Eq. (2.4.3) 

 

 𝑑𝑀5

𝑑𝑡 = 𝑅5 + 𝐺5 +𝑊5 Eq. (2.4.4) 

 

where 𝑅, 𝐺, 𝑎𝑛𝑑	𝑊 are the nucleation, coagulation, and surface-growth terms, respectively, 

 𝑡 is the reaction time, and  

 𝑟 is the moment order (0 – 5). 

The source terms in Equations 2.4.1 to 2.4.4 are based on detailed physical and chemical 

submodels for the soot formation processes. Detailed information on which submodels were 

utilized can be found in [23]. A six-moment model was used in the study where 𝑀1 represents the 

soot number density, 𝑀( represents the soot mass density, and higher moments have no physical 
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significance. A six-step reaction mechanism for soot growth by surface reactions and soot 

oxidation was used, based on the work of [53]. The size moment of soot particles, average 

diameter, total surface area, and soot volume fraction are described by Equations 2.4.5 to 2.4.8, 

respectively: 

 𝜇5%<<= = 𝑀5
%<<=/𝑀1

%<<= Eq. (2.4.5) 

 

 𝑑 = 𝑑1 𝜇( (/, Eq. (2.4.6) 

 

 𝑠 = 𝜋𝑑1
* 𝜇( */,𝑀1

%<<= Eq. (2.4.7) 

 

 𝑓B = 𝜋𝑑1
,𝜇(𝑀1/6 Eq. (2.4.8) 

 

where 𝑑1 is the diameter of the soot-initiation core.  

This soot model was coupled with a 3-D CFD code with a FLUENT solver to simulate 

characteristic soot parameters such as particle number density and average diameter. The results 

of the model yielded soot number density values that were approximately 103 times smaller than 

the experimental results. This discrepancy indicates that the model is not a good tool to predict 

soot number density quantitatively, although it is able to capture the trends seen in the experimental 

measurements reasonably well. It was made clear that the soot model presented in this study is 

sensitive to the assumptions made in the submodels. This soot model can capture the basic physics 

of diesel combustion but needs further development to improve its predictive capabilities. Overall, 
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the MOM soot model is straightforward and easy to implement into a simulation. It also has the 

benefit of computational efficiency by only solving for a finite number of lower order moments, 

but can be biased by the initial assumptions made, thus affecting the accuracy of the results. 

2.5. Soot Sectional Model Overview 

To review how the soot sectional model is developed, the implementation of a sectional 

soot model by Dworkin and coworkers will be discussed [25-27]. This soot model assumes soot 

particles may be approximated as aggregates of equisized carbon spheres, and that the mean free 

path of the gaseous mixture is much larger than the largest soot spheroid. First, the minimum and 

maximum particle mass must be determined to establish a range. This range is then divided 

logarithmically into a specified number of bins or ‘sections’. The consequence of having more 

sections is an increase in computational cost. Too few sections will degrade accuracy. The second 

assumption this soot model employs is that as long as the number of sections is sufficiently large, 

spheroids of differing diameter within a given section do not exhibit differing aerosol dynamical 

qualities. The soot sectional mass equation is given as: 

 

 𝜌
𝜕𝑌F
𝜕𝑡 = −𝜌 𝑣5

𝜕𝑌F
𝜕𝑟 + 𝑣H

𝜕𝑌F
𝜕𝑧 −

1
𝑟
𝜕
𝜕𝑟 𝑟𝜌𝑌F𝑣F,5 −

𝜕
𝜕𝑟 𝜌𝑌F𝑣F,H + 𝑄F Eq. (2.5.1) 

 

where 𝜌 is the density of the mixture, 

 𝑣5 and 𝑣H represent the radial and axial components of velocity, respectively, 

 𝑌F represents the sectional mass fraction within the lth soot section,  
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𝑣F,5 and 𝑣F,H are the particle diffusion velocities in the radial and axial directions, 

respectively, and 

𝑄F is the rate of change of sectional mass due to inception, coalescence, surface growth, 

and oxidation. 

For a more detailed review of how the soot model treats inception, coalescence, surface 

growth, and oxidation, refer to [28]. To investigate the predictive capabilities of the soot sectional 

model, the results of Dworkin et al., [30] will be examined, in which an enhanced PAH growth 

model is applied to soot formation in a laminar, coflow, ethylene/air diffusion flame. Alpha (𝛼) is 

an empirical constant for the fraction of soot surface sites available for chemical reaction in the 

soot formation rate equation that is tuned for each model. The results of simulations from the 

mechanism proposed in the paper at 𝛼 = 0.078 and the mechanism of Appel et al., [53] at 𝛼 =

1.0 are compared to experimental data. The temperature profiles predicted by both mechanisms 

are nearly identical and reproduce the experimental data very well. As for the acetylene profiles, 

the overall shape, trend, and magnitude are predicted quite well. Considering the OH mole 

fractions, both mechanisms can reproduce the measured data at z = 0.7 cm but overpredict at z = 7 

cm by 30 – 44%. The numerically predicted profile of OH mole fraction is also shifted toward the 

centerline by approximately 0.8 cm. As for soot volume fraction, both mechanisms reproduce the 

shape and magnitude of the measured data with slight variations in peak value and location. 

Overall, this study showed that the soot sectional model has good predictive capabilities for 

laminar, coflow, ethylene/air diffusion flames. 

Eaves et al., [54] used an updated version of the same soot sectional model to study high 

pressure, laminar, ethane/air coflow diffusion flames at pressures of 2, 5, 10, and 15 atm. The main 
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trends observed in the measured data are reproduced well by the computed simulations. The soot 

volume fraction increases with pressure on both the wings and centerline of the flame. The model 

also captures the trend of the distribution of high volume fractions of soot on the centerline at 2 

atm moving towards the wings at higher pressures. The model accurately predicts the thinning of 

the flame at higher pressures. The prediction of the peak soot volume fraction on the wings and 

centerline is at a greater height above the burner and greater radius than what is seen in the 

experimental data. These inaccuracies worsen with increasing pressure. Lastly, the flame height is 

overpredicted in the simulations and once again, this inaccuracy worsens at higher pressures. 

Overall, the soot sectional model does an adequate job of predicting soot volume fraction at 

elevated pressures for laminar, coflow, ethane/air diffusion flames. However, the soot sectional 

model is weakened by the assumptions made and its dependence on tuning the alpha parameter. 

Therefore, the soot model will struggle to be applicable to a distinct range of combustion systems 

highlighting the need for a soot estimator that can be used for any combustion device with no 

modifications needed. 

2.6. Stochastic Soot Model Overview 

A stochastic method in general terms refers to using probability theory to analyze a given 

system. The most common method is termed the Monte Carlo analysis. To investigate how this 

statistical method is applied to soot modelling, the work of Balthasar and Kraft [55] will be 

examined. Balthasar and Kraft [55] outline a direct simulation Monte Carlo algorithm to calculate 

the particle size distribution function of soot particles in laminar premixed flames. First, the rates 

of particle events such as inception, coagulation, condensation, surface growth, and oxidation by 

O2 and OH are calculated. The source terms are taken from the computed CFD profiles by 

transforming the spatial coordinate into a time coordinate using the known velocities. Depending 
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on these rates, the individual time steps are determined using an exponentially distributed random 

variable. One of the events is chosen probabilistically relative to their rates, then the appropriate 

number of particles required to perform this event is determined according to the particles’ 

individual rates. Once the step is performed, the state of the particle system is updated and a new 

time step is determined. However, the system of stochastic particles in the algorithm does not 

represent the entire collection of soot particles. Therefore, one stochastic particle represents a 

certain number of soot particles depending on a parameter, N, which must be chosen for each 

calculation. The choice of N has a trade-off between accuracy and computational cost. To enhance 

the performance of the algorithm, researchers utilize the concept of majorant kernels and fictitious 

jumps.  For further detail on this stochastic soot model, refer to [55]. 

Balthasar and Kraft [55] compare the effectiveness of a MOM model to their developed 

stochastic model for soot number density and soot volume fraction. One of the drawbacks of the 

MOM mentioned in their study is that the rates of the moments cannot be solved in a 

straightforward sense. Fractional moments appear in the rate terms which are calculated by 

interpolating between the moment orders. Furthermore, approximations have to be used because 

the number density of particles in the smallest size class is not explicitly known. The physics 

models describing formation and oxidation of soot particles can be implemented in the stochastic 

approach with ease and no assumptions have to be made. Also, the method allows for more 

complex treatment of burnout of particles. This burnout of the smallest particles produces a 10% 

reduction in number densities and soot volume fraction. The flame investigated is a fuel rich 

premixed flame where oxidation does not play a big role. The effect of burnout will be more 

prevalent in lean conditions as seen in diesel engine and gas turbines. Therefore, the stochastic 

method is expected to yield more accurate results in terms of burnout of soot particles in these 
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devices. However, if the mesh of the geometry is composed of too many cells, it may be 

computationally intractable to employ a stochastic model in such simulations. Thus, a soot 

estimator that is applicable to industrial combustion devices and maintains low computational cost 

would be a very useful asset for a combustion device designer. 

Another use of a stochastic soot model was employed by Patterson et al., [56] to higher 

pressure flames. A 10 bar laminar, premixed ethylene flame simulation was compared with a 

MOM simulation and experimental data from [53]. Results show that the stochastic algorithm 

employed by Patterson et al., [56] produced results within a factor of 2 to those generated by the 

established Method of Moments with Interpolative Closure (MOMIC) technique. Both simulations 

had a noticeable difference with the experimental data, which points to the limitations of current 

understanding of soot formation mechanisms. The differences between the stochastic and MOMIC 

models is attributed to the rates being expressed as functions of the properties of individual 

particles in the stochastic model while the MOMIC model, requires all rates to be expressed in 

terms of lower integer order moments of the particle mass distribution. The stochastic soot model 

cannot produce the full size distributions of particle populations, which are important to those 

looking to understand pollution from diesel engines. Some of the advantages of the stochastic 

model are that arbitrarily precise solutions of the model equations are possible, and one can 

estimate the numerical error and control it by varying the parameters of the numerical method. 

Also, simulations of processes at the individual particle level are possible because the particle 

distribution is represented by a sample of particles. Lastly, the stochastic soot model can include 

extremely complex descriptions of the internal particle structure, but a flame with many physical 

events involving soot particles will carry a very high computational cost. Reducing the 
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computational resources required to simulate soot in the complex geometries of gas turbine 

combustors is the motivation for the work in this thesis. 

2.7. Turbulent Combustion Soot Modelling Overview 

The primary focus of this thesis is the development of a soot concentration estimator for 

industrial combustion applications. Turbulent combustion is prevalent in industrial combustion 

devices; therefore, to better contextualize the present thesis it is important to consider the 

advancements in soot modelling with respect to turbulent combustion. 

Reduced-order modelling is one technique that has been used to simulate aircraft 

combustors. The methodology is to model a series of perfectly stirred reactors (PSR) that exchange 

mass and combine an empirical soot model with this PSR network [57]. This model is very 

computationally inexpensive. However, it is empirical in nature; thus requiring significant tuning 

of the PSR network and soot model parameters to achieve reasonable predictions. A reduced-order 

model based on a specific combustion geometry cannot be applied to another. Therefore, reduced-

order modelling is not widely applicable to a distinct variety of industrial combustions devices. 

Other attempts to model soot fields in aircraft combustors have used Reynolds Averaged 

Navier-Stokes (RANS) CFD simulations coupled with the aforementioned semi-empirical or 

detailed soot models [58-60]. However, these models have not been able to predict soot emissions 

with any reliability and the predictions of soot volume fraction at the combustor exit seldom 

achieve accuracy in the same order of magnitude as experimental measurements. These 

inaccuracies can be attributed to the lack of dependability in predicting turbulent mixing using 

RANS. For this reason, there has been plenty of research in Large Eddy Simulation (LES), which 

can predict turbulent mixing much more accurately. 
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To understand the capabilities of LES, the work of Koo et al., [61] is reviewed. In this 

work, a LES framework was used to examine soot formation in a model aircraft combustor with 

swirl-based ethylene fuel and air injection. This model was able to capture the swirling flow in the 

combustor in addition to the strong shear layers associated with the swirl-based injection of fuel. 

Although the soot volume fraction was predicted reasonably well, the authors do note that 

quantitative differences are difficult to interpret given the complexities of the flow. Furthermore, 

it is important to consider the computational cost of this model. This model utilized a detailed 

chemical mechanism [62] and a hybrid MOM soot model [63]. However, the computational mesh 

comprised five to seven million cells, which is relatively small compared to simulations of 

industrial combustion devices. The computations were performed on 512 central processing units 

(CPU) with each simulation taking roughly 200 hours. The large amount of compute time 

demonstrates the extremely high computational cost associated with detailed modelling of soot in 

combustion devices. 

A method more accurate than LES is Direct Numerical Simulation (DNS). To assess the 

effectiveness of this method, the work of Attili et al., [64] is reviewed. In this work, a three-

dimensional DNS of planar n-heptane/air turbulent jets is constructed to investigate the effect of 

the gas-phase species diffusion model on flame dynamics and soot formation. The simulation uses 

a simplified approach where the Lewis number, the ratio between the diffusivity of heat and that 

of species mass, is assumed to be unity for all gas-phase species. A hybrid MOM [63] is used to 

describe soot formation wherein the effects of gas-phase and soot radiation are neglected in the 

model. The authors note uncertainties associated with the models for the chemistry of PAH and 

soot formation, which emphasizes the complexity of soot formation and the many unknowns 

combustion researchers are investigating. Combustion was modeled using a reduced mechanism 
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comprising 47 species and 290 reactions [62]. The computational domain was discretized into 

approximately 500 million points. Although the soot predictions are quite accurate, the 

computational resources needed for the simulation are immense. The simulation was performed 

on 65,536 CPUs and yielded a computational cost of roughly 18 million core hours.  This extreme 

requirement of computational resources is not manageable for most applications for which soot 

emissions predictions of combustion devices are sought. 

