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Abstract 

The behaviour of digital sun-sensors and associated super-resolution algo

rithms was explored. Using calibration data, a method was proposed to 

model the peak width of peaks across the image array. Using this with 

the non-linear least square algorithm gave improved performance across the 

field-of-view. A test was proposed that would measure precision for small 

sensor motions. Also, a method of accounting for local bias error was given. 

The small motion test defined limits at which the sensor detects motion, and 

the precision test gave metrics to measure how well the sensor renders mo

tion. Finally, an extended kalman filter was develped that used sun-vector 

measurements, in addition to a new relative measurement. This was tested 

using a well-defined sensor as well as a generic sensor for which few error 

data were known. Results indicate that relative measurements only improve 

performance if random noise is low. 
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Chapter 1 

Introduction 

Attitude determination and control systems (ADCS) is a critical part of space 

vehicle design. A number of disturbance torques act on any space vehicle, and 

many of these are unpredicatable and change with time. The responsibility 

of the ADCS is to observe the effects of these disturbances and align the 

space vehicle as desired , rejecting the external effects that attempt to change 

the orientation away from this desired state. 

Attitude determination is made using various different types of sensors. 

Although many different phenomena can be observed to determine the atti

tude of the spacecraft, sensors and associated information processing will re

turn one of two things. Some sensors yield an inertial measurement , namely, 

the current alignment of the space vehicle with respect to some external ref

erence. Another class of sensors returns relative measurements, such as the 

angular momentum of the vehicle or the rate of change of the orientation. 

Some sensors, such as star trackers, can operate in both modes , and often 

multiple types of sensors are used for situational redundancy. 

In this section, a general comparison of different attitude determination 

sensors will be performed. These different sensor classes can be used in 

conjunction with sun sensors in different determination systems to deliver 

better overall performance. Once the role of sun sensors with respect to 
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1. INTRODUCTION 

other sensor types is understood, a more in-depth description of how sun 

sensors work will be given. Finally, the objectives of this thesis regarding 

sun sensor improvement will be defined. 

1.1 Attitude Estimation Methods 

A number of different types of sensors are available that yield a measure of 

the space vehicle's orientation. There are a number of ways in which these 

sensors differ. Selection of the appropriate sensor requires an analysis of the 

accuracy requirements of the mission, the cost, mass, and power budgets 

allotted to the system, and the conditions in which the sensors are expected 

to operate. 

In many cases, multiple attitude sensing devices can be used so that atti

tude observability is maintained when certain attitude sensors aren 't usable. 

For example, a sun-sensor cannot be used when the sun is outside the field

of-view, or when the sun is eclipsed - usually by the earth. In this case, 

another sensing method must be available to receive attitude information. 

1.1.1 Gyros and Accelerometers 

Gyros and accelerometers measure the speed of rotation about a particular 

axis. When an initial reference point is given, or is found using other sen

sor types , accelerometer data can be used to update the estimate through 

time. Because no absolute position measurements can be taken, the attitude 

estimates will eventually drift away from the true value in absence of other 

measurement types. Depending on the type of sensor used, this drift can 

vary from 0.003° up to 1 o every hour[Wertz, 1999]. 

2 



1.1. Attitude Estimation Methods 

1.1.2 Horizon Sensors 

Horizon sensors are infrared sensors that detect the heat given off by the 

earth 's atmosphere. This allows the spacecraft to know its orientation rela

tive to the earth-disc. Accuracy for these systems runs from 0.1 o to 0.25°. 

Generally, the use of horizon sesors requires unobstructed view of the earth 

through the field-of-view cone. 

1.1.3 Magnetometers 

Magnetometers are very simple and lightweight devices that yield crude at

titude estimates by detecting the surrounding magnetic field. When this is 

compared with the known earth 's magnetic field, some attitude information 

can be found. Magnetometers are often used in conjunction with higher

precision sensors, such as star or sun sensors, for increased accuracy. 

1.1.4 Star Trackers 

Star sensors are high-precision devices that work by looking at star positions 

within the field-of-view. They can be used for differential tracking, where the 

relative movement of the bright spots in the field of view can be used to derive 

a rotational speed. If uploaded with a star catalogue and more sophisticated 

software, a star sensor can provide a high-accuracy measurement of absolute 

orientations by comparing the picture taken with known star patterns. 

Although they are very high-precision devices, star sensors suffer a num

ber of drawbacks. They are generally heavier than many other sensor types , 

use more power, and are of higher cost. They also can be blinded by a num

ber of things , including the sun, the earth, and other planets - since they 

often cause star pattern identification failures. Nonetheless, star sensors are 

often used when high-precision applications are considered. 

3 



1. INTRODUCTION 

1.1.5 Sun Sensors 

Sun sensors are lightweight, low-cost, low-power devices that offer fairly good 

resolution. Typically, they return the instantaneous sun-vector direction rel

ative to the camera center. This allows us to determine two components 

of the spacecraft orientation. Determination of the third requires another 

detector. 

Highly accurate observations require that the sun sensor have an unob

structed view of the sun. Since they are generally low mass, low cost devices , 

multiple sensors are often mounted around the spacecraft so that observa

tion data can be returned regardless of the spacecraft orientation. However, 

prolonged eclipse periods (usually due to the earth) require that some other 

form of attitude recognition be present. 

1.1.6 Comparison of Systems 

A comparison of the different attitude determination systems is shown in 

Table(1.1). This is designed to give a general overview only - The actual 

accuracy depends on the design of the sensor. 

Table 1.1: ADCS Sensor Comparison(Adapted from [Wertz, 1999]) 

Sensor Accuracy Cost 

Gyros & Accelerometers High High 
Sun Sensors Med. Low 
Star Sensors High High 

Horizon Sensors Med. Med. 
Magnetometers Low Low 

4 



1. 2. Sun Sensor Basics 

1.2 Sun Sensor Basics 

Since the sun itself is easy to distinguish from other stellar objects, it is a 

useful tool for determining orientation. Some sun sensors take single angular 

measurements, others are capable of two. Because the rotations about the 

observed sun-vector are not observable, some other method is required to 

achieve full attitude observability[Godard, 2006). Sun sensors themselves are 

further categorized as analog or digital. 

1.2.1 Analog Sun Sensors 

Analog sun sensors work by comparing the relative signal obtained by rela

tively few cells on a two-dimensional matrix. The amount of light intensity 

received by the cells will be proportional to the off-boresight angle of the sun. 

Digital sensors use a larger number of photosensitive cells in conjunction with 

a patterned mask to generate a large amount of intensity data. Because the 

pattern formed by the mask is known, image processing techniques can be 

used to extract useful information from the raw image. 

1.2.2 Digital Sun Sensors 

All digital sun sensors utilize the same basic operational principles. Incoming 

light from the sun strikes a sensor mask, which will permit some desired light 

pattern through. The mask may be inscribed with slits or holes, depending 

on which form of light is most useful for the sensor type. The light that 

passes through the mask will then fall on a detector, and will be converted 

to an electrical signal. This constitutes the raw image data. Processing 

algorithms will then be employed which will translate this signal into an 

attitude reading. 

Whereas analog sensors use a small number of photosensitive elements, 

each individually responding to the light from a large portion of the field

of-view, digital sun sensors utilize an array of pixels, each responsible for a 
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1. INTRODUCTION 

very small portion of the field of view. As the incoming lights falls across a 

number of these pixels, the overall shape of the intensity data can be very well 

represented when discretized across a larger number of elements. Further, 

the smaller size of these pixels allows for better seperation between light from 

the sun and stray light that falls across the entire array. Because a larger 

amount of intensity data are returned, digital sensors generally require more 

data space and more processing than their analog counterparts. 

The image processing is generally comprised of two steps. First, the 

raw image data are distilled into a small number of important parameters. 

These parameters, used with the sensor and mounting geometry, are then 

used to determine the originating sun vector that caused the image. The 

mathematics required in the latter step are well understood, given some de

fined geometric sensor model. Improving the algorithms that process the raw 

data and better identification of the sensor calibration parameters comprise 

a much more interesting problem. 

1.2.3 Digital Sun Sensor Improvement 

Digital sun sensors utilize a large number of small pixel elements to give 

intensity data. Although resolution of the original signal is fairly high, ex

tremely accurate identification of parameters that identify the original signal 

is desired. Processing algorithms are often susceptible to image noise and 

calibration errors. 

A number of different algorithms are available that can process the raw 

image data. These differ in accuracy, both in common image cases and in 

which 'special cases' the accuracy may be reduced or the algorithm may fail 

entirely. Further, depending on the complexity of the algorithm used, the 

amount of time needed by hardware to process the image may vary. 

Reducing calibration errors requires a very detailed understanding of the 

sensor geometry. Further, the errors that can be introduced from sensor 

mounting must also be accounted for. The calibration procedure is only 
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1.3. Work Objectives 

effective when all contributors are identified and correctly represented math

ematically. Better representation of the sensor calibration parameters can 

then improve overall performance when the sensor is in use. 

1.3 Work Objectives 

The primary objective of this thesis is to derive methods that allow a better 

understanding of digital sun sensor behaviour. New methods will be pre

sented that will better represent the underlying sensor behaviour. Further, 

a new way of using the sensor data will be explored that may result in more 

accurate observations. The thesis will focus on the following objectives: 

1. Modelling the behaviour of digital sun sensors. Correct identification 

of device behaviour yields insights into the limitations of the digital 

sun sensors, and provides tools which can be used to simulate device 

behaviour in the future. 

2. Identifying important calibration parameters. This involves both iden

tification of the parameters which may lead to calibration error and 

correctly modelling the parameter. 

3. Improving sun sensor calibration. Continuous evaluation of calibration 

procedures and strategies that incorporates new parameters and sensor 

models can lead to better performance. 

Here, the objective is not to define the underlying physics that cause a given 

image, but instead will rely on empirical models to describe how the sensor 

will be expected to behave, namely, data sets taken using the sensor will 

provide the insights into the sensor behaviour. 

This paper will explore modelling and simulation of the SS-256 and SS-411 

class sensors from Sinclair Interplanetary. By improving and implementing 

calibration parameters, we hope to improve sensor performance. Modelling 
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1. INTRODUCTION 

the sensor behaviour yields insights into limitations of the sensor, and also 

gives some benchmarks that can be used to test against in the future. 

1.3.1 Thesis Outline 

Background information that leads to the investigations mentioned will be 

presented in Chapter 2. This will include a description of the sensors used in 

the investigation, as well as a survey of the algorithms used to translate image 

data into observation results. Changes to the way the peaks are modelled , 

namely, a new representation of peak width, will be discussed in Chapter 3. 

