
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

Particle Swarm Optimization Based Adaptive
Kalman Filters for Fault Diagnosis of Reaction
Wheels
Afshin Rahimi
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Systems Engineering and Multidisciplinary Design Optimization Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Rahimi, Afshin, "Particle Swarm Optimization Based Adaptive Kalman Filters for Fault Diagnosis of Reaction Wheels" (2012). Theses
and dissertations. Paper 1582.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1582?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

PARTICLE SWARM OPTIMIZATION
BASED ADAPTIVE KALMAN FILTERS

FOR FAULT DIAGNOSIS OF
REACTION WHEELS

by

Afshin Rahimi

BSc., Aerospace Engineering

K.N. Toosi University of Technology, 2010

A thesis presented to Ryerson University

in partial fulfillment of the requirements for the degree of

MASTER OF APPLIED SCIENCE

in the Program of

Aerospace Engineering

Toronto, Ontario, Canada, 2012

 Afshin Rahimi 2012

All rights reserved

ii

Author's Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

iii

Abstract

Particle Swarm Optimization Based Adaptive Kalman Filters for Fault Diagnosis of

Reaction Wheels

Afshin Rahimi, Master of Applied Science, Aerospace Engineering

Ryerson University, Toronto, August 2012

There has been an increasing interest in fault diagnosis in recent years, as a result of the

growing demand for higher performance, efficiency, reliability and safety in control systems. A

faulty sensor or actuator may cause process performance degradation, process shut down, or a

fatal accident. Quick fault detection and isolation can help avoid abnormal event progression and

minimize the quality and productivity offsets. In space systems specifically, space and power are

limited in the satellites, which means that hardware redundancy is not very practical. If actuator

faults occur, analytical redundancy techniques should be employed to determine if, where, and

how the fault(s) occurred.

To do so, different approaches have been developed and studied and one of the well-

known approaches in the literature is using the Kalman Filter as an observer for the purpose of

parameter estimation and fault detection. The gains for the filter should be selected and the

selection of the process and measurement noise statistics, commonly referred to as “filter

tuning,” is a major implementation issue for the Kalman filter. This process can have a

significant impact on the filter performance. In practice, Kalman filter tuning is often an ad-hoc

process involving a considerable amount of time for trial and error to obtain a filter with

desirable –qualitative or quantitative- performance characteristics.

This thesis focuses on presenting an algorithm for automation of the selection of the gains

using an evolutionary swarm intelligence based optimization algorithm (Particle Swarm) to

minimize the residuals of the estimated parameters. The methodology can be applied to any filter

or controller but in this thesis, an Adaptive Unscented Kalman Filter parameter estimation

applied to a reaction wheel unit is used for the purpose of performance evaluation of the

proposed methodology.

iv

Acknowledgements

After a year and a half and many uncertain and turbulent times, I have finally completed

my master's thesis. Thankful to all those who have helped me through this path; My supervisors,

Dr. Krishna Dev. Kumar and Dr. Hekmat Alighanbari, have been an invaluable sources of

guidance, without which this thesis would not exist. I appreciate the challenges they threw my

way and their confidence in me to complete them.

Over these past one and a half years, I came to know other knowledgeable engineers such

as the members of the SSDC lab. I appreciate your friendship and camaraderie and learned a lot

from each one of you. Hereby I want to thank you individually and let you know that all those

memories will never be forgotten. Thanks to Michael who was like an old brother to me. Arthur

who taught me how to look at life in order to live happier. Waqas as a hard-working individual

with many intuitive ideas. Sobhan whom I learned a lot from as a friend and a younger brother,

and the rest of the group that I might not have a word for each but am thankful to every one of

them for their support and companion.

I also want to specifically thank my closest friends, Ali, Navid, Mojtaba, Reza,

Amirhossein, Ahmad, and Sogol for being there when I needed them whether in sadness or

happiness. Regardless of what the future holds, I hope they will always remain a part of my life.

One other specific acknowledgement to the ISS (International Students Services) family that

supported me and was there for me in all aspects of my life during this period. And also, ISARU

(Iranian Students Association at Ryerson University) that exposed me to the Iranian culture in

Toronto and within the university. I also need to thank Colleen, Scott, Cherry, Mohsen, Seyyed,

Mehrdad and Shahin for all their moral, financial and educational support.

Last but not the least my parents Majid and Farideh, are the ones who their unconditional

love made them the most selfless individuals I have ever come to know in my life. I will always

be indebted to them and feel blessed and privileged to have them as my parents. This thesis is

dedicated to them, in a hope that it would make them happy and proud of the son they raised to

this point. Finally, my brother Ramin is someone I need to thank here as he was there like a big

brother for me.

v

For... my loving parents Majid Rahimi and Farideh Farhang without

whose support and endless love I would not have achieved this work.

And my brother, Ramin, whose support and advice has always been

helpful and valuable to me.

vi

Table of Contents
List of Tables ... viii

List of Figures .. ix

Abbreviations ... xi

Nomenclature ... xiii

1. Introduction ... 1

1.1 Motivations ... 2

1.2 Reaction Wheel as an Actuator for Satellite ... 3

1.3 Fault Diagnosis and Identification .. 4

1.4 Problem Statement .. 11

1.5 Research Objectives .. 12

1.6 Main Contributions ... 13

1.7 Thesis Outline ... 14

2. Reaction Wheel Model .. 15

2.1 Actuators ... 15

2.2 Reaction Wheels ... 16

3. Kalman Filters ... 21

3.1 Unscented Kalman Filter .. 21

3.2 Parameter Estimation with UKF ... 25

3.3 Adaptive Kalman Filtering ... 27

3.4 FDI by Parameter Estimation with Adaptive Kalman Filters ... 30

4. Particle Swarm Optimization ... 34

4.1 Brief History ... 34

4.2 Particle Swarm Algorithm .. 36

4.2.1 Algorithm... 38

4.2.2 Convergence criteria .. 41

vii

4.2.3 Example ... 42

4.3 Proposed Methodology ... 45

5. Results and Discussions .. 50

5.1 Simulation Setup ... 50

5.2 Effect of Number of Particles ... 57

5.2.1 Case 1 – 40 Iterations and 10 Particles .. 57

5.2.2 Case 2 – 50 Iterations and 5 Particles .. 70

5.3 Performance Evaluation for Extreme Noise Level ... 82

5.3.1 Case 3 – 15 Iterations and 30 Particles .. 82

5.4 Conclusions ... 90

6. Conclusions and Future Work ... 92

6.1 Summary of Contributions .. 92

6.2 Future Work .. 95

7. References ... 96

viii

List of Tables

Table 4.1 Optimization parameters for the example ... 43

Table 4.2 Different modules of the code and a brief description for each 45

Table 4.3 PSO parameters values for the simulations .. 48

Table 5.1 Ithaco - Type A - Reaction Wheel Parameters ... 50

Table 5.2 Simulation Parameters for RW FDI ... 52

Table 5.3 Severe BEMF Constant and Bus Voltage out of Phase profile 53

Table 5.4 Normalizer Values for Objective Function of the PSO algorithm 55

Table 5.5 Simulation Parameters for Medium Noise RW FDI ... 56

Table 5.6 Simulation Noise for High Noise RW FDI ... 56

Table 5.7 Specification of the PC for Simulations Executions ... 56

Table 5.8 Search-Space for Simulations ... 58

Table 5.9 Case 1- Optimization Results ... 69

Table 5.10 Case 2- Optimization Results ... 81

Table 5.11 Effect of Number of Particles on the Performance of the Algorithm 81

Table 5.12 Simulation Parameters for Extreme Noise RW FDI ... 82

Table 5.13 Case 3- Optimization Results ... 90

ix

List of Figures

Figure 1.1 Types of Faults .. 5

Figure 1.2 Steps in Fault Diagnosis .. 6

Figure 1.3 Analytical Redundancy Techniques .. 7

Figure 2.1 Reaction Wheel unit developed in the SSDC lab at Ryerson University 17

Figure 2.2 Reaction Wheel Model [59] .. 19

Figure 3.1 Linearization (on the left) vs. Unscented Transformation (on the right) 22

Figure 3.2 UKF Signal Flowchart [17] ... 24

Figure 3.3 AUKF Signal Flowchart [17] .. 31

Figure 4.1 PSO Algorithm Flowchart ... 41

Figure 4.2 Surface of the function above for performance of the PSO algorithm 44

Figure 4.3 Selective Iterations of the Performance for the Example Function 44

Figure 4.4 Flowchart of the Proposed Algorithm for Tuning ... 49

Figure 5.1 RW FDI Simulation Setup [17] ... 51

Figure 5.2 Reaction Wheel Applied Voltage Profile .. 54

Figure 5.3 Reaction Wheel States for First 200 s ... 54

Figure 5.4 Case 1 - Medium Noise - Wheel Speed Measurements vs. PSO Estimates 59

Figure 5.5 Case 1 - Medium Noise - Wheel Speed Residual Comparison 59

Figure 5.6 Case 1 - Medium Noise - Current Measurements vs. PSO Estimates 60

Figure 5.7 Case 1 - Medium Noise - Current Residual Comparison .. 60

Figure 5.8 Case 1 - Medium Noise - BEMF Constant Estimates ... 61

Figure 5.9 Case 1 - Medium Noise - Bus Voltage Estimates ... 62

Figure 5.10 Case 1 - High Noise - Wheel Speed Measurements vs. PSO Estimates 63

Figure 5.11 Case 1 - High Noise - Wheel Speed Residual Comparison 63

Figure 5.12 Case 1 - High Noise - Current Measurements vs. PSO Estimates 64

x

Figure 5.13 Case 1 - High Noise - Current Residual Comparison ... 64

Figure 5.14 Case 1 - High Noise - BEMF Constant Estimates ... 65

Figure 5.15 Case 1 - High Noise - Bus Voltage Estimates ... 66

Figure 5.16 Case 1 - Objective Function Trend with Different Components Breakdown 67

Figure 5.17 Case 1 - Parameters Convergence to the Global Optimum Trend over Iterations 68

Figure 5.18 Case 2 - Medium Noise - Wheel Speed Measurements vs. PSO Estimates 71

Figure 5.19 Case 2 - Medium Noise - Wheel Speed Residual Comparison 71

Figure 5.20 Case 2 - Medium Noise - Current Measurements vs. PSO Estimates 72

Figure 5.21 Case 2 - Medium Noise - Current Residual Comparison .. 72

Figure 5.22 Case 2 - Medium Noise - Bus Voltage Estimates ... 74

Figure 5.23 Case 2 - High Noise - Wheel Speed Measurements vs. PSO Estimates 75

Figure 5.24 Case 2 - High Noise - Wheel Speed Residual Comparison 75

Figure 5.25 Case 2 - High Noise - Current Measurements vs. PSO Estimates 76

Figure 5.26 Case 2 - High Noise - Current Residual Comparison ... 76

Figure 5.27 Case 2 - High Noise - BEMF Constant Estimates ... 77

Figure 5.28 Case 2 - High Noise - Bus Voltage Estimates ... 78

Figure 5.29 Case 2 - Objective Function Trend with Different Components Breakdown 79

Figure 5.30 Case 2 - Parameters Convergence to the Global Optimum Trend over Iterations 80

Figure 5.31 Case 3 - Extreme Noise - Wheel Speed Measurements vs. PSO Estimates 84

Figure 5.32 Case 3 - Extreme Noise - Wheel Speed Residual Comparison 84

Figure 5.33 Case 3 - Extreme Noise - Current Measurements vs. PSO Estimates 85

Figure 5.34 Case 3 - Extreme Noise - Current Residual Comparison .. 85

Figure 5.35 Case 3 - Extreme Noise - BEMF Constant Estimates ... 86

Figure 5.36 Case 3 - Extreme Noise - Bus Voltage Estimates ... 87

Figure 5.37 Case 3 - Objective Function Trend with Different Components Breakdown 88

Figure 5.38 Case 3 - Parameters Convergence to the Global Optimum Trend over Iterations 89

xi

Abbreviations

ACS Attitude Control System
ADS Attitude Determination System
AFF Adaptive Fading Factor
AKF Adaptive Kalman Filter
AUKF Adaptive Unscented Kalman Filter
BEMF Back Electromotive Force
BLDC Brushless Direct Current
CM Covariance Matching
CMG Control Moment Gyroscope
COTS Commercial Off The Shelf
CT Continuous Time
DE Differential Evolution
DT Discrete Time
EA Evolutionary Algorithms
EKF Extended Kalman Filer
FDI Fault Diagnosis and Identification
FP Fault Parameter
GA Genetic Algorithms
HPCVL High Performance Computing Virtual Laboratory
IAE Innovation Adaptive Estimation
IMM Interactive Multiple Model
IMU Inertial Measurement Unit
ISS International Space Station
IWA Inertia Weight Approach
KF Kalman Filter
LCS Learning Classifier System
LKF Linear Kalman Filter
ME Mean Error
MEMS Micro-Electro-Mechanical-System
MLA Maximum Likelihood Approach
MM Multiple Model
MMAE Multiple Model Adaptive Estimation
MOA Magnetic Optimization Algorithm
MOI Moment of Inertia
MTR Magnetic Torque Rod
OFCPI Objective Function Component Performance Index
OS Operating System
PDF Probability Density Function
PSO Particle Swarm Optimization

xii

RAM Random Access Memory
RMSE Root Mean-Squared Error
RRG Robotics Research Group
RW Reaction Wheel
SAE Sequential Adaptive Estimation
SI Swarm Intelligence
SP Service Pack
SSDC Space Systems Dynamics and Control
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter
ZOH Zero-Order Hold

xiii

Nomenclature

I identity matrix

mK BEMF constant in RW model

cogT cogging torque in RW model

N number of motor poles in RW model
 rotor speed in RW model

c coefficient of coulomb friction in RW model

v coefficient of viscous friction in RW model

tK torque constant in RW model

B ripple torque in RW model
C cogging torque in RW model

a
torque noise frequency in RW model

a
jitter angle in RW model

eK
BEMF in RW model

busV
bus voltage in RW model

dG
driver gain in RW model

INR
input filter resistance in RW model

qP
quiescent bus power in RW model

d
driver bandwidth in RW model

fk
voltage feedback gain in RW model

wJ
flywheel MOI in RW model

sk
over-speed circuit gain in RW model

s
maximum wheel speed in RW model

N number of motor poles in RW model
 wheel speed in RW model
i current in RW model

sT sampling period in RW model

vP
white-noise signal power in RW model

psdw
white-noise power spectral density in RW model

N Window Size in Kalman Filters

maxQ
upper limit for the entries in process noise covariance matrix in AUKF in
Kalman Filters

maxR
upper limit for the entries in measurement noise covariance matrix in AUKF
in Kalman Filters

0R
initial measurement noise covariance matrix in AUKF in Kalman Filters

xiv

0Q
initial process noise covariance matrix in AUKF in Kalman Filters

0P
initial noise covariance matrix in AUKF in Kalman Filters

n dimension of the augmented states in UKF in Kalman Filters
 control factor on the spread of the sigma point in UKF in Kalman Filters
y mean of variable y in Kalman Filters
f non-linear function in unscented transformation for process model

x n -state random variable in Kalman Filters
h non-linear output function in Kalman Filters for measurments model
W component weight for covariance calculation in Kalman Filters
χ̂ initial sigma points in Kalman Filters
χ instantiated sigma points through process model in Kalman Filters
Q process noise covariance matrix in Kalman Filters
R measurement noise covariance matrix in Kalman Filters

xxP covariance of states matrix in Kalman Filters

iY instantiated sigma points through measurement model in Kalman Filters

yyP covariance of measurements matrix in Kalman Filters

xyP cross covariance matrix in Kalman Filters

K Kalman filter gain
 scale-factor for error covariance prediction and/or gain calculations in Kalman

Filters
ˆ

vC estimated innovation covariance matrrix in Kalman Filters

vC theoretical innovation covariance matrix in Kalman Filters

ˆ
rC estimated residual sequence covariance matrix in Kalman Filters

1kr unbiased estimator for residual in Kalman Filters

H Jacobian of h in Kalman Filters

R̂ estimated measurement noise covariance matrix in Kalman Filters

Q̂ estimated process noise covariance matrix in Kalman Filters

Δx̂ mean of the innovation in Kalman Filters

ax augmented state-vector in Kalman Filters

 fading factor in AUKF in Kalman Filters
 adaptive fading factor/fogetting factor in AUKF in Kalman Filters

iX
position vector of the ith particle in the swarm in PSO

iP
position history vector of the ith particle in the swarm in PSO

iV
velocity vector of the ith particle in the swarm in PSO

pbest best position in the history of a particle in PSO
gbest best position in the history of the swarm in PSO
w inertia factor for velocity in PSO

1c
coefficient of the self-recognition component in PSO

xv

2c
coefficient of the social component in PSO

1r
random number to diversify the self-recognition component in PSO

2r
random number to diversify the social component in PSO

maxw
initial weight in inertia factor for velocity in PSO

minw
final weight in inertia factor for velocity in PSO

maxiter
maximum number of iterations in PSO

iter current iteration number in PSO

iX 

new position for the ith particle in the swarm in PSO

iX 

old position for the ith particle in the swarm in PSO

J objective/index function in PSO

jr
normalizer component for the objectvie function in PSO

ke
error (difference between estimated and actual value for the parameter)

1

1. Introduction

The procedure of selecting the process and measurement noise covariance matrices

components, commonly known as “filter tuning” is a major implementation issue for the Kalman

filter. This process can have significant impact on the performance of the filter. Since this is an

ad-hoc process involving a considerable amount of time for trial and error to obtain the desirable

performance characteristics. Motivated by that, the focus of this thesis is to propose a

methodology using optimization algorithms to automate this process and the make human factor

and interference impact in the tuning process minimum.

The term “mathematical optimization”, which also is known as optimization or

mathematical programming, in mathematics, computer science, or management science, refers to

the selection of a best element from some set of available alternatives. In the simplest case, an

optimization problem consists of maximizing or minimizing a real function by “systematically”

choosing input values from within an allowed set and computing the value of the function. The

generalization of optimization theory and techniques to other formulations comprises a large area

of applied mathematics. More generally, optimization includes finding "best available" values of

some objective function given a defined domain, including a variety of different types of

objective functions and different types of domains.

In the field of optimization, Fermat [1] and Lagrange [2] found calculus-based formulas

for identifying optima, while Newton [3] and Gauss [3] proposed iterative methods for moving

towards an optimum. Historically, the first term for optimization was "linear programming",

which was due to George B. Dantzig [4], although much of the theory had been introduced by

Leonid Kantorovich, a Russian mathematician, in 1939 [5]. Dantzig published the Simplex

algorithm in 1947 [4], and John von Neumann developed the theory of duality in the same year.

Linear programming arose as a mathematical model developed during World War II to

plan expenditures and returns in order to reduce costs to the army and increase losses to the

enemy. It was kept secret until 1947. Postwar, many industries found its use in their daily

planning.

In 1963, Dantzig’s Linear Programming and Extensions was published by Princeton

University Press. Rich in insight and coverage of significant topics, the book quickly became

 Motivations

2

“the bible” of linear programming. Since then, the optimization approaches and methodologies

have advanced and been used in many different subjects. The evolutionary algorithms nowadays

are the main field of interest for the researchers and the industry as they can be used to solve

problems that are more complex.

1.1 Motivations	

The current research on the Fault Diagnosis, Identification, and Isolation (FDI) for space

systems is not usually incorporated with the optimization algorithms. In the FDI procedure,

Kalman filter is one of the most commonly used tools for filtering and parameter estimation but

there is one major issue with it and that is how to tune the filter systematically and not by trial

and error. Tuning the filter is a tedious task and the performance of the tuned filter is

tremendously dependant on the experience of the person who is doing the manual tuning.

