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ABSTRACT 

In order to choose from a list of functionally similar services, users often need to make their 

decisions based on multiple QoS criteria they require on the target service. In this process, 

different users may follow different decision making strategies, some are compensatory and 

some are non-compensatory. Most of the current QoS-based service selection systems do not 

consider these decision strategies in the ranking process, which we believe are crucial for 

generating accurate ranking results for individual users. In this thesis, we propose a decision 

strategy based service ranking model. Furthermore, considering that different users follow 

different strategies in different contexts at different times, we apply a learning to rank algorithm 

to learn a personalized ranking model for individual users based on how they select services in 

the past. Our experiment result shows the effectiveness of the proposed approach. 

 

 



iv 

 

 

ACKNOWLEDGEMENTS 
        

         I would like to express my sincere gratitude to my supervisor Dr. Cherie Ding for her 

valuable support and guidance in helping me to go through all the difficulties in my work. Her 

precious suggestions and guidance have greatly enhanced my knowledge and skills in research 

and have significantly contributed to the completion of this thesis.  

In addition, I would like to thank Dr. Alex Ferworn, Dr. Alireza Sadeghian and Dr. Ali 

Miri who have reviewed my thesis and have given me valuable comments which enabled me to 

improve my thesis.  

        Also, I would like to acknowledge the support of the Computer Science Department of 

Ryerson University and my fellow students.   

       Finally, I would like to express my deep appreciations to my family, relatives, and friends 

who have motivated and supported me during these years of study.   

 

  



v 

 

 

TABLE OF CONTENTS 

AUTHOR’S DECLARATION…………………………………………………………………. ii  

ABSTRACT …………………………………………………………...…...…...…...…............  iii 

ACKNOWLEDGEMENTS …………………………………………………………................. iv 

CHAPTER 1 …………………………………………………………...…...…....…...………… 1 

INTRODUCTION …………………………………………………………...…....…................ 1 

1.1. Background and the Problem Statement…………………….……….…….………. 1 

 1.1.1. Background …...…...…...…...…...…...…...…...…...…...…....….............. 1 

 1.1.2. Problem Statement …...…...…...…...…...…...…...…...…......…............... 3 

1.2. Contributions…………………….……………...…...…...…...…...….…..……….. 6 

1.3. Thesis Outline…………………….……………...…...…...…...….............………. 6 

CHAPTER 2 …………………………………………………………...…...……..…...……… 8 

RELATED WORKS ………………………………………………………..…...…....………. 8 

2.1. Introduction …...…...…...…...…...…...…...…...…...…...……..…...…....……….. 8 

2.2. QoS-Based Web Service Selection …...…...…....…...…...……..…...…...………. 9 

2.3. Personalized Service Ranking …...…...…...…...…....…...……..…...…...…......... 11 

2.4. Learning to Rank …...…...…...…...…...…...…...…....…...……..…...…...……… 13 

2.5. User Decision Strategies …...…...…...…...…...…........…...…...…...…...…......... 15 

CHAPTER 3 ……………………………………………………….……...…...…...…...…… 19 

PERSONALIZED SERVICE RANKING BASED ON DECISION STRATEGIES …...….. 19 

 3.1. Weighting Scheme …...…...…...…...…...…...…...…...…...…...…...……............ 20 

 3.2. Constraints on QoS Properties …...…...…...…...…...…...…...…...………........... 21 

 3.3. Quality of Service (Non-Functional) Properties of Web Services ………............ 21 

 3.4. Service Selection Based on Decision Strategies …...…….....…...…...…............. 22 

 3.5. Detailed Explaination of Service Selection System (Case Study) ……...….…… 27 

  3.5.1. General Settings …...…...…...…...…...…...…...…...……...….............  27 



vi 

 

 

  3.5.2. Calculating the Default Weight of QoS Properties …….....…..........  28 

  3.5.3. Selecting and Ranking the Web Service Using Decision Strategies . 29 

   3.5.3.1. Using WADD Strategy …...…...…...…...…...…...…......... 29 

   3.5.3.2. Using MCD Strategy …...…….....…...…...…...…...…....... 31 

   3.5.3.3. Using Weighted MCD Strategy …...…...…...………...….. 34 

   3.5.3.4. Using Lexicographic Strategy …...…...…...…...…............ 35 

 3.6. Typical User Patterns of Following Multiple Strategies …...…...…................ 36 

 3.7. System Architecture …...…...…...…...…...…...…...…...…...…...…............... 37 

 3.8. AdaRank to Learn the Personalized Ranking Algorithm …...…...….............. 39 

 3.9. Summary …………………………………………………………………….. 42 

CHAPTER 4 …...…...…...…...…...…...…...…...…...…...…….....…...…...…...…...….... 44 

EXPERIMENTS …...…...………..…...…...…...…...…...…...…...…...…...…...…...…... 44 

4.1.Experiment Design …...…...……….…...…...…...…...…...…...…...…...….... 44 

4.2. Our Simulated Dataset …...…...…...…...………...…...…...…...…....…...….. 45 

4.3. Results Compared with Single Strategy Based Ranking Algorithm ………... 49 

4.4. Results Compared with Linear Combination Model …...…...…...………….. 53 

4.5. Impact of K Values …...…...…...………..…...…...…...…...…...…...…....…. 54 

CHAPTER 5 …...…...…...…...…...…...…...…...…...…...…...…...…...…...…...….......... 56 

CONCLUSIONS ANF FUTURE WORKS ..…...…...….....…...…...….....…...…...…..... 56 

 5.1. Conclusions ..…...…............….....…...…...….....…...…...….....…...…......…. 56 

 5.2. Future Works ..…...…...….....…...…...….....…...…...…....…...…...…............ 57 

APPENDIX A - Comparison of our algorithm with other algorithms ..………….…...….. 58 

APPENDIX B - Training Data ………………………………………..………….…...….. 64 

REFERENCES …………………………………………………………………………… 65 

 

 

 



vii 

 

 

LIST OF TABLES 

Table 3.1: Fundamental scale of numbers indicating the importance level of QoS properties ... 20 

Table 3.2: List of functionally matching services ………………….…………………………... 28 

Table 3.3: User preferences on QoS properties ………………….…………………………….. 29 

Table 3.4: Normalized user defined weights ………………….………………….……………. 29 

Table 3.5: Calculation of web services score using WADD Strategy …………………………. 30 

Table 3.6: Final Ranking order based on WADD strategy ………………….……..……...…… 30 

Table 3.7: Step1 – Comparison of web services in MCD strategy ………………….……….… 31 

Table 3.8: Step2 – Comparison of web services in MCD strategy …………………………….. 31 

Table 3.9: Step3 – Comparison of web services in MCD strategy …………………………….. 31 

Table 3.10: Step4 – Comparison of web services in MCD strategy ………………………….... 32 

Table 3.11: Remaining list of web service in MCD strategy …………………………….…..… 32 

Table 3.12: Step5 – Comparison of web services in MCD strategy …………………………… 32 

Table 3.13: Step6 – Comparison of web services in MCD strategy ………………………...…. 33 

Table 3.14: Step7 – Comparison of web services in MCD strategy ………………………….... 33 

Table 3.15: Remaining list of web service in MCD strategy …………………..………………. 33 

Table 3.16: Step8 – Comparison of web services in MCD strategy …………………………… 33 

Table 3.17: Step9 – Comparison of web services in MCD strategy …………….…………..…. 33 

Table 3.18: Remaining list of web service in MCD strategy ……………………….………….. 34 

Table 3.19: Step10 – Comparison of web services in MCD strategy ………….………………. 34 

Table 3.20: Final Ranking order based on MCD strategy …………………………………....... 34 

Table 3.21: Ranking order with original values after the implementation of LEX strategy …... 35 

Table 3.22: Final Ranking order based on LEX strategy ………………….…………………… 36 



viii 

 

 

Table 4.1- Generated QoS Queries  ……………………………………….…………..………. 46 

Table 4.2- User Decision Strategies and Ranking Rules …………………...………………….. 47 

Table 4.3- User Pattern of Following Multiple Strategies ……………………………………... 48 

Table B.1- Training data of Figure 4.1 ……………………………………….……………..…. 64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

LIST OF FIGURES 

Figure 1.1-  Basic web services architecture …………………………………………...……… 2 

Figure 3.1-  Architecture of our personalized service selection system ………………...……... 38 

Figure3.2-  Pseudo-code of our learning to rank algorithm …………………………...……….. 42 

Figure 4.1- Comparison of our algorithm with individual algorithms on MRR values for all user  

       patterns ………………………………………………………………..………….... 50 

Figure 4.2-  Comparison of our algorithm with WADD algorithm …………………….…….... 50 

Figure 4.3-  Comparison of our algorithm with best individual algorithm for 25 DOM users ... 51 

Figure 4.4- Comparison of our algorithm with best individual algorithm for 25 Uni2 users ..… 52 

Figure 4.5-  Comparison of our algorithm with best individual algorithm for 25 All1 users ..… 53 

Figure 4.6- Comparison of our algorithm with linear combination algorithm ……………..….. 54 

Figure 4.7- Comparison of our algorithm with different K values ………………………..…… 55 

Figure A.1 Comparison of our algorithm with WADDQ algorithm …………………………... 58 

Figure A.2 Comparison of our algorithm with WADDL algorithm …………………………… 58 

Figure A.3 Comparison of our algorithm with LEX algorithm ……………………………....... 59 

Figure A.4 Comparison of our algorithm with LEXL algorithm ………………………………. 59 

Figure A.5 Comparison of our algorithm with LEXQ algorithm ……………………………… 60 

Figure A.6 Comparison of our algorithm with MCD algorithm ……………………………….. 60 

Figure A.7 Comparison of our algorithm with MCDL algorithm …………………………...… 61 

Figure A.8 Comparison of our algorithm with MCDQ algorithm ………….………………….. 61 

Figure A.9 Comparison of our algorithm with WMCD algorithm …………………………….. 62 

Figure A.10 Comparison of our algorithm with WMCDL algorithm …………………………. 62 



x 

 

 

Figure A.11 Comparison of our algorithm with WMCDQ algorithm …………………………. 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

LIST OF ACRONYMS 

AHP: Analytic Hierarchy Process 

CP: Constraint Programming 

EBA: Elimination by Aspects 

EQW: Equal Weight 

JND: Just Noticeable Difference 

LEX: Lexicographic 

MAP: Mean Average Precision 

MCD: Majority of Confirming Dimensions 

MCDM: Multi-Criteria Decision Making  

MIP: Mixed Integer Programming 

MRR: Mean Reciprocal Rank 

NDCG: Normalized Discounted Cumulated Gain 

QoS: Quality of Service 

RR: Reciprocal Rank 

SOA: Service Oriented Architecture 

SOAP: Simple Object Access Protocol 

UDDI: Universal Description, Discovery and Integration 

WADD: Weighted Additive 

WMCD: Weighted Majority of Confirming Dimensions 

WSDL: Web Service Description Language 

XML: Extensible Markup Language 



1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Background and the Problem Statement 

1.1.1 Background 

Since the explosion of World Wide Web in the 1990s, the Internet has become an 

increasingly significant information source for users. Users can use Internet for finding any type 

of information over the web and can browse and exchange information. In the past, we were 

using web of data for finding the information over the web but with the passage of time we are 

moving from web of data to web of services because web services are enhancing the capabilities 

of web of pages. Now the web is giving more and more access to web of services. They are the 

software entities that are reachable over the Internet and are designed to accomplish the specific 

tasks. They can be used in multiple ways and can be flexibly incorporated both in traditional 

software systems and in web pages.  