A method for defining how well a sensor performs is derived and implemented 

in Chapter 4. A new method of taking sensor observations is described in 

Chapter 5. This method will be conducted using both an arbitrary sensor for 

which specific error data are unknown and a sensor for which error data are 

intimately known. Finally, Chapter 6 will conclude the research and provide 

some direction for further research on the topic. 
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Chapter 2 

Background 

Most of the previous work regarding sun sensors involves two important tasks. 

First, there is a desire to improve accuracy in the information derived from a 

sensor image. Second, more accurate calibration is desired so that the phys

ical properties of the sun-sensor can be accurately described. Inaccuracies in 

either of these areas can contribute to error when the sun-sensor is in use. 

In order to fully understand the previous work done in these areas, one 

must first define how the sun-sensor interprets the incoming sun image and 

how this information is displayed. Then, methods that translate that sensor 

data into a sun-vector must be explored. Once these basics are known, dif

ferent methods of varying accuracy will be explored that allow us to find the 

underlying image data, and different ways of representing sensor unknowns 

will be presented. 

2.1 Sun Sensor Optics 

The mathematical models presented here are designed using the physical 

parameters from the Sinclair Interplanetary SS-256 and SS-411 digital sun 

sensors. This is a two-axis digital sun sensor that has a 70-degree arc field-of

view. The sensor mask contains two pairs of orthogonal slits. The detector 
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2. BACKGROUND 

array is a 16 mm-long linear array of 256 pixels, oriented at approximately 

45-degrees to the slits in the mask. 

In order to calculate the incoming sun vector from the displayed image, 

the position of the image array on the image plane needs to be accurately 

described. Fig. (2.2) describes the image plane geometry. 

The sensor works by restricting the incoming light that is able to hit the 

image array via the slits. Because only the light that passes through the slits 

reaches the array plane, there will be four strips of light that reach the image 

plane. Where these intersect with the array itself, they will be resolved into 

'peaks' of light. A graphical representation of the mask and image plane is 

shown in Fig. (2.1). 

An ideal representation of the image array is shown in Fig. (2.2) , however 

the actual image array is subdivided into two 128-pixellength arrays, placed 

lengthwise beside each other. These two arrays have a small gap between 

them, and the individual pixels near the gap are slightly warped. Fig.(2.3) 

shows the two arrays side by side, with the slight pixel warping that occurs 

near the gap. 

Once peak locations are known, ray tracing can be used to calculate the 

incident sun vector. This is done using the internal geometry of the sensor, 

including the relative offset between the array plane and sensor mask, as 

well as the index of refraction. The originating sun-vector with respect to 

the platform frame [Enright , 2008] 80 , and the sun-vector with respect to 

the sensor frame, s are related through the sensor parameters. Given the 

definition of the incident sun-vector 

so= [ :::: ] 
So ,z 

(2.1) 

The components of s are found individually via: 

10 



2.1. Sun Sensor Optics 

Figure 2.1: Geometric Model of Sensor Showing Aperature and Image 
Planes.[Enright, 2008] 

Sx = - 1
- (sox cos ¢ + soy sin ¢) 

nglas s ' ' 

sy = - 1
- (-s0 x sin ¢ + so y cos ¢) 

nglass ' ' 
(2.2) 

s = - y'l - s2 - s 2 
Z X y 

Here, the angle ¢corresponds to a right-handed rotation about the posi

tive z-axis between the sensor and mounting platform. 

Now given the distance between slits of 2Dx and 2Dy for the x- and y

axis slits, respectively, and the distance h between the mask and the center 

of the image plane, the position of the peaks along the array can be derived 

11 



2. BACKGROUND 

, , , , , , 

Px 

, , 
, , , 

X 

z 

Figure 2.2: Geometric Model of the Image Plane. 

Figure 2.3: Image of the Central Array Gap.[Enright, 2008] 
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2.2. Identifying the Image Characteristics 

as (Enright, 2008]: 

_ 1 [- (sxh+szDx) _ ] _ 1 [- (sxh- SzDx) _ ] mxl - 1)1, Px , mx2 - Px 
, cos If/ s z , cos ~ s z 

(2.3) 

m
1
=_1 [-(sxh+szDy)-p] ,m2= .1 [-(sxh-szDy)-p] y r sin ~ S z y y r Sin ~ S z y 

(2.4) 

Although this does relate the sun vector and the peak position on the 

image array, typical sun sensor operation requires that the inverse of these 

relationships must be computed. This can be done by writing the temporary 

quantities (Enright , 2008]: 

(2.5) 

Em= [L'lTsin 'lj; (my! ;my2
) + Pv] (2.6) 

When these are expanded using the definitions in Eq(2.3) and Eq(2.4), 

the following relation can be found: 

Sz =-

The other two components of s are then: 

Am Sx = -hSz 

13 
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2. BACKGROUND 

2.2 Identifying the Image Characteristics 

Light incident on the pixel array varies in a spatially continuous pattern 

across the detector. Peaks resulting from direct light through the mask slits 

are expected to correspond to the high-intensity values on the array, and 

other areas on the array should receive very little light. However, there will 

likely be some noise from stray light, noise from internal reflection, and noise 

from the array itself, all contributing to some variation in the recognized 

intensity. 

Because the mask has four slits creating bands of light on the image plane, 

the expectation is that there will be either three or four seperate peaks that 

will manifest on the image array. Three peaks will show if there is a light

band overlap that occurs on the image array, otherwise there will be four 

peaks. An example of these two cases is shown in Fig.(2.4) On the return of 

image data, the locations of these peaks are found on the image array. At 

this point, only the locations of these peaks are known, but not which mask 

slit as contributed to which peak. The peaks as seen on the image array in 

absence of this extra information are called physical peaks. After the peaks 

on the image have been found , they need to be matched with an originating 

slit in the mask. The slits themselves produce logical peaks based on the 

sun-vector direction. By mapping the logical peaks onto the physical peaks, 

the calculations in Eq(2.5) and Eq(2.6) can be performed. 

It is not enough simply to find the maximum values across the array as 

this results in very low accuracy. We would like to find the peak locations 

to subpixel accuracy. However, because the image peaks are sharply defined, 

simple methods can be adopted which will allow for mapping between the 

physical and logical peaks. Many of the subpixel techniques that will be 

described require that a successful map between peaks has already been 

done. 

In order to detect maxima in the image array, a 5-pixel window is used 

and slides across the array. Here, the central pixel is compared to the two on 
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Figure 2.4: Four-Peak versus Three-Peak Image. 

either side to see if it is a local maximum. The following relation will define 

where the peak maxima are: 

I[n] > I[n- 2], I[n- 1], I[n + 1], I[n + 2] (2.10) 

Doing this creates a set of physical peaks located at points ni along the 

image array. At this point , these should be associated with contributions of 

particular slits in the mask - the logical peaks. The physical peak locations 

found thus far can be stored in a vector P: 

(2.11) 

In most cases, P is of length 4, since most sun-vectors result in a 4-peak 

image. In the overlap case, P will be of length 3, and one of those three 

detected peaks will correspond to two logical peaks. 

The expected spacing resulting from corresponding slit pairs, 2Lx and 

2Ly, can be pre-calculated from the sensor geometry. Recalling that the 

light-bands from the x- and y-axis slits will be perpendicular to those axes 
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as shown in Fig.(2.2), the peak seperation as seen by the image array can be 

calculated by accounting for the angle 1/J: 

~T Dx 
Lx = -

2 
(mx2- mxl) = -:;, 

cos '+" 

~T Dy 
Ly = -

2 
(my2 - my1 ) =----:;: 

cos'+" 

(2.12) 

(2.13) 

An error term can now be defined, <I>, which will describe the error in 

matching logical peaks to the physical peaks detected on the array. This can 

be described mathematically as: 

(2.14) 

By rearranging the peak locations in P and substituting into the relation 

for <I> , errors can be obtained for the assumed peak matching. The arrange

ment of peak locations m that minimize the error <I> will correspond to the 

correct peak matching. 

Although this will yield the logical peak location to the nearest pixel , 

there is a strong desire to improve this to sub-pixel accuracy. There are a 

number of algorithms that can accomplish this to varying degrees of success. 

2.3 Super-Resolution 

Super-resolution techniques are commonly used when attempting to yield 

information from digital sensors. These techniques offer a way of taking 

the raw image data received and obtaining subpixel estimates. For the sun

sensor example, subpixel techniques give the ability to detect the position of 

the maximum of each peak shape to subpixel accuracy. These techniques are 

extremely important in pulling accurate attitude data from digital sensors. 
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2.3. Super-Resolution 

2.3.1 First-Order Centroiding 

First order centroiding is a common method of finding the subpixel point 

location of an extended light source. This method is used extensively with 

star-trackers, where a point source of light is deliberately defocussed such 

that the light gives a 2-d peak shape when it reaches the image plane. 

The methods behind this technique are described by Liebe[Liebe, 2002] 

and Rufino[Rufino and Accardo, 2003]. Given a matrix of intensities I( x, y) , 

a function of the location ( x, y) on the image array, the centroid can by 

performing the following operations: 

L:L:xi(x, y) 
X y 

(2.15) 
Xcm= LLJ(x y) 

X y 

LLYI(x, y) 
X y 

(2.16) 
Y cm= LLI(x y) 

X y 

Typically, the summations are bounded by a region of interest (ROI) that 

contains all of the image data[Rufino and Accardo, 2003]. 

Because this method does not consider the originating image shape or 

require any additional input beyond the image itself, it can be performed 

with no previous knowledge of the illumination pattern. 

2.3.2 Non-Linear Least Squares 

The non-linear least squares (NLSQ) method involves fitting the image data 

to a parameterized model of expected illumination. In this case, the peak 

location is the parameter that is of most interest. 

The NLSQ model will be modified from a Gaussian distribution model of 

the peak shape [Enright, 2008]. This simplified model will reflect the shape 

of the peaks as seen in the image. Given a parameterized equation Imdl that 
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can aprroximate the shape of one of the peaks, we will build a method by 

which to describe the whole image. 

First define the individual peak shape via the equation 

(2.17) 

In this equation, T is a coordinate which maximizes the value of Imdlo at 

T = 0. The value of a 2 is closely tied to the width of the peak and will be 

determined outside the error minimization. 