In the literature, different attempts to implement the optimization algorithms in order to

remove the human impact on the performance of the filter by automating the process are

available. In Ref. [6] auto-covariance least-square estimation is proposed for estimating the noise

covariances from process data. In Ref. [7], a new approach is presented to estimate the

parameters using particle swarm optimization but this approach is not using PSO to tune the

filter and it is proposing a new filter using the particle swarm optimization method. In addition,

in Ref. [8] another method based on Genetic Algorithm is proposed to estimate fate and transport

parameters of a reacting solute from the column and batch experiments involving a saturated

porous medium. In Ref. [9] the attitude estimation method of humanoid robot using an extended

Kalman filter with a fuzzy logic based tuning algorithm is presented. Ref. [10] investigates an

application of a ‘discrete variable’ hybrid differential evolution (dvHDE) method to parameter

estimation of a single wheel station, which incorporates dvHDE and Kalman filter. This

reference also compares the results with the standard gradient-based (GB) method, Downhill

Simplex (DS) method and the original differential evolution (DE) method on simulated and

experimentally obtained data. Ref. [11] investigates the application of PSO in tuning the UKF

covariance matrices. In addition to that in another conference publication by the authors in Ref.

[12] a comparison between PSO tuned and another optimization algorithm known as Bacterial

Foraging Optimization (BFO) is conducted. In Ref. [13], tuning of Extended Kalman Filter

(EKF) using PSO is investigated and a comparison between PSO tuned and the conventional

 Reaction Wheel as an Actuator for Satellite

3

EKF is presented. Ref. [14] proposes a self-tuning Kalman filter applied to engine control

systems. A discussion on different algorithms used for the tuning of Kalman filters is give in Ref.

[15]; the authors then propose a new algorithm called Local-to-Best Mutation with Shuffled

Steps (L2BM-SS-DE) variation of Differential Evolution. In Ref. [16], the author discusses on

different issues with the tuning of a Kalman filter with different approaches and then uses the

Simplex algorithm for the tuning.

Reviewing all the above-mentioned literature and motivated by the issues faced in Ref.

[17], including no systematic tuning approach and hence, the results are not guaranteed to be the

best possible, at least within a range of parameters, in performance. In addition, because the

tuning is done manually, the process is very time consuming and for each simulation, the

parameters need to be selected separately. For different noise levels, the filter needs to be set

again and the performance varies from one case to another. Moreover, for different systems, the

tuning should be done manually. This task is tedious considering that it requires the user who is

tuning the filter to have enough knowledge and experience about the system to be able to tune it

practically.

 The purpose of this research is to apply an evolutionary optimization algorithm known as

Particle Swarm Optimization to automate the process of filter tuning and by that solving the

issues mentioned above and as were faced in the SSDC lab during the process of development of

the previous FDI algorithm in Ref. [17]. Then analyze the outputs of the simulations to further

investigate the applicability of the proposed methodology. In addition to that, it was interesting

to study whether or not this methodology could be applied to other systems. Moreover, the fact

that this methodology was required to be easy to use and modular to make it adaptable to other

applications was another challenging issue to be solved.

1.2 Reaction	Wheel	as	an	Actuator	for	Satellite

Reaction Wheels have been the most common attitude control technologies used as

actuators that can provide full 3-axis attitude control for the small satellites with meaningful

missions in Earth. A RW consists of a flywheel mounted to an electric motor. RWs have been

used extensively for active control of spacecraft. Generally, RWs can perform slow manoeuvring

of satellites with average slew rates of approximately 1 deg/sec to avoid saturating the wheel and

keeping power consumption low. Saturation occurs when the maximum wheel speed is reached

 Fault Diagnosis and Identification

4

and no more actuation is available in the direction of increasing wheel speed, this phenomenon is

usually resolved using momentum dumping techniques. Power consumed during a manoeuvre is

directly related to the reaction torque generated by a RW, fast slews translate to larger motor

torques and consequently larger current draws.

For RW torque generation a transient current occurs when a voltage is applied at the

armature until the back EMF (BEMF) voltage amplitude comes close to matching the applied

voltage with opposite polarity, this results in a near zero voltage across the armature circuit so

long as the wheel speed or applied voltage does not change. More current is drawn in a transient

state of the wheel speed than at constant speed, and RW actuation is the result of changes in

wheel speed.

1.3 Fault	Diagnosis	and	Identification	

During the entire mission life of a satellite costs are accrued and faults/failures add to it,

if occur. The most probable area for a fault to occur is the satellite attitude control system (ACS).

Actuators usually consist of moving mechanical parts subject to unforeseen faults or failures

such as a cold solder joint affecting electrical performance, minute particles interfering with

mechanical components, or massive temperature fluctuations. As a result, FDI techniques have

been developed so that some of these factors can be monitored and/or predicted.

Fault diagnosis refers to the detection and isolation of faults, and identification deals with

the type of fault and its severity. In the past with larger satellites, faults and/or failures were

handled through hardware redundancy because there was more onboard space and consequently,

online computing power was at a premium. In the current state, hardware redundancy, in order to

reduce costs, is limited. In case a fault occurs, numerical methods can be utilized to diagnose and

correct the problem(s). If the satellite is able to detect, isolate, and identify these faults then

operators on the ground can move quickly to obtain the best possible performance from the

satellite, or the satellite could simply correct the problem itself. Ultimately, the goal is to

facilitate at least partial completion of a mission in case of faults or failures.

Since RWs are very common actuators, online FDI algorithms should be available that

can monitor them. A “fault” is used to denote an unpredicted change of system behaviour that

results in a degradation of performance or prevents any semblance of normal operation of the

system. They can be classified based on their duration and severity (Figure 1.1).

 Fault Diagnosis and Identification

5

Figure 1.1 Types of Faults

Faults can occur suddenly or slowly over time. Sudden faults are usually caused by

external disturbances that severely damage a component. Once they occur, replacement of the

faulty component is the best course of action because the unexpected nature of the fault can

introduce large stresses to the structure or electronic system. Incipient faults occur slowly over

time such as increased frictional losses in ball bearings. In this case, immediate replacement of

the faulty component is not necessary as long as satisfactory performance can be achieved.

Transient and intermittent faults occur randomly for bounded periods and then vanish, this makes

them difficult to identify. They differ with respect to the number of states they can assume. For

example, a transient fault assumes one state and then goes back to normal, whereas intermittent

faults can assume various states throughout a faulty time-interval. Additive faults are simply

superimposed on healthy signals of a system, while multiplicative faults are directly proportional

to system states [17].

As discussed earlier, there are three primary components to fault diagnosis algorithms 1)

detection, 2) isolation, 3) identification.

time

fa
ul

t

Abrupt and Permanent Fault

time

fa
ul

t

Transient Fault

time

fa
ul

t

Incipient Fault

time

fa
ul

t

+

fault

signal faulty
signal

Additive Fault Multiplicative Fault

X

fault

signal faulty
signal

Intermittent Fault

 Fault Diagnosis and Identification

6

Figure 1.2 Steps in Fault Diagnosis

The scheme should be able to detect the occurrence of a fault, isolate where the fault has

occurred, and for completeness identify what type of fault has occurred as shown in Figure 1.2.

These tasks are not relevant for all applications; some applications will only require fault

detection while others will also require isolation. Detection would only be required when

regardless of the type of fault or its location the corrective action is the same, in this case the

algorithm or mechanism would simply alert operator that a fault has occurred. Isolation could be

required in a complex system with many moving parts that could not be examined precisely by

an operator due to the size and complexity of the system. In this case, the algorithm should be

able to detect and isolate the location of a fault so that the corrective action is fast and efficient.

Identification of a fault is not always necessary when an operator is in charge of the corrective

action; however, it is an important element to fault diagnosis if the operators need to know right

away what component faulted and why so that they could determine right away what type of

corrective action to take specifically for that component. For autonomous systems, the operator

can be considered the computer that makes decisions based on data processing algorithms,

otherwise the operator can be considered human. FDI algorithms usually rely on sensor

measurements data to determine the health of the system and what type of corrective action to

take. It is widely understood that sensors are subject to various errors and real-life systems are

subject to disturbances, however false alarms due to measurement noise and system disturbances

must be avoided as much as possible. Residual generation can be approached using one of three

frameworks shown in Figure 1.3. The two main steps of an FDI algorithm are 1) extraction of

trends from measurements, 2) the interpretation of the extracted trends [18]. Extensive work has

been done on trend extraction and representation including the establishment a formal framework

 Fault Diagnosis and Identification

7

for representing process trends [19].

1) Mathematical model-based: Model-based fault diagnosis consists of using a

mathematical model of the system in question to describe the ideal behaviour of the system in a

fault-free case. The output of the model is used to perform consistency checks against the

measured states of the system; if the measurements deviate noticeably from the expected system

behaviour then it is assumed that the system is operating in a faulty mode. The consistency check

involves taking the difference between the model output and system measurements. This results

in a residual error signal that is vital to the proper design of any FDI algorithm. Residual signals

should be zero in the healthy case, however in practice, measurements are subject to white noise

and systems are subject to disturbances, which limits the residual to be in the neighbourhood of

zero in healthy modes.

The problem with using signal-processing techniques is that they do not consider the

dynamic relationships between the measured signals of a system. The processed data represents a

system as a whole with disturbances, non-linearities and the normal system operation being

combined into one response. The ARMAX model is a general deterministic-stochastic model

developed in 1978 [20] to extract information about the system dynamics and noise.

Figure 1.3 Analytical Redundancy Techniques

Mathematical model-based residual generation requires a mathematical model of a

system derived using physical principles. Model-based schemes can be classified further into

observer-based methods that employ linear or non-linear observers [21, 22] in a deterministic

 Fault Diagnosis and Identification

8

setting and Kalman filtering [23] (extended Kalman filter (EKF), Unscented Kalman Filter

(UKF), Adaptive Kalman Filter (AKF), and the linear Kalman filter (LKF)) in a stochastic

setting. Residual signals are defined as output estimation error and innovation sequence for

deterministic and stochastic settings respectively. The parity-space method is based on simple

algebraic projections and geometry that provide an appropriate check of the consistency of

system measurements [24]. This method has been applied to both linear and non-linear systems

[25] for fault diagnosis and is sensitive to measurement and process noise relative to observer-

based methods. Another approach to residual generation is parameter estimation. The goal here

is to estimate physical system parameters, a change in any given parameter estimate will provide

information as to where the fault occurred and what kind of fault occurred and the severity.

Parameter estimation methods such as continuous-time adaptive parity equations [26], neural

parameter estimators [27], Kalman filtering, Neural Networks, and least squares [28] have been

applied for FDI purposes.

The FDI for thrusters has been designed by Boskovic et al. [29] based on the concept of

Multiple Models, Switching, and Tuning (MMST) while a nonlinear iterative neuron

proportional, integral, and derivative (INPID) observer based FDI was developed by Wu and

Saif [30]. The parameters of the observer input were updated based on the proportional, integral,

and derivative information of the fault estimation error. On the other hand, the FDI for reaction

wheels (RWs) has been developed by Tudoroiu and Khorasani [31] using interacting multiple

model Kalman filters while Azarnoush and Khorasani [32] applied linear and non-linear

observers for residual generation and threshold testing for residual evaluation. The main

deficiency of adaptive-observer-based fault identification is their inability to detect and estimate

time-varying faults. To overcome this limitation, an iterative learning observer (ILO) was

proposed by Chen and Saif [33].

2) Learning-Based (computational intelligence-based): Learning-based algorithms use

time-histories of the input/output data of a system to learn the system model. This learned model

is then used to generate the residuals. This approach can be very appealing when a high-fidelity

model of a system is not available or is difficult to obtain. However large quantities of

input/output data must be available that encompass most of the expected system behaviour in

order for these methods to yield good results. References [34-36] provide comprehensive surveys

of learning-based methods, also referred to as computational intelligence-based methods,

 Fault Diagnosis and Identification

9

artificial intelligence-based methods, soft-computing approaches, or intelligent methods.

 Li and Khorasani [37] proposed a FDI algorithm using a dynamic neural network to

learn the non-linear RW dynamics and generate residuals that are evaluated by threshold testing.

Later, the fault identification function added to FDI, called FDD, was developed using a

mathematical model of a system known a priori along with self-learning computational

intelligence techniques [38]. However, the algorithm can only identify one fault at a time and its

application to different systems requires redesign of the intelligent portion of the algorithm and

re-training.

3) Expert System-Based (fuzzy rule-based): A fuzzy logic or neuro-fuzzy system will

employ a set of “if the” rules that are based on expert knowledge of the system. If this expert

knowledge is not available then neural networks are employed to determine the parameters of

those rules. Any one of these methods is sufficient for residual generation and has been studied

extensively.

Neural networks are well suited to performing trend analysis and/or feature extraction to

determine the operating state of a system [39] as well as fuzzified symbolic representations [40].

Clustering algorithms based on Bayesian classification rules have also been developed to classify

data into clusters that are centered about means determined a priori; each mean represents a

particular operating condition of a system [41]. Interpreting the classified data has been done

using alignment-based sequence-matching algorithms [42], hidden Markov models [43], and

dynamic time warping for similarity estimation [44]. Frequency domain analysis of a time-series

of measured system states and outputs is another form of signal processing. The Discrete

Wavelet Transform has been used for over fifteen years to perform feature extraction as fault

diagnosis for machinery components [45]. The DFT algorithm transforms data from a time-

domain representation to its frequency domain representation where its frequency response can

be analyzed and interpreted [46].

The next stage in the FDI problem is residual evaluation. With a properly constructed

residual, the healthy and faulty modes of operation should be manifested in the residual such that

each mode creates a unique residual signal or pattern. The residual evaluation stage involves

processing the residual signal such that its patterns can be matched to particular system modes of

operation. A threshold test of instantaneous values, calculating moving window averages of the

residuals, or more complex statistical methods such as generalized likelihood ratio or sequential

 Fault Diagnosis and Identification

10

probability ratio testing.

The category of threshold testing involves establishing upper and lower thresholds about

the residual mean in the healthy system mode of operation. If the residual signals exceed these

boundaries then a fault has been detected. Reference [47] does fault detection for a RW with

linear and non-linear observers for residual generation and threshold testing for residual

evaluation. In Ref. [48], a simple threshold test of brushless DC (BLDC) motor currents is used

to detect faults. A fault detection and isolation algorithm is presented in [37] by applying a

dynamic neural network to learn the non-linear RW dynamics and generate residuals that are

evaluated by threshold testing. Adaptive thresholds that adjust based on system inputs have also

been studied in [49], however this still only provides the ability to detect and in some cases

isolate faults.

When residual evaluation is performed using moving window averages of the residuals,

the statistics of the residuals are used to estimate system measurement and process noises. This

methodology has been applied extensively to the KF in the form of AKFs that adapt the

measurement and process noise on the system using this fading memory technique. Reference

[50] uses the residual window averaging technique for attitude determination with Global

Navigation Satellite Systems (GNSS). And [51] uses this technique for state estimation of non-

linear industrial systems., and [52] uses residual window averaging to estimate measurement and

process noise for combining a low-cost inertial measurement unit (IMU) with GPS readings to

obtain positioning and attitude information.

Finally, statistical methods can be considered for residual evaluation. The Generalized

Likelihood Ratio Test (GLRT) [53] is a useful tool in detecting changes in a residual. This

method computes a threshold based on the probability of false alarm and corrects detection thus

making it more robust than a fixed threshold algorithm. Moreover, it can estimate an abrupt jump

in residual amplitude and the time of the jump. However, the proposed method does not work if

the residual change is not abrupt, and there are robustness issues against modeling errors and

process disturbances. The sequential probability ratio test (SPRT) assumes that samples are

uniformly distributed and independent, and that the structure of their distributions is known a

priori with unknown parameters. In Ref. [54], the Mann-Whitney rank sum test is used so that

the PDF of the samples does not need to be known a priori. However, this method is also not

robust to modeling errors and large process disturbances. Both these methods use residual

 Problem Statement

11

threshold testing based on statistical properties and probabilities of the system in question to

improve upon the fixed threshold technique.

In the literature there are many fault diagnosis techniques that have been developed such

as Bayesian classification for fault detection and isolation [55], Wavelet and dynamic recurrent

neural networks for fault detection and isolation respectively [56], fuzzy neural networks for

fault detection [57], learning-based diagnostic tree approaches for fault detection and isolation

[58], the Interactive Multiple Model (IMM) approach to detect and isolate faults for

reconfigurable control, and adaptive observer methods. Most methods do not perform fault

identification however. Reference [18] is one of the few that can perform fault detection,

isolation, and identification of RWs. This is done utilizing a mathematical model of a system

known a priori along with self-learning computational intelligence techniques resulting in a

hybrid approach. Computational loads of this algorithm are large and its application to different

systems requires redesign of the intelligent portion of the algorithm, for satellite ACS FDI an

approach is proposed in [17] that is claimed to be able to be applied to various actuators without

much effort and large computational loads. However, as mentioned earlier in this Chapter there

are some disadvantages to this methodology, which in this research an attempt is made to solve

the mentioned problems, and investigate the applicability of the proposed algorithm and

methodology.

1.4 Problem	Statement

In the sections above, an overview of current trends and studies in the field of tuning a

filter as well as a literature review on the FDI and different applications for, particularly in space,

and RW units was presented.

It is clear that there is a need for a methodology to solve issue with the manual tuning of

filters/controllers. Reason being that the process is tedious considering the amount of time it

takes a person to do the trial and error with the fact that the experience of the person who is

doing the tuning affects the performance of the filter tremendously. Motivated by that there were

couple of problems faced in the SSDC lab with the research existed that are addressed below:

[Prob1] Auto Filter Tuning Methodology: As mentioned above, there was a need for a

systematic approach to tune filters that lacked existing in the SSDC lab for tuning Kalman Filters

in Ref. [17]. The problem with the algorithm in Ref. [17] is that it requires a person to tune the

 Research Objectives

12

filter manually for any sort of change in the simulation including noise levels, system

parameters, etc.; which takes a lot of time and does not guarantee the performance of the filter as

it is not known by the tuner (person) whether there would be a better solution.

[Prob2] Covering Different Noise Levels: Another problem that was faced in Ref. [17]

was that for different noise levels in the system there was a need for re-tuning the filter to get

“satisfactory” results and again the issue is that the results cannot be guaranteed to be the best as

they are just tuned manually and the performance of the filter depends on the experience of the

designer/tuner of the filter solely.

[Prob3] Applicability of use for Different Systems with Minimum Changes Required:

Another requirement for a practical methodology is its applicability to different systems with

unknown parameters while promising a satisfactory performance. This was another challenge in

the methodology proposed in Ref. [17], which is caused by the fact that the tuning is done

manually in that reference. Also the structure of the code in the simulation was not “modular”

meaning that the user needed to go through lines of codes to be able to change a little property of

the system and then this change should be done in different places including a MATLAB m code

and a Simulink model with the effort of running them separately and plotting the results and

analysing them afterwards.

1.5 Research	Objectives

As per the problems mentioned in the previous section, this research focuses on

proposing a new approach for tuning filters (specifically) or any controller in general application

which is automated and systematic and gives you certain indices of its performance based on

optimization algorithms.

Design of a Tuning methodology based on Optimization: The objective of this

dissertation is to propose a methodology, which is able to tune different controllers/filters based

on a certain measure and gives different indices of its performance to guarantee the convergence

of the solution and the trend of the objective set in advance. This methodology should be robust

to changes and not dependant on the system it is being applied to. It also should be structured in

a way, which is easy to use and easy to adapt to different systems without sensitivity to changes

in the system parameters and system unknowns. If required, it should be able to handle multi

noise/disturbance levels in the system and give gains/parameters that would work for different

 Main Contributions

13

levels of noise/disturbance.

The proposed methodology is applied to an FDI algorithm with Adaptive Unscented

Kalman filter (AUKF) for parameter estimation of RW [17]. Its performance is verified via

MATLAB/Simulink simulations using a high fidelity RW model [59]. As mentioned before the

tuning problem has already been addressed in the literature but in here the problem is applied to

a specific system with the scope of structuring the algorithm for easy adaptation to other systems.

It is also an important factor to mention that because of the nature of such systems/simulations,

there are some changes needed in the structure of the optimization algorithm as well as the

structure of the whole methodology to handle divergence of the simulations and yet give the

optimum solution within the area of search set in advance.