Web services are self-contained, loosely coupled, discoverable, autonomous and dynamic 

entities that are available in the network. They are used to support the development of fast 

growing, reusable, low cost and interoperable software and applications[33][34]. Web services 

construction is established according to common standards that ensures the successful interaction 

between service providers, service requestors and service brokers. 

They provide a machine to machine communication over a network by using a series of 

standardized technologies, including WSDL (Web Services Description Language), SOAP 

(Simple Object Access Protocol) and UDDI (Universal Description, Discovery and Integration) 



2 

 

[35], where UDDI is designed to be interrogated by SOAP messages, as well as to provide an 

access to WSDL documents which describe the protocol bindings and description of web 

services [36]. Here SOAP is a XML based communication protocol which acts as a vehicle for 

carrying the information between computers or applications.  

Web services involve the process of publishing, locating and accessing across the web. 

The main objects involved in this process are Service Providers, Service Directory and Service 

Consumers. These objects do not work independently, as they are interrelated with each other.  

Here service provider is the provider of the web service. It implements the service and publishes 

it to the service directory. The service consumer is the one who requests the required web service 

through a XML request. Service directory is the centralized directory of web services. It provides 

a central place where service providers can publish their services and service consumers can find 

their services. Figure 1.1 shows the basic web services architecture. 

 

Figure 1.1 – Basic web services architecture [37]. 

Because of the large number of web services, it is very difficult to discover and select the 

required services. Therefore discovery and selection of web services is an important challenge 

for the web service community. In the first phase which is the discovery phase, the user searches 
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for a particular web service from the service directory or service registries and this search is 

based on the user’s functional requirement. Functional requirements of web services determine 

the overall behavior of web services and determine if a service is relevant according to user’s 

query. The discovery in this phase is to do the matchmaking between the functional requirements 

and the WSDL descriptions of web services. After the functional matchmaking, there is a high 

probability that the user gets an extensive list of web services which fulfill the functional 

requirements of user’s query. 

To filter through this list of functionally similar services, users must be further assisted in 

selecting the appropriate web service from the list, which is the second phase, the selection 

phase. -In this phase, the user will filter the list based on his non-functional requirements. In this 

work, for non-functional requirements, we mainly concentrate on the Quality of Service (QoS) 

attributes. QoS can be used for discriminating between functionally equivalent web services. For 

example, there is a user who is looking for a web service whose availability is greater than 90% 

and throughput is more than 34.2 invokes per second and documentation percentage is bigger 

than 85%. There may be many services satisfying user’s functional requirements, but only a few 

satisfying all these non-functional requirements. Then it will be easier for the user to decide 

which service to choose. 

1.1.2 Problem Statement 

Automatic service selection, especially QoS-based service selection, has been an active 

research area in recent years. Various models such as Multi-Criteria Decision Making (MCDM) 

[1], Constraint Programming (CP) and Mixed Integer Programming (MIP) [2], Skyline [3], have 

been used to process users’ requirements (i.e., constraints and preferences) on multiple QoS 

criteria, in order to find services that could optimize those criteria. Normally the optimization is 



4 

 

considered to be achieved if a service has the best overall QoS value among all alternative 

services. For instance, a commonly used metric is the weighted sum of multiple QoS values of a 

service. 

In reality, this default optimization strategy may not always work. According to the 

decision making theory [4], there are many different strategies people may follow when they 

decide what to choose among a list of alternatives based on multiple criteria. Definitely, different 

strategies would result in different selection results. Consider an example of selecting a web 

service, in which users make their decisions based on three QoS properties – price, reliability, 

and rating. Suppose QoS values of Service 1 (S1) on these three properties are ($50, 95%, 3.5 

stars), QoS values of Service 2 (S2) are ($85, 99%, 5 stars), and QoS values of Service 3 (S3) are 

($50, 75%, 4 stars). And suppose there are three users A, B, and C, all of them have the same 

selection criteria: (price < $85, reliability > 85%, rating > 3), and all the criteria are negotiable. 

When deciding which service to select, User A follows a strategy in which he checks the most 

important criterion to him first, which is price, after finding out which services (S1, S3) are 

optimal on this criterion, he moves on to check the next important criterion, which is rating, and 

then he selects S3. User B follows a different strategy in which he checks which service wins on 

the most number of criteria (S1 wins on one QoS criteria – price, S2 wins on two – reliability and 

rating, S3 wins on one – price), and since S2 is a clear winner and S2 is selected. User C follows 

yet another strategy in which he checks the sum of all three QoS values, since S1 and S3 gain a 

lot on price compared to S2, and S1 leads S3 on reliability more than S3 leads S1 on rating, the 

overall value of S1 is the best, and thus he selects S1. From this example, we could see that even 

with the same QoS requirements, when users follow different decision strategies, different 

services are selected. 
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Furthermore, one user may follow different strategies in different contexts or for different 

tasks. For instance, when users select free services for leisure purposes, usually compensatory 

strategy [5] such as weighted sum on multiple values would work because they do not mind the 

trade-off on some criteria if necessary. However, when the same users select services for their 

work, non-compensatory strategy [5] such as the one User A follows in our previous example 

would be a better option because selection is more serious in this context, some criteria simply 

cannot be compromised, and preference could play a bigger role. 

From these analyses, we could see the clear gap between the way current selection 

system works and the real scenario when people may follow a variety of decision strategies 

during the selection process. Our objective in this work is to fill this gap and make the automatic 

selection system closer to the way users actually follow when selecting services manually. Our 

system would help users select web services based on not only their QoS requirements but also 

their preferred decision strategies. 

Sometimes it could be hard for users to clearly and unambiguously define strategies they 

follow as decision making is often a subconscious and subtle process. Also the strategy may 

change over the time or in different context or depending on purposes of services. To take all 

these into consideration, we apply the learning to rank technique [6] on the historical data to 

identify decision strategies users followed in the past. The goal is to personalize the service 

selection algorithm for individual users. We assume that the history data on users’ service 

selection patterns are available through server logs saved in the repository or through other 

means, so that a personalized ranking model can be learned. Also to simplify our problem, we 

only consider the single service selection, not in the context of service composition. 
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1.2 Contributions 

There are two major contributions of the work: 1) considering that user’s decision 

strategy plays an important role in the service selection process and ignoring it will affect the 

selection accuracy, we have implemented different user decision strategies with the combination  

of different rules in QoS-based service selection approach in which both QoS criteria and 

decision strategies are taken into account; 2) since users may follow multiple decision strategies 

depending on the context and in an implicit way, we propose to apply the learning to rank 

technique to find the best matching strategies and the best ranking model combining them. The 

proposed approach is flexible and extensible so that we can plug-in different QoS-based 

selection models, decision strategies, as well as learning to rank algorithms. 

1.3 Thesis Outline 

 The rest of the thesis is organized as follows:  

Chapter 2 reviews and analyzes the existing research work in the field of web service 

selection. Then, the research efforts that are more closely related to our work such as QoS based 

web service selection, personalized service ranking, learning to rank and user decision strategies 

are reviewed. 

Chapter 3 gives the details of our proposed approach, including the service selection and 

ranking algorithms based on different decision strategies. We are considering both the QoS 

criteria and decision strategy for the service selection. We have implemented four decision 

strategies and 3 rules for the service selection. Chapter 3 also explains the architecture model of 

our selection system, and the learning process to obtain the personalized service ranking model. 

We apply the learning to rank algorithm for finding the best matching decision strategies and the 

best ranking model for the service selection. 
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Chapter 4 explains our experiment design, shows the simulation process to generate the 

dataset, and analyzes and discusses the results.   

Finally, in Chapter 5, we conclude our thesis with a summary of results and analysis.  Our 

future research directions are also discussed in this chapter.   
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CHAPTER 2 

RELATED WORKS 

2.1. Introduction 

In the last decade web is changing from a web of pages to a web of services. So instead 

of maintaining the static documents the web is giving more and more access to web services. 

Web services can be easily integrated both into the traditional software and into the web pages. 

In today’s distributed environment web services are becoming an important part of business 

applications. It is becoming more and more popular for implementing the business solutions. 

Because of the large number of services it is very difficult to select among a list of services. To 

decide which service is the best with all their functional and non-functional requirements of the 

users is a decision problem. It is essential to analyze properly before the selection of web 

services as it involves multiple criteria and interdependent relationship between them. Service 

selection is divided into two steps: match the services based on the functional requirements 

where functional requirements determine the overall behavior of web services and then select 

and rank the services based on non-functional requirements which are not directly related to the 

functionality of web services. Typically non-functional requirements are requirements on the 

Quality of Service (QoS) attributes offered by web services such as response time, reliability, 

availability, scalability, reputation etc. QoS is a main element that differentiates the web services 

that have the similar functionalities. QoS based service selection involves different steps that are 

alignment, matchmaking, optimization and selection. Alignment is responsible for aligning the 

QoS metrics of QoS offers and demands during the web service publishing stage. Matchmaking 

is responsible for matching the QoS offers and demands. Optimization step comes in if there is 
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no matching result during the matchmaking step. In the end there is a selection step that is 

responsible for ordering the matchmaking results based on the weights provided by the customer. 

We will first review various QoS-based service selection models proposed in the past 

researches. Then, we will review some of the literatures that are more closely related to our 

work. 

2.2. QoS-Based Web Service Selection 

QoS-based service selection is usually considered as an optimization problem, and thus 

various optimization models have been used to solve this problem. Their main target is to help 

achieve the quality tradeoffs and optimizations. 

In [7], users define their preferences using utility functions, quality distributions of 

providers are learned from a probabilistic trust model, and then the services which could 

maximize the expected utility are selected.  