The studies on soot formation processes considered here are mostly focused on 

investigating the relationship between hydrocarbon fuels and soot, and how it effects soot 

production in different combustion processes. A preponderance of these studies provides valuable 

understanding that can be applied to the development of an estimator. For example, the 

characteristic time of soot formation is long compared to that of combustion kinetics, and thus 

local conditions cannot be used to correlate soot properties within a library. Instead, fluid parcel 

histories throughout the entire combustion system need to be considered. Furthermore, the final 

mass of particles emitted from the system can vary based on the particle after-burning process and 

oxidation, which depend on the combustion configuration [18]. The current thesis work has 

leveraged this understanding to develop a computationally efficient stand-alone fluid parcel 

tracking post-processor, capable of predicting soot concentrations in industrially-relevant 

configurations. 
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CHAPTER 3 – METHODOLOGY 

Since the main goals of this study are designing and generating a soot concentration 

estimator that does not rely on additional CFD modelling, choosing the appropriate strategy and 

methods which provide a tool of low computational cost, ease of use, and high accuracy are the 

primary objectives. This section describes the general theory and process behind the estimator’s 

development and its associated implementation. 

Steady, axisymmetric, laminar coflow diffusion flames, among different combustion 

configurations [19, 30, 54, 65], have a reasonably simple flow field and hence are pertinent to 

study both numerically and experimentally. Moreover, a platform for analyzing the evolution of 

soot aggregates and the relationships between soot formation and gas-phase chemistry in multi-

dimensional scales can be provided by investigating these flames. This kind of flame provides 

opportunities to investigate both soot formation and oxidation processes by encompassing regions 

of soot nucleation and also soot oxidation [66]. Furthermore, three-dimensional measurements of 

flame and soot quantities can be facilitated since both soot formation and oxidation in these flames 

cover a wide region [67]. The aforementioned reasons have motivated researchers to pay attention 

to this type of flame. Thus, laminar coflow diffusion flames are systems for which there is an 

abundance of experimental data that can be accurately modelled using CFD; therefore, they present 

an appropriate initial testing bed for new estimator development. 

Referring to Figure 1 below, the first step in the development of the estimator is to gather 

validated flame simulation and soot formation data, which can be used to populate the library. The 

flames used initially in this study are the laminar coflow ethylene diffusion flames studied 

originally by Santoro et al., [68], Smyth and Shaddix [69], and the diluted ethylene flames studied 
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by Smooke et al., [33], hereafter known as the Santoro, Smyth, and Smooke flames, respectively. 

The burner dimensions and flow conditions of the experiments are summarized in Table 1 below. 

The numerical values contained in the Smooke flame names represent the ethylene dilution ratio 

(for example, ‘Smooke32’ refers to the Smooke flame with 32% ethylene in the fuel stream by 

mole). The numerical values contained in the Smyth flame name represent the fuel velocity in the 

burner. 

 

 
Figure 1: Flow chart illustrating development of soot estimator library. 
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Table 1. Burner dimensions and flow conditions of fuel and air streams for experiments gathered 
[33, 68, 69]. 

 
Flame 

Inner Diameter 
(mm) 

Outer Diameter 
(mm) 

Air Velocity 
(cm/s) 

Fuel Velocity 
(cm/s) 

Fuel Stream 
Composition 

Santoro 11.1 101.6 13.3 5.06 100% C2H4 
Smooke32   4.0   50.0 35.0 35.0 32% C2H4/68% N2 
Smooke60   4.0   50.0 35.0 35.0 60% C2H4/40% N2 
Smooke82   4.0   50.0 35.0 35.0 82% C2H4/18% N2 
Smyth41 11.0 102.0 8.7   4.1 100% C2H4 
Smyth46 11.0 102.0 8.7   4.6 100% C2H4 
Smyth48 11.0 102.0 8.7   4.8 100% C2H4 

 

The second step in the estimator development is to use the experimental and validated 

numerical data to build on the existing knowledge of soot formation. As new findings related to 

soot formation processes are made, they can be implemented into estimator development to 

improve performance. A careful review of classical works from Santoro et al., [68], Smyth and 

Shaddix [69], and Smooke et al., [33] informs the varying nature of soot formation in these flames, 

and the range of conditions that lead to their differing soot formation characteristics. Step three of 

estimator development is to generate or retrieve validated CFD data for multiple flames. The 

purpose of using multiple flames is to broaden the predictive applicability of the estimator for 

various systems. Coworkers have been using an Eularian CFD approach to predict important local 

variables such as soot properties, fluid velocities, temperature, and species concentrations in 

flames [54]. The various detailed CFD data sets generated over the past seven years by Dworkin 

and coworkers [26, 27, 30, 36, 54, 66, 70] are validated against experimental data, and the 

associated understanding of soot formation forms the basis of the estimator development. It should 

be noted that while these studies contain various levels of semi-empirical modelling, the computed 

soot volume fractions are well validated. Thus, these data sets can be used to relate local soot 

concentrations to flow hysteresis, and are therefore valuable for library generation. 
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Step four of the estimator development is to prescribe the library dimensionality and which 

variable hystereses to use in its generation. From a purely theoretical point of view, the local 

instantaneous formation and destruction rates of soot particles can be written as a deterministic 

function of local flow field characteristics as shown in Equation 3.1. 

 

 
𝑑𝑓B(𝑡)
𝑑𝑡 = 𝑓(𝑇 𝑡 , 𝑦S 𝑡 , 𝑃 𝑡 , 𝑓B 𝑡 , 𝐴% 𝑡 , … ) Eq. (3.1) 

 

T is the temperature experienced by the fluid parcel that may contain soot, yi is the mole fraction 

of species i in the immediate vicinity of the soot particle, P is the local pressure of the gas, fv is 

soot volume fraction, and As is soot surface area at a given moment in time (t). The functional 

dependence is stronger on some variables (T,	𝑌WXYX,…) than on others (𝑌WZ, 𝑌WZX,…). The target 

quantity considered in this work is soot concentration, although soot properties such as particle 

size could be estimated as well. Mixture fraction, temperature, acetylene concentration, benzene 

concentration, and O2 concentration will be used as input variables to the estimator. It should be 

noted that this list was based in part from a trial-and-error process that has not yet been exhaustive. 

However, a strong correlation has been shown between mixture fraction and soot concentration 

[71]. Also, soot is known to form in flame regions with temperatures between 1300 K and 1600 K 

[15]. O2 concentration was chosen to capture soot oxidation effects. Lastly, acetylene 

concentration was chosen because it has been observed that the increase in soot formation at 

elevated pressures in laminar flames is primarily due to increased acetylene concentrations [36] 

and benzene concentration was chosen to represent PAH addition. Depending on how many 

independent variables are chosen to be included in the soot estimator will determine the library’s 
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dimensionality. Also, as knowledge of soot formation advances, more appropriate variables can 

be included in the library. 

Step five of the estimator development uses a Lagrangian parcel-tracking CFD data 

processor [70]. Theoretically, the formation or destruction of a soot particle is determined by its 

entire history from inception to oxidation. Therefore, in the present work, it is proposed to integrate 

variable histories of a fluid parcel in order to generate soot volume fraction correlations. For 

example, integrated temperature history can be a gauge for relative heat transfer into the particles, 

which is a suitable indicator of soot processes. The aggregated history of each variable can be 

expressed by the integral of each local variable with respect to time along a pathline traversed by 

a fluid parcel that may contain soot. The mathematical definition used herein of integrated 

temperature, molecular species, and mixture fraction histories are expressed in the following 

equations: 

 

 𝑇[ = 𝑇\]5^_F ∙ 𝑑𝑡
\]=[FSa_

 Eq. (3.2) 

 

 𝑌S_	[ = 𝑌S,\]5^_F ∙ 𝑑𝑡
\]=[FSa_

 Eq. (3.3) 

 

 𝑀𝐹[ = 𝑀𝐹\]5^_F ∙ 𝑑𝑡
\]=[FSa_

 Eq. (3.4) 
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Where Th is the integrated temperature history, Yi_h is the integrated history of species i, and MFh 

is the integrated mixture fraction history. In the present work, these integrals will be numerically 

evaluated by a post-processor considering data from CFD simulations of laminar flames. As a fluid 

parcel traverses the fluid domain, the histories defined in Equations 3.2 to 3.4 continuously 

increase monotonically.  

Corresponding to step five in Figure 1, the Lagrangian parcel-tracking post-processor 

comprises an algorithm that reads the results of a CFD simulation with a detailed soot model and 

traces out the path of a soot-containing fluid parcel. The post-processor contains a soot 

concentration filter that will only begin to track the fluid parcel when the soot concentration value 

is above the filter value. For the current work, the filter value has been set to 0.1 ppm. This process 

is depicted graphically in Figure 2, wherein the pathline through the flame is outlined in black in 

the left side figure and the temperature history is calculated as the area under the curve in the right 

side figure. As the fluid parcel progresses upward through the flame, the graph on the right side of 

Figure 2 is traced out. Each progressive point along the fluid parcel pathline corresponds to an 

increasing time along the x-axis of the right side graph in the figure. 
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Figure 2: Illustration of Lagrangian parcel-tracking post-processor calculating instantaneous 

temperature along the pathline of a soot-containing fluid parcel. Left side: temperature contours 
of a laminar ethylene coflow diffusion flame. Right side: Plot of local temperature the soot-

containing fluid parcel is exposed to along its pathline.  

 

It is important to emphasize here that the estimator does not attempt to relate soot 

concentration to local conditions, but rather it always considers the accumulated condition 

histories, and their effect on soot growth or destruction. This hysteresis based method is necessary 

as characteristic soot times are long compared to chemical times. For example, local temperature 

does not relate to soot concentration but rather the total history of temperature experienced by the 

soot-particle containing fluid parcel correlates to soot concentration. This post-processor is similar 

to those that predict NOx emissions [72, 73]. The post-processor has been used recently in studies 

of high pressure flames [36] and particle surface reactivity [70] for data analysis, and has been 

repurposed here to extract soot-flow field correlations for library generation. 

Step six of the estimator development is to tabulate the histories calculated by the 

postprocessor to generate a library of correlations, as was first done in [74]. In the present work, 
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the libraries consist of soot concentration values that are related to MFh, Th, and O2_h. MFh is chosen 

to account generally for gas phase conditions that may favour soot growth. For high pressure 

conditions, acetylene and benzene concentrations are substituted for MFh, which is discussed later. 

O2 is the only oxidative species used in the present library because the focus of the current work 

is on testing laminar diffusion flames. If a premixed or partially-premixed system were tested, or 

turbulence were present, evaluating OHh should be considered. 

The range of each variable history, from zero to the maximum value anywhere in the data 

sets considered, can be divided equally into a specified number of sections (or bins) in which the 

midpoints of those bins are used as data entries for the library. When multiple entries exist in a bin 

(for example from different pathlines in one flame dataset, or from separate data sets), those values 

are averaged when populating the bin. These data entries constitute the library. As the number of 

bins utilized increases, the resolution of the library becomes more precise. However, increasing 

the number of bins used to generate the library will increase the number of data entries in the 

library significantly due to the multi-dimensionality of the library. Another technique to populate 

the library is the use of non-equispaced bins. This technique consists of first populating a library 

with equally spaced bins as previously constructed but using a fraction of the bins allotted for the 

library. Then a frequency distribution is generated to determine the amount of data entries falling 

into each bin of each range of variable history. The bins with the most data entries will then be 

subdivided using the remaining bins allotted for the library. Therefore, each range of variable 

history will be sectioned into a specified number of non-equispaced bins. Then the data entries can 

be populated into the corresponding bins to generate a library. Once a library of correlated data 

has been generated, testing can then be conducted on the predictive capability of the library using 

validated flame data. 
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Referring to Figure 3, with a library having been generated as described above, the 

utilization of the soot estimator library can be described in three steps. Step one is to compute or 

otherwise retrieve the CFD data for a combustion system of interest, for which an estimate of soot 

concentration is desired. This CFD data does not need to include soot properties as they will be 

predicted using the library. It only needs to include temperature, a velocity field, and key chemical 

species concentrations. In theory, the combustion system can be a simple laminar flame or a more 

complex diesel engine or gas turbine, as long as flow field data is known. Step two consists of 

computing the hystereses fields of the CFD data using the Lagrangian parcel-tracking post-

processor described earlier, in the same manner as for library generation. The hystereses fields are 

based on the velocity fields throughout the domain of the CFD data. This step can vary greatly in 

complexity depending on the type of combustion system. For example, for steady laminar flames, 

the task is trivial, however, for turbulent combustion systems, especially those with swirling flows, 

the task is more complex and will require greater computational effort. Lastly, step three is to 

interpolate the hystereses fields in the soot estimator library to determine estimates of soot 

properties (concentration in the present thesis) at each point in the domain. While the current work 

focuses on soot concentration, soot morphology could also be estimated if sufficiently accurate 

size and shape data were available to generate the library. 
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Figure 3: Flow chart illustrating utilization of soot estimator library. 
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CHAPTER 4 – TESTING, VALIDATION, AND DISCUSSION 

4.1. Computational Cost Analysis 

Although the prediction accuracy of the estimator is essential, the computational cost 

associated with the estimator is an equally important aspect of its development. For practical 

application and utility, results must be generated in a reasonable amount of time. The majority of 

computational time required is during library generation. However, it should be noted that one 

library can be used for multiple soot concentration predictions. A comparison between the time 

required to generate a library and the number of data entries in that library based on the number of 

bins used, is displayed in Figure 4. The libraries comprised four parameters that include fv, MFh, 

Th, and O2_h. It should be noted that for these timings the libraries were generated using only 

Santoro flame data and the computations were performed on one CPU. 
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Figure 4: Time required to generate a library and the number of data entries in that library versus 

the number of bins used. 

 

The 100-bin library required just over one hour of compute time to generate. It can be seen 

that the time needed to generate a library increases at a greater rate with increasing bin resolution. 

This behaviour is due to the dimensionality of the library causing the number of data entries in the 

library to grow as the number of bins used increases. By testing the predictive capabilities of the 

library with varying resolution, a plateau was observed above the 100-bin library, above which the 

change in prediction accuracy did not improve significantly with increasing resolution. The results 

of this test indicated that a 100-bin library gave a satisfactory compromise between computational 

cost and predictive capabilities. 