1.6 Main	Contributions

The main contribution of this work is proposing a methodology to tune different

filter/controllers automatically with the least human interference so that the results are robust and

guaranteed to be near optimal in the search region. The methodology proposed in here is simple

and intuitive in nature, it is based on an evolutionary swarm intelligence optimization algorithm,

which mimics the behaviour of a group of birds in an attempt to find food as a group. The

optimization method is known as Particle Swarm Optimization (PSO) [60] and a variant of this

optimization method is used in this thesis to make it bounded and able to handle constraints in an

intuitive way. The objective in the PSO for this specific problem would be to minimize the error

in the measurements and give satisfactory estimates of the system parameters. This is done by

evaluating residuals for different sets of the parameters/gains for the filter and among them

deciding on which is the best based on the objective function. The objective function could be set

for different problems to adapt the system and objective. In the following Chapters, more details

are given on how this is done and how to implement the method in different problems for

different systems.

This algorithm is applicable to any general linear or non-linear system. A nonlinear

system is demonstrated in this thesis. In particular, the proposed methodology is applied to an

AUKF variant [17] for an FDI problem on a high fidelity RW model [59].

 Thesis Outline

14

1.7 Thesis	Outline

In Chapter 2 satellite actuators and in particular, the RW model is explained to

understand the system better, where the FDI algorithm is applied to. In Chapter 3, an extensive

review of KFs with more focus on unscented Kalman filter and adaptive filters with their

applications to FDI problems is presented. In Chapter 4, a review on optimization algorithms is

presented and Particle Swarm Optimization (PSO) algorithm is explained in detail. Furthermore,

the proposed methodology is explained in detail followed by an example for better understating

the optimization process. Different parameters effect on the performance of the proposed

methodology is then investigated by different simulation cases presented in Chapter 5.

Eventually, Chapter 6 contains the conclusions and future work.

15

2. Reaction Wheel Model

The focus of this thesis is the tuning technique for a filter/controller but the proposed

methodology needs to be applied to a system and the performance needs to be evaluated. Hence,

the system that the proposed methodology is going to be applied to is a RW model [59] to have a

measure for comparison with the results in Ref. [17]. Consequently, the model being used is the

same model from Ref. [17] to give a perspective on how the performances vary/improve with the

new methodology applied for tuning the filter.

The ACS of any satellite regardless of class whether active or passive is one of the most

critical subsystems for the successful completion of a mission. Passive attitude control consumes

no satellite resources and usually takes advantage of the Earth's gravitational and magnetic fields.

Active attitude control consumes either fuel or electrical power or both to maintain a desired

attitude. The choice of which method to use depends on the required pointing accuracy for the

proposed mission. The deciding factors for pointing accuracy are the communications system

and type of payload(s) [61]. Assuming an antenna with a beam-width of 1 on a satellite in a 600

km LEO, a simple trigonometric calculation indicates the beam would cover a 210 km area on

the Earth. Thus in order to guarantee continuous communication with the ground station the

satellite must be capable of pointing its antenna with an accuracy of better than 0.5 . In practice,

the beam width of a directional antenna is usually wider than 1 . However, it is evident that a

less directional antenna requires less pointing accuracy because it can cover more surface area on

the Earth. The same argument can be applied to imaging and other payloads that require some

degree of pointing accuracy.

To date, RWs and magnetic torque rods (MTRs) are the most common actuators that can

fit within small satellites mass, power, and volume constraints and still provide adequate attitude

control performance [17]. These constraints vary depending on the payload and mission

requirements. This section is a brief description on the satellite actuators with a focus on RWs.

2.1 Actuators	

The most common actuator technologies for cubesats are reaction wheels (RWs),

thrusters, and magnetic torque rods (MTRs), while CMGs are also common but in larger

satellites. A RW consists of a flywheel attached to an electric motor. At least three RWs mounted

 Reaction Wheels

16

orthogonally about each of the body axes are required for full three-axis attitude control. When

the satellite must perform a maneuver the RWs accelerate and impart a torque onto the

spacecraft, if a spacecraft must maintain a desired attitude in the face of external disturbances the

RWs must absorb any added momentum to keep the total angular momentum of the system at

zero. An MTR usually consists of a wire coil with a ferrite core. When a current passes through

the coil a magnetic field is created. When multiple MTRs are combined a magnetic dipole can be

created that counteracts the Earth's magnetic field and provides two-axis pointing of a spacecraft.

MTRs are usually employed along with a reaction wheel for full three-axis attitude control.

Finally the CMG is another momentum exchange device like the RW. A CMG unit consists of a

flywheel that is gimballed about one, two, or three of its axes. Gyroscopic torques are generated

as the angular momentum vector is rotated about axes perpendicular to the flywheel spin-axis.

Depending on mission requirements one actuator may be more appropriate than others. in

particular, the required degree of pointing accuracy is a primary factor for selecting actuators.

MTRs provide the lowest pointing accuracy because of the time-varying nature of the Earth's

magnetic field and their inability to provide control about more than two axes. They are usually

used in conjunction with RWs and CMGs for momentum dumping. For a cubesat MTRs are

small enough to satisfy the mass/power/volume constraints hence making them a popular choice.

RWs provide substantially improved pointing accuracy and agility relative to MTRs, however

power consumption and mass tend to be larger. CMGs provide more accurate and agile pointing

capabilities because of their torque amplification characteristics and gyroscopic stabilization. It

must be noted that pointing accuracy is a only as good as the combined ADS and ACS(ADCS)

accuracy. In other words if the ADS is only accurate to 1 deg and ACS pointing accuracy to 0.5

deg, no better than 1 deg pointing accuracy can be achieved and vice-versa.

2.2 Reaction	Wheels	

Fundamentally a RW (Figure 2.1) is a flywheel mounted to an electric motor. Electric

Motors in space are usually BLDC or stepper motors as opposed to brushed motors. These types

of motors are preferred because brushes can scrape particulate matter of the electrodes and

contaminate instrumentation. A motor consists of stationary stator windings, and a permanent

magnet or wound rotor. The difference between brushed and BLDC motors lies in the

commutation method. BLDC motors commutate using stationary position sensors located as

close to the rotor magnets as possible. The position sensors are Hall effect sensors that output a

 Reaction Wheels

17

logic high level when a magnetic field is passing over them and low when no field is present.

Each position sensor generates a pulse-train that is 120 deg out of phase with the other two

sensor signals. Commutation is performed by processing the three signals and knowing when to

excite a particular stator winding. The rotor speed can also be ascertained by observing the

position sensors signal frequencies. In contrast a brushed DC motor uses metallic or carbon

conducting 'brushes' to commutate while the stator remains similar to that of the BLDC. The

commutator is usually located above the stator windings so that as the motor turns the brushes

slide over the commutator making contact with the different commutator segments. Each

segment is attached to one winding resulting in the generation of a dynamic magnetic field inside

the motor when a voltage is applied across the brushes. This field repels the rotor magnets or

windings resulting in the rotation of the rotor. A major problem with brushed DC motors is the

wear and tear on the brushes and commutator, in the vacuum of space the tiny particles that wear

off of the brushes can disperse in all directions and contaminate on-board electronics.

Figure 2.1 Reaction Wheel unit developed in the SSDC lab at Ryerson University

A RW model must consider motor disturbances, non-linearities, and BEMF torque

limiting. Figure 2.2 is a high-fidelity RW model for a torque-controlled BLDC motor developed

by [59]. Voltage-controlled motors share the same disturbances and non-linearities. BEMF

voltages are generated in stator windings when the rotor rotates. A faster rotor speed will yield a

larger BEMF voltage, its exact value is determined by the product of wheel speed and BEMF

 Reaction Wheels

18

constant mK , with SI units /rad s and / /V rad s respectively. In so far as torque limiting,

when a voltage is applied to the motor the rotor rotates. It will rotate until a speed is reached at

which the BEMF voltage is close to the applied voltage such that the differential voltage across

the armature is small resulting in a small current. Rotation stops when the current is so small that

the motor does not generate enough torque to accelerate. For example if five volts are applied at

zero wheel speed the wheel will accelerate until the BEMF voltage nears five volts. In order to

decelerate the wheel a lower voltage must be applied and vice-versa to accelerate the wheel

again.

On the mechanical side of the dynamics the motor can be subject to disturbances such as

cogging and ripple torque. Cogging torque is caused by the rotation of the magnets in the rotor

with respect to the motor windings. As a magnet rotates past a winding, its motion is first

opposed by flux leakage from the end of the windings until it passes over the entire winding

when the motor is then accelerated by the flux leakage. With current BLDC motor technologies

cogging torque is no longer a concern as most designs minimize the amount of ferrous material

rotating across the windings.

Equation (2.1) describes the cogging torque mathematically,

 sin 3cogT B N t (2.1)

 where B is a gain, N is the number of motor poles, and  is the rotor speed. Torque

ripple occurs at the commutation frequency and is characterized as a variation in the motor

torque caused by the commutation method and the shape of the BEMF waveform. For analytical

purposes this disturbance is approximated as a sinusoid while in reality it is closer to a truncated

rectified sine wave. The equation for this disturbance is shown below,

sin
2rip

N t
T C

   
 

 (2.2)

where C is a constant and the other parameters are the same as in Eq. (2.1). BLDC

motors are also subject Coulomb and viscous friction non-linearities that are dependent on the

bearing material and lubricant. Coulomb friction is caused by the rolling friction within the

bearings and is characterized by a torque discontinuity when the motor is not generating enough

electrical torque.

 Reaction Wheels

19

Figure 2.2 Reaction Wheel Model [59]

The expression for Coulomb friction is,

 coul cT sign  (2.3)

where c is the coefficient of Coulomb friction with units N m , and the sign function

can be characterized as shown below.

 
1 0

0 0

1 0

x

sign x x

x

 
 
 

 (2.4)

Viscous friction varies depending on the type of the bearing lubricant and its temperature as well

as the speed of the rotor. A higher bearing lubricant temperature will create less friction in the

bearing while different lubricant materials will have varying viscosities. Viscous friction can be

expressed as in Eq. (2.5),

 Reaction Wheels

20

visc vT   (2.5)

where v is the coefficient of viscous friction with units . / /N m rad s . The motor torque block in

Figure 2.2 consists of scaling the motor current by the torque constant (tK , with SI units

. /N m A) which is equal to the BEMF constant when expressed in SI units. For the remainder of

this thesis the terms 'BEMF constant' and 'torque constant' are used interchangeably.

It is important to discuss the high degree of nonlinearity in this RW model. In particular,

attention must be paid to the heavyside, absolute value, and signum functions in the model.

These functions all lead to discontinuities that must be approximated by appropriate analytical

models. These models take the form of rational exponential functions. For the numerical

representation of this model refer to Ref. [18].

21

3. Kalman Filters

The Kalman Filter (KF) is a model-based observer that produces estimates based on the

stochastic properties of a system. This feature of the KF makes it robust to measurement and

process noise, hence, make it practical to implement. The most common application for KFs is in

fault diagnosis and identification (FDI) which has been studied extensively in the literature.

Three of the common KF variants applied to the FDI problem are the EKF, AKF, UKF, and

adaptive unscented Kalman filter (AUKF).The EKF uses linearization to estimate the true mean

and covariance of the random variable while the UKF uses sigma points or particles. These

sigma points when spread through a non-linear system, capture the posterior mean and

covariance accurate to the third order, whereas the standard EKF is only accurate to the first

order [62]. This means that the UKF is a better option for highly non-linear systems but has no

advantage for weakly non-linear systems. Whether the EKF or UKF structures are used the

adaptive mechanism, which could be used in both, remains the same. These filters can be

implemented for either state/parameter estimation, or joint state and parameter estimation. State

estimation uses the standard KF equations without any modifications and hence, is the most

straight forward approach to Kalman filtering. The goal in this approach is to estimate the system

states based on the mathematical model of the system. The FDI approach could be as simple as

just comparing the measured system states from the sensors and with the predicted model states,

if the residuals exceed a threshold then a fault has been detected. On the other hand, isolation and

identification are not as direct and generally require a good choice of residuals in addition to

post-processing of the raw data. Parameter estimation, howerver, is a form of system

identification as it implicates estimating the physical parameters of a system. In order to

accommodate the parameters as the state-vector for this purpose, modifications need to be made

to the KF equations. The FDI problems are then directly resolved when the parameters of a

system are estimated; the reason for that is that the change in parameter(s) identifies where the

faults have occurred and the level of severity for each. Having said that, the parameter estimation

approach is better suited for FDI problems than the state-estimation is.

3.1 Unscented	Kalman	Filter	

The Robotics Research Group (RRG) in Oxford UK proposed a "New Filter" in 1994

 Unscented Kalman Filter

22

which was named the UKF. Then, in 1997 the first paper was published describing the UKF as a

new extension of the KF to nonlinear systems . The UKF is a variant of the KF with the

capability of estimating the mean and covariance of a random variable to the third order while

the Extended Kalman Filter (EKF) only approximates them to the first order. As a result, higher

order terms in the dynamics are not ignored in UKF. This filter is built on the belief that "it is

easier to approximate a probability distribution than it is to approximate an arbitrary nonlinear

function." [63]. Simply put, it means that the linear approximations are not used to approximate

non-linear functions in here; instead, the statistical moment of the state is approximated. The

UKF is, in fact, a form of particle filter applied to a random variable with Gaussian distribution.

Generally particle filters can be applied to systems with sampling densities that are non-Guassian

[64] where the posterior distribution of the state is approximated using a large number of "well

chosen" particles or sigma points that changes randomly in time according to the model

dynamics and system measurements [65]. Therefore the UKF is similar to the Monte Carlo

simulation except for the part that the points are chosen deterministically in the UKF.

Figure 3.1 Linearization (on the left) vs. Unscented Transformation (on the right)

Figure 3.1 shows a visual explanation of the unscented transform versus linearized

transform. Variable y is obtained by a propagating a random variable x through a non-linear

function f . The goal is to estimate the mean y and covariance yyP of y as accurate as possible.

As discussed earlier, because EKF linearization is only accurate to the first order, the statistical

properties of the output vector can not be captured accurately. The unscented transform, on the

other hand, generates a cloud of sigma points which has a covariance and mean closer to the real

 Unscented Kalman Filter

23

values. There are three steps to the unscented transformation process. First, given the n -state

random variable x a set of 2n sigma points are generated around x along with a set of 2 1n

weights (one for x). Then the 2n points are fed to the non-linear output function h to obtain y .

And eventually the mean y and covariance yyP of y are calculated based on the distribution of

these "particles" or sigma points and their weights. The UKF formulation is as follows [66]:

1) Compute weights

0 n







W (3.1)

 
1

2i n 



W (3.2)

2) Establish symmetric sigma points about the state estimate

0 ˆ ˆ k
χ x (3.3)

  , 1,2,ˆ ...,ˆ i k in i n     χ x P (3.4)

  1,..ˆ ., 2ˆi k in i n n      χ x P (3.5)

3) Instantiate sigma points through process model

 ˆi ifχ χ (3.6)

4) Predict mean and covariance of states

2

0

n

i i
i

W


x χ (3.7)

  
2

0

n

T

xx i i i
i

W


   P χ x χ x Q  (3.8)

5) Instantiate sigma points through measurement model

 i ihY χ (3.9)

6) Predict mean and covariance of measurements

2

0

n

i i
i

W


y Y (3.10)

  
2

0

n

T

yy i i i
i

W


   P Y y Y y R (3.11)

7) Predict cross covariance

 Unscented Kalman Filter

24

  
2

0

n

T

xy i i i
i

W


  P χ x Y y (3.12)

8) Gain calculation and updates

1
xy yy

K P P (3.13)

 ˆ   x x K y y (3.14)

T
xx yy

  P P KP K (3.15)

If x is assumed to be Gaussian then  should be selected such that 3n   [17], for different

distributions another value may be more appropriate. In Eqs. (3.4) and (3.5) the   in   P

terms represent the scaled thi rows/columns of the square root-factor of P . As it can be seen

from the fomulation, there is no linearization in the filter, and instead sigma points are fed to the

process and measurement models after which the state and measurement statistics are estimated.

Figure 3.2 shows the flow of the algorithm.

Figure 3.2 UKF Signal Flowchart [17]

The UKF has been successfully applied to FDI problems to resolve some of the issues

associated with linearization in the EKF that could lead to false alarms. An extensive review on

is done in Chapter 4 of Ref. [17].

Initialization

Gain
Calculation

Updates

Measurements

xxP

iWWP ,, 00 00 , RQ
1kz

1kK 
1ˆkx


1kP

Unit Delay


kx̂
P

State
Predictions

Instantiate
Particles

i̂

x

Measurement
Predictions yi ,

yyP

Cross
Covariance
Prediction

xyP
i

~

y

 Parameter Estimation with UKF

25

3.2 Parameter	Estimation	with	UKF

It was also indicated in the previous section that if the KF is formulated to perform

parameter estimation, identification could be done in the filter with the least post-processing.

Principally a fault is typically the result of a change in system parameters; therefore, direct

estimation of these parameters can provide enoigh information on the type, severity, and location

of the fault. The challege here is that the computational requirement for this method could be

large once there are many "fault parameters" in a system, however, in reality only those

parameters reflecting the most common or critical fault types of a system need to be to estimated.

This technique also has the advantage of producing as a byproduct the mathematical model for

the system in question which can be used to generate residuals; hence, state-estimation is not

always necessary. An extensive literature review on the applications for this method is available

in Chapter 4 of Ref. [17].

Thae fact that parameters are usually constant in a given mathematical model implies that

their time-evolution can be refer to as 0p x . But in reality their estimates are actually time-

varying. This leads to the conclusion that the state-prediction stages of the UKF must be

modified to account for these aspects. Logically a common question arises as to “how the

parameter estimates are varied if their time-evolution is zero?”. The answer is that the evolution

of these parameters is caused by the stochastic properties of the system. Poorly chosen Q and R

matrices, hence, will lead to biases in the estimates and can even result in instability [67]. This is

the main focus of this thesis as how to choose parameters for the filters systematically, Kalman

filters specifically in this case, so that the estimations are accurate enough with the least residul

in the system.

The formulation for parameter estimation with the UKF is as follow [68].

1) Compute weights

 0 n







W (3.16)

 
1

2i n 



W (3.17)

2) Establish symmetric sigma points about the state estimate

0 (1) ˆ ˆ p k


χ x (3.18)

 Parameter Estimation with UKF

26

 (1) (1) , 1,ˆ 2,...ˆ ,i p k k in i n 
     χ x P (3.19)

 (1) (1) 1,..., 2ˆ ˆi p k k in i n n 
      χ x P (3.20)

3)Predict mean and covariance of states

1 1k k k
 
  P P Q (3.21)

(1)p k pk
 

 x x (3.22)

4) Instantiate sigma points through measurement model

 ˆi igY χ (3.23)

5) Predict mean and covariance of measurements

2

0

n

i i
i

W


y Y (3.24)

  
2

1
0

n

T

yy i i i k
i

W 


   P Y y Y y R (3.25)

6) Predict cross covariance

 
2

(1)
0

ˆ ˆ
n

T

xy i i p k i
i

W 




    P χ x Y y (3.26)

7) Gain calculation and updates

1
xy yy

K P P (3.27)

 (1)ˆ p p k


  x x K y y (3.28)

1 1
T

k k yy
 
  P P KP K (3.29)

As it can be noticed, the main difference in this implementation is in steps 3 and 4. Since there is

no dynamics information available for parameters, the sigma points from step 2 are not

propagated; instead, they are used in subsequent steps as before. The "predicted" mean and

covariance of the states for the state-estimation UKF, x and xxP respectively, in Eqs. (3.7) and

(3.8) are replaced throughout the remaining steps by the predicted mean and covariance (1)p k


x

and 1k

P of the states in step 3 here. The differences between the flow of this algorithm an that of

the state-estimation UKF lie in the state prediction calculations.

The UKF does not require a measurement matrix because of the unscented transform.

 Adaptive Kalman Filtering

27

Therefore, there is no uncertainty for the residual generation form. The function h in step 5 of

this algorithm represents the output equation of the system in terms of its parameters.

