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Abstract

This thesis applies the time-varying signal processing models to track the multifactor sys-

tematic risk in the Fama-French model. The mean reverting, random walk and random

coefficient models are used to analyze the time-varying multifactor beta based on the mul-

tivariate Kalman filter algorithm. The sudden changes in the mutifactor beta are captured

by the piecewise constant model. Our case studies explain the impacts of economic events

on the sudden changes in betas for both individual stocks and industrial portfolios.

We propose a new time-varying beta model based on a piecewise mean reverting process

to express the effects of different types of events on the multifactor beta.The tracking of the

piecewise mean reverting beta, using the modified multivariate Kalman filter with the max-

imum log likelihood estimator, outperforms the traditional piecewise constant and random

walk models as demonstrated in our simulations. The empirical tests indicate that the new

model effectively captures the different changes in beta depending on the type of event.
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Chapter 1

Introduction

1.1 Motivations and Objectives

The most well-known measure of risk of an investment is beta which presents the systematic

risk and cannot be eliminated through diversification. In the Capital Asset Pricing Model

(CAPM), the market beta is a single factor used broadly in practice. However, empirical tests

show that market anomalies such as size and value effects cannot be explained by the CAPM

[6], [3]. Thus, the market beta in CAPM is not sufficient enough to measure systematic risk.

The multifactor beta in the Fama-French model (FFM) that includes market beta, size beta

and value beta is more appropriate to measure the systematic risk [3].

The Ordinary Least Squares (OLS) regression, which assumes beta is constant during

a certain period of time, is the most popular method used to estimate betas in both the

CAPM [17], [40], [32] and FFM [2], [3], [25]. The downfall of this method is data frequencies

and time intervals cannot be determined to achieve the best beta estimation. As a result,

multiple time-varying beta models are being investigated along with the CAPM [44], [45],

[40], [41]. Blume found that betas tend to regress towards the mean [44], [45]. Sunder and

Simonds suggest that the Random Walk (RW) model is the most suitable model for the

US market over long time periods [40], [41]. Ohlson and Rosenberg show improvements

in beta estimation using the Mean Reverting (MR) model [39]. Shyam concludes the non-

stationarity of market risk using the Random Coefficient (RC) model for individual stocks

[40]. Brooks also suggests the RC model as the best fit model to describe the systematic risk

of both individual stocks and portfolios [17]. Current research broadly attempts to test the
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validity of the time-varying models and the best-fit beta model in the single factor CAPM

[40] [41] [42] [53]. However, when multifactor models are studied, only the traditional OLS

regression is applied to estimate the multifactor beta [67], [36], [27]. Papers have not yet

analyzed the time-varying multifactor beta in the Fama-French three-factor model. Thus,

further research needs to be done to determine the time-varying characteristic of betas in

the Fama-French model.

In event studies based on beta in the CAPM, Lockwood and Kadiyala develop an ap-

proach that allows different systematic risk parameters before, during, and after events.

Using monthly returns, they found that the endpoints of event periods differ across firms

[55]. Bar-Yosef and Brown imply that systematic risk first rises and then falls around stock

splits. They confirm this for both rising and falling markets. Scholes shows the issue of

stationary is somewhat mitigated by estimating parameters using returns before and after

the event [57]. However, their approach do not allow for changes in beta during the event

period. Ken and Ramon propose a new procedure permitting measures of systematic risk to

change during the event period. The procedure explicitly identify unique event periods for

each firm which is asymmetrical [58]. No papers have addressed the event studies based on

time-varying multifactor beta.

The objective of this thesis is to analyze the systematic risk in the time-varying matter,

based on the Fama-French three factors model and detect new applications of multifactor

beta on event studies. It is different from previous literatures which focus only on the single

factor CAPM. The traditional constant multifactor beta analysis is performed using multiple

rolling windows and data frequencies to confirm the instability of beta. By applying signal

processing knowledge and the financial facts, we attempt to prove the significance of the time-

varying betas in the Fama-French model and the relationship between the sudden changes

in the multifactor beta and important events. The time-varying multifactor beta is analyzed

using multiple stochastic models (RW, RC and MR) along with the market models (CAPM

and FFM). The multivariate Kalman filter is used to track the time-varying multifactor beta.

The abnormal changes in betas are detected using the Piecewise Constant (PC) multifactor

model. The significant change points then support event studies in determining the effects of

macro and micro economic events on multifactor systematic risk. We propose a new Piecewise
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Mean Reverting (PMR) multifactor beta model to alternatively express the behavior of the

market risk in regards to different types of events. The model allows beta to change following

a reverting process during an event period.

1.2 Background

1.2.1 Meaning of Beta

Beta is a number that describes the relationship between an investment return and the

overall market return. A high beta implies a dramatic growth in stock price when the

market (index) price is up and a dramatic fall when the market price goes down [8]. It shows

a high correlation between the stock return and the market return that it belongs to. In

contrast, a small beta indicates the low correlation between the stock return and the market

return. Table 1.1 summarizes the meaning of beta in finance theory. The beta depends on

two important factors: the relative volatility of a security return as compared to the market

return and the correlation of the security return to the market return.

Table 1.1: Meaning of beta

beta Meaning of beta

beta < 0 The stock return tends to move in inverse to the market return.

beta = 0 The stock return and the market return move independently.
Their correlation equals to 0.

0< beta <1 The stock return is less volatile than the market return.
They have low correlation.

beta = 1 The stock return has the same volatility as the market return.

beta > 1 The stock return is more volatile than the market return.
Their correlation is high.