The same analysis was conducted for libraries that comprised five parameters that included 

fv, C2H2_h, C6H6_h, Th, and O2_h. Once again, only Santoro flame data was used in the generation of 
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the libraries. The computational cost associated with library generation followed the same trend 

observed in Figure 4. However, a 40-bin library required just over eight hours of compute time to 

generate using one CPU. The time needed to generate a 100-bin library of five parameters in serial 

is not tractable. Therefore, parallel computing was implemented in the library generation code, 

which can be found in Appendix A. Computations were performed on the general purpose cluster 

(GPC) of the SciNet HPC Consortium. Generating a 40-bin library of five parameters across 64 

CPUs needed a compute time of approximately five minutes to complete. A 100-bin library of five 

parameters was not feasible to generate on the GPC due to memory restrictions. The individual 

RAM of each CPU was being exceeded, which caused the computation to terminate. Further 

refinement of the library generation code is required to reduce the amount of memory allocation 

needed. 

Once a library is generated, it can be used for soot concentration predictions of multiple 

combustion systems. For application purposes, the computational cost incurred on a combustion 

device designer looking to use this soot estimator as a post-processor to a CFD simulation comes 

from the Lagrangian parcel-tracker and interpolation of the library. The Lagrangian parcel-

tracking post-processor takes under a minute to compute the variable histories from the CFD 

results for laminar flames. The interpolation of the library to yield a soot prediction requires a few 

seconds of compute time per pathline. It should be noted that these compute times are associated 

with simulations of laminar coflow diffusion flames that contain a relatively small amount of 

elements in the computational domain compared to industrial turbulent simulations. As previously 

mentioned, the computational domains of engines and gas turbines are extremely large and 

complex. Consequently, the computational cost of the soot estimator is expected to be greater. 
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4.2. Preliminary Testing of Soot Estimator 

It is important to emphasize that the strategy of the estimator is to predict soot 

concentration, not on local conditions, as it is clear from residence time disparities that local 

conditions neither determine soot concentrations, nor correlate to them, but rather based on the 

cumulative soot-particle-containing fluid parcel history. The method used to test the predictive 

capabilities of the estimator is to compare the estimated values of soot concentration using the 

library to experimentally validated soot concentrations along two pathlines; the flame centerline 

and the pathline of maximum soot. The first test conducted is an attempt to predict soot 

concentration along Santoro flame pathlines using a library generated from Santoro and Smooke 

flame data. Once the library is generated, MFh, Th, and O2_h are calculated along the two pathlines 

using the Lagrangian parcel-tracking post-processor based on validated CFD data used to generate 

the library. It is important to note that for the tests in the current work, the pathline of maximum 

soot is known. However, if the soot estimator library is applied to an unknown combustion system, 

the hystereses fields spanning the combustion domain would need to be calculated to determine 

the point of maximum soot. These hystereses fields are then interpolated in the four dimensional 

library to yield a soot concentration estimate based on the correlations in the library, at discrete 

points along the pathline. The results of the first test are displayed in Figure 5, in which soot 

concentration is plotted against height above burner. 
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Figure 5: Comparison of experimentally-validated CFD computed soot concentrations with those 
predicted by the estimator library for the Santoro [68] flame along the pathline of maximum soot 

(left) and the flame centerline (right). 

 

Observing Figure 5, the soot concentration values estimated follow the computed curve 

very well. One of the main objectives of the proposed estimator is to predict peak soot 

concentration. The peak concentrations for the pathline of maximum soot and flame centerline 

differ by only 0.3% and 3.1%, respectively. Although the results in Figure 5 are quite promising, 

there are some sharp deviations in soot concentration estimates that preclude a smooth curve. The 

non-monotonic behavior of the estimated data may be attributable to the nature of the procedure 

projecting values from a multi-dimensional library onto a two-dimensional plot. Another reason 

for this behavior is the averaging of soot concentration values conducted during library generation. 

As more flame data is added to the library, specific soot concentration values of the original library 

may be averaged up or down resulting in a jagged curve. This effect is more evident in further 

tests. 
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It should be noted that the comparison depicted in Figure 5 does not represent a rigorous 

test of the estimator as Santoro flame soot concentrations were incorporated into the library before 

then being estimated. Therefore, the applicability of the library is ensured artificially, and these 

data should be taken with cautious optimism. If this estimator were to be used for predictive 

purposes, it must be able to predict soot concentration values from flame conditions that may not 

necessarily be consistent with the flame data used to generate the library. A good strategy is to 

continually develop and enhance the library (or libraries) using newly available data, so as to 

broaden its applicability as much as possible. The next step in examining the predictive capabilities 

of the estimator is attempting to predict soot concentration for pathlines of a flame that is not used 

in library generation. Therefore, the pathlines of a Smyth48 flame are tested using the library 

generated from only Santoro and Smooke flame data. The results of the test are displayed in Figure 

6. 

 

 
Figure 6: Comparison of CFD computed soot concentrations with those predicted by the 

estimator library for the Smyth48 [69] flame along the pathline of maximum soot (left) and the 
flame centerline (right). 
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From a trend matching perspective, the accuracy of prediction in Figure 6 is not as good as 

in Figure 5 but still follows the computed soot concentrations relatively accurately. The formation 

and destruction of the soot particles are captured. The peak concentrations for the pathline of 

maximum soot and flame centerline are predicted within the correct order of magnitude, differing 

by 35.0% and 52.4%, respectively. The results displayed in Figure 6 demonstrate that it is feasible 

to predict soot concentration values for a flow configuration that is not included in the flame data 

used to generate the library. 

The main purpose of the soot estimator would be to be used as a post-processor with 

existing CFD data that does not include soot formation. However, the previous two tests were 

conducted with a CFD model that included soot formation. Therefore, the next test is to attempt to 

predict peak soot concentration of a flame using CFD data from a model that did not include soot 

formation. The results of the test are displayed in Figure 7. As expected, observing Figure 7, the 

prediction capability of the estimator library has lost accuracy compared to that of Figure 6. The 

peak concentrations for the pathline of maximum soot and flame centerline differ by 37.26% and 

223.39%, respectively. Compared to Figure 6, the peak concentration accuracy along the pathline 

of maximum soot has only worsened by a few percent but the prediction along the flame centerline 

has worsened dramatically. Part of this discrepancy may be attributable to slight changes to the 

temperature profile of the flame associated with neglecting soot formation which may have a more 

significant impact along the flame centerline when calculating hysteresis fields. Although 

predictions along the centerline of the flame were not accurate, this test shows that it is possible to 

predict peak soot concentration within the correct order of magnitude from CFD results that did 

not include a soot model using the proposed soot estimator. 
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Figure 7: Comparison of CFD computed soot concentrations with those predicted by the 
estimator library for the Smyth48 flame [69] with no soot inception along the pathline of 

maximum soot (left) and the flame centerline (right). 

 

4.3. Testing Prediction Capabilities of Broadening Libraries 

The next step in testing the soot concentration estimator is to analyze changing prediction 

capabilities as more flame data is added to the library. The test consists of using eleven sets of 

experimentally validated CFD flame data from the Santoro [68], Smooke [33] and Smyth [69] 

flames, as well as high pressure (HP) flames studied by Mandotori and Gülder [75], to generate 

the library. Referring to Table 2, the initial step is to generate a library with Santoro [68] flame 

data only. The second library contains Santoro [68] data and data from one Smyth and Shaddix 

[69] flame, the third library contains Santoro [68] data and data from two Smyth and Shaddix [69] 

flames, and so on, until eleven libraries are generated each incorporating more data than the last. 

The accuracy of predicting peak soot concentration for each flame is tested using these libraries. 

It is to be expected that libraries based on more flame data would generally be better at predicting 

soot concentration in a broad range of flames. 
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The libraries presented in Table 2 were generated using 40 bins per variable to maintain 

low computational cost and to make a fair comparison with the second set of generated libraries. 

The libraries comprise three independent variables (MFh, Th, and O2_h) and one dependent variable 

(fv). The entries in the first column of Table 2 indicate which flame is being tested (i.e., in test 1, 

each of the eleven libraries are used to predict soot formation from the Santoro flame). The 

numbers to the left of the flame names are used to identify the flame data that was used to generate 

the libraries. Therefore, the first library in column 2 was generated with only Santoro flame data 

while the last library labelled ‘1-11’ was generated using all the flame data. The last row of Table 

2 shows the results of predicting soot concentration in the Smyth48 flame based on CFD data 

computed with no soot formation model, using all of the generated libraries. The table entries to 

the right of the dashed stepped diagonal line indicate tests in which the specific flame data for the 

flame being tested is incorporated into library generation. For example, the flame data for the 

Smooke60 flame was not used when generating library ‘1-5’ but was then used for library ‘1-6’ 

and the broader libraries thereafter. Test cases shaded in green indicate predictions within 50% 

difference. Test cases shaded yellow indicate predictions within the correct order of magnitude but 

greater than 50% difference. Lastly, test cases shaded red indicate predictions outside the correct 

order of magnitude. Note, some values may have less than 100% difference but not be within the 

correct order of magnitude because they are underpredicted. 
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Table 2: Differences (%) between CFD computed peak soot concentrations with those predicted 
by a post-processor library (four parameters – 40 bins) for the pathline of maximum soot for 
various flame data tested among broadening libraries. 

Flame Data 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 
1.   Santoro 5.5 6.7 8.3 15.3 17.2 17.2 17.2 17.2 17.2 17.2 28.3 
2.   Smyth41 19.8 9.4 8.0 2.2 29.7 29.7 29.7 29.7 29.7 7.5 39.1 
3.   Smyth46 31.3 22.4 21.2 16.1 45.6 45.6 45.6 45.6 45.6 20.7 47.8 
4.   Smyth48 38.1 30.1 29.0 24.5 45.7 45.7 45.7 45.7 45.7 28.6 53.0 
5.   Smooke32 2295.1 2772.7 4623.9 7420.4 7.8 193.2 219.8 274.1 2921.2 7476.2 4155.7 
6.   Smooke60 71.3 105.5 238.0 438.0 438.0 23.6 24.8 24.8 59.6 383.4 270.5 
7.   Smooke82 59.6 91.5 214.8 401.2 401.2 28.8 29.9 29.9 48.7 350.3 245.1 
8.   HP – 2atm 181.6 256.9 310.8 504.9 86.3 56.6 52.6 44.6 34.9 16.6 409.8 
9.   HP – 5atm 75.4 70.5 51.4 22.7 98.5 95.7 95.5 95.5 68.9 21.0 46.8 
10. HP – 10atm 96.1 95.3 92.2 87.6 99.8 99.3 99.3 99.3 95.0 87.3 91.5 
11. HP – 15atm 98.4 98.3 98.6 98.3 98.3 98.3 98.3 98.3 98.3 97.0 5.3 
12. Smyth48a 34.4 31.6 24.4 23.4 38.1 38.1 38.1 38.1 38.1 26.6 51.7 

a Flame generated using CFD model not including soot formation. 

 
 

Considering the second row in Table 2 (Santoro), all libraries are able to accurately predict 

peak soot concentration in the Santoro flame to within 29%. This result is encouraging but not 

surprising, as validated CFD data for the Santoro flame was used in the generation of each library. 

Considering the second column, moreover, the library generated from only the Santoro flame CFD 

data was able to predict peak soot concentrations in 9 out of 12 flames considered, to within the 

correct order of magnitude, which is often considered an adequate standard for basic predictive 

capability. This is a very promising result as it shows the potential to correlate a library generated 

from certain flame data to a different but similar combustion system. Considering the last row in 

the table, the flame being tested was generated using a validated CFD code described by Eaves et 

al., [76] with no soot formation included in the simulation. As soot was not included in the 
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simulation, soot radiation was not considered and the temperature field was overpredicted 

accordingly. The percent differences of this row are depicted visually in Figure 8. The values on 

the x-axis correspond to the eleven libraries generated in Table 2. The purpose of this test is to 

replicate the process of using CFD results from an industrial simulation that did not include soot 

modelling. All the libraries in Table 2 were able to predict peak soot concentration to within 52% 

for the aforementioned Smyth48 flame. This accuracy demonstrates the potential future viability 

to use an estimator library as a post-processor to existing CFD data, which does not include soot 

formation, to predict peak soot concentrations with an accuracy acceptable for industrial 

applications. 

 

 
Figure 8: Differences (%) between CFD computed peak soot concentrations with those predicted 
by a post-processor library (four parameters – 40 bins) for the pathline of maximum soot for the 

Smyth48 [69] flame with no soot inception. 
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Observing Figure 8, each additional flame data incorporated into library generation up to 

and including library ‘1-5’ affects the prediction of peak soot concentration. After library ‘1-5’, a 

plateau is observed where additional flame data does not impact the prediction for the specific 

flame tested. The plateau is present because the data from the additional flames does not fall into 

the bins that are being interpolated to yield a soot concentration value for the flame being tested. 

It is desirable to distinguish distinct flame data within the library so high sooting flame data does 

not overlap with low sooting flame data. To mitigate the chance of distinct flame data being 

averaged in the same bin, the range of each variable history can be divided into a greater number 

of bins. To analyze the estimator’s ability to predict soot particle evolution, the soot concentration 

predictions along the pathline of maximum soot for the Smyth48 flame with no soot inception 

using the broadest library are displayed in Figure 9. 
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Figure 9: Comparison of CFD computed soot concentrations with those predicted by the 

estimator library of 40 bins (four parameters) for the Smyth48 flame [69] with no soot inception 
along the pathline of maximum soot. 

 

Looking at Figure 9, the soot estimator underpredicts peak soot concentration by 52%. Soot 

formation processes are not predicted well but soot oxidation is captured. Also, the height at which 

peak soot is observed is predicted quite well. Although the majority of predictions from Table 2 

are within the correct order of magnitude, the bin resolution can be increased without incurring 

excessive additional computational cost. The tests from Table 2 were recreated using libraries of 

100 bins. Those results are displayed in Table 3. 
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Table 3: Differences (%) between CFD computed peak soot concentrations with those predicted 
by a post-processor library (four parameters – 100 bins) for the pathline of maximum soot for 
various flame data tested among broadening libraries. 

