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Abstract 

Convolutional Neural Network for Image Classification Based on Transfer Learning 

Technique 

2018 

Ghassan Mohammed Halawani 

Master of Engineering 

Electrical and Computer Engineering 

Ryerson University 

The main purpose of this project is to modify a convolutional neural network for image 

classification, based on a deep-learning framework. A transfer learning technique is used 

by the MATLAB interface to Alex-Net to train and modify the parameters in the last two 

fully connected layers of Alex-Net with a new dataset to perform classifications of 

thousands of images. 

First, the general common architecture of most neural networks and their benefits 

are presented.  The mathematical models and the role of each part in the neural network 

are explained in detail. Second, different neural networks are studied in terms of 

architecture, application, and the working method to highlight the strengths and 

weaknesses of each of neural network. The final part conducts a detailed study on one of 

the most powerful deep-learning networks in image classification – i.e. the convolutional 

neural network – and how it can be modified to suit different classification tasks by using 

transfer learning technique in MATLAB. 
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Chapter 1  

Introduction 
 

1.1 The Success of NNs and the Type of Problems NNs Address 

Artificial neural networks (NN) are computational models derived from the simulation of 

typical human brain activities such as image classification, pattern recognition, and 

language understanding. Computer programs are very useful tools for performing tasks 

with high speed, accuracy, and reliability. However, these information processing systems 

are not intelligent, which requires human intervention for updating. The use of prior 

experience (i.e. data) for learning is what makes NNs intelligent and powerful. 

Many types of NNs have been used in the last three decades [1]. Each type of NN is 

suitable for certain applications. Deep neural networks (DNN) are used for applications 

such as autonomous cars for path recognition, learning systems [2], and skin cancer 

classifications [3]. Rough neural networks are used for forecasting [4] and classification 

[5]. Moreover, critical-based neural networks utilize a supervisor to evaluate the 

performance of the network, based on as specific cost function. This type of network is 

used for robust optimal tracking control [6] and data-driven control systems [7]. 

A convolutional neural network (CNN) is a major type of DNN, which can be 

applied for classification, regression, and image recognition. Image classification is one of 

the most common tasks that CNNs can perform. The way CNNs can classify images 

mainly depends on the architecture of the neural network (e.g. the type, size, and order of 

the layers). Two networks can have the same architecture, but will behave differently if 

they use different datasets. In addition, the layer itself comes with many parameters such 

as weights and bias that play a significant role in the network performance. 
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1.2 The Architecture of Neural Network 

The simplest neural network architecture can be described as black box with inputs and 

outputs. The inputs of the NN is a vector of any dimension as shown in Fig.1 and is defined 

as 𝑥 ∈ 𝑅𝑛, where 𝑅𝑛 indicates the n-dimensional Euclidean Space. 𝑥𝑖 and 𝑦𝑖 represent the 

input and output of the network respectively. These input vectors could be real numbers, 

integers, or binary numbers as components. In general, all neural networks, whether 

shallow or deep, can perform classification. The input vectors in NNs are classified into 

classes or categories. Each class is defined by a particular output. Inside the black box is 

the architecture of the neural network, which will be covered in detail in chapter 2. The 

perceptron is the fundamental building block of the neural network.  

 

 

 

 

 

 

 

                       

1.3 Fundamental Building Block and Parameters 

The basic building block of all NNs is a single neuron, which only has one input and a 

single binary output. In general, this basic neuron does nothing but classify vectors into 

two groups, provided these vectors can be separated by a linear boundary in space and is 
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Figure 1: A Neural Network as a Black Box 
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defined in Equation (1). However, the basic neuron simulates multiple basic functions of 

the biological neuron, such as evaluating the intensity of each input, summing up the 

different inputs, and comparing the result with an appropriate threshold. Ultimately, it 

determines the output value [8]. The basic neuron is presented in Fig 2. 

 

 

 

 

 

 

 

 

 

 

 

 

𝑤𝑛 and 𝑏𝑖 are the weights and the corresponding bias. The weights are assigned to 

each input of the neuron for modulating the influence of this input on the total sum to 

determine the potential of the neuron. Both weights and bias are adjustable parameters of 

the NN. 

𝑓(𝑧) = {
1   𝑖𝑓 𝑏 + ∑ 𝑤𝑖

𝑛
𝑖=1 . 𝑥𝑖 > 0

0  𝑖𝑓 𝑏 + ∑ 𝑤𝑖
𝑛
𝑖=1 . 𝑥𝑖 ≤  0

                                                                       (1) 

 

1.4 Multilayer NNs and Activating function 

The output of each neuron in the NN is a modified base on a particular function. This 

function is called an activating function, which is applied to the output of the neuron to 

𝑏𝑖 

𝑥1 

𝑥2 

𝑥3 

𝑥𝑛 

𝑦 

Figure 2: The Basic Neuron 
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determine its actual potential. In other words, it improves the performance of the NN. 