1.2.2 Beta Estimation

An asset exhibits both systematic and unsystematic risk (or idiosyncratic risk). The portion

of its volatility, which is considered systematic is measured by the degree to which its return

varies relative to those of the overall market [44]. Beta measures the degree of co-movement

3



between the asset return and the market portfolio return. In other words, beta quantifies

the systematic risk of an asset:

β =
cov(r, rI)

σ2
rI

, (1.1)

where r is the return of the asset, rI is the return of the market, σ2
rI

is the variance of the

return of the market, and cov(r, rI) is the covariance between the return of the market and

the return of the asset [19]. A measure of risk can also be used in a model to describe the

relationship between systematic risk and expected return, such as the CAPM. In this single

factor model, beta is used to measure the systematic risk of an individual asset or a portfolio.

The CAPM model, a corner-stone of modern finance, states that the risk premium of an

individual asset is equal to its beta multiplied by the risk premium on the market portfolio.

In practice, beta is calculated using historical return for both the asset and the market.

The market return is chosen from a set of indexes, such as the S&P 500, NYSE, AMEX,

NASDAQ, and etc. These historical data can be imported directly to software packages,

for example MS Excel, and used to perform a regression method to estimate beta. It is

also a useful parameter for evaluating the performance of the stock return. Based on the

relationship between a stock and its market, beta can provide investors with a prediction on

the movement of the stock return compared to its market return [67].

To obtain the right application of beta, we need to consider the variance of the beta based

on different factors of the estimation. The value of estimated beta can be different depending

on different time frames, time intervals, market indexes and dividends. For example, the

beta of a historical time frame of one year will be different from thirty years time frame

analysis [18] [19]. Monthly, weekly, and daily are the different frequencies of asset return

and market return which also affect the beta calculation. Similarly, looking at a stock return

in different markets or the exclusion of dividends will result in different beta values [66].

1.2.3 Time-varying Beta Models

The RW, RC and MR models are the most popular time-varying models used in previous

studies. When these models are used to analyze the beta in a single factor model (e.g Sharp

Diagonal or CAPM), they demonstrate a great improvement in beta estimation as compared
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to the traditional OLS regression method [16], [14], [40], [41], [39].

Random Coefficient Model (RCM)

The coefficients in RCM consist of two parts: a mean or a fixed part (β̄), and a variance or a

random part (ζt). The random part is represented by a Gaussian noise with zero mean and

σ2

ζ variance. The beta in the model is represented as:

βt = β + ζt, ζt ∼ N(0, σ2

ζ ). (1.2)

The details and explanations of the RCM can be found in [48], [33] and [34].

Random Walk Model (RWM)

A Random Walk (RW) is a mathematical formalization of a trajectory that consists of

taking successive random steps [1]. For financial data, a “random walk theory” became very

popular after Burton Malkiel wrote “A Random Walk Down Wall Street” in 1973. Fama

also determines the “random walks” in stock market prices [23]. In this thesis, we will look

at the pure RWM which is formulated as:

βt = βt−1 + ζt, ζt ∼ N(0, σ2

ζ ), (1.3)

where ζt represents the disturbance following a normal distribution with zero mean and σ2

ζ

variance.

Mean Reverting Model (MRM)

Mean Reverting (MR) model is applied to the financial time series data to determine the

mean reversion of the stock price. Similar to the operational principal of the violin string

analogy, the idea of the MR model states that the only way to measure mean reversion is

when the variances of asset prices in financial markets get plucked away from their non-event

levels [49]. The idea is formulated for beta in the following equation:

βt = β̄ + φ(βt−1 − β̄) + ζt, ζt ∼ N(0, σ2

ζ ). (1.4)

The greater the mean-reverting parameter φ value is, the greater the pull back is to the

equilibrium level β̄. Mean reversion in beta is justified by the theoretical models in [50]

5



and [51]. These models imply that beta reverts to its long-term mean over a period of time

consistent with the business cycle. These results are confirmed empirically in [52]. The

evidence of time-varying betas with a slow mean-reverting component is also found in [53].

1.2.4 The Capital Asset Pricing Model (CAPM)

The CAPM was introduced by W. Sharpe and J. Lintner (resulting in a Nobel Prize for

Sharpe in 1990). It has become the most well-known model in the asset pricing theory.

According to CAPM [46], the expected excess return (expected return minus the risk free

rate) on an asset is given by :

E[r]− rf = β.(E[rI ]− rf), (1.5)

where E[.] is the expected value, r is the return of an asset, rf is the risk-free return, rI is

the return on the market portfolio, β is the systematic risk of an asset related to the market

portfolio. An estimate for β, therefore, is typically obtained by running the following time

series regression:

rt − rf,t = α + β.(rI,t − rf,t) + εt, εt ∼ N(0, σ2

ε ), (1.6)

where {rt− rf,t} is the excess return of an asset, {rI,t− rf,t} is the excess return of a market,

εt is the error term which is assumed to follow a normal distribution with zero mean and σ2
ε

variance.

In recent research, researchers work with portfolios rather than individual stocks using

the CAPM model [57] [45], [47]. If xip (with i = 1,2,...,N ) are the weights of assets in

portfolio p, the portfolio’s expected return (E[rp]) and the portfolio beta (βp) are related to

the expected return and beta of assets as:

E[rp] =
N∑

i=1

xipE[ri], βp =
N∑

i=1

xipβi.