In [2], Mixed Integer Programming (MIP) is used for solving the problem of web service 

selection and match-making. Here mixed integer programming is used for solving the linear 

constraints while Constraint Programming (CP) is used for non-linear constraints. The 

experiments conducted in this paper showed that MIP outperforms the CP while considering the 

linear constraints. So the process of match-making is completed using CP or MIP depending 

upon the type of constraints whether it is non-linear constraints or linear constraints.  

In [1], WS-QoSOnto is proposed for designing and building QoS ontology for web 

services. This proposed ontology has many aspects for describing the QoS properties, metrics, 

trends and relationships. For defining the user preferences an Analytic Hierarchy Process (AHP) 

model is used which is a multi-criteria decision making approach for developing a flexible and 

dynamic ranking algorithm. Pair-wise comparison is the main step in AHP which determines 
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how a particular QoS property is more important than the other QoS property in terms of ranking 

the web services. Given a service request, an AHP hierarchy is generated first, and then weights 

are calculated for QoS properties and final ranking scores are the weighted sum of all the QoS 

values. Eigen vector and Eigen values are used for calculating the relative weights of the QoS 

properties. The main problem in this proposed model is that while calculating the overall service 

ranking the proposed model completely ignores the user defined QoS requirements. It does not 

include the user defined constraints over the QoS properties.  

Skyline computation is used for solving the problem of QoS based web service selection 

in [3]. In this paper the authors are dealing with the issues that the users are required to convert 

personal preferences into numeric weights and the users may not have enough knowledge to 

convert these preferences into numeric weights. And the second issue discussed in skyline 

approach is how to deal with the dynamic environment of the QoS properties. To deal with these 

issues, p-dominant skyline is used for the service optimization problem with dynamic QoS 

information and in p-dominant skyline it is not mandatory for the users to provide the 

preferences for the QoS properties. It finds optimized solutions by measuring their dominance 

relationships. P-dominant service skyline is a tool that sets the threshold and determines whether 

the service provider should come into the preferred services list. A service provider S belongs to 

the p-dominant service skyline if the chance that S is dominated by any other service provider is 

less than p, where p is the probability threshold. Efficiency and quality issues are further 

addressed in [8] by using a skyline variant – -dominant skyline.  

Most of the above selection systems did not consider the variety of the individual 

decision strategies involved in the selection process whereas we do. 
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2.3 Personalized Service Ranking 

 

Personalized service ranking and selection has attracted research attention in recent years. 

Most of the efforts in this area are using recommendation algorithms. In [9], personal profiles are 

built which is based on the collaborative filtering technique. Collaborative filtering technique has 

been extensively used in recommender systems where the consumers rate the web services. And 

then based on the previous user ratings the system does the predictions for the services which the 

consumers have not used before or rated before. System finds the similar users based on their 

invocation histories. Collaborative filtering technique has some limitations as it is based on the 

explicit ratings from the consumers, which sometimes is not possible in real life because it is not 

necessary that every consumer will rate the service. To overcome this limitation, the work in [9] 

is also considering the dependency among the services. In a real world it is quite possible that 

one web service does not fulfill the requirements of consumers.  So there is a need of joint 

service compositions for fulfilling the consumer’s requirements. The paper used the association 

rule mining to identify service dependencies based on the past composition transactions of 

similar users. After applying the collaborative filtering technique and considering the 

dependency among the web services, the web service usage history is stored in the consumer’s 

personal profile. Next time when the consumer logged in this personal profile will be helpful for 

ranking the web services. 

In [10], user similarity is measured as the similarity between the rankings of their 

observed QoS values on commonly invoked services, and the QoS driven component ranking 

framework for cloud applications is implemented using the past experiences from similar users.  

For personalization it is necessary to evaluate all the components at user side and rank the 

components based on the QoS values. But it is difficult to do this in cloud applications, because 
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it is a resource consuming and time consuming task and it is also not possible for providers to 

evaluate all the cloud components since there could be a large number of components in the 

cloud. To overcome these issues a collaborative QoS driven quality ranking framework is 

implemented which measures the user similarity with the current user based on the ranking order 

on the commonly invoked components. Based on the user similarity a set of similar users will be 

identified. In the next step a preference function is modeled that measure the quality priority of 

the components. In the last an algorithm is implemented that ranks the components based on the 

user invocation histories and preference functions.  

In [11], previous interactions between service providers and requestors are modeled as a 

social network. Information is collected using the data mining techniques on the log that contains 

the information about the past communications and requests of web services by different 

consumers. It finds out the likely social link between service providers and service consumers. 

Ranking of the web services is done from three different aspects, the consumer aspect, the 

service aspect and the non-functional properties aspect. And then relevancy is calculated of 

different web services for different consumers. The work in [11] also discusses the scenario when 

they have the partial information from the above mentioned three aspects. In that case social 

network analysis and graph theory techniques are applied for the calculation of relevancy of the 

web services. At the end results from the social network analysis are fed into a Bayesian 

classifier to rank services.  

In [12], invocation and query logs are used to calculate user similarities and then services 

are ranked based on most similar users’ invocation histories. After functionally matching services 

are found out, they are ranked based on the current QoS requirement and how they were selected 

and invoked by past users with the same QoS requirements. Invocation and query logs could 
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show how and when the users submitted the service request to the search engine. When two users 

invoke the same service they are considered to be similar and in addition to that if both users 

have the similar QoS requirements then their similarity level will be high because it shows that 

both users are following the same decision making patterns.  

In [13], both functional interests and QoS preferences of users from their usage history 

are considered for similarity calculation and service recommendation. Here the usage history 

comprises of previous web services and their matching preference records and these records are 

based on WSDL documents of web services invoked by the consumer and the consumer’s 

preference records. The proposed framework also calculates the similarity between the 

consumer’s functional requirements and web services. Then hybrid approach is developed that 

merges both the functional similarity and non-functional similarity. At the end top k web service 

list is generated for the consumer that considers both the functional and non-functional 

requirements from the usage history. 

Compared to these algorithms, although we also use the past query and invocation 

histories, we tackle this problem from a totally different perspective. We consider that users may 

follow different decision strategies for different queries, and we use learning to rank algorithm 

[6] to learn a personalized decision-strategy-based ranking model. 

2.4 Learning to Rank 

Learning to rank has been widely used in information retrieval and web searching for 

ranking the documents. And its main purpose is to automatically construct a ranking model using 

training data for ranking objects / entities. Learning to rank techniques can be divided into three 

types, which are point-wise, pair-wise and list-wise techniques and these techniques are based on 

the types of input objects for learning. In Point-wise technique input object is a single document 
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and it requires a relevance judgment for each document in the training set, whereas in pair-wise 

technique input object is a pair of documents and it requires a relevance judgment for each pair 

of documents and in list-wise technique input object is a list of documents and it requires a 

relevance judgment for a list of documents. Point-wise and pair-wise techniques do not consider 

the interdependency among documents and hence position information is missing in these 

documents, while list-wise technique considers the position information in the resulting ranked 

list. It has been proved in [6] that list-wise ranking algorithms give the better performance than 

the point-wise and pair-wise algorithms. 

 Freund et al. [24] developed a learning to rank algorithm called Rank Boost and applied it 

on information retrieval problem. Rank Boost is a pair-wise boosting algorithm that is based on 

AdaBoost algorithm. It learns a ranking function by combining many weak rankings of the given 

instances. Each weak ranker may have only a weak correlation to the target ranking. Weak ranker 

can have any type but most of the time it chooses the binary function with a single feature. Here 

the algorithm starts in rounds where it assigns the equal weights to the pairs of documents. At 

each round the algorithm chooses the weak ranker that has the lowest pair-wise loss on the 

training data as per the current weight distribution.  Weights will be decreased for those pairs 

which are correctly ranked and will be increased for those pairs which are incorrectly ranked. So 

the algorithm can put more focus on those pairs which are incorrectly ranked. At the end the 

output is the single highly accurate ranking. 

Burges et al. [23] introduced the RankNet algorithm and showed the effectiveness to 

improve the search relevance. RankNet requires a label dataset for training the model. The 

method requires the pair-wise preference information together with the gradient descent for 
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training the model. The algorithm is simple to use and provides good performance on a large 

amount of data.  

Cao et al. [25] developed a list-wise approach named ListNet for learning to rank and did 

the comparison with the pair-wise approaches such as RankNet, Rank-Boost, Ranking SVM. 

They established that list-wise approach is more effective as compare to pair-wise approaches. 

Problem with pair-wise approach is that object pairs fluctuates largely from query to query and 

this could lead to bias in which the preference will be given to those queries which have more 

object pairs. In list-wise approach lists of objects are used as instances whereas pair-wise 

approaches use object pairs as instances. In list-wise approach probabilistic method has been 

used for the calculation of list-wise loss function and they are using permutation probability and 

top one probability for the conversion of ranking scores into probability distributions. ListNet is 

using the Neural Network and Gradient Descent for the development of learning method. 

Metzler and Croft [26] discussed the linear feature based models in detail. Here the 

model’s scoring function consists of the linear combination of features which combines the 

multiple sources of ranking evidence in document retrieval. Most of the features which are used 

in the models include term occurrence / non-occurrence, term frequency, inverse document 

frequency, document length, term proximity and these are called primitive textual features. The 

models directly optimize the retrieval metric of choice.  It has been shown that feature based 

models considerably outperforms current state of the art retrieval models with the right choice of 

features.  

2.5 User Decision Strategies 

 

There are many user decision strategies people may follow when they make decisions 

like which product or service they need to choose and which product or service they should 
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ignore; which brand to select and which brand to ignore. Different types of strategies have been 

introduced for solving these problems in which consumers are having difficulties of selecting the 

services or products among the large number of services / products with multiple attributes.  

In [5], two types of strategies are discussed, compensatory and non-compensatory. In 

compensatory strategies all the information is processed and tradeoff is made between the high 

value on one attribute of an alternative and a low value on another attribute. In these types of 

strategies one attribute is losing the quality in return of gaining the quality of other attributes. 

