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Abstract  

 

Particle Swarm Optimization Based Adaptive Kalman Filters for Fault Diagnosis of 

Reaction Wheels 

Afshin Rahimi, Master of Applied Science, Aerospace Engineering 

Ryerson University, Toronto, August 2012 

  

There has been an increasing interest in fault diagnosis in recent years, as a result of the 

growing demand for higher performance, efficiency, reliability and safety in control systems. A 

faulty sensor or actuator may cause process performance degradation, process shut down, or a 

fatal accident. Quick fault detection and isolation can help avoid abnormal event progression and 

minimize the quality and productivity offsets. In space systems specifically, space and power are 

limited in the satellites, which means that hardware redundancy is not very practical. If actuator 

faults occur, analytical redundancy techniques should be employed to determine if, where, and 

how the fault(s) occurred. 

To do so, different approaches have been developed and studied and one of the well-

known approaches in the literature is using the Kalman Filter as an observer for the purpose of 

parameter estimation and fault detection. The gains for the filter should be selected and the 

selection of the process and measurement noise statistics, commonly referred to as “filter 

tuning,” is a major implementation issue for the Kalman filter. This process can have a 

significant impact on the filter performance. In practice, Kalman filter tuning is often an ad-hoc 

process involving a considerable amount of time for trial and error to obtain a filter with 

desirable –qualitative or quantitative- performance characteristics. 

This thesis focuses on presenting an algorithm for automation of the selection of the gains 

using an evolutionary swarm intelligence based optimization algorithm (Particle Swarm) to 

minimize the residuals of the estimated parameters. The methodology can be applied to any filter 

or controller but in this thesis, an Adaptive Unscented Kalman Filter parameter estimation 

applied to a reaction wheel unit is used for the purpose of performance evaluation of the 

proposed methodology. 
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1. Introduction 

The procedure of selecting the process and measurement noise covariance matrices 

components, commonly known as “filter tuning” is a major implementation issue for the Kalman 

filter. This process can have significant impact on the performance of the filter. Since this is an 

ad-hoc process involving a considerable amount of time for trial and error to obtain the desirable 

performance characteristics. Motivated by that, the focus of this thesis is to propose a 

methodology using optimization algorithms to automate this process and the make human factor 

and interference impact in the tuning process minimum. 

The term “mathematical optimization”, which also is known as optimization or 

mathematical programming, in mathematics, computer science, or management science, refers to 

the selection of a best element from some set of available alternatives. In the simplest case, an 

optimization problem consists of maximizing or minimizing a real function by “systematically” 

choosing input values from within an allowed set and computing the value of the function. The 

generalization of optimization theory and techniques to other formulations comprises a large area 

of applied mathematics. More generally, optimization includes finding "best available" values of 

some objective function given a defined domain, including a variety of different types of 

objective functions and different types of domains. 

In the field of optimization, Fermat [1] and Lagrange [2] found calculus-based formulas 

for identifying optima, while Newton [3] and Gauss [3] proposed iterative methods for moving 

towards an optimum. Historically, the first term for optimization was "linear programming", 

which was due to George B. Dantzig [4], although much of the theory had been introduced by 

Leonid Kantorovich, a Russian mathematician, in 1939 [5]. Dantzig published the Simplex 

algorithm in 1947 [4], and John von Neumann developed the theory of duality in the same year. 

Linear programming arose as a mathematical model developed during World War II to 

plan expenditures and returns in order to reduce costs to the army and increase losses to the 

enemy. It was kept secret until 1947. Postwar, many industries found its use in their daily 

planning.

In 1963, Dantzig’s Linear Programming and Extensions was published by Princeton 

University Press. Rich in insight and coverage of significant topics, the book quickly became 
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“the bible” of linear programming. Since then, the optimization approaches and methodologies 

have advanced and been used in many different subjects. The evolutionary algorithms nowadays 

are the main field of interest for the researchers and the industry as they can be used to solve 

problems that are more complex. 

 

1.1 Motivations	

The current research on the Fault Diagnosis, Identification, and Isolation (FDI) for space 

systems is not usually incorporated with the optimization algorithms. In the FDI procedure, 

Kalman filter is one of the most commonly used tools for filtering and parameter estimation but 

there is one major issue with it and that is how to tune the filter systematically and not by trial 

and error. Tuning the filter is a tedious task and the performance of the tuned filter is 

tremendously dependant on the experience of the person who is doing the manual tuning. 

In the literature, different attempts to implement the optimization algorithms in order to 

remove the human impact on the performance of the filter by automating the process are 

available. In Ref. [6] auto-covariance least-square estimation is proposed for estimating the noise 

covariances from process data. In Ref. [7], a new approach is presented to estimate the 

parameters using particle swarm optimization but this approach is not using PSO to tune the 

filter and it is proposing a new filter using the particle swarm optimization method. In addition, 

in Ref. [8] another method based on Genetic Algorithm is proposed to estimate fate and transport 

parameters of a reacting solute from the column and batch experiments involving a saturated 

porous medium. In Ref. [9] the attitude estimation method of humanoid robot using an extended 

Kalman filter with a fuzzy logic based tuning algorithm is presented. Ref. [10] investigates an 

application of a ‘discrete variable’ hybrid differential evolution (dvHDE) method to parameter 

estimation of a single wheel station, which incorporates dvHDE and Kalman filter. This 

reference also compares the results with the standard gradient-based (GB) method, Downhill 

Simplex (DS) method and the original differential evolution (DE) method on simulated and 

experimentally obtained data. Ref. [11] investigates the application of PSO in tuning the UKF 

covariance matrices. In addition to that in another conference publication by the authors in Ref. 

[12] a comparison between PSO tuned and another optimization algorithm known as Bacterial 

Foraging Optimization (BFO) is conducted. In Ref. [13], tuning of Extended Kalman Filter 

(EKF) using PSO is investigated and a comparison between PSO tuned and the conventional 
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EKF is presented. Ref. [14] proposes a self-tuning Kalman filter applied to engine control 

systems. A discussion on different algorithms used for the tuning of Kalman filters is give in Ref. 

[15]; the authors then propose a new algorithm called Local-to-Best Mutation with Shuffled 

Steps (L2BM-SS-DE) variation of Differential Evolution. In Ref. [16], the author discusses on 

different issues with the tuning of a Kalman filter with different approaches and then uses the 

Simplex algorithm for the tuning. 

Reviewing all the above-mentioned literature and motivated by the issues faced in Ref. 

[17], including no systematic tuning approach and hence, the results are not guaranteed to be the 

best possible, at least within a range of parameters, in performance. In addition, because the 

tuning is done manually, the process is very time consuming and for each simulation, the 

parameters need to be selected separately. For different noise levels, the filter needs to be set 

again and the performance varies from one case to another. Moreover, for different systems, the 

tuning should be done manually. This task is tedious considering that it requires the user who is 

tuning the filter to have enough knowledge and experience about the system to be able to tune it 

practically. 

 The purpose of this research is to apply an evolutionary optimization algorithm known as 

Particle Swarm Optimization to automate the process of filter tuning and by that solving the 

issues mentioned above and as were faced in the SSDC lab during the process of development of 

the previous FDI algorithm in Ref. [17]. Then analyze the outputs of the simulations to further 

investigate the applicability of the proposed methodology. In addition to that, it was interesting 

to study whether or not this methodology could be applied to other systems. Moreover, the fact 

that this methodology was required to be easy to use and modular to make it adaptable to other 

applications was another challenging issue to be solved. 

 

1.2 Reaction	Wheel	as	an	Actuator	for	Satellite 

Reaction Wheels have been the most common attitude control technologies used as 

actuators that can provide full 3-axis attitude control for the small satellites with meaningful 

missions in Earth. A RW consists of a flywheel mounted to an electric motor. RWs have been 

used extensively for active control of spacecraft. Generally, RWs can perform slow manoeuvring 

of satellites with average slew rates of approximately 1 deg/sec to avoid saturating the wheel and 

keeping power consumption low. Saturation occurs when the maximum wheel speed is reached 
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and no more actuation is available in the direction of increasing wheel speed, this phenomenon is 

usually resolved using momentum dumping techniques. Power consumed during a manoeuvre is 

directly related to the reaction torque generated by a RW, fast slews translate to larger motor 

torques and consequently larger current draws. 

For RW torque generation a transient current occurs when a voltage is applied at the 

armature until the back EMF (BEMF) voltage amplitude comes close to matching the applied 

voltage with opposite polarity, this results in a near zero voltage across the armature circuit so 

long as the wheel speed or applied voltage does not change. More current is drawn in a transient 

state of the wheel speed than at constant speed, and RW actuation is the result of changes in 

wheel speed. 

  

1.3 Fault	Diagnosis	and	Identification	

During the entire mission life of a satellite costs are accrued and faults/failures add to it, 

if occur. The most probable area for a fault to occur is the satellite attitude control system (ACS). 

Actuators usually consist of moving mechanical parts subject to unforeseen faults or failures 

such as a cold solder joint affecting electrical performance, minute particles interfering with 

mechanical components, or massive temperature fluctuations. As a result, FDI techniques have 

been developed so that some of these factors can be monitored and/or predicted. 

Fault diagnosis refers to the detection and isolation of faults, and identification deals with 

the type of fault and its severity. In the past with larger satellites, faults and/or failures were 

handled through hardware redundancy because there was more onboard space and consequently, 

online computing power was at a premium. In the current state, hardware redundancy, in order to 

reduce costs, is limited. In case a fault occurs, numerical methods can be utilized to diagnose and 

correct the problem(s). If the satellite is able to detect, isolate, and identify these faults then 

operators on the ground can move quickly to obtain the best possible performance from the 

satellite, or the satellite could simply correct the problem itself. Ultimately, the goal is to 

facilitate at least partial completion of a mission in case of faults or failures. 

Since RWs are very common actuators, online FDI algorithms should be available that 

can monitor them. A “fault” is used to denote an unpredicted change of system behaviour that 

results in a degradation of performance or prevents any semblance of normal operation of the 

system. They can be classified based on their duration and severity (Figure 1.1). 
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Figure 1.1 Types of Faults 

Faults can occur suddenly or slowly over time. Sudden faults are usually caused by 

external disturbances that severely damage a component. Once they occur, replacement of the 

faulty component is the best course of action because the unexpected nature of the fault can 

introduce large stresses to the structure or electronic system. Incipient faults occur slowly over 

time such as increased frictional losses in ball bearings. In this case, immediate replacement of 

the faulty component is not necessary as long as satisfactory performance can be achieved. 

Transient and intermittent faults occur randomly for bounded periods and then vanish, this makes 

them difficult to identify. They differ with respect to the number of states they can assume. For 

example, a transient fault assumes one state and then goes back to normal, whereas intermittent 

faults can assume various states throughout a faulty time-interval. Additive faults are simply 

superimposed on healthy signals of a system, while multiplicative faults are directly proportional 

to system states [17]. 

As discussed earlier, there are three primary components to fault diagnosis algorithms 1) 

detection, 2) isolation, 3) identification. 
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Figure 1.2 Steps in Fault Diagnosis 

 

The scheme should be able to detect the occurrence of a fault, isolate where the fault has 

occurred, and for completeness identify what type of fault has occurred as shown in Figure 1.2. 

These tasks are not relevant for all applications; some applications will only require fault 

detection while others will also require isolation. Detection would only be required when 

regardless of the type of fault or its location the corrective action is the same, in this case the 

algorithm or mechanism would simply alert operator that a fault has occurred. Isolation could be 

required in a complex system with many moving parts that could not be examined precisely by 

an operator due to the size and complexity of the system. In this case, the algorithm should be 

able to detect and isolate the location of a fault so that the corrective action is fast and efficient. 

Identification of a fault is not always necessary when an operator is in charge of the corrective 

action; however, it is an important element to fault diagnosis if the operators need to know right 

away what component faulted and why so that they could determine right away what type of 

corrective action to take specifically for that component. For autonomous systems, the operator 

can be considered the computer that makes decisions based on data processing algorithms, 

otherwise the operator can be considered human. FDI algorithms usually rely on sensor 

measurements data to determine the health of the system and what type of corrective action to 

take. It is widely understood that sensors are subject to various errors and real-life systems are 

subject to disturbances, however false alarms due to measurement noise and system disturbances 

must be avoided as much as possible. Residual generation can be approached using one of three 

frameworks shown in Figure 1.3. The two main steps of an FDI algorithm are 1) extraction of 

trends from measurements, 2) the interpretation of the extracted trends [18]. Extensive work has 

been done on trend extraction and representation including the establishment a formal framework 
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for representing process trends [19]. 

1) Mathematical model-based: Model-based fault diagnosis consists of using a 

mathematical model of the system in question to describe the ideal behaviour of the system in a 

fault-free case. The output of the model is used to perform consistency checks against the 

measured states of the system; if the measurements deviate noticeably from the expected system 

behaviour then it is assumed that the system is operating in a faulty mode. The consistency check 

involves taking the difference between the model output and system measurements. This results 

in a residual error signal that is vital to the proper design of any FDI algorithm. Residual signals 

should be zero in the healthy case, however in practice, measurements are subject to white noise 

and systems are subject to disturbances, which limits the residual to be in the neighbourhood of 

zero in healthy modes. 

The problem with using signal-processing techniques is that they do not consider the 

dynamic relationships between the measured signals of a system. The processed data represents a 

system as a whole with disturbances, non-linearities and the normal system operation being 

combined into one response. The ARMAX model is a general deterministic-stochastic model 

developed in 1978 [20] to extract information about the system dynamics and noise. 

 
Figure 1.3 Analytical Redundancy Techniques 

Mathematical model-based residual generation requires a mathematical model of a 

system derived using physical principles. Model-based schemes can be classified further into 

observer-based methods that employ linear or non-linear observers [21, 22] in a deterministic 
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setting and Kalman filtering [23] (extended Kalman filter (EKF), Unscented Kalman Filter 

(UKF), Adaptive Kalman Filter (AKF), and the linear Kalman filter (LKF)) in a stochastic 

setting. Residual signals are defined as output estimation error and innovation sequence for 

deterministic and stochastic settings respectively. The parity-space method is based on simple 

algebraic projections and geometry that provide an appropriate check of the consistency of 

system measurements [24]. This method has been applied to both linear and non-linear systems 

[25] for fault diagnosis and is sensitive to measurement and process noise relative to observer-

based methods. Another approach to residual generation is parameter estimation. The goal here 

is to estimate physical system parameters, a change in any given parameter estimate will provide 

information as to where the fault occurred and what kind of fault occurred and the severity. 