However, no one has been able to explain why this is so. There are several activating 

functions used in NNs. Yet in this thesis, the rectilinear function is used and is defined in 

Equation (2). 

𝑓(𝑧) = {
𝑧   𝑖𝑓 𝑧 > 0
0  𝑖𝑓 𝑧 ≤  0

                                                                                           (2) 

A typical NN can have multiple basic neurons, arranged and connected in layers as 

presented in Figure 3. Each layer added to the network increases its computational 

capacity. The layers between the input and output layers are called the hidden layers. 

 

Figure 3: Hidden Layers and Activating Functions 

 

1.5 Learning Strategies of the Neural Network 

Learning strategies refer to how the network is trained in different approaches. The 

learning strategies are divided into supervised, unsupervised, and reinforcement learning. 

In supervised learning, the network is learned by providing labeled or known inputs and 
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outputs (i.e. the training set). Then the learning rule is applied to adjust the parameters of 

the network to match the network output to the target. One of the most fundamental 

algorithms that is used for supervised learning is called back propagation. 

In unsupervised learning, the network is provided unlabeled input data, and there are no 

target outputs available. In this type of learning, the neural network is clustering or 

classifying the input data based on their statistical features, such as the mean, the variance, 

and the standard deviation. Cluster analysis and self-organizing maps are the most 

common types of unsupervised learning. 

Reinforcement learning is similar to unsupervised learning. Yet in reinforcement 

learning, the network algorithm assigns a score. This score is a measure of the network 

performance over some sequence of inputs.   

1.6 Training and Testing the NNs 

A typical deep NN may have thousands or millions of weights and a corresponding number 

of biases. A fraction of the dataset is mostly used to determine the value of these 

parameters. In other words, the network is regulated by changing the input weights so that 

actual outputs (i.e. what we calculated specifically) match the target (i.e. what we want to 

obtain). This fraction of data is called training data. Figure 4 shows the training phase of 

the NNs. For one of two dimensions of input vectors, deriving the parameter's values can 

be performed analytically; but in large-input vectors, this analytical approach does not 

work, which is why the training phase is used. The remaining input data (called testing 

data) is used later to test the network before it is put to use in the real application.  
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Figure 4: Flow Chart of Training Phase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7 Deep Neural Networks 

In neural networks, the term deep refers to the number of layers in that network. In 

particular, the number of hidden layers is what define the deep networks – the number of 

hidden layers characterize the size of the NN. 

In deep networks, there are multiple hidden layers, while in shallow networks only 

one hidden layer is presented. Choosing the optimal size of the NN is implemented by trial 

and error because no analytical approach has been found so far. In addition, no analytical 

solution has been found for determining the number of neurons in each layer. The greater 

the number of hidden layers and neurons in each layer, the more complex tasks the NNs 
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can perform. But this runs a risk of overfitting; it may generalize poorly to future data. 

Moreover, NNs with many neurons can be costly and slow to train.  

 

 

 

1.8 Objective of the Thesis 

In this thesis, a deep NN, such as convolutional neural network (CNN), is used to classify 

thousands of images into seven classes using the transfer learning technique. An 

academically proven pretrained network, such as Alex-Net, is used and modified for 

classifying images that have never been seen before by Alex-Net. This implementation 

was built using MATLAB library.  

1.9 Thesis Outlines 

This thesis is organized as follows: an ordinary neural network is explained in detail in 

Chapter 2. In Chapter 3, different architecture of the NN is described, including the 

recurrent neural network and what is used for. Chapter 4 presents the convolutional neural 

network, which is used in the architecture of this thesis. Ultimately, the experimental 

results of the CNN are presented in chapter 5.  
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Chapter 2 

 Ordinary Neural Networks 

The ordinary neural networks are those that have only one hidden layer, and are sometimes 

referred to as shallow network. The other way around, the recurrent neural network (RNN) 

and the convolutional neural network (CNN) refer to deep networks that have multiple 

hidden layers.  

2.1 Basic Perceptron 

As explained briefly in Chapter 1, the basic perceptron can have a single input vector x of 

any dimensions at a time and provides a single output y. Each input vector is multiplied by 

a weight 𝑤𝑖 and the results are added [9]. The obtained results of the basic neuron are 

subject to a particular function (i.e. Activating Function) before it applies to the output of 

the neuron. This activating function determines the actual potential of the neuron. The 

defining equation of a neuron is shown in (2.1). 
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Figure 5: Separating Line of a Basic Perceptron [10] 

 

𝑓(𝑧) = {
1   𝑖𝑓 𝑏 + ∑ 𝑤𝑖

𝑛
𝑖=1 . 𝑥𝑖 > 0

0  𝑖𝑓 𝑏 + ∑ 𝑤𝑖
𝑛
𝑖=1 . 𝑥𝑖 ≤  0

                                                                        (2.1) 

Based on the dimension of the input data x, the separating boundary of the basic neuron 

could be straight line, a plane, or hyper plane. Figure 5 shows a boundary line of a single 

perceptron.  