Flame Data 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 
1.   Santoro 0.3 10.6 17.5 25.7 25.7 25.7 25.7 25.7 25.7 25.7 13.0 
2.   Smyth41 15.7 2.1 9.6 12.0 9.3 9.3 9.3 9.3 9.3 9.3 4.1 
3.   Smyth46 27.8 16.1 6.0 4.0 6.4 6.4 6.4 6.4 6.4 6.4 32.1 
4.   Smyth48 35.0 24.4 15.4 13.5 15.7 15.7 15.7 15.7 15.7 15.7 18.9 
5.   Smooke32 2366.3 2887.4 4473.0 7783.9 5.5 39.6 43.4 296.7 4923.9 4923.9 6847.1 
6.   Smooke60 76.4 113.7 227.2 464.0 464.0 8.1 7.2 7.2 82.9 412.7 495.6 
7.   Smooke82 64.4 99.1 204.8 425.4 425.4 14.3 13.5 13.5 70.4 377.6 454.9 
8.   HP – 2atm 224.8 270.9 453.1 548.7 86.2 85.0 84.7 41.2 41.2 41.2 44.8 
9.   HP – 5atm 74.6 69.3 53.0 18.9 98.6 95.6 95.5 95.5 32.9 220.4 22.4 
10. HP – 10atm 95.9 95.1 92.5 87.0 99.7 99.3 99.3 99.3 90.0 48.7 74.2 
11. HP – 15atm 98.6 98.8 98.8 98.9 98.7 98.7 98.7 98.7 98.7 96.3 0.9 
12. Smyth48a 38.1 28.1 23.5 19.4 19.4 19.4 19.4 19.4 19.4 70.8 86.7 

a Flame generated using CFD model not including soot formation. 

 
 

Overall, the estimator is able to predict 103 out of 132 test cases seen in Table 3 to the 

correct order of magnitude. Furthermore, the estimator is able to predict peak soot concentration 

in 71 out of 132 test cases to within 50%. These general statistics show good potential for the 

estimator to predict peak soot concentration in many cases. Looking to the right of the dashed 

stepped diagonal line in Table 3, 63 out of 66 tests predict peak soot concentration to the correct 

order of magnitude.  

A trend observed in the Smooke32 flame is that as soon as that flame is introduced into the 

library (which happens first in library ‘1-5’), the peak difference values decrease dramatically and 

the estimator is able to predict peak soot concentration to within 44%, until high pressure flame 

data is incorporated into library generation. This occurrence is displayed in Figure 10 where the 

soot concentration predictions using libraries ‘1-4’ and ‘1-5’ are shown for the Smooke32 flame. 

Smooke [33] has shown that the peak soot volume fraction of a heavily diluted ethylene flame, 
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such as the Smooke32 flame, is one order of magnitude lower than that of the less diluted flames. 

In the Smooke32 flame, the maximum inception and surface growth rates occur along the 

centerline near the tip of the flame. Therefore, peak soot concentration is observed at the flame 

centerline and at a reduced flame height, whereas less diluted flames exhibit peak soot 

concentration at the wings of the flame and at increased flame heights. Therefore, the peak soot 

concentration of the Smooke32 flame occurs at lower hysteresis values than those of less diluted 

flames. As a result, library ‘1-4’ extremely overpredicts the Smooke32 flame because the library 

was generated using only pure ethylene flame data without having adequately populated the short-

residence time regions of the library. As soon as the Smooke32 flame data is introduced into library 

‘1-5’, there is sufficient data to populate the bins corresponding to short-residence times of the 

library. The addition of heavily diluted flame data results in a very accurate prediction of peak soot 

concentration by library ‘1-5’ for the Smooke32 flame. Therefore, if the library contains flame 

data similar to, but distinct from the flame being tested, the estimator shows good potential to 

predict peak soot concentrations. For application purposes, this result indicates that a challenge 

will be the need for libraries that have been generated with data that is from flame conditions 

similar to the desired prediction case. 
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Figure 10: Comparison of CFD computed soot concentrations with those predicted by library ‘1-

4’ (left) and library ‘1-5’ (right) from Table 3 for the Smooke32 flame [33]. 

 

To visually observe the impact that increasing bin resolution has on the predictive 

capabilities of the library, the predictions of library ‘1-11’ for all flames tested from Table 3 are 

compared to that of Table 2. This comparison is shown in Figure 11 where the values on the x-axis 

correspond to the flame numbers indicated in Tables 2 and 3. The y-axis is limited to a difference 

of 100% to observe the effects of increasing bin resolution more clearly. Analyzing the effects of 

increasing bin resolution, separation of flame data within the libraries is observed. A library of 40 

bins averages a wider range of flame data within each bin, whereas a library of 100 bins averages 

a smaller range of data within each bin. Thus, distinct flame data will occupy separate bins in the 

library rather than having bins that contain overlapping, averaged flame data and result in 

unwanted smoothing. Figure 11 shows that increasing bin resolution generally improves the 

predictive capabilities of the broadest library. 
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Figure 11: Differences (%) between predicted peak soot concentrations by library ‘1-11’ of 40 

bins (four parameters) with those by library ‘1-11’ of 100 bins (four parameters) for the pathline 
of maximum soot. 

 

 To further investigate the impact of increasing bin resolution, the predictions of the 

Smyth48 flame with no soot inception for all eleven libraries seen in Table 3 are compared to those 

of Table 2. This comparison is observed in Figure 12. Once again, it can be seen that increasing 

bin resolution generally improves the predictive capabilities of the library until the 10 atm HP 

flame data is incorporated into library generation illustrated by the jump from library ‘1-9’ to 

library ‘1-10’. Also, the addition of the Smooke32 flame data into library ‘1-5’ affects the soot 

concentration prediction for the 40 bin libraries. The 100 bin libraries do not exhibit this effect 

which further illustrates the separation of flame data within the library. Therefore, the ideal soot 

estimator library would have distinct flame data separated into different regions of the library as 

much as possible while maintaining low computational cost. 
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Figure 12: Differences (%) between predicted peak soot concentrations by libraries of 40 bins 

(four parameters) with those by libraries of 100 bins (four parameters) for the pathline of 
maximum soot for the Smyth48 [69] flame with no soot inception. 

 

The soot concentration predictions along the pathline of maximum soot for the Smyth48 

flame with no soot inception using the broadest library are displayed in Figure 13. The predicted 

peak soot concentration is nearly double the CFD computed value. The predicted height at which 

peak soot concentration occurs is much lower than the computed value shows. The inaccuracy of 

the prediction is caused by overlapping of flame data. The bin that is predicting the peak soot 

concentration in this case is dominated by HP flame data, which is highly sooting; thus, yielding 

a high soot concentration value. Furthermore, the soot formation and destruction processes are not 

captured. 
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Figure 13: Comparison of CFD computed soot concentrations with those predicted by the 

estimator library of 100 bins (four parameters) for the Smyth48 flame [69] with no soot inception 
along the pathline of maximum soot. 

 

Although increasing bin resolution has generally improved predictive capabilities of the 

libraries, looking at the last four columns of Table 3, where high pressure flame data is 

incorporated into library generation, the libraries are only able to predict the Smooke flames to 

within 50% difference in 2 out of 12 cases. It is clear that a different strategy needs to be utilized 

for high pressure conditions. It is known that the increase in soot formation at elevated pressures 

along the wings of laminar flames is primarily due to increased surface growth rates [54]. Increases 

in surface growth rates are related to increases in soot area density and acetylene concentrations. 

Furthermore, the increases in acetylene concentrations are attributable to increases in gas phase 

density. Therefore, the proposed strategy is to replace MFh, which does not separate the effects of 

HACA growth from PAH addition, with two parameters, benzene history (C6H6_h) and acetylene 
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history (C2H2_h), thereby separating out the quantification of surface growth and 

inception/condensation effects. C2H2_h is chosen to represent soot formation via surface growth as 

mentioned earlier. Although benzene is not a PAH, C6H6_h is chosen because benzene is the most 

common ring observed in PAH structures; thus giving the library a representative variable for PAH 

formation. 

The resulting libraries will now consist of five parameters comprising C6H6_h, C2H2_h, Th, 

O2_h, and fv. Not surprisingly, the computational cost of generating libraries increased dramatically 

with the addition of one parameter (one more dimension) as mentioned previously. The tests results 

using the updated 40 bin libraries are displayed in Table 4. 

 

Table 4: Differences (%) between CFD computed peak soot concentrations with those predicted 
by a post-processor library (five parameters – 40 bins) for the pathline of maximum soot for various 
flame data tested among broadening libraries. 

Flame Data 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8   1-9 1-10 1-11 
1.   Santoro 1.7 5.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 
2.   Smyth41 16.6 1.2 1.2 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 
3.   Smyth46 53.9 15.4 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 
4.   Smyth48 35.6 23.8 11.6 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 
5.   Smooke32 384.1 379.0 777.9 661.1 11.6 4.3 1.9 278.6 662.5 9993.4 9993.4 
6.   Smooke60 65.4 15.7 18.2 37.3 10.3 14.9 11.7 11.7 11.7 11.7 11.7 
7.   Smooke82 67.7 68.1 23.8 21.2 2.7 20.7 17.7 17.7 17.7 17.7 17.7 
8.   HP – 2atm 28.3 29.0 30.1 12.8 86.9 85.8 85.5 43.9 13.0 1106.6 2094.7 
9.   HP – 5atm 95.0 95.1 89.9 92.2 98.9 95.8 95.6 95.6 11.8 158.6 158.6 
10. HP – 10atm 99.2 99.2 98.1 98.8 99.3 99.3 99.3 99.3 85.9 62.6 62.6 
11. HP – 15atm 99.6 99.6 99.3 99.4 99.9 99.7 99.7 99.7 97.8 99.7 2.8 
12. Smyth48a 62.3 64.0 24.6 46.4 46.4 46.4 46.4 46.4 46.4 46.4 46.4 

 a Flame generated using CFD model not including soot formation. 
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Comparing Table 4 to Table 2, it is clear that the updated libraries have provided improved 

prediction results for the Smooke flames compared to the previous library, for which MFh was 

used with the same bin resolution. The libraries are able to predict the Smooke60 and Smooke82 

flames to within 50% difference when HP flame data is incorporated into library generation. 

Furthermore, many of the predictions to the right of the diagonal stepped line have improved 

significantly, most noticeably in the Santoro, Smyth, and Smooke flames. This improvement 

indicates that the strategy of replacing MFh with C6H6_h and C2H2_h is effective for improving the 

library’s predictive capability in estimating soot concentration in high pressure flames by 

separating out the quantification of surface growth. However, the predictions for the Smooke32 

flame continue to have high error values when high pressure flames are included in library 

generation. Increasing bin resolution may improve the accuracy of these predictions but techniques 

to reduce computational cost must be utilized. Although the new strategy caused some error values 

to increase slightly, such as the 2 and 5 atmosphere high pressure flame tests, 56 out of 66 test 

cases to the right of the dashed diagonal line are predicted within 50% difference compared to 50 

out of 66 in Table 2 when MFh was used. Considering library ‘1-11’ in Table 4, the broadest library 

generated, it predicts peak soot concentrations for all flames to within the correct order of 

magnitude for 10 out of 12 flames tested. These predictions are compared to those of Table 2, for 

which the bin resolution is the same, in Figure 14. The new library generally improves the 

predictive capabilities of the soot estimator library as 9 out of 12 flames tested have shown 

improvement in prediction accuracy. 

 



53 
 

 
Figure 14: Differences (%) between predicted peak soot concentrations by library ‘1-11’ of 40 

bins (four parameters) with those by library ‘1-11’ of 40 bins (five parameters) for the pathline of 
maximum soot. 

 

 A comparison of the predictions for the Smyth48 flame with no soot model is made using 

the 40 bin libraries using four and five parameters (data in Table 2 and Table 4, respectively). This 

comparison is shown in Figure 15. While the predictions of the five parameter libraries are 

generally less accurate than the four parameter libraries, the Smyth48 flame with no soot formation 

in the CFD model is still predicted well by all the libraries. An interesting observation seen in 

Figure 15 is that the predictions made by the five parameter libraries plateau after library ‘1-4’. 

Library ‘1-4’ is the first library generated that includes all Smyth [69] flame data. The predictions 

from libraries ‘1’ to ‘1-4’ change as more Smyth flame data is incorporated into library generation. 

The libraries generated afterwards incorporate the Smooke [33] and HP [75] flame data that are 

distinct from the Smyth48 flame with no soot model. This observation highlights the impact that 
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the updated strategy has on separating distinct flame data within the library. This data shows 

potential in producing a very broad library that can be applicable to many flames. 

 

 
Figure 15: Differences (%) between predicted peak soot concentrations by libraries of 40 bins 

(four parameters) with those by libraries of 40 bins (five parameters) for the pathline of 
maximum soot for the Smyth48 [69] flame with no soot inception. 

 

Once again, the soot concentration predictions along the pathline of maximum soot for the 

Smyth48 flame with no soot inception using the broadest library are displayed in Figure 16, to 

show the effectiveness of the updated strategy for predicting soot evolution. The predicted peak 

soot concentration is nearly half the CFD computed value. The predicted height at which peak soot 

concentration occurs is once again lower than the computed value shows by 0.9 cm. Although, 

soot formation is initially captured quite well until 3 cm above the burner, the soot estimator seems 
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to be calling upon bins that have very low soot concentration values. The values within these bins 

are driven down by large amounts of low sooting flame data. These values distort the curve; thus 

restricting the soot estimator from capturing the soot evolution process. A new strategy needs to 

be developed to improve the distribution of flame data within the bins. 

 

 
Figure 16: Comparison of CFD computed soot concentrations with those predicted by the 

estimator library of 40 bins (five parameters) for the Smyth48 flame [69] with no soot inception 
along the pathline of maximum soot. 