Thus, the CAPM relation between expected return and beta in (1.5) holds when asset i is a

portfolio, as well as when i is an individual security [24].
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1.2.5 The Fama-French Model

CAPM has always been the most dominant model in stock market analysis. However, many

research papers indicate that the model fails to explain the cross section of expected return

[6], [3]. Based on empirical tests, Fama and French prove that the one factor model is

not sufficient to catch all the market behaviors. Estimates of beta for individual assets are

imprecise and creates measurement error when used to explain average return. According

to their research, estimates of beta for a diversified portfolio not only reduces the critical

errors in the variables but also shrinks the range of betas and statistical power [3]. In order

to reduce this drawback, the sorting procedure was introduced for empirical test such as the

first portfolio contains securities with lowest betas and then up to the last portfolio with the

highest betas.

They also demonstrate the evidence of the empirical failures in the CAPM such that

much of the variation in expected return is unrelated to the market beta. They confirm

the importance in size, earnings-price, debt-equity, and book-to-market ratios to the ex-

planation of expected stock return provided by the market return [6]. These are the basic

foundation and evidences to search for another model more suitable and accurate to explain

the relationship between the market return and the asset return.

Fama and French introduced the three-factor model for the expected return in belief that

this model outperforms the CAPM model for portfolios based on their empirical tests [6],[3].

The model is as follow:

E[r]− rf = β.(E[rI ]− rf) + βSMB.E[SMB] + βHML.E[HML], (1.7)

where E[.] is the expected premiums, β, βSMB, βHML are the slopes of the time series

regression of a portfolio:

rt − rf,t = α + β.(rI,t − rf,t) + βSMB.SMBt + βHML.HMLt + εt. (1.8)

The SMB and HML factors are defined in [3] as follow:

• SMB (Small Minus Big) is the average return on three small portfolios minus the

average return on three big portfolios:
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SMB = 1/3 (Small Value + Small Neutral + Small Growth)

- 1/3 (Big Value + Big Neutral + Big Growth).

• HML (High Minus Low) is the average return on two value portfolios minus the average

return on two growth portfolios:

HML = 1/2 (Small Value + Big Value) - 1/2 (Small Growth + Big Growth).

1.2.6 CAPM versus Fama-French Model

CAPM is known as a single factor model in which the systematic risk (beta) is the only factor.

Fama and French argue that “many of the CAPM average-return anomalies are related and

they are captured by the three factors model” (known as the Fama-French model) [6]. In

the Fama-French model, two more factors are added in the CAPM based on the empirical

tests. It is evident that the Fama-French model gives more attention to the size and book-

to-market values as compared to the CAPM since they believe these factors affect the risk

measurement.

The Fama-French model is able to capture most of the cross sectional variation in the

average stock return [6]. The HML and SMB factors are explained as follow:

• Slopes on HML proxy and book-to-market equity are relative distress:

+ Weak firms with persistently low earnings tend to have positive slopes on HML.

+ Strong firms with persistently high earnings tend to have negative slopes on HML.

• Evidence that there is a covariation in return related to relative distress that is not

captured by the market return and is compensated in average return. HML and SMB

captures these.

• Stocks with low long term past return (losers) tend to have positive SMB and HML

slopes and higher average return. Conversely, long term winners tend to be strong

stocks that have negative slopes on HML and low future return.
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1.2.7 Methodologies

Ordinary Least Squares Method (OLS)

OLS is a well-known method in statistic. This method allows for estimating unknown pa-

rameters in a linear regression model. It minimizes the sum of squared vertical distances

between the observed responses in the dataset and the responses predicted by the linear ap-

proximation [8]. Since most regression models assume that errors are normally distributed,

the OLS is the maximum likelihood estimator. The following is a simple regression model

similar to the CAPM model:

y = Xβ + ε, where ε ∼ N(0, σ2

ε ). (1.9)

When the number of equations are much larger than the number of unknown variables, the

system cannot be solved precisely. The Least Squares estimator β̂ is obtained as a value

that minimizes the sum of squared residuals of the model:

β̂ = argminβ||y−Xβ||, (1.10)

where ||.|| is the standard L2 norm in the n-dimensional Euclidean space Rn. Since the

derivation of the method is presented in many books [37], [13], here the final solution is

applied:

β̂ = ((XTX)−1)XTy. (1.11)

Kalman Filter Algorithm

The Kalman filter was first described and partially developed in technical papers by Swer-

ling , Kalman and Bucy [31], [5]. The algorithm uses a series of measurements observed

over time, containing random noise and other inaccuracies, and produces estimates of un-

known variables that tend to be more precise than those that would be based on a single

measurement alone [31]. It operates recursively on streams of noisy input data to produce

a statistically optimal estimate of the underlying system state. The algorithm includes a

two-step process:

• The prediction step: estimates of the current state variables along with their un-

certainties are produced.
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• The update step: Once the outcome of the next measurement, which includes some

amount of error or random noise is observed, these estimates are updated using a

weighted average with more weight being given to higher certainty estimates.

The Kalman filter can easily be performed in financial time series because its observation

and state equations are related to multiple financial time series models. In risk analysis, the

Kalman filter is applied in many papers to examine the time-varying property of systematic

risk [16], [14], [15], [21], [9], [4]. The CAPM model is used as the observation equation and

the time-varying beta model(RW, RC, MR and etc.)is used as the state model. Literatures

demonstrate that the Kalman filter outperforms the traditional OLS method.

1.3 Contributions

In this thesis, multifactor systematic risk is studied in both signal processing and financial

point of views. The improvement in estimation accuracy by using monthly data is found

through the OLS regression empirical test. As a result, the monthly data frequency is applied

to determine the time-varying betas’ characteristics in the CAPM and Fama-French model,

which represent the single-factor and multifactor market models respectively. The RW, RC,

MR, and PC multifactor beta models are used as state models to analyze the time-varying

beta characteristic in the two market models. The piecewise mean reverting beta model is

proposed to express the behavior of the market risk impacted by economic events and to

support the event studies.