2.1.1 Perceptron Learning Rule 

The process of modifying the parameter values (weights and bias) of a neuron is called 

Learning Rule. It is an update procedure that uses a particular algorithm (i.e. training 

algorithm) such as a steepest decent algorithm to find the optimal values of the parameters 

[10]. This optimal value means the error e between the actual output y and the target input 

t of the neuron is zero (2.1), and the neuron separates two classes perfectly. However, it is 

possible to have multiple optimal values that separate two classes perfectly. 

𝑒 = 𝑦 − 𝑡                    (2.2) 
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For the weights, the product of the error and the corresponding input 𝑥 is added with the 

weight. While for the bias, the error is just added. The Equations from (2.3) to (2.5) show 

how parameters are updated. 

𝑤1 ≔ 𝑤1 + 𝑒𝑥1                                                                                                                (2.3) 

𝑤1 ≔ 𝑤1 + 𝑒𝑥1                                                                                                            (2.4) 

𝑏 ≔ 𝑏 + 𝑒                                                                                                                   (2.5) 

When the last input vector is fed to the neuron, the parameter values of the neuron will be 

fixed at the end of training. 

2.2 Single Layer Neural Networks 

In a single layer network, multiple neurons are present rather than one neuron. Each neuron 

is connected to the all components of the input vector. Figure 6 shows that if the dimension 

of the input vector is 𝑅𝑛, then each neuron will have n+1 parameters, where n is the number 

of weights and 1 is the corresponding bias. In general, the parameter value of each neuron 

will have a different value for the other neuron. Yet in other types of deep neural network 

such as CNN, the case is different. 
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Figure 6: A single Layer with 5 Perceptron 

In single-layer, multi-neural network, classification of multiple outputs can be achieved. 

However, these outputs must be linearly separable; otherwise, the error rate will be high. 

This drawback of a single layer neural network can be solved using a multi-layer neural 

network. 

2.3 Multi-Layer Neural Network (MLN) 

In a deep neural network, a typical number of layers may range between two to 15 hidden 

layers (Figure 3). Each neuron in each layer is connected to all outputs of the neurons in 

the previous layer. The network that has two or more layers is more powerful than a single 

hidden layer neural network. The main reason is that MLN can classify convex polygons 

by further processing the linear boundary of the neuron. This process is called function 

approximation [11]. 
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2.3.1 Convex Optimization 

Convex optimization is a subset of optimization researchers used to find the minimum and 

maximum points of in a convex function over a convex set. Convex optimization is utilized 

in NN to find the minimum point that minimizes the error function [12]. This error 

function, and the algorithm used to deal with it, is explained in detail in the following 

sections. The optimality condition of a convex function says if a function 𝑓 is convex and 

differentiable in domain 𝐷 and ∇𝑓(𝑎) = 0, then 𝑓(𝑎) is the global minimum of 𝑓 in 𝐷. 

Before using this theorem, the function must be proven to be convex. There are many 

mathematical ways to prove a function is convex, but this is not the interest of this research. 

2.3.2 Steepest Decent Algorithm 

Steepest decent is a powerful algorithm that is utilized to find the parameter values that 

minimize the error of the function [13]. The maximum rate of change of the scalar function 

𝑓 is given by ∥ ∇𝑓 ∥ and it takes the place of  ∇𝑓. In other words, if  ∇𝑓(𝑥) moves in the 

direction of fastest rate of increase of 𝑓, at point 𝑥, this means −∇𝑓(𝑥) moves in the 

opposite direction with a maximum rate of decrease of 𝑓, at the point 𝑥. Therefore, if an 

arbitrary point 𝑥0 is chosen in the domain of a convex function, and it travels in the 

direction −∇(𝑓), it is most likely the point where ∇𝑓(𝑥) = 0 will be reached. 

The steepest decent algorithm is sensitive to what is called step size. This term 

refers to how far ∇(𝑓) will travel along the convex function to reach the minimal point. A 

large step size may overshoot the optimal point, while a very small step size will result in 

too slow an algorithm. Obtaining acceptable step size depends on the function to be 

optimized and is mostly determined by trial and error. 
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The optimization problem of a non-convex function becomes a very difficult. In 

NN, if the steepest decent algorithm is used on a non-convex function, it may reach the 

local minimum rather than the global minimum. In such a scenario, the steepest decent can 

be run many times in different initial points until the global minimum is reached.  