Parameter estimation methods such as continuous-time adaptive parity equations [26], neural 

parameter estimators [27], Kalman filtering, Neural Networks, and least squares [28] have been 

applied for FDI purposes. 

The FDI for thrusters has been designed by Boskovic et al. [29] based on the concept of 

Multiple Models, Switching, and Tuning (MMST) while a nonlinear iterative neuron 

proportional, integral, and derivative (INPID) observer based FDI was developed by Wu and 

Saif [30]. The parameters of the observer input were updated based on the proportional, integral, 

and derivative information of the fault estimation error. On the other hand, the FDI for reaction 

wheels (RWs) has been developed by Tudoroiu and Khorasani [31] using interacting multiple 

model Kalman filters while Azarnoush and Khorasani [32] applied linear and non-linear 

observers for residual generation and threshold testing for residual evaluation. The main 

deficiency of adaptive-observer-based fault identification is their inability to detect and estimate 

time-varying faults. To overcome this limitation, an iterative learning observer (ILO) was 

proposed by Chen and Saif [33].  

2) Learning-Based (computational intelligence-based): Learning-based algorithms use 

time-histories of the input/output data of a system to learn the system model. This learned model 

is then used to generate the residuals. This approach can be very appealing when a high-fidelity 

model of a system is not available or is difficult to obtain. However large quantities of 

input/output data must be available that encompass most of the expected system behaviour in 

order for these methods to yield good results. References [34-36] provide comprehensive surveys 

of learning-based methods, also referred to as computational intelligence-based methods, 
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artificial intelligence-based methods, soft-computing approaches, or intelligent methods. 

 Li and Khorasani [37] proposed a FDI algorithm using a dynamic neural network to 

learn the non-linear RW dynamics and generate residuals that are evaluated by threshold testing. 

Later, the fault identification function added to FDI, called FDD, was developed using a 

mathematical model of a system known a priori along with self-learning computational 

intelligence techniques [38]. However, the algorithm can only identify one fault at a time and its 

application to different systems requires redesign of the intelligent portion of the algorithm and 

re-training.  

3) Expert System-Based (fuzzy rule-based): A fuzzy logic or neuro-fuzzy system will 

employ a set of “if the” rules that are based on expert knowledge of the system. If this expert 

knowledge is not available then neural networks are employed to determine the parameters of 

those rules. Any one of these methods is sufficient for residual generation and has been studied 

extensively. 

Neural networks are well suited to performing trend analysis and/or feature extraction to 

determine the operating state of a system [39] as well as fuzzified symbolic representations [40]. 

Clustering algorithms based on Bayesian classification rules have also been developed to classify 

data into clusters that are centered about means determined a priori; each mean represents a 

particular operating condition of a system [41]. Interpreting the classified data has been done 

using alignment-based sequence-matching algorithms [42], hidden Markov models [43], and 

dynamic time warping for similarity estimation [44]. Frequency domain analysis of a time-series 

of measured system states and outputs is another form of signal processing. The Discrete 

Wavelet Transform has been used for over fifteen years to perform feature extraction as fault 

diagnosis for machinery components [45]. The DFT algorithm transforms data from a time-

domain representation to its frequency domain representation where its frequency response can 

be analyzed and interpreted [46]. 

The next stage in the FDI problem is residual evaluation. With a properly constructed 

residual, the healthy and faulty modes of operation should be manifested in the residual such that 

each mode creates a unique residual signal or pattern. The residual evaluation stage involves 

processing the residual signal such that its patterns can be matched to particular system modes of 

operation. A threshold test of instantaneous values, calculating moving window averages of the 

residuals, or more complex statistical methods such as generalized likelihood ratio or sequential 
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probability ratio testing. 

The category of threshold testing involves establishing upper and lower thresholds about 

the residual mean in the healthy system mode of operation. If the residual signals exceed these 

boundaries then a fault has been detected. Reference [47] does fault detection for a RW with 

linear and non-linear observers for residual generation and threshold testing for residual 

evaluation. In Ref. [48], a simple threshold test of brushless DC (BLDC) motor currents is used 

to detect faults. A fault detection and isolation algorithm is presented in [37] by applying a 

dynamic neural network to learn the non-linear RW dynamics and generate residuals that are 

evaluated by threshold testing. Adaptive thresholds that adjust based on system inputs have also 

been studied in [49], however this still only provides the ability to detect and in some cases 

isolate faults. 

When residual evaluation is performed using moving window averages of the residuals, 

the statistics of the residuals are used to estimate system measurement and process noises. This 

methodology has been applied extensively to the KF in the form of AKFs that adapt the 

measurement and process noise on the system using this fading memory technique. Reference 

[50] uses the residual window averaging technique for attitude determination with Global 

Navigation Satellite Systems (GNSS). And [51] uses this technique for state estimation of non-

linear industrial systems., and [52] uses residual window averaging to estimate measurement and 

process noise for combining a low-cost inertial measurement unit (IMU) with GPS readings to 

obtain positioning and attitude information. 

Finally, statistical methods can be considered for residual evaluation. The Generalized 

Likelihood Ratio Test (GLRT) [53] is a useful tool in detecting changes in a residual. This 

method computes a threshold based on the probability of false alarm and corrects detection thus 

making it more robust than a fixed threshold algorithm. Moreover, it can estimate an abrupt jump 

in residual amplitude and the time of the jump. However, the proposed method does not work if 

the residual change is not abrupt, and there are robustness issues against modeling errors and 

process disturbances. The sequential probability ratio test (SPRT) assumes that samples are 

uniformly distributed and independent, and that the structure of their distributions is known a 

priori with unknown parameters. In Ref. [54], the Mann-Whitney rank sum test is used so that 

the PDF of the samples does not need to be known a priori. However, this method is also not 

robust to modeling errors and large process disturbances. Both these methods use residual 
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threshold testing based on statistical properties and probabilities of the system in question to 

improve upon the fixed threshold technique. 

In the literature there are many fault diagnosis techniques that have been developed such 

as Bayesian classification for fault detection and isolation [55], Wavelet and dynamic recurrent 

neural networks for fault detection and isolation respectively [56], fuzzy neural networks for 

fault detection [57], learning-based diagnostic tree approaches for fault detection and isolation 

[58], the Interactive Multiple Model (IMM) approach to detect and isolate faults for 

reconfigurable control, and adaptive observer methods. Most methods do not perform fault 

identification however. Reference [18] is one of the few that can perform fault detection, 

isolation, and identification of RWs. This is done utilizing a mathematical model of a system 

known a priori along with self-learning computational intelligence techniques resulting in a 

hybrid approach. Computational loads of this algorithm are large and its application to different 

systems requires redesign of the intelligent portion of the algorithm, for satellite ACS FDI an 

approach is proposed in [17] that is claimed to be able to be applied to various actuators without 

much effort and large computational loads. However, as mentioned earlier in this Chapter there 

are some disadvantages to this methodology, which in this research an attempt is made to solve 

the mentioned problems, and investigate the applicability of the proposed algorithm and 

methodology. 

 

1.4 Problem	Statement 

In the sections above, an overview of current trends and studies in the field of tuning a 

filter as well as a literature review on the FDI and different applications for, particularly in space, 

and RW units was presented. 

It is clear that there is a need for a methodology to solve issue with the manual tuning of 

filters/controllers. Reason being that the process is tedious considering the amount of time it 

takes a person to do the trial and error with the fact that the experience of the person who is 

doing the tuning affects the performance of the filter tremendously. Motivated by that there were 

couple of problems faced in the SSDC lab with the research existed that are addressed below: 

[Prob1] Auto Filter Tuning Methodology: As mentioned above, there was a need for a 

systematic approach to tune filters that lacked existing in the SSDC lab for tuning Kalman Filters 

in Ref. [17]. The problem with the algorithm in Ref. [17] is that it requires a person to tune the 
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filter manually for any sort of change in the simulation including noise levels, system 

parameters, etc.; which takes a lot of time and does not guarantee the performance of the filter as 

it is not known by the tuner (person) whether there would be a better solution. 

[Prob2] Covering Different Noise Levels: Another problem that was faced in Ref. [17] 

was that for different noise levels in the system there was a need for re-tuning the filter to get 

“satisfactory” results and again the issue is that the results cannot be guaranteed to be the best as 

they are just tuned manually and the performance of the filter depends on the experience of the 

designer/tuner of the filter solely. 

[Prob3] Applicability of use for Different Systems with Minimum Changes Required: 

Another requirement for a practical methodology is its applicability to different systems with 

unknown parameters while promising a satisfactory performance. This was another challenge in 

the methodology proposed in Ref. [17], which is caused by the fact that the tuning is done 

manually in that reference. Also the structure of the code in the simulation was not “modular” 

meaning that the user needed to go through lines of codes to be able to change a little property of 

the system and then this change should be done in different places including a MATLAB m code 

and a Simulink model with the effort of running them separately and plotting the results and 

analysing them afterwards. 

 

1.5 Research	Objectives 

As per the problems mentioned in the previous section, this research focuses on 

proposing a new approach for tuning filters (specifically) or any controller in general application 

which is automated and systematic and gives you certain indices of its performance based on 

optimization algorithms. 

Design of a Tuning methodology based on Optimization: The objective of this 

dissertation is to propose a methodology, which is able to tune different controllers/filters based 

on a certain measure and gives different indices of its performance to guarantee the convergence 

of the solution and the trend of the objective set in advance. This methodology should be robust 

to changes and not dependant on the system it is being applied to. It also should be structured in 

a way, which is easy to use and easy to adapt to different systems without sensitivity to changes 

in the system parameters and system unknowns. If required, it should be able to handle multi 

noise/disturbance levels in the system and give gains/parameters that would work for different 
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levels of noise/disturbance. 

The proposed methodology is applied to an FDI algorithm with Adaptive Unscented 

Kalman filter (AUKF) for parameter estimation of RW [17]. Its performance is verified via 

MATLAB/Simulink simulations using a high fidelity RW model [59]. As mentioned before the 

tuning problem has already been addressed in the literature but in here the problem is applied to 

a specific system with the scope of structuring the algorithm for easy adaptation to other systems. 

It is also an important factor to mention that because of the nature of such systems/simulations, 

there are some changes needed in the structure of the optimization algorithm as well as the 

structure of the whole methodology to handle divergence of the simulations and yet give the 

optimum solution within the area of search set in advance. 

1.6 Main	Contributions 

The main contribution of this work is proposing a methodology to tune different 

filter/controllers automatically with the least human interference so that the results are robust and 

guaranteed to be near optimal in the search region. The methodology proposed in here is simple 

and intuitive in nature, it is based on an evolutionary swarm intelligence optimization algorithm, 

which mimics the behaviour of a group of birds in an attempt to find food as a group. The 

optimization method is known as Particle Swarm Optimization (PSO) [60] and a variant of this 

optimization method is used in this thesis to make it bounded and able to handle constraints in an 

intuitive way. The objective in the PSO for this specific problem would be to minimize the error 

in the measurements and give satisfactory estimates of the system parameters. This is done by 

evaluating residuals for different sets of the parameters/gains for the filter and among them 

deciding on which is the best based on the objective function. The objective function could be set 

for different problems to adapt the system and objective. In the following Chapters, more details 

are given on how this is done and how to implement the method in different problems for 

different systems. 

This algorithm is applicable to any general linear or non-linear system. A nonlinear 

system is demonstrated in this thesis. In particular, the proposed methodology is applied to an 

AUKF variant [17] for an FDI problem on a high fidelity RW model [59]. 
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1.7 Thesis	Outline 

In Chapter 2 satellite actuators and in particular, the RW model is explained to 

understand the system better, where the FDI algorithm is applied to. In Chapter 3, an extensive 

review of KFs with more focus on unscented Kalman filter and adaptive filters with their 

applications to FDI problems is presented. In Chapter 4, a review on optimization algorithms is 

presented and Particle Swarm Optimization (PSO) algorithm is explained in detail. Furthermore, 

the proposed methodology is explained in detail followed by an example for better understating 

the optimization process. Different parameters effect on the performance of the proposed 

methodology is then investigated by different simulation cases presented in Chapter 5. 

Eventually, Chapter 6 contains the conclusions and future work. 
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2. Reaction Wheel Model 

The focus of this thesis is the tuning technique for a filter/controller but the proposed 

methodology needs to be applied to a system and the performance needs to be evaluated. Hence, 

the system that the proposed methodology is going to be applied to is a RW model [59] to have a 

measure for comparison with the results in Ref. [17]. Consequently, the model being used is the 

same model from Ref. [17] to give a perspective on how the performances vary/improve with the 

new methodology applied for tuning the filter. 

The ACS of any satellite regardless of class whether active or passive is one of the most 

critical subsystems for the successful completion of a mission. Passive attitude control consumes 

no satellite resources and usually takes advantage of the Earth's gravitational and magnetic fields. 

Active attitude control consumes either fuel or electrical power or both to maintain a desired 

attitude. The choice of which method to use depends on the required pointing accuracy for the 

proposed mission. The deciding factors for pointing accuracy are the communications system 

and type of payload(s) [61]. Assuming an antenna with a beam-width of 1  on a satellite in a 600 

km LEO, a simple trigonometric calculation indicates the beam would cover a 210 km  area on 

the Earth. Thus in order to guarantee continuous communication with the ground station the 

satellite must be capable of pointing its antenna with an accuracy of better than 0.5 . In practice, 

the beam width of a directional antenna is usually wider than 1 . However, it is evident that a 

less directional antenna requires less pointing accuracy because it can cover more surface area on 

the Earth. The same argument can be applied to imaging and other payloads that require some 

degree of pointing accuracy. 

To date, RWs and magnetic torque rods (MTRs) are the most common actuators that can 

fit within small satellites mass, power, and volume constraints and still provide adequate attitude 

control performance [17]. These constraints vary depending on the payload and mission 

requirements. This section is a brief description on the satellite actuators with a focus on RWs. 

2.1 Actuators	

The most common actuator technologies for cubesats are reaction wheels (RWs), 

thrusters, and magnetic torque rods (MTRs), while CMGs are also common but in larger 

satellites. A RW consists of a flywheel attached to an electric motor. At least three RWs mounted 
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orthogonally about each of the body axes are required for full three-axis attitude control. When 

the satellite must perform a maneuver the RWs accelerate and impart a torque onto the 

spacecraft, if a spacecraft must maintain a desired attitude in the face of external disturbances the 

RWs must absorb any added momentum to keep the total angular momentum of the system at 

zero. An MTR usually consists of a wire coil with a ferrite core. When a current passes through 

the coil a magnetic field is created. When multiple MTRs are combined a magnetic dipole can be 

created that counteracts the Earth's magnetic field and provides two-axis pointing of a spacecraft. 