The following are the main contributions in this thesis:

1. Constant betas analysis using OLS technique for the CAPM and Fama French model

is performed in multiple rolling window sizes and data frequencies. The empirical tests

attempt to determine which is the best interval window and data frequency for each

model in the US stock market.

2. Time-varying multifactor beta analysis looks at three popular beta stochastic models,

such as the RW, RC and MR models. The multivariate Kalman filter algorithm is

applied and alternatively use the CAPM and Fama-French model as an observation
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model, along with the multifactor beta stochastic state models to determine the time

varying characteristic of betas. The empirical tests evaluate which is the best fit model

to track the “market risk”, “size risk” and “value risk” based on standard criteria (R2,

MSE, AIC, BIC) and log-likelihood ratio test.

3. The event study is conducted using the detected abnormal changes in the multifactor

beta. Different from previous event studies, the PC model is used as a state model in

combination with the Fama-French observation model to detect the sudden changes in

“market risk”, “size risk” and “value risk” resulting from the modified Kalman filter

[70]. The modified multivariate Kalman filter detects the abnormal changes in beta

based on the jump process in the PC model and the Bayes’ criteria. The relation-

ship between the sudden changes in the multifactor beta and the macroeconomic or

microeconomic events is then determined.

4. All the comparison tests between the CAPM and the Fama-French model are performed

on both individual stocks and portfolios. By doing this, we can verify the many debates

regarding the effectiveness of portfolios over individual stocks.

5. The event-study is not only conducted on individual stocks but also on industrial

portfolios using the time-varying multifactor systematic risk. The economic events are

analyzed based on the sudden changes in multifactor beta.

6. A Piecewise Mean Reverting (PMR) beta model is proposed. In this model, market risk

is assumed to have a sudden change when there is a significant event and then revert

to its mean with a certain reverting rate until the next event. This reverting rate is

estimated using the maximum log-likelihood during the event period. The PMR model

attempts to express the different types of events that would affect beta’s behaviour.

The simulations and empirical tests confirm our assumption.

1.4 Organization of Thesis

In chapter II, the constant beta analysis is performed mainly on the OLS method. Two

regression models (CAPM and Fama-French model) are used in empirical tests with multiple
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rolling windows (60 days, 1 year, 2 years, 5 years) with different data frequencies (daily and

monthly). The comparison of two models to prove the improvement in accuracy of the

multifactor beta estimations for selected stocks and industrial portfolios based on the RMSE

and R-square criteria will be performed.

In chapter III, the time-varying multi-factor beta is analyzed in different models. The

Kalman filter algorithm is the main method to track betas. The two different observation

models (CAPM and Fama-French model) along with each time-varying beta model (RW,

RC and MR) are used to observe the changes in betas. The empirical tests are conducted

for selected stocks and industrial portfolios. The comparisons of the different time-varying

multifactor beta models are based on the RMSE, R-square, AIC, BIC criteria and log-

likelihood ratio test for both selected stocks and industrial portfolios.

In chapter IV, application of the multifactor beta on event-study is introduced based

on the PC multifactor beta and Fama-French three-factor models. By using the modified

multivariate Kalman filter, the abnormal changes in the “market risk”, “size risk” and “value

risk” are detected. Through case studies, micro-economic and macro-economic events are

studied according to the significant changes.

In chapter V, the new PMR is proposed to express the effects of different types of economic

events on the behaviour of beta. Both simulations and empirical tests are performed to

evaluate the new model.

In chapter VI, the conclusion and future works are presented.
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Chapter 2

Constant Multi-factor Beta Analysis

2.1 Introduction

In literatures, the estimation of beta is most likely based on the CAPM regression model.

By assuming that beta is constant during a certain period of time and applying the Ordinary

Least Squares (OLS) method, beta is estimated when the asset return, market return and

risk free rate are given. Previous research also focuses on demonstrating the differences in

estimated betas between periods and the ability of historical betas to predict future betas

[45], [61], [62].

The method is simple and easy to apply in the real world. However, an approach to find

the best index, time frame, and data frequency for estimating beta, and therefore expected

return based on CAPM is yet to be found. There are evidences found from the empirical tests

but they are situation-based [32], [19], [39]. Others also examine the impact of dividends

and the risk free rate on beta estimation [66]. The Wavelet transform with Haar Wavelet

base is used to detect the best time interval for beta estimation [20]. Gencay indicates

that the relationship between the return of a portfolio and its beta becomes stronger as the

scale increases. That is, predictions of the CAPM are more relevant at medium-to long-run

horizons as compared to short time horizons [20].

Mathematically, the more data is used in the estimation period, the smaller the standard

error of the estimated beta is. However, using a large number of data points which is

equivalent to a long estimation time period could make the constant beta assumption fail.

The reason for this is the continuous change in the structural characteristics of the firms.
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For example, during the last decade, many companies have recapitalized, acquired divisions,

spun-off divisions, or substantially changed product mix [66]. These changes could be the

resources that caused the changes in beta over time. The resulting estimates for beta are

biased.

These conflicting empirical results indicate that there is no particular way to solve the

problem. In similar matter, this empirical test attempts to find the most suitable regression

window length to estimate the beta though the SP500 market. As opposed to the previous

method which the in-sample method is used , the leave-one-out method is performed to test

the precision of the estimated parameter to the out-sample. The data for testing consists of

the latest ten years (2001-2011) in the CRSP SP500 database.

2.2 Multifactor Systematic Risk Analysis Review

The multifactor systematic risk in our research includes “market risk”, “size risk” and “value

risk”. While the “market risk” is already well-known in practice, the “size risk” and “value

risk” are still on the way to prove their role in systematic risk measurement.