2.3.3 Error Function 

Most likely, an error in the output of a neural network will be shown at least once because 

the starting point of parameter values in the steepest decent algorithm are initialized 

random values. There are many types of error functions used in NN, but the most common 

one is the square error function [10], and it is defined as in (2.6). 

𝑓𝑒 = ∑ (𝑡(𝑖) − 𝑓𝑜(𝑖))
2𝑚

𝑖=1                                                                                            (2.6) 

𝑡(𝑖) and 𝑓𝑜(𝑖) denote the target output and actual output of the network, respectively, and 

i represents the index of the input data. 

2.3.4 The Back-Propagation algorithm  

Back propagation algorithm is based on the steepest decent algorithm to find the parameter 

values that minimize the prediction error of a neural network. In a multi-layer network, 

back propagation considers the error output of the network as a multivariable function of 

the parameters of the network. For this reason, back propagation assumes the error function 

as convex function. 
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Chapter 3 

Recurrent Neural Network 
 

3.1 Time Delayed Versions of the inputs 

A recurrent neural network (RNN, is a type of deep learning network that has different 

architecture than other networks. The main difference in architecture is that RNN may take 

time-delayed versions of the same input series, due to the different conduction time and 

the length of the input series itself. Moreover, it may have feedback connections from the 

outputs of the later layers to the inputs of the previous layers, which may also lead to time 

delay at the output [14] [15]. A salient feature of RNN is that the output does not only rely 

on the current input, but also a series of earlier inputs. RNNs are suitable for time-series 

data applications, such as language and speech processing, musical analysis and 

processing, and stock market prediction and financial engineering. In other words, RNNs 

take a series vectors as input and provide a single vector as output at any given time. 

 

Figure 7: Pattern Recognizer [10] 
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Figure 7 shows the simplest type of RNN, a single recurrent neural network, that receives 

a stream of binary numbers and provides a binary stream at output, but has no feedback 

connections. The key function of this network is pattern recognition of an input sequence 

[16] [17]. For instance, if a RNN is designed to recognize 00110 pattern at the input, the 

resultant output of the network show 1; otherwise, the output is zero. 

3.2 Sliding Window Technique 

The sliding window technique is used to capture the time delay between the cause of the 

event and the actual event [18]. For instance, if a neural network is designed to predict a 

stock performance that relies on three stock values over last 10 days among 2,000 days' 

data, then the window size will be 8 times 10, where 8 and 10 represent the number of 

inputs and time delays respectively. Hence there would have been 80 inputs, if a 𝑡𝑑𝑖nd 𝑤𝑖 

are collected. This window will slide over the data of 2000 days to predict the stock value 

of the next day. However, the size of the window and segment may increase until less error 

approximation is reached [19]. The process of the sliding window is shown in Figure 8. In 

neural networks, part of the 2000 days' data is used for training while the rest will be used 

for testing. The back propagation of this network is simple because there is no feedback 

connection. 

𝑥1 𝑥2 𝑥3 𝑥4      𝑥10         
𝑥11 𝑥12 𝑥13                

                  

                  

                  

                  

         𝑥70         

 

 

 

𝑥𝑥1 

𝑥𝑥2 
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𝑥() 

Figure 8: The Sliding Window 
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3.3 Neural Network with Feedback Connections 

A recurrent neural network uses feedback connections from one or more of its output 

neurons as an input in selecting the next output [20]. This means the network output 

depends on the current input at time 𝑡 and the past inputs at time 𝑡 − 𝑖. Hence the name, 

recurrent neural networks. Just like in sequential digital circuits, the outputs are fed back 

after time delay. However, applying a back-propagation algorithm with presence of a 

feedback connections becomes difficult because it there is a complex web of dependencies 

between the output of the neurons and the parameters [10]. There are two versions of back-

propagation algorithm for recurrent neural networks, but the focus of this chapter is on one 

called back propagation through time (BPTT).   

 

  𝑥1 𝑥2 𝑥3 𝑥4      𝑥10       

  𝑥11 𝑥12 𝑥13              

                  

                  

                  

                  

           𝑥70       
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3.4 Back Propagation Through Time 

Back propagation through time (BPTT) is perhaps the most commonly used algorithm in 

recurrent neural networks. BPTT can be used for feature classification in recurrent neural 

networks. As per theory, in BPTT algorithm, the threshold of the network and weight 

values are initialized randomly. Then these values are adjusted accordingly, using the 

training samples, to minimize the error function [21]. Figure 9 shows a two-layer neural 

network that has two random time-series inputs and three feedback connections. Before 

applying the BPTT on the network, writing the defining Equation (3.1) will make the 

calculation easier. 