 

4.4. Libraries Generated Using Non-Equispaced Bins 

An investigation into the amount of data within each bin for a 40 bin library comprising 

five parameters revealed that only 6,432 bins out of a possible 2.56 million were populated with 

data entries. 58 of the populated bins yielded soot concentration values of zero. Although the 
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hysteresis fields for many of the bins are not conducive to soot formation, a different approach of 

populating the bins should be evaluated. The previous tests were conducted using libraries that 

were generated by dividing the range of each variable history into an equispaced number of bins. 

The proposed approach will be to divide each variable history range into a small amount of 

equispaced bins. Then, the amount of data that populates the bins of each variable history are 

evaluated. Additional sub-bins are then proportionally distributed to the equispaced bins based on 

the amount of populated data entries. The range of each bin is then subsequently divided by the 

amount of sub-bins allocated to the bin. Finally, a library is generated using this non-equispaced 

bins (NEB) approach. The NEB library generation code can be found in Appendix B. The 

distribution of data within the bins of each variable history using the NEB approach is compared 

to the previous approach of using equispaced bins in the figures below. The total amount of data 

entries is 86,912. 

 

 
Figure 17: Comparison of the distribution of data entries within the bins dividing the range of 

C2H2_h between equispaced bins (left) and the NEB approach (right). 
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Figure 18: Comparison of the distribution of data entries within the bins dividing the range of 

C6H6_h between equispaced bins (left) and the NEB approach (right). 

 

 
Figure 19: Comparison of the distribution of data entries within the bins dividing the range of Th 

between equispaced bins (left) and the NEB approach (right). 
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Figure 20: Comparison of the distribution of data entries within the bins dividing the range of 

O2_h between equispaced bins (left) and the NEB approach (right). 

 

In Figures 17 to 20, it is observed that the previous approach of using equispaced bins 

concentrated the data towards the low value bins. This observation is most prevalent for C2H2_h, 

C6H6_h, and O2_h. As seen in Figure 20, over 90% of the data entries populate the first bin which 

deters the separation of distinct flame data. As discussed earlier, separation of distinct flame data 

within the library will produce a soot estimator that is more applicable to a wider range of flames. 

The NEB approach has helped to distribute the data more evenly over the entire range of the 

variable history. The most populated bins from the previous method of library generation have all 

seen a reduction in data entries using the NEB method. Out of the possible 2.56 million bins, the 

number of populated bins has nearly doubled to 12,256 of which 69 are populated with soot 

concentration values of zero. Ideally, the distribution of data across the bins would be uniformly 

distributed. Therefore, further refinement of NEB should be investigated. Methods to reduce 

computational cost are required so more sub-bins can be utilized. Also, multiple iterations can be 

made when distributing the sub-bins within the range of the variable history. 
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The previous tests of analyzing predictive capabilities of broadening libraries were 

conducted once again for NEB libraries comprising five parameters and 40 bins. It should be noted 

that generating a library using the NEB approach added an insignificant amount of compute time. 

The results are displayed in Table 5. 

 

Table 5: Differences (%) between CFD computed peak soot concentrations with those predicted 
by a NEB post-processor library (five parameters – 40 bins) for the pathline of maximum soot for 
various flame data tested among broadening libraries. 

Flame Data 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8   1-9 1-10 1-11 
1.   Santoro 0.8 6.9 17.1 0.7 0.8 1.2 1.2 16.3 4.9 4.9 4.9 
2.   Smyth41 15.8 0.4 0.6 16.4 1.3 1.2 1.2 1.2 1.2 1.2 1.2 
3.   Smyth46 45.8 16.0 0.6 0.6 1.7 1.6 1.6 1.6 1.6 1.6 1.9 
4.   Smyth48 35.0 24.4 20.2 1.2 1.4 4.0 4.0 4.0 4.0 4.0 3.4 
5.   Smooke32 318.0 268.7 455.3 550.8 13.0 7.5 8.5 259.0 1305.3 12409.6 12409.6 
6.   Smooke60 32.5 9.4 34.0 12.1 53.1 0.7 0.7 0.2 0.2 0.3 0.8 
7.   Smooke82 37.1 1.5 9.0 4.4 42.4 7.5 2.5 0.7 0.7 1.1 1.1 
8.   HP – 2atm 38.1 45.4 17.7 3.6 83.3 86.3 86.4 46.8 58.9 1241.4 1241.4 
9.   HP – 5atm 92.3 93.5 92.2 92.9 98.8 95.6 95.6 95.3 7.0 2.1 2.1 
10. HP – 10atm 99.3 99.7 99.3 98.9 99.8 99.3 99.3 99.3 88.9 1.7 1.7 
11. HP – 15atm 99.7 99.9 99.6 99.5 99.9 99.9 99.9 99.9 99.5 99.9 2.6 
12. Smyth48a 46.3 31.9 20.7 16.5 24.3 20.8 20.8 21.5 21.5 24.2 24.6 

 a Flame generated using CFD model not including soot formation. 

 
 

Overall, the estimator is able to predict peak soot concentration within the correct order of 

magnitude for 101 out of 132 test cases. Looking to the right of the dashed diagonal line, the 

estimator is able to predict peak soot concentration in 61 out of 66 test cases within the correct 

order of magnitude and 58 out of 66 test cases within 20% as compared to 62 out of 66 and 55 out 

of 66 cases, respectively with equispaced bins. Considering library ‘1-11’ in Table 5, the broadest 

library generated, it predicts peak soot concentrations for all flames to within the correct order of 
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magnitude for 10 out of 12 flames tested. These predictions are graphically compared to those of 

Table 4 (equispaced bins) in Figure 21. 

 

 
Figure 21: Differences (%) between predicted peak soot concentrations by library ‘1-11’ of 40 
equispaced bins (five parameters) with those by library ‘1-11’ of 40 NEB (five parameters) for 

the pathline of maximum soot. 

 

Figure 21 shows that generating libraries using the NEB approach generally improves the 

predictive capabilities of the soot estimator. 8 out of 12 flames tested showed improved predictions 

of peak soot concentration and one flame prediction remained the same. A comparison of the 

predictions made for the Smyth48 flame with no soot inception by the NEB libraries in Table 5 is 

made with the predictions by the previously generated libraries from Table 4. This comparison is 

shown in Figure 22. 
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Figure 22: Differences (%) between predicted peak soot concentrations by libraries of 40 

equispaced bins (five parameters) with those by libraries of 40 NEB (five parameters) for the 
pathline of maximum soot for the Smyth48 [69] flame with no soot inception. 

 

As shown in Figure 22, the NEB method has improved the peak soot concentration prediction of 

the Smyth48 flame with no soot formation in the CFD model for every library generated. Although, 

the addition of the Smooke and HP flames after library ‘1-4’ affect the predictions of the NEB 

libraries, whereas the equispaced libraries are not affected, the impact is slight and is outweighed 

by the significant improvements. 

Lastly, the soot concentration predictions along the pathline of maximum soot for the 

Smyth48 flame with no soot inception using the broadest NEB library are displayed in Figure 23. 

The predicted peak soot concentration is underpredicted but is still within 25%. The predicted 

height at which peak soot concentration occurs is similar to the computed value. The soot 

formation process is captured quite well. Even though soot oxidation occurs more rapidly than 
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with the validated curve, it is still captured. Although the predicted curve has small regions of 

horizontal soot concentration values, further increasing bin resolution may smooth the curve. 

Overall, this test shows potential that a five parameter soot estimator library generated using NEB 

can predict soot particle evolution in a flame. 

 

 
Figure 23: Comparison of CFD computed soot concentrations with those predicted by the 

estimator library of 40 NEB (five parameters) and 40 equispaced bins (five parameters) for the 
Smyth48 flame [69] with no soot inception along the pathline of maximum soot.
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CHAPTER 5 – CONCLUSIONS 

5.1. Summary 

The work presented in this thesis outlines the development of a computationally efficient 

stand-alone fluid parcel tracking post-processor that shows promising potential of predicting soot 

concentrations in industrial combustion devices. This thesis focuses on developing a system of 

library generation that can be used to estimate soot concentration using correlations and 

interpolation. The strategy of the estimator is to predict soot concentration, not on local conditions, 

as it is clear from residence time disparities that local conditions neither determine soot 

concentrations, nor correlate to them, but rather based on the cumulative hystereses of soot-

particle-containing fluid parcels. The current work focuses on soot concentration, but soot 

morphology could also be estimated if sufficiently accurate size and shape data were available to 

generate the library. 

The soot concentration estimator proposed in this thesis shows good potential for 

predicting soot concentrations in practical combustion systems. The computational cost associated 

with the soot estimator was dramatically reduced by implementing parallel computing into library 

generation. It was shown that as more flame data is incorporated into library generation, the 

estimator is applicable to a wider range of distinct flames. Furthermore, increasing the bin 

resolution separates distinct flame data within the library and improves prediction capability. A 

library consisting of variable hystereses for C6H6, C2H2, T, O2, and fv was shown to be effective 

for atmospheric and high pressure flames. Also, the libraries generated using NEB were shown to 
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improve the prediction capabilities as well. The broadest library generated was able to predict peak 

soot concentrations for 10 out of 12 flames to within 25% of the CFD computed value. Also, all 

the libraries generated were able to predict the correct order of magnitude for peak soot 

concentration for the Smyth48 flame, which did not include soot formation in the CFD model. 

Lastly, the soot estimator showed promising potential in predicting the evolution of a soot particle 

along the pathline of maximum soot through a flame. 

5.2. Recommendations for Future Work 

The algorithm development and testing conducted in this thesis provided a proof of 

concept, but additional testing must be conducted to further validate the predictive capabilities of 

the estimator. Recommendations for future work include: 

• The analyses of additional fuels. Methane should be investigated as a representative for 

natural gas, which is the primary fuel source for power generating gas turbines. 

• Considering the ability to similarly predict soot emissions and particle size. 

• Investigating transient laminar systems as a step toward application to turbulent 

combustion systems is a priority. 

• Adding newly available flame data to the library to broaden its applicability. 

• Troubleshooting parallel implementation in generating 100 bin libraries that comprise five 

parameters. This may improve the predictive capabilities of the estimator with respect to 

the Smooke32 flame. 

• Implementing an iterative scheme for the redistribution of bins for the generations of NEB 

libraries. 

• Conducting a perturbation analyses to quantify the most significant variables that should 

comprise the library. 
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The estimator currently shows the ability to potentially produce reasonably accurate results with 

relatively low computational cost. With further development, combustion device designers can 

greatly benefit from the estimator to make product performance more efficient and less harmful to 

the environment. 
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Appendix A – LIBRARY GENERATION CODE USING EQUISPACED 

BINS 

!***************************************************************** 
! Estimator Code: Version 5, November 9th, 2017   
! A library generating code for estimating soot concentration along a streamline 
!of a flame 
! This parallel code was developed by R. Alexander, S. Bozorgzadeh,  
!A. Khosousi, and S.B. Dworkin at  
! Ryerson University. 
!***************************************************************** 
 
PROGRAM lib_gen 
 
IMPLICIT NONE 
 
 
INCLUDE 'mpif.h' 
 
! 
****************************************************************************** 
!This program uses post-processed, validated CFD data of a flame or flames to generate a 
!library of 5 parameters (C2H2_h,C6H6_h,T_h,O2_h,fv) for the use of estimating soot  
concentration of a flame. 
!***************************************************************************** 
 
!Global variable declarations 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: ppdata  
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: bmatrix 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: outlib    
    
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: final_lib 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: sootpart, soot 
CHARACTER(len=30) :: infile  
CHARACTER(len=30) :: outfile 
INTEGER :: nrows = 0, loopmin, loopmax 
INTEGER :: i, j, k, w, l, nbins, status, dim 
DOUBLE PRECISION :: soot_h, C2H2_h, A1_h, T_h, O2_h, OH_h, temp, height, count 
DOUBLE PRECISION :: C2H2max = 0.0d0, A1max = 0.0d0, Tmax = 0.0d0, O2max = 0.0d0 
DOUBLE PRECISION :: start,start1,start2  
DOUBLE PRECISION :: finish,finish1,finish2 
INTEGER :: IERR, MYID, NUMP, worker 
 
!Initialize MPI-------------------------------- 
CALL MPI_INIT(IERR) 
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!Call the rank subroutine---------------------- 
CALL MPI_COMM_RANK(MPI_COMM_WORLD,MYID,IERR) 
 
!Call the size subroutine---------------------- 
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,NUMP,IERR) 
 
!----------------------------- 
IF (MYID == 0) THEN 
 CALL cpu_time(start) 
END IF 
 
 !Open input card and read input data 
 OPEN (UNIT=3, FILE='inputcard1.dat', STATUS='OLD', ACTION='READ', 
IOSTAT=status) 
 READ (3,*) nbins, infile, outfile 
 
 !Open the input file and check for errors on open 
 OPEN (UNIT=25, FILE=infile, STATUS='OLD', ACTION='READ', IOSTAT=status) 
 
  !OPEN was OK. Read values 
     !Determine number of rows in input file 
  DO 
      READ (25,*,IOSTAT=status) temp 
         IF (status /= 0) EXIT 
         nrows = nrows + 1 
     END DO 
 
     ALLOCATE (ppdata(nrows,7), STAT=status) 
 
      REWIND (UNIT=25) 
      
   !Read input file data and store in array 
   DO i = 1, nrows 
             READ (25,*,IOSTAT=status) soot_h, C2H2_h, A1_h, T_h, O2_h, OH_h, height 
             ppdata(i,1) = soot_h 
  ppdata(i,2) = C2H2_h 
             ppdata(i,3) = A1_h 
             ppdata(i,4) = T_h 
             ppdata(i,5) = O2_h 
             ppdata(i,6) = OH_h 
             ppdata(i,7) = height 
             maxC2H2: IF (ppdata(i,2) > C2H2max) THEN 
              C2H2max = ppdata(i,2) 
             END IF maxC2H2 
             maxA1: IF (ppdata(i,3) > A1max) THEN 
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              A1max = ppdata(i,3) 
             END IF maxA1 
             maxT: IF (ppdata(i,4) > Tmax) THEN 
              Tmax = ppdata(i,4) 
             END IF maxT 
             maxO2: IF (ppdata(i,5) > O2max) THEN 
              O2max = ppdata(i,5) 
             END IF maxO2 
         END DO 
 