MTRs are usually employed along with a reaction wheel for full three-axis attitude control. 

Finally the CMG is another momentum exchange device like the RW. A CMG unit consists of a 

flywheel that is gimballed about one, two, or three of its axes. Gyroscopic torques are generated 

as the angular momentum vector is rotated about axes perpendicular to the flywheel spin-axis. 

Depending on mission requirements one actuator may be more appropriate than others. in 

particular, the required degree of pointing accuracy is a primary factor for selecting actuators. 

MTRs provide the lowest pointing accuracy because of the time-varying nature of the Earth's 

magnetic field and their inability to provide control about more than two axes. They are usually 

used in conjunction with RWs and CMGs for momentum dumping. For a cubesat MTRs are 

small enough to satisfy the mass/power/volume constraints hence making them a popular choice. 

RWs provide substantially improved pointing accuracy and agility relative to MTRs, however 

power consumption and mass tend to be larger. CMGs provide more accurate and agile pointing 

capabilities because of their torque amplification characteristics and gyroscopic stabilization. It 

must be noted that pointing accuracy is a only as good as the combined ADS and ACS(ADCS) 

accuracy. In other words if the ADS is only accurate to 1 deg and ACS pointing accuracy to 0.5

deg, no better than 1 deg pointing accuracy can be achieved and vice-versa. 

2.2 Reaction	Wheels	

Fundamentally a RW (Figure 2.1) is a flywheel mounted to an electric motor. Electric 

Motors in space are usually BLDC or stepper motors as opposed to brushed motors. These types 

of motors are preferred because brushes can scrape particulate matter of the electrodes and 

contaminate instrumentation. A motor consists of stationary stator windings, and a permanent 

magnet or wound rotor. The difference between brushed and BLDC motors lies in the 

commutation method. BLDC motors commutate using stationary position sensors located as 

close to the rotor magnets as possible. The position sensors are Hall effect sensors that output a 
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logic high level when a magnetic field is passing over them and low when no field is present. 

Each position sensor generates a pulse-train that is 120 deg out of phase with the other two 

sensor signals. Commutation is performed by processing the three signals and knowing when to 

excite a particular stator winding. The rotor speed can also be ascertained by observing the 

position sensors signal frequencies. In contrast a brushed DC motor uses metallic or carbon 

conducting 'brushes' to commutate while the stator remains similar to that of the BLDC. The 

commutator is usually located above the stator windings so that as the motor turns the brushes 

slide over the commutator making contact with the different commutator segments. Each 

segment is attached to one winding resulting in the generation of a dynamic magnetic field inside 

the motor when a voltage is applied across the brushes. This field repels the rotor magnets or 

windings resulting in the rotation of the rotor. A major problem with brushed DC motors is the 

wear and tear on the brushes and commutator, in the vacuum of space the tiny particles that wear 

off of the brushes can disperse in all directions and contaminate on-board electronics. 

 
Figure 2.1 Reaction Wheel unit developed in the SSDC lab at Ryerson University  

A RW model must consider motor disturbances, non-linearities, and BEMF torque 

limiting. Figure 2.2 is a high-fidelity RW model for a torque-controlled BLDC motor developed 

by [59]. Voltage-controlled motors share the same disturbances and non-linearities. BEMF 

voltages are generated in stator windings when the rotor rotates. A faster rotor speed will yield a 

larger BEMF voltage, its exact value is determined by the product of wheel speed and BEMF 
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constant mK , with SI units  /rad s  and  / /V rad s  respectively. In so far as torque limiting, 

when a voltage is applied to the motor the rotor rotates. It will rotate until a speed is reached at 

which the BEMF voltage is close to the applied voltage such that the differential voltage across 

the armature is small resulting in a small current. Rotation stops when the current is so small that 

the motor does not generate enough torque to accelerate. For example if five volts are applied at 

zero wheel speed the wheel will accelerate until the BEMF voltage nears five volts. In order to 

decelerate the wheel a lower voltage must be applied and vice-versa to accelerate the wheel 

again. 

On the mechanical side of the dynamics the motor can be subject to disturbances such as 

cogging and ripple torque. Cogging torque is caused by the rotation of the magnets in the rotor 

with respect to the motor windings. As a magnet rotates past a winding, its motion is first 

opposed by flux leakage from the end of the windings until it passes over the entire winding 

when the motor is then accelerated by the flux leakage. With current BLDC motor technologies 

cogging torque is no longer a concern as most designs minimize the amount of ferrous material 

rotating across the windings. 

Equation (2.1) describes the cogging torque mathematically, 

 sin 3cogT B N t  (2.1)   

 where B  is a gain, N  is the number of motor poles, and   is the rotor speed. Torque 

ripple occurs at the commutation frequency and is characterized as a variation in the motor 

torque caused by the commutation method and the shape of the BEMF waveform. For analytical 

purposes this disturbance is approximated as a sinusoid while in reality it is closer to a truncated 

rectified sine wave. The equation for this disturbance is shown below,  

sin
2rip

N t
T C

   
 

 (2.2)   

where C  is a constant and the other parameters are the same as in Eq. (2.1). BLDC 

motors are also subject Coulomb and viscous friction non-linearities that are dependent on the 

bearing material and lubricant. Coulomb friction is caused by the rolling friction within the 

bearings and is characterized by a torque discontinuity when the motor is not generating enough 

electrical torque. 
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Figure 2.2 Reaction Wheel Model [59] 

The expression for Coulomb friction is,  

 coul cT sign   (2.3)   

where c  is the coefficient of Coulomb friction with units N m , and the sign  function 

can be characterized as shown below.  

 
1 0

0 0

1 0

x

sign x x

x

 
 
 

 (2.4)   

Viscous friction varies depending on the type of the bearing lubricant and its temperature as well 

as the speed of the rotor. A higher bearing lubricant temperature will create less friction in the 

bearing while different lubricant materials will have varying viscosities. Viscous friction can be 

expressed as in Eq. (2.5),  
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visc vT    (2.5)   

where v  is the coefficient of viscous friction with units . / /N m rad s . The motor torque block in 

Figure 2.2 consists of scaling the motor current by the torque constant ( tK , with SI units 

. /N m A ) which is equal to the BEMF constant when expressed in SI units. For the remainder of 

this thesis the terms 'BEMF constant' and 'torque constant' are used interchangeably. 

It is important to discuss the high degree of nonlinearity in this RW model. In particular, 

attention must be paid to the heavyside, absolute value, and signum functions in the model. 

These functions all lead to discontinuities that must be approximated by appropriate analytical 

models. These models take the form of rational exponential functions. For the numerical 

representation of this model refer to Ref. [18]. 
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3. Kalman Filters 

The Kalman Filter (KF) is a model-based observer that produces estimates based on the 

stochastic properties of a system. This feature of the KF makes it robust to measurement and 

process noise, hence, make it practical to implement. The most common application for KFs is in 

fault diagnosis and identification (FDI) which has been studied extensively in the literature. 

Three of the common KF variants applied to the FDI problem are the EKF, AKF, UKF, and 

adaptive unscented Kalman filter (AUKF).The EKF uses linearization to estimate the true mean 

and covariance of the random variable while the UKF uses sigma points or particles. These 

sigma points when spread through a non-linear system, capture the posterior mean and 

covariance accurate to the third order, whereas  the standard EKF is only accurate to the first 

order [62]. This means that the UKF is a better option for highly non-linear systems but has no 

advantage for weakly non-linear systems. Whether the EKF or UKF structures are used the 

adaptive mechanism, which could be used in both, remains the same. These filters can be 

implemented for either state/parameter estimation, or joint state and parameter estimation. State 

estimation uses the standard KF equations without any modifications and hence, is the most 

straight forward approach to Kalman filtering. The goal in this approach is to estimate the system 

states based on the mathematical model of the system. The FDI approach could be as simple as 

just comparing the measured system states from the sensors and with the predicted model states, 

if the residuals exceed a threshold then a fault has been detected. On the other hand, isolation and 

identification are not as direct and generally require a good choice of residuals in addition to 

post-processing of the raw data. Parameter estimation, howerver, is a form of system 

identification as it implicates estimating the physical parameters of a system. In order to 

accommodate the parameters as the state-vector for this purpose, modifications need to be made 

to the KF equations. The FDI problems are then directly resolved when the parameters of a 

system are estimated; the reason for that is that the change in parameter(s) identifies where the 

faults have occurred and the level of severity for each. Having said that, the parameter estimation 

approach is better suited for FDI problems than the state-estimation is.

3.1 Unscented	Kalman	Filter	

The Robotics Research Group (RRG) in Oxford UK proposed a "New Filter" in 1994 
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which was named the UKF. Then, in 1997 the first paper was published describing the UKF as a 

new extension of the KF to nonlinear systems . The UKF is a variant of the KF with the 

capability of estimating the mean and covariance of a random variable to the third order while 

the Extended Kalman Filter (EKF) only approximates them to the first order. As a result, higher 

order terms in the dynamics are not ignored in UKF. This filter is built on the belief that "it is 

easier to approximate a probability distribution than it is to approximate an arbitrary nonlinear 

function." [63]. Simply put, it means that the linear approximations are not used to approximate 

non-linear functions in here; instead, the statistical moment of the state is approximated. The 

UKF is, in fact, a form of particle filter applied to a random variable with Gaussian distribution. 

Generally particle filters can be applied to systems with sampling densities that are non-Guassian 

[64] where the posterior distribution of the state is approximated using a large number of "well 

chosen" particles or sigma points that changes randomly in time according to the model 

dynamics and system measurements [65]. Therefore the UKF is similar to the Monte Carlo 

simulation except for the part that the points are chosen deterministically in the UKF. 

 
Figure 3.1 Linearization (on the left) vs. Unscented Transformation (on the right) 

Figure 3.1 shows a visual explanation of the unscented transform versus linearized 

transform. Variable y  is obtained by a propagating a random variable x  through a non-linear 

function f . The goal is to estimate the mean y  and covariance yyP  of y  as accurate as possible. 

As discussed earlier, because EKF linearization is only accurate to the first order, the statistical 

properties of the output vector can not be captured accurately. The unscented transform, on the 

other hand, generates a cloud of sigma points which has a covariance and mean closer to the real 
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values. There are three steps to the unscented transformation process. First, given the n -state 

random variable x  a set of 2n  sigma points are generated around x  along with a set of 2 1n  

weights (one for x ). Then the 2n  points are fed to the non-linear output function h  to obtain y . 

And eventually the mean y  and covariance yyP  of y  are calculated based on the distribution of 

these "particles" or sigma points and their weights. The UKF formulation is as follows [66]:   

1) Compute weights 

0 n







W  (3.1)   

 
1

2i n 



W  (3.2)   

2) Establish symmetric sigma points about the state estimate 

0   ˆ      ˆ k
χ x  (3.3)   

  ,         1,2,ˆ ...,ˆ i k in i n     χ x P  (3.4)   

          1,..ˆ ., 2ˆi k in i n n      χ x P  (3.5)   

3) Instantiate sigma points through process model 

 ˆi ifχ χ  (3.6)   

4) Predict mean and covariance of states 

2

0

 
n

i i
i

W


x χ  (3.7)   

  
2

0

 
n

T

xx i i i
i

W


   P χ x χ x Q   (3.8)   

5) Instantiate sigma points through measurement model 

 i ihY χ  (3.9)   

6) Predict mean and covariance of measurements 

2

0

 
n

i i
i

W


y Y  (3.10)   

  
2

0

 
n

T

yy i i i
i

W


   P Y y Y y R  (3.11)   

7) Predict cross covariance 
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  
2

0

 
n

T

xy i i i
i

W


  P χ x Y y  (3.12)   

8) Gain calculation and updates 

1
xy yy

K P P  (3.13)   

 ˆ   x x K y y  (3.14)   

T
xx yy

  P P KP K  (3.15)   

If x  is assumed to be Gaussian then   should be selected such that 3n    [17], for different 

distributions another value may be more appropriate. In Eqs. (3.4) and (3.5) the   in   P  

terms represent the scaled thi  rows/columns of the square root-factor of P . As it can be seen 

from the fomulation, there is no linearization in the filter, and instead sigma points are fed to the 

process and measurement models after which the state and measurement statistics are estimated. 

Figure 3.2 shows the flow of the algorithm.  

 

 
Figure 3.2 UKF Signal Flowchart [17] 

The UKF has been successfully applied to FDI problems to resolve some of the issues 

associated with linearization in the EKF that could lead to false alarms. An extensive review on 

is done in Chapter 4 of Ref. [17]. 
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3.2 Parameter	Estimation	with	UKF 

It was also indicated in the previous section that if the KF is formulated to perform 

parameter estimation, identification could be done in the filter with the least post-processing. 

Principally a fault is typically the result of a change in system parameters; therefore, direct 

estimation of these parameters can provide enoigh information on the type, severity, and location 

of the fault. The challege here is that the computational requirement for this method could be 

large once there are many "fault parameters" in a system, however, in reality only those 

parameters reflecting the most common or critical fault types of a system need to be to estimated. 

This technique also has the advantage of producing as a byproduct the mathematical model for 

the system in question which can be used to generate residuals; hence, state-estimation is not 

always necessary. An extensive literature review on the applications for this method is available 

in Chapter 4 of Ref. [17]. 

Thae fact that parameters are usually constant in a given mathematical model implies that 

their time-evolution can be refer to as 0p x . But in reality their estimates are actually time-

varying. This leads to the conclusion that the state-prediction stages of the UKF must be 

modified to account for these aspects. Logically a common question arises as to “how the 

parameter estimates are varied if their time-evolution is zero?”. The answer is that the evolution 

of these parameters is caused by the stochastic properties of the system. Poorly chosen Q  and R  

matrices, hence, will lead to biases in the estimates and can even result in instability [67]. This is 

the main focus of this thesis as how to choose parameters for the filters systematically, Kalman 

filters specifically in this case, so that the estimations are accurate enough with the least residul 

in the system. 

The formulation for parameter estimation with the UKF is as follow [68].   