 

Figure 9:A Neural Network with Feed Back Connection [10] 

 

𝑦𝑦(𝑖) = 𝑏𝑏 + 𝑤𝑤1𝑥𝑥1(𝑖) + 𝑤𝑤2𝑥𝑥2(𝑖) + 𝑓𝑤𝑤𝑦𝑦(𝑖 − 1)                                      (3.1) 
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By differentiating both sides with respect to 𝑏𝑏, Equation (3.2) is obtained.  

 

𝑦𝑦(𝑖)

𝜕𝑏𝑏
= 1 + 𝑓𝑤𝑤

𝑦𝑦(𝑖−1)

𝜕𝑏𝑏
                                                                                             (3.2)   

 

This shows that the derivative at time 𝑖 depends mainly on the derivative of the earlier 

time 𝑖 − 1. 

By realization, the partial derivative can be calculated by two methods. First, at each time 

slot, the partial derivative of that time slot can be saved, then used to calculate the partial 

derivative of the nest time slot. Secondly, the partial derivative can be calculated in a 

specific time by applying the recursive relation all the way back to the first time slot. 

 



19 
 

 Chapter 4 

Convolutional Neural Network 

 

4.1 Why ONNs are Not enough  

Although a typical ordinary neural network (ONN) can be used for image classification, it 

becomes insufficient when utilized to classify complex images. For instance, images that 

contain one salient feature are easily classified by ONNs. However, when a salient feature 

of an image occupies only a small part of the overall image, or when the image has complex 

objects, or has many objects or features, the ONN cannot perform classification [10]. For 

this purpose, a convolutional neural network (CNN) is used to focus on multiple features 

in an image, rather than looking at an image as whole. 

4.2 Architecture and Operations of CNN 

A convolutional neural network (CNN) is one of the most common algorithms for deep 

learning with images and video. Like other typical neural networks, a CNN consists of an 

input layer, an output layer, and several hidden layers in between [22] [23]. In CNN, an 

input image is subject to three different operations when it passes through the hidden 

layers: convolution, pooling, and a rectified linear unit (ReLU). In addition, a process 

called normalization is applied in between of these layers. These three operations are 

repeated many times over the hidden layers, where each layer is learning to detect a 

different feature. In Figure 10, a CNN for classifying images into two categories is 

presented. 
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Figure 10: A CNN for Classifying Images into Two Categories 

 

4.2.1 Convolutional Filters 

In engineering, the term convolution refers to moving weighted average. For instance, if 

there are two vectors, as shown in Fig. 11, the multiplication of these two vectors is just 

dot product, and the result will be one value. However, when the second vector is moving 

over the first one and dot product is applied at each move, the result will be a third vector 

in different values. The moving vector (i.e. the second one) is the weight vector that 

functions as the filter of the first vector. For this purpose, it is called a convolutional filter. 

The main objective of a convolutional filter is to extract image features [24]. 
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Figure 11: Convolutional is Moving Weighted Average 

 

In CNN, the input image has many pixels, and each pixel has a specific value [10]. When 

an image is fed to a CNN, this image is considered as a matrix with many values, where 

the pixel values represent the values of this matrix. A convolutional filter is used as second 

matrix in smaller dimensions than the image itself (i.e. the first matrix) for applying dot 

product. By doing so, the entries of the two matrices are multiplied and summed up, then 

the bias is added with the result of the dot product. The value of the dot product will be the 

pixel value in the next layer. The filter now is shifting by a specific amount to the right; 

this shift is called stride. The smaller the stride, the more accurate, but the greater the 

network becomes. Stride is normally set in such a way that the output volume is an integer 

and not a fraction. With each shift, the dot product is applied until the filter slides across 

the whole picture. Finally, another matrix is created in the second layer; this matrix is 
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called the feature map, which has multiple pixel values. Each value represents a specific 

feature on the input image itself [25] [26]. This process is shown in Figure 12.  

 

 

(a) First feature Map extraction 

                                        

                                        

(b) Second feature map extraction 

Figure 12: Two-Dimensional Convolution and Feature 
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The dimension of the feature map in the second layer is smaller than the input image but 

bigger than the convolutional filter. The dimension of the feature map becomes smaller as 

the process continues until it becomes too small. Then the pixel values of the last layer is 

connected to one output neuron by a weight matrix. In this case, the output neuron is fully 

connected to the last feature map. Yet in the early layers of the network, preserving as 

much information about the original input volume is important, to ensure low level features 

can be extracted. To do so, a process called padding is used. For instance, when a 

convolutional filter is applied over an input image, the output size will be smaller than the 

input volume itself. However, if an input image needs to be the same size in the next layer 

and is multiplied by a convolutional filter, then zero padding of specific size is applied to 

the first layer [27]. This would result in an input volume as shown in Figure 13. Zero 

padding pads the input size with zeros around the boarder and is defined by Equation (4.1). 