Because four peaks are expected across the image array, the illumination 

pattern will be defined as follows: 

(2.18) 

We will offset the model equation Imdlo to match the positions of the 

peaks on the image array. This will result in the following definitions: 

A= lmdlo(T- m xl) 

B = 1 mdlo ( T - m x 1 - ¥:T) 
c = Imdlo(T- myl) 

D = Imdlo(T- myl- ¥f) 
(2.19) 

The value of '1fT is a measure of the distance between slits on the sensor 

mask. We expect this to be equal to the distance between the peaks that 

those slits create on the image array. We only have six parameters that must 

be fit to the image. Arranged in a vector, these are 

(2.20) 

The scaling parameters a 1 through a4 describe the amplitude of the peaks 

in the image. The parameters mx1 and my1 describe the position of the peaks 

along the image array. The latter are of most interest to us, however we must 

solve for the former parameters as well. 
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2.3. Super-Resolution 

In order to find the vector -X , the error between the actual and modelled 

image must first be found via: 

Taking the partial derivatives of the image model with respect to the 

model parameters yields the following[Enright, 2008]: 

H>..= (2.22) 

The elements of H>.. are calculated using the corrent value of the model 

parameters, and the array position T. From the definition of H>.. , the values 

of Eq(2.19) become evident: 

!2.!.rrull_ I = A ( T) 
0a1 T 

!2.!.rrull_ I = B ( T ) 
8a2 7 

Ol mdl I = C(T) 
o b1 r 

(2.23) 

!2.!.rrull_ I = D ( T ) 0b2 T 

The remaining two terms are [Enright, 2008]: 

a I mdz [ ( a ) ( a ) J -a-Ir =- b1 -a Imdz(u)lu=r-my 1 + b2 -a Imdz(u)l _ _ -~ = b1G(T)+b2H(T) 
ffiyl U U U-T ffiyl flT 

(2.25) 

This simplifies the definition of H>.., which can now be simply written as: 
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(2.26) 

For each iteration, the parameter update step d).. can be shown as[Enright , 

2008): 

(2.27) 

2.3.3 Linear-Phase 

One method of estimating the peak positions involves using phase-correlation. 

Given a discrete image I 0 [n], it 's frequency domain representation can be 

obtained by performing a discrete Fourier transform (DFT)[Godard and En

right , 2006): 

I[n] DJ;T S[k] (2.28) 

Also used is a D FT property regarding space-domain shifts and their 

representation in the frequency domain[Mitra, 2006): 

(2.29) 

Here, the illumination pattern has been shifted by a samples, which is 

equivalent in the frequency domain to multiplication by a linear-phase term 

[Enright, 2008). 

By defining a reference DFT S0 [n] corresponding to a known zero-shift 

image, it is possible to isolate the exponantial term. Given the DFT of an 

actual shifted image Sa[n], this extraction can be done through the rela

tion[Godard and Enright , 2006) 

w[k] = L (Sa[n]) = L (e-i27Ja) = _ 2nka 
So[n] N 

(2.30) 

A least-squares fine line of w[k] gives us an estimate of the slope term, a. 
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This is related to the peak position estimate m via 

(2.31) 

In order to perform the linear-phase algorithm, the contributions from 

the x and y slits need to be seperated, since the shift of each pair will be 

found seperately using their own reference images, i.e., the image will be 

considered as a superposition of two sub-images from each peak pair. 

I[n] = Ix[n] + Iy[n] + Inoise[n] (2.32) 

Here, Ix and Iy are the contributions from the pairs of slits, and will be 

used to find the shifts via linear-phase. In is the image noise. Further, note 

that Ix and Iy are shifted reference images. They can be described as: 

(2.33) 

(2.34) 

Given an image, the linear-phase algorithm decomposes the image down 

into two seperate sub-images corresponding to contributions by both the 

x- and y-axis sets of peaks(Foroosh, 2002). It does this by estimating the 

positions of individual peaks on the image array. Because the seperation 

between each peak pair is known, the image can be decomposed into the two 

sub-images by considering the approximate locations. 

Some difficulty arises when there is a superposition of peaks. In this in

stance, the overlapping peak location is considered belonging to both subsets 

of images. However, we then use the other non-overlapping peaks to perform 

the linear-phase algorithm. 

21 



2. BACKGROUND 

2.4 Algorithm Testing and Sensor Calibration 

At this point, we need to develop a number of procedures that both test the 

accuracy of the NLSQ and linear-phase algorithms, as well as calibrates the 

sun-sensor. A laboratory setup must be devised that simulates the exposure 

of the sensor to sunlight. Also, a method of finding the calibration parameters 

using the actual data needs to be found. This yields a method of both 

verifying the ability of developed algorithms to accurately predict the sun 

position and creating a repository of images that can be used to test different 

hybrids and modifications to see if performance can be improved. 

2.4.1 Calibration Approach 

A calibration approach was developed that enables us to continually update 

our sensor parameterization and improve our sensor performance. Our ap

proach is comprised of five steps: 

1. Examine sensor operation. 

2. Develop sensor behaviour models based on parameters regarding sensor 

or lab setup. 

3. Calibrate the parameters based on a suite of test images and associ

ated truth model. Allow parameters to fluctuate as we minimize error 

between estimates and truth. 

4. Examine residual error for structure. Systematic error (any non-white 

noise error) is suggestive of unmodelled or poorly modelled system be

haviour. 

5. Repeat. 

These steps are performed until an acceptable performance level has been 

reached. 
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2.4.2 The Sun Sensor Test Setup 

A laboratory setup has been devised that can test for sensor accuracy. The 

sun-sensor itself is mounted onto a three-axis rotary platform. The rotary 

platform is computer-controlled and can be instructed to move to different 

angular positions on all three axes in 0.001-degree increments. Mounting 

offsets can be handled through a calibration procedure, which simplifies the 

mounting process. 

The sun is simulated with a xenon arc-lamp. The projected light is con

strained via an adjustable iris, which is adjusted such that the lamp appears 

to have the same angular diameter as the sun. Fig.(2.5) depicts the setup 

currently used for testing. 

2.4.3 Calibration Image Sets 

Although physical dimensions for the sun-sensor are often given by the man

ufacturer, there is an element of uncertainty associated with the actual sensor 

- often due to manufacturing errors and limitations. Uncertainty in physical 

parameters can have large error effects in identifying the true orientation of 

the spacecraft [Enright, 2007). Thus, we would like to measure these param

eters accurately so that, when confronted with an image, we can minimize 

the error contribution due to incorrect parameterization. 

In order to perform the calibration, we need to all of the parameters we 

would like to investigate. We then capture a number of images corresponding 

to various positions in the field-of-view (FOV) of the sensor. Since we define 

the relative position of the sensor with respect to the incoming sunlight, 

we know what the true sun vector should be. We compare this to the sun 

vectors as determined by the inverse sensor model to find the difference, or 

error, between the two. 

A set of test images must be generated in order to perform the calibration. 

In most cases, approximately 400 points throughout the FOV were used for 
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Rotary 
Platform 

Figure 2.5: Experimental Setup. 

calibration, although in some cases 800 points were used. An algorithm was 

developed so that the desired number of points would be distributed amongst 

a number of user-defined annuli, such that the sampling across the field of 

view was relatively even. 

To do this, consider the total area subtended by the sensor FOV (in 
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steradians). This can be calculated from 

f2tot = 27r ( 1 - COS (max) (2.35) 

Here, the value of (max is the maximum offset of the image set from the 

boresight - usually the FOV limit of 70-degrees. We then divide the total 

area into m annuli, the value of which is defined by the user. The outer 

annulus lies at (max and an additional sample is taken at ( = 0. Given that 

the user has defined m desired annuli, the algorithm subdivided the field

of-view into a number of circular 'ribbons' with the width of those ribbons 

remaining constant. Mathematically, the following relation was satisfied: 

1 
2 ((outer - (inner) + m ((outer - (inner) = (max (2.36) 

Rewritten so that the ribbon width can be explicitly found, this becomes 

( 1 (max 
outer- '-,inner = l + m 

2 

(2.37) 

Because the field of view contains M distributed points, each individual 

ribbon contains a percentage of those points defined by the ratio of its area 

to the total area covered by the image set. Given that each ribbon covers an 

area ni' then 

ni = 27r (cos (i ,inner - cos (i ,outer) (2.38) 

Each individual annulus contains a percentage of the total defined points 

equivalent to the percentage of the total area occupied by the annulus , i.e., 

M 
_ Oi M _ cos (i ,inner - cos (i ,outer M 

i - -- tot - tot 
f2tot 1 -COS (max 

(2.39) 
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2.4.4 Calibration Procedure 

In order to calibrate the sensor parameters so that they are an accurate rep

resention of the physical sensor, we use a minimization routine with regards 

to the error between the two sets of sun vectors. For each true sun-vector 

and it's corresponding estimate, we calculate the angle Berrbetween the two 

vectors via: 

( 
Strue · Sest ) 

Berr =arccos iistruellil sestll (2.40) 

Given an initial guess of the vector of parameters, we define the overall 

error as follows: 

Yerr = L IBerrl (2.41) 

We then use a Matlab built-in minimization routine to find the minimum 

value of this error, and return those parameters which generate this minimum 

value. 

From the previous parameter definitions regarding the sensor geometry, 

there are seven parameters which need to be found through calibration. Com

bined with several others that are fixed, the sensor physical geometry can be 

adequately described using the values depicted in Table(2.1). 

There are also a number of parameters which describe the mounting of the 

sensor to the rotary platform, and describe offsets in the interaction between 

the xenon lamp sun-simulator and the zero-position of the mounted sensor. 

Unlike the sensor-physical parameters, the mounting parameters need to be 

recalculated every time the sensor is re-mounted to the platform. The mount

ing offset that results can be described using the following equation[Enright, 

2008): 

(2.42) 
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Table 2.1: Physical Sensor Paramaterization 

Parameter Description Unit Type Assumed Value 

¢ Array-Mask Offset radian Calibration 0 

1/J Image Array Angle radian Calibration 7r/4 
Px Pixel-0 x -location metre Calibration -5.7 X 10-3 

Py Pixel-0 y-location metre Calibration -5.7 X 10-3 

h Array-Mask Dist. metre Calibration 4.0 X 10-3 

Dx Half-Slit width in x metre Fixed 7.5 x 10-4 

Dy Half-slit width in y metre Fixed 2.5 X 10-4 

nglass Mask Refraction n/ a Fixed 1.51 

' Pixel Width (aka ~T) metre Fixed 63.5 X 10-6 

Here, 771 and 772 describe the angular offset (or tip / tilt offset) of the sensor 

boresight mounting with respect to normal. r1 is a vector from the centre

of-rotation of the rotary platform to the sun (the xenon sun-lamp). r2 is 

a vector from the centre-of-rotation of the rotary platform the the sensor 

origin. K itself is a transformation matrix based on the sensor platform 

rotation kinematics. Because the sun-vector is normalized as 80 , the scale 

of Eq(2.42) can be ignored, simplifying the calibration process. Here, r1,x 1s 

fixed at unity and the other values are calibrated around this. 
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Chapter 3 

Peak Width Correction 

An integral part of being able to identify the sun vector is to be able to 

predict the width of the peaks as they appear on the array. This is important 

when predicting the overall shape of a logical peak, when comparison with 

a physical peak is required. Previously, during the implementation of the 

NLSQ algorithm, the peak width of all logical peaks was assumed constant , 

irrespective of the array position of those peaks. 

In order to investigate how peak width varies across the image array, a 

method of collecting peak width data was required , and a method of predic

tion was needed based on array position. As the investigation was conducted, 

a clear correlation between peak width and array position was found. 