The Fama-French model is formed from the CAPM but it includes size and book-to-

market as explanatory factors in explaining the cross-section of stock returns. It introduces

the multi-factor beta analysis. The Small Minus Big (SMB) is designed to measure the

additional return investors have historically received from investing in stocks of companies

with relatively small market capitalization [36]. This additional return is often referred to as

the “size premium”. The High Minus Low (HML) is used to measure the “value premium”

provided for investing in companies with high book-to-market values. The book-to-market

(B/M) value is a ratio which is used to find the value of a company by comparing the book

value of a firm to its market value. Book value is calculated by looking at the firm’s historical

cost or accounting value, and market value is determined by the stock market through its

market capitalization.

The βSMB (denoted by s) is a measure of “size risk” which explains why small companies

are more sensitive to many risk factors as a result of their undiversified nature and their

condensed ability to absorb the negative effects of financial events. The βHML (denoted by
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h) is a measure of “value risk” which suggests a higher risk exposure for typical value stocks

(high B/M) versus “growth” stocks (low B/M) [36].

The OLS method is used in the Fama-French model to estimate the multi-factor beta.

Fama and French evaluate the performance of their model after determining that beta has

little or no ability to explain cross-sectional variation in stock return, as compared to the

size and the book-to-market ratio factors [6], [3]. They provide a multi-factor explanation

and state that their model successfully explains the anomalies not captured by CAPM.

After this point, multiple research attempt to compare the CAPM and the Fama French

in different manners. Kothari et al. suggest that the results of Fama and French in [6]

are influenced by survivorship bias and data mining [63]. Daniel and Titman reject the

Fama-French multi-factor model in favour of the characteristic-based model that is almost

ad hoc [64]. Moreover, Barber observes that the most obvious means of evaluating the

data-snooping hypothesis is to test the robustness of the results documented by Fama and

French using different time periods, different countries, or a holdout sample. He states that

the Fama-French model needs more time and further empirical verification before it can be

accepted as a credible theory-based model to replace the CAPM [65]. Mirela finds evidence

from France, Germany, and the United Kingdom on the robustness of the Fama-French

three-factor model. The evidence of a small firm effect in France and Germany and a big

firm effect in the United Kingdom is found, but the seasonal effect is rejected [25].

2.3 Multi-factor Risk OLS Estimation

In this section, the OLS method, introduced in the last chapter, is used to estimate the risk

factors in both the CAPM and Fama-French model. In the following, the matrix form of

each model is presented to fit the OLS regression solution.

2.3.1 OLS Estimation for Single Factor CAPM

The CAPM regression model is as follow:

rt − rf = α + β.(rI,t − rf ) + εt, εt ∼ N(0, σ2

ε ), (2.1)
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where rt is the asset return at time t, rI,t is the market return at time t ,rf is the risk free rate,

α represents any returns that are not explained by the model, and ε is a normal distribution

error term with zero mean and σ2
ε variance. The model’s equation can be written in the

matrix form as follow:

Y = βT .X+ ε, (2.2)

where:

β =

(
α

β

)
,Y =




(r1 − rf)
(r2 − rf)

...
(rT − rf)


 ,X =




1 (rI,1 − rf)
1 (rI,2 − rf)
...

...
1 (rI,T − rf )


 , ε =




ε1
ε2
...
εT


 .

The OLS regression of beta in matrix form is:

β̂ = (XT .X)−1.XT .Y, (2.3)

where XT denotes the transpose of matrix X and (.)−1 denotes the inversion of matrix.

2.3.2 OLS Estimation for Fama-French Three Factors Model

The Fama-French model explains the expected return of a portfolio with elimination of the

risk-free rate {rt - rf} by the sensitivity of its return to the three factors:

• the excess return of a broad market portfolio {rI,t − rf},

• the difference between the return of a portfolio containing small stocks and the return

of a portfolio containing large stocks (SMB).

• the difference between the return of a portfolio of high book-to-market stocks and the

return of a portfolio of low book-to-market stocks (HML).

The Fama-French regression model is as follow:

rt − rf = α + β.(rI,t − rf) + s.SMBt + h.HMLt + εt, (2.4)

where εt ∼ N(0, σ2
ε ); β, s, h present the “market risk”, “size risk”, “value risk” respectively.

The model’s equation can be written in the matrix form as follow:

Y = βT
FF .XFF + ε, (2.5)
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where

βFF =




α

β

s

h


 ,Y =




(r1 − rf)
(r2 − rf)

...
(rT − rf)


 ,XFF =




1 (rI,1 − rf) SMB1 HML1

1 (rI,2 − rf) SMB2 HML2

...
...

...
...

1 (rI,T − rf) SMBT HMLT


 .

The OLS regression of the beta in matrix form is:

̂̄βFF = (XT
FF .XFF )

−1.XT
FF .Y. (2.6)

2.4 Empirical Tests

2.4.1 Leave-one-out Method

As the name suggests, leave-one-out cross-validation (LOOCV) involves using a single ob-

servation from the original sample as the validation data and the remaining observations as

the training data. This is repeated so that each observation in the sample is used once as

the validation data. In this method, the error is calculated for the last sample in each rolling

time period. For instance, the one year rolling window of daily data (252 trading days) is

chosen, the first 251 data points are to estimate the beta and the last sample is to calculate

the error. Then, the data rolls to the next window and performs the same procedure. The

mean error of these out-samples is then calculated. This test aims to archive the best rolling

window which generate minimal error during the estimation.

2.4.2 Data Sources

In this empirical test, the different frequency data, individual stock returns, portfolio returns,

market returns, risk free rates, and the Fama-French factors (HML, HMB) are required. Our

main data sources come from the Center for Research in Security Prices (CRSP) database 1

and the Fama-French website 2.