 

 

Figure 13: Zero Padding of 2 on Input Image 
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The input image can be a two-dimensional grayscale image or a colored image, where the 

three fundamental colors (RGB) represent the third dimension. The dimension of the 

feature map is given by Equation (4.2) to (4.3), where H and W represent the height and 

width of the feature map respectively. F is the filter size, S is the stride, and P is the 

padding.      

Zero padding =   
(𝐹−1)

2
                                                                                               (4.1)  

 𝑊 =
𝑊−𝐹+2𝑃

𝑠
+ 1                                                                                                        (4.2) 

  𝐻 =
𝐻−𝐹+2𝑃

𝑠
+ 1                                                                                                       (4.3)                                                                                                                   

Like ONNs, the weights in CNNs are initialized, and then a back-propagation algorithm is 

used to train the network to find the weights that minimize the error function at the output. 

However, in ONNs, each entry input has a different weight value, while in CNNs multiple 

entries (pixels) could share the same weighted values as shown in Figure 14, [28]. 

 

 

Figure 14: Weights Shared by Many Neurons and Represented as One Neuron in the 

Next Feature Map 
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4.2.2 Rectified Linear Unit (ReLU) 

Moving from one feature map to another is implemented through a rectified linear unit, 

which is the activating function. Rectilinear functions are mostly more effective than other 

activating functions, based on the results that appear when they are utilized in neural 

networks. By using ReLU, the training process becomes faster and more effective by 

mapping negative values in the previous feature map to zero and maintaining positive 

values, as shown in Fig 15. 

 

18 5 13 20 

-6 -25 -7 11 

1 7 10 20 

-3 -16 -8 -8 

 

 

 

4.2.3 Subsampling (Pooling) 

Sub-sampling or pooling refers to a filter that moves across the feature map and picks or 

calculates one value as representative for all numbers under the filter. The resultant feature 

map from sub-sampling will have a smaller dimension than the previous one. There are 

different methods of pooling, and the most common one is max-pooling, where it picks 

the maximum value among the numbers under the filter. The convolutional layers are 

separated by the pooling layers. Figure 16 demonstrates how max-pooling is applied. The 

18 5 13 20 

0 0 0 0 

1 7 10 20 

0 0 0 0 

ReLU 

Feature map 1 Feature map 2 

Figure 15: Activating Function (ReLU) 
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key objective of subsampling or pooling operations is to reduce the number of parameters 

the network needs to learn about, thus reducing the computation cost. Second, it controls 

the overfitting problem. The overfitting term refers to when the weights of a neural 

network is so tuned to the training examples that they cannot be generalized properly 

during the testing phase. A symptom of overfitting is when a small error rate is found in 

the training phase, but in test phase the error rate is much larger.  

 

 

Figure 16: Sub-Sampling (Max-Pooling) 

 

4.2.4 Dropout Layers 

 The main function of the ''dropout'' layer is to reduce the overfitting problem. Simply, a 

random set of the hidden neurons is set to zero. By doing so, these neurons do not 

participate in forward and backward operations, shown in Figure 17. Therefore, every time 

an input image is presented, the neural network takes a different architecture. This 

technique reduces complex co-adaptations of neurons, since a neuron cannot depend on 
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the other neighbor neurons. Therefore, it is obliged to learn more robust features that are 

useful in connection with multiple subsets of the other neurons. This layer is only used 

during the training phase; but in the testing phase, all neurons are used. 

 

 

Figure 17: Dropout model. Left: standard neural network. Right: thinned network with 

dropped out unit 

 

4.3 Training CNNs 

The training phase of a CNN is much harder than the typical ONN, as the input color image 

that has 200 by 300 pixels is fed to a CNN as 200 by 300 by 3 pixels. The third dimension 

represents the primary colors: red, green, and blue. Therefore, three different matrices are 

created for each color matrix, and then all convolutional and subsampling filters are 

applied for the three colors independently. Based on the number of layers, the number of 

input data, and the number of parameters, the training phase in CNN may take between 

hours to several days. For instance, some pretrained CNN such as Alex-Net – which 

consists of 25 layers, has 12 million input images, and uses around 60 million parameters 
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– needed a whole week to classify 1,000 possible categories during the training and testing 

phase. The modified CNN in this thesis needed almost five hours to train the network. 

The learning rate and momentum are the two key parameters that affect how the training 

algorithm updates the weights. As mentioned earlier, the main goal of training is to 

minimize the error or loss function, which is a measure of how badly the network performs 

on the training data. A common way to visualize the training process is to imagine a 

function that has summits and valleys as shown in Figure 18.  