When using KFs for parameter estimation, 1 1/k K Q R ratio becomes an important factor

in the overall performance of the filter because ultimately parameter changes in a physical

system represent a change in the system model. When running the filter this should be reflected

as an increase in process noise covariance matrix entries or the bandwidth of the filter in general.

otherwise the algorithm will only be able to perform the identification of parameters once. This

happens due to the fact that when the Kalman gain reaches the steady-state period and all the

parameters are estimated correctly, the filter bandwidth is usually near-zero; hence, if any of

these parameters change then considering the bandwidth of the filter being fixed, it will not be

able to track the changes. AKFs provide the capability for the filters to make the identification

possible in the case of parameter uncertainty by adapting filter bandwidth based on residuals of

measured changes in the system behaviour versus the modeled behavior.

3.3 Adaptive	Kalman	Filtering

Adaptive Kalman filtering has been around since the late 1960's for online estimation of

measurement and/or process noise characteristics [69, 70]. At the early stages of KF research it

was understood that in practice stochastic noise properties of a system are not always known. A

mechanism was needed that could recursively compute the real measurement and process noise

statistics online so that variations in system uncertainty could be tracked. These methods have

been documented in [71], three of the most common are; (1) the Bayesian approach, (2) the

maximum likelihood approach, and (3) innovation/residual-based approach. An extensive

review on these methods is done in Ref. [17].

Among these methods, to relax the requirements on a priori information of the

measurement and process noise structures, innovation/residual-based approaches can be

considered. Most current adaptive algorithms use some form of processing of the

innovation/residual sequence to obtain better estimates of system statistics, better tracking, and

faster convergence. Algorithms such as adaptive fading factor (AFF) and covariance matching

(CM) fall into this category of adaptive filters. AFF algorithms generally introduce a scale-factor

 to the error covariance prediction and/or gain calculations. In Reference [51] a scaling factor

 Adaptive Kalman Filtering

28

 is defined as a function of estimated and theoretical innovation covariances ˆ
vC and vC

respectively shown in the equations below,

 11
1, ˆ

v vmax trace
N

    
 

C C (3.30)

1

ˆ ˆ
1

Δˆ Δ
k

T
v k k

j k NN   

 C x x (3.31)

1 1 1 1
T

v k k k kH H
    C R P (3.32)

 where ' trace ' is the trace operator. This has the affect of modifying the scale-factor when

estimated variances based on innovations become larger. In other words when changes in system

parameters occur the mechanism causes changes in the bandwidth of the filter. This is done by

multiplying the gain of the standard KF equations by 1/ . Another form of adapting the scale-

factor is proposed in [72] where the magnitude of the deviation of the innovation vector from

zero is used as an input to fuzzy rules, which then output a scale-factor representing the degree of

confidence that divergence is occurring. Research presented in [73] demonstrates the AFF

method using both the residual and innovation sequences and concludes that a fading factor

expressed by the innovation sequence is superior to one expressed by the residual sequence. The

CM approach is a method of making residuals and innovations consistent with their theoretical

covariances. Usually either the R matrix is held constant while the Q matrix is adapted or vice-

versa. In the former case the estimated innovation covariance ˆ
vC is used to adapt the Q matrix

until it matches the theoretical covariance [74]. As innovations become larger in the face of

system faults the estimated covariance increases thereby increasing Q and therefore the Kalman

gain. This method can be subject to abrupt changes in Q in which case a running average

window can be used to smooth out the estimate [75]. If R is to be estimated while Q is held

constant, R is adapted based on the estimated residual sequence covariance ˆ
rC until the

covariances match. In reference [76] this method is used along with fuzzy rules to identify the

amount and direction of change that should occur in the measurement noise matrix. These

methods are sub-optimal as they involve approximations to the true statistics and in some cases

convergence is uncertain. However they are more robust and responsive than the Bayesian and

MLA methods because information from the residual and/or innovation sequences provide close

 Adaptive Kalman Filtering

29

approximations to the actual variances.

Traditional covariance matching techniques estimate either the measurement or process

noise matrices while the other is assumed constant, adaptive sequential estimation is a similar

technique to that of covariance matching except that both measurement and process noise

statistics are estimated simultaneously online. Myers and Tapley [77] were one of the first to

propose such a method. First they define an unbiased estimator for residual 1kr as the following

sample mean

1
1

1 N

k j
jN


 r r (3.33)

Next an estimate of the covariance of 1kr is calculated along with its expected value.

  1 1
1

1

1

N T

r j k j k
jN  


  
 C r r r r (3.34)

1
1

1

N
T

r j k j
j

E H H
N






     C P R (3.35)

 The resulting unbiased estimate is shown below.

  1 1 1
1

1 1ˆ
1

N T T
j k j k j k j

j

N
H H

N N


  


           
R r r r r P (3.36)

Process noise can be estimated in a similar fashion except using the innovation sequence,

    1 1 1 1
1

1 1
 Δˆ ˆ ˆ ˆ ˆΔ Δ Δ

1

N T
T

kj kj k k k k
j

N

N N
 

   


           
Q x x x x Φ P Φ P (3.37)

where Δx̂ is the mean of the innovation. In this algorithm the difference between the

innovation/residual vectors and their respective running average means is used to obtain

covariance estimates. The goal being to obtain process and measurement noise estimates for

covariance matching. Absolute values of diagonal entries of Q̂ and R̂ must be taken in order to

guarantee the positive definiteness of these matrices. An extensive review on different

sapproaches to AKF is presneted in Chapter 4 of Ref. [17] and at the end, the author proposed a

new approach for the AFF calculation which is furhter explained in the next section.

 FDI by Parameter Estimation with Adaptive Kalman Filters

30

3.4 FDI	by	Parameter	Estimation	with	Adaptive	Kalman	Filters

To approach the problem of FDI for ACS hardware such as RWs, AUKF is presented for

parameter estimation assuming full state measurement. A primary goal in the design, as claimed

by the author in Ref. [17], was to limit the computational necessities of the algorithm to help

implement it in the ACS module. This means that only parameter estimation is considered to

limit the prediction and update equation's computational requirements. A joint n -state and p -

parameter estimator would result in an augmented state-vector ax with dimension n p .

Assuming m measurements are available, dimensions of the error covariance matrix would

increase to    n p n p   , while those of the gain matrix would be  n p m  . For 2n  ,

2m  , and 2p  the covariance matrix for parameter only estimation has four entries while in

the joint case this number increases by a factor of 4. Similar computational savings are observed

in the gain matrix to a lesser degree, however on macroscopic scales of time these computational

savings quickly add up. State-propagation is performed by running a model online whose outputs

are conditioned by the estimated parameters. Although this entails excess computational

requirements, they are not realized in the KF equations, and the net savings is still considerable

since only one set of equations needs to be calculated.

In order to better understand the reasons behind choosing KF for the purpose of FDI can

be found in Chapter 4 of Ref. [17] and here in order to avoid unnecessary repetiotion, the reader

is referred to the main reference and only the importan formulation and explanations are

included.

The following adaptive mechanism is applied to the EKF formulation

1

1ˆ
k

T
r k k

j k NN   

 C r r (3.38)

1 1 1 1
ˆˆ T

k r k k kH H
    R C P (3.39)

1 1 1
ˆ ˆ T

k k r k  Q K C K (3.40)

 The moving window average of the matrix in Eq. (3.38) is updated at each time-step. In practice

the elements of the moving window are stored as an array.

 At each iteration the oldest element in the array is shifted out while the newest residual vector is

shifted in, then the measurement and process noise estimates are calculated. Selection of the

 FDI by Parameter Estimation with Adaptive Kalman Filters

31

window size depends on the application, Ref. [52] provides criteria for window length selection

to avoid divergence and/or instability; (1) A window size smaller than the number of

measurements when adapting R. (2) A window size smaller than the number of filter states

when adapting Q. (3) A window size smaller than the sum of update measurements and filter

states when adapting both Q and R.

In these three cases divergence occurs because there are less equations than unknown

parameters, resulting in an under-determined system. Following the above criteria destabilization

of the filter is averted, however biased estimates may result for small sample sizes. For unbiased

estimates a larger window length is preferred, however a window length that is too large will not

allow the filter to correctly track high-frequency changes in the system states. Consequently the

lower bound of the window length is selected based on the number of filter states and

measurements, while the upper bound is selected depending on the dynamics of the system. For

implementation in the UKF a modification must be made to Eq. (3.39) because the measurement

matrix is no longer available. Estimated measurement covariance is calculated in the UKF using

Eq. (3.25), consequently the measurement noise covariance matrix should be calculated as [78],

*
1

ˆˆ
k r yy  R C P (3.41)

  
2

*

0

n

T

yy i i i
i

W


  P Y y Y y (3.42)

 where ˆ
rC is the same as in Eq. (3.38). The signal flow of the resulting AUKF algorithm is

shown in the block diagram below.

Figure 3.3 AUKF Signal Flowchart [17]

Initialization

Gain
Calculation

Updates

Measurements

xxP

iWWP ,, 00 00 , RQ

1kz

1kK


1ˆkx


1kP

Unit Delay

State
Predictions

Instantiate
Particles

i̂

x

Measurement
Predictions yi ,

yyP

Cross
Covariance
Prediction

xyP
i

~

y
Adaptive
Algorithm

11
ˆ,ˆ

 kk RQ
kk Px ,ˆ

kk RQ ˆ,ˆ

 FDI by Parameter Estimation with Adaptive Kalman Filters

32

 In this case the prediction stage of the UKF is

ˆi iχ χ (3.43)

1xx k k


 P P Q (3.44)

 In addition to adapting the Q and R matrices, a fading factor is applied to the error covariance

matrix in the prediction stage for the UKF as in Ref. [17]

1xx k k  P P Q (3.45)

 As it is further explained in Ref. [17], If 1  then the standard KF prediction occurs, if 1 

the filter will weight the data exponentially so that the effect of current data is emphasized and

information from older measurements is discounted, hence the name 'fading factor' or 'fading

memory'. In the standard KF algorithm estimates depend highly upon past data which can lead to

divergence of the estimates even in the face of new measurements. An FDI algorithm should

consider current data more heavily so that estimates can track the current state of a system. In

essence the fading factor limits how small the error covariances can get by artificially inflating

the value of the predicted error covariance matrix thus introducing more uncertainty into the

system. In Ref. [79] it is shown that larger values of  give the filter a larger bandwidth with the

opposite happening for a smaller value. Typically the fading factor is in the range 1 1.01 

however the appropriate choice depends on the particular application. If it is close to or larger

than the upper bound then instability can ensue, while if it is close to or lower than the lower

bound there will be no effect.

The algorithm explained in Chapter 4 of Ref. [17] incorporates two adaptive

mechanisms; one to ensure that changes in system parameters are reflected as increased

modeling errors, and the other to limit the memory of the filter so that it pays more attention to

current data. Ultimately the modified algorithm attempts to adapt the bandwidth of the filter

based on a moving window average of residuals while making sure that the bandwidth does not

get small enough so that the filter ignores new data. To make the algorithm more robust and

accurate an adaptive fading factor is used. The primary goal is to force the filter to consider new

measurements more heavily when faults occur and less heavily when no further faults are

detected. Although the noise covariance estimations perform the function of adapting the filter

bandwidth, eventually the filter will converge to very small gains thus making the bandwidth

very small. In this case even if a fault occurs and the R matrix becomes large, the Q matrix will

 FDI by Parameter Estimation with Adaptive Kalman Filters

33

be much smaller because it is a function of the square of the gain matrix. Consequently the filter

will not track correctly. A forgetting factor can mitigate this effect be forcing the filter to forget

older data and become more sensitive to newer data. However a constant forgetting factor can

have adverse effects when convergence has been achieved, where it would be desired to make

the filter less sensitive to new data so that the estimate holds even in the face of disturbances. An

adaptive forgetting factor could force the filter to ignore new data when estimates converge and

consider new data more heavily in the opposite case. This adaptation is based on the magnitude

of the R matrix. Large diagonal entries of the measurement noise covariance matrix R result

from large residuals as per Eq. (3.38). Because a running average of the residuals is used a brief

disturbance will not be detected, however a disturbance that persists over a longer period of time

will be reflected in the residual average. Thus adapting the fading factor based on the magnitude

of the R matrix would ensure that when the residuals become larger the filter bandwidth opens

up, with the opposite happening when residuals become smaller. The adaptation is as follows

[17],

 
1 ktrace




 
R

 (3.46)

This formulation guarantees that the adaptive factor will increase for larger values of kR .

The trace operation consists of the sum of the diagonal elements of a matrix, which indicates the

size of the residual error. Here  is one of the parameters in the optimization for the RW FDI.

34

4. Particle Swarm Optimization

In mathematics, computer science, or management science, mathematical optimization,

also known as optimization or mathematical programming, refers to the selection of the best

solution from a set of available alternatives.

In the simplest case, an optimization problem is based on either maximizing or

minimizing a real function by systematically choosing input values from within an allowed set

and computing the value of the function. The generalization of optimization theory and

techniques to other formulations comprises a large area of applied mathematics. More generally,

optimization includes finding "best available" values of an objective function given a defined

domain.

In this Chapter, an introduction to optimization and different algorithms used in this area

is provided. In general, optimization is commonly used in engineering and social based problems

and in all of the optimization problems there are three main lemmas:

1. Considering all the independent variables of the problem

2. Forming the objective function based on these variables

3. Fixing constraints of the problem

Hence, an optimization problem is usually formed in the standard form of

min max

/ : ()

() 0 1,2,3,...,

() 0 1,2,3,...,
i

j

k k k

Max Min F x

g x i p

H x j q

  

  
 

 

 (4.1)

where x is the design or parameter vector, which represents the parameters that are

optimized by the algorithm, ()F x is the objective function and ()ig x , ()iH x are the inequality

and equality constraints of the problem, respectively.

4.1 Brief	History	

Major subfields of the optimization include: Convex programming which studies the case

when the objective function is convex (minimization) or concave (maximization) and the

 Brief History

35

constraint set is convex. This can be viewed as a particular case of nonlinear programming or as

generalization of linear or convex quadratic programming. Linear programming (LP) is another

subfield, a type of convex programming, which studies the case where the objective function f

is linear and the set of constraints is detailed using only linear equalities and inequalities. In this

subfield, such a set is known as a polyhedron or a polytope if it is bounded. There is another

major subfield called Second order cone programming (SOCP) which is a convex program, and

includes certain types of quadratic programs. Semi definite programming (SDP) on the other

hand, is a subfield of convex optimization where the underlying variables are semi definite

matrices. It subfield is somehow a generalization of linear and convex quadratic programming.

Conic programming is, in practice, a general form of convex programming. LP, SOCP and SDP

can all fall into the category of conic programs with the appropriate type of cones. Geometric

programming is a technique in which the objective and inequality constraints are expressed as

posynomials and equality constraints as monomials can be transformed into a convex program.

Integer programming is another subfield, which studies linear programs wherein some or all

variables are constrained to take on only integer values. This is important to notice that this

subfield is not same as convex, and in general is much more difficult than the regular linear

programming. Another subfield is the Quadratic programming, which allows the objective

function to have quadratic terms, while the feasible set must be specified with linear equalities

and inequalities. Interestingly, for specific forms of the quadratic term, this is a type of convex

programming. Fractional programming studies optimization of ratios of two nonlinear functions.

The special class of concave fractional programs can be transformed to a convex optimization

problem. The general case in which the objective function or the constraints or both contain

nonlinear parts is studied in Nonlinear programming. Stochastic programming is a subfield,

which studies the case wherein some of the constraints or parameters depend on random

variables. However, Robust programming is, like stochastic programming, an attempt to capture

uncertainty in the data underlying the optimization problem but with a slight difference that this

is not done by random variables and the problem is solved by taking inaccuracies in the input

data into account. Combinatorial optimization is concerned with problems where the set of

feasible solutions is mainly discrete or there is a possibility for it to reduce to a discrete one.

Infinite-dimensional optimization studies the case where the set of feasible solutions is a subset

of an infinite-dimensional space, such as a space of functions. Heuristics and metaheuristics

 Particle Swarm Algorithm

36

make few or no assumptions about the problem being optimized. Hence, there is no need for

derivatives in this subfield. Usually, heuristics do not guarantee that any optimal solution would

be found. On the other hand, heuristics are used to find approximate solutions for many

complicated optimization problems. More explanations on this subfield are given later in this

Chapter. Constraint satisfaction subfield studies the case in which the objective function f is

constant. This subfield is particularly useful in artificial intelligence in the automated reasoning.

When there is a need for at least one constraint to be satisfied but not all Disjunctive

programming is used. It is of particular use in scheduling.

In a number of subfields, the techniques are aimed mainly for optimization in dynamic

contexts which means decision making over time: Calculus of variations is one of the which

seeks to optimize an objective defined over many points in time, by considering how the

objective function behaves if there is a small change in the choice path. A generalization of the

calculus of variations would be the Optimal control theory. Dynamic programming, on the other

hand, studies the case where the optimization strategy is based on dividing the main into smaller

sub-problems using the Bellman equation. Mathematical programming with equilibrium

constraints is used when the constraints include variable inequalities or complementarities. In the

following section, a brief review on different optimization algorithms is presented.

4.2 Particle	Swarm	Algorithm	

The algorithm being used in this thesis is the Particle Swarm Optimization. PSO is a

metaheuristic algorithm as it makes few or no assumptions about the problem being optimized

and hence, can search very large spaces of candidate solutions. However, metaheuristics such as

PSO do not guarantee an optimal solution is ever found [16]. More specifically, PSO does not

use the derivative of any function for the problem being optimized, which means that it does not

require the optimization problem to be differentiable as opposed to the classic optimization

methods such as gradient descent and quasi-newton. Considering that, PSO can be used for

optimization problems that are partially irregular, noisy, change over time, etc.

In computer science, particle swarm optimization (PSO) is a computational method that

optimizes a problem by iteratively trying to improve a candidate solution with regard to a given

measure of quality known as “eliteness” or “fitness”. It optimizes a problem by having a

population of candidate solutions, here known as particles, and moving these particles around in

 Particle Swarm Algorithm

37

the search-space according to simple mathematical formulae acting on the particle's position and

velocity. Each particle's movement is influenced by its local best-known position and is guided

toward the best-known positions in the search-space, which are updated though time by the

particle itself or other particles. This is expected to move the swarm toward the best solutions in

the space being searched. The main advantage for this algorithm is its population, which makes

the algorithm robust and free of being stuck in the local optimums as explained briefly in the

previous section.

In terms of categorization, PSO falls into the category of evolutionary algorithms and the

sub-filed of swarm intelligence based approaches, similar to algorithms such as Taboo Search

and Ant Colony. Since its original development by Kennedy, Eberhart and Shi [60, 80] in 1995

PSO has mainly been applied to continuous-discrete heterogeneous strongly non-linear

numerical optimization and it is thus used almost everywhere in the world. It was first intended

for simulating social behaviour [81] as a stylized representation of the movement of organisms in

a bird flock or fish school. Its convergence rate also makes it a preferred tool in dynamic

optimization. The algorithm has been modified in many variations since then and being applied

to many different optimization problems in different fields such as controller tuning [82, 83],

trajectory design [84] and many other applications in the field of engineering and non-

engineering problems. An extensive survey of PSO applications is made by Poli [85].

In Particle Swarm Optimization, an iterative procedure is followed to improve the results

for the defined objective function by moving the particles in the search-space based on the

reasoning as follow: Particles in this algorithm evaluate their “fitness” continuously and in each

iteration, memorizing the best position that they have been to so far in their movement history.

They also know the position of the best particle in the group. With these factors, particles in the

swarm move in the n-dimensional space, foraging the solution. These particles have two

outstanding characteristics:

1. Memory for storing the best position that they have been to.

2. Knowledge of the best particle in the swarm with the best position in the search-

space.

Particles in the group are then in communication with each other and update these parameters in

each iteration. They try to change their position and velocity while moving toward the best

position based on the following information:

 Particle Swarm Algorithm

38

1. “global best” which is the best position of the whole group and is being updated in

each iteration. Therefore, if the best position is changed after one iteration then the

whole group would know what the position of the new “global best” is.

2. “local best” which is the best position of the particle in its movement history.