 
 !Create matrix and array based on number of bins specified 
 ALLOCATE (bmatrix(nbins, nbins, nbins, nbins, 1), STAT=status) 
         ALLOCATE (outlib(nbins**4, 5), STAT=status) 
 
!----------------------------- 
IF (MYID == 0) THEN 
 CALL cpu_time(start1) 
END IF 
 
!----average post-processed data within each bin-------- 
DO i = 0, nbins - 1 
 DO j = 0, nbins - 1 
  DO k = 0, nbins - 1 
   DO w = 0, nbins - 1 
   count = 0.0d0 
    DO l = 1, nrows 
 
                             
                         
IF (ppdata(l,2) >= (C2H2max/nbins)*i .AND. ppdata(l,2) < (C2H2max/nbins)*(i+1)) THEN 
   IF (ppdata(l,3) >= (A1max/nbins)*j .AND. ppdata(l,3) < (A1max/nbins)*(j+1)) THEN 
      IF (ppdata(l,4) >= (Tmax/nbins)*k .AND. ppdata(l,4) < (Tmax/nbins)*(k+1)) THEN 
 IF (ppdata(l,5) >= (O2max/nbins)*w .AND. ppdata(l,5) < (O2max/nbins)*(w+1)) THEN 
 
   count = count + 1.0d0 
   bmatrix(i+1, j+1, k+1, w+1, 1) = bmatrix(i+1, j+1, k+1, w+1, 1)& 
      &+ ppdata(l,1) 
 
    END IF 
   END IF 
  END IF 
 END IF 
 
outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 1) =((C2H2max/nbins)/2+(C2H2max/nbins)*i) 
outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 2) = ((A1max/nbins)/2+(A1max/nbins)*j) 
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outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 3) = ((Tmax/nbins)/2+(Tmax/nbins)*k) 
outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 4) = ((O2max/nbins)/2+(O2max/nbins)*w) 
 IF (count == 0) THEN 
  outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 5) = 0.0d0 
 ELSE 
          outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 5) =& 
   &bmatrix(i+1, j+1, k+1, w+1, 1)/count 
 END IF 
                         
    END DO 
   END DO 
  END DO 
 END DO 
END DO 
 
 
   DEALLOCATE (ppdata, STAT=status) 
   DEALLOCATE (bmatrix, STAT=status) 
 
!----------------------------- 
IF (MYID == 0) THEN 
 CALL cpu_time(finish1) 
END IF 
 
  !Create temporary library array 
  ALLOCATE (final_lib((nbins+1)**4, 5), STAT=status) 
        dim = (nbins+1)**4 
 
 
 !Calculate C2H2_h column of final array 
 DO i = 1, nbins+1 
      DO j = 1, nbins+1 
        DO k = 1, nbins+1 
          DO w = 1, nbins 
 
           IF (i == (nbins+1)) THEN 
             final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w+1,1) =& 
                 &outlib((nbins**3)*(i-2)+(nbins**2)*(j-2)+nbins*(k-2)+w,1) 
           ELSE 
             final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w+1,1) =& 
                 &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w,1) 
           END IF 
 
    END DO 
        END DO 
      END DO 
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    END DO 
 
 
  
 !Calculate C6H6_h(A1) column of final array 
    DO i = 1, nbins+1 
      DO j = 1, nbins+1 
        DO k = 1, nbins 
          DO w = 1, nbins+1 
 
IF (i == (nbins+1)) THEN 
      IF (j == (nbins+1)) THEN 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-2)+nbins*(k-1)+w-1,2) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-2)+nbins*(k-1)+w,2) 
           END IF 
      ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,2) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-1)+w,2) 
           END IF 
      END IF 
ELSE 
      IF (j == (nbins+1)) THEN 
         IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-1)+w-1,2) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-1)+w,2) 
           END IF 
      ELSE 
           IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,2) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w,2) 
           END IF 
      END IF 
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END IF 
 
    END DO 
        END DO 
      END DO 
    END DO 
 
 
   
 !Calculate T_h column of final array 
    DO i = 1, nbins+1 
      DO j = 1, nbins 
        DO k = 1, nbins+1 
          DO w = 1, nbins+1 
       
   IF (i == (nbins+1)) THEN 
        IF (k == (nbins+1)) THEN 
          IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-2)+w-1,3) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-2)+w,3) 
           END IF 
        ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,3) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-1)+w,3) 
           END IF 
        END IF 
    ELSE 
      IF (k == (nbins+1)) THEN 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w-1,3) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w,3) 
           END IF 
      ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,3) 
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            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w,3) 
           END IF 
        END IF 
   END IF 
 
    END DO 
        END DO 
      END DO 
    END DO 
 
 
 
 !Calculate O2_h column of final array 
    DO i = 1, nbins 
      DO j = 1, nbins+1 
        DO k = 1, nbins+1 
          DO w = 1, nbins+1 
 
IF (j == (nbins+1)) THEN 
            IF (k == (nbins+1)) THEN 
                 IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-2)+w-1,4) 
             ELSE 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-2)+w,4) 
            END IF 
           ELSE 
                 IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-1)+w-1,4) 
             ELSE 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-1)+w,4) 
            END IF 
           END IF 
      ELSE 
            IF (k == (nbins+1)) THEN 
                 IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w-1,4) 
             ELSE 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w,4) 
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            END IF 
           ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,4) 
            ELSE 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w,4) 
            END IF 
                END IF 
           END IF 
             
    END DO 
        END DO 
      END DO 
    END DO 
 
  !Create soot vectors for soot column of library 
        ALLOCATE (sootpart((nbins+1)**4), STAT=status) 
        ALLOCATE (soot((nbins+1)**4), STAT=status) 
 
        sootpart = 0.0d0 
        soot = 0.0d0 
 
!----------------------------- 
IF (MYID == 0) THEN 
 CALL cpu_time(start2) 
END IF 
 
CALL MPI_BARRIER(MPI_COMM_WORLD,IERR) 
 
!determine which CPU will handle which values of j 
IF (MYID == (NUMP-1)) THEN 
    loopmax = (nbins+1)**4 
    loopmin = (NUMP-1)*(((nbins+1)**4)/NUMP)+1 
ELSE IF (MYID == 0) THEN 
    loopmin = 1 
    loopmax = (((nbins+1)**4)/NUMP) 
ELSE 
    loopmin = MYID*(((nbins+1)**4)/NUMP)+1 
    loopmax = (MYID+1)*(((nbins+1)**4)/NUMP) 
END IF 
 
 
 !Calculate fv column of final array 
 DO i = 1, nbins**4 
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  DO j = loopmin, loopmax 
 
  IF (final_lib(j,1) == outlib(i,1) .AND. final_lib(j,2) == outlib(i,2) .AND.& 
             &final_lib(j,3) == outlib(i,3) .AND. final_lib(j,4) == outlib(i,4)) THEN 
           
     sootpart(j) = outlib(i,5) 
    END IF 
             
  END DO     
 END DO 
 
WRITE (*,*) 'RANK ',MYID,': LOOPMIN IS ',loopmin,' AND LOOPMAX IS ',loopmax 
 
 !Take the values calculated by each CPU and populate the final library 
CALLMPI_REDUCE(sootpart,soot,dim,MPI_DOUBLE_PRECISION,MPI_SUM,0,MPI_COM
M_WORLD,IERR) 
 
IF (MYID == 0) THEN 
 
!----------------------------------------- 
CALL cpu_time(finish2) 
 
    !Write final array to output file 
    OPEN (UNIT=9, FILE=outfile, STATUS='REPLACE', ACTION='WRITE', IOSTAT=status) 
    DO i = 1, (nbins+1)**4 
      final_lib(i,5) = soot(i) 
      WRITE (9,1030) final_lib(i,1), final_lib(i,2), final_lib(i,3), final_lib(i,4), final_lib(i,5) 
      1030 FORMAT (1X,1P75E15.6) 
    END DO 
 
CALL cpu_time(finish) 
 
 !writing computational cost 
    OPEN (UNIT=15, FILE='time_cost.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    WRITE (15,*) '("Time = ",f10.2," seconds.")',finish-start,finish1-start1,finish2-start2 
 
 !Close file 
 CLOSE (UNIT=9) 
 CLOSE (UNIT=15) 
 
END IF 
 
 DEALLOCATE (sootpart, STAT=status) 
     DEALLOCATE (soot, STAT=status) 
 DEALLOCATE (outlib, STAT=status) 
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 DEALLOCATE (final_lib, STAT=status) 
 
 CLOSE (UNIT=3) 
 CLOSE (UNIT=25) 
 
 
!Finalize MPI-------------------------------- 
CALL MPI_FINALIZE(IERR) 
 
! -------------------- 
END PROGRAM lib_gen 
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Appendix B – LIBRARY GENERATION CODE USING NEB 

!***************************************************************** 
! Estimator Code: Version 6, July 25th, 2017  
! A library generating code for estimating soot concentration along 
!a streamline of a flame 
! This parallel code was developed by R. Alexander, S. Bozorgzadeh, 
!A. Khosousi, and S.B. Dworkin at  
! Ryerson University. 
!***************************************************************** 
 
PROGRAM lib_gen 
 
IMPLICIT NONE 
 
 
INCLUDE 'mpif.h' 
 
! ***************************************************************** 
!This program uses post-processed, validated CFD data of a flame or 
!flames to generate a 
!library of 5 parameters (C2H2_h,C6H6_h,T_h,O2_h,fv) for the use of  
!estimating soot concentration of a flame. 
!***************************************************************** 
 
!Global variable declarations 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: ppdata  
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: bmatrix  
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: outlib    
    
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: final_lib  
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: sootpart, soot 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: C2H2e 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: A1e 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: Te 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: O2e 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: C2H2 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: A1 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: T 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: O2 
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: C2H2rank 
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: A1rank 
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: Trank 
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: O2rank 
CHARACTER(len=30) :: infile   
CHARACTER(len=30) :: outfile  
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INTEGER :: nrows = 0, loopmin, loopmax, diff1, diff2, dummy1=0, dummy2=0, dummy3=0, 
dummy4=0, ebins, val 
INTEGER :: i, j, k, w, l, nbinse, nbins, status, dim, num1, num2, num3, num4 
DOUBLE PRECISION :: soot_h, C2H2_h, A1_h, T_h, O2_h, OH_h, temp, height, count, 
dummy 
DOUBLE PRECISION :: C2H2max = 0.0d0, A1max = 0.0d0, Tmax = 0.0d0, O2max = 0.0d0 
INTEGER :: IERR, MYID, NUMP, worker 
 
!Initialize MPI-------------------------------- 
CALL MPI_INIT(IERR) 
 
!Call the rank subroutine---------------------- 
CALL MPI_COMM_RANK(MPI_COMM_WORLD,MYID,IERR) 
 
!Call the size subroutine---------------------- 
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,NUMP,IERR) 
 
 !Open input card and read input data 
 OPEN (UNIT=3, FILE='inputcardtest.dat', STATUS='OLD', ACTION='READ', 
IOSTAT=status) 
 READ (3,*) nbinse, nbins, infile, outfile 
 
 !Open the input file and check for errors on open 
 OPEN (UNIT=25, FILE=infile, STATUS='OLD', ACTION='READ', IOSTAT=status) 
 
 !OPEN was OK. Read values 
     !Determine number of rows in input file 
DO 
     READ (25,*,IOSTAT=status) temp 
         IF (status /= 0) EXIT 
         nrows = nrows + 1 
END DO 
 
     ALLOCATE (ppdata(nrows,7), STAT=status) 
 
 
      REWIND (UNIT=25) 
      
  !Read input file data and store in array 
 DO i = 1, nrows 
             READ (25,*,IOSTAT=status) soot_h, C2H2_h, A1_h, T_h, O2_h, OH_h, height 
             ppdata(i,1) = soot_h 
  ppdata(i,2) = C2H2_h 
             ppdata(i,3) = A1_h 
             ppdata(i,4) = T_h 
             ppdata(i,5) = O2_h 
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             ppdata(i,6) = OH_h 
             ppdata(i,7) = height 
             maxC2H2: IF (ppdata(i,2) > C2H2max) THEN 
              C2H2max = ppdata(i,2) 
             END IF maxC2H2 
             maxA1: IF (ppdata(i,3) > A1max) THEN 
              A1max = ppdata(i,3) 
             END IF maxA1 
             maxT: IF (ppdata(i,4) > Tmax) THEN 
              Tmax = ppdata(i,4) 
             END IF maxT 
             maxO2: IF (ppdata(i,5) > O2max) THEN 
              O2max = ppdata(i,5) 
             END IF maxO2 
         END DO 
 
 WRITE(*,*) 'Acetylene max is ', C2H2max 
            WRITE(*,*) 'Benzene max is ', A1max 
            WRITE(*,*) 'Temperature max is ', Tmax 
            WRITE(*,*) 'Oxygen max is ', O2max 
 
 !Create matrix and array based on number of bins specified 
            ALLOCATE (C2H2e(nbinse,2), STAT=status) 
            ALLOCATE (A1e(nbinse,2), STAT=status) 
            ALLOCATE (Te(nbinse,2), STAT=status) 
            ALLOCATE (O2e(nbinse,2), STAT=status) 
 
DO i = 1, nbinse 
     C2H2e(i,1) = (C2H2max/nbinse)*i 
         A1e(i,1) = (A1max/nbinse)*i 
         Te(i,1) = (Tmax/nbinse)*i 
         O2e(i,1) = (O2max/nbinse)*i 
END DO 
 
 
 DO i = 1, nbinse 
      num1 = 0 
          num2 = 0 
          num3 = 0 
          num4 = 0 
     DO j = 1, nrows 
          