• Individual stock return: the S&P500 dataset is used as a data source. The dataset

includes five hundred tickers and the latest list of these tickers is downloaded from the

1http://wrds-web.wharton.upenn.edu/wrds/
2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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Standard & Poor website. This ticker’s list is used to download the data from the

CRSP database. The two different frequencies such as daily and monthly are applied.

The ten years daily data from 01-Jan-2001 to 31-Dec-2011 and the whole historical

monthly data of the 500 tickers are extracted to perform the tests.

• Market return: S&P500 index return is from the CRSP database. The excess return

in the market, which is the value-weight return on all NYSE, AMEX, and NASDAQ

stocks from the Fama-French website, is also used as another option for the market

return in this test.

• The risk free rate: is the one-month Treasury bill rate from the Fama-French website.

• The portfolio return: is the forty-eight industrial monthly and daily portfolios down-

loaded from the Fama-French website.

• Fama-French factors (HML,SML): from the Fama-French website.

2.4.3 Empirical Test Procedure

The basic concept of choosing a rolling window length is the risks are assumed to be invariant

during that time range. The question here is how to choose the best window. The iterating

test is performed for all tickers in the S&P500 dataset to observe the RMSE and R2. The

procedure for the test is described below.

2.4.4 Estimation Performance Criteria

In these tests, the performance of the OLS estimation of systematic risks in the Fama-Fench

model and the CAPM is evaluated based on the following criteria:

Root Mean Squared Error (RMSE)

RMSE =

√∑T

t=1
(rt − r̂t)

2

T
. (2.7)

Coefficient of determination R-square (R2) provides a measure of how well future

outcomes are likely to be predicted by the model:

R2 = 1−
Serr

Stot

, (2.8)
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OLS regression empirical tests procedure
———————————————————————————————–

Require: r,rI , rf ,HML,SMB
Initial Values: select data frequency (monthly or daily) and a rolling window size.
k = rolling window
while i ≤ Number of stocks/portfolios do
while{k ≤ Number of Observations}
OLS regression for beta using the CAPM model.
OLS regression for multifactor beta using the Fama-French model.
end while
Calculate mean of RMSE for each model.
Calculate mean of R2 for each model.

end while
return Parameters (beta, RMSE, R2)

Stot =
∑

t

(rt − r̄)2, and Serr =
∑

t

(rt − r̂t)
2,

where rt is the asset return, r̂t is the calculated asset return based on the estimated single-

or multi-factor beta, and r̄ is the mean of the asset return.

2.4.5 Results

Table 2.1 shows the estimation statistic of both models for the daily data of 500 tickers from

the S&P500 dataset. The RSME and R2 are slightly improved in the Fama-French three

factors model as compared to the CAPM model. While the five years rolling window gave

the highest R2 for the CAPM, the three months rolling window is more suitable for the

Fama-French model. The R2 increased by 13% and the RMSE reduced by 8.8% when using

the Fama-French model in its best case compared to the CAPM’s best case.

Table 2.1: Leave-one-out test results for S&P500: daily data

CAPM F-F Model

Rolling window RMSE R2 out-sample’s RMSE R2 out-sample’s
residual residual

3 months 0.0179 0.3199 0.0179 0.0169 0.3883 0.0187
1 year 0.0183 0.3344 0.0166 0.0177 0.3702 0.0171
2 years 0.0187 0.3387 0.0157 0.0181 0.3711 0.0163
5 years 0.0184 0.3435 0.0147 0.0179 0.3724 0.0155

For the monthly data, the results are shown in Table 2.2. In this case, the minimum
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error for the out-sample is at a five year rolling window in both models. However, for the

in-samples, both models have the best R2 and RMSE at the one year rolling window. The

Fama-French is still a better estimation performance in this case. By using the Fama-French

model, the R2 increases by 40.5% and the RMSE reduces by 16.9% as compared to the

CAPM. The R2 increases by 20% compared to the daily data.

Table 2.2: Leave-one-out test results for S&P500: monthly data

CAPM F-F Model

Rolling window RMSE R2 out-sample’s RMSE R2 out-sample’s
residual residual

1 year 0.0653 0.2945 0.0847 0.0542 0.4955 0.1026
2 years 0.0709 0.2664 0.0766 0.0643 0.3869 0.0857
3 years 0.0730 0.2591 0.0733 0.0675 0.3591 0.0810
5 years 0.0741 0.2495 0.0693 0.0696 0.3339 0.0765

For the daily portfolio test, the estimation error and linear-fit measurement are shown

in Table 2.3. In this case, the minimum error for the out-sample is at the five year rolling

window in both models. However, for the in-sample, both models have the best R2 and

RMSE at one year rolling window. Using the Fama-French model, the R2 increases by 5.8%.

One of the intersting observation here is the RMSE and R2 show little to no change when

the rolling window varies. However, if compared to the results of the single stocks, there is

a huge improvement. The R2 increases by 34.38% and the RMSE reduces by 51.9%. This

result is consistent with the conclusion from Fama and French for their model.

Table 2.3: Leave-one-out test results for 48 portfolios: daily data

CAPM F-F Model

Rolling window RMSE R2 out-sample’s RMSE R2 out-sample’s
residual residual

3 months 0.0078 0.5289 0.0075 0.0072 0.5836 0.0085
1 year 0.0081 0.5376 0.0074 0.0076 0.5822 0.0083
2 years 0.0083 0.5416 0.0073 0.0078 0.5841 0.0082
3 years 0.0083 0.5547 0.0071 0.0079 0.5954 0.0080
5 years 0.0085 0.5602 0.0069 0.0081 0.5994 0.0078

Table 2.4 shows the increase in R2 measurement not only for the monthly data of the

Fama-French model but also for the CAPM as compared to the daily portfolios data in Table
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2.3 . The RMSE of both models for this case does not indicate a significant change when the

rolling window size varies. The R2 of the Fama-French Model is 19.35% higher than those

of CAPM and slightly increases compared to the daily data by 14.3%.