Two commonly used compensatory strategies are weighted additive (WADD) and equal weight 

(EQW). WADD strategy examines all the available information. In WADD strategy decision 

maker gets the relative importance of each criterion by placing weight on each criterion. EQW 

strategy examines all the available information but it ignores the weight information. It assigns 

the equal weight to all attributes. Non-compensatory strategies do not make use of all the 

available information and trade-off is normally ignored. Here the presence of one attribute may 

not be able to compensate the absence of other attributes. These strategies are used to reduce the 

number of attributes to be sensibly evaluated. Two commonly used non-compensatory strategies 

are elimination by aspects (EBA) and lexicographic (LEX).  EBA strategy starts by finding the 

most important attribute (the one which has the highest weight). Then the cut off value of each 

attribute is retrieved, and all the alternatives whose values are less than the cut off values are 

removed. This process continues until one alternative is left. In LEX strategy all alternatives are 

ranked based on the most important attribute. If there are two alternatives whose attribute value 

is similar then the second most attribute value will be considered; this process continues until 

one alternative is left.  
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In [14], more strategies are discussed and they are classified based on their 

characteristics, such as whether all attribute values are processed or some of the attribute values 

are processed, whether they are attribute based or option based. Attribute based processing 

consider all the options of a single attribute while option based processing consider all the 

attribute values of a single option before considering the next option. Some other characteristics 

include whether they are eliminating the options before making the final decision, whether same 

amount of information is examined or it changes across attributes, whether decision strategies are 

considering the weight of each attribute or not, whether the decision strategy uses the cut off 

levels for the attributes or not, and whether the decision strategy use the quantitative reasoning or 

qualitative reasoning. Quantitative reasoning involves the addition, subtraction and 

multiplication of attribute values whereas qualitative reasoning involves the comparison of 

attribute values. The paper also explains the classification method that is used for identifying the 

user decision strategies. And this method comprises of four metrics and these metrics are divided 

into process based and outcome based.  

According to [15], decision makers may use multiple strategies for making choices and 

then select strategies from a range of strategies that represent the best accuracy and choice for the 

particular decision problem. The selection of the strategy is depending on the task and context 

factors. Task factors represent the basic features of a decision problem like response mode and 

number of alternatives available. Context factors represent similarity of alternatives which check 

the similarities of alternatives features. When less number of alternatives is involved consumers 

often use those strategies that examine all the available information like WADD, EQW and trade-

off is made between the attributes. When large number of alternatives is involved consumers 
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often use heuristic strategies like EBA and cut off value is introduced for cutting down the 

number of alternatives.  

The variety of the individual decision strategies is also recognized in some domain-

specific applications, and integrating multiple strategies is proved to be able to provide a better 

result [16]. Compensatory and non-compensatory aggregation strategies have been used in multi 

criteria analysis for decision making. In [16] two aggregation strategies are combined with a 

single weighting strategy. The strategies which were combined are weighted summation, Electre 

II aggregation strategy and the Rank Order Centroid (ROC) weighting strategy where weighted 

summation is a compensatory strategy and Electre II is a non-compensatory strategy. 

Compared to these papers, we do not require users to define their strategies explicitly, we 

generate the ranking order of all alternative services instead of just finding the best one, and we 

define an automated solution by using a learning to rank algorithm to find the optimal way to 

combine multiple strategies.  
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CHAPTER 3 

PERSONALIZED SERVICE RANKING BASED ON  

DECISION STRATEGIES 

In this work, we assume that the functionally matched web services have been selected 

[28]. This search can be done on registries or using a P2P discovery mechanism [29]. Here 

registries are the main repository for the web services where service providers publish and store 

their web services and later on these services will be invoked by service consumers. In a P2P 

discovery mechanism web services are the nodes in the network. The requested web service will 

be matched or the request will be spread through the network for finding the suitable web 

service. 

The next step is to select the web services based on the non-functional requirements. 

Here the main task is to find the list of optimal web services based on the user requirement on 

various QoS properties. In this chapter, we first explain our weighting scheme, the QoS 

properties which we have used in our selection process as well as the decision strategies which 

we consider in the service selection process for selecting and ranking the web services. Then we 

show a few scenarios where a user may follow different strategies. After that, we describe our 

system architecture, especially on how we collect the historical data. Finally we discuss how we 

use a learning-to-rank algorithm – AdaRank [17], to learn our personalized service selection 

algorithm. 
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3.1. Weighting Scheme 

The weights of the QoS properties represent the importance level for the users while 

making the trade-off decisions.  

In our selection system the system displays the list of available QoS properties and the 

user is required to select the preferences / weights over QoS properties of web services. The user 

can provide the preferences to as many QoS properties as the user wants. For weighting the QoS 

criteria we have used the simple weighting scheme that calculates the direct importance of the 

QoS properties. For weighting, our selection system provides the scaling scheme that ranges 

from 1 to 9; where 1 is the least important and 9 is the most important. Saaty [32] proposed a 

scale of relative measurement that we are using for assigning the preferences to QoS properties.  

Table 3.1: Fundamental scale of numbers indicating the importance level of QoS properties [32] 

Importance 

Level 

1 2 3 4 5 6 7 8 9 

 Least 

important 

Weak 

important 

Moderate 

important 

Moderate 

plus 

Strong 

important 

Strong 

plus 

Very 

strong 

Very, 

very 

strong 

Most 

important 

 

 If no weight is assigned to the QoS property then zero weight will be assigned to that 

particular QoS property which shows that the user has no preference over this particular QoS 

property. The advantage of our selection system is that we are giving the flexibility to the users 

in assigning the QoS weights and users are not required to give the excessive information.  

 Next step is to normalize the weight so the sum of each weight vector is 1. For 

normalizing we have used this formula: 

𝒘𝒊 =  
𝒒𝒊

 𝒒𝒋
𝒌
𝒋=𝟏

   (3-1) 
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In the above equation wi is the normalized weight of the i-th criteria, qi is representing the 

user defined weight of the i-th criteria and k is representing the total number of criteria the user 

selected.  

3.2. Constraints on QoS Properties 

 In a user’s QoS requirement, there could be constraints on QoS properties. For example 

the user can request that reliability > 90%, availability > 98%, successability > 80%, which 

means services should be checked first on whether they satisfy these constraints and then on 

whether they have the optimal values on these properties. In the selection and ranking of web 

services these constraints play an important role in determining a list of optimal services and 

their ranking orders. 

3.3. Quality of Service (Non-Functional) Properties of Web Services 

As we are dealing with the Quality of Service based web service selection problem we 

need to identify the QoS criteria [30] [31] which are important for web service selection. A web 

service can have many non-functional properties such as: 

 Availability: measures the probability that the system is up and can be accessed by 

users successfully. It calculates the number of successful invocations / total number 

of invocations. It is measured in (%). 

 Reliability: measures the ability of a system to work as expected under specific state 

for a specific period of time. It calculates the ratio of number of error messages to 

total messages. It is measured in (%). 

 Throughput: calculates the volume of data which is invoked at a given period of 

time. It is measured as (invokes/sec). 
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 Response Time: is the time taken from sending a request to receiving a response. It is 

measured in (ms). 

 Successability: measures the requests that have been successfully completed. It 

calculates the total number of responses / total number of requests. It is measured in 

(%). 

 Compliance: measures to what extent a WSDL document follows WSDL 

specifications. It is measured in (%). 

 Best Practices: measures to what extent a web service follows WS-I Basic Profile. It 

is measured in (%). 

 Cost: is the cost which the customer needs to pay for using the service. 

 Documentation: measures to what extent the documentation is completed like 

description tags in WSDL. It is measured in (%). 

In our selection system we are using 7 QoS properties including Availability, 

Throughput, Successability, Reliability, Compliance, Best Practice, and Documentation. Our 

selection system is flexible and we can add more QoS properties if we want. But for the 

simplicity currently we are using the 7 QoS properties in our system. 

3.4. Service Selection Based on Decision Strategies 

 The next phase in our service selection system is selecting and ranking the web services. 

This selection and ranking is based on the QoS weights, user constraints and requirements on the 

QoS properties which are already defined in the previous sections. For the selection and ranking 

of web services we are using the decision strategies which will be explained in this section.  

There are many decision strategies reported in the literature [5] [14]. Here, we mainly 

consider four of them, namely, Weighted Additive (WADD) strategy, Majority of Confirming 
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Dimensions (MCD) strategy, Weighted Majority of Confirming Dimensions (WMCD) and 

Lexicographic (LEX) strategy [5]. These strategies are used to reduce the number of alternatives 

and improve the processing efficiency.  

Since most of the decision strategies only target at finding optimal solutions without 

handling the constraints, we develop two rules which could rank services based on how well they 

satisfy the constraints. We also modify the process of the original decision strategy in order to 

generate a full ranking order on services. Below, we give definitions and explanations on the two 

rules and the three decision strategies. 

 Layer Rule: Services satisfying all of the constraints (category 1) are ranked higher than 

services satisfying some of the constraints (category 2), which are ranked higher than 

services satisfying none of the constraints (category 3). 

 Quantity Rule: A service satisfying more constraints is ranked higher. To simplify the 

case, we do not consider the user preferences on QoS criteria, and only count the number 

of satisfying criteria. 

 WADD Strategy: A service is ranked higher if the sum of its QoS values multiplied by 

their corresponding weights is higher. Based on this strategy, a ranking score of a service 

si is calculated as  wk∙aik
M
k=1 , where k represents the k-th QoS property, M is the number 

of properties the system supports, wk measures its weight, and aik represents the value of 

si on the k-th property. This is the ranking algorithm used by many service selection 

systems [1] [2] [3].  

Implementation of WADD strategy: 

Suppose the user has selected 3 criteria / QoS properties, e.g. criterion1, criterion2, 

criterion3 
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Step1: 

In step1 we will normalize the weight of each criterion by using Equation 3-1. 

Normalized Weight of Criterion1 = (Criterion1 individual weight) / (Total weight of all 

the criteria) 

Normalized Weight of Criterion2 = (Criterion2 individual weight) / (Total weight of all 

the criteria) 

Normalized Weight of Criterion3 = (Criterion3 individual weight) / (Total weight of all 

the criteria) 

Step2: 

Normalize the web service values for each criterion in the database. 

Select ServiceName, (Criterion1 / (select max(Criterion1)  from QWSDataset)), 

(Criterion2 / (select max(Criterion2)  from QWSDataset)), (Criterion3 / (select 

max(Criterion3) from QWSDataset)) from QWSDataset 

Step3: 

For WADD implementation multiply the normalized values of each service with the 

respected values of each criterion weight. And then sum up all the criteria values for each 

service. 

𝑆𝑐𝑜𝑟𝑒𝑗 =  wk∙aik
M
k=1    (3-2) 

As we are calculating the score based on 3 criteria so M = 3 and wk is representing 

the weight of the k-th criterion calculated in step1.  

Step4: 

Rank all the services based on the score calculated in step3. The ranking list will be in 

descending order. 
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 MCD Strategy: A service with a majority of winning (better) QoS values is ranked 

higher when compared with another service. This strategy involves processing pairs of 

services. The values for each of the two services are matched on each QoS property and 

the service with a better property value will be selected. In case of tie between two 

services our application will select the service which has the better value in the last 

property. And then this selected service will be compared with next service among the set 

of services. The comparison stops when all the services have been compared and the final 

winning service has been selected. We do the comparison on all pairs of services to get 

the complete ranking order of these services. 