 

 

Figure 18: A general Function 

The height of the ground is the value of the error of loss function. The gradient decent 

algorithm tries to figure out the direction that leads to the steepest point by taking the value 

of the step size as shown in Figure 19. However as explained earlier, if the step size is too 

small, the training process becomes slow and creates a large step size, resulting in 

overshoot.  
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Figure 19: The Step Size of The Training Algorithm 

To overcome the issue of step size, a momentum term is used. Gradient decent with 

momentum tries to stop the jumping around, without having to take very small steps. For 

instance, after one step down toward the direction of the gradient, the next direction does 

not change completely to the new one, but instead the algorithm turns toward that 

direction. The next step is, therefore, in a direction that is a weighted average of the 

previous direction and the new direction. This heightening is set by the momentum option. 

Figure 20 depicts the movement of the momentum term. 

 

 

Figure 20: Momentum Term 
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4.4 CNNs and Graphic Processing Unit (GPUs) 

A graphic processing unit (GPU) can be used to significantly speed up the many 

computations required in deep learning. These computations include processing input 

images, training the deep learning model, storing the trained deep learning model, and 

deployment of the model. Yet why is GPU required in deep learning networks such as 

CNN? During the training phase of a neural network, two operations are performed: 

forward pass and backward pass. In forward pass operation, input is passed through the 

network, then output is obtained, while in backward pass, the weights are updated many 

times based on the error received in the output. In both operations, the dot product is 

applied. Therefore, when a deep learning model is used, the GPU is highly recommended. 

4.5 Alex-Net 

The pre-trained network, Alex-Net, is an example of a convolutional neural network that 

was designed for image classification tasks, as shown in Figure 21, [29]. The network was 

made up of five convolutional layers, max-pooling layers, dropout layers, and three fully 

connected layers. The pre-trained Alex-net, which consists of 25 layers, has 12 million 

input images and uses around 60 million parameters, needed a whole week to classify 

1,000 possible categories during the training and testing phase. The modified Alex-Net in 

this thesis needed almost five hours to train the network using MATLAB library. 
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Figure 21:   Example of CNN of Alex-Net 

 

4.6 Transfer Learning 

Rather than start over from scratch and build a new architecture for a neural network, Alex-

Net can be modified to suit any problem and train it on different categories. The process 

of modifying Alex-Net and retraining it on a new data is called transfer learning, and it is 

a very effective way of addressing many deep learning problems [30] [33]. Three steps are 

required to perform transfer learning: network to train (i.e. network layers), data to train, 

and setting a set of training options. 

First, Alex-Net neural network is modified and used to train. Second, the datasets 

that are used for training in the proposed work are taken from the IMAGENET data store, 

where these datasets are divided into three groups in order to perform classification 

differently. The learning strategy in Alex-Net is supervised learning, which means input 

images are already labeled and the outputs are known. Training options involve applying 

an algorithm that iteratively improves the network's performance to correctly identify the 

training images. This algorithm can be fine-tuned with many parameters, such as how 
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many training images to use at each step (i.e. batch size), the maximum number of 

iterations to take, the learning rate, the momentum, and others. 

The first 22 layers are in Alex-Net are designed for features extractions – hence they are 

fixed – but the modification is implemented in the last three layers. The 23rd is a fully 

connected layer with 1,000 neurons. This layer takes the extracted features from the 

previous layers and maps them on the 1,000 output categories, yet the proposed network 

is modified to classify different numbers of categories [32]. The next layer, the soft max 

layer, turns the raw values for the 1,000 classes into normalized scores so that each value 

can be interpreted as the network's prediction of the probability that the image belongs to 

that class [31]. The last layer then takes these probabilities and returns the most likely 

category as the network's output. 

 

 

Figure 22: CNN of the Proposed Design 
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In the transfer learning technique, only the last three layers are modified, as appears in 

Figure 22. In this approach, the network has feature extraction behavior like the pre-trained 

network, but has not been trained to classify new categories. 

 

 

Chapter 5 

Numerical Result 

Alex-Net is able to classify 1,000 categories; e.g. car, bird, tree. However, this CNN of 

Alex-Net is not able to classify subcategories of cars, birds, trees and so forth. In addition, 

there are many categories that Alex-Net has not been trained with, hence it cannot classify 

them. The first experimental results show how the transfer learning technique is able to 

classify 3,000 images into six subcategories of birds. The second experimental result 

presents classification of three subcategories of mammals, but with fewer images, only 

200. The last experimental result shows the transfer learning technique to classify four 

different categories that have never been seen by Alex-Net.  

5.1 Classifying Multiple Sub-Categories of Birds 

The dataset had seven sub-categories of birds for classification. However, because some 

images of one sub-category of birds had different image artifacts that Alex-Net could not 

deal with, this sub-category was removed from the dataset. The numerical results of 

classifying 3,000 images into six sub-categories were implemented by applying transfer 

learning technique. Therefore, the proposed network architecture had six outputs.  