Table 2.4: Leave-one-out test results for 48 portfolios: monthly Data

CAPM F-F Model

Rolling window RMSE R2 out-sample’s RMSE R2 out-sample’s
residual residual

1 year 0.0352 0.5644 0.0959 0.0280 0.6999 0.1034
2 years 0.0393 0.5600 0.0921 0.0342 0.6526 0.0972
3 years 0.0413 0.5616 0.0900 0.0368 0.6412 0.0937
5 years 0.0437 0.5611 0.0874 0.0397 0.6300 0.0906

Figure 2.1 to Figure 2.3 display examples of the five year rolling window beta using

the CAPM and the Fama-French model for AAPL and GE stocks. These figures indicate

an improvement on the R square and RMSE criteria of the Fama-French model over the

CAPM. They also show the differences of the “market risk” in the two models. The “market

risk” in the Fama-French model is truncated as compared to the CAPM. The two other risk

factors are much smaller than the “market risk”.

0 50 100 150 200 250 300 350
−4

−3

−2

−1

0

1

2

3

Month Index

V
al

ue

AAPL: 5 Years Rolling Fama−French Multi−factor Betas

 

 

beta
s
h

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

2.5

3

Month Index

V
al

ue

AAPL: 5 Years Rolling Fama−French Beta vs CAPM Beta

 

 

beta FF
beta CAPM

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Month Index

R
 s

qu
ar

e

AAPL: R square of 5 Years Rolling Betas, Fama−French vs CAPM

 

 

R2 FF
R2 CAPM

0 50 100 150 200 250 300 350
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Month Index

R
M

S
E

AAPL: RMSE of 5 Years Rolling Betas, Fama−French vs CAPM

 

 
RMSE FF
RMSE CAPM

Figure 2.1: 5 years rolling betas of AAPL
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2.5 Summary

In this chapter, the traditional OLS method used to estimate betas in the CAPM and

Fama-French is reviewed. From the empirical tests, there is a difference in the multifactor

risk estimation performance between the different data frequencies and time intervals (rolling

window sizes). There is also a significant improvement in the performance evaluation criteria

(R2, RMSE) when the portfolio returns are used instead of individual stock returns. Besides,

these results demonstrate that for stocks in the S&P 500 dataset, the five year rolling window

is the best fit for daily data in the CAPM while three months rolling window is more suitable

for the Fama-French model. In contrast, the one year rolling window size is the best fit for

both the CAPM and Fama-French model for monthly data. With the portfolio’s test, both

models achieve better performance in the five year rolling window size for daily data and

the one year rolling window size for monthly data. In all these cases, the R2 improves when

using monthly data rather than daily data and the Fama-French model rather than the

CAPM. The empirical test results confirm the improvement in the estimation performance

using the Fama-French model over the CAPM as in previous research [6], [3]. The variance

in estimation performance of the different estimation intervals and frequencies data in the

empirical test is the basis to which research is performed on the time-varying beta in the

chapters to follow.
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Chapter 3

Multi-factor Time-varying Beta
Analysis

3.1 Introduction

In the previous chapter, the estimation of beta with the assumption that beta is constant

during a certain period of time is investigated. However, the estimation results evaluated

based on the R-squared and RMSE criteria for the different rolling windows and data fre-

quencies do not indicate that there are certain time intervals guaranteed to succeed the

constant beta assumption. These results are also supported by many literatures that show

the evidence in the instability of beta in [32], [42], [35], [15] and [43].

The constant beta assumption is used in most literatures to study multi-factor market

models as in the Fama-French three-factor model [6], [3] and the Carhart four-factor model

[26]. There are few papers that consider the time-varying systematic risk in multi-factor

models [68]. The Random Walk (RW), Random Coefficient (RC) and Mean Reverting (MR)

models are proven to have significant roles in analyzing beta in the CAPM [40], [17], but only

Hansson [68] uses RW and MR models to analyze the multifactor beta in the Fama-French

three-factor model using an out-of-sample method.

Our research attempts to verify that these RW, RC and MR models are valid in tracking

the multifactor beta in the Fama-French model. Similar to [68], we apply the time-varying

signal processing models to analyze the multifactor beta using the multivariate Kalman

filter. The RC model which is not studied in [68] is included in our tests. Different to

Hansson’s method, the standard Information Criteria (AIC, BIC), RMSE and log likelihood
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hypothesis test are used to evaluate the model’s performance. In our testing procedure, not

only portfolios but also individual stocks are used to determine the validity of the multifactor

beta models. This testing method provides an explanation on the important role of the

portfolios’ risk estimation as compared to the individual stocks’ risk estimation in the time-

varying beta manner.

3.2 Time-varying Multi-factor Beta Analysis using Kalman

Filter

In this section, the testing module based on the multivariate Kalman filter is built to flexibly

adapt to the changes in the observation model and time-varying beta model. Our goal is

to use the combination of each of the two observation models (CAPM and Fama-French

model) and each of the three state models (RW, RC and MR models) in order to estimate

the multi-factor systematic risks in different time-varying models.