 IF (ppdata(j,2) > C2H2e(1,1)*(i-1) .AND. ppdata(j,2) <= C2H2e(1,1)*i) THEN 
             num1 = num1 + 1 
            END IF 
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            IF (ppdata(j,3) > A1e(1,1)*(i-1) .AND. ppdata(j,3) <= A1e(1,1)*i) THEN 
             num2 = num2 + 1 
            END IF 
 
            IF (ppdata(j,4) > Te(1,1)*(i-1) .AND. ppdata(j,4) <= Te(1,1)*i) THEN 
             num3 = num3 + 1 
            END IF 
 
            IF (ppdata(j,5) > O2e(1,1)*(i-1) .AND. ppdata(j,5) <= O2e(1,1)*i) THEN 
             num4 = num4 + 1 
            END IF 
 
        END DO 
 
        C2H2e(i,2) = num1 
        A1e(i,2) = num2 
        Te(i,2) = num3 
        O2e(i,2) = num4 
 
    END DO 
 
    WRITE(*,*) 'nrows is ', nrows 
 
    OPEN (UNIT=19, FILE='C2H2e.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbinse 
      WRITE (19,*) C2H2e(i,1), C2H2e(i,2) 
    END DO 
 
    OPEN (UNIT=29, FILE='A1e.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbinse 
      WRITE (29,*) A1e(i,1), A1e(i,2) 
    END DO 
 
    OPEN (UNIT=39, FILE='Te.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbinse 
      WRITE (39,*) Te(i,1), Te(i,2) 
    END DO 
 
    OPEN (UNIT=49, FILE='O2e.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbinse 
      WRITE (49,*) O2e(i,1), O2e(i,2) 
    END DO 
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    ALLOCATE (C2H2rank(nbinse,2), STAT=status) 
    ALLOCATE (A1rank(nbinse,2), STAT=status) 
    ALLOCATE (Trank(nbinse,2), STAT=status) 
    ALLOCATE (O2rank(nbinse,2), STAT=status) 
 
    DO i = 1, nbinse 
      IF (C2H2e(i,2) > dummy1) THEN 
        dummy1 = C2H2e(i,2) 
      END IF 
      IF (A1e(i,2) > dummy2) THEN 
        dummy2 = A1e(i,2) 
      END IF 
      IF (Te(i,2) > dummy3) THEN 
        dummy3 = Te(i,2) 
      END IF 
      IF (O2e(i,2) > dummy4) THEN 
        dummy4 = O2e(i,2) 
      END IF 
      C2H2rank(1,1) = dummy1 
      A1rank(1,1) = dummy2 
      Trank(1,1) = dummy3 
      O2rank(1,1) = dummy4 
    END DO 
 
    DO i = 1, nbinse-1 
      dummy1 = 0 
      dummy2 = 0 
      dummy3 = 0 
      dummy4 = 0 
      DO j = 1, nbinse 
        IF (C2H2e(j,2) > dummy1 .AND. C2H2e(j,2) < C2H2rank(i,1)) THEN 
          dummy1 = C2H2e(j,2) 
        END IF 
        IF (A1e(j,2) > dummy2 .AND. A1e(j,2) < A1rank(i,1)) THEN 
          dummy2 = A1e(j,2) 
        END IF 
        IF (Te(j,2) > dummy3 .AND. Te(j,2) < Trank(i,1)) THEN 
          dummy3 = Te(j,2) 
        END IF 
        IF (O2e(j,2) > dummy4 .AND. O2e(j,2) < O2rank(i,1)) THEN 
          dummy4 = O2e(j,2) 
        END IF 
      END DO 
      C2H2rank(i+1,1) = dummy1 
      A1rank(i+1,1) = dummy2 
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      Trank(i+1,1) = dummy3 
      O2rank(i+1,1) = dummy4 
    END DO 
         
    DO i = 1, nbinse 
      jloop: DO j = 1, nbinse 
        IF (C2H2e(j,2) == C2H2rank(i,1)) THEN 
          C2H2rank(i,2) = j 
          EXIT jloop 
        END IF 
      END DO jloop 
    END DO 
 
    DO i = 1, nbinse 
      jloop: DO j = 1, nbinse 
        IF (A1e(j,2) == A1rank(i,1)) THEN 
          A1rank(i,2) = j 
          EXIT jloop 
        END IF 
      END DO jloop 
    END DO 
 
    DO i = 1, nbinse 
      jloop: DO j = 1, nbinse 
        IF (Te(j,2) == Trank(i,1)) THEN 
          Trank(i,2) = j 
          EXIT jloop 
        END IF 
      END DO jloop 
    END DO 
 
    DO i = 1, nbinse 
      jloop: DO j = 1, nbinse 
        IF (O2e(j,2) == O2rank(i,1)) THEN 
          O2rank(i,2) = j 
          EXIT jloop 
        END IF 
      END DO jloop 
    END DO 
 
     
    OPEN (UNIT=59, FILE='C2H2rank.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbinse 
      WRITE (59,*) C2H2rank(i,1), C2H2rank(i,2) 
    END DO 
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    OPEN (UNIT=69, FILE='A1rank.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbinse 
      WRITE (69,*) A1rank(i,1), A1rank(i,2) 
    END DO 
 
    OPEN (UNIT=79, FILE='Trank.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbinse 
      WRITE (79,*) Trank(i,1), Trank(i,2) 
    END DO 
 
    OPEN (UNIT=89, FILE='O2rank.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbinse 
      WRITE (89,*) O2rank(i,1), O2rank(i,2) 
    END DO 
 
    !Create matrix and array based on number of bins specified 
    ALLOCATE (C2H2(nbins,2), STAT=status) 
    ALLOCATE (A1(nbins,2), STAT=status) 
    ALLOCATE (T(nbins,2), STAT=status) 
    ALLOCATE (O2(nbins,2), STAT=status) 
 
    DO i = 1, nbinse 
      C2H2(i,1) = C2H2e(i,1) 
      A1(i,1) = A1e(i,1) 
      T(i,1) = Te(i,1) 
      O2(i,1) = O2e(i,1) 
    END DO 
 
 val = nbinse + 1 
 diff1 = nbins - nbinse 
     diff2 = diff1 
     iloop: DO i = 1, nbinse 
       ebins = ((C2H2rank(i,1)*1.0/nrows)*diff1)+1 
       IF (ebins > diff2) THEN 
          ebins = diff2 
       END IF 
       diff2 = diff2 - ebins 
       DO j = val, (val+ebins-1) 
          C2H2(j,1) = C2H2e(C2H2rank(i,2),1)-((C2H2max/nbinse)/(ebins+1))*(j-val+1) 
       END DO 
       val = val + ebins 
       IF (diff2 == 0) THEN 
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          EXIT iloop 
       END IF 
    END DO iloop 
 
    DO i = 1, nbins-1 
      DO j = 1, nbins-1 
        IF (C2H2(j,1) > C2H2(j+1,1)) THEN 
          dummy = C2H2(j,1) 
          C2H2(j,1) = C2H2(j+1,1) 
          C2H2(j+1,1) = dummy 
        END IF 
      END DO 
    END DO 
 
     val = nbinse + 1 
 diff1 = nbins - nbinse 
     diff2 = diff1 
     iloop: DO i = 1, nbinse 
       ebins = ((A1rank(i,1)*1.0/nrows)*diff1)+1 
       IF (ebins > diff2) THEN 
          ebins = diff2 
       END IF 
       diff2 = diff2 - ebins 
       DO j = val, (val+ebins-1) 
          A1(j,1) = A1e(A1rank(i,2),1)-((A1max/nbinse)/(ebins+1))*(j-val+1) 
       END DO 
       val = val + ebins 
       IF (diff2 == 0) THEN 
          EXIT iloop 
       END IF 
    END DO iloop 
 
    DO i = 1, nbins-1 
      DO j = 1, nbins-1 
        IF (A1(j,1) > A1(j+1,1)) THEN 
          dummy = A1(j,1) 
          A1(j,1) = A1(j+1,1) 
          A1(j+1,1) = dummy 
        END IF 
      END DO 
    END DO 
 
     val = nbinse + 1 
 diff1 = nbins - nbinse 
     diff2 = diff1 
     iloop: DO i = 1, nbinse 
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       ebins = ((Trank(i,1)*1.0/nrows)*diff1)+1 
       IF (ebins > diff2) THEN 
          ebins = diff2 
       END IF 
       diff2 = diff2 - ebins 
       DO j = val, (val+ebins-1) 
          T(j,1) = Te(Trank(i,2),1)-((Tmax/nbinse)/(ebins+1))*(j-val+1) 
       END DO 
       val = val + ebins 
       IF (diff2 == 0) THEN 
          EXIT iloop 
       END IF 
    END DO iloop 
 
    DO i = 1, nbins-1 
      DO j = 1, nbins-1 
        IF (T(j,1) > T(j+1,1)) THEN 
          dummy = T(j,1) 
          T(j,1) = T(j+1,1) 
          T(j+1,1) = dummy 
        END IF 
      END DO 
    END DO 
 
     val = nbinse + 1 
 diff1 = nbins - nbinse 
     diff2 = diff1 
     iloop: DO i = 1, nbinse 
       ebins = ((O2rank(i,1)*1.0/nrows)*diff1)+1 
       IF (ebins > diff2) THEN 
          ebins = diff2 
       END IF 
       diff2 = diff2 - ebins 
       DO j = val, (val+ebins-1) 
          O2(j,1) = O2e(O2rank(i,2),1)-((O2max/nbinse)/(ebins+1))*(j-val+1) 
       END DO 
       val = val + ebins 
       IF (diff2 == 0) THEN 
          EXIT iloop 
       END IF 
    END DO iloop 
 
    DO i = 1, nbins-1 
      DO j = 1, nbins-1 
        IF (O2(j,1) > O2(j+1,1)) THEN 
          dummy = O2(j,1) 
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          O2(j,1) = O2(j+1,1) 
          O2(j+1,1) = dummy 
        END IF 
      END DO 
    END DO 
 
     DO i = 1, nbins 
      num1 = 0 
          num2 = 0 
          num3 = 0 
          num4 = 0 
     DO j = 1, nrows 
          
 IF (i == 1) THEN 
             IF (ppdata(j,2) <= C2H2(i,1)) THEN 
              num1 = num1 + 1 
                 END IF 
                IF (ppdata(j,3) <= A1(i,1)) THEN 
              num2 = num2 + 1 
                 END IF 
                 IF (ppdata(j,4) <= T(i,1)) THEN 
              num3 = num3 + 1 
                 END IF 
                 IF (ppdata(j,5) <= O2(i,1)) THEN 
              num4 = num4 + 1 
                 END IF 
            ELSE 
  IF (ppdata(j,2) > C2H2(i-1,1) .AND. ppdata(j,2) <= C2H2(i,1)) THEN 
              num1 = num1 + 1 
                 END IF 
             IF (ppdata(j,3) > A1(i-1,1) .AND. ppdata(j,3) <= A1(i,1)) THEN 
              num2 = num2 + 1 
             END IF 
             IF (ppdata(j,4) > T(i-1,1) .AND. ppdata(j,4) <= T(i,1)) THEN 
              num3 = num3 + 1 
             END IF 
             IF (ppdata(j,5) > O2(i-1,1) .AND. ppdata(j,5) <= O2(i,1)) THEN 
              num4 = num4 + 1 
             END IF 
            END IF 
 
        END DO 
 
        C2H2(i,2) = num1 
        A1(i,2) = num2 
        T(i,2) = num3 
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        O2(i,2) = num4 
 
    END DO 
 
    OPEN (UNIT=99, FILE='C2H2.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbins 
      WRITE (99,*) C2H2(i,1), C2H2(i,2) 
    END DO 
 
    OPEN (UNIT=98, FILE='A1.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbins 
      WRITE (98,*) A1(i,1), A1(i,2) 
    END DO 
 
    OPEN (UNIT=97, FILE='T.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbins 
      WRITE (97,*) T(i,1), T(i,2) 
    END DO 
 
    OPEN (UNIT=96, FILE='O2.dat', STATUS='REPLACE', ACTION='WRITE', 
IOSTAT=status) 
    DO i = 1, nbins 
      WRITE (96,*) O2(i,1), O2(i,2) 
    END DO 
 
 
 !Create matrix and array based on number of bins specified 
 ALLOCATE (bmatrix(nbins, nbins, nbins, nbins, 1), STAT=status) 
    ALLOCATE (outlib(nbins**4, 5), STAT=status) 
 
 !----average post-processed data within each bin-------- 
   DO i = 0, nbins-1 
    DO j = 0, nbins-1 
     DO k = 0, nbins-1 
      DO w = 0, nbins-1 
      count = 0D0 
       DO l = 1, nrows 
 
IF (ppdata(l,2) > C2H2(i,1) .AND. ppdata(l,2) <= C2H2(i+1,1)) THEN 
 IF (ppdata(l,3) > A1(j,1) .AND. ppdata(l,3) <= A1(j+1,1)) THEN 
  IF (ppdata(l,4) > T(k,1) .AND. ppdata(l,4) <= T(k+1,1)) THEN 
   IF (ppdata(l,5) > O2(w,1) .AND. ppdata(l,5) <= O2(w+1,1)) THEN 
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    count = count + 1 
    bmatrix(i+1, j+1, k+1, w+1, 1) = bmatrix(i+1, j+1, k+1, w+1, 1)& 
     &+ ppdata(l,1) 
 
      END IF 
     END IF 
    END IF 
   END IF 
 
 outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 1) = ((C2H2(i,1)+C2H2(i+1,1))/2) 
 outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 2) = ((A1(j,1)+A1(j+1,1))/2) 
 outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 3) = ((T(k,1)+T(k+1,1))/2) 
 outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 4) = ((O2(w,1)+O2(w+1,1))/2) 
   IF (count == 0) THEN 
    outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 5) = 0D0 
   ELSE 
                  outlib(i+1+nbins*j+(nbins**2)*k+(nbins**3)*w, 5) =& 
     &bmatrix(i+1, j+1, k+1, w+1, 1)/count 
   END IF 
                         
      END DO 
     END DO 
    END DO 
   END DO 
  END DO 
 
 
   DEALLOCATE (ppdata, STAT=status) 
   DEALLOCATE (bmatrix, STAT=status) 
 