 A variation of this strategy is to include weights in the ranking process. When 

comparing two services si and sj, if si is better than sj on the k-th QoS property, pijk is set 

to 1, otherwise is 0. Based on the original MCD strategy, if  pijk
M
k=1  >  pjik

M
k=1 , si is 

ranked higher than sj. Based on the weighted MCD (WMCD) strategy, if  wk∙pijk
M
k=1  > 

 wk∙pjik
M
k=1 , si is ranked higher than sj. 

Implementation of MCD strategy: 

Suppose the user has selected 3 criteria / QoS properties e.g. criterion1, criterion2, 

criterion3. For MCD implementation we need to compare the value of each service on 

each category. 

Step1: 

Compare the value of si with sj for each category. If si has better value than sj for one 

category then assign 1 otherwise assign 0. Add up all 1’s for each service. The service 

which has more 1’s or the highest number will be the winning service. 

 pijk
M
k=1  >  pjik

M
k=1 ,   (3-3) 
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Step2: 

Repeat step1 for all the services until we have the winning service for all pairs and we get 

the complete ranking list of all the services. 

 LEX Strategy: The services are first ranked on the most important property (i.e., with 

the highest weight), if there are ties, services that have the same value on this property are 

then ranked on the second most important property, and this process continues until a full 

ranking order on all services is generated. 

 There is another variation of this strategy that is called lexicographic semi order. 

This strategy is similar to lexicographic strategy but it also introduces the idea of Just 

Noticeable Difference (JND). If there are some services which comes under JND of the 

best service on the most important QoS property they are considered to be equal. The 

reason to introduce this term is because the services which are marginally better on the 

most important property will be selected but much worse on the other properties will be 

ignored. Due to the time constraint, although we have implemented this strategy, we 

didn’t run the experiment using this strategy. Therefore, in the rest of the discussion, this 

strategy is not included. 

Implementation of Lexicographic strategy: 

Suppose the user has selected 3 criteria / QoS properties e.g. criterion1, criterion2, 

criterion3. For LEX implementation we will select the criterion which has the highest 

weight. For example criterion1 has the weight of 7, criterion2 has the weight of 5, 

criterion3 has the weight of 9, and then our selection query will be like this: 

select ServiceName, criterion3, criterion1, criterion2 from QWSDataset order by 

criterion3 desc , criterion1 desc , criterion2 desc 
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Services are ranked based on criterion3, if there is a tie then it will rank the services 

based on criterion2, this process continues until we get the complete ranking order. 

In our system, the service ranking algorithm is based on one of the combinations between 

rules and strategies. The three rules (No Rule, Layer Rule, and Quantity Rule) decide how a user 

wants the system to handle the constraints, and the four decision strategies (WADD, MCD, 

WMCD, and LEX) define the preference-guided optimization process. If the number of 

satisfying constraints really matters to a user, Quantity Rule is applied in the ranking process. If 

the number of satisfying constraints is important but the exact number is not so critical, Layer 

Rule is applied. If a user does not care about satisfying constraints, No Rule is applied. If no rule 

is applicable, one of the four strategies is used directly to rank all the services. If Layer Rule is 

selected, services are first ranked based on the Layer Rule, and then services which fall into the 

same category are ranked according to one of the four strategies. If Quantity Rule is selected, 

services are first ranked based on the Quantity Rule, and then services which satisfy the same 

number of constraints are ranked according to one of the four strategies. There are in total 12 

combinations, and thus we have 12 decision-strategy-based ranking algorithms. 

3.5. Detailed Explanation of Service Selection System (Case Study) 

In this section we will provide a detailed case study that explains the weighting, and the 

selection and ranking process of our QoS based and decision strategy based web service 

selection framework.  

3.5.1 General Settings 

 For our framework we are using the real time dataset - the QWS Dataset [22] which has 

2,507 web services. We have implemented the framework on all 2,507 web service. But for 

illustration purpose currently we are using seven web services and six QoS properties. Table 3.2 
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has the complete information which is needed for our illustrating example. In the table we have 

included the QoS criteria / properties, QoS Tendency, Units used for QoS properties, list of 

services and their values, user request on each QoS property. QoS tendency has two values: high 

and low. In case of high value the service which has high value on a particular QoS property will 

be preferred and in case of low value the service which has low value on a particular QoS 

property will be preferred. For simplicity we are using the high values only for QoS properties. 

QoS units are used for measuring the QoS metrics and most of the QoS properties have % unit in 

our case study. 

Table 3.2: List of functionally matching services 

QoS Criteria AV SS RL CL BP Doc 

QoS Tendency High High High High High High 

Unit % % % % % % 

User Request >88 >=96 >70 >80 >=82 >=60 

MAPPMatching 89 90 73 78 80 32 

Compound2 85 95 73 100 84 2 

USDAData 89 96 73 78 80 96 

GBNIRHolidayDates 98 100 67 78 82 89 

CasUsers 87 95 73 89 62 93 

 

Here AV stands for Availability, SS stands for Successability, RL stands for Reliability, 

CL stands for Compliance, BP stands for BestPractices, Doc stands for documentation. These 

QoS properties have already been defined in Section 3.3. MAPPMatching, Compound2, 

USDAData, GBNIRHolidayDates and CasUsers are service names. 

3.5.2 Calculating the Default Weight of QoS Properties 

 In this section we will explain how we calculate the default weights for QoS properties. 

There are many weighting methods which can be used for the calculation of weights. But for 

simplicity we are using the simple weighting scheme only to generate the QoS weights for the 
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user preferences. Suppose the user has submitted the preferences for the QoS criteria through our 

selection framework. The user preferences are given in Table 3.3. 

Table 3.3: User preferences on QoS properties 

QoS 

Criteria 

AV SS RL CL BP Doc 

Weights 8 8 8 6 5 5 

 

 Based on the above table, availability, successability and reliability are the most 

important criteria for the user followed by throughput, compliance, best practices and 

documentation. In the next step we normalize these user defined weights. For normalizing the 

user defined weights we are using the formula (3-1). Table 3.4 shows the normalized user 

defined weights 

To apply this formula, first of all we calculate the total weight for all the criteria. 

Total weight = 8 + 8 + 8 + 6 + 5 + 5 = 40 

Table 3.4: Normalized user defined weights 

QoS 

Criterion 

AV SS RL CL BP Doc 

Normalized 

Weights 

0.2 0.2 0.2 0.15 0.13 0.13 

 

3.5.3 Selecting and Ranking the Web Services Using Decision Strategies 

3.5.3.1.   Using WADD Strategy: 

 After the calculation of QoS weights, to continue with the ranking process the next step is 

to normalize the web services’ QoS values. For normalizing these values we have used the 

idealizing approach [38]. The idealizing approach is applied on each criterion by assigning 1 to 

the web service with the highest value and then divides each service value with the highest one. 

This process is done for all QoS criteria.  
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 Next step is to apply the weighted sum method for getting the ranking score. This is done 

by multiplying the weight vector with the normalized values of QoS criteria. Then at the end add 

up all the QoS values of each service for getting the final ranking score. The calculation of web 

service scores using the WADD strategy is shown below. 

  Table 3.5: Calculation of web services score using WADD Strategy 

QoS Criterion AV SS RL CL BP Doc 

MAPPMatching 0.91 * 0.2 

= 0.18 

0.9 * 0.2 

= 0.18 

1 * 0.2 

= 0.2 

0.78 * 0.15 

= 0.12 

0.95 * 0.13 

= 0.12 

0.33 * 0.13 

= 0.04 

Compound2 0.87 * 0.2 

= 0.17 

0.95 * 0.2 

= 0.19 

1 * 0.2 

= 0.2 

1 * 0.15 

= 0.15 

1 * 0.13 

= 0.13 

0.02 * 0.13 

= 0.003 

USDAData 0.91* 0.2 

= 0.18 

0.96 * 0.2 

= 0.19 

1 * 0.2 

= 0.2 

0.78 * 0.15 

= 0.12 

0.95 * 0.13 

= 0.12 

1 * 0.13 

= 0.13 

GBNIRHoliday 

Dates 

1 * 0.2 

= 0.2 

1 * 0.2 

= 0.2 

0.92 * 0.2 

= 0.18 

0.78 * 0.15 

= 0.12 

0.98 * 0.13 

= 0.13 

0.93 * 0.13 

= 0.12 

CasUsers 0.89 * 0.2 

= 0.18 

0.95 * 0.2 

= 0.19 

1 * 0.2 

= 0.2 

0.89 * 0.15 

= 0.13 

0.74 * 0.13 

= 0.1 

0.97 * 0.13 

= 0.13 

 

MAPPMatching = 0.18 + 0.18 +0.2 + 0.12 +0.12 +0.04 = 0.84 

Compound2 = 0.17 + 0.19 + 0.2 +0.15 +0.13 + 0.003 = 0.843 

USDAData = 0.18 + 0.19 + 0.2 + 0.12 + 0.12 +0.13 = 0.94 

GBNIRHolidayDates = 0.2 + 0.2 + 0.18 + 0.12 + 0.13 + 0.12 = 0.95 

CasUsers = 0.18 + 0.19 + 0.2 + 0.13 + 0.1 + 0.13 = 0.93 

Table 3.6: Final Ranking order based on WADD strategy 

Ranking Order Web Services Total Score 

1
st
  GBNIRHolidayDates 0.95 

2
nd

  USDAData 0.94 

3
rd

  CasUsers 0.93 

4
th
  Compound2 0.843 

5
th
  MAPPMatching 0.84 
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3.5.3.2.   Using MCD Strategy: 

MCD strategy requires a pair-wise comparison. QoS values of two services are compared 

and the service which has a higher number of winning QoS values will be selected and then the 

winning service will be compared with the next service. If service1 has the better QoS value over 

service2 then it will be set to 1 otherwise it will be set to 0. We start by doing the comparison to 

the first pair of web services listed in Table 3.2. 

Table 3.7: Step1 – Comparison of web services in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

MAPPMatching 1 0 0 0 0 1 

Compound2 0 1 0 1 1 0 

 

In the above table, MAPPMatching service is better on 2 QoS values so it has 2 1’s and 

Compound2 service is better on 3 QoS values so it has 3 1’s. As Compound2 service has more 

1’s than MAPPMatching service, Compound2 service is the winning service and is compared 

with the next pair. 

Table 3.8: Step2 – Comparison of web services in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

Compound2 0 0 0 1 1 0 

USDAData 1 1 0 0 0 1 

 

In the above table USDAData is the winning service and is compared with the next 

service. 