3.1 Peak Shape Theory and Data Collection 

3.1.1 Theory Development 

Describing the peak shape requires that an equation be derived that can be 

used as a model. A Gaussian model was used to fit to the image peaks, similar 

to the implementation used in the NLSQ algorithm. Here, the mathematical 

model used will be: 
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3. PEAK WIDTH CORRECTION 

(3.1) 

In the above equation, A is a scaling factor that will represent the am

plitude of the peak; k is the central value of the peak-shape; the value of 

a- represents the peak width. In this equation, all of these parameters are 

unknown. In the local sense, all of these parameters will need to be found 

for each individual peak. 

The parameter set will then be rendered as: 

P = {a-, k, A} (3.2) 

To do this, an error between the image as modelled by the parameter set 

and the true image is defined. This error is written as: 

2 ( (k - k)2) 
E = L (I [k] - Imdl [k]) = L I[k] - Ae-~ 

k k 

(3.3) 

Values of the parameter set P are then chosen such that this error is 

minimized. 

3.1.2 Width Data Collection 

To examine how the width of the image peaks varies across the image array, 

a calibration image was taken. For each of these images, the physical peaks 

were associated with slits in the mask, so that the peak width variation could 

be associated directly with the peaks cast by each slit. Overlapping peaks 

were removed from the set to improve fitting accuracy. 

For each non-overlapping peak, an individual curve based on the Gaussian 

shape was fitted to the image data. An example of this fit done to the curve 

in Fig.(??) is shown in Fig. (3.1). When the values of k and a- were compared 

from the fit of the model in Eq(3.1), trends emerged in the data. 

For each of the images in the calibration set, the location and peak width 
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Figure 3.1: Image Peak with Curve Fit. 

was found for each logical peak. When the peak width was plotted against the 

location, the size of the peak width term seemed to follow an even function. 

An example of this behaviour can be seen in the raw data from a sigle logical 

peak in Fig.(3.2). This indicated that better performance may be acquired 

by allowing the algorithm to vary the peak shape in accordance with this 

data. For each sensor then, a curve fit was which described peak width as a 

function of array location wcas found. 
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Figure 3.2: Fitted Peak Width by Array Position. 

3.2 Relating Peak Width to Array Position 

3.2.1 Fit Equation Development 

Given that the array position has a clear effect on the peak width, a method 

of describing how these two quantities relate was needed. In this case, a 

theoretical development of this relationship was not desired, and instead 

empirical techniques were employed. 

From trial and error, it was found that an even, fourth-order polynomial 

was closest to the true behaviour of the peak widths with respect to the array 

position. It was decided that the trend would be described via the equation: 

CJ fit =A (x- xa) 4 + B (x- x0 )
2 + C (3.4) 

Here, x describes the array position, x 0 is the position of the minimum 

value of the curve, and A through C are scaling constants to be fitted. After 
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doing peak fits for individual peaks in all the images in the set and all peak 

widths cast by a single logical peak were compared to the array position, a 

fit was done so that the peak width could later be predicted based on the 

array position. To do the minimization, the parameter set was defined as 

the scaling constants and the minimum value position, i.e. , the parameter 

set was 

P ={A, B, C, x0 } (3.5) 

To perform the minimization, an error function needed to be defined be

tween the actual peak width data and the function that is needed to describe 

it. Again, a squared-error approach was used, entailing the following error 

function: 

E = L (afiti - atrueJ
2 = L {[A (xi - xo)

4 + B (xi - xo)
2 + c]- atruei } 

i i 

(3.6) 

This error function was minimized to find the parameter set P. This curve 

fit was performed twice - one for each of the x- and y-axis pairs of peaks. 

We will treat the corresponding second slit of a logical pair as a constant 

shift from the first, as was done in Eq(2.19). Mathematically, the following 

relation is expected: 

atheo,x1 (k, ko) = atheo,x2 (k, ko + 2Lx) (3.7) 

atheo,y1 (k, ko) = atheo,x2 (k, ko + 2Lx) (3.8) 

Since we only need to perform two curve fits, only two sets of parameters for 

two of the logical peaks need to be passed to future algorithms. 
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Figure 3.3: Peak Width by Array Position with Curve Fit. 

3.2.2 Curve Fit Results 

Given the image data, values of peak width as well as the peak position was 

found. An example of this was shown previously in Fig.(3.2). Given the 

example peak width set in Fig.(3.2), a curve was fitted to the data. The 

results for each parameter are summarized in Table(3.1). Plotting the curve 

in Eq3.4 with these values yields Fig.(3.3). 

Table 3.1: Fourth-Order Curve Fit Parameters 
Parameter Value 

A 1.30 X 10-8 

B 7.24 X 10-5 

c 0.974 
x0 120.42 
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3.3 Calibration Revision 

A number of revisions were made to the calibration parameters presented in 

Table(2.1). During the width correction work, many revisions were made to 

the initial parameter set. These changes will be outlined here. 

3.3.1 Index of Refraction 

In the initial parameter set, the index of refraction of the mask was assumed 

to be 1.51. This was converted to part of the calibration parameter set 

because it is crucial in relating peak position to incident sun-vectors. 

If the index of refraction is incorrect, the change in direction of the inci

dent light passing through the mask will be incorrectly calculated in Eq(2.2). 

This can be a significant error when we are attempting to convert peak po

sitions on the image array to incident sun vectors. 

3.3.2 Longitudinal Gap 

The initial parameter set treats the array as a contiguous line of 256 pixels. 

The array itself is actually comprised of two linear arrays of 128 pixels placed 

end-to-end, and contains a small gap in between the two. This was shown 

previously in Fig.(2.3). 

The calibration set was updated to include a longitudinal gap term. This 

parameter defines the distance between the two linear arrays, and is taken 

in line with the two linear arrays, as shown in Fig.(3.4). 

The presence of a longitudinal gap needs to be accounted for when con

verting to a measured distance along the array. Given Gas the longitudinal 

gap length, we update our calculations as follows: 

m < 127 

m > 127 
(3.9) 



3. PEAK WIDTH CORRECTION 

A longitudinal gap has effects on pairs of peaks that straddle the gap. We 

assume that the distance between two peaks is fixed, as shown in Eq(2.19). 

If a peak pair straddles the gap, we must add G to the distance between 

those peaks. 

3.3.3 Transverse Gap 

The transverse gap accounts for the distance between the two linear arrays 

that is perpendicular to the line of the arrays. The definition of the longitu

dinal gap is also shown in Fig.(3.4). 

This has a similar effect on peak positions as the longitudinal gap. When 

converting to measured distances along the array, we account for the tran

verse gap as follows: 

{

m{, 

T= mr+f(G, Gr) 

128-pixellinear array 

Longitudinal 
Gap 

Transverse 

m < 127 

m > 128 
(3.10) 

Gap j 
~----1-2-8-p-ix-el-lin_e_ar_ar_ra_y ----~~ -

Figure 3.4: Definition of Longitudinal and Transverse Gaps. 

3.4 Effects on Algorithm Performance 

Because there is now some accounting for the chages in peak width across 

the array, it is expected that the results should improve where that quantity 
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is required, namely, in the NLSQ implementation. From before, the base 

image model is defined using the peak width in Eq(3.11), i.e., the equation 

(3.11) 

When a variable value of CJ is used instead of a static value, it is expected 

that the overall error should decrease. 

Given a static value of CJ, the sun vector estimates are compared to the 

true sun vectors across the field of view. A plot of calibration error across the 

field-of-view is shown in Fig.(3.5). Here, the error grows as the sun-vector 

moves towards the outer edge of the field-of-view. Of particular note is a 

region of extremely high error on the upper right side of the field of view. 
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Figure 3.5: FOV Error Plot with No Width Correction (in Radians). 

Conversely, a FOV error plot after width correction is shown in Fig.(3.6). 

When peak width correction is used, the error on the upper-right side of the 

field-of-view is much better resolved. There is also less differentiation in the 
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Figure 3.6: FOV Error Plot with Width Correction (in Radians). 

error profile going from the central region towards the outside. Overall, the 

algorithm is more consistent in it's ability to compute the sun-vector. 

Integrating the changes that have been made to the calibration parame

terization, we can see the evolution of the calibration error as the parameter

ization has changed. To illustrate the effects of the changes to calibration, a 

single calibration image set was used. This image set was used to calibrate an 

SS-411 sensor using progressively better calibration parameterizations. The 

effects of these changes to calibration are summarized in Table(3.2). 

As the index of refraction and the gap parameterizations are added, there 

is a clear improvement in the mean error across the calibration set. The most 

notable improvement occurs when attention is given to the gap between the 

two parts of the linear array. Here, the error decreases by 35%. With the 

addition of the quartic width fit, the error drops by a small amount - 2.5% 

- compared to the same calibration routine using a constant value for a. 
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3.5. Summary 

Table 3.2: Calibration Summary 

Params Base Refraction Long. Trans. Width 
Gap Gap Fit 

Px X X X X X 

Py X X X X X 

¢ X X X X X 

7/J X X X X X 

h X X X X X 

r1 X X X X X 

f2 X X X X X 

tip / tilt X X X X X 

nglass 1.51 X X X X 

G X X X 

Gr X X 

(J 1.15 1.15 1.15 1.15 Quartic 
Fit 

Mean Err. (mrad) 20.22 20.21 1.304 1.293 1.260 

3.5 Summary 

A method of relating the width of image peaks to the position of those peaks 

along the array was given. When this data was plotted, a trend in the data 

was seen. A fourth-order function was fitted to this data using least-squares 

error minimization techniques. Using this function with the NLSQ algorithm 

gave a slightly more consistent error performance. 

The mean error of the NLSQ calibration using width data was compared 

to the same calibration with a constant width. There was a drop in mean 

error in radians of 2.5% when the width correction was included. This in

dicates that using the width correction step can lead to improved sensor 

performance. 
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Chapter 4 

Precision Testing 

Given a single sun-vector estimate, the error can be described as coming from 

two different sources. One source is an image-to-image error, due to limits 

in the sensor optics. We expect the image-to-image error to be a zero-mean 

random error. The other is error source is a bias term. Much of this term 

is due to sensor modelling inaccuracies. The purpose of the precision test 

is twofold. First, we would like to define the minimum angular motion that 

must take place before any motion can be recognized. The second goal of this 

section is to define some metric that describes how well the sensor registers 

relative motion between two points. When these points are close, much of 

the slowly-varying spatial bias should be eliminated. 

Precision test results will be based on the repeatability of the sensor 

images. This means precision test data is specific to individual sensors -

susceptibility to outside noise and dark-current noise vary from sensor to 

sensor, and these factors have a role in the precision test outcome. One error 

contributor that is particular to the test setup is errors in the motion of the 

test platform. Because the positioning of the test platform at a given point 

is also subject to error, this will have an effect on the precision data as well. 