 !Create temporary library array 
 ALLOCATE (final_lib((nbins+1)**4, 5), STAT=status) 
         dim = (nbins+1)**4 
 
 
 !Calculate C2H2_h column of final array 
 DO i = 1, nbins+1 
       DO j = 1, nbins+1 
         DO k = 1, nbins+1 
           DO w = 1, nbins 
 
        IF (i == (nbins+1)) THEN 
            final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w+1,1) =& 
                &outlib((nbins**3)*(i-2)+(nbins**2)*(j-2)+nbins*(k-2)+w,1) 
        ELSE IF (j == (nbins+1)) THEN 
           final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w+1,1) =& 
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             &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-2)+w,1) 
        ELSE IF (k == (nbins+1)) THEN 
           final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w+1,1) =& 
             &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w,1) 
        ELSE 
            final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w+1,1) =& 
                &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w,1) 
        END IF 
 
    END DO 
        END DO 
      END DO 
    END DO 
 
 
  
 !Calculate C6H6_h(A1) column of final array 
    DO i = 1, nbins+1 
      DO j = 1, nbins+1 
        DO k = 1, nbins 
          DO w = 1, nbins+1 
 
  IF (i == (nbins+1)) THEN 
       IF (j == (nbins+1)) THEN 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-2)+nbins*(k-1)+w-1,2) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-2)+nbins*(k-1)+w,2) 
           END IF 
       ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,2) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-1)+w,2) 
           END IF 
        END IF 
 ELSE 
        IF (j == (nbins+1)) THEN 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-1)+w-1,2) 
            ELSE 
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               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-1)+w,2) 
           END IF 
       ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,2) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j-1)+(nbins+1)*(k)+w,2) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w,2) 
           END IF 
       END IF 
  END IF 
 
    END DO 
        END DO 
      END DO 
    END DO 
 
 !Calculate T_h column of final array 
    DO i = 1, nbins+1 
      DO j = 1, nbins 
        DO k = 1, nbins+1 
          DO w = 1, nbins+1 
       
  IF (i == (nbins+1)) THEN 
       IF (k == (nbins+1)) THEN 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-2)+w-1,3) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-2)+w,3) 
           END IF 
      ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,3) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-2)+(nbins**2)*(j-1)+nbins*(k-1)+w,3) 
           END IF 
       END IF 
  ELSE 
       IF (k == (nbins+1)) THEN 
            IF (w == (nbins+1)) THEN 
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               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w-1,3) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w,3) 
           END IF 
      ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,3) 
            ELSE 
               final_lib(((nbins+1)**3)*(i-1)+((nbins+1)**2)*(j)+(nbins+1)*(k-1)+w,3) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w,3) 
           END IF 
       END IF 
  END IF 
    END DO 
        END DO 
      END DO 
    END DO 
 
 !Calculate O2_h column of final array 
    DO i = 1, nbins 
      DO j = 1, nbins+1 
        DO k = 1, nbins+1 
          DO w = 1, nbins+1 
 
IF (j == (nbins+1)) THEN 
      IF (k == (nbins+1)) THEN 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-2)+w-1,4) 
            ELSE 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-2)+w,4) 
           END IF 
      ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-1)+w-1,4) 
            ELSE 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-2)+nbins*(k-1)+w,4) 
           END IF 
     END IF 
 ELSE 
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      IF (k == (nbins+1)) THEN 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w-1,4) 
            ELSE 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-2)+w,4) 
           END IF 
      ELSE 
            IF (w == (nbins+1)) THEN 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w-1,4) 
            ELSE 
               final_lib(((nbins+1)**3)*(i)+((nbins+1)**2)*(j-1)+(nbins+1)*(k-1)+w,4) =& 
                         &outlib((nbins**3)*(i-1)+(nbins**2)*(j-1)+nbins*(k-1)+w,4) 
           END IF 
      END IF 
END IF 
             
    END DO 
        END DO 
      END DO 
    END DO 
 
  !Create soot vectors for soot column of library 
        ALLOCATE (sootpart((nbins+1)**4), STAT=status) 
        ALLOCATE (soot((nbins+1)**4), STAT=status) 
 
        sootpart = 0.0d0 
        soot = 0.0d0 
 
CALL MPI_BARRIER(MPI_COMM_WORLD,IERR) 
 
!determine which CPU will handle which values of j 
IF (MYID == (NUMP-1)) THEN 
    loopmax = (nbins+1)**4 
    loopmin = (NUMP-1)*(((nbins+1)**4)/NUMP)+1 
ELSE IF (MYID == 0) THEN 
    loopmin = 1 
    loopmax = (((nbins+1)**4)/NUMP) 
ELSE 
    loopmin = MYID*(((nbins+1)**4)/NUMP)+1 
    loopmax = (MYID+1)*(((nbins+1)**4)/NUMP) 
END IF 
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 !Calculate fv column of final array 
 DO i = 1, nbins**4 
  DO j = loopmin, loopmax 
 
   IF (final_lib(j,1) == outlib(i,1) .AND. final_lib(j,2) == outlib(i,2) .AND.& 
             &final_lib(j,3) == outlib(i,3) .AND. final_lib(j,4) == outlib(i,4)) THEN 
           
     sootpart(j) = outlib(i,5) 
    END IF 
             
  END DO     
 END DO 
 
WRITE (*,*) 'RANK ',MYID,': LOOPMIN IS ',loopmin,' AND LOOPMAX IS ',loopmax 
 
 !Take the values calculated by each CPU and populate the final library 
CALLMPI_REDUCE(sootpart,soot,dim,MPI_DOUBLE_PRECISION,MPI_SUM,0,MPI_COM
M_WORLD,IERR) 
 
IF (MYID == 0) THEN 
 
    !Write final array to output file 
    OPEN (UNIT=9, FILE=outfile, STATUS='REPLACE', ACTION='WRITE', IOSTAT=status) 
    DO i = 1, (nbins+1)**4 
      final_lib(i,5) = soot(i) 
      WRITE (9,1030) final_lib(i,1), final_lib(i,2), final_lib(i,3), final_lib(i,4), final_lib(i,5) 
      1030 FORMAT (1X,1P75E15.6) 
    END DO 
 
 !Close file 
 CLOSE (UNIT=9) 
END IF 
 
 DEALLOCATE (sootpart, STAT=status) 
     DEALLOCATE (soot, STAT=status) 
 DEALLOCATE (outlib, STAT=status) 
 DEALLOCATE (final_lib, STAT=status) 
 
 CLOSE (UNIT=3) 
 CLOSE (UNIT=25) 
 
!Finalize MPI-------------------------------- 
CALL MPI_FINALIZE(IERR) 
 
! -------------------- 
END PROGRAM lib_gen 
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Appendix C – MINIMUM DISTANCE DATA LOOK-UP CODE 

!***************************************************************** 
! Estimator Code: Version 1, December 15th, 2015   
! A minimum spatial interpolation code for estimating soot  
!concentration along the pathline of a flame 
! This parallel code was developed by R. Alexander, S. Bozorgzadeh,  
!A. Khosousi, and S.B. Dworkin at  
! Ryerson University. 
!***************************************************************** 
 
PROGRAM mins_interp 
 
IMPLICIT NONE 
 
! *************************************************************** 
!This program uses post-processed CFD data along a streamline of  
!a flame and interpolates through a 5-dimensional library to  
!estimate soot concentration along that streamline. 
!*************************************************************** 
 
!Global variable declarations 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: lib_data 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: flame_data  
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: temp 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: matrix 
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: output  
CHARACTER(len=20) :: libfile = 'lib11_5D.dat'  
CHARACTER(len=25) :: flamefile = 'smyth48wo_msl_5D.dat'  
CHARACTER(len=20) :: outfile = 'interp_data.dat'  
INTEGER :: i, j, status          
   
INTEGER :: nrows1 = 0, nrows2 = 0, jj = 0 
DOUBLE PRECISION :: C2H2_lib, A1_lib, T_lib, O2_lib, soot_lib 
DOUBLE PRECISION :: soot_flame, C2H2_flame, A1_flame, T_flame, O2_flame, OH_flame, 
height 
DOUBLE PRECISION :: x1, x2, x3, x4, dummy, minval, soot_max = 0.0, output_max = 0.0 
 
!Open library, read and store data into matrix 
OPEN (UNIT=3, FILE=libfile, STATUS='OLD', ACTION='READ', IOSTAT=status) 
fileopen_lib: IF (status == 0) THEN 
 
 !OPEN was OK. Read values 
     !read through the library to determine number of rows 
 DO 
     READ (3,*,IOSTAT=status) dummy 
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        IF (status /= 0) EXIT 
        nrows1 = nrows1 + 1 
    END DO 
 
    ALLOCATE (lib_data(nrows1,5), STAT=status) 
 
    !Read library values and store in matrix 
    allocate_lib: IF (status == 0) THEN 
     REWIND (UNIT=3) 
  DO i = 1, nrows1 
            READ (3,*,IOSTAT=status) C2H2_lib, A1_lib, T_lib, O2_lib, soot_lib 
            lib_data(i,1) = C2H2_lib 
            lib_data(i,2) = A1_lib 
   lib_data(i,3) = T_lib 
            lib_data(i,4) = O2_lib 
            lib_data(i,5) = soot_lib 
        END DO 
    ELSE allocate_lib 
       WRITE(*,*) 'Error with library allocation' 
    END IF allocate_lib 
 
ELSE fileopen_lib 
   WRITE (*,1010) status 
    1010 FORMAT (' ','Error opening library: IOSTAT = ', I6) 
END IF fileopen_lib 
 
!Open flame data, read and store data into matrix 
OPEN (UNIT=9, FILE=flamefile, STATUS='OLD', ACTION='READ', IOSTAT=status) 
fileopen_flame: IF (status == 0) THEN 
 
 !OPEN was OK. Read values 
    !read through the flame file to determine number of rows 
 DO 
     READ (9,*,IOSTAT=status) dummy 
        IF (status /= 0) EXIT 
        nrows2 = nrows2 + 1 
    END DO 
 
    ALLOCATE (flame_data(nrows2,5), STAT=status) 
 
    !Read flame file values and store in matrix 
    allocate_flame: IF (status == 0) THEN 
     REWIND (UNIT=9) 
  DO i = 1, nrows2 
            READ (9,*,IOSTAT=status) soot_flame, C2H2_flame, A1_flame, T_flame, O2_flame, 
OH_flame, height 
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            flame_data(i,1) = C2H2_flame 
            flame_data(i,2) = A1_flame 
   flame_data(i,3) = T_flame 
            flame_data(i,4) = O2_flame 
            IF (soot_max < soot_flame) THEN 
              soot_max = soot_flame 
            END IF 
        END DO 
    ELSE allocate_flame 
       WRITE(*,*) 'Error with flame data allocation' 
    END IF allocate_flame 
 
ELSE fileopen_flame 
   WRITE (*,1020) status 
    1020 FORMAT (' ','Error opening flame file: IOSTAT = ', I6) 
END IF fileopen_flame 
 
ALLOCATE (temp(nrows1,5), STAT=status) 
 
!create temporary matrix with library data corresponding  
!to non-zero soot concentration values 
allocate_temp: IF (status == 0) THEN 
 DO i = 1, nrows1 
     IF (lib_data(i,5) /= 0) THEN 
        jj = jj + 1 
        temp(jj,5) = lib_data(i,5) 
        temp(jj,4) = lib_data(i,4) 
        temp(jj,3) = lib_data(i,3) 
        temp(jj,2) = lib_data(i,2) 
        temp(jj,1) = lib_data(i,1) 
      END IF 
 END DO 
ELSE allocate_temp 
    WRITE(*,*) 'Error with temporary matrix allocation' 
END IF allocate_temp 
 
DEALLOCATE (lib_data, STAT=status) 
 
ALLOCATE (matrix(jj), STAT=status) 
ALLOCATE (output(nrows2,5), STAT=status) 
 
!Interpolate the data 
DO i = 1, nrows2 
  minval = 1E6 
  DO j = 1, jj 
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    x1 = (ABS(temp(j,1) - flame_data(i,1)))**2 
    x2 = (ABS(temp(j,2) - flame_data(i,2)))**2 
    x3 = (ABS(temp(j,3) - flame_data(i,3)))**2 
    x4 = (ABS(temp(j,4) - flame_data(i,4)))**2 
    matrix(j) = x1 + x2 + x3 + x4 
    IF (matrix(j) < minval) THEN 
      minval = matrix(j) 
    END IF 
 
  END DO 
 
  DO j = 1, jj 
 
    IF (minval == matrix(j)) THEN 
      output(i,5) = temp(j,5) 
      output(i,4) = temp(j,4) 
      output(i,3) = temp(j,3) 
      output(i,2) = temp(j,2) 
      output(i,1) = temp(j,1) 
    END IF 
 
    !Determine peak soot concentration 
 IF (output_max < output(i,5)) THEN 
     output_max = output(i,5) 
    END IF 
     
  END DO 
END DO 
 
DEALLOCATE (flame_data, STAT=status) 
DEALLOCATE (temp, STAT=status) 
DEALLOCATE (matrix, STAT=status) 
 
!Open output file 
OPEN (UNIT=25, FILE=outfile, STATUS='REPLACE', ACTION='WRITE', IOSTAT=status) 
fileopen_out: IF (status == 0) THEN 
 
!Open was OK. Write soot concentration values along streamline 
 DO i = 1, nrows2 
     WRITE(25,1030) output(i,5) 
      1030 FORMAT (F14.10) 
    END DO 
 
ELSE fileopen_out 
   WRITE (*,1040) status 
    1040 FORMAT (' ','Error opening output file: IOSTAT = ', I6) 
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END IF fileopen_out 
 
DEALLOCATE (output, STAT=status) 
 
CLOSE (UNIT=3) 
CLOSE (UNIT=9) 
CLOSE (UNIT=25) 
 
print '("Percent difference = ",f10.2,"%.")', ABS(soot_max-output_max)/soot_max*100 
 
! -------------------- 
END PROGRAM mins_interp 
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