Table 3.9: Step3 – Comparison of web services in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

USDAData 0 0 1 0 0 1 

GBNIRHolidayDates 1 1 0 0 1 0 
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In the above table GBNIRHolidayDates is the winning service and is compared with the 

next service. 

Table 3.10: Step4 – Comparison of web services in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

GBNIRHolidayDates 1 1 0 0 1 0 

CasUsers 0 0 1 1 0 1 

 

In the above table both services have the same number of winning attributes. 

GBNIRHolidayDates and CasUsers web services both have 3 winning attributes or 3 1’s. So if 

there is a tie then we will consider the winning service to that service which has a better value on 

the last attribute. In our case CasUsers will be the winning service and it will be ranked # 1 

among the list of services. In the next phase we will remove this winning service from the list of 

services and will do the comparison for the rest of services. 

Table 3.11: Remaining list of web service in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

MAPPMatching 89 90 73 78 80 32 

Compound2 85 95 73 100 84 2 

USDAData 89 96 73 78 80 96 

GBNIRHolidayDates 98 100 67 78 82 89 

 

Again the comparison will be done for the rest of the services.  

Table 3.12: Step5 – Comparison of web services in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

MAPPMatching 1 0 0 0 0 1 

Compound2 0 1 0 1 1 0 
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Table 3.13: Step6 – Comparison of web services in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

Compound2 0 0 0 1 1 0 

USDAData 1 1 0 0 0 1 

 

Table 3.14: Step7 – Comparison of web services in MCD strategy 

QoS Criterion  AV SS RL CL BP Doc 

USDAData 0 0 1 0 0 1 

GBNIRHolidayDates 1 1 0 0 1 0 

 

In these comparisons winning service is GBNIRHolidayDates and it will be ranked # 2 

among the list of services and it will also be removed from the list of web services. Now we will 

do the comparison to the rest of web services. 

Table 3.15: Remaining list of web service in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

MAPPMatching 89 90 73 78 80 32 

Compound2 85 95 73 100 84 2 

USDAData 89 96 73 78 80 96 

 

Again the comparison will be done for the rest of the services.  

Table 3.16: Step8 – Comparison of web services in MCD strategy 

QoS Criterion  AV SS RL CL BP Doc 

MAPPMatching 1 0 0 0 0 1 

Compound2 0 1 0 1 1 0 

 

Table 3.17: Step9 – Comparison of web services in MCD strategy 

QoS Criterion AV SS RL CL BP Doc 

Compound2 0 0 0 1 1 0 

USDAData 1 1 0 0 0 1 
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In these comparisons winning service is USDAData which will be ranked # 3 and now 

this winning service will be removed from the list of web services. The comparison will be done 

to the rest of web services. 

Table 3.18: Remaining list of web service in MCD strategy 

QoS Criterion  AV SS RL CL BP Doc 

MAPPMatching 89 90 73 78 80 32 

Compound2 85 95 73 100 84 2 

 

Now the comparison will be done to the last set of pairs.  

Table 3.19: Step10 – Comparison of web services in MCD strategy 

QoS Criterion  AV SS RL CL BP Doc 

MAPPMatching 1 0 0 0 0 1 

Compound2 0 1 0 1 1 0 

 

After doing all the comparisons our final ranking order is shown in Table 3.20: 

  Table 3.20: Final Ranking order based on MCD strategy 

Ranking Order Web Services 

1
st
  CasUsers 

2
nd

  GBNIRHolidayDates 

3
rd

  USDAData 

4
th
  Compound2 

5
th
  MAPPMatching 

 

3.5.3.3.   Using Weighted MCD Strategy: 

Weighted MCD (WMCD) strategy is the variation of MCD strategy, where we also 

consider the QoS weights for the ranking of web services. For WMCD first of all we normalize 
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the web service values as we did in WADD strategy. Then multiply the normalized values of 

QoS with the weight vector. We did this for every QoS value.  

 Then later on MCD strategy is applied on the weighted values of QoS. We followed the 

same steps as we did in MCD strategy. Same pair-wise comparison is done on the weighted 

values.  

3.5.3.4. Using Lexicographic Strategy: 

In Lexicographic strategy services are ranked based on the weight of the criteria. The 

services which have highest weight will be ranked first followed by the services which have the 

lower weight. We apply Lexicographic strategy on Table 3.2 with the QoS weights {Availability: 

8, Successability: 8, Reliability: 8, Compliance: 6, BestPractice: 5, Documentation: 5}. For the 

implementation on Table 3.2 we used the following query. 

SELECT [ServiceName], 

       [Availability], 

 [Successability], 

 [Reliability], 

 [Compliance], 

 [BestPractices], 

 [Documentation] 

  FROM [webservices].[dbo].[QWSDataset] 

  where ServiceName = 'MAPPMatching' or ServiceName ='Compound2'  

  or ServiceName = 'USDAData' or ServiceName = 'GBNIRHolidayDates'  

  or ServiceName = 'CasUsers' 

  order by Availability desc, Successability desc, Reliability desc,  

  Compliance desc, BestPractices desc, Documentation desc 

After applying the QoS weights on Table 3.2, the ranking order of the services in Table 

3.2 will be changed as shown in Table 3.21. 

Table 3.21: Ranking order with original values after the implementation of LEX strategy 

QoS Criterion  AV SS RL CL BP Doc 

GBNIRHolidayDates 98 100 67 78 82 89 

Compound2 95 98 67 100 83 3 

USDAData 89 96 73 78 80 96 

MAPPMatching 89 90 73 78 80 32 

CasUsers 87 95 73 89 62 93 
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So the final ranking order is shown in Table 3.22, which is based on LEX strategy and 

this ranking order is purely based on the preferences of users. If the user changes his/her 

preferences the ranking order will be different. 

Table 3.22: Final Ranking order based on LEX strategy 

Ranking Order Web Services 

1
st
  GBNIRHolidayDates 

2
nd

  Compound2 

3
rd

  USDAData 

4
th
  MAPPMatching 

5
th
  CasUsers 

 

3.6. Typical User Patterns of Following Multiple Strategies 

A user may follow one decision strategy all the time when selecting services based on 

QoS criterion. However, it is more likely that a user may follow a few decision strategies and 

choose among them according to the context of search or the tasks service is used for. The user 

preferred strategy may also change over time. Below we give a few scenarios that could describe 

the typical patterns when users follow multiple decision strategies. 

 Pattern 1: users follow one strategy all the time. In this case, users may only know one 

strategy, or are only comfortable with one strategy, and thus always use it. 

 Pattern 2: users follow a few strategies with different probabilities. In this case, users are 

aware of a few decision strategies. The probability of following each strategy may 

depend on the context, tasks, the feasibility of the strategy, user’s familiarity with the 

strategy, user’s preference on the strategy, etc. 



37 

 

 Pattern 3: users follow a few strategies randomly. In this case, users are aware of a few 

decision strategies and use them constantly, however, without any obvious patterns or 

favorites. 

 Pattern 4: users follow a few strategies among which some are dominating, e.g., their 

probabilities are much higher than the others. In this case, users have preferences on 

some strategies, so that they use them often, but they do not rule out other strategies and 

they still use them when necessary. 

Among these four patterns, Pattern 4 can be considered as a special case of Pattern 2. 

There could be more patterns, but in this work we mainly consider these four. 

3.7 System Architecture 

In order to understand which decision strategies users follow when selecting services, we 

could either ask them to specify explicitly or we can learn implicitly from history logs. In the 

former case, if they have knowledge on decision strategies, they could choose directly from a list 

of provided options, otherwise, if they want to spend time to fill in questionnaires, the system 

can identify the strategy by checking their answers. Our system design facilitates both options. 

Figure 3.1 shows our system architecture model. 
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Figure 3.1. Architecture of our personalized service selection system 

The selection system is part of a service registry, in which service providers can publish 

their services into a Service Repository. When a user is searching for a service, he enters his 

functional as well as QoS requirements through the Selection UI, and he also has the option to 

define which decision strategy to follow when selecting services. All the user input is then 

passed on to the Selection and Ranking Component. This component searches for the 

functionally matching services in the Service Repository first, and then rank these services based 

on the QoS requirements. If the decision strategy is explicitly defined by the user, one of the 12 

decision-strategy-based ranking algorithms is used to rank the services. Otherwise, the 

personalized ranking algorithm learned through the Learning to Rank Component is used. The 
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ranked list of result is returned to the user through the Result UI. The user then selects a service 

for the later invocation. 

 In order for the system to learn user’s service selection pattern or decision strategy 

pattern, the service invocation request is sent to the Invocation Proxy first, and then forwarded to 

the service provider. The delivered service also goes through the Invocation Proxy first and then 

to the user, in this way, the actual QoS data can be monitored and saved into the Monitored QoS 

Repository. The History Log keeps the records of all the users’ search requests as well as 

invocation requests. Every record has the following information: user ID, query, matching 

services in the result list, and invoked service. With the history data, the Learning to Rank 

Component can learn the personalized service ranking algorithm for individual users, which 

could identify user’s pattern on following decision strategies. 

3.8 AdaRank to Learn the Personalized Ranking Algorithm 

Learning to Rank [6] is a machine learning approach which has been successfully applied 

to ranking problems in many areas such as information retrieval, collaborative filtering, 

sentiment analysis, etc. In a ranking problem, there could be multiple ranking signals or features, 

and different signals produce different rankings. Many experiments (e.g., the famous NetFlix 

Grand Challenge [18]) have proved that the ensemble of multiple rankings normally gives the 

best result. By using the training data, the learning to rank algorithm could learn a function or 

model representing an optimal way of combining multiple rankings. The learned model can then 

be used to rank new objects. 

In our personalized service ranking problem, there are multiple ranking algorithms based 

on different decision strategies, and since users normally do not specify what strategy they 

follow for each selection process, we would like to learn a ranking model which could best 
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mimic the way individual users switch between strategies according to the context and the tasks. 

The history log saved in the service registry can provide the training data for the learning 

algorithm. Through learning, we can identify the strategies a user follows as well as the best way 

of combining the corresponding ranking algorithms, and eventually provide a personalized 

ranking algorithm for user’s service selection. This personalized ranking algorithm is adaptive 

because it can be constantly learned and updated when new user data is available, and it is also 

extensible because more decision strategies or more QoS based ranking algorithms can be fed 

into the learning model. 

In this work, we use AdaRank [17] as our learning to rank algorithm. The reason we 

choose it is that it can directly optimize the metrics used in the selection system, whereas many 

other algorithms such as RankBoost [19] define loss functions loosely related to those metrics. 