A number of steps are involved in performing the precision test. The first 

step in performing the precision test will be to compare a set of defined true 
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4. PRECISION TESTING 

sun vectors to a set of estimates in order to find a bias error around a point 

of interest. By shifting the estimates by this amount, much of the slowly

varying spatial bias can be seperated out of the error term. This will ensure 

that, for the remainder of the precision test, the estimation error will be due 

to sensor noise, algorithm limitations, and high-frequency bias variations. 

Further, it better allows for the assumption that the expected estimate is 

equivalent to the true value for sun-vectors where this correction has taken 

place. 

It is expected that a number of images, when taken at a single point , 

will have some differences due to a number of noise sources. When these 

images are processed and translated into a sun vector, these estimates will 

differ by some small amount. By accounting for the bias error, the amount 

of estimation error caused by the random noise alone can be isolated. This 

will define the limits at which the sensor can resolve motion - and yields a 

method to find this limit. 

The precision test also gives a sense of how well the the sensor can track 

small motions. Both the overall mean error and the relative error are of 

interest here. While the mean error will give a sense of how well the sensor 

performs in the absolute sense, the relative error tells how well the sensor 

tracks the true motion of the sensor, i.e., the smaller the relative error, the 

better the actual motion of the sensor is tracked. 

4.1 Motion Limit 

One thing that can limit the ability of the sun sensor to differentiate between 

two near points is the sensitivity of the detector to motion. Given the same 

target point, the sensor can return multiple slightly different images. This 

is due to small limits in the rotation platform, which exists only in the test 

situation, and slight varying ambient light conditions plus dark-current noise, 

which can exist in practice. Thus, even with perfect algorithms, a range 
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4.1. Motion Limit 

of sun vectors would be returned due to uncertainty in the measurement. 

Detectability of motion implies that a returned estimate offset is due to 

actual sensor motion, versus an offset caused by internal sensor noise. 

4.1.1 Motion Limit Theory 

In order to perform the motion limit test, a number of data sets must be 

gathered so that comparison can be done between the zero-motion set - a set 

of estimates taken with the same zero-shift true sun vector for all - versus a 

set where the sun vector has been shifted by some amount. The comparison 

is done using a 1-sided mean comparison test. 

To do this , we consider offset angle e as the random variable. This angle 

between a true sun-vector and it's corresponding estimate is found via: 

( 
Strue · Sest ) 

e = arccos llstrue II II Sest II ( 4.1) 

The mean of the central-point set is forced to be an offset angle of zero. 

This allows for the computation of the following parameters for the two sets: 

- 2 L ( Bo,i - Bo) 
2 

B0 = 0 · a 0 = ---'---------'--
' No -1 

(4.2) 

- L:Bk,i 2 L:(ek,i -ek)
2 

ek = ~; ak = Nk- 1 (4.3) 

The null hypothesis will be that the two mean are equal, namely: 

Ho: J.-Lo = /-lk (4.4) 

In order to perform the hypothesis test - which in this case, requires the 

student-t distribution - the degrees of freedom of the system needs to be 

found. This can be done using the following relation: 
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4. PRECISION TESTING 

(4.5) 

The data-weighted t value can be found using the means and variances 

pertaining to the two data sets by performing the following calculation: 

(4.6) 

Then, a confidence level is found , a, based on the data-weighted t value 

and the system degrees of freedom. This is done via the following relation: 

_ _ jt r ( 1/!1
) 1 1 

a = F ( t I v) = ( v) ;,;;;; 
2 

!±l dt 
- oo f 2 y V7f (1 + ~) 2 

(4.7) 

Based on a confidence level at which to reject the null hypothesis, a , a 

comparison between the corresponding critical t value and the data-weighted 

t value from Eq( 4.6) can be made. To find the critical value , the following 

calculation is performed - essentially the inverse of Eq ( 4. 7): 

tcrit = p - l (aiv) (4.8) 

By comparing the two values of t, the null hypothesis can either be con

firmed or rejected: 

Accept Ho ~ t ~ tcrit 
R ej ect Ho ~ t > tcrit 

(4.9) 

If the null hypothesis is rejected , then changes in the estimates can be 

attributed to actual motion of the sensor. If accepted , then the estimate 

offsets are considered to be caused by noise and image artefacts- not due to 

actual sensor motion. 
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4.2. Calibration Offsets and the Best Rotation Quaternion 

4.1.2 Motion Limit Results 

Testing for minimum detectable motion requires that multiple data sets be 

gathered. The first of these is of a number of images taken at the same 

point. These will return a number of sun-vector estimates centered around 

a point. The results from this set will be the reference against which all of 

the others will be compared. Other data sets will be taken in annular rings 

surrounding the reference point at a small distance. Each of these data sets 

will be compared to the reference set to determine whether or not the motion 

can be recognized, statistically, versus variance due to repeatibility error. 

For each annulus, a confidence level that motion has occurred was cal

culated. This value indicates the probability that detected motion is due to 

actual sensor motion instead of random measurement error. We note that 

the confidence level increases rapidly, approaching 100% at an offset angle of 

4 x 10-3 radians. 

The motion limit test was run for the data set shown in Fig.(4.3). For 

the purposes of this test, we use a confidence level of 95%. The values of 

a found for the data sets in increasing order of angular offset are shown in 

Fig. ( 4.1). From the original data set , the first angular offset at which one 

can be confident that motion has occurred is at 2.62 x 10- 4 radians. For the 

sensor, this means that when successive estimates are offset by less than this 

amount, one cannot be sure whether this is a result of actual sensor motion 

or simply a result of sensor noise. 

4.2 Calibration Offsets and the Best Rotation 

Quaternion 

Before precision testing can be performed, attention must be given to errors 

due to calibration. In order to perform accurate precision testing, the error 

must be due to repeatibility error alone, and the estimates should not have 
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Figure 4.1: Confidence that Motion has Occurred. 

a bias associated with the error term. As calibration error introduces a bias 

term, a method needs to be developed to remove these errors. An example 

of the difference between the true sun vectors and the estimates is given in 

Fig.(4.2). From the figure , we notice that the estimate vectors both have a 

random noise component as well as an overall bias error relative to the true 

sun-vectors. 

In order to eliminate the bias in the small test area, a rotation quaternion 

will be found that maps the estimate field of points to the true sun vectors. 

4.2.1 Quaternion Mapping Theory 

The best rotation quaternion is used to relate a group of estimates (i.e., those 

given by the NLSQ or linear-phase algorithms based on actual sensor data) 

to those that yield a minimum total angular error when compared to the 

theoretical results. This is used to remove overall bias error in the data. 
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Figure 4.2: Difference Between Estimated and True Sun Vectors Before Bias 
Reduction. 

The method used to find the desired quaternion is that suggested by Besl 

and McKay[Besl and McKay, 1992], which finds a quaternion that maps an 

altered set of data points onto a second set such that the error is minimized 

in the least-squares sense. 

The quaternion is defined as a four-element vector if= [ q8 qx qy qz ]T subject 

to the constraints q8 2:: 0 and q~ + q; + q; + q; = 1[Hughes, 2004][Horn, 1987]. 

The two sets of data points under consideration are the set of N measured 

sun-vectors P = {Pi} = { Sest}, also known as the estimates, and the set of 

corresponding true sun vectors X= {xi} = {st}· Given some rotation ma-

trix R defined from the above quaternion, a scalar error (or cost) function 

can be defined by relating the two data sets[Besl and McKay, 1992]: 

f(ij) = ~ L IIXi - RPdl (4.10) 

The centroids of the data sets P and X can be found using a first-moment 

averaging of the vector elements across the set - namely, through the two 

relations 

-+ 1 '"""' J-Lp = N L......t Pi ( 4.11) 
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4. PRECISION TESTING 

--+ 1 "'""' /-LX= N ~Xi (4.12) 

The cross-covariance matrix L:px can then be defined that relates the 

estimated and true sun vectors. 

(4.13) 

The cross-covariance matrix defined in Eq(4.13) allows us to form a cor

responding 3x3 anti-symmetric matrix A via: 

A= L:px - L:~x (4.14) 

By extracting three elements from the anti-symmetric matrix A, a column 

vector Ll. = [ A23 A31 A12 J T can be formed. This column vector, in 

conjunction with the skew-symmetric matrix, L:px, allows us to define a 4x4 

matrix Q (L:px )[Besl and McKay, 1992]: 

(4.15) 

The desired rotation quaternion is the eigenvector of the matrix Eq( 4.15) 

which corresponds to the maximum eigenvalue. 

4.2.2 Applying the Quaternion 

The purpose in finding the best-rotation quaternion is to eliminate any large

scale bias errors in the data set. The method shown here is designed to relate 

two data sets in such a way that the magnitude of the error between them 

is minimized[Besl and McKay, 1992]. 

The quaternion itself is decomposed into angular and vector parts as 

follows: 
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4.2. Calibration Offsets and the Best Rotation Quaternion 

Related to this are two useful quantities, the vector a and the angle ¢, 

which can be derived directly from the quaternion by using the following 

relations: 

¢ = 2 arccos( q0 ) ( 4.16) 

-+ if a=---
sin( ¢/2) 

( 4.17) 

These two quantities, once known, can be used to construct a rotation 

matrix that will correct the sun-vector estimates for overall bias. This rota

tion matrix can be calculated via the following relation: 

R = cos(¢ )I+ cos(¢ )aar +sin(¢ )ax (4.18) 

In the above equation, ax is the skew-symmetric matrix created using the 

elements in a. This rotation matrix is then used to modify the individual 

estimates in the annulus, using the multiplication 

Best carr = Rsest 
' 

( 4.19) 

These annuli were then individually corrected by using a best-rotation 

quaternion. The true sun-vectors in each annulus are subjected to a constant 

offset p. An example of a pre-corrected set of data points is shown in Fig. ( 4.2) 

and the corresponding corrected estimates in Fig.(4.3). 

When this correction is applied on the data set shown in Fig. ( 4.2), much 

of the bias that occurs in the area is removed. A corrected version of the 

data set is shown in Fig.(4.3). 

Because the calibration bias is no longer an issue, this changes the ways 

in which the two data sets can be treated. Now, the corrected estimate 
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Figure 4.3: Difference Between Estimated and True Sun Vectors After Bias 
Removal. 

offsets can be treated as random variables with a mean of zero, such that the 

zero-noise result would in fact be equal to the true sun-vector. 

4.3 Precision 

Once it has been established that true motion has been recognized, it would 

be useful to define how well the motion itself is detected. Given that motion 

has occurred between two points, the precision test is designed to give a 

comparison of the error in motion detection relative to the actual motion of 

the sensor. 