All the particles in the group try to move toward the “global best”. The particles in the group

search the area near the “global best” and do not search other areas of the search space. This

phenomenon is called “convergence”. If the inertia weight is chosen to be small, then all

particles can reduce their speed so that when they reach the “global best”, their speeds converge

to zero. One way of getting out of an unpleasant “convergence” is to give the particles a new set

of initial values after this unpleasant “convergence” occurs.

In general, the advantages of the PSO over GA algorithm are twofold: first is that in PSO

particles use their history and the best of the group history to decide on the next move in the

space. On the other hand, in GA transferring the knowledge of the current group to the next is

thorough inheritance. This inheritance is affected by random procedures of cross-over and

mutation and is not necessarily transferring a pure knowledge from one generation to the next;

hence, this difference makes PSO faster and more reliable in comparison to GA algorithm.

Secondly, in GA particles in each iteration are subject to death and reborn and this puts a

lot of computational burden on the system whereas in PSO particles only update their position

and velocity and the population of the particles remains the same; hence, the computational

burden would not be the problem anymore [86].

4.2.1 Algorithm	

The original PSO formulae define each particle as a potential solution to the problem in

the N-dimensional space. The position of ith particle is denoted as

1 2(, ,..........,)i i i inX x x x (4.2)

each particle also maintains a memory of its previous best position, stored in

1 2(, ,..........,)i i i inP p p p (4.3)

particles also move in the swarm with an individual velocity for each as below

 Particle Swarm Algorithm

39

1 2(, ,..........,)i i i inV v v v (4.4)

Each particle knows its best value so far (pbest) and its position. Moreover, each particle

knows the best value in the swarm (gbest) among all pbests. This information is analogy of

knowledge of how the other particles around them have performed. Using that, each particle

modifies its position using the 2 factors: 1) the distance between the current position and pbest,

which as explained above, is the best value obtained in the history of the particle; and 2) the

distance between the current position and gbest, which as explained above is the best value

obtained in the whole swarm to this point. This modification is accomplished through the

concept of velocity. The velocity of each agent or particle is altered using the following equation

in Inertia Weight Approach (IWA)

1 1 2 2() ()i i i i g iv w v c r P X c r P X        (4.5)

where, iv is velocity of the particle, iX is current position of the particle, w is the inertia

factor which controls the influence of previous velocity on the new velocity, 1c is a positive

constant, called coefficient of the self-recognition component and determines the relative

influence of the cognitive component, 2c is a positive constant, called coefficient of the social

component and determines the relative influence of the social component, iP is pbest of particle i,

gP is gbest of the swarm and 1r , 2r are random numbers used to maintain the diversity of the

population, and are uniformly distributed in the interval (0,1).

Each particle decides where to move next using Eq. (4.5) which combines its own

experience, which is the memory of its best past position and the experience of the most

successful particle in the swarm. In the original PSO model, particles exploration the search-

space within a range (−s, s) where s is any real number.

In this work, the inertia factor in Eq. (4.5) is set to 1.0 and remains constant throughout

the whole optimization progression. The reason is that it is used to have a dynamic effect on the

convergence of the swarm and by setting it to 1.0 the algorithm would have a uniform

convergence rate during the optimization advancement and there is no need to further put time

 Particle Swarm Algorithm

40

and effort to tweak minw and maxw in Eq. (4.6). However, in Ref. [87] the authors suggest that the

inertia factor can be calculated in each iteration using

max min
max

max

w w
w w iter

iter


   (4.6)

where maxw is the initial weight, minw is the final weight, maxiter is the maximum number

of iterations and iter is the current iteration number. Using the above equation, diversification

characteristic is gradually decreased and a certain velocity, which gradually moves the current

searching point close to pbest and gbest can be calculated but using it has the disadvantage that was

mentioned earlier in this section.

The current position of each particle can then be modified by the means of:

i i iX X v   (4.7)

where iX  is the new position, iX  is the old position and iv is the particle’s velocity

calculated in Eq. (4.5). All swarm particles tend to move towards better positions; hence, the best

position (i.e. optimum solution) will eventually be obtained through the combined effort of the

whole population.

There are different termination criteria for the PSO algorithm [117]. One of the most

common and widely used termination criteria is stopping the algorithm when the maximum

number of iterations is reached and then the algorithm gives the “best solution found to this

point” as the optimal solution for the problem. Figure 4.2 shows a simple flowchart of how the

PSO algorithm works with this termination criterion. Another termination criterion is the

difference between the last couple of solutions obtained in the process and if the difference is

less than the tolerance value set in the algorithm, then the solution is set as the best solution

found in the search-space ignoring the maximum number of iterations.

 Particle Swarm Algorithm

41

Figure 4.1 PSO Algorithm Flowchart

4.2.2 Convergence	criteria	

In order to achieve convergence, there are some requirements to be satisfied. These

requirements enforce the algorithm to output the results only when they are qualified for the

solution. Ideally, there are two main criteria to be satisfied:

1. There is no change in the objective function value for a number of iterations.

2. There is no change in the particles’ position for a number of iterations.

The number of iterations within which there should be no change in the values and positions is

up to the designer but 5 to 10 is a reasonable number to start with. As mentioned before, the zero

tolerance is the an ideal case and any small number could be used for the tolerance between the

last few iterations the only difference would be the accuracy of the results and the choice

depends on the severity, complexity and sensitivity of the problem in question. It also depends

on the order of the values evaluated in the optimization because usually what is important is the

percentage of the error and as long as it remains within a reasonable range. In this thesis, in the

first 2 cases (Case 1 and Case 2) provided in Chapter 5, the convergence criteria is used with the

tolerance of 1 ൈ 10ି଺ but in Case 3, as explained in Chapter 5, the stopping criteria is just the

number of iterations pre-set in the simulation. The reason is the lack of computing resources,

especially the memory of the computing PC that the simulations were executed on, because all

Start

Initial value setting for each
particle

Calculating the objective
function for each particle

Calculating new position and
velocity for each particle

Iteration count reached No

End

yes

 Particle Swarm Algorithm

42

the information are written into the memory and read from it and when the number of iterations

and particles are more than the computer can handle it, the simulation stops and the results are

deleted.

In order to prevent this issue, it was suggested that instead of writing and reading from the

memory, the information should be written and read from the hard disk drive of the operating

system. This way the loss of data would be prevented and the computational limitation would be

compensated for.

4.2.3 Example	

In order to understand how the particles move toward the solution in the search-space,

here an example is provided. The function of interest here is the Rastrigin function [88] defined

as follow:

  2 2, 20 10cos 10cos

2 2
f x y x x y y

                 
      

 (4.8)

The surface of this function is as shown in Figure 4.2. The objective here is to find the

minimum of the function in the area shown. Selective iterations of the convergence and

performance of the algorithm are shown in Figure 4.3. The optimization parameters in this

example are given in Table 4.1. These parameters are consistent with Eq. (4.5). Having a look at

the numbers in the table, it is evident that the algorithm is working fast while giving precise

results as if the function was optimized using derivative-base algorithms. Number of iterations

here is set to 50 but all the 80 particles in the swarm get to the final optimum solution after 30

iterations, which means that the algorithm is continuing for 20 more iterations without improving

the results. This happens when the stopping/convergence criteria is set to reaching the maximum

number of iterations and not any small change or difference between the last couple of best

solutions acquired in the algorithm. The advantages and disadvantages to each of these rules for

finishing the iterations is extensive discussed in the literature and in Ref. [89] it is more

specifically focusing on a single-objective PSO stopping criteria. In the conclusions section of

this reference, the author concludes, “It is not possible to determine one criterion that is best for

all problems” and hence, the stopping criteria selection depends on the problem and the solver

and there is no best solution for that in a generalized formulation.

 Particle Swarm Algorithm

43

Table 4.1 Optimization parameters for the example

Parameter Value
 []Runtime sec 0.3

 max Iterations 50
Particles 80

w 1.0

1 2, c c 1.0

, x y range (-5, 5)
 final optimal at (0, 0)

Another observation is the number of particles; it is true that the more particles, the better

the results but the tricky part in this statement is that there is no disclaimer on whether these

better results could be achieved with fewer particles as well or not. Therefore, the challenge here

and with almost all population-based optimization algorithms is how to choose these numbers

and how to justify the choice. For the justification on the selection of 1, w c and 2c it is evident

that these values are all set to 1.0 which means that they all have the same level of importance

and their effect on the velocity evaluation function (Eq. (4.5)) is of equivalent significance.

These values were set to 1.0 mainly because this is the easiest choice and the most commonly

used value in the literature. The range for ,x y variables was equally set to (-5 5) because from

the function representation in Figure 4.2 the optimum point is known to be within this range for

testing the algorithm with the function in Eq. (4.8).

By investigating the iterations and the trend, it can be seen that in the beginning the

particles (shown by little squares with black borders in Figure 4.3) are scattered all over the

search-space. As the time passes by and the iterations forge ahead, particles tend to converge

toward the best particle of the swarm position and eventually this behaviour leads the swarm

toward the best possible solution. This point is (0, 0) and it is noticeably observable in Figure 4.2

that this point is the global optimal of the function in Eq. (4.8).

 Particle Swarm Algorithm

44

Figure 4.2 Surface of the function above for performance of the PSO algorithm

Figure 4.3 Selective Iterations of the Performance for the Example Function

-5

0

5

-5
0

5
0

20

40

60

x

y

x

y

Iteration 5

-5 0 5
-5

0

5

x

y

Iteration 1

-5 0 5
-5

0

5

x

y

Iteration 30

-5 0 5
-5

0

5

x

y

Iteration 15

-5 0 5
-5

0

5

 Proposed Methodology

45

4.3 Proposed	Methodology	

After the explanations given in the previous sections, now it is appropriate to explain the

methodology used in this thesis to tune the AUKF filter using Particle Swarm Optimization for a

specific application of FDI for a RW unit of a pico-sattelite ACS. This section will explain how

to implement the optimization in the tuning problem mentioned in Chapter 1.

As explained in Chapter 1, the main focus of this thesis is to propose a methodology

based on optimization algorithms to “systematically” tune filters and/or controllers for different

purposes. In order to do that, as explained earlier, the main objective of using optimization

algorithms is to minimize or maximize a value of a function by choosing the proper independent

variables of the function. In FDI algorithms, the main idea and objective is to minimize the

residuals in the estimations so that the estimations match the actual measurements (or the

parameters of the system) perfectly. Combining these two ideas, the motivation came to use

optimization algorithms to tune a Kalman Filter used for the purpose of FDI on a RW of an ACS

of a pico-sattelite addressed in Ref. [17] and was developed in the SSDC lab. Also there was a

need for an algorithm to be able to tune any filter or controller systematically and easily with a

friendly user interface to adapt itself to the system with the minimum changes requires and tune

the system giving the parameters/gains with the least human interference and time consumption.

With that in mind, the idea used in this thesis is to construct a modular optimization

algorithm that can be used to tune filters/controllers for different purposes. To do so, the

available code was divided into different subroutines as listed in Table 4.2.

Table 4.2 Different modules of the code and a brief description for each

Module Description
Main The centralized command centre for the whole code
Initialize Initializes the model parameters used for tuning
Objective Defines the objective function for the optimization
PSO The core of the particle swarm optimization algorithm
Model The model used in the simulations for optimization
Plotter Plots all the required data and shows on the screen

More detailed description on each of the modules is as follows:

Main: the main module contains all the necessary information for a simulation to run and

it also calls other modules within itself when necessary so that everything is done in time and

properly to help get the desired results. Therefore, it is acting like a command centre for the

whole code and simulation.

 Proposed Methodology

46

Initialize: in this work, Simulink model is meant when referring to a simulation; there

typically is a need for pre-initialization of the system parameters so that the system will run and

if there is any need for any change in a specific part of the system or parameter then this module

helps managing that. This module also hold within itself time of occurrence and the severity of

faults introduced to the system during the simulation. This means that this module can be later

used for any other system to initialize the necessary parameters and faults properties, if required.

This makes the code clean and easily adaptable to any other system.

Objective: this module is to maintain and evaluate the index of each particle in each

iteration and the construction of the objective function is critically important because it

tremendously influences the performance of the optimization algorithm. The inputs for this

module are optimization variables and the simulation run time for the system model (i.e.

Simulink Model) which is separately designed and attached to the optimization algorithm. The

variables are fed to the system and the model is executed using those system parameters, then

after the execution is done, the results are fed to the Objective module again and the objective

function is formed and evaluate and the evaluation results are sent back to the PSO module so

that the optimization process and continue.

One question that remains unanswered is “how to construct a desirable objective function

based on the available data?” The answer to this question is simple and intuitive. As discussed

before the main objective in the FDI algorithm is to minimize residual error and hence, using an

optimization algorithm would help minimizing the residual error. Having said that, the objective

function should be constructed based on the residual errors so that in each evaluation, the least

value would be chosen and the algorithm continues to find the minimum among all. In this study,

a combination of Room Mean Square Error (RMSE) and normalizers to give satisfactory results

for the problem in question. There are few steps to take while constructing the objective function

and if these steps are followed then the results could be guaranteed to be satisfactory with

conditions applied.

1. First of all the general form of the objective function which is used for minimization of the

error in the following form:

2
, ,

1 1

1 ˆ()
k N

j j i j i
j i

J r X X
N 

    
 

  (4.9)

 Proposed Methodology

47

where jr is the normalizer, ,j iX is the actual value for the thj variable, ,
ˆ

j iX is the estimated

value for the thj variable, k is the number of optimization variables and N is the number

simulation samples. In this formula, the only thing that needs to be set is the value for

normalizers. Normalizers are valuables that come into the formula to, as their name conveys,

normalize the components and their influence on the whole function to keep the influence of

each component same as others so that all the variables are optimized equally. In the first

attempt, there was a proposal for using dynamic normalizers but the simulations proved that

dynamic normalizers, at least the ones that were proposed, did not work properly. Because

the idea was to keep the value in the unity range (between 0 and 1) and because the

normalizers were changing in each iteration then the influence of each component would

change automatically and hence, there was no control over what influence is being done by

which component. Therefore, constant normalizers were then used and the value for each can

be found using the next step.

2. To find a proper value for each normalizer there is a need for the system in question to be

executed once so that it gives the designer an estimate on what is the order of each comonent.

Then having this estimate the designer needs to keep all the components of the objective

function in the same order. More description on this is given in the next Chapter where the

results are presented and discussed.

PSO: this module is the core of the optimization algorithm. It is called from the main

module and it reads some of the required information from the command sent to it from the main

module while it was being called. These parameters which include the number of iterations,

number of particles and also the number of duration of the simulation help PSO module to be

dynamic in a sense that it is not rigid and it controllable from the outside environment (here the

main module) and also within the PSO module there are some other parameters that need to be

set. These parameters include the number of parameters that the algorithm needs to optimize. It

tells the algorithms that how many dimensions the search-space will have. In addition, there is a

range for each parameter and these ranges are set in this module. All ranges together create the

search-space. Another set of parameters that are set in this module are the parameters for the

PSO algorithm itself, which influence its performance and were earlier discussed in Eq. (4.5). In

this thesis, these values are set for all simulation as listed in Table 4.3. The reason for this choice

of values was discussed in the previous section. One other important factor here is how the

 Proposed Methodology

48

boundaries are set and how the algorithm makes sure that particles do not move away from the

search space. The answer is simple and intuitive; after all the positions and velocities are

calculate in the algorithm, in the end there is a checking procedure of each particle’s location to

make sure that it is not beyond the set boundaries. If it is then the location is set to the nearest

boundary and the velocity is changed to the opposite direction with the same magnitude. This

way the algorithm guarantees that all particles remain in the search space while the simulations

and calculations are in progress. The output of this module is the trend of the objective function

through the optimization process and the best values found (optimal solution) for the problem in

question.

Table 4.3 PSO parameters values for the simulations

Parameter Value
w 1.0

1 2, c c 1.0

Model: this part of the structure is a model designed by any other person. In here because

the simulations are executed in the MATLAB programming language then the model is in the

Simulink environment but there is a capability for any other executable file with inputs and

outputs to be attached to this tuning/optimization modular structure. For that, this could be used

for a variety of different systems designed in different environment and by different people. This

configuration makes this approach a decentralized topology which means that not everybody

needs to know what is going on in other parts of the system and each person in the team only

needs to know what he is doing and what are the inputs and outputs of the module/model they

are designing or working on. In this thesis, as described before, the model in use is a high fidelity

RW [59], which is depicted in Figure 2.2.

Plotter: this module is that last module called in the main module to finally show the

results on the screen and give a perspective of the performance of the algorithm as well as

necessary figures and graphs required by the designer. This module, for sure, needs adaptation

for different systems with different inputs and outputs because when the optimization variables

are changed the figures needs to be modified to be consistent with the system and the

requirements.

The flowchart of the all above-mentioned modules of the proposed structure is shown in

Figure 4.4 below. In this figure, X is the vector for the optimization variables which are the

 Proposed Methodology

49

variables or parameters needed to be tuned, R is the result of the simulation from the model

vector which includes all the required results from the simulation and J is the objective function

built and evaluated using the R vector from the simulation and sent to the PSO so that the

optimization procedure is complete. These steps in the optimization block continue until the

maximum number of iterations is reached and then the results are sent to the plotter module for

plotting.

Figure 4.4 Flowchart of the Proposed Algorithm for Tuning

Now that the methodology is clearly explained, in the next chapter the simulations and

results are presented to evaluate the performance of the proposed methodology.

50

5. Results and Discussions

Simulations of the FDI algorithm with the tuned AUKF were performed in

MATLAB/Simulink to verify the performance of the proposed methodology. Numerical

simulations are conducted on the high fidelity RW model presented in Chapter 2 with the bus

voltage and BEMF constant being the Fault Parameters (FPs). In order to be able to compare the

results with a manually tuned filter, the simulation parameters are chosen to be the same as the

ones available in Ref. [17].

5.1 Simulation	Setup	

The high fidelity reaction wheel model shown in Figure 2.2 was used for simulations

with the parameters listed in Table 5.1. Because of the high degree of non-linearity in the model,

the AUKF algorithm was applied. The simulation was set up as shown in Figure 5.1.

Table 5.1 Ithaco - Type A - Reaction Wheel Parameters

Parameter Value
 Coulomb Friction (c) 0.002 N.m

 Viscous Friction (v) 4103.84  . / /N m rad s

 Ripple Torque (B) 0.22
 Cogging Torque (C) 0
 Torque Noise Frequency (a) 0.2 Hz

 Jitter Angle (a) 0.05 rad

 BEMF (eK) Nominal 0.029 / /V rad s

 Bus Voltage (busV) Nominal 8 V

 Driver Gain (dG) 0.19 /A V

 Num. of Motor Poles (N) 36
 Input Filter Resistance (INR) 2 Ω

 Quiescent Bus Power (qP) 3 W

 Driver Bandwidth (d) 9 /rad s

 Voltage Feedback Gain (fk) 0.5 V/V

 Flywheel MOI (wJ) 0.0077 2mkg 

 Over-speed Circuit Gain (sk) 95

 Max. Wheel Speed (s) 680 /rad s

 Simulation Setup

51

A control voltage trajectory is applied to the high fidelity Simulink model of the RW that serves

as the plant. The outputs of the system are the wheel speed and current  and i respectively. To

simulate sensor measurements these outputs are then discretized using zero-order-holds with a

sampling period of sT . The control voltage trajectory is also discretized to simulate the discrete

environment. All these discretized components are fed into the parameter estimation algorithm

where a residual is generated as the difference between measured states and outputs of an

analytical model of the RW that is running in parallel to the filter. Thus, the parameter estimates

adjust such that the analytical model outputs match the measurements as best as possible. White

noise is injected into the discretized outputs of the RW model to simulate measurement noise.

Figure 5.1 RW FDI Simulation Setup [17]

The white-noise signal power is calculated as follows,

2

10
0

1
= 10log

T

v psdP w
T

 
 
 
 (5.1)

where psdw is the power spectral density (PSD) of the white-noise. The nominal power spectral

densities of the wheel speed and current measurements are 5101  and 8105  respectively

resulting in 9.99 dB and 33.01 dB respectively of noise-power to be consistent with the

simulation setup in Ref. [17] so that later on comparisons could be done.