The most commonly used performance metrics in the Learning to Rank algorithms include Mean 

Average Precision (MAP) and Normalized Discounted Cumulated Gain (NDCG) [20]. However, 

the dataset we could reasonably collect from the history log only has the information on the 

service a user actually selects for a query, without the knowledge on user’s evaluation on other 

returned services. Therefore, we cannot use MAP or NDCG in our system. The metric we use is 

Mean Reciprocal Rank (MRR) [20], which measures the accuracy of ranking based on the 

position of the selected result in the ranked result list, the higher the position, the higher the 

MRR value. 

Since in our system, personalized ranking is learned for each individual user, the history 

log is first partitioned on users. Then the training dataset for each user is represented as a 

collection of m records, and each record is represented as (qi, rsi, si), where qi is the i-th query 

from the user, rsi is a ranked list of returned services for query qi, and si is the service the user 
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selects from the list rsi. The learning to rank algorithm is going to learn a ranking function, so 

that the ranking scores generated for the returned services for a query can optimize the 

performance measure MRR. Given a query qi, a ranked list of returned services rsi, and the user 

selected service si, the Reciprocal Rank (RR) metric for qi is defined as, 

RRi =
1

positions i
   (3-4) 

where positionsi defines the position of si in rsi. 

The MRR metric is defined over all queries as below, 

MRR = 1

m
 RRi

m
i=1   (3-5) 

The input to the AdaRank algorithm includes the training dataset, the performance 

measure function RR, and the number of rounds T. The algorithm runs T rounds and at each 

round, one weak ranker is generated. Eventually the final ranking model is defined as a linear 

combination of all the weak rankers as shown below, 

f x   =  αtht(x  )T
t=1  (3-6) 

where ht x    is a weak ranker, t is its weight, and T is the number of weak rankers. 

In our implementation, the weak ranker is chosen as one of the decision-strategy-based 

ranking algorithms that has the optimal weighted performance among all algorithms, 

maxk  Pt(i)m
i=1 RRi   (3-7) 

where k is the number of ranking algorithms considered in the system, which is 12 in our current 

implementation, Pt is the weight distribution at round T, and Pt(i) is the weight on query qi at 

round T. Initially equal weights are assigned. Then at each round, the weights on queries that are 

not ranked well by the current model are increased so that the model in the next round can rank 

those queries better. The pseudo-code of the AdaRank algorithm is shown in Figure 3.2. 
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Figure 3.2. Pseudo-code of our learning to rank algorithm 

3.9 Summary 

In this chapter we have discussed the detail of our proposed approach which includes the 

service selection and ranking algorithms based on 12 decision strategies. We have implemented 

these decision strategies which are the combination of three rules and four existing decision 

strategies. For service selection and ranking we are considering both the QoS criteria and 

decision strategies. We also describe the patterns that the users may follow for different tasks. We 

Input: m – total number of queries; 

            T – number of rounds;  

            trainingData={(query, service rankings, selected service)}; 

Output: the ranking model fT; 

Algorithm:  

  //Declare Weight Distribution Array and initialize it for all queries 

  for  i = 1 to m  

       weightDistribution[i] = 1/m; 

 

  for  t = 1 to T     

  {     

      //Create a weakRanker with weightDistribution values 

      for k = 1 to 12 

         wMRRk =  (weightDistribtion i ∗ RRk(i))m
i=1 ; 

      Choose the strategy with max(wMRRk) as weakRankert; 

 

     //Calculate t 

     Calculate RRt values for weakRankert; 

     𝑡 =
1

2
. 𝑙𝑜𝑔

 (weightDistribution  i ∗(1+RR t i ))
m

𝑖=1

 (weightDistribution  i ∗ 1−RR t i  )
m

𝑖=1

; 

 

     //Create ranking model ft by linearly combining all weakRankers  

      ft = 1*weakRanker1 +  … + t*weakRankert; 

    

     //Update the weightDistribution values 

      Calculate RRft values for ft; 

      weightDistribution i =
exp (−RR ft )

 exp  −RR ft  
𝑚

𝑗=1

; 

     } //End of for loop 
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have described four different typical patterns when users follow various decision strategies. 

These patterns are based on the scenarios when users follow one strategy at a time, follow 

multiple strategies with different probabilities, follow multiple strategies randomly and follow 

multiple strategies with one dominating strategy.  

We also describe the architecture model of our selection system in which user is required 

to enter or select his / her QoS requirements and decision strategies; otherwise the system can 

learn from the history logs. We have 12 ranking algorithms and sometimes users are not aware of 

which algorithm they should follow for their selection process. So we apply the learning to rank 

algorithm that learn the ranking model and find the best matching decision strategies and best 

ranking model for user’s selection process. 
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CHAPTER 4 

EXPERIMENTS 

In this chapter, we first explain our experiment design and how we generate the simulated 

dataset, and then we compare our results with individual algorithms as well as a linearly 

combined ranking model, and provide some analyses. 

4.1 Experiment Design 

In our experiment, we assume that the functionally matching services have been 

identified using some existing methods and we only need to rank them based on users’ QoS 

requirements and decision strategies. We also assume that we have already collected a certain 

amount of user query and selection history data. In the experiment, we mainly test the case when 

the explicit strategy information is not available, which means the learned personalized ranking 

model is used to rank services. 

To verify our proposed approach, we should be able to show that 1) it is necessary to 

integrate the decision strategy into the service ranking model, 2) it is necessary to combine 

multiple strategies into the ranking model because users follow different strategies in different 

contexts, and 3) our personalized ranking model combining multiple strategies provides a good 

result. The first point has been verified in [21]. So here we mainly focus on the second and third 

points. We first compare the performance of our model with individual decision-strategy-based 

ranking algorithms. If our model has a better performance, it means that when users follow 

multiple strategies combination is necessary. Then we compare our model with a linearly 

combined ranking model. If our model achieves a better result, it means that learning to rank 

algorithm can produce a better way for rank combination. 
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Our system was implemented using C# language in Microsoft Visual Studio with .Net 

Framework 4. The experiment was run on a computer with AMD X2 Dual-Core Processor 

M320, 2.1 GHz clock speed, 4G RAM, and Windows 7 as the operating system. Microsoft SQL 

Server 2008 R2 was used as the database server. 

4.2 Our Simulated Dataset 

There is no publicly available dataset for our experiment, and it is also hard to find many 

users to use our system so that we could collect enough usage data in the logs. Therefore, we ran 

simulation to generate the dataset. In the simulated scenario, a user submits a QoS request, 

checks all the results returned from the system, and then selects one service based on a certain 

decision strategy. Since the decision making could be affected by the order of the results, the 

service selected by the user may not necessarily be the best service based on the strategy. We 

assume that the user is patient enough to review many results to find a good one so that it will be 

one of the top K results based on the strategy. Usually if the K value is not big, all the top K 

results can provide good results and thus the user is still satisfied with the selected service. 

We used QWS dataset [22] as our QoS dataset, which includes 2507 services. We only 

choose 7 QoS properties out of the original 9, including availability, successability, throughput, 

documentation, compliance, best practices and reliability. For all of them, a higher value means a 

better service. The QoS queries were also generated based on this dataset. Each query could have 

requirements on multiple QoS properties. The number of properties was randomly chosen in the 

range of [1, 7]. The required values are based on the value ranges of that property in the QWS 

dataset. Some sample QoS queries are shown in the Table 4.1, in which Availability, 

Successability, Documentation, Compliance, Best Practices, Reliability has percentage numbers 

while Throughput has invokes/sec values. 
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Table 4.1: Generated QoS Queries 

Query ID Query 

1 Throughput > 40.65, Documentation >= 38 

2 Throughput > 20.54, Successability >= 80 

3 Successability > 70, Throughput > 38.82, BestPractices > 68, Documentation >= 34, 

Compliance >= 77 

4 BestPractices > 81, Throughput > 30.54, Compliance >= 77, Documentation >= 95, 

Successability > 98 

5 Availability >= 99, Successability >= 89, Documentation > 84, Compliance >= 62, 

Throughput > 34.1 

6 Throughput >= 35.15, Successability >= 85, Documentation >= 51, BestPractices >= 68 

7 BestPractices > 62, Throughput > 23.99, Compliance >= 55 

8 Documentation > 71, Availability >= 80 

9 Availability > 68, Successability > 61 

10 Compliance > 83, BestPractices > 85, Availability > 86, Documentation > 67, 

Successability > 73 

 

There are 12 ranking algorithms considered in the thesis, and based on how they combine 

decision strategies and ranking rules, they are shown in the Table 4.2: 
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Table 4.2: User Decision Strategies and Ranking Rules 

User Decision Strategies and Ranking Rules Abbreviations 

Lexicographic LEX 

Lexicographic + Layer Rule LEXL 

Lexicographic + Quantity Rule LEXQ 

Weighted Additive WADD 

Weighted Additive + Layer Rule WADDL 

Weighted Additive + Quantity Rule WADDQ 

Majority of Confirming Dimensions MCD 

Majority of Confirming Dimensions + Layer Rule MCDL 

Majority of Confirming Dimensions + Quantity Rule MCDQ 

Weighted Majority of Confirming Dimensions WMCD 

Weighted Majority of Confirming Dimensions + Layer Rule WMCDL 

Weighted Majority of Confirming Dimensions + Quantity Rule WMCDQ 

 

Users may follow multiple strategies in different ways. Table 4.3 lists all the multi-

strategy following patterns of users which we considered in the experiment, together with their 

corresponding number of users. 
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Table 4.3: User Pattern of Following Multiple Strategies  

Pattern Name Multi-Strategy Following Pattern of Users Number of Users 

All1 Always use one ranking strategy 50 

Uni2 Uniformly use 2 ranking strategies 50 

Uni3 Uniformly use 3 ranking strategies 50 

Uni4 Uniformly use 4 ranking strategies 50 

Ran2 Randomly use 2 ranking strategies 50 

Ran3 Randomly use 3 ranking strategies 50 

Ran4 Randomly use 4 ranking strategies 50 

Dom Some ranking strategies dominate 50 

Two91 Follow 2 strategies with probability 90%, 10% 10 

Two82 Follow 2 strategies with probability 80%, 20% 10 

Two73 Follow 2 strategies with probability 70%, 30% 10 

Two64 Follow 2 strategies with probability 60%, 40% 10 

 

In total, there are 440 users in our dataset, each user submitted 100 queries, and each 

query has requirements on 1-7 QoS properties. For each query, we saved the list of matching 

services which satisfy all its QoS requirements, the strategy user follows, and the service selected 

by the user based on the strategy. We make sure the number of strategies a user follows and the 

number of queries for each strategy match with what are specified in the user pattern. For 

instance, if a user always uses one strategy, then all the queries from that user use that strategy 

for service selection. Or if a user uses two strategies with probability 80%, 20%, then 80% of the 

queries use one strategy and 20% of the queries use the other one. The strategy is always 

randomly picked from 12 strategies. 