The motivation for performing this test is to see how the causes of mea

surement error relate when the sensor is subject to small motions. Calibration 

error results indicate that the overall error does change gradually across the 

field of view, but is relatively constant when the scope is limited to a small 

area of interest. A typical calibration error level plot is shown in Fig.(4.4). 

As the region of interest becomes larger, the error due to calibration bias 

increases. 

It is also important to note that relative error regarding the noise-induced 
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Figure 4.4: Typical FOV Error Plot (in Radians). 

error relative to the actual sensor motion may be quite high when the angle 

of motion is small, due simply to the relatively small motion. The purpose 

of the precision test is to find how these two effects relate. 

4.3.1 Definitions in the Precision Test 

There are many different metrics that can be defined for the purpose of 

measuring precision. Here, variants of angular error calculations were used 

for comparing data sets. One of the first tasks required is to find the angular 

error between the corrected sun vector estimates and the true sun vectors, 

which can be found via the following relation: 

So · Sest 

( 

;!I' _. ) 

Berr = acos llsollllsestll ( 4.20) 

This yields a scalar representation of error for each point. This can be 
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4. PRECISION TESTING 

used alongside the true sun vectors to get a sense of error magnitudes as well 

as the variation of those error magnitudes across a field of points. 

Our study used two different metrics for the calculation of local precision. 

First, a root-mean squared (RMS) angular error can be calculated for each 

annulus, which will give a sense of the angular error as the central offset 

increases. Given a length-n data set of errors X= {x1, x2 ... Xn}, the RMS 

value is found via 

-~ 
Erms- y-:;;, LXi ( 4.21) 

For our purposes, the data set was a vector of angular errors. This yields 

a scalar measure of error for a given data group. 

The second type of metric used was a relative measure of angular error 

per unit offset, namely, the angular error encountered divided by the actual 

motion of the sensor. This is expressed as: 

Erms 
Erel = -;-

':,true 

4.3.2 Precision Test Results 

( 4.22) 

A number of data sets were created in annular rings surrounding a central 

point. The intervals between each of these annular rings was broken down 

into three sections. The first of these sections was a series of annular rings 

taken in 2.5 x 10-3 degree intervals from the centre to a maximum of 0.1 

degrees. The second section of rings was taken at 0.1 degree intervals out 

to a maximum of 1-degree offset, and the third at 1-degree intervals out to 

a maximum of 10 degrees. Each of these annular rings contained 20 points 

spread equally around the ring. 

Plotting the RMS angular error versus the angular offset yields Fig. ( 4. 5) 

and Fig. ( 4.6). From these figures, it is noted that the RMS error increases 

as the angular offset goes to 0.2 x 10-3radians, at which point it levels off. 
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4.3. Precision 

At an offset of 1.2 x 10-3 radians , the error begins to rise again. Further, as 

the angular offset becomes extremely large, the RMS angular error stabilizes 

at approximately 0.9 x 10-3 radians, as shown in Fig.(4.6). 
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Figure 4.5: Local Region RMS Error. 
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Figure 4.6: Far Field RMS Error. 

It was expected that the RMS angular error would increase as the offset 

angle increased. This is because the spatial bias difference increases with the 

angle between the two vectors. At the intervals where absolute RMS error 

remains constant, however, the spatial bias error remains constant in those 

regions of angular offset. 
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4. PRECISION TESTING 

Dividing the RMS error by the angular offset yields a relative measure of 

the estimation error. This relative measure is designed to get a sense of how 

precisely small sensor motions can be registered. From the RMS error plot 

in Fig. ( 4.5), it was noted that the RMS error remained relatively constant 

going from 0.2 x 10-3 radians to 1.2 x 10-3 radians, so it is expected that the 

normalized offset will be seen to decrease through that stage. The plot of the 

normalized error in Fig. ( 4. 7) shows a steep drop that minimizes at approxi

mately 1.2 x 10-3 radians. This is more pronounced when compared against 

the behaviour as the angular offset grows even larger, shown in Fig.(4.8). 
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Figure 4.7: Local Region Normalized RMS Error. 

As the offset becomes large, the offset-normalized error decreases simply 

due to this change. In the small-offset region, however, there is a distinct 

minimum that occurs. For this particular region of the field-of-view, this 

range corresponds to a region where the change in calibration bias is still 

very small, and the ability of the sensor to resolve small motions correctly is 

fairly high. 

From the absolute RMS error metric and the normalized error metric , we 

can draw some important conclusions regarding the error behaviour. Where 

the normalized error is small, the sensor is good at resolving the sensor 

motion. This is because the spatially varying bias changes very slowly. 
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4.4 Summary 

4.4. Summary 

The purpose of the prec1s1on test was to provide a method of testing for 

sensor behaviour when subject to small motions. An algorithm was provided 

that eliminates calibration bias, which allows for the treatment of error as a 

zero-mean noise term once the bias correction has been made. 

After bias correction, two tests were possible. First, a motion limit test 

was performed which defines the small motion limit at which the sensor is 

still able to register motion. Second, a number of metrics were developed 

that can be used to quantify precision at a particular point in the field-of

view. These two methods were demonstrated at a point and results of those 

tests were shown. 

The motion limit test indicated that the smallest angular motion that 

can be observed by the sensor is 2.62 x 10-4 radians. If the sensor observes 

a motion less than this amount, we do not know whether the change is due 

to actual motion or to internal measurement error. 

The precision test showed that the offset-normalized error minimizes at 

1.2 x 10-3 radians. This indicates that the measurement of relative motion 

is extremely good here. Even though smaller motion can be recognized, 

55 



4. PRECISION TESTING 

as the motion limit test showed, the sensor measures motion poorly until 

approximately 1 x 103 radians. As the offset angle grows large, the ability of 

the sensor to measure relative motion continues to improve. 
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Chapter 5 

Filtering for Rate Sensing 

In chapter 4, testing and calibration proved that results in a small, defined 

area had an overall bias, namely, the estimated sun vectors were skewed from 

the true sun vectors by a near-constant vector - so long as the field-of-view 

was limited to a small area. The purpose of this section is to explore how this 

recognition can be used to advantage, i.e., how one can account for this local 

bias to give better attitude estimation results. By using rate measurements, 

we hope to improve overall sensor performance. 

Here, the types of observation are broken up into two parts. First , the 

classical single sun-vector measurement will be used. This, along with its 

associated error, will yield some attitude estimates over a period of time 

using a tumbling satellite. The second type of observation will further include 

a relative measurement, with its associated relative error. When relative 

measurements are taken, much of the slow spatially-varying bias error is 

removed. In this chapter, we use this to attempt to improve our attitude 

measurements. 

The attitude dynamics themselves are inherently nonlinear, so an ex

tended kalman filter (EKF) will be used to combine the observations with 

the expected attitude states. First, we will define the filter terms and the 

methods used to propagate the filter. Then the system itself will be described 
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using these filter terms, and initializations will be discussed. Using different 

combinations of the two types of observations, the performance of the filter 

will be analyzed and conclusions will be drawn based on this performance. 

We will perform these simulations using two classes of sensors. The first 

of these will be a generic sensor for which no bias data will be used. This 

sensor will have a higher random error, and no spatially-varying bias. The 

second type of sensor will be based on the Sinclair Interplanetary sensors 

used in our calibration work. Here, the random error will be less than that 

of the generic sensor, but spatially-varying bias will be present. We will test 

the effects of the two types of observations on both of these sensors, resulting 

in a total of four simulations. 

5.1 Filter Formulation 

The EKF is designed to integrate observations made with propagated atti

tude states. Each observation updates the current state estimate. Based on 

the current observation and the filter history, a new gain is calculated at each 

time step that relates the amount of shift toward the observed state. 

The EKF is designed specifically to handle nonlinear systems. Many of 

the terms in the filter equations are implicitly a function of the current state. 

Furthermore, many of the terms inside the filter equations are functions of 

time and need to be reevaluated at each filter step. The filter itself can be 

seperated into two different parts - a continuous propagation of the state and 

covariance estimates with time, and a correction for the state and covariance 

that occurs with each new observation. 

First, a number of matrices must be defined that are components of the 

filter. The first step in doing this is to define the state vector x and the 

system equation vector f such that the following continuous time relation is 

true[Stengel, 1994]: 
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x(t) = f[x(t), u(t), t] + ~f[x(t), w(t), t] (5.1) 

Here, u defines the known, applied forces, and w the unknown distur

bances. Essentially, f defines those aspects of the system propagation, and 

~f those aspects that aren't known. 

In addition, another vector h needs to be defined, which is the expected 

observation at each observation time step based upon the current state, i.e., 

the following variable needs to be defined: 

Z(t) = h[x(t), t] (5.2) 

where 

h[x(t) , t] = Z[f(t) , ~f(t)] = Z[x(t), u(t), w(t), t] ¢:::;> ~f = 0 (5.3) 

Defining the system equations allows one to define other terms which 

will be important to the filter. There are four matrices that we calculate in 

real-time that depend on the values off and h: 

aj 
F(t) = F[x(t) , u(t), t] = ax 

aj 
G(t) = G[x(t), u(t), t] = au 

aj 
L(t) = L[x(t) , u(t) , t] = aw 

ah 
H(t) = H[x(t), t] = ax 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

Having defined these terms, one can now derive the filter equations. To 

propagate the state estimate and the covariance estimate, the following equa-
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tions are solved in real-time[Stengel, 1994]: 

tk 

X[tk(-)] = X[tk-1(+)] + 1 f{X[r(-)],u(r) , r}dr (5.8) 

tk-1 

tk 

P[tk(- )] = P[tk-1(+)] + 1 [F(r)P(r) + P(r)Fr(r) + L(r)Qc(r)e(r)]dr 

tk-1 

(5.9) 

Here, Qcis a matrix that satisfies the following relation regarding the 

nOISe: 

E[w(t)wr(t)] = Qc(t)b(t - T) (5.10) 

Once new observations are received, the system is able to update the state 

and covariance estimates to account for the new data. 

5.2 Defining the System 

The states that have been chosen to be observed using the EKF are the 

body rotation rates w, as well as the sun vector s. The state vector has been 

defined as follows: 

Wx Wx 

Wy Wy 

X= 
Wz 

X= 
Wz 

(5.11) ==> 
Sx Sx 

Sy Sy 

Sz Sz 

The system dynamics themselves will be decribed using Euler's equations 

for rigid-body motion. The following equations for the body rotations will 
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be used: 

(5.12) 

(5.13) 

. -(fxx-fyy) +Nz 
Wz- J WxWy J 

zz zz 
(5.14) 

The equations above define the first three terms of the vector f. For the 

last three terms, simply use the approximation 

(5.15) 

To represent this purely in terms of state variables, it is important to 

note another useful approximation: 

(5.16) 

Therefore, one can expand Eq(5.15) to a representation purely in terms 

of state variables. 