Based on investigation done in Ref. [18], various experimental experiences with RWs on-

board satellite missions have revealed the following potential sources of failure;

(i) Faults in the bus voltage

(ii) Faults in the motor torque/BEMF constant

px̂

î̂

m

i mi
aV

 Simulation Setup

52

 As a result, the parameters being monitored here are the bus voltage and BEMF constant. In Ref.

[17] the reason for this monitoring is mentioned to be that

“Changes in BEMF constant can be attributed to extreme temperatures in the windings

that exceed the Curie temperature of the magnetic material in the motor resulting in a decrease in

magnetism of the magnets. Furthermore, any blunt-force trauma imparted onto the magnets can

degauss them. Bus voltage faults may occur as a result of things like cold-solder joints, loose

wires, or failures in the power supply.”

Regardless of the cause it is important to monitor these parameters to improve the

performance of RWs. Simulations were initialized as listed in Table 5.2 below.

Table 5.2 Simulation Parameters for RW FDI

Parameter Value
Sampling Period (sT) 0.01 s

Simulation Time 4000 s
Window Size (N) *

 *

0R 22
4102 
  I

0Q 22
5101 
  I

0P 22
8101 
  I

maxQ *

maxR *

0x̂  T8,0.029

 1
n 2

The parameters in this table are exactly the same as the ones given in Ref. [17]. In this

reference, the reason behind choosing each parameter is explained as follows. As can be seen in

this reference the window size is selected to be large because, as claimed by the author, for

parameter estimation it is assumed that parameters are not dynamic quantities for the most part,

thus the problem that the filter might not be able to track the changes if the window is too large,

is not an issue here. It is also mentined that this window size was found to be applicable to all the

cases presented in Ref. [17] below for nominal measurement noise thoguh we only work with the

most severe case in the cited reference. In this theis the selection of windows size is automatic

and the value for this is an output from the optimization algorithm hence, there is no need for

 Simulation Setup

53

manual tuning and extensive simulation for a person to come up with a value and justify the

performance. The UKF parameter  is typically chosen as 3= n for all simulations, where

n is the number of estimates. In Ref. [17]  is selected to be 100 so that  would remain below

2101  and the author claims that the reason for that is because after doing extensive

simulations, anything above that led to instability. In this thesis though, the value for  is

determined automatically by the algorithm and the only thing that is set is the range for the value

so that the algorithm can search for the best solution within the search-space. The voltage applied

at the motor terminals is a sine wave with an amplitude of 5 V and a frequency of 0.25 Hz .

The reason that not all various fault scenarios considered in Ref. [17] are also considered here is

because first of all, the most severe case is being studied here and if the algorithm works for this

case then it, for sure, will work for other cases as well. Secondly, the space limit for each case

would not let the presenation of the work to be complete hence, it was decided to only present

the results for the most severe case and then dicuss the results and performance for that case

only. A high severity fault is considered as changes that are 20 % , while low severity faults

constitute changes 15 % . The severe case cosists of a severe BEMF constant faults plus a sever

bus voltage profile with each parameter fault occuring out of phase with the other. The profile is

shown in Table 5.3.

Table 5.3 Severe BEMF Constant and Bus Voltage out of Phase profile

busVtime (s) busV
mktime (s) mk

1000<t 8 500<t 0.029
2000<1000 t 6 1500<500 t 0.02
3000<2000 t 5 2500<1500 t 0.013

3000t 7 2500t 0.029

The performance of the system identification is performed using the root-mean-square

(RMSE) of the estimation error calculated as follows,

ppke xx ˆ=  (5.2)

 2
1=

1
= k

N

k

e
N

RMSE  (5.3)

these performance indices are used for all simulation results to quantify the accuracy of the

parameter estimates while the FDI performance is analyzed based on detection, isolation, and

 Simulation Setup

54

identification times. Figure 5.2 shows the input voltage profile applied to the RW and Figure 5.3

depicts RW outputs up to the 200 s mark.

Figure 5.2 Reaction Wheel Applied Voltage Profile

Figure 5.3 Reaction Wheel States for First 200 s

As discussed before, the main idea behind implementing an automated algorithm for

tuning the filter lies in the minimization of residual errors. Here, 4 parameters with residuals

available, namely Wheel Speed, Current, Bus Voltage and BEMF. Now that these parameters are

known there is a need for an objective function to be formed and constructed based on the

available parameters. To form the objective function, Eq. (4.9) is used and the following

equation is constructed based on that,

0 20 40 60 80 100 120 140 160 180 200
−5

−4

−3

−2

−1

0

1

2

3

4

5
Applied Voltage Profile

time [s]

V
o

lt
s

0 50 100 150 200
−20

0

20
Measured Wheel Speed

time [s]

ra
d
/s

0 50 100 150 200
−20

0

20
Estimated Wheel Speed

time [s]

ra
d
/s

0 50 100 150 200
−5

0

5
Wheel Speed Residual

time [s]

ra
d
/s

0 50 100 150 200
−2

0

2
Measured Current

time [s]

A
m

p
s

0 50 100 150 200
−2

0

2
Estimated Current

time [s]

A
m

p
s

0 50 100 150 200
−0.05

0

0.05
Current Residual

time [s]

A
m

p
s

 Simulation Setup

55

2
1 1 _

1

1 n

wheel speed
i

C r e
N 

   (5.4)

2
2 2

1

1 n

current
i

C r e
N 

   (5.5)

2
3 3 _

1

1 n

bus voltage
i

C r e
N 

   (5.6)

2
4 4

1

1 n

BEMF
i

C r e
N 

   (5.7)

1 2 3 4J C C C C    (5.8)

where e is the residual for each component from Eq. (5.2), iC is a component for each

parameter and ir is the normalizer coefficient that we talked about earlier in Chapter 4. For all

the cases studied in this thesis, these normalizers have the values shown in Table 5.4. These

values are obtained using the procedure explained in the Chapter 4. The simulation was executed

once and order of each parameter and residual was estimated. Then these values were set so that

all parameters influence the objective function equally and the results are satisfactory for all

parameters with the least residual error.

Table 5.4 Normalizer Values for Objective Function of the PSO algorithm

Normalizer Value

1r 2

2r 2000

3r 10

4r 106

There are two noise levels involved in the first case. As referred to by Ref. [17] the

medium and high noise levels are applied to the system and the performance of the algorithm in

tuning the filter is evaluated. This case consists of attempting to estimate faults in both

parameters (BEMF and Bus Voltage) where changes in one parameter occur out of phase with

changes in the other one. It is expected that the BEMF constant will be affected by large

fluctuations in bus voltage even when the estimate has settled, and that the bus voltage estimates

will be fairly robust against changes in BEMF constant as mentioned in Ref. [17]. The fault

period begins at 500 s and ends at 3000 s , during this time the faults are injected into the RW

 Simulation Setup

56

system out of phase. Outside of this time range the parameters return to their nominal values.

The parameters for medium noise level are listed in Table 5.5 and for the high noise level the

parameters are listed in Table 5.6. Those parameters with the (*) sign in these two tables are the

ones being tuned for the AUKF filter proposed in Ref. [17] and in the section for the future work

there is a suggestion for automating the procedure of tuning the filter hoping for better

performance and less time consumption by the designer. Performance of the filter is presented

for different scenarios of optimization for performance evaluation.

Table 5.5 Simulation Parameters for Medium Noise RW FDI

Parameter Value
Wheel Speed Noise Power 0.0065 dB

Current Noise Power 23.01 dB

After evaluating the performance of the system with these two noise levels there is

“Extreme Noise” introduced to the system and then the performance of the filter is compared

with the two sets of gains, one for the gains presneted in Ref. [17] for robustness evaluation of

the filter and one from the PSO-based methdology proposed in this thesis. The reason that this is

called “Extreme” is because it is mentioned in Ref. [17] that these noise leveles are the nominal

noise levels that the system could sustain.

Table 5.6 Simulation Noise for High Noise RW FDI

Parameter Value
Wheel Speed Noise Power 10 dB

Current Noise Power 13.01 dB

Simulations were executed on a PC in the SSDC lab with the specification listed in Table

5.7. The specifications of the PC that the simulations were executed on are specifically important

because it affects the execution time directly. If the computer is fast, the execution time will be

less and vice versa.

Table 5.7 Specification of the PC for Simulations Executions

Parameter Value
Processor Intel® Core™2 Quad CPU 2.66 GHz

Installed Memory (RAM) 4.00 GB
System Type 64-bit Operating System

OS Windows 7 Professional with SP1

 Effect of Number of Particles

57

5.2 Effect	of	Number	of	Particles	

In order to evaluate the performance of the proposed methodology and investigate the

influence of the optimization parameters such as number of iteration, number of particles and the

region or the search-space on the performance, few cases are studied with different scenarios.

For these investigations, the medium and high noise levels are considered as in Ref. [17] to study

the performance of the filter and to give a perspective on the difference between a manually

tuned and a PSO-tuned filter. The region effect is not studied in this thesis because 1) the region

of the search-space chosen for these simulations is big enough to guarantee that there is no

compromise in the results obtained from the algorithm. Therefore, if the algorithm was to get

trapped in local minima then because of the wide and big enough search-space there was a

colossal chance for particles to be trapped. 2) here there are sets of values and not only one value

or variable being optimized, simulations prove that there might be more than one solution to a

specific problem with a reasonable deviation from the norm. Meaning that there could be

different sets of variables or parameters being optimized in the algorithm that would result in

almost the same value for the objective function. This is because these parameters influence each

other as well as the overall performance of the filter. Hence, changing one of them could cause

change on the others while maintaining the same objective function values.

5.2.1 Case	1	–	40	Iterations	and	10	Particles	

In this section, simulation results for 10 particles in 40 iterations are presented. The

search-space for the optimization is as listed in Table 5.8. A question may arise on “how to

choose the search space?”. The answer would be that, for this type of solution there usually is a

solution available in the literature and the objective is to improve the existing solution. Hence,

starting from the available data and expanding the range for each parameter around the existing

solution would be the approach on how to choose the search-space. Results for medium noise

level are shown in Figure 5.4 to Figure 5.9 and results for the high noise level are presented in

Figure 5.10 to Figure 5.15. The objective function trend and each individual component of the

objective function trends are shown in Figure 5.16. In addition, the convergence trend for the

optimization variables is depicted in Figure 5.17. Results for the parameters as well as more

complementary information for the simulation are given in Table 5.9. There is a new acronym

introduced in Table 5.9 and the other tables corresponding to the optimization results called

“Objective Function Component Performance Index” or “OFCPI” this terminology is defined to

 Effect of Number of Particles

58

gives further numerical values in addition to the visual representations of the objective function

components values so that the comparison between different cases with different optimization

parameters could be made more practically based on numbers and performance indices. The

values for these indices are the same as the ones calculated in Eq. (5.4) to Eq. (5.8). More

discussion on each result is given at the end of presentation of each individual case and then at

the end of each section an overall discussion on the performance differences and the

corresponding causes are provided.

Table 5.8 Search-Space for Simulations

Parameter Range

maxR [1, 104]

maxQ [1, 10]

()AFF [0, 106]
()N Window size [1, 200]

 Effect of Number of Particles

Figure 5.4 Case 1 - Medium Noise - Wheel Speed Measurements vs. PSO Estimates

Figure 5.5 Case 1 - Medium Noise - Wheel Speed Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Measured Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Estimated Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-20

0

20

40
Wheel Speed Residual

time [s]

ra
d

/s

950 1000 1050 1100 1150
-20

0

20

40
Wheel Speed Residual Zoomed

time [s]

ra
d

/s

PSO tuned Manually tuned

 Effect of Number of Particles

Figure 5.6 Case 1 - Medium Noise - Current Measurements vs. PSO Estimates

Figure 5.7 Case 1 - Medium Noise - Current Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Measured Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Estimated Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-0.5

0

0.5
Current Residual

time [s]

A
m

p
s

950 1000 1050 1100 1150
-0.5

0

0.5
Current Residual Zoomed

time [s]

A
m

p
s

PSO tuned Manually tuned

 Effect of Number of Particles

Figure 5.8 Case 1 - Medium Noise - BEMF Constant Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
-0.05

0

0.05

0.1

0.15
Back EMF Constant

time [s]

[V
/r

a
d

/s
]

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-0.05

0

0.05
Back EMF Constant Estimation Error

time [s]

[V
/r

a
d

/s
]

950 1000 1050 1100 1150
-0.06

-0.04

-0.02

0

0.02
Back EMF Constant Estimation Error Zoomed

time [s]

[V
/r

a
d

/s
]

 Effect of Number of Particles

Figure 5.9 Case 1 - Medium Noise - Bus Voltage Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10
Bus Voltage

time [s]

V
o

lts

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5

10
Bus Voltage Estimation Error

time [s]

V
o

lts

950 1000 1050 1100 1150
-3

-2

-1

0
Bus Voltage Estimation Error Zoomed

time [s]

V
o

lts

 Effect of Number of Particles

Figure 5.10 Case 1 - High Noise - Wheel Speed Measurements vs. PSO Estimates

Figure 5.11 Case 1 - High Noise - Wheel Speed Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Measured Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Estimated Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Wheel Speed Residual

time [s]

ra
d

/s

950 1000 1050 1100 1150 1200 1250
-50

0

50
Wheel Speed Residual Zoomed

time [s]

ra
d

/s

PSO tuned Manually tuned

 Effect of Number of Particles

Figure 5.12 Case 1 - High Noise - Current Measurements vs. PSO Estimates

Figure 5.13 Case 1 - High Noise - Current Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Measured Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Estimated Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-0.5

0

0.5
Current Residual

time [s]

A
m

p
s

950 1000 1050 1100 1150 1200 1250
-0.5

0

0.5
Current Residual Zoomed

time [s]

A
m

p
s

PSO tuned Manually tuned

 Effect of Number of Particles

Figure 5.14 Case 1 - High Noise - BEMF Constant Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

-0.05

0

0.05

0.1
Back EMF Constant

time [s]

[V
/r

a
d

/s
]

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

-0.05

0

0.05

0.1
Back EMF Constant Estimation Error

time [s]

[V
/r

a
d

/s
]

950 1000 1050 1100 1150 1200 1250
-0.1

-0.05

0

0.05

0.1
Back EMF Constant Estimation Error Zoomed

time [s]

[V
/r

a
d

/s
]

 Effect of Number of Particles

Figure 5.15 Case 1 - High Noise - Bus Voltage Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10
Bus Voltage

time [s]

V
o

lts

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5

10
Bus Voltage Estimation Error

time [s]

V
o

lts

950 1000 1050 1100 1150 1200 1250
-3

-2

-1

0

1
Bus Voltage Estimation Error Zoomed

time [s]

V
o

lts

 Effect of Number of Particles

Figure 5.16 Case 1 - Objective Function Trend with Different Components Breakdown

5 10 15 20 25 30 35 40
3

4

5

6
Total

iteration

va
lu

e

5 10 15 20 25 30 35 40
0

2

4

6
Component 1 (Wheel Speed)

iteration

va
lu

e

5 10 15 20 25 30 35 40

1.25

1.3

1.35
Component 2 (Current)

iteration

va
lu

e

5 10 15 20 25 30 35 40
1.8

2

2.2
Component 3 (Bus Voltage)

iteration

va
lu

e

5 10 15 20 25 30 35 40
0

10

20

30
Component 4 (BEMF)

iteration

va
lu

e

 Effect of Number of Particles

Figure 5.17 Case 1 - Parameters Convergence to the Global Optimum Trend over Iterations

5 10 15 20 25 30 35 40
0

5e2

1.2e4

R
Max

iteration

va
lu

e

5 10 15 20 25 30 35 40
0

5

10

Q
Max

iteration

va
lu

e

5 10 15 20 25 30 35 40
0

5

10
x 10

5  (AFF)

iteration

va
lu

e

Best Particle PSO Particles

5 10 15 20 25 30 35 40
0

100

200
N (Window Size)

iteration

va
lu

e

 Effect of Number of Particles

Table 5.9 Case 1- Optimization Results

 Medium High
Parameter Value

Execution time 19.34 hrs

maxR 1897.1

maxQ 0.2565

()AFF 52765
()N Window size 164

Total OFCPI 3.0686 3.0572
Wheel Speed OFCPI 1.2309 1.9821

Current OFCPI 0.8289 1.2689
BEMF OFCPI 1.9239 1.9308

Bus Voltage OFCPI 5.4327 4.1648

By investigating the results in Figure 5.4 to Figure 5.15 it is evident that the overall

performance is tremendously improved and a proof for that is the decrease in residual for all the

parameters estimated by the filter. The spikes are gone and/or decreased in elevation and the

tracking of the parameter by the filter estimates is faster and there is less delay in tracking for all

the parameters. One important factor to keep in mind here is that although the objective function

is structured in a way so that the residuals for the high noise level are minimized, the results for

the medium noise level prove that the gains found by the algorithm improve both medium and

high noise level estimations. In Figure 5.17 for each iteration, all the particles are shown on the

graph with yellow squares representing each particle and also white circles representing the best

of the group in each iteration. The bests in each iteration are then connected to show the trend in

the convergence of the particles toward the best of the group in each iteration. Overall, as the

iterations forge ahead, all particles move toward the best position found up to the iteration. In

some parameters, all particles converge to one point whereas in some parameters there still are

some particles that are moving around to find a better position. The reason is that sometimes

some particles, due to their inertia or momentum, jump over the solution. This can be solved by

either using an inertia weight or increasing the number of iterations but overall it will not affect

the performance of the algorithm because the best of the group will eventually be outputted as

the best solution found. It is evident that after 35 iterations, all particles converge to a solution in

the search-space that is the best solution found by the algorithm. Figure 5.16 shows objective

function trend as well as each of its components trends so that the designer can get a sense of

 Effect of Number of Particles

how the algorithm is behaving and how the objective function is being minimized. It also

indicates what the influence of each component on the total objective function is. Another

application for this figure is for determining the normalizers’ values as discussed before. This

figure gives you the order of each component and by setting proper values for the normalizers, it

is possible to keep all the components in the same order and guaranteeing that each component is

influencing the total objective function equally.

5.2.2 Case	2	–	50	Iterations	and	5	Particles	

In order to investigate the influence of number of particles on the performance of the

algorithm, another set of executions were simulated of which only one case is presented here

with figures and the rest are only presented in the table form. The search-space is the same as

Table 5.8. Results for the medium noise level are shown in Figure 5.18 to Figure 5.22 and results

for the high noise level are presented in Figure 5.23 to Figure 5.28 . The objective function trend

and each individual component of the objective function trends are shown in Figure 5.29. In

addition, the convergence trend for the optimization variables is depicted in Figure 5.30. Results

for the parameters as well as more complementary information for the simulation are given in

Table 5.10.

As can be seen from Figure 5.18 to Figure 5.28 the results are almost the same in

comparison with the results from case 1 and but still superior to the results from the manually

tuned filter. This execution was done for 50 iterations and the reason was to give the algorithm

enough time so that all particles converge to the found solution. By investigating the particles

convergence in Figure 5.30, it is evident that although the number of iterations is set to be higher

than the number of iteration with 10 particles but all particles have converged to the solution

after 38 iterations. It proves that when the number of particles is decreased, particles need more

time to search the space and settle to the solution. This is mainly because the group performance

of the swarm is less powerful with the smaller number of members. However, in the end the total

OFCPI for both cases is almost similar, meaning that both cases after convergence provide

satisfactory, near-optimal solutions.