1) Compute weights 

 0 n







W   (3.16)   

 
1

2i n 



W  (3.17)   

2) Establish symmetric sigma points about the state estimate 

0 ( 1)      ˆ ˆ  p k


χ x  (3.18)   
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 ( 1) ( 1) ,         1,ˆ 2,...ˆ ,i p k k in i n 
     χ x P  (3.19)   

 ( 1) ( 1)        1,..., 2ˆ ˆi p k k in i n n 
      χ x P  (3.20)   

3)Predict mean and covariance of states 

1 1k k k
 
  P P Q    (3.21)   

( 1)p k pk
 

 x x  (3.22)   

4) Instantiate sigma points through measurement model 

 ˆi igY χ  (3.23)   

5) Predict mean and covariance of measurements 

2

0

 
n

i i
i

W


y Y  (3.24)   

  
2

1
0

 
n

T

yy i i i k
i

W 


   P Y y Y y R  (3.25)   

6) Predict cross covariance 

 
2

( 1)
0

ˆ ˆ 
n

T

xy i i p k i
i

W 




    P χ x Y y  (3.26)   

7) Gain calculation and updates 

1
xy yy

K P P  (3.27)   

 ( 1)ˆ p p k


  x x K y y  (3.28)   

1 1
T

k k yy
 
  P P KP K  (3.29)   

As it can be noticed, the main difference in this implementation is in steps 3 and 4. Since there is 

no dynamics information available for parameters, the sigma points from step 2 are not 

propagated; instead, they are used in subsequent steps as before. The "predicted" mean and 

covariance of the states for the state-estimation UKF, x  and xxP  respectively, in Eqs. (3.7) and 

(3.8) are replaced throughout the remaining steps by the predicted mean and covariance ( 1)p k


x  

and 1k

P  of the states in step 3 here. The differences between the flow of this algorithm an that of 

the state-estimation UKF lie in the state prediction calculations. 

The UKF does not require a measurement matrix because of the unscented transform. 
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Therefore, there is no uncertainty for the residual generation form. The function h  in step 5 of 

this algorithm represents the output equation of the system in terms of its parameters. 

When using KFs for parameter estimation, 1 1/k K Q R  ratio becomes an important factor 

in the overall performance of the filter because ultimately parameter changes in a physical 

system represent a change in the system model. When running the filter this should be reflected 

as an increase in process noise covariance matrix entries or the bandwidth of the filter in general. 

otherwise the algorithm will only be able to perform the identification of parameters once. This 

happens due to the fact that when the Kalman gain reaches the steady-state period and all the 

parameters are estimated correctly, the filter bandwidth is usually near-zero; hence, if any of 

these parameters change then considering the bandwidth of the filter being fixed, it will not be 

able to track the changes. AKFs provide the capability for the filters to make the identification 

possible in the case of parameter uncertainty by adapting filter bandwidth based on residuals of 

measured changes in the system behaviour versus the modeled behavior. 

 

3.3 Adaptive	Kalman	Filtering 

Adaptive Kalman filtering has been around since the late 1960's for online estimation of 

measurement and/or process noise characteristics [69, 70]. At the early stages of KF research it 

was understood that in practice stochastic noise properties of a system are not always known. A 

mechanism was needed that could recursively compute the real measurement and process noise 

statistics online so that variations in system uncertainty could be tracked. These methods have 

been documented in [71], three of the most common are; (1) the Bayesian approach, (2) the 

maximum likelihood approach, and (3) innovation/residual-based approach. An extensive 

review on these methods is done in Ref. [17]. 

Among these methods, to relax the requirements on a priori information of the 

measurement and process noise structures, innovation/residual-based approaches can be 

considered. Most current adaptive algorithms use some form of processing of the 

innovation/residual sequence to obtain better estimates of system statistics, better tracking, and 

faster convergence. Algorithms such as adaptive fading factor (AFF) and covariance matching 

(CM) fall into this category of adaptive filters. AFF algorithms generally introduce a scale-factor 

  to the error covariance prediction and/or gain calculations. In Reference [51] a scaling factor 
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  is defined as a function of estimated and theoretical innovation covariances ˆ
vC  and vC  

respectively shown in the equations below,   

 11
1, ˆ

v vmax trace
N

    
 

C C  (3.30)

1

ˆ ˆ
1

Δˆ Δ
k

T
v k k

j k NN   

 C x x  (3.31)

1 1 1 1
T

v k k k kH H
    C R P  (3.32)

 where ' trace ' is the trace operator. This has the affect of modifying the scale-factor when 

estimated variances based on innovations become larger. In other words when changes in system 

parameters occur the mechanism causes changes in the bandwidth of the filter. This is done by 

multiplying the gain of the standard KF equations by 1/ . Another form of adapting the scale-

factor is proposed in [72] where the magnitude of the deviation of the innovation vector from 

zero is used as an input to fuzzy rules, which then output a scale-factor representing the degree of 

confidence that divergence is occurring. Research presented in [73] demonstrates the AFF 

method using both the residual and innovation sequences and concludes that a fading factor 

expressed by the innovation sequence is superior to one expressed by the residual sequence. The 

CM approach is a method of making residuals and innovations consistent with their theoretical 

covariances. Usually either the R  matrix is held constant while the Q  matrix is adapted or vice-

versa. In the former case the estimated innovation covariance ˆ
vC  is used to adapt the Q  matrix 

until it matches the theoretical covariance [74]. As innovations become larger in the face of 

system faults the estimated covariance increases thereby increasing Q  and therefore the Kalman 

gain. This method can be subject to abrupt changes in Q  in which case a running average 

window can be used to smooth out the estimate [75]. If R  is to be estimated while Q  is held 

constant, R  is adapted based on the estimated residual sequence covariance ˆ
rC  until the 

covariances match. In reference [76] this method is used along with fuzzy rules to identify the 

amount and direction of change that should occur in the measurement noise matrix. These 

methods are sub-optimal as they involve approximations to the true statistics and in some cases 

convergence is uncertain. However they are more robust and responsive than the Bayesian and 

MLA methods because information from the residual and/or innovation sequences provide close 
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approximations to the actual variances. 

Traditional covariance matching techniques estimate either the measurement or process 

noise matrices while the other is assumed constant, adaptive sequential estimation is a similar 

technique to that of covariance matching except that both measurement and process noise 

statistics are estimated simultaneously online. Myers and Tapley [77] were one of the first to 

propose such a method. First they define an unbiased estimator for residual 1kr  as the following 

sample mean  

1
1

1 N

k j
jN


 r r  (3.33)  

Next an estimate of the covariance of 1kr  is calculated along with its expected value.   

  1 1
1

1
 

1

N T

r j k j k
jN  


  
 C r r r r  (3.34)  
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E H H
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




     C P R  (3.35)  

  The resulting unbiased estimate is shown below.  

  1 1 1
1

1 1ˆ  
1

N T T
j k j k j k j

j

N
H H

N N


  


           
R r r r r P  (3.36)  

Process noise can be estimated in a similar fashion except using the innovation sequence,  

    1 1 1 1
1

1 1
 Δˆ ˆ ˆ ˆ ˆΔ Δ Δ

1

N T
T

kj kj k k k k
j

N

N N
 

   


           
Q x x x x Φ P Φ P  (3.37)  

where Δx̂  is the mean of the innovation. In this algorithm the difference between the 

innovation/residual vectors and their respective running average means is used to obtain 

covariance estimates. The goal being to obtain process and measurement noise estimates for 

covariance matching. Absolute values of diagonal entries of Q̂  and R̂  must be taken in order to 

guarantee the positive definiteness of these matrices. An extensive review on different 

sapproaches to AKF is presneted in Chapter 4 of Ref. [17] and at the end, the author proposed a 

new approach for the AFF calculation which is furhter explained in the next section. 
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3.4 FDI	by	Parameter	Estimation	with	Adaptive	Kalman	Filters 

To approach the problem of FDI for ACS hardware such as RWs,  AUKF is presented for 

parameter estimation assuming full state measurement. A primary goal in the design, as claimed 

by the author in Ref. [17], was to limit the computational necessities of the algorithm to help 

implement it in the ACS module. This means that only parameter estimation is considered to 

limit the prediction and update equation's computational requirements. A joint n -state and p -

parameter estimator would result in an augmented state-vector ax  with dimension n p . 

Assuming m  measurements are available, dimensions of the error covariance matrix would 

increase to    n p n p   , while those of the gain matrix would be  n p m  . For 2n  , 

2m  , and 2p   the covariance matrix for parameter only estimation has four entries while in 

the joint case this number increases by a factor of 4. Similar computational savings are observed 

in the gain matrix to a lesser degree, however on macroscopic scales of time these computational 

savings quickly add up. State-propagation is performed by running a model online whose outputs 

are conditioned by the estimated parameters. Although this entails excess computational 

requirements, they are not realized in the KF equations, and the net savings is still considerable 

since only one set of equations needs to be calculated. 

In order to better understand the reasons behind choosing KF for the purpose of FDI can 

be found in Chapter 4 of Ref. [17] and here in order to avoid unnecessary repetiotion, the reader 

is referred to the main reference and only the importan formulation and explanations are 

included. 

The following adaptive mechanism is applied to the EKF formulation   

1

1ˆ
k

T
r k k

j k NN   

 C r r  (3.38)   

1 1 1 1
ˆˆ T

k r k k kH H
    R C P  (3.39)   

1 1 1
ˆ ˆ T

k k r k  Q K C K  (3.40)   

 The moving window average of the matrix in Eq. (3.38) is updated at each time-step. In practice 

the elements of the moving window are stored as an array. 

 At each iteration the oldest element in the array is shifted out while the newest residual vector is 

shifted in, then the measurement and process noise estimates are calculated. Selection of the 
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window size depends on the application, Ref. [52] provides criteria for window length selection 

to avoid divergence and/or instability; (1)  A window size smaller than the number of 

measurements when adapting R.  (2)  A window size smaller than the number of filter states 

when adapting Q.  (3)  A window size smaller than the sum of update measurements and filter 

states when adapting both Q and R. 

In these three cases divergence occurs because there are less equations than unknown 

parameters, resulting in an under-determined system. Following the above criteria destabilization 

of the filter is averted, however biased estimates may result for small sample sizes. For unbiased 

estimates a larger window length is preferred, however a window length that is too large will not 

allow the filter to correctly track high-frequency changes in the system states. Consequently the 

lower bound of the window length is selected based on the number of filter states and 

measurements, while the upper bound is selected depending on the dynamics of the system. For 

implementation in the UKF a modification must be made to Eq. (3.39) because the measurement 

matrix is no longer available. Estimated measurement covariance is calculated in the UKF using 

Eq. (3.25), consequently the measurement noise covariance matrix should be calculated as [78],   

*
1

ˆˆ
k r yy  R C P  (3.41)

  
2

*

0

 
n

T

yy i i i
i

W


  P Y y Y y  (3.42)

  where ˆ
rC  is the same as in Eq. (3.38). The signal flow of the resulting AUKF algorithm is 

shown in the block diagram below. 

  
Figure 3.3 AUKF Signal Flowchart [17] 
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 In this case the prediction stage of the UKF is   

ˆi iχ χ  (3.43)

1xx k k


 P P Q  (3.44)

  In addition to adapting the Q  and R  matrices, a fading factor is applied to the error covariance 

matrix in the prediction stage for the UKF as in Ref. [17]  

1xx k k  P P Q  (3.45)

 As it is further explained in Ref. [17], If 1   then the standard KF prediction occurs, if 1   

the filter will weight the data exponentially so that the effect of current data is emphasized and 

information from older measurements is discounted, hence the name 'fading factor' or 'fading 

memory'. In the standard KF algorithm estimates depend highly upon past data which can lead to 

divergence of the estimates even in the face of new measurements. An FDI algorithm should 

consider current data more heavily so that estimates can track the current state of a system. In 

essence the fading factor limits how small the error covariances can get by artificially inflating 

the value of the predicted error covariance matrix thus introducing more uncertainty into the 

system. In Ref. [79] it is shown that larger values of   give the filter a larger bandwidth with the 

opposite happening for a smaller value. Typically the fading factor is in the range 1 1.01   

however the appropriate choice depends on the particular application. If it is close to or larger 

than the upper bound then instability can ensue, while if it is close to or lower than the lower 

bound there will be no effect. 

The algorithm explained in Chapter 4 of Ref. [17] incorporates two adaptive 

mechanisms; one to ensure that changes in system parameters are reflected as increased 

modeling errors, and the other to limit the memory of the filter so that it pays more attention to 

current data. Ultimately the modified algorithm attempts to adapt the bandwidth of the filter 

based on a moving window average of residuals while making sure that the bandwidth does not 

get small enough so that the filter ignores new data. To make the algorithm more robust and 

accurate an adaptive fading factor is used. The primary goal is to force the filter to consider new 

measurements more heavily when faults occur and less heavily when no further faults are 

detected. Although the noise covariance estimations perform the function of adapting the filter 

bandwidth, eventually the filter will converge to very small gains thus making the bandwidth 

very small. In this case even if a fault occurs and the R  matrix becomes large, the Q  matrix will 
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be much smaller because it is a function of the square of the gain matrix. Consequently the filter 

will not track correctly. A forgetting factor can mitigate this effect be forcing the filter to forget 

older data and become more sensitive to newer data. However a constant forgetting factor can 

have adverse effects when convergence has been achieved, where it would be desired to make 

the filter less sensitive to new data so that the estimate holds even in the face of disturbances. An 

adaptive forgetting factor could force the filter to ignore new data when estimates converge and 

consider new data more heavily in the opposite case. This adaptation is based on the magnitude 

of the R  matrix. Large diagonal entries of the measurement noise covariance matrix R  result 

from large residuals as per Eq. (3.38). Because a running average of the residuals is used a brief 

disturbance will not be detected, however a disturbance that persists over a longer period of time 

will be reflected in the residual average. Thus adapting the fading factor based on the magnitude 

of the R  matrix would ensure that when the residuals become larger the filter bandwidth opens 

up, with the opposite happening when residuals become smaller. The adaptation is as follows 

[17],  

 
1 ktrace




 
R

 (3.46)  

This formulation guarantees that the adaptive factor will increase for larger values of kR . 

The trace  operation consists of the sum of the diagonal elements of a matrix, which indicates the 

size of the residual error. Here   is one of the parameters in the optimization for the RW FDI.  
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4. Particle Swarm Optimization 

In mathematics, computer science, or management science, mathematical optimization, 

also known as optimization or mathematical programming, refers to the selection of the best 

solution from a set of available alternatives. 

In the simplest case, an optimization problem is based on either maximizing or 

minimizing a real function by systematically choosing input values from within an allowed set 

and computing the value of the function. The generalization of optimization theory and 

techniques to other formulations comprises a large area of applied mathematics. More generally, 

optimization includes finding "best available" values of an objective function given a defined 

domain. 

In this Chapter, an introduction to optimization and different algorithms used in this area 

is provided. In general, optimization is commonly used in engineering and social based problems 

and in all of the optimization problems there are three main lemmas: 

1. Considering all the independent variables of the problem 

2. Forming the objective function based on these variables 

3. Fixing constraints of the problem 

Hence, an optimization problem is usually formed in the standard form of 

 

min max

/ : ( )

( ) 0 1,2,3,...,

( ) 0 1,2,3,...,
i

j

k k k

Max Min F x

g x i p

H x j q

  

  
 

 

 (4.1)   

 

where x  is the design or parameter vector, which represents the parameters that are 

optimized by the algorithm, ( )F x  is the objective function and ( )ig x , ( )iH x  are the inequality 

and equality constraints of the problem, respectively. 