-- [ s::.x: l s= =wxs= 
[ 

WySz - WzSy l 
-WxSz + WzSx 

WxSy- WySx 

( 5.17) 

This defines the last three terms of the vector f, satisfying the relation 

f = f[X(t), u(t)] = [ ~ ] 
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5.2.1 Derivation of the Expected Observation 

For this system, two different types of observations will be considered. In 

typical sun sensor usage, only the single sun vector observation is considered. 

We will compare the single sun-vector measurement to a velocity type mea

surement b..sk x b..sk_1 . In order to do this, one needs to find a value for the 

expected observation, h, in terms of the state variables w and s. 
First, start with the basic relation 

(5.18) 

We know from Eq(5.16) that one can express fl.sin terms of state variables 

and time, so rewrite h as 

h = [w x sn!:l.t] x [w x Bn-1~t] (5.19) 

By expanding this, one can arrive a slightly more useful relation 

h = (~t) 2 
{(( -Sn X w) · w] ( -sn-1) - (( -Sn X w) · ( -sn-1)] w} (5.20) 

Here, two things are noted. First, the terms ( -Sn X w) and w are per

pendicular by definition, thus 

(- Sn X w) . w = 0 ( 5.21) 

Further, h cannot be expressed in terms of the old observation sn_1. 

Relating this to the current observation can be done simply by using the 

relation 

(5.22) 

Taking into account these changes, Eq(5.20) becomes: 
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h = -(~t? {( -sn X w) · [( -w X Sn~t)- sn]} w (5.23) 

Again , note two things that allow us to further simplify this equation. 

The dot product can be simplified partially by recognizing that the vectors 

( -Sn X w) and -S'n are perpendicular, so that 

( -Sn X w) . ( -B'n) = 0 (5.24) 

Further, the vectors ( -Sn X w) and ( -w X sn) are parallel, and of the 

same magnitude. This allows for the reduction of the equation to the simple 

usable form 

(5.25) 

5.2.2 Deriving F and H 

Now that the value of h has been found , the values of the other filter param

eters can now be derived. For this system, we assume no applied forces. As 

a result , u = 0 and G = ~~ = 0. 

In order to derive the value of F , note the values of f and X as follows: 

WyS z - W z Sy 

-Wx S z + W z S x 
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Wx 

Wy 

X= 
Wz 

(5.27) 
Sx 

Sy 

S z 

In order to derive the value ofF, simply take the Jacobian of the f vector 

with respect to X , as follows: 

(5.28) 

While the derivation of F is fairly simple, the derivation of the H matrix 

is slightly more complex. Here again , take the Jacobian of the h vector with 

respect to X as follows: 

oh 
OWy 

oh oh oh 
OWz OSx OSy 

oh J 
OSz 

(5.29) 

The individual column vectors g~ can be found using the product rule 

on the vector h, yielding the following result: 

ah _ 
2

( !\ ) 3 
1 

__ __ 
1 
a 1-w x sn I __ ( !\ ) 3 

1 
__ __ 

1 
aw 

- - - ut -w X Sn W - ut - w X Sn -
axi axi axi 

(5.30) 

The solution to g~ is trivial , in that it is either a unit vector (when xi 

is a component of w) , or a zero vector (when xi is a component of S). A 

formulaic approach can be made for the solution of ol-;:;snl by first breaking 

down the cross-product as follows: 

(5.31) 
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The cross-product magnitude can then be written as: 

1-W x %1 = ICI = -}ci + c§ + c~ (5.32) 

Now the more difficult derivative can be written in the form 

a IW X Bnl = a ICI = _1_ (cl 8cl + c2 8c2 + c3 8c3) 
a xi a xi I 6 I a xi a xi a xi 

(5.33) 

This allows the algorithm to deal with the simple derivatives ~· 

5.2.3 Sensor Noise Modelling 

Observation simulation will be conducted using two different sensor models. 

The first of these will be a generic sensor, and the second sensor model will 

be based on the SS-411 sensor. These will differ in how the observation 

error is handled. For both sensor types, the observer estimate model will be 

expressed as 

Sobs = Strue + Eabs (5.34) 

For the generic sensor, there will be no bias error, and a large value of 

(]". Here, the magnitude of the error vector will be a function of a normally 

distributed random variable: 

(5.35) 

The direction of Eabs will be determined randomly, and will not follow any 

distribution. 

For the observer based on the SS-411, the error vector will be handled 

using a combination of bias and random noise. The bias will be provided 

from calibration data, and a smaller value of (]" will be used. The error Eabs 

then becomes 
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Eabs = Ebias + Enorm (5.36) 

Again, the direction of the normally distributed random error will be 

determined randomly, and the magnitude of the vector will be generated 

using 

IIE'normll = J2 (1 -cos Berr ), Berr rv N (1-L = 0, a 2
) (5.37) 

5.2.4 Planned Measurement Simulation 

For this simulation, we will be comparing the observation results from two 

modelled sensors. The first of these will be a generic sensor, for which the 

observation error will be a zero-mean normally-distributed noise. There will 

be no spatial bias in the observations. 

The second sensor we will model will be the SS-411 series sensors. In 

this case, there will be a spatially-varying bias term which we will model 

using calibration results. There will also be a normally-distributed noise 

component, however the standard deviation of the distribution will be much 

less than that of the generic sensor. 

For each of these sensors, we will run the simulation using two different 

observation types.First , the standard sun-vector observation will be used. In 

the second case, the filter observation described by Eq(5.18) will be used in 

addition to the standard sun-vector measurement. In this case, the filter will 

use an combination of the current sun-vector measurement plus two taken 

previously to form the Z vector. 

5.2.5 Initialization Values 

Initialization parameters for the EKF are part guesswork and part theoreti

cally derived. Although the initialization parameters can have only minimal 
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effects on the final output of the filter, a reasoned approach should exist for 

choosing these parameters to ensure correct filter operation. 

We would like to define a system with an exact solution. This allows us 

to ensure that the simulation of system dynamics works correctly. In order to 

simplify the system such that this is the case, moments of inertia are chosen 

for a precessing satellite: 

(5.38) 

Here, the satellite is axiosymmetric. The advantage to this is that the 

angular displacements and velocities about the x- andy-axis can be described 

using an exact solution. The z-axis angular velocity should remain constant. 

For the system presented here, the I vector was given the following value: 

I= 10.1 kg· m 2 

[ 

10.1 l 
19.8 

For the inital rotational velocity, the following values were used: 

[ 

0.0471 l 
w = -0.0337 rad/ s 

0. 7105 

For the initial velocity estimate, the true velocity plus some normally

distributed random initial error with a standard deviation of 0.001 o / s was 

used. 

5.3 Exact Solution 

The free motion of an axiosymmetric system can be described using an exact 

solution. An axiosymmetric system has the following properties: 
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(5.39) 

Given these definitions of axial and transverse moments of inertia, the 

motion of the system can be described via[Hughes, 2004] 

W30 = W3 =. v = constant (5.40) 

We can then write the relations for the other two angular rates. First we 

define a term <I> as 

(5.41) 

The equations to describe the other angular rates is 

W1 = W1 0 cos ( <I>t) + W20 sin ( <I>t) (5.42) 

w2 = W20 cos ( <I>t) - W1 0 sin ( <I>t) (5.43) 

5.4 Generic Sensor Simulation 

The generic sun sensor is designed such that the observation error is normally

distributed, the mean value being the correct observation. The observation 

offset is calculated using the error in Eq(5.35). For the standard deviation 

of a single sun-vector measurement, a value of a= 0.07° was used. 

5.4.1 Sun-Vector Observation Only 

In this simulated case, we use the single sun-vector measurement only. Here, 

the observation Z is simply 
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z = [ :: l (5.44) 

Only the standard sun-vector measurement was used in this case. Error vec

tors between the true sun-vector and the corresponding state estimate were 

generated. The magnitude plot of this vector over time is shown in Fig.(5.1). 

Here, a significant amount of time was required for the initialization errors to 

be removed. The mean error vector magnitude was calculated, taking only 

values after 60s to account for the time to settle. The mean magnitude result 

in this case was 1.2 x 10-3
. 

0.025 
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Q) 
"0 
.a ·c: 
Cl 
<1l 
E 
5 0.01 u 
Q) 
> 

e w 

-0.005 
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Time(s) 

Figure 5.1: Error Vector Magnitude in s for Generic Sensor, No Relative 
0 bservation. 

5.4.2 Relative Observation 

In this case, we use both the single sun-vector measurement as well as the 

relative observation expressed in Eq(5.18). In this case, the observation Z 

becomes 

69 



5. FILTERING FOR RATE SENSING 

(5.39) 

Given these definitions of axial and transverse moments of inertia, the 

motion of the system can be described via[Hughes, 2004] 

W3 0 = W3 =. v = constant (5.40) 

We can then write the relations for the other two angular rates. First we 

define a term <I> as 

(5.41) 

The equations to describe the other angular rates is 

W1 = W1 0 cos ( <I>t) + W20 sin ( <I>t) (5.42) 

w2 = w20 cos ( <I>t) - W1 0 sin ( <I>t) (5.43) 

5.4 Generic Sensor Simulation 

The generic sun sensor is designed such that the observation error is normally

distributed, the mean value being the correct observation. The observation 

offset is calculated using the error in Eq(5.35). For the standard deviation 

of a single sun-vector measurement, a value of a = 0.07° was used. 

5.4.1 Sun-Vector Observation Only 

In this simulated case, we use the single sun-vector measurement only. Here, 

the observation Z is simply 
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(5.44) 

Only the standard sun-vector measurement was used in this case. Error vec

tors between the true sun-vector and the corresponding state estimate were 

generated. The magnitude plot of this vector over time is shown in Fig.(5.1). 

Here, a significant amount of time was required for the initialization errors to 

be removed. The mean error vector magnitude was calculated, taking only 

values after 60s to account for the time to settle. The mean magnitude result 

in this case was 1.2 x 10-3
. 
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5.4.2 Relative Observation 

In this case, we use both the single sun-vector measurement as well as the 

relative observation expressed in Eq(5.18). In this case, the observation Z 

becomes 
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Z= (5.45) 

Comparing one element of the true relative observation to the expected 

relative observation yields Fig.(5.2). Because the measurements in this case 

are extremely noisy, it is expected that the addition of the relative observation 

will do very little to improve the state estimates. 

<:: 
0 

~ 

3 

2 

3l 0 
..0 
0 

"' ·~ -1 
X 

-2 

-3 

35 

- - - Expected Relative Observation 
- Actual Relative Observation 

40 45 50 55 60 65 
Time(s) 

Figure 5.2: X-axis relative observation Comparison. 

Creating the error magnitude term that relates the state estimates to the 

true sun-vector, and plotting with respect to time yields Fig.(5.3). This plot 

indicates that the introduction of the relative observation causes an increase 

in error. This is reflected in the mean error magnitude when taken after 60s 

- an increase in value to 3.2 x 10-3
• 
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Figure 5.3: Error Vector Magnitude in s for Generic Sensor with Relative 
Observation. 