 Effect of Number of Particles

Figure 5.18 Case 2 - Medium Noise - Wheel Speed Measurements vs. PSO Estimates

Figure 5.19 Case 2 - Medium Noise - Wheel Speed Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Measured Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Estimated Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-20

0

20

40
Wheel Speed Residual

time [s]

ra
d

/s

950 1000 1050 1100 1150
-20

0

20

40
Wheel Speed Residual Zoomed

time [s]

ra
d

/s

PSO tuned Manually tuned

 Effect of Number of Particles

Figure 5.20 Case 2 - Medium Noise - Current Measurements vs. PSO Estimates

Figure 5.21 Case 2 - Medium Noise - Current Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Measured Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Estimated Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-0.5

0

0.5
Current Residual

time [s]

A
m

p
s

950 1000 1050 1100 1150
-0.5

0

0.5
Current Residual Zoomed

time [s]

A
m

p
s

PSO tuned Manually tuned

 Effect of Number of Particles

Figure 5.9 Case 2 - Medium Noise - BEMF Constant Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
-0.05

0

0.05

0.1

0.15
Back EMF Constant

time [s]

[V
/r

a
d

/s
]

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-0.05

0

0.05
Back EMF Constant Estimation Error

time [s]

[V
/r

a
d

/s
]

950 1000 1050 1100 1150
-0.06

-0.04

-0.02

0

0.02
Back EMF Constant Estimation Error Zoomed

time [s]

[V
/r

a
d

/s
]

 Effect of Number of Particles

Figure 5.22 Case 2 - Medium Noise - Bus Voltage Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10
Bus Voltage

time [s]

V
o

lts

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5

10
Bus Voltage Estimation Error

time [s]

V
o

lts

950 1000 1050 1100 1150
-3

-2

-1

0
Bus Voltage Estimation Error Zoomed

time [s]

V
o

lts

 Effect of Number of Particles

Figure 5.23 Case 2 - High Noise - Wheel Speed Measurements vs. PSO Estimates

Figure 5.24 Case 2 - High Noise - Wheel Speed Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Measured Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Estimated Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Wheel Speed Residual

time [s]

ra
d

/s

950 1000 1050 1100 1150 1200 1250
-50

0

50
Wheel Speed Residual Zoomed

time [s]

ra
d

/s

PSO tuned Manually tuned

 Effect of Number of Particles

Figure 5.25 Case 2 - High Noise - Current Measurements vs. PSO Estimates

Figure 5.26 Case 2 - High Noise - Current Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Measured Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Estimated Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-0.5

0

0.5
Current Residual

time [s]

A
m

p
s

950 1000 1050 1100 1150 1200 1250
-0.5

0

0.5
Current Residual Zoomed

time [s]

A
m

p
s

PSO tuned Manually tuned

 Effect of Number of Particles

Figure 5.27 Case 2 - High Noise - BEMF Constant Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

-0.05

0

0.05

0.1
Back EMF Constant

time [s]

[V
/r

a
d

/s
]

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

-0.05

0

0.05

0.1
Back EMF Constant Estimation Error

time [s]

[V
/r

a
d

/s
]

950 1000 1050 1100 1150 1200 1250
-0.1

-0.05

0

0.05

0.1
Back EMF Constant Estimation Error Zoomed

time [s]

[V
/r

a
d

/s
]

 Effect of Number of Particles

Figure 5.28 Case 2 - High Noise - Bus Voltage Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10
Bus Voltage

time [s]

V
o

lts

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5

10
Bus Voltage Estimation Error

time [s]

V
o

lts

950 1000 1050 1100 1150 1200 1250
-3

-2

-1

0

1
Bus Voltage Estimation Error Zoomed

time [s]

V
o

lts

 Effect of Number of Particles

Figure 5.29 Case 2 - Objective Function Trend with Different Components Breakdown

5 10 15 20 25 30 35 40 45 50
2.5

3

3.5

4
Total

iteration

va
lu

e

5 10 15 20 25 30 35 40 45 50
0

1

2

3
Component 1 (Wheel Speed)

iteration

va
lu

e

5 10 15 20 25 30 35 40 45 50
1

1.5

2
Component 2 (Current)

iteration

va
lu

e

5 10 15 20 25 30 35 40 45 50
1.7

1.8

1.9

2
Component 3 (Bus Voltage)

iteration

va
lu

e

5 10 15 20 25 30 35 40 45 50
2

4

6

8
Component 4 (BEMF)

iteration

va
lu

e

 Effect of Number of Particles

Figure 5.30 Case 2 - Parameters Convergence to the Global Optimum Trend over Iterations

5 10 15 20 25 30 35 40 45 50
0

5e2

1.2e4

R
Max

iteration

va
lu

e

5 10 15 20 25 30 35 40 45 50
0

5

10

Q
Max

iteration

va
lu

e

5 10 15 20 25 30 35 40 45 50
0

5

10
x 10

5  (AFF)

iteration

va
lu

e

Best Particle PSO Particles

5 10 15 20 25 30 35 40 45 50
0

50

100

150
N (Window Size)

iteration

va
lu

e

 Effect of Number of Particles

Table 5.10 Case 2- Optimization Results

 Medium High
Parameter Value

Execution time 23.63 hrs

maxR 7198.2

maxQ 0.0443

()AFF 18261
()N Window size 49.98

Total OFCPI 3.1899 2.6556
Wheel Speed OFCPI 1.8100 0.7446

Current OFCPI 0.6022 1.3464
BEMF OFCPI 1.9163 1.7528

Bus Voltage OFCPI 5.8469 3.2083

One other thing to mention is that although the values for parameters are not that close in

Case 1 and Case 2 but the Total OFCPI for both is close to one another. The reason is that, as

explained before, here the algorithm and consequently the system is working with a set of

parameters and these parameters have influence on each other and the overall performance of the

filter. Hence, there might be different sets of gains with similar or close enough performance

indices. Then the choice on which one to use come the customer or the engineer who is in charge

of the project.

Table 5.11 Effect of Number of Particles on the Performance of the Algorithm

 PSO Manual
 Case 2 Case 1
 Medium High Medium High Medium High

Parameter Value
Particles 5 10 N/A N/A

 Iteration 50 40
 Execution time 23.63 hrs 19.34 hrs N/A N/A

maxR 7198.2 1897.1 50 5

maxQ 0.0443 0.2565 0.01 0.005

()AFF 18261 52765 1000 100000
()N Window size 49.98 164 75 200

O
F

P
C

I

Total 3.1899 3.1899 3.0686 3.0572 6.1050 8.2699
Wheel Speed 1.8100 1.8100 1.2309 1.9821 15.3411 14.7192

Current 0.6022 0.6022 0.8289 1.2689 0.5182 2.8936
BEMF 1.9163 1.9163 1.9239 1.9308 19.5326 48.1118

Bus Voltage 5.8469 5.8469 5.4327 4.1648 1.8794 2.6667

 Performance Evaluation for Extreme Noise Level

5.3 Performance	Evaluation	for	Extreme	Noise	Level	

Another interesting investigation was to test the performance of the algorithm on a new

higher level of the noise introduced to the system. Apparently, the problem with the filter was

that it could not handle high levels of noise and the estimations would vary a lot from the actual

values as the noise level increased. Hence, the simulation setup was changed in a way that a

higher level of noise was introduced to the system. The parameters for this simulation are listed

in Table 5.12.

Table 5.12 Simulation Parameters for Extreme Noise RW FDI

Parameter Value
Wheel Speed Noise Power 9.99 dB

Current Noise Power 33.01 dB
Sampling Period (sT) 0.01 s

Simulation Time 4000 s
Window Size (N) *

 *

0R 22
4102 
  I

0Q 22
4101 
  I

0P 22
8101 
  I

maxQ *

maxR *

0x̂  T8,0.029

 1
n 2

5.3.1 Case	3	–	15	Iterations	and	30	Particles	

In order to check if the performance will be improved by increasing the number of

particles as already discussed, this case is investigating the performance of the algorithm with 15

iteration and 30 particles. The search-space is the same as Table 5.8. Results for parameter

estimation are shown in Figure 5.31 to Figure 5.36. The objective function trend and each

individual component of the objective function trends are shown in Figure 5.37. In addition, the

convergence trend for the optimization variables is depicted in Figure 5.38. Results for the

parameters as well as more complementary information for the simulation are given in Table

5.13.

From the parameter estimation figures, it can be concluded that the performance has

 Performance Evaluation for Extreme Noise Level

tremendously improved because the spikes in the residuals are almost gone and the estimations

track the actual parameters smoother and faster as compared to the manually tuned filter. The

solutions found by this methodology are near optimal and not optimal because, as explained

before, and also is mentioned in Ref. [16], these types of optimizations algorithm do not

guarantee to give the global optimal solution and they only provide you with near optimal

solutions. Reason being that they only search an area for the solution and the global optimal

solution may not lie within that region in the space. However, they still give a decent estimate of

were the global optimal could be or where you can search further for the optimal solution. This is

why many of these evolutionary swarm-based algorithms are linked with gradient-based

algorithms known as “hybrid approaches” to give better results than the one each could

individually give to the user.

One thing to note here is that the results for this simulation are not shown for the

converged solution with all particles settled in one position. The reason is that the machine that

the simulations were executed on was not powerful enough and the memory that was used was

overflown after certain number of iterations. Convergence is achieved when after certain number

of iterations, there is no change in the objective function value and there is no change in the

position of the particles in the search-space, which means all particles have converged to a

solution for the problem. However, the tolerance between these final iterations could vary

depending on the designer of the algorithm but for an ideal case this tolerance should be set to

zero.

As can be seen from Figure 5.38, not all particles have converged to the solution and the

reader needs to remember that these figures do not show the final converged solution for this

case and more iterations are required for the simulation to guarantee the solution has converged

and the solution is a near-optimal solution for the problem. In comparison with the results for the

medium and high noise levels, the estimations for this case are noisier and less accurate. This is

because of the noise level and the sensitivity of the filter to the noise level. One needs to consider

that the performance of the filter in this case is under the most severe noise that the system could

sustain and in practice, the system would fail. However, as mentioned earlier, this case was

studied to show the superiority of the proposed methodology over existing trial and error

procedures.

 Performance Evaluation for Extreme Noise Level

Figure 5.31 Case 3 - Extreme Noise - Wheel Speed Measurements vs. PSO Estimates

Figure 5.32 Case 3 - Extreme Noise - Wheel Speed Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-100

-50

0

50
Measured Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-100

-50

0

50
Estimated Wheel Speed

time [s]

ra
d

/s

0 500 1000 1500 2000 2500 3000 3500 4000
-40

-20

0

20
Wheel Speed Residual

time [s]

ra
d

/s

2500 2550 2600 2650 2700 2750 2800 2850 2900
-20

0

20
Wheel Speed Residual Zoomed

time [s]

ra
d

/s

PSO tuned Manually tuned

 Performance Evaluation for Extreme Noise Level

Figure 5.33 Case 3 - Extreme Noise - Current Measurements vs. PSO Estimates

Figure 5.34 Case 3 - Extreme Noise - Current Residual Comparison

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1
Measured Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-2

0

2
Estimated Current

time [s]

A
m

p
s

0 500 1000 1500 2000 2500 3000 3500 4000
-0.5

0

0.5

1
Current Residual

time [s]

A
m

p
s

2900 2950 3000 3050 3100 3150 3200 3250 3300
-0.5

0

0.5
Current Residual Zoomed

time [s]

A
m

p
s

PSO tuned Manually tuned

 Performance Evaluation for Extreme Noise Level

Figure 5.35 Case 3 - Extreme Noise - BEMF Constant Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
-0.05

0

0.05

0.1

0.15
Back EMF Constant

time [s]

[V
/r

a
d

/s
]

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

-0.1

0

0.1

0.2
Back EMF Constant Estimation Error

time [s]

[V
/r

a
d

/s
]

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
-0.2

-0.1

0

0.1

0.2
Back EMF Constant Estimation Error Zoomed

time [s]

[V
/r

a
d

/s
]

 Performance Evaluation for Extreme Noise Level

Figure 5.36 Case 3 - Extreme Noise - Bus Voltage Estimates

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10
Bus Voltage

time [s]

V
o

lts

PSO tuned True Manually tuned

0 500 1000 1500 2000 2500 3000 3500 4000
-5

0

5

10
Bus Voltage Estimation Error

time [s]

V
o

lts

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
-3

-2

-1

0

1
Bus Voltage Estimation Error Zoomed

time [s]

V
o

lts

 Performance Evaluation for Extreme Noise Level

Figure 5.37 Case 3 - Objective Function Trend with Different Components Breakdown

2 4 6 8 10 12 14
5

6

7

8
Total

iteration

va
lu

e

2 4 6 8 10 12 14
4

6

8

10
Component 1 (Wheel Speed)

iteration

va
lu

e

2 4 6 8 10 12 14
10.8

11

11.2
Component 2 (Current)

iteration

va
lu

e

2 4 6 8 10 12 14
3

3.5

4
Component 3 (Bus Voltage)

iteration

va
lu

e

2 4 6 8 10 12 14
10

20

30

40
Component 4 (BEMF)

iteration

va
lu

e

 Performance Evaluation for Extreme Noise Level

Figure 5.38 Case 3 - Parameters Convergence to the Global Optimum Trend over Iterations

2 4 6 8 10 12 14
0

5e2

1.2e4

R
Max

iteration

va
lu

e

2 4 6 8 10 12 14
0

5

10

Q
Max

iteration

va
lu

e

2 4 6 8 10 12 14
0

5

10
x 10

5  (AFF)

iteration

va
lu

e

Best Particle PSO Particles

2 4 6 8 10 12 14
0

100

200
N (Window Size)

iteration

va
lu

e

 Conclusions

Table 5.13 Case 3- Optimization Results

Parameter Value
Execution time 18.2 hrs

maxR 7166

maxQ 9.5273

()AFF 37296
()N Window size 18

Total OFCPI 5.9710
Wheel Speed OFCPI 4.3546

Current OFCPI 11.0594
BEMF OFCPI 16.6727

Bus Voltage OFCPI 3.5659

Overall, the results in all the cases investigated above, show that the performance of the

filter has tremendously improved after being automatically tuned with the proposed PSO-based

methodology in this thesis. In this case, the investigation proved that for the systems and noise

levels that the algorithm has no knowledge about, it could still perform pretty well and give

satisfactory sets of gains/parameters for the filter to minimize the residuals and lessen the

tracking delay in the filter.

5.4 Conclusions	

The proposed tuning methodology based on Particle Swarm Optimization explained in

Chapter 4, has proven to perform well for a wide range of noise levels in the system. It also

shows that without any previous knowledge of the system the methodology can still perform well

and tune the filter in less time and with better performance indices.

The proposed methodology can handle Concurrent Optimization for Different Noise

Levels; and with its Modular Structure, it can be used for different purposes and be modified

by different people without having them sit and discuss the results together. The Adaptability of

the methodology makes it easy to use and implement into different systems with minimum

adjustments. It also is designed on a Plug & Play policy making it extremely easy to plug a

system (Simulink model) to the algorithm without having trouble changing any part of the

algorithm and then initialize the parameters for the system and let it just work. It is also capable

of Handling Different Types of Variables, which gives designers more freedom on which types

of variable they can use. The robustness of the proposed methodology to the noise level is

 Conclusions

another important feature of it. It can handle Extreme Noise Levels and with that, it can be

claimed that any other sort of disturbance or change in the system can be compensated by the

algorithm with a new set of gains.

In the next Chapter, more explanations are given on each of the above-mentioned

advantages of the proposed algorithm over the existing methods in the literature. In fact, the

proposed methodology is combining different sciences and technologies making it feasible for it

to be adaptable to different systems while maintaining the performance satisfactory.

92

6. Conclusions and Future Work

This thesis approached the problem of tuning a filter/controller properly with the

minimum human interference involved. The idea was inspired by the lack of such systematic

tuning methodology in the SSDC lab. As explained in the introduction section. The idea was to

develop a methodology, which could do this task automatically and with the minimum human

interference possible. The methodology needed to be independent of the system it was being

applied to and needed to be adaptable and easy to use for different systems. It needed to have

capability of handling different noise levels, being able to have flexible data type and

input/output setting and a search-space so that the implementation of the system into other

systems could be possible, efficient and easy to work with. In this thesis, a methodology was

proposed to do the task. Systematic tuning of a filter/controller was proposed and the verification

of the performance for the proposed methodology was tested for tuning an Adaptive Unscented

Kalman Filter (AUKF) for used for FDI purposes on a Reaction Wheel (RW) unit. There were

four parameters that needed tuning in this specific problem and the case studies were presented

to investigate different parameters that affected the performance of the algorithm such as number

of iterations, number of particles, both of the previous parameters concurrently and also the

system parameters, dynamics and disturbances such as noise level, and influence of each on the

performance. The overall conclusion on the performance of the filter is that it proved to perform

well in the most severe case of a faulty system with high noise level as compared to the manually

tuned filter in Ref. [16]. It also showed that with a maximum noise level that could be introduced

to the system the algorithm still gave satisfactory results proving that it is robust to changes in

the system as well as noise level. It is also worthy to mention that in order to present the work

there was a need for an intuitive representation of the convergence of the particles in a multi-

dimensional space which in this thesis was done by the author

6.1 Summary	of	Contributions	

As mentioned earlier the main focus of this thesis was to develop a methodology to tune

any type of filter/controller with the minimum human interference involved. To do so a

methodology was proposed and tested for verification purposes on the performance with a case

 Summary of Contributions

93

study of a FDI problem for a RW unit. The following features are the main contributions of this

work in the proposed methodology.

Concurrent Optimization for Different Noise Levels: This methodology is able to

handle different noise levels at the same time and give set of gains/parameters for the

filter/controller that can be used for all noise levels. The way the methodology handles the multi-

level noise is by running the simulation with the parameters fed into the system from the

optimization algorithm and check if the simulation converges for one noise level then it will go

to the next noise level simulation and it will continue doing this until the last noise level

simulation is converged. If in any of the noise levels the simulation diverges, then the

methodology will consider that position or set as a useless point and the search will continue for

the solution away from that point. In terms of how the objective function will handle the multi-

level noise situation, it comes to the designer because in this thesis the focus was on higher levels

of noise but as explained in the previous section if the objective function is constructed in a way

to account for all the parameters in all noise levels then it can output results which will guarantee

satisfactory results for all noise levels and all parameters included in the objective function.

Modular Structure: The proposed methodology has modular structure, meaning that it

can be used for different purposes and be modified by different people without having them sit

and discuss the results together. The modules are input/output base. This means that each module

inputs some parameters and outputs some other parameters and the designers need to know only

those inputs and outputs are handled correctly. Other than that, whatever is going on within each

module is dependent on the designer and could, in some cases, be considered as black-box

policy.

Adaptability: Different systems have different parameters and dynamics and for

different filters/controller, there is a requirement for different unrelated parameters to be tuned.

The proposed methodology is easy enough to use and can be applied to different systems with

minimum requirement on adaptation and/or adjustments. Parameters for tuning can be defined

easily and the search-space could be set in just changing few lines of code. The rest is in control

of the methodology and it will run the simulation and output required parameters without

knowing anything about the system.

Plug & Play: One of the most important things about different methodologies is how

easily they can be applied and used. With the modular structure of the proposed methodology it

 Summary of Contributions

94

is extremely easy to plug a system (Simulink model) to the algorithm without having trouble

changing any part of the either and then initialize the parameters for the system in the initialize

block and then set the parameters that you want to tune with the desired search-space and the

algorithm just works. This becomes more important when industries have models of a system

that they do not want the outside engineers know about (known as “Black Box Policy”) and this

way the tuning process can be done confidential with the procedure explained above. This helps

industry and universities to collaborate more in industrial/scientific projects.

Handling Different Types of Variables: As explained in the previous sections. This

methodology can handle different variable types as well. In this thesis, there was windows size

parameter with integer type and there were other parameters with floating type. This gives

designers more freedom on which types of variable they can use during the process of design so

that in the tuning part they would not face any issues.

Performance for the Extreme Noise Level: In the last case series presented in this

thesis, it was showed that the methodology is capable of handling Extreme Noise level in the

system, which was not done before in the work that this study was based on for the comparison

purposes. It can be claimed that the noise level applied to the system was at its extremes because

as listed in the tables for each simulation it can be seen that the noise levels are at their extremes.

This means that if this methodology is applied to other systems with higher noise levels it still is

capable of giving good results and finding near optimal solutions for the problem in question.

 Future Work

6.2 Future	Work	

For the future work on the existing work presented in this thesis, there are some

suggestions as follows:

Implementing the Methodology on Other Systems: In order to investigate the

performance of the methodology on other systems as well as the applicability of the

implementation, one needs to implement the methodology and evaluate the easiness of the

implementation as well as the performance of the proposed methodology. This could be done on

any other system but the suggestion is to start with systems having simpler dynamics and then if

further investigations are required expand it to systems that are more complex.