4.1 Brief	History	

Major subfields of the optimization include: Convex programming which studies the case 

when the objective function is convex (minimization) or concave (maximization) and the 
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constraint set is convex. This can be viewed as a particular case of nonlinear programming or as 

generalization of linear or convex quadratic programming. Linear programming (LP) is another 

subfield, a type of convex programming, which studies the case where the objective function f  

is linear and the set of constraints is detailed using only linear equalities and inequalities. In this 

subfield, such a set is known as a polyhedron or a polytope if it is bounded. There is another 

major subfield called Second order cone programming (SOCP) which is a convex program, and 

includes certain types of quadratic programs. Semi definite programming (SDP) on the other 

hand, is a subfield of convex optimization where the underlying variables are semi definite 

matrices. It subfield is somehow a generalization of linear and convex quadratic programming. 

Conic programming is, in practice, a general form of convex programming. LP, SOCP and SDP 

can all fall into the category of conic programs with the appropriate type of cones. Geometric 

programming is a technique in which the objective and inequality constraints are expressed as 

posynomials and equality constraints as monomials can be transformed into a convex program. 

Integer programming is another subfield, which studies linear programs wherein some or all 

variables are constrained to take on only integer values. This is important to notice that this 

subfield is not same as convex, and in general is much more difficult than the regular linear 

programming. Another subfield is the Quadratic programming, which allows the objective 

function to have quadratic terms, while the feasible set must be specified with linear equalities 

and inequalities. Interestingly, for specific forms of the quadratic term, this is a type of convex 

programming. Fractional programming studies optimization of ratios of two nonlinear functions. 

The special class of concave fractional programs can be transformed to a convex optimization 

problem. The general case in which the objective function or the constraints or both contain 

nonlinear parts is studied in Nonlinear programming. Stochastic programming is a subfield, 

which studies the case wherein some of the constraints or parameters depend on random 

variables. However, Robust programming is, like stochastic programming, an attempt to capture 

uncertainty in the data underlying the optimization problem but with a slight difference that this 

is not done by random variables and the problem is solved by taking inaccuracies in the input 

data into account. Combinatorial optimization is concerned with problems where the set of 

feasible solutions is mainly discrete or there is a possibility for it to reduce to a discrete one. 

Infinite-dimensional optimization studies the case where the set of feasible solutions is a subset 

of an infinite-dimensional space, such as a space of functions. Heuristics and metaheuristics 
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make few or no assumptions about the problem being optimized. Hence, there is no need for 

derivatives in this subfield. Usually, heuristics do not guarantee that any optimal solution would 

be found. On the other hand, heuristics are used to find approximate solutions for many 

complicated optimization problems. More explanations on this subfield are given later in this 

Chapter. Constraint satisfaction subfield studies the case in which the objective function f  is 

constant. This subfield is particularly useful in artificial intelligence in the automated reasoning. 

When there is a need for at least one constraint to be satisfied but not all Disjunctive 

programming is used. It is of particular use in scheduling.  

In a number of subfields, the techniques are aimed mainly for optimization in dynamic 

contexts which means decision making over time: Calculus of variations is one of the which 

seeks to optimize an objective defined over many points in time, by considering how the 

objective function behaves if there is a small change in the choice path. A generalization of the 

calculus of variations would be the Optimal control theory. Dynamic programming, on the other 

hand, studies the case where the optimization strategy is based on dividing the main into smaller 

sub-problems using the Bellman equation. Mathematical programming with equilibrium 

constraints is used when the constraints include variable inequalities or complementarities. In the 

following section, a brief review on different optimization algorithms is presented. 

4.2 Particle	Swarm	Algorithm	

The algorithm being used in this thesis is the Particle Swarm Optimization. PSO is a 

metaheuristic algorithm as it makes few or no assumptions about the problem being optimized 

and hence, can search very large spaces of candidate solutions. However, metaheuristics such as 

PSO do not guarantee an optimal solution is ever found [16]. More specifically, PSO does not 

use the derivative of any function for the problem being optimized, which means that it does not 

require the optimization problem to be differentiable as opposed to the classic optimization 

methods such as gradient descent and quasi-newton. Considering that, PSO can be used for 

optimization problems that are partially irregular, noisy, change over time, etc. 

In computer science, particle swarm optimization (PSO) is a computational method that 

optimizes a problem by iteratively trying to improve a candidate solution with regard to a given 

measure of quality known as “eliteness” or “fitness”. It optimizes a problem by having a 

population of candidate solutions, here known as particles, and moving these particles around in 
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the search-space according to simple mathematical formulae acting on the particle's position and 

velocity. Each particle's movement is influenced by its local best-known position and is guided 

toward the best-known positions in the search-space, which are updated though time by the 

particle itself or other particles. This is expected to move the swarm toward the best solutions in 

the space being searched. The main advantage for this algorithm is its population, which makes 

the algorithm robust and free of being stuck in the local optimums as explained briefly in the 

previous section. 

In terms of categorization, PSO falls into the category of evolutionary algorithms and the 

sub-filed of swarm intelligence based approaches, similar to algorithms such as Taboo Search 

and Ant Colony. Since its original development by Kennedy, Eberhart and Shi [60, 80] in 1995 

PSO has mainly been applied to continuous-discrete heterogeneous strongly non-linear 

numerical optimization and it is thus used almost everywhere in the world. It was first intended 

for simulating social behaviour [81] as a stylized representation of the movement of organisms in 

a bird flock or fish school. Its convergence rate also makes it a preferred tool in dynamic 

optimization. The algorithm has been modified in many variations since then and being applied 

to many different optimization problems in different fields such as controller tuning [82, 83], 

trajectory design [84] and many other applications in the field of engineering and non-

engineering problems. An extensive survey of PSO applications is made by Poli [85]. 

In Particle Swarm Optimization, an iterative procedure is followed to improve the results 

for the defined objective function by moving the particles in the search-space based on the 

reasoning as follow: Particles in this algorithm evaluate their “fitness” continuously and in each 

iteration, memorizing the best position that they have been to so far in their movement history. 

They also know the position of the best particle in the group. With these factors, particles in the 

swarm move in the n-dimensional space, foraging the solution. These particles have two 

outstanding characteristics: 

1. Memory for storing the best position that they have been to. 

2. Knowledge of the best particle in the swarm with the best position in the search-

space. 

Particles in the group are then in communication with each other and update these parameters in 

each iteration. They try to change their position and velocity while moving toward the best 

position based on the following information: 
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1. “global best” which is the best position of the whole group and is being updated in 

each iteration. Therefore, if the best position is changed after one iteration then the 

whole group would know what the position of the new “global best” is. 

2. “local best” which is the best position of the particle in its movement history. 

All the particles in the group try to move toward the “global best”. The particles in the group 

search the area near the “global best” and do not search other areas of the search space. This 

phenomenon is called “convergence”. If the inertia weight is chosen to be small, then all 

particles can reduce their speed so that when they reach the “global best”, their speeds converge 

to zero. One way of getting out of an unpleasant “convergence” is to give the particles a new set 

of initial values after this unpleasant “convergence” occurs.  

In general, the advantages of the PSO over GA algorithm are twofold: first is that in PSO 

particles use their history and the best of the group history to decide on the next move in the 

space. On the other hand, in GA transferring the knowledge of the current group to the next is 

thorough inheritance. This inheritance is affected by random procedures of cross-over and 

mutation and is not necessarily transferring a pure knowledge from one generation to the next; 

hence, this difference makes PSO faster and more reliable in comparison to GA algorithm. 

Secondly, in GA particles in each iteration are subject to death and reborn and this puts a 

lot of computational burden on the system whereas in PSO particles only update their position 

and velocity and the population of the particles remains the same; hence, the computational 

burden would not be the problem anymore [86]. 

4.2.1 Algorithm	

The original PSO formulae define each particle as a potential solution to the problem in 

the N-dimensional space. The position of ith particle is denoted as 

1 2( , ,.........., )i i i inX x x x  (4.2)   

each particle also maintains a memory of its previous best position, stored in 

1 2( , ,.........., )i i i inP p p p  (4.3)   

particles also move in the swarm with an individual velocity for each as below  
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1 2( , ,.........., )i i i inV v v v  (4.4)   

Each particle knows its best value so far (pbest) and its position. Moreover, each particle 

knows the best value in the swarm (gbest) among all pbests. This information is analogy of 

knowledge of how the other particles around them have performed. Using that, each particle 

modifies its position using the 2 factors: 1) the distance between the current position and pbest, 

which as explained above, is the best value obtained in the history of the particle; and 2) the 

distance between the current position and gbest, which as explained above is the best value 

obtained in the whole swarm to this point. This modification is accomplished through the 

concept of velocity. The velocity of each agent or particle is altered using the following equation 

in Inertia Weight Approach (IWA) 

1 1 2 2( ) ( )i i i i g iv w v c r P X c r P X         (4.5)   

where, iv  is velocity of the particle, iX  is current position of the particle, w  is the inertia 

factor which controls the influence of previous velocity on the new velocity, 1c  is a positive 

constant, called coefficient of the self-recognition component and determines the relative 

influence of the cognitive component, 2c  is a positive constant, called coefficient of the social 

component and determines the relative influence of the social component, iP  is pbest of particle i, 

gP  is gbest of the swarm and 1r , 2r  are random numbers used to maintain the diversity of  the 

population, and are uniformly distributed in the interval (0,1). 

Each particle decides where to move next using Eq. (4.5) which combines its own 

experience, which is the memory of its best past position and the experience of the most 

successful particle in the swarm. In the original PSO model, particles exploration the search-

space within a range (−s, s) where s  is any real number. 

In this work, the inertia factor in Eq. (4.5) is set to 1.0 and remains constant throughout 

the whole optimization progression. The reason is that it is used to have a dynamic effect on the 

convergence of the swarm and by setting it to 1.0 the algorithm would have a uniform 

convergence rate during the optimization advancement and there is no need to further put time 
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and effort to tweak minw  and maxw  in Eq. (4.6). However, in Ref. [87]  the authors suggest that the 

inertia factor can be calculated in each iteration using  

max min
max

max

w w
w w iter

iter


    (4.6)   

where maxw  is the initial weight, minw  is the final weight, maxiter  is the maximum number 

of iterations and iter  is the current iteration number. Using the above equation, diversification 

characteristic is gradually decreased and a certain velocity, which gradually moves the current 

searching point close to pbest and gbest can be calculated but using it has the disadvantage that was 

mentioned earlier in this section. 

The current position of each particle can then be modified by the means of: 

i i iX X v    (4.7)   

where iX   is the new position, iX   is the old position and iv  is the particle’s velocity 

calculated in Eq. (4.5). All swarm particles tend to move towards better positions; hence, the best 

position (i.e. optimum solution) will eventually be obtained through the combined effort of the 

whole population. 

There are different termination criteria for the PSO algorithm [117]. One of the most 

common and widely used termination criteria is stopping the algorithm when the maximum 

number of iterations is reached and then the algorithm gives the “best solution found to this 

point” as the optimal solution for the problem. Figure  4.2 shows a simple flowchart of how the 

PSO algorithm works with this termination criterion. Another termination criterion is the 

difference between the last couple of solutions obtained in the process and if the difference is 

less than the tolerance value set in the algorithm, then the solution is set as the best solution 

found in the search-space ignoring the maximum number of iterations. 
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Figure 4.1 PSO Algorithm Flowchart 

4.2.2 Convergence	criteria	

In order to achieve convergence, there are some requirements to be satisfied. These 

requirements enforce the algorithm to output the results only when they are qualified for the 

solution. Ideally, there are two main criteria to be satisfied: 

1. There is no change in the objective function value for a number of iterations. 

2. There is no change in the particles’ position for a number of iterations. 

The number of iterations within which there should be no change in the values and positions is 

up to the designer but 5 to 10 is a reasonable number to start with. As mentioned before, the zero 

tolerance is the an ideal case and any small number could be used for the tolerance between the 

last few iterations the only difference would be the accuracy of the results and the choice 

depends on the severity, complexity and sensitivity of the problem in question. It also depends 

on the order of the values evaluated in the optimization because usually what is important is the 

percentage of the error and as long as it remains within a reasonable range. In this thesis, in the 

first 2 cases (Case 1 and Case 2) provided in Chapter 5, the convergence criteria is used with the 

tolerance of 1 ൈ 10ି଺ but in Case 3, as explained in Chapter 5, the stopping criteria is just the 

number of iterations pre-set in the simulation. The reason is the lack of computing resources, 

especially the memory of the computing PC that the simulations were executed on, because all 
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the information are written into the memory and read from it and when the number of iterations 

and particles are more than the computer can handle it, the simulation stops and the results are 

deleted.  

In order to prevent this issue, it was suggested that instead of writing and reading from the 

memory, the information should be written and read from the hard disk drive of the operating 

system. This way the loss of data would be prevented and the computational limitation would be 

compensated for. 

4.2.3 Example	

In order to understand how the particles move toward the solution in the search-space, 

here an example is provided. The function of interest here is the Rastrigin function [88] defined 

as follow: 

 
  2 2, 20 10cos  10cos

2 2
f x y x x y y

                 
      

 (4.8)   

The surface of this function is as shown in Figure 4.2. The objective here is to find the 

minimum of the function in the area shown. Selective iterations of the convergence and 

performance of the algorithm are shown in Figure 4.3. The optimization parameters in this 

example are given in Table 4.1. These parameters are consistent with Eq. (4.5). Having a look at 

the numbers in the table, it is evident that the algorithm is working fast while giving precise 

results as if the function was optimized using derivative-base algorithms. Number of iterations 

here is set to 50 but all the 80 particles in the swarm get to the final optimum solution after 30 

iterations, which means that the algorithm is continuing for 20 more iterations without improving 

the results. This happens when the stopping/convergence criteria is set to reaching the maximum 

number of iterations and not any small change or difference between the last couple of best 

solutions acquired in the algorithm. The advantages and disadvantages to each of these rules for 

finishing the iterations is extensive discussed in the literature and in Ref. [89] it is more 

specifically focusing on a single-objective PSO stopping criteria. In the conclusions section of 

this reference, the author concludes, “It is not possible to determine one criterion that is best for 

all problems” and hence, the stopping criteria selection depends on the problem and the solver 

and there is no best solution for that in a generalized formulation. 
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Table 4.1 Optimization parameters for the example 

Parameter Value
 [ ]Runtime sec  0.3 

 max Iterations  50 
Particles 80 

w 1.0 

1 2, c c  1.0 

,  x y range (-5, 5) 
 final optimal at (0, 0) 

Another observation is the number of particles; it is true that the more particles, the better 

the results but the tricky part in this statement is that there is no disclaimer on whether these 

better results could be achieved with fewer particles as well or not. Therefore, the challenge here 

and with almost all population-based optimization algorithms is how to choose these numbers 

and how to justify the choice. For the justification on the selection of 1, w c  and 2c  it is evident 

that these values are all set to 1.0 which means that they all have the same level of importance 

and their effect on the velocity evaluation function (Eq. (4.5)) is of equivalent significance. 