49 

 

After the dataset was generated, to apply the learning algorithm, for each user’s usage 

data, 60% is used for training and 40% is used for testing. The metric used for result evaluation 

is MRR as defined earlier. 

4.3 Results Compared With Single Strategy Based Ranking Algorithms 

In this set of experiments, we fix the K value to 5, which means the service selected by 

the user could be one of top 5 results based on the user followed strategy. Figure 4.1 shows the 

comparison between our algorithm and those single strategy based ranking algorithms for all the 

multi-strategy following patterns. For each user, the MRR value is averaged on all the queries 

submitted by the user. And then for each algorithm, the MRR value is averaged on all the users 

with the same strategy following pattern. The MRR value for our algorithm is calculated on the 

testing data. 

From Figure 4.1, we can see that on average our learned ranking model combining 

multiple strategies performs much better than the ranking model which only considers one 

strategy. Compared with the best performing individual algorithms, the improvement from our 

algorithm is from 9.35% to 59.66% for different patterns. Also the MRR value of our algorithm 

is very consistent across all patterns. However, none of the individual algorithms perform 

consistently well for all patterns. Another observation is that for each pattern, the best 

performing individual algorithm varies a lot. For instance, in All1, it is MCDL, in Uni3, it is 

WMCDQ, in Ran3, it is LEXQ, in Dom, it is WADDL, and in Two91, it is MCDQ. It shows that 

if we use the traditional ranking approach, considering only one strategy, it may work for some 

scenarios, but not all the time. Overall speaking, the best performing algorithms are from the 

MCD family, either one of the WMCD or MCD algorithms. The sample training data is provided 

in Appendix B. 
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Figure 4.1. Comparison of our algorithm with individual algorithms on MRR values for all user 

patterns 

Many QoS-based service selection algorithms use the weighted sum (WADD) as the 

default decision strategy. Therefore we compare the results from our algorithm with the WADD 

algorithm as shown in Figure 4.2. The improvement from our algorithm is obvious. So if we 

integrate our algorithm into any existing selection system, its accuracy can be improved. 

 

Figure 4.2 Comparison of our algorithm with WADD algorithm 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

All1 Uni2 Uni3 Uni4 Ran2 Ran3 Ran4 Dom Two91 Two82 Two73 Two64

Ours LEXL LEX LEXQ MCDL MCD MCDQ WADDL WADD WADDQ WMCDL WMCD WMCDQ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

All1 Uni2 Uni3 Uni4 Ran2 Ran3 Ran4 Dom Two91 Two82 Two73 Two64

Ours WADD



51 

 

Our algorithm performs well not only for average users, but also for individual users 

when they are following multiple strategies. Figure 4.3 shows the comparison between our 

algorithm and the best performing individual algorithms for 25 users who have dominating 

strategies (DOM). We could see that our algorithm performs much better than or close to the best 

performing individual algorithm. The same observation applies to all the users in DOM. 

However here we can only show 25 due to the space limitation.  

 

Figure 4.3. Comparison of our algorithm with best individual algorithm for 25 DOM users 

Figure 4.4 shows the comparison between our algorithm and the best performing 

individual algorithms for 25 users who uniformly use 2 ranking strategies. We could see that our 

algorithm performs better than the best performing individual algorithm. 
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Figure 4.4. Comparison of our algorithm with best individual algorithm for 25 Uni2 users 

The same conclusion can also be drawn for all the other patterns when users follow 

multiple strategies. However, when users only follow one strategy all the time, the result is 

different. Figure 4.5 shows the comparison between our algorithm and the best performing 

individual algorithms for 25 users who always use one ranking strategy. We could see that there 

is no clear winner between our algorithm and the best performing individual algorithm. The 

reason is that if users only follow one strategy, the ranking algorithm based on that strategy 

definitely performs well. 
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Figure 4.5. Comparison of our algorithm with best individual algorithm for 25 All1 users 

4.4 Results Compared With Linear Combination Model  

As we can see from the earlier results, when users follow multiple decision strategies, 

ranking algorithms based on a single strategy did not perform well, and therefore, it is necessary 

to have a ranking model considering all strategies. 

Here we compare the performance of our algorithm with the ranking model which 

linearly combines all individual ranking algorithms. For the simplicity reason, we only consider 

the case when all the weights are set equal. Figure 4.6 shows the comparison result. The K value 

is still 5. 
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Figure 4.6. Comparison of our algorithm with linear combination algorithm 

From the figure, we could see that although the linear combination algorithm combines 

the ranking scores from multiple individual ranking algorithms, its performance is much worse 

than our learned ranking model. The average improvement from our algorithm is about 50%, 

which shows the effectiveness of the learning step. 

4.5 Impact of K Values  

In the ideal case, when the K value is 1, which means users always choose the services 

which are ranked the best according to the decision strategies they follow for corresponding 

queries, the MRR value should be very high for a good learning algorithm. However, in reality, 

the selection of the service is affected by the order of the service presented to the user. Usually 

users would choose the first satisfying result even if it is not the best one. And also it is very 

likely that there are noise data in the training dataset during the learning process. Therefore, it is 

more realistic to use a bigger K value to evaluate the algorithm performance. In this set of the 

experiments, we want to check the impact of the K values. We choose 3 values: 3, 5, and 10. 

Since the result is consistent for all patterns, here we do not show results for different patterns 

separately, instead, we only show the average result on all users in Figure 4.7. 
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Figure 4.7. Comparison of our algorithm with different K values 

We could see that when the K value is bigger, the MRR value becomes smaller. It is a 

reasonable result because when the K value is bigger, it means more noise is added to the 

training data, and thus the result is worse.  

Overall speaking, our experiment results show the necessity of considering multiple 

decision strategies in the service selection process and the effectiveness of the learned 

personalized ranking algorithm. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

For the functionally matching services the users often require to select and rank the 

services based on non-functional requirements and they can be represented as QoS criteria such 

as availability, reliability, throughput, response time, etc. In the selection and ranking process 

different users may follow different strategies which are categorized as compensatory and non-

compensatory decision strategies. We improved the service selection system that reflects the user 

view of selecting and ranking services using his/her QoS requirements and decision strategies. 

We designed our customizable and flexible service selection framework for this purpose. 

Our proposed framework has the following features: 

 We consider that user decision strategies play a vital role in the selection and ranking of 

services. We implemented a personalized service ranking algorithm based on users’ QoS 

requirements as well as their decision strategies. Different ranking algorithms were 

implemented for different strategies and ranking rules. 

 To figure out what strategies a user follows and how they are followed, a learning-to-rank 

algorithm was applied on the historical data of this user’s queries and subsequent 

selection records. A personalized ranking algorithm could then be learned through this 

process. We have developed a flexible approach and we can easily plug in different QoS 

based selection models, more user decision strategies, more QoS requirements and 

different learning to rank algorithms.  



57 

 

 As there were no public datasets available for our experiment, we have developed the 

application for generating the dataset where user is required to enter his/her QoS 

requirements, go through all the results returned from the system and then apply the 

particular user decision strategy on the results. We did the comparison of our results with 

different existing strategies and our experiment results showed the effectiveness of the 

proposed approach. 

5.2 Future Works 

QoS based web service selection is expanding and growing to include different theories 

and to be applied in different domains. There are a few directions we would like to work on in 

the future.  

 Firstly, we could implement a fully functioning service selection system in a service 

registry, and then gradually collect the real data to test our algorithm.  

 Secondly, we could integrate the decision strategy into some state-of-the-art selection 

models such as CP, AHP as the base selection algorithms instead of just considering 

some simple ranking rules.  

 Finally, we would like to investigate the impact of integrating decision strategies into the 

service selection process in the context of service composition. 
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APPENDIX A – Comparison of our algorithm with other algorithms 

 

 
 

Figure A.1 Comparison of our algorithm with WADDQ algorithm 

 

Figure A.2 Comparison of our algorithm with WADDL algorithm 
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Figure A.3 Comparison of our algorithm with LEX algorithm 

      

Figure A.4 Comparison of our algorithm with LEXL algorithm 
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Figure A.5 Comparison of our algorithm with LEXQ algorithm 

 

Figure A.6 Comparison of our algorithm with MCD algorithm 
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Figure A.7 Comparison of our algorithm with MCDL algorithm 

         

        Figure A.8 Comparison of our algorithm with MCDQ algorithm 
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           Figure A.9 Comparison of our algorithm with WMCD algorithm 

        

             Figure A.10 Comparison of our algorithm with WMCDL algorithm 
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           Figure A.11 Comparison of our algorithm with WMCDQ algorithm 
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APPENDIX B – Training Data 

 
k=5 Ours LEXL LEX LEXQ MCDL MCD MCDQ WADDL WADD WADDQ WMCDL WMCD WMCDQ 

All1 0.46 0.25 0.17 0.24 0.38 0.29 0.29 0.32 0.29 0.33 0.35 0.29 0.32 

Uni2 0.45 0.27 0.20 0.28 0.30 0.22 0.27 0.30 0.26 0.27 0.27 0.25 0.29 

Uni3 0.44 0.29 0.24 0.31 0.27 0.25 0.30 0.30 0.26 0.31 0.24 0.25 0.31 

Uni4 0.44 0.34 0.28 0.35 0.28 0.24 0.36 0.32 0.32 0.33 0.29 0.25 0.35 

Ran2 0.45 0.25 0.17 0.28 0.34 0.26 0.40 0.29 0.28 0.33 0.34 0.32 0.41 

Ran3 0.45 0.32 0.32 0.36 0.26 0.18 0.28 0.28 0.28 0.30 0.27 0.20 0.32 

Ran4 0.45 0.27 0.23 0.35 0.28 0.24 0.37 0.31 0.33 0.36 0.28 0.24 0.37 

Dom 0.45 0.26 0.21 0.26 0.32 0.27 0.28 0.32 0.31 0.28 0.31 0.25 0.30 

Two91 0.46 0.28 0.22 0.31 0.30 0.27 0.38 0.28 0.28 0.32 0.30 0.27 0.38 

Two82 0.45 0.31 0.26 0.31 0.32 0.21 0.32 0.33 0.30 0.33 0.32 0.21 0.32 

Two73 0.45 0.28 0.20 0.31 0.35 0.25 0.34 0.34 0.30 0.34 0.35 0.26 0.34 

Two64 0.46 0.27 0.23 0.27 0.27 0.25 0.28 0.27 0.26 0.27 0.28 0.25 0.29 

 

Table B.1 Training data of Figure 4.1 
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