It is unknown which ratio of training dataset would result in best performance. 

Hence, the number of training dataset changes each time. The ratio of training dataset 
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ranges between 40 and 70 percent, and the remaining dataset is used for testing. Figures 

(23.a) to (23.d) show the performance evaluation of the neural network at classifying 

different sub-categories correctly during training phase. The performance improves from 

94.56 to 95.56 percent as a larger ratio of data is used for training. However, a small dataset 

used for testing may not reflect the performance of the network accurately when it is used 

in real-time applications, even if the accuracy of the network is high in the training phase. 

Therefore, the more data used for training the and testing, the better results will be shown 

by the network in real applications. 

There are two factors that must be considered during the network training: accuracy 

and loss. These two factors give an indication of the network's performance. The accuracy 

is the percentage of the network images that the network classifies correctly. This 

percentage should increase as the training proceeds. However, accuracy does not measure 

how confident the network is about each prediction. Differently, the loss is the measure of 

how far from the perfect prediction the network totaled over the set of training images. 

This measure should decrease toward zero as the training proceeds. These two factors in 

Figures (23.a) to (23.d) reflect how the predictions of the CNN is improving. 
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(a) The ouput record of the network at 40 percent training data. 

 

 

(b) The ouput record of the network at 50 percent training data. 
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(c) The ouput record of the network at 60 percent training data. 

 

 

 

 (d) The ouput record of the network at 70 percent training data. 

Figure 23: The output records of the CNN at different fractions of training set 

 



38 
 

Figure 23 shows how, at each iteration, a subset of the training images, known as a mini-

batch, is used to update the weights. Each iteration utilizes a different mini-batch. As the 

whole training set has been used, that is known as an epoch. The maximum number of 

epochs and the size of the mini-batches are parameters that can be set in the training 

algorithm options. 

Confusion matrix is a measure of the network's confidence in predicting the 

outputs. All off-diagonal elements on the confusion matrix represent the misclassified 

data, while the diagonal elements represent outputs that the network correctly predicted. 

A good classifier will yield a confusion matrix that will look dominantly diagonal. 

The following figures (24.a) to (24.d) show the network's prediction of six 

subcategories of birds in the testing phase. In Figure (24.a) and (2.b), the ratio of data that 

used for testing are 60 percent and 50 percent respectively; both experiments show the 

total accuracy of 93.5 percent. However, Figure (2.c) shows the result of 40 percent of 

testing data. The accuracy decreases to 62 percent. In Figure (24.d), the total accuracy rises 

to 95.5 percent with a ratio of 30 percent of testing data. 
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(a) Confusion Matrix of 40 percent training data 

 

 

(b) Confusion Matrix of 50 percent training data 
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(c) Confusion Matrix of 60 percent training data 

 

 

 

 (d) Confusion Matrix of 70 percent training data 

Figure 24: The classification results of the CNN for six sub-categories of birds 

 

 

 

5.2 Classifying Multiple Sub-Categories of Mammals 

The confusion matrix below shows a classification of three sub-categories of mammals in 

Figure 25. With a total of 600 images, the new network shows a very good performance, 

with total accuracy of 96.3 percent during the testing phase. Even in the training phase, the 

network shows almost the same accuracy. 
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Figure 25: The classification results of the CNN for three sub-categories of mammals 

 

 

5.3 Classifying Multiple New Categories  

In the last experimental result, Figure 26, new categories are used for training the network 

using the transfer learning technique. These new categories have never been recognized 

by Alex-Net, but the network still shows an impressive result, which proves the ability of 
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this technique to address such classification issues. Even though the dataset is small, the 

result shows high performance. 

 

 

Figure 26: The classification results of the CNN for new sub-categories 

 

Chapter 6 

Conclusion  

This report presented three main neural network architectures and the differences between 

each of them in terms of architecture, application, and method of network training and 

testing. However, the key objective of this project was to design a neural network that can 

perform image classification based on a convolutional neural network (CNN). To perform 

this, the pre-trained CNN, Alex-Net, was used by the MATLAB tool kit for saving time; 
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yet Alex-Net was subjected to some modifications to suit the problem presented in this 

project. 

The modification over the pre-trained CNN was implemented by the transfer 

learning technique. This modified CNN managed to perform three different experiments 

of image classifications. First, 3,000 images were used for classifying six sub-categories 

of birds. Secondly, 600 images of mammals were classified into three sub-categories. 

Ultimately, four new categories of images were classified correctly. The used dataset was 

obtained from the ImageNet website, and had never been seen before by Alex-Net. The 

network's performance in the three experiments was satisfying and showed the benefits of 

the transfer learning technique for image classification. 
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