These values were set to 1.0 mainly because this is the easiest choice and the most commonly 

used value in the literature. The range for ,x y  variables was equally set to (-5 5) because from 

the function representation in Figure 4.2 the optimum point is known to be within this range for 

testing the algorithm with the function in Eq. (4.8). 

By investigating the iterations and the trend, it can be seen that in the beginning the 

particles (shown by little squares with black borders in Figure 4.3) are scattered all over the 

search-space. As the time passes by and the iterations forge ahead, particles tend to converge 

toward the best particle of the swarm position and eventually this behaviour leads the swarm 

toward the best possible solution. This point is (0, 0) and it is noticeably observable in Figure 4.2 

that this point is the global optimal of the function in Eq. (4.8). 
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Figure 4.2 Surface of the function above for performance of the PSO algorithm 

 

 

 
Figure 4.3 Selective Iterations of the Performance for the Example Function 
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4.3 Proposed	Methodology	

After the explanations given in the previous sections, now it is appropriate to explain the 

methodology used in this thesis to tune the AUKF filter using Particle Swarm Optimization for a 

specific application of FDI for a RW unit of a pico-sattelite ACS. This section will explain how 

to implement the optimization in the tuning problem mentioned in Chapter 1. 

As explained in Chapter 1, the main focus of this thesis is to propose a methodology 

based on optimization algorithms to “systematically” tune filters and/or controllers for different 

purposes. In order to do that, as explained earlier, the main objective of using optimization 

algorithms is to minimize or maximize a value of a function by choosing the proper independent 

variables of the function. In FDI algorithms, the main idea and objective is to minimize the 

residuals in the estimations so that the estimations match the actual measurements (or the 

parameters of the system) perfectly. Combining these two ideas, the motivation came to use 

optimization algorithms to tune a Kalman Filter used for the purpose of FDI on a RW of an ACS 

of a pico-sattelite addressed in Ref. [17] and was developed in the SSDC lab. Also there was a 

need for an algorithm to be able to tune any filter or controller systematically and easily with a 

friendly user interface to adapt itself to the system with the minimum changes requires and tune 

the system giving the parameters/gains with the least human interference and time consumption. 

With that in mind, the idea used in this thesis is to construct a modular optimization 

algorithm that can be used to tune filters/controllers for different purposes. To do so, the 

available code was divided into different subroutines as listed in Table 4.2. 

Table 4.2 Different modules of the code and a brief description for each 

Module Description
Main The centralized command centre for the whole code 
Initialize Initializes the model parameters used for tuning 
Objective Defines the objective function for the optimization 
PSO The core of the particle swarm optimization algorithm 
Model The model used in the simulations for optimization 
Plotter Plots all the required data and shows on the screen 

More detailed description on each of the modules is as follows: 

Main: the main module contains all the necessary information for a simulation to run and 

it also calls other modules within itself when necessary so that everything is done in time and 

properly to help get the desired results. Therefore, it is acting like a command centre for the 

whole code and simulation. 
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Initialize: in this work, Simulink model is meant when referring to a simulation; there 

typically is a need for pre-initialization of the system parameters so that the system will run and 

if there is any need for any change in a specific part of the system or parameter then this module 

helps managing that. This module also hold within itself time of occurrence and the severity of 

faults introduced to the system during the simulation. This means that this module can be later 

used for any other system to initialize the necessary parameters and faults properties, if required. 

This makes the code clean and easily adaptable to any other system. 

Objective: this module is to maintain and evaluate the index of each particle in each 

iteration and the construction of the objective function is critically important because it 

tremendously influences the performance of the optimization algorithm. The inputs for this 

module are optimization variables and the simulation run time for the system model (i.e. 

Simulink Model) which is separately designed and attached to the optimization algorithm. The 

variables are fed to the system and the model is executed using those system parameters, then 

after the execution is done, the results are fed to the Objective module again and the objective 

function is formed and evaluate and the evaluation results are sent back to the PSO module so 

that the optimization process and continue. 

One question that remains unanswered is “how to construct a desirable objective function 

based on the available data?” The answer to this question is simple and intuitive. As discussed 

before the main objective in the FDI algorithm is to minimize residual error and hence, using an 

optimization algorithm would help minimizing the residual error. Having said that, the objective 

function should be constructed based on the residual errors so that in each evaluation, the least 

value would be chosen and the algorithm continues to find the minimum among all. In this study, 

a combination of Room Mean Square Error (RMSE) and normalizers to give satisfactory results 

for the problem in question. There are few steps to take while constructing the objective function 

and if these steps are followed then the results could be guaranteed to be satisfactory with 

conditions applied. 

1. First of all the general form of the objective function which is used for minimization of the 

error in the following form: 

2
, ,

1 1

1 ˆ( )
k N

j j i j i
j i

J r X X
N 

    
 

   (4.9)   
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where jr  is the normalizer, ,j iX  is the actual value for the thj  variable, ,
ˆ

j iX  is the estimated 

value for the thj  variable, k   is the number of optimization variables and N  is the number 

simulation samples. In this formula, the only thing that needs to be set is the value for 

normalizers. Normalizers are valuables that come into the formula to, as their name conveys, 

normalize the components and their influence on the whole function to keep the influence of 

each component same as others so that all the variables are optimized equally. In the first 

attempt, there was a proposal for using dynamic normalizers but the simulations proved that 

dynamic normalizers, at least the ones that were proposed, did not work properly. Because 

the idea was to keep the value in the unity range (between 0 and 1) and because the 

normalizers were changing in each iteration then the influence of each component would 

change automatically and hence, there was no control over what influence is being done by 

which component. Therefore, constant normalizers were then used and the value for each can 

be found using the next step. 

2. To find a proper value for each normalizer there is a need for the system in question to be 

executed once so that it gives the designer an estimate on what is the order of each comonent. 

Then having this estimate the designer needs to keep all the components of the objective 

function in the same order. More description on this is given in the next Chapter where the 

results are presented and discussed.  

PSO: this module is the core of the optimization algorithm. It is called from the main 

module and it reads some of the required information from the command sent to it from the main 

module while it was being called. These parameters which include the number of iterations, 

number of particles and also the number of duration of the simulation help PSO module to be 

dynamic in a sense that it is not rigid and it controllable from the outside environment (here the 

main module) and also within the PSO module there are some other parameters that need to be 

set. These parameters include the number of parameters that the algorithm needs to optimize. It 

tells the algorithms that how many dimensions the search-space will have. In addition, there is a 

range for each parameter and these ranges are set in this module. All ranges together create the 

search-space. Another set of parameters that are set in this module are the parameters for the 

PSO algorithm itself, which influence its performance and were earlier discussed in Eq. (4.5). In 

this thesis, these values are set for all simulation as listed in Table 4.3. The reason for this choice 

of values was discussed in the previous section. One other important factor here is how the 
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boundaries are set and how the algorithm makes sure that particles do not move away from the 

search space. The answer is simple and intuitive; after all the positions and velocities are 

calculate in the algorithm, in the end there is a checking procedure of each particle’s location to 

make sure that it is not beyond the set boundaries. If it is then the location is set to the nearest 

boundary and the velocity is changed to the opposite direction with the same magnitude. This 

way the algorithm guarantees that all particles remain in the search space while the simulations 

and calculations are in progress. The output of this module is the trend of the objective function 

through the optimization process and the best values found (optimal solution) for the problem in 

question. 

Table 4.3 PSO parameters values for the simulations 

Parameter Value
w 1.0 

1 2, c c  1.0 

Model: this part of the structure is a model designed by any other person. In here because 

the simulations are executed in the MATLAB programming language then the model is in the 

Simulink environment but there is a capability for any other executable file with inputs and 

outputs to be attached to this tuning/optimization modular structure. For that, this could be used 

for a variety of different systems designed in different environment and by different people. This 

configuration makes this approach a decentralized topology which means that not everybody 

needs to know what is going on in other parts of the system and each person in the team only 

needs to know what he is doing and what are the inputs and outputs of the module/model they 

are designing or working on. In this thesis, as described before, the model in use is a high fidelity 

RW [59], which is depicted in Figure 2.2. 

Plotter: this module is that last module called in the main module to finally show the 

results on the screen and give a perspective of the performance of the algorithm as well as 

necessary figures and graphs required by the designer. This module, for sure, needs adaptation 

for different systems with different inputs and outputs because when the optimization variables 

are changed the figures needs to be modified to be consistent with the system and the 

requirements.  

The flowchart of the all above-mentioned modules of the proposed structure is shown in 

Figure 4.4 below. In this figure, X is the vector for the optimization variables which are the 
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variables or parameters needed to be tuned, R is the result of the simulation from the model 

vector which includes all the required results from the simulation and J is the objective function 

built and evaluated using the R vector from the simulation and sent to the PSO so that the 

optimization procedure is complete. These steps in the optimization block continue until the 

maximum number of iterations is reached and then the results are sent to the plotter module for 

plotting. 

 

 
Figure 4.4 Flowchart of the Proposed Algorithm for Tuning 

Now that the methodology is clearly explained, in the next chapter the simulations and 

results are presented to evaluate the performance of the proposed methodology. 
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5. Results and Discussions 

Simulations of the FDI algorithm with the tuned AUKF were performed in 

MATLAB/Simulink to verify the performance of the proposed methodology. Numerical 

simulations are conducted on the high fidelity RW model presented in Chapter 2 with the bus 

voltage and BEMF constant being the Fault Parameters (FPs). In order to be able to compare the 

results with a manually tuned filter, the simulation parameters are chosen to be the same as the 

ones available in Ref. [17]. 

5.1 Simulation	Setup	

The high fidelity reaction wheel model shown in Figure 2.2 was used for simulations 

with the parameters listed in Table 5.1. Because of the high degree of non-linearity in the model, 

the AUKF algorithm was applied. The simulation was set up as shown in Figure 5.1.   

Table 5.1 Ithaco - Type A - Reaction Wheel Parameters 

Parameter Value
 Coulomb Friction ( c )  0.002 N.m 

 Viscous Friction ( v )  4103.84   . / /N m rad s  

 Ripple Torque (B)  0.22 
 Cogging Torque (C)  0 
 Torque Noise Frequency ( a )  0.2  Hz  

 Jitter Angle ( a )  0.05 rad  

 BEMF ( eK ) Nominal  0.029 / /V rad s  

 Bus Voltage ( busV ) Nominal  8  V  

 Driver Gain ( dG )  0.19  /A V  

 Num. of Motor Poles (N)  36 
 Input Filter Resistance ( INR )  2  Ω  

 Quiescent Bus Power ( qP )  3  W  

 Driver Bandwidth ( d )  9  /rad s  

 Voltage Feedback Gain ( fk )  0.5  V/V  

 Flywheel MOI ( wJ )  0.0077 2mkg   

 Over-speed Circuit Gain ( sk )  95 

 Max. Wheel Speed ( s )  680  /rad s  
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A control voltage trajectory is applied to the high fidelity Simulink model of the RW that serves 

as the plant. The outputs of the system are the wheel speed and current   and i  respectively. To 

simulate sensor measurements these outputs are then discretized using zero-order-holds with a 

sampling period of sT . The control voltage trajectory is also discretized to simulate the discrete 

environment. All these discretized components are fed into the parameter estimation algorithm 

where a residual is generated as the difference between measured states and outputs of an 

analytical model of the RW that is running in parallel to the filter. Thus, the parameter estimates 

adjust such that the analytical model outputs match the measurements as best as possible. White 

noise is injected into the discretized outputs of the RW model to simulate measurement noise.  

 
Figure 5.1 RW FDI Simulation Setup [17] 

The white-noise signal power is calculated as follows, 
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  (5.1)  

where psdw  is the power spectral density (PSD) of the white-noise. The nominal power spectral 

densities of the wheel speed and current measurements are 5101   and 8105   respectively 

resulting in 9.99  dB and 33.01  dB respectively of noise-power to be consistent with the 

simulation setup in Ref. [17] so that later on comparisons could be done. 

Based on investigation done in Ref. [18], various experimental experiences with RWs on-

board satellite missions have revealed the following potential sources of failure; 

(i) Faults in the bus voltage 

(ii) Faults in the motor torque/BEMF constant 
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 As a result, the parameters being monitored here are the bus voltage and BEMF constant. In Ref. 

[17] the reason for this monitoring is mentioned to be that  

“Changes in BEMF constant can be attributed to extreme temperatures in the windings 

that exceed the Curie temperature of the magnetic material in the motor resulting in a decrease in 

magnetism of the magnets. Furthermore, any blunt-force trauma imparted onto the magnets can 

degauss them. Bus voltage faults may occur as a result of things like cold-solder joints, loose 

wires, or failures in the power supply.”  

Regardless of the cause it is important to monitor these parameters to improve the 

performance of RWs. Simulations were initialized as listed in Table 5.2 below. 

Table 5.2 Simulation Parameters for RW FDI 

Parameter Value
Sampling Period ( sT ) 0.01 s  

Simulation Time 4000 s  
Window Size (N) *

 *

0R  22
4102 
  I  

0Q  22
5101 
  I  

0P  22
8101 
  I  

maxQ  *

maxR  *

0x̂   T8,0.029  

 1
n 2

 

The parameters in this table are exactly the same as the ones given in Ref. [17]. In this 

reference, the reason behind choosing each parameter is explained as follows. As can be seen in 

this reference the window size is selected to be large because, as claimed by the author, for 

parameter estimation it is assumed that parameters are not dynamic quantities for the most part, 

thus the problem that the filter might not be able to track the changes if the window is too large, 

is not an issue here. It is also mentined that this window size was found to be applicable to all the 

cases presented in Ref. [17] below for nominal measurement noise thoguh we only work with the 

most severe case in the cited reference. In this theis the selection of windows size is automatic 

and the value for this is an output from the optimization algorithm hence, there is no need for 
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manual tuning and extensive simulation for a person to come up with a value and justify the 

performance. The UKF parameter   is typically chosen as 3= n  for all simulations,  where 

n  is the number of estimates. In Ref. [17]   is selected to be 100  so that   would remain below 

2101   and the author claims that the reason for that is because after doing extensive 

simulations, anything above that led to instability. In this thesis though, the value for   is 

determined automatically by the algorithm and the only thing that is set is the range for the value 

so that the algorithm can search for the best solution within the search-space. The voltage applied 

at the motor terminals is a sine wave with an amplitude of 5  V  and a frequency of 0.25 Hz . 