Implementing the Methodology on Other Controllers: In this thesis, the methodology

was applied to an AUKF filter and it was mentioned in the contents that this algorithm could also

be used to tune controllers as well as filters. In order to investigate the performance of the

algorithm on other controllers/filters, one needs to do the implementation and investigate the

applicability, efficiency, accuracy and overall performance of the methodology.

Hybrid Approach: As mentioned in the text, the methodology proposed here is

computationally heavy, meaning that it requires a lot evaluations of the objective function (which

necessarily requires execution of the simulation mode) and it could take long times. In order to

improve the execution time, this algorithm can be mixed with a gradient-base method to further

improve the results as well as decrease the execution time.

Test on Super Computers: As far as the author knows, there is a computing centre in

Canada that provides access to super-fast computers for experimental, educational and research

purposes to all researches and people in the field. One interesting investigation would be testing

the performance of the algorithm (execution time specifically) on these super-fast computers

provided by High Performance Computing Virtual Laboratory (HPCVL) and propose this

approach and tool to be used for future implementations of the methodology so that the

execution time will be tremendously decreased (as the author believes so).

96

7. References

[1] Mahoney, M.S., and Heilbron, J., "The mathematical career of Pierre de Fermat (1601–
1665)," History: Reviews of New Books, Vol. 1, No. 8, 1973, pp. 180-180.

[2] Rockafellar, R.T., "Lagrange multipliers and optimality," SIAM Review, 1993, pp. 183-238.

[3] Fletcher, R., "Practical methods of optimization, Volume 1," Wiley, 1987,

[4] Dantzig, G.B., "Linear programming and extensions," Princeton University Press, 1998, pp.
648.

[5] Kantorovich, L.V., "The mathematical method of production planning and organization,"
Management Science, Vol. 6, 1939, pp. 363-422.

[6] Åkesson, B.M., Jørgensen, J.B., Poulsen, N.K., "A tool for kalman filter tuning," Computer
Aided Chemical Engineering, Vol. 24, 2007, pp. 859-864.

[7] Schwaab, M., Biscaia, E.C., Monteiro, J.L., "Nonlinear parameter estimation through particle
swarm optimization," Chemical Engineering Science, Vol. 63, No. 6, 2008, pp. 1542-1552.

[8] Massoudieh, A., Mathew, A., and Ginn, T.R., "Column and batch reactive transport
experiment parameter estimation using a genetic algorithm," Computers & Geosciences, Vol. 34,
No. 1, 2008, pp. 24-34.

[9] Kang, C.W., and Park, C.G., "Attitude estimation with accelerometers and gyros using fuzzy
tuned Kalman filter," European Control Conference, 2009, pp. 3713-3718.

[10] Pedchote, C., and Purdy, D., "Parameter estimation of a single wheel station using hybrid
differential evolution," Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, Vol. 217, Sage Publications, 2003, pp. 431-447.

[11] Jatoth, R.K., and Kumar, T.K., "Particle Swarm Optimization Based Tuning of Unscented
Kalman Filter for Bearings Only Tracking," International Conference on Advances in Recent
Technologies in Communication and Computing, ARTCom, IEEE, 2009, pp. 444-448.

[12] Jatoth, R.K., and Kumar, T.K., "Swarm Intelligence Based Tuning of Unscented Kalman
Filter for Bearings Only Tracking," International Journal of Recent Trends in Engineering, Vol.
2, No. 5, 2009, pp. 177-181.

[13] Jatoth, R.K., and Kumar, T.K., "Particle Swarm optimization Based Tuning of Extended
Kalman Filter for Manoeuvring Target Tracking," International Journal of Circuits, Systems and
Signal Processing, Vol. 3, No. 3, 2009, pp. 127-136.

 References

97

[14] Xu, X., and Wang, X., "Hard-Failure Diagnosis Using Self-tuning Kalman Filter,"
Intelligent Computing and Information Science, Vol. 134, 2011, pp. 326-334.

[15] Lau, T.K., and Lin, K., "Evolutionary tuning of sigma-point Kalman filters," IEEE
International Conference on Robotics and Automation, IEEE, 2011, pp. 771-776.

[16] Powell, T.D., "Automated tuning of an extended Kalman filter using the downhill simplex
algorithm," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 5, 2002, pp. 901-908.

[17] Abreu, N., "Fault Diagnosis With Adaptive Kalman Filters and CMG Design for
Picosatellite ACS," Master's Thesis, Department of Aerospace Engineering, Ryerson University,
2010,

[18] Sobhani-Tehrani, E., and Khorasani, K., "Identification For Nonlinear Systems Using
Hybrid Approach," Master's Thesis, 2008, pp. 12-13, 15, 18, 37, 92.

[19] Cheung, J.T., and Stephanopoulos, G., "Representation of process trends - Part 1. A formal
representation framework," Vol. 14, No. 4/5, 1990, pp. 495-510.

[20] Myoken, H., "State-space representation of dynamical econometric model and identifiability
conditions," North-Holland, 1976, pp. 635-642.

[21] Min, W., and Shiyin, Q., "Robust fault diagnosis for reaction flywheel based on reduced-
order observer," Seventh International Symposium on Instrumentation and Control Technology:
Optoelectronic Technology and Instruments, Control Theory and Automation, and Space
Exploration - International Society for Optical Engineering (SPIE), Vol. 7129, 2008, pp.
71292H-1-71292H-8.

[22] Ke, Z., Bin, J., and Peng, S., "Adaptive observer-based fault diagnosis with application to
satellite attitude control systems," Second International Conference on Innovative Computing,
Information and Control, 2007, pp. 2035-2038.

[23] N. Tudoroiu, K.K., "Fault detection and diagnosis for reaction wheels of satellite's attitude
control system using a bank of Kalman filters," International Symposium on Signals, Vol. 1,
2005, pp. 199-202.

[24] Chow, E., and Willsky, A.S., "Analytical redundancy and the design of robust failure
detection systems," IEEE Transactions on Automatic Control, Vol. 29, No. 7, 1984, pp. 603-614.

[25] Neguang, S.K., Zhang, P., and Ding, S., "Parity based fault estimation for non-linear
systems: An LMI approach," Proceedings of American Control Conference, Minneapolis,
Minnesota, USA, 2006, pp. 5141-5146.

[26] Hofling, T., and Isermann, R., "Adaptive parity equations and advanced parameter
estimation for fault detection and diagnosis," 13th World Congress, International Federation of
Automatic Control. Fault Detection, Pulp and Paper, Biotechnology, 1996, pp. 55-60.

 References

98

[27] Sobhani-Tehrani, E., Talebi, H.A., and Khorasani, K., "Neural parameter estimators for
hybrid fault diagnosis and estimation in nonlinear systems," IEEE International Conference on
Systems, Man and Cybernetics, 2008, pp. 3171-3176.

[28] Xu, S., and Xiao, D., "A new fault diagnosis method based on parameter estimation,"
Control Theory and Applications (Chinese), Vol. 18, No. 4, 2001, pp. 493-497.

[29] Boskovic, J.D., Li, S.M., and Mehra, R.K., "Intelligent control of spacecraft in the presence
of actuator failures," 38th IEEE Conference on Decision and Control, Vol. 5, 1999, pp. 4472-
4477.

[30] Wu, Q., and Saif, M., "Robust fault diagnosis for a satellite large angle attitude system using
an iterative neuron PID (INPID) observer," American Control Conference, 2006, pp. 5710-5715.

[31] Tudoroiu, N., and Khorasani, K., "Satellite fault diagnosis using a bank of interacting
Kalman filters," Aerospace and Electronic Systems, IEEE Transactions on, Vol. 43, No. 4, 2007,
pp. 1334-1350.

[32] Azarnoush, H., and Khorasani, K., "Fault detection in spacecraft attitude control system,"
IEEE International Conference on Systems, Man and Cybernetics, ISIC, 2007, pp. 726-733.

[33] Chen, W., and Saif, M., "Observer-Based Fault Diagnosis of Satellite Systems Subject to
Time-Varying Thruster Faults," Journal of Dynamic Systems, Measurement, and Control, Vol.
129, No. 3, 2007, pp. 352-356.

[34] Frank, P.M., and Koppen-Seliger, B., "Recent trends in fault diagnosis: a survey," 27th
Edition International Conference in Automation, Vol. 2, 1996, pp. 709-721.

[35] Patton, R.J., Lopez-Toribio, C.J., and Uppal, F.J., "Artificial intelligence approaches to fault
diagnosis for dynamic systems," Journal of Applied Mathematics and Computer Science, Vol. 9,
No. 3, 1999, pp. 471-518.

[36] Angeli, C., "Online expert systems for fault diagnosis in technical processes," Expert
Systems, Vol. 25, No. 2, 2008, pp. 115-132.

[37] Li, Z.Q., Ma, L., and Khorasani, K., "A Dynamic Neural Network-based Reaction Wheel
Fault Diagnosis for Satellites," International Joint Conference on Neural Networks (IJCNN '06),
2006, pp. 3714-3721.

[38] Sobhani-Tehrani, E., and Khorasani, K., "Fault Diagnosis of Nonlinear Systems Using a
Hybrid Approach," Lecture Notes in Control and Information Sciences, Vol. 383, Springer,
2009, pp. 268.

[39] Venkatasubramanian, V., and Vaidyanathan, R., "Diagnosing noisy process data using
neural networks," IFAC/IMACS Symposium on Fault Detection, No. 6, 1991, pp. 547-552.

 References

99

[40] Wong, J., McDonald, K., and Palazoglu, A., "Classification of process trends based on
fuzzified symbolic representation and hidden Markov models," Journal of Process Control, Vol.
8, No. 5, 1998, pp. 395-408.

[41] MacQueen, J.B., "Some methods for classification and analysis of multivariate
observations," 5-th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1,
Berkeley; University of California Press, 1967, pp. 281-297.

[42] Vingron, M., and Argos, P., "A fast and multiple sequence alignment algorithm," Computer
Applications in the Biosciences, Vol. 5, No. 5, 1989, pp. 115-121.

[43] Sun, W., Palazoglu, A., and Romagnoli, J.A., "Detecting abnormal process trends by
wavelet-domain hidden Markov models," AIChE Journal, Vol. 49, No. 1, 2003, pp. 140-150.

[44] Colomer, J., Melendez, J., and Gamero, F.I., "Pattern recognition based on episodes and
DTW. Application to diagnosis of a level control system," 16th International Workshop on
Qualitative Reasoning, Barcelona, Catalonia, Spain, 2002, pp. 37-43.

[45] Ke, Z., Bin, J., and Peng, S., "Application of the Wavelet transform in machine condition
monitoring and fault diagnostics," Mechanical Systems and Signal Processing, Vol. 18, 2004,
pp. 199-221.

[46] Freestone, J.W., and Jenkins, E.G., "Diagnosis of cylinder power faults in diesel engines by
flywheel speed measurement," Institution of Mechanical Engineers. Part D, Journal of
Automobile Engineering, Vol. 200, University of Technology, Loughborough, England, 1986,
pp. 37-43.

[47] Azarnoush, H., and Khorasani, K., "Fault detection in spacecraft attitude control system,"
IEEE International Conference on Systems, Man and Cybernetics, 2008, pp. 726-733.

[48] Lee, J.D., Park, B.G., Kim, T.S., "Simple fault detection algorithm of BLDC motor based on
operating characteristic," IEEE Power Electronics Specialists Conference, 2008, pp. 643-646.

[49] Gustafsson, F., "Adaptive Filtering and Change Detection," John Wiley & Sons, 2000, pp.
510.

[50] El-Mowafy, A., and Mohamed, A., "Attitude Determination from GNSS Using Adaptive
Kalman Filtering," The Journal of Navigation, Vol. 58, 2005, pp. 135-148.

[51] Fathabadi, V., Shahbazian, M., Salahshour, K., "Comparison of Adaptive Kalman Filter
Methods in State Estimation of a Nonlinear System," World Congress on Engineering and
Computer Science, Vol. 2, 2009, pp. 884-891.

[52] Hide, C., Moore, T., and Smith, M., "Adaptive Kalman Filtering for Low-cost INS/GPS,"
The Journal of Navigation, Vol. 56, No. 1, 2003, pp. 143-152.

 References

100

[53] Peng, Y., Youssouf, A., Arte, P., "A Complete Procedure for Residual Generation and
Evaluation with Application to a Heat Exchanger," IEEE Transactions on Control Systems
Technology, Vol. 5, No. 6, 1997, pp. 542-555.

[54] Min, Z.H., and Sun, L.M., "A Novel Non-Parametric Sequential Probability Ratio Test
Method for Structural Condition Assessment," SPIE - The International Society for Optical
Engineering, Vol. 7650, 2010, pp. 76502O-76502O-9.

[55] Shao, J.Y., Wang, R.X., and Xu, M.Q., "Application of Bayesian network in model-based
fault diagnosis," Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and
Technology Edition), Vol. 40, No. 1, 2010, pp. 234-237.

[56] Cen, Z.H., Wei, J.L., Jiang, R., "Real-time fault diagnosis of satellite attitude control system
based on sliding-window wavelet and DRNN," Chinese Control and Decision Conference, 2010,
pp. 1218-1222.

[57] Cheng, Y.H., Jiang, B., Yang, M.K., "Self-Organizing Fuzzy Neural Network-Based
Actuator Fault Estimation for Satellite Attitude Systems," Journal of Applied Sciences, Vol. 28,
No. 1, 2010, pp. 72-76.

[58] Barua, A., Sinha, P., and Khorasani, K., "A diagnostic tree approach for fault cause
identification in the attitude control subsystem of satellites," IEEE Transactions on Aerospace
and Electronic Systems, Vol. 45, No. 3, 2009, pp. 983-1002.

[59] Bialke, B., "High fidelity mathematical modeling of reaction wheel performance," 21st
Annual American Astronautical Society Rocky Mountain Guidance and Control Conference,
1998, pp. 483-496.

[60] Eberhart, R., and Kennedy, J., "A New Optimizer Using Particle Swarm theory," Sixth
International Symposium on Micro Machine and Human Science (MHS '95), 1995, pp. 39-43.

[61] Alger, M., and Richard, W., "Design and Development of Power and Attitude Control
Subsystems for Ryesat," Ryerson Univesity Technical Report, Vol. 1, No. 1, 2006,

[62] Tudoroiu, N., and Khorasani, K., "State estimation of the vinyl acetate reactor using
unscented Kalman filters (UKF)," International Conference on Industrial Electronics and
Control Applications, 2006, pp. 05E1175-05E1179.

[63] Julier, S., Uhlmann, J., and Durrant-Whyte, H.F., "A new method for the nonlinear
transformation of means and covariances in filters and estimators," IEEE Transactions on
Automatic Control, Vol. 45, No. 3, 2000, pp. 477-482.

[64] Simandl, M., and Straka, O., "Sampling densities of particle filter: a survey and
comparison," American Control Conference, 2007, pp. 4437-4442.

 References

101

[65] Crisan, D., "A survey of convergence results on particle filtering methods for practitioners,"
IEEE Transactions on Signal Processing, Vol. 50, No. 3, 2002, pp. 736-746.

[66] Schetz, J.A., and Rogers, R.M., "Applied Mathematics in Integrated Navigation Systems,"
Vol. 1, AIAA (American Institute of Aeronautics & Astronautics) Inc., 2007,

[67] Trudinger, C.M., Raupach, M.R., Rayner, P.J., "Using the Kalman filter for parameter
estimation in biogeochemical models," Environmetrics 2008, Vol. 19, 2008, pp. 849-870.

[68] Kim, K.Y., Lee, J.T., Yu, D.K., "Parameter estimation of noisy passive telemetry sensor
system using unscented Kalman filter," International Conference on Future Generation
Communication and Networking, 2007, pp. 433-438.

[69] Shellenbarger, J.C., "Estimation of covariance parameters for adaptive Kalman filter,"
National Electronics Conference, Vol. 22, 1966, pp. 77-79.

[70] Sims, F.L., Lainiotis, D.G., and Magill, D.T., "Recursive algorithm for calculation of
adaptive Kalman filter weighting coefficients," IEEE Transactions on Automatic Control, Vol.
AC-14, 1969, pp. 215-218.

[71] Kirlin, R.L., and Moghaddamjoo, A., "Conventional and robust adaptive Kalman filtering: a
survey," IEEE International Symposium on Circuits and Systems, 1987, pp. 77.

[72] Reina, G., Vargas, A., Nagatani, K., "Adaptive Kalman Filtering for GPS-based Mobile
Robot Localization," IEEE International Workshop on Safety, Security and Rescue Robotics,
2007, pp. 78-83.

[73] Yang, Y., and Gao, W., "An optimal adaptive Kalman filter," Journal of Geodesy, Vol. 80,
No. 4, 2006, pp. 177-183.

[74] Zhang, S.W., Qiu, C.J., and Xu, Q., "Estimating soil water contents from soil temperature
measurements by using an adaptive Kalman filter," Journal of Applied Meteorology, Vol. 43,
No. 2, 2004, pp. 379-389.

[75] Tzou, H.K., and Lin, Y.T., "The tracking of a manoeuvring object by using an adaptive
Kalman filter," Institution of Mechanical Engineers, Part I (Journal of Systems and Control
Engineering), Vol. 215, 2001, pp. 125-130.

[76] Escamilla-Ambrosio, P.J., and Mort, N., "Multi-sensor data fusion architecture based on
adaptive Kalman filters and fuzzy logic performance assessment," Fifth International
Conference on Information Fusion, Vol. 2, 2002, pp. 1542-1549.

[77] Myers, K.A., and Tapley, B.D., "Adaptive sequential estimation with unknown noise
statistics," IEEE Transactions on Automatic Control, Vol. AC-21, No. 4, 1976, pp. 520-523.

 References

102

[78] Zhou, J., Knedlik, S., and Loffeld, O., "INS/GPS Tightly-coupled Integration using
Adaptive Unscented Particle Filter," The Journal of Navigation, Vol. 63, 2010, pp. 491-511.

[79] Lee, T.S., "Theory and application of adaptive fading memory Kalman filters," IEEE
Transactions on Circuits and Systems, Vol. 35, 1988, pp. 474-477.

[80] Shi, Y., and Eberhart, R.C., "A modified particle swarm optimizer," IEEE International
Conference on Evolutionary Computation, 1998, pp. 69-73.

[81] Kennedy, J., "The particle swarm: social adaptation of knowledge," IEEE International
Conference on Evolutionary Computation, Ieee, 1997, pp. 303-308.

[82] Kao, C.C., Chuang, C.W., and Fung, R.F., "The self-tuning PID control in a slider–crank
mechanism system by applying particle swarm optimization approach," Mechatronics, Vol. 16,
No. 8, 2006, pp. 513-522.

[83] Mukherjee, V., and Ghoshal, S., "Intelligent particle swarm optimized fuzzy PID controller
for AVR system," Electric Power Systems Research, Vol. 77, No. 12, 2007, pp. 1689-1698.

[84] Pontani, M., and Conway, B., "Particle Swarm Optimization Applied to Space Trajectories,"
Journal of Guidance, Control, and Dynamics, Vol. 33, No. 5, 2010, pp. 1429-1441.

[85] Poli, R., "Analysis of the publications on the applications of particle swarm optimisation,"
Journal of Artificial Evolution and Applications, Vol. 2008, 2008, pp. 3.

[86] Clerc, M., "Particle swarm optimization," Recherche, Vol. 67, 2006, pp. 02.

[87] Premalatha, K., and Natarajan, A.M., "Hybrid PSO and GA for Global Maximization," Int.
J. Open Problems Compt. Math, Vol. 2, No. 4, 2009, pp. 597-608.

[88] Potter, M., and De Jong, K., "A cooperative coevolutionary approach to function
optimization," Parallel Problem Solving from Nature (PPSN III), Vol. 866, 1994, pp. 249-257.

[89] Zielinski, K., and Laur, R., "Stopping criteria for a constrained single-objective particle
swarm optimization algorithm," Informatica (Ljubljana), Vol. 31, No. 1, 2007, pp. 51-59.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	Particle Swarm Optimization Based Adaptive Kalman Filters for Fault Diagnosis of Reaction Wheels
	Afshin Rahimi
	Recommended Citation