5.5 SS-411 Simulation 

In these simulations, the SS-411 error term is modelled differently than that 

of the generic sensor. Here, the error is the sum of a bias term and a normally

distributed noise term. This offset is calculated using Eq(5.36) and Eq(5.37). 

Here, a is the very small image-to-image noise result from the stationary 

sensor - 0.005°. The calibration bias will be taken from previous calibration 

work. An example of the slow calibration bias was across the FOV was 

shown previously in Fig.(3.5) and Fig.(3.6). Note that, in practice, it is not 

generally possible to have this error map as it this was generated based on 

exact knowledge of what the true sun-vector actually is. 

5.5.1 Sun-Vector Observation Only 

The single sun-vector measurement observation using the SS-411 model is 

the same as that for the generic sensor. The observation Z is again 
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Figure 5.4: Error Vector Magnitude in s for SS-411 , No Relative Observation. 

z = [ : : l (5.46) 

Generating the error vector magnitude through the use of the state esti

mate and the true sun vector yields Fig. (5.4). 

The filter demonstrates that some time is needed to settle. Removing er

rors from the initialization, the mean error vector magnitude was calculated, 

ignoring the first 40 seconds of data to account for this settling time. The 

result here was a mean error magnitude of 7.99 x 10- 6 . 

5.5.2 Relative Observation 

Again, the observation term Z is calculated the same way as was shown for 

the generic sensor with relative observation. The observation is found via: 
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Figure 5.5: X-axis relative observation Comparison. 

Z= (5.47) 

Comparing one of the relative elements of the expected observation versus 

the true observation yields Fig.(5.5). Here, noise in the relative observation 

is still extremely high; however, the actual observation can be seen to follow 

a similar shape to the expected observation. 

Comparing the true sun-vector to that provided by the state estimate, an 

error magnitude term was created. Plotting the error magnitude term over 

time yields Fig.(5.6). Again, some time was required for the filter to remove 

initialization errors .. The mean error vector magnitude was again calculated 

for 40s and beyond, to account for this settling time. Here, the mean value 

was 7.70 x 10-6 . 
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Figure 5.6: Error Vector Magnitude in s for SS-411 with Relative Observa
tion. 

5.6 EKF Remarks 

The results from the EKF tests indicate that the use of relative measurements 

has detrimental effects on the filter behaviour when the random observation 

error is high. Using the generic sensor model, the introduction of the derived 

relative observation worsened performance- increasing the steady-state mean 

error by 166%. 

The EKF test using the SS-411 observer model showed a slight increase 

in performance; the steady-state mean error decreased by 3.6%. In this 

model, the random observation error component was small, but there was a 

significant spatially-varying bias contribution to error. 

These simulations indicate that there is the potential to improve sensor 

performance by introducing a relative observation. For this to work, however, 

the random error component must be small. As long as the bias varies 

slowly across the FOV, the relative observation should ignore much of the 

contribution of this error component. 
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Chapter 6 

Conclusions 

The purpose of this thesis was to both better model the SS-256 and SS-411 

sensor behaviour and understand sensor performance. Improving our sensor 

models improves sensor performance and yields better calibration results. 

Understanding sensor behaviour tells us what the limitations of the sensor 

are , and tells us how the sensor behaves in different conditions. 

Included in this investigation was the derivation of a model describing 

the peak-width variation that occurs throughout the field-of-view. Also, the 

ability of the sensor to resolve motion was explored, including both small

angle detectability limits and a method of defining the precision of the sensor 

in detecting motion. Last , a new type of relative motion observation was 

defined and integrated into an extended kalman filter. We explored results 

for a generic sensor with normally-distributed noise only, as well as a SS-411 

model where the error was treated as a combination of bias and random 

noise. 

6.1 Summary 

This section will reiterate the objectives of each section of the thesis, with 

some results obtained throughout the implementation of the developed meth-
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ods. 

6.1.1 Calibration Work 

A physical description of the sensor used in the SAIL test facility, including 

a description of the laboratory setup, as well as a definition of the param

eterization that was used for calibration. The calculations that are used to 

translate mean peak-positions in the image to a sun-vector observation were 

g1ven. 

A number of different super-resolution algorithms were suggested. The 

mathematics that convert raw image data to peak-positions were shown for 

each. In some cases, the coarse location of the peaks must be known so 

that the contributions from each slit-pair can be seperated or the peaks can 

be coarsely bounded. A simple algorithm was shown that can perform this 

function. 

An algorithm was also given that can generate image locations such that 

there is even coverage across the field of view. This is desirable so that cal

ibration is not skewed in favour of particular sections in the field of view. 

Then, the calibration procedure was outlined , including the calibration pa

rameters that are related to the mounting of the sensor, as well as those 

which are unique to each individual sensor. 

6.1.2 Width Correction 

The NLSQ algorithm requires that a Gaussian peak-shape model be matched 

to peaks in the array to determine the peak locations. Previously, a constant 

peak-width term was used to do this matching; however, data collected from 

peaks across the array in an image set show that this description is inade

quate. 

A full Gaussian model was derived that was used to find the peak-width 

as a function of array position. Given a defined error term, a least-squares 
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error minimization was used to define the width of the peaks. When the 

peak width was plotted against array position, a trend was observed when 

observations were limited to a single logical peak. 

To describe this trend, a fourth-order even function was defined. Using 

the peak-width versus array position data obtained during the previous fit, 

the scaling terms of the function, as well as the minimum position, can 

be found through a least-squares error minimization. The curve fit for a 

particular logical peak map was shown to demonstrate this method. 

Finally, the effects of the width-correction method on the calibration per

formance of the NLSQ algorithm was shown. Some very poor results observed 

near the edge of the field-of-view were shown, and the error profile was more 

consistent across the field-of-view. 

6 .1. 3 Precision Testing 

A method of testing how capable the sensor is at correctly identifying motion 

was developed. Although calibration results have been obtained before which 

describe a single estimation error obtained at points across the field-of-view, 

there was no previous method of finding the motion limits at which the sensor 

was usable, and it was unknown how well small sensor motions were tracked. 

Because the calibration bias varied little when the area of interest was 

small, removing the bias error from a given point would limit the observed 

offsets to zero-mean noise. A best rotation quaternion that removes this bias 

error was derived. The application of this quaternion to the sets of estimates 

was demonstrated. 

Because the sensor operation introduces random noise into the image, 

there will be a small-motion limit at which the sensor is usable, namely, 

there is a minimum angle at which the difference in two estimates can be 

attributed to actual sensor motion as opposed to random noise. A method 

of testing for this small limit was given, and an example of this procedure 

in use was provided. Using an example data set, a small motion limit of 
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2.62 x 10-4 radians was found. 

The ability of the sensor to correctly identify motion was addressed in 

the precision test. Precision was defined using both an RMS angular error, 

as well as a normalized RMS angular error. Data sets were compiled using 

annular rings offset by small amounts from a central point. The RMS angular 

error generally increased as the offset angle became large; however, the error 

was relatively constant in the interval [0.2 1.2] x 10-3radians and at offsets 

greater than 0.9 x 10-3 radians. The offest-normalized error dipped to a local 

minimum at approximately 1. 2 x 1 o-3 radians and also dropped as the offset 

angle bacame large. 

6.1.4 Extended Kalman Filter 

There were two reasons an observation simulator was developed. First, a new 

type of observation was developed that looks at relative motion in addition 

to current position, and the extended kalman filter (EKF) would indicate 

whether or not this does improve sensor performance. Second, the simulator 

would indicate whether performance can be improved if the error profile of 

the sensor is well-known. 

First , an EKF was defined that will propagate the state and covariance 

matrices continuously and will perform discrete updates to the state and 

covariance when observation data are available. We define a relative obser

vation using the current sun-vector along with the previous two observed 

sun-vectors. For each of the two sensor types, we perform two observation 

simulations. In the first one, we use a single sun-vector measurement. In 

the second simulation, we use the single measurement as well as the relative 

measurement. 

The simulator was first run using a generic sun sensor for which few error 

data were known as the observer. Using the relative observation in addition 

to the standard sun-vector observation gave worse results, increasing the 

steady-state mean error magnitude by 166%. 
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When the sensor error profile is well-known, however, better results can 

be generated from the filter. Taking advantage of the fact that the bias error 

is relatively constant when consecutive sun-vector movements are small, the 

filter is able to decrease the mean steady-state error magnitude term by a 

small amount, namely, 3.6%. 

The results of this test indicate that relative measurements are only use

ful when random error is low. The generic sensor, with a large random error 

but no measurement bias, was unable to improve performance by provid

ing relative measurement data. Simulation results improved with relative 

measurements provided by the SS-411 model. Although there was a large 

bias error in the model, the relative measurement removed most of this slow 

spatial bias. Since the random error of this sensor was small, the relative 

measurements provided were able to improve performance. 

6.2 Future Work 

Most of the work covered in the thesis focuses on the development of meth

ods for improving knowledge of sensor parameters and sensor behaviour. 

Although examples of how to apply each of these methods are given, by 

no means are these results to be interpreted as representative of all Sinclair 

Interplanetary sensors. Indeed, the behaviour of each of these sensors is 

unique. 

6.2.1 Field-of-View Precision 

Although an example is given of the application of the precision test , the 

results do not hold even when different segments of the sensor field-of-view 

are examined. In order to get full understanding of the sensor precision, this 

test should be conducted at points throughout the field-of-view to get a more 

comprehensive look at the sensor behaviour. 
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Further, results from the precision test are algorithm dependent. Because 

much of the calibration bias is removed prior to the testing, the differences 

in estimation are primarily due to image noise. Depending on the ability of 

algorithms to reject this added noise, different results may occur. 

6.2.2 EKF /Precision Model Unification 

In order to achieve extremely high accuracy in modelling the sensor obser

vations, one can merge results from a comprehensive precision test in the 

simulation, namely, performing the precision test throughout the field-of

view will yield expected error results from observation points around the 

field-of-view. Integrating these results with the simulator would give a more 

accurate simulation of the sensor behaviour and would yield a more accurate 

assessment pertaining to the ability of the sensor to track vehicle motion. 

6.3 Closing Remarks 

Sensor behaviour prediction was improved by introducing a peak-width func

tion that can be utilized in conjunction with the NLSQ algorithm. This 

change is more consistent with the peak width behaviour across the field-of

view. A method for defining the sensor observation limits regarding small 

motions was given and demonstrated at a particular point. Metrics defining 

sensor precision were given, and the ability of the sensor to resolve small 

motions correctly was explored. Finally, an EKF was developed to simu

late sensor observations and was tested utilizing both an arbitrary sensor for 

which only basic information is given, as well as a sensor for which intimate 

knowledge of the error profile is available. 
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