The reason that not all various fault scenarios considered in Ref. [17] are also considered here is 

because first of all, the most severe case is being studied here and if the algorithm works for this 

case then it, for sure, will work for other cases as well. Secondly, the space limit for each case 

would not let the presenation of the work to be complete hence, it was decided to only present 

the results for the most severe case and then dicuss the results and performance for that case 

only. A high severity fault is considered as changes that are 20 % , while low severity faults 

constitute changes 15 % . The severe case cosists of a severe BEMF constant faults plus a sever 

bus voltage profile with each parameter fault occuring out of phase with the other. The profile is 

shown in Table 5.3.    

Table 5.3 Severe BEMF Constant and Bus Voltage out of Phase profile 

busVtime  ( s )  busV  
mktime  ( s )  mk  

1000<t   8 500<t 0.029  
2000<1000 t 6 1500<500 t 0.02  
3000<2000 t 5 2500<1500 t 0.013 

3000t   7 2500t 0.029  
 

The performance of the system identification is performed using the root-mean-square 

(RMSE) of the estimation error calculated as follows, 

ppke xx ˆ=   (5.2)  

 2
1=

1
= k

N

k

e
N

RMSE   (5.3)  

these performance indices are used for all simulation results to quantify the accuracy of the 

parameter estimates while the FDI performance is analyzed based on detection, isolation, and 
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identification times. Figure 5.2 shows the input voltage profile applied to the RW and Figure 5.3 

depicts RW outputs up to the 200 s  mark. 

 
Figure 5.2 Reaction Wheel Applied Voltage Profile 

 
Figure 5.3 Reaction Wheel States for First 200 s 

As discussed before, the main idea behind implementing an automated algorithm for 

tuning the filter lies in the minimization of residual errors. Here, 4 parameters with residuals 

available, namely Wheel Speed, Current, Bus Voltage and BEMF. Now that these parameters are 

known there is a need for an objective function to be formed and constructed based on the 

available parameters. To form the objective function, Eq. (4.9) is used and the following 

equation is constructed based on that, 
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1 2 3 4J C C C C     (5.8)  

where e  is the residual for each component from Eq. (5.2), iC  is a component for each 

parameter and ir  is the normalizer coefficient that we talked about earlier in Chapter 4. For all 

the cases studied in this thesis, these normalizers have the values shown in Table 5.4. These 

values are obtained using the procedure explained in the Chapter 4. The simulation was executed 

once and order of each parameter and residual was estimated. Then these values were set so that 

all parameters influence the objective function equally and the results are satisfactory for all 

parameters with the least residual error.  

Table 5.4 Normalizer Values for Objective Function of the PSO algorithm 

Normalizer Value

1r  2 

2r  2000 

3r  10 

4r  106

 

There are two noise levels involved in the first case. As referred to by Ref. [17] the 

medium and high noise levels are applied to the system and the performance of the algorithm in 

tuning the filter is evaluated. This case consists of attempting to estimate faults in both 

parameters (BEMF and Bus Voltage) where changes in one parameter occur out of phase with 

changes in the other one. It is expected that the BEMF constant will be affected by large 

fluctuations in bus voltage even when the estimate has settled, and that the bus voltage estimates 

will be fairly robust against changes in BEMF constant as mentioned in Ref. [17]. The fault 

period begins at 500 s  and ends at 3000 s , during this time the faults are injected into the RW 



 Simulation Setup
 

56 
 

system out of phase. Outside of this time range the parameters return to their nominal values. 

The parameters for medium noise level are listed in Table 5.5 and for the high noise level the 

parameters are listed in Table 5.6. Those parameters with the (*) sign in these two tables are the 

ones being tuned for the AUKF filter proposed in Ref. [17] and in the section for the future work 

there is a suggestion for automating the procedure of tuning the filter hoping for better 

performance and less time consumption by the designer. Performance of the filter is presented 

for different scenarios of optimization for performance evaluation. 

Table 5.5 Simulation Parameters for Medium Noise RW FDI 

Parameter Value
Wheel Speed Noise Power 0.0065 dB  

Current Noise Power 23.01  dB  
 

After evaluating the performance of the system with these two noise levels there is 

“Extreme Noise” introduced to the system and then the performance of the filter is compared 

with the two sets of gains, one for the gains presneted in Ref. [17] for robustness evaluation of 

the filter and one from the PSO-based methdology proposed in this thesis. The reason that this is 

called “Extreme” is because it is mentioned in Ref. [17] that these noise leveles are the nominal 

noise levels that the system could sustain. 

Table 5.6 Simulation Noise for High Noise RW FDI 

Parameter Value
Wheel Speed Noise Power 10  dB 

Current Noise Power 13.01  dB 
 

Simulations were executed on a PC in the SSDC lab with the specification listed in Table 

5.7. The specifications of the PC that the simulations were executed on are specifically important 

because it affects the execution time directly. If the computer is fast, the execution time will be 

less and vice versa. 

Table 5.7 Specification of the PC for Simulations Executions 

Parameter Value
Processor Intel® Core™2 Quad CPU 2.66 GHz 

Installed Memory (RAM) 4.00 GB
System Type 64-bit Operating System 

OS Windows 7 Professional with SP1 
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5.2 Effect	of	Number	of	Particles	

In order to evaluate the performance of the proposed methodology and investigate the 

influence of the optimization parameters such as number of iteration, number of particles and the 

region or the search-space on the performance, few cases are studied with different scenarios. 

For these investigations, the medium and high noise levels are considered as in Ref. [17] to study 

the performance of the filter and to give a perspective on the difference between a manually 

tuned and a PSO-tuned filter. The region effect is not studied in this thesis because 1) the region 

of the search-space chosen for these simulations is big enough to guarantee that there is no 

compromise in the results obtained from the algorithm. Therefore, if the algorithm was to get 

trapped in local minima then because of the wide and big enough search-space there was a 

colossal chance for particles to be trapped. 2) here there are sets of values and not only one value 

or variable being optimized, simulations prove that there might be more than one solution to a 

specific problem with a reasonable deviation from the norm. Meaning that there could be 

different sets of variables or parameters being optimized in the algorithm that would result in 

almost the same value for the objective function. This is because these parameters influence each 

other as well as the overall performance of the filter. Hence, changing one of them could cause 

change on the others while maintaining the same objective function values.  

5.2.1 Case	1	–	40	Iterations	and	10	Particles	

In this section, simulation results for 10 particles in 40 iterations are presented. The 

search-space for the optimization is as listed in Table 5.8. A question may arise on “how to 

choose the search space?”. The answer would be that, for this type of solution there usually is a 

solution available in the literature and the objective is to improve the existing solution. Hence, 

starting from the available data and expanding the range for each parameter around the existing 

solution would be the approach on how to choose the search-space. Results for medium noise 

level are shown in Figure 5.4 to Figure 5.9 and results for the high noise level are presented in 

Figure 5.10 to Figure 5.15. The objective function trend and each individual component of the 

objective function trends are shown in Figure 5.16. In addition, the convergence trend for the 

optimization variables is depicted in Figure 5.17. Results for the parameters as well as more 

complementary information for the simulation are given in Table 5.9. There is a new acronym 

introduced in Table 5.9 and the other tables corresponding to the optimization results called 

“Objective Function Component Performance Index” or “OFCPI” this terminology is defined to 
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gives further numerical values in addition to the visual representations of the objective function 

components values so that the comparison between different cases with different optimization 

parameters could be made more practically based on numbers and performance indices. The 

values for these indices are the same as the ones calculated in Eq. (5.4) to Eq. (5.8). More 

discussion on each result is given at the end of presentation of each individual case and then at 

the end of each section an overall discussion on the performance differences and the 

corresponding causes are provided. 

Table 5.8 Search-Space for Simulations 

Parameter Range

maxR   [1, 104]

maxQ   [1, 10]

( )AFF [0, 106] 
( )N Window size [1, 200] 
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Figure 5.4 Case 1 - Medium Noise - Wheel Speed Measurements vs. PSO Estimates 

 

Figure 5.5 Case 1 - Medium Noise - Wheel Speed Residual Comparison 
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Figure 5.6 Case 1 - Medium Noise - Current Measurements vs. PSO Estimates 

 
Figure 5.7 Case 1 - Medium Noise - Current Residual Comparison 
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Figure 5.8 Case 1 - Medium Noise - BEMF Constant Estimates 
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Figure 5.9 Case 1 - Medium Noise - Bus Voltage Estimates 
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Figure 5.10 Case 1 - High Noise - Wheel Speed Measurements vs. PSO Estimates 

 
Figure 5.11 Case 1 - High Noise - Wheel Speed Residual Comparison 
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Figure 5.12 Case 1 - High Noise - Current Measurements vs. PSO Estimates 

 
Figure 5.13 Case 1 - High Noise - Current Residual Comparison 
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Figure 5.14 Case 1 - High Noise - BEMF Constant Estimates 
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Figure 5.15 Case 1 - High Noise - Bus Voltage Estimates 
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Figure 5.16 Case 1 - Objective Function Trend with Different Components Breakdown 
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Figure 5.17 Case 1 - Parameters Convergence to the Global Optimum Trend over Iterations 
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Table 5.9 Case 1- Optimization Results 

 Medium High 
Parameter Value 

Execution time 19.34 hrs 

maxR  1897.1 

maxQ  0.2565 

( )AFF 52765 
( )N Window size 164 

Total OFCPI  3.0686 3.0572 
Wheel Speed OFCPI 1.2309 1.9821 

Current OFCPI 0.8289 1.2689 
BEMF OFCPI 1.9239 1.9308 

Bus Voltage OFCPI 5.4327 4.1648 
 

By investigating the results in Figure 5.4 to Figure 5.15 it is evident that the overall 

performance is tremendously improved and a proof for that is the decrease in residual for all the 

parameters estimated by the filter. The spikes are gone and/or decreased in elevation and the 

tracking of the parameter by the filter estimates is faster and there is less delay in tracking for all 

the parameters. One important factor to keep in mind here is that although the objective function 

is structured in a way so that the residuals for the high noise level are minimized, the results for 

the medium noise level prove that the gains found by the algorithm improve both medium and 

high noise level estimations. In Figure 5.17 for each iteration, all the particles are shown on the 

graph with yellow squares representing each particle and also white circles representing the best 

of the group in each iteration. The bests in each iteration are then connected to show the trend in 

the convergence of the particles toward the best of the group in each iteration. Overall, as the 

iterations forge ahead, all particles move toward the best position found up to the iteration. In 

some parameters, all particles converge to one point whereas in some parameters there still are 

some particles that are moving around to find a better position. The reason is that sometimes 

some particles, due to their inertia or momentum, jump over the solution. This can be solved by 

either using an inertia weight or increasing the number of iterations but overall it will not affect 

the performance of the algorithm because the best of the group will eventually be outputted as 

the best solution found. It is evident that after 35 iterations, all particles converge to a solution in 

the search-space that is the best solution found by the algorithm. Figure 5.16 shows objective 

function trend as well as each of its components trends so that the designer can get a sense of 
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how the algorithm is behaving and how the objective function is being minimized. It also 

indicates what the influence of each component on the total objective function is. Another 

application for this figure is for determining the normalizers’ values as discussed before. This 

figure gives you the order of each component and by setting proper values for the normalizers, it 

is possible to keep all the components in the same order and guaranteeing that each component is 

influencing the total objective function equally.  

5.2.2 Case	2	–	50	Iterations	and	5	Particles	

In order to investigate the influence of number of particles on the performance of the 

algorithm, another set of executions were simulated of which only one case is presented here 

with figures and the rest are only presented in the table form. The search-space is the same as 

Table 5.8. Results for the medium noise level are shown in Figure 5.18 to Figure 5.22 and results 

for the high noise level are presented in Figure 5.23 to Figure 5.28 . The objective function trend 

and each individual component of the objective function trends are shown in Figure 5.29. In 

addition, the convergence trend for the optimization variables is depicted in Figure 5.30. Results 

for the parameters as well as more complementary information for the simulation are given in 

Table 5.10. 

As can be seen from Figure 5.18 to Figure 5.28 the results are almost the same in 

comparison with the results from case 1 and but still superior to the results from the manually 

tuned filter. This execution was done for 50 iterations and the reason was to give the algorithm 

enough time so that all particles converge to the found solution. By investigating the particles 

convergence in Figure 5.30, it is evident that although the number of iterations is set to be higher 

than the number of iteration with 10 particles but all particles have converged to the solution 

after 38 iterations. It proves that when the number of particles is decreased, particles need more 

time to search the space and settle to the solution. This is mainly because the group performance 

of the swarm is less powerful with the smaller number of members. However, in the end the total 

OFCPI for both cases is almost similar, meaning that both cases after convergence provide 

satisfactory, near-optimal solutions. 
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Figure 5.18 Case 2 - Medium Noise - Wheel Speed Measurements vs. PSO Estimates 

 

Figure 5.19 Case 2 - Medium Noise - Wheel Speed Residual Comparison 
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Figure 5.20 Case 2 - Medium Noise - Current Measurements vs. PSO Estimates 

 
Figure 5.21 Case 2 - Medium Noise - Current Residual Comparison 
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Figure 5.9 Case 2 - Medium Noise - BEMF Constant Estimates 
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Figure 5.22 Case 2 - Medium Noise - Bus Voltage Estimates 
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Figure 5.23 Case 2 - High Noise - Wheel Speed Measurements vs. PSO Estimates 

 
Figure 5.24 Case 2 - High Noise - Wheel Speed Residual Comparison 
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Figure 5.25 Case 2 - High Noise - Current Measurements vs. PSO Estimates 

 
Figure 5.26 Case 2 - High Noise - Current Residual Comparison 
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Figure 5.27 Case 2 - High Noise - BEMF Constant Estimates 
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Figure 5.28 Case 2 - High Noise - Bus Voltage Estimates 
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Figure 5.29 Case 2 - Objective Function Trend with Different Components Breakdown 
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Figure 5.30 Case 2 - Parameters Convergence to the Global Optimum Trend over Iterations 
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Table 5.10 Case 2- Optimization Results 

 Medium High 
Parameter Value 

Execution time 23.63  hrs 

maxR    7198.2

maxQ  0.0443 

( )AFF 18261 
( )N Window size 49.98 

Total OFCPI  3.1899 2.6556 
Wheel Speed OFCPI 1.8100 0.7446 

Current OFCPI 0.6022 1.3464 
BEMF OFCPI 1.9163 1.7528 

Bus Voltage OFCPI 5.8469 3.2083 

One other thing to mention is that although the values for parameters are not that close in 

Case 1 and Case 2 but the Total OFCPI for both is close to one another. The reason is that, as 

explained before, here the algorithm and consequently the system is working with a set of 

parameters and these parameters have influence on each other and the overall performance of the 

filter. Hence, there might be different sets of gains with similar or close enough performance 

indices. Then the choice on which one to use come the customer or the engineer who is in charge 

of the project. 

Table 5.11 Effect of Number of Particles on the Performance of the Algorithm 

 

 PSO Manual 
 Case 2 Case 1 
 Medium High Medium High Medium  High 

Parameter Value 
Particles 5 10 N/A N/A 

 Iteration 50 40   
 Execution time 23.63 hrs 19.34 hrs N/A N/A 

maxR    7198.2 1897.1 50 5 

maxQ  0.0443 0.2565 0.01 0.005 

( )AFF  18261 52765 1000 100000 
( )N Window size  49.98 164 75 200 

O
F

P
C

I 

Total 3.1899 3.1899 3.0686 3.0572 6.1050 8.2699 
Wheel Speed 1.8100 1.8100 1.2309 1.9821 15.3411 14.7192

Current 0.6022 0.6022 0.8289 1.2689 0.5182 2.8936 
BEMF 1.9163 1.9163 1.9239 1.9308 19.5326 48.1118

Bus Voltage 5.8469 5.8469 5.4327 4.1648 1.8794 2.6667 
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5.3 Performance	Evaluation	for	Extreme	Noise	Level	

Another interesting investigation was to test the performance of the algorithm on a new 

higher level of the noise introduced to the system. Apparently, the problem with the filter was 

that it could not handle high levels of noise and the estimations would vary a lot from the actual 

values as the noise level increased. Hence, the simulation setup was changed in a way that a 

higher level of noise was introduced to the system.  The parameters for this simulation are listed 

in Table 5.12. 

Table 5.12 Simulation Parameters for Extreme Noise RW FDI 

Parameter Value
Wheel Speed Noise Power 9.99  dB  

Current Noise Power 33.01  dB  
Sampling Period ( sT ) 0.01 s  

Simulation Time 4000 s  
Window Size (N) *

 *

0R  22
4102 
  I  

0Q  22
4101 
  I  

0P  22
8101 
  I  

maxQ  *

maxR  *

0x̂   T8,0.029  

 1
n 2

5.3.1 Case	3	–	15	Iterations	and	30	Particles	

In order to check if the performance will be improved by increasing the number of 

particles as already discussed, this case is investigating the performance of the algorithm with 15 

iteration and 30 particles. The search-space is the same as Table 5.8. Results for parameter 

estimation are shown in Figure 5.31 to Figure 5.36. The objective function trend and each 

individual component of the objective function trends are shown in Figure 5.37. In addition, the 

convergence trend for the optimization variables is depicted in Figure 5.38. Results for the 

parameters as well as more complementary information for the simulation are given in Table 

5.13. 

From the parameter estimation figures, it can be concluded that the performance has 
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tremendously improved because the spikes in the residuals are almost gone and the estimations 

track the actual parameters smoother and faster as compared to the manually tuned filter. The 

solutions found by this methodology are near optimal and not optimal because, as explained 

before, and also is mentioned in Ref. [16], these types of optimizations algorithm do not 

guarantee to give the global optimal solution and they only provide you with near optimal 

solutions. Reason being that they only search an area for the solution and the global optimal 

solution may not lie within that region in the space. However, they still give a decent estimate of 

were the global optimal could be or where you can search further for the optimal solution. This is 

why many of these evolutionary swarm-based algorithms are linked with gradient-based 

algorithms known as “hybrid approaches” to give better results than the one each could 

individually give to the user. 

One thing to note here is that the results for this simulation are not shown for the 

converged solution with all particles settled in one position. The reason is that the machine that 

the simulations were executed on was not powerful enough and the memory that was used was 

overflown after certain number of iterations. Convergence is achieved when after certain number 

of iterations, there is no change in the objective function value and there is no change in the 

position of the particles in the search-space, which means all particles have converged to a 

solution for the problem. However, the tolerance between these final iterations could vary 

depending on the designer of the algorithm but for an ideal case this tolerance should be set to 

zero. 

As can be seen from Figure 5.38, not all particles have converged to the solution and the 

reader needs to remember that these figures do not show the final converged solution for this 

case and more iterations are required for the simulation to guarantee the solution has converged 

and the solution is a near-optimal solution for the problem. In comparison with the results for the 

medium and high noise levels, the estimations for this case are noisier and less accurate. This is 

because of the noise level and the sensitivity of the filter to the noise level. One needs to consider 

that the performance of the filter in this case is under the most severe noise that the system could 

sustain and in practice, the system would fail. However, as mentioned earlier, this case was 

studied to show the superiority of the proposed methodology over existing trial and error 

procedures.  
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Figure 5.31 Case 3 - Extreme Noise - Wheel Speed Measurements vs. PSO Estimates 

 
Figure 5.32 Case 3 - Extreme Noise - Wheel Speed Residual Comparison 
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Figure 5.33 Case 3 - Extreme Noise - Current Measurements vs. PSO Estimates 

 
Figure 5.34 Case 3 - Extreme Noise - Current Residual Comparison 
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Figure 5.35 Case 3 - Extreme Noise - BEMF Constant Estimates 
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Figure 5.36 Case 3 - Extreme Noise - Bus Voltage Estimates 
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Figure 5.37 Case 3 - Objective Function Trend with Different Components Breakdown 
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Figure 5.38 Case 3 - Parameters Convergence to the Global Optimum Trend over Iterations 
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Table 5.13 Case 3- Optimization Results 

Parameter Value
Execution time 18.2 hrs 

maxR  7166 

maxQ  9.5273 

( )AFF 37296 
( )N Window size 18 

Total OFCPI  5.9710 
Wheel Speed OFCPI 4.3546 

Current OFCPI 11.0594 
BEMF OFCPI 16.6727 

Bus Voltage OFCPI 3.5659 

Overall, the results in all the cases investigated above, show that the performance of the 

filter has tremendously improved after being automatically tuned with the proposed PSO-based 

methodology in this thesis. In this case, the investigation proved that for the systems and noise 

levels that the algorithm has no knowledge about, it could still perform pretty well and give 

satisfactory sets of gains/parameters for the filter to minimize the residuals and lessen the 

tracking delay in the filter. 

 

5.4 Conclusions	

The proposed tuning methodology based on Particle Swarm Optimization explained in 

Chapter 4, has proven to perform well for a wide range of noise levels in the system. It also 

shows that without any previous knowledge of the system the methodology can still perform well 

and tune the filter in less time and with better performance indices. 

The proposed methodology can handle Concurrent Optimization for Different Noise 

Levels; and with its Modular Structure, it can be used for different purposes and be modified 

by different people without having them sit and discuss the results together. The Adaptability of 

the methodology makes it easy to use and implement into different systems with minimum 

adjustments. It also is designed on a Plug & Play policy making it extremely easy to plug a 

system (Simulink model) to the algorithm without having trouble changing any part of the 

algorithm and then initialize the parameters for the system and let it just work. It is also capable 

of Handling Different Types of Variables, which gives designers more freedom on which types 

of variable they can use. The robustness of the proposed methodology to the noise level is 
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another important feature of it. It can handle Extreme Noise Levels and with that, it can be 

claimed that any other sort of disturbance or change in the system can be compensated by the 

algorithm with a new set of gains. 

In the next Chapter, more explanations are given on each of the above-mentioned 

advantages of the proposed algorithm over the existing methods in the literature. In fact, the 

proposed methodology is combining different sciences and technologies making it feasible for it 

to be adaptable to different systems while maintaining the performance satisfactory. 
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6. Conclusions and Future Work 

This thesis approached the problem of tuning a filter/controller properly with the 

minimum human interference involved. The idea was inspired by the lack of such systematic 

tuning methodology in the SSDC lab. As explained in the introduction section. The idea was to 

develop a methodology, which could do this task automatically and with the minimum human 

interference possible. The methodology needed to be independent of the system it was being 

applied to and needed to be adaptable and easy to use for different systems. It needed to have 

capability of handling different noise levels, being able to have flexible data type and 

input/output setting and a search-space so that the implementation of the system into other 

systems could be possible, efficient and easy to work with. In this thesis, a methodology was 

proposed to do the task. Systematic tuning of a filter/controller was proposed and the verification 

of the performance for the proposed methodology was tested for tuning an Adaptive Unscented 

Kalman Filter (AUKF) for used for FDI purposes on a Reaction Wheel (RW) unit. There were 

four parameters that needed tuning in this specific problem and the case studies were presented 

to investigate different parameters that affected the performance of the algorithm such as number 

of iterations, number of particles, both of the previous parameters concurrently and also the 

system parameters, dynamics and disturbances such as noise level, and influence of each on the 

performance. The overall conclusion on the performance of the filter is that it proved to perform 

well in the most severe case of a faulty system with high noise level as compared to the manually 

tuned filter in Ref. [16]. It also showed that with a maximum noise level that could be introduced 

to the system the algorithm still gave satisfactory results proving that it is robust to changes in 

the system as well as noise level. It is also worthy to mention that in order to present the work 

there was a need for an intuitive representation of the convergence of the particles in a multi-

dimensional space which in this thesis was done by the author 

 

6.1 Summary	of	Contributions	

As mentioned earlier the main focus of this thesis was to develop a methodology to tune 

any type of filter/controller with the minimum human interference involved. To do so a 

methodology was proposed and tested for verification purposes on the performance with a case 
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study of a FDI problem for a RW unit. The following features are the main contributions of this 

work in the proposed methodology. 

Concurrent Optimization for Different Noise Levels: This methodology is able to 

handle different noise levels at the same time and give set of gains/parameters for the 

filter/controller that can be used for all noise levels. The way the methodology handles the multi-

level noise is by running the simulation with the parameters fed into the system from the 

optimization algorithm and check if the simulation converges for one noise level then it will go 

to the next noise level simulation and it will continue doing this until the last noise level 

simulation is converged. If in any of the noise levels the simulation diverges, then the 

methodology will consider that position or set as a useless point and the search will continue for 

the solution away from that point. In terms of how the objective function will handle the multi-

level noise situation, it comes to the designer because in this thesis the focus was on higher levels 

of noise but as explained in the previous section if the objective function is constructed in a way 

to account for all the parameters in all noise levels then it can output results which will guarantee 

satisfactory results for all noise levels and all parameters included in the objective function. 

Modular Structure: The proposed methodology has modular structure, meaning that it 

can be used for different purposes and be modified by different people without having them sit 

and discuss the results together. The modules are input/output base. This means that each module 

inputs some parameters and outputs some other parameters and the designers need to know only 

those inputs and outputs are handled correctly. Other than that, whatever is going on within each 

module is dependent on the designer and could, in some cases, be considered as black-box 

policy. 

Adaptability: Different systems have different parameters and dynamics and for 

different filters/controller, there is a requirement for different unrelated parameters to be tuned. 

The proposed methodology is easy enough to use and can be applied to different systems with 

minimum requirement on adaptation and/or adjustments. Parameters for tuning can be defined 

easily and the search-space could be set in just changing few lines of code. The rest is in control 

of the methodology and it will run the simulation and output required parameters without 

knowing anything about the system.  

Plug & Play: One of the most important things about different methodologies is how 

easily they can be applied and used. With the modular structure of the proposed methodology it 
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is extremely easy to plug a system (Simulink model) to the algorithm without having trouble 

changing any part of the either and then initialize the parameters for the system in the initialize 

block and then set the parameters that you want to tune with the desired search-space and the 

algorithm just works. This becomes more important when industries have models of a system 

that they do not want the outside engineers know about (known as “Black Box Policy”) and this 

way the tuning process can be done confidential with the procedure explained above. This helps 

industry and universities to collaborate more in industrial/scientific projects. 

Handling Different Types of Variables: As explained in the previous sections. This 

methodology can handle different variable types as well. In this thesis, there was windows size 

parameter with integer type and there were other parameters with floating type. This gives 

designers more freedom on which types of variable they can use during the process of design so 

that in the tuning part they would not face any issues. 

Performance for the Extreme Noise Level: In the last case series presented in this 

thesis, it was showed that the methodology is capable of handling Extreme Noise level in the 

system, which was not done before in the work that this study was based on for the comparison 

purposes. It can be claimed that the noise level applied to the system was at its extremes because 

as listed in the tables for each simulation it can be seen that the noise levels are at their extremes. 

This means that if this methodology is applied to other systems with higher noise levels it still is 

capable of giving good results and finding near optimal solutions for the problem in question. 
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6.2 Future	Work	

For the future work on the existing work presented in this thesis, there are some 

suggestions as follows: 

Implementing the Methodology on Other Systems: In order to investigate the 

performance of the methodology on other systems as well as the applicability of the 

implementation, one needs to implement the methodology and evaluate the easiness of the 

implementation as well as the performance of the proposed methodology. This could be done on 

any other system but the suggestion is to start with systems having simpler dynamics and then if 

further investigations are required expand it to systems that are more complex. 

Implementing the Methodology on Other Controllers: In this thesis, the methodology 

was applied to an AUKF filter and it was mentioned in the contents that this algorithm could also 

be used to tune controllers as well as filters. In order to investigate the performance of the 

algorithm on other controllers/filters, one needs to do the implementation and investigate the 

applicability, efficiency, accuracy and overall performance of the methodology. 

Hybrid Approach: As mentioned in the text, the methodology proposed here is 

computationally heavy, meaning that it requires a lot evaluations of the objective function (which 

necessarily requires execution of the simulation mode) and it could take long times. In order to 

improve the execution time, this algorithm can be mixed with a gradient-base method to further 

improve the results as well as decrease the execution time.  

Test on Super Computers: As far as the author knows, there is a computing centre in 

Canada that provides access to super-fast computers for experimental, educational and research 

purposes to all researches and people in the field. One interesting investigation would be testing 

the performance of the algorithm (execution time specifically) on these super-fast computers 

provided by High Performance Computing Virtual Laboratory (HPCVL) and propose this 

approach and tool to be used for future implementations of the methodology so that the 

execution time will be tremendously decreased (as the author believes so). 
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