Since the MR model can cover both the RW and RC models, we can start the testing

module with the MR model and then set specific cases for the others. Since the Fama-French

model contains three betas (β, βSMB (denoted by s) and βHML (denoted by h)), we assume

that these betas are all time-varying and follow the same process in each case. For example,

in the combination of the Fama-French model and the MR beta model, the three betas are

following the MR model.

The state models can be formalized as follow:

βt = β + φ(βt−1 − β) + ζt, ζt ∼ N(0, σ2

ζ ), E[εtζt] = 0, (3.1)

st = s + φs(st−1 − s) + ζs,t, ζs,t ∼ N(0, σ2

ζs
), E[εtζs,t] = 0, (3.2)

ht = h+ φh(ht−1 − h) + ζh,t, ζh,t ∼ N(0, σ2

ζh
), E[εtζh,t] = 0, (3.3)

where ζt, ζs,t, and ζh,t are the error terms in the state models and assumed to be identical in

normal distribution, independent, and uncorrelated; εt is the error term in the observation

model which is assumed to be normally distributed and uncorrelated to the error terms in

state models; φ, φs, φh are the reverting factors and β̄, s̄, h̄ are the constant means of the

three betas.
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Depending on the assumption of each parameter in (3.1), (3.2), and (3.3), we will have

different versions of beta models. These models are described in detail in the previous section.

Here, we just look at the mathematical equation of these time-varying beta models.

• If φ = 0, φs = 0, and φh = 0: the RC model (assuming that beta fluctuates randomly

around a mean value).

βt = β + ζt ,

st = s+ ζs,t,

ht = h+ ζh,t.

• If φ = 1, φs = 1, φh = 1 and β = 0, s = 0, h = 0: RW model

βt = βt−1 + ζt,

st = st−1 + ζs,t,

ht = ht−1 + ζh,t.

• Otherwise: the MR model. Next period beta will be a weighted average of this period’s

coefficient and its long term mean value β.

Rewrite (3.1), (3.2), (3.3):

βt = (1− φ)β + φβt−1 + ζt,

st = (1− φs)s+ φsst−1 + ζs,t,

ht = (1− φh)h+ φhht−1 + ζh,t.

CAPM Model and Kalman Filter

Suppose we have the return series of an asset rt and the return series of an index rI,t, with

t = 1,2,...,T. T indicates the number of observations.

Since the MR model includes the RW and the RC models, we first apply the Kalman filter

for the MR model. Then by setting up the suitable values of φ, β̄ as mentioned in the above

section, we will easily apply the algorithm to the other models.

For the Kaman filter algorithm, we set up the following equations:

Observation equation: rt − rf,t = αt + βt(rI,t − rf,t) + εt. (3.4)

State equation: βt = (1− φ)β̄ + φβt−1 + ζt. (3.5)
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The observation equation in 3.4 can be rewritten in the matrix form as follow:

Zt = HtXt + εt, (3.6)

where Zt = (rt − rf,t), Xt =

[
αt

βt

]
, Ht =

[
1

(rI,t − rf,t)

]′

, εt ∼ N(0,R), and R = σ2
ε .

The alpha and beta are assumed to be time-varying, thus, the state equation (3.5) can

be rewritten as follow:

Xt = (I− F)X̄+ F ∗Xt−1 + ζt, (3.7)

where ζt ∼ N(0,Q), F =

[
φα 0
0 φβ

]
, Q =

[
σ2

ζα
0

0 σ2

ζβ

]
, I =

[
1 0
0 1

]
, and X̄ =

[
ᾱ

β̄

]
.

The Kalman filter is very well-known and mentioned in many papers [5], [31], [9], and

[21]. Thus, we will apply the algorithm directly to the CAPM and the time-varying beta

models as presented in equation (3.6) and (3.7).

Fama-French Model and Kalman Filter

Recall the time series regression of the Fama-French model of a portfolio or an asset as

follow:

rt − rf,t = αt + βt.(rI,t − rf,t) + st.SMBt + ht.HMLt + εt, (3.8)

where t = 1,2...T, with T being the number of observations.

The equation (3.8) is the observation equation in the Kalman filter method. Here, the

β, βSMB (denoted by s) and βHML (denoted by h) are assumed to be time-varying. The

observation and state equations will be written in matrix form as follow:

Observation equation: Zt = Ht ∗Xt + εt, (3.9)

where Zt = [rt − rf,t], εt ∼ N(0,R), R = σ2
ε , Xt =




αt

βt

st
ht


, and Ht =




1
(rI,t − rf,t)
SMBt

HMLt




′

.

State equation: Xt = (I− F) ∗ X̄+ F ∗Xt−1 + ζt, (3.10)
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where ζt ∼ N(0,Q), X̄ = [ᾱ β̄ s̄ h̄] and

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, F =




φα 0 0 0
0 φβ 0 0
0 0 φs 0
0 0 0 φh


, Q =




σ2

ζα
0 0 0

0 σ2

ζβ
0 0

0 0 σ2

ζs
0

0 0 0 σ2

ζh


 .

The beta estimation in the Fama-French model using the Kalman filter algorithm consists

of the following steps:

• Step 1: (Initialization step) - Choose the state model (RW, MR, RC) by setting up

the value of X0, F, and X̄

- Assign the initial value to X0,R,Q, and P0.

• Step 2: (Prediction step) Compute X1|0 and P1|0 by using the following equations:

Xt|t−1 = (I− F) ∗ X̄+ F ∗Xt−1|t−1, (3.11)

Pt|t−1 = F ∗Pt−1|t−1 ∗ F
′ +Q, (3.12)

where X̂t|t−1 denotes an estimator of unknown state variable Xt based on the available

information up to time (t-1), and Pt|t−1 is its estimation error covariance.

• Step 3: (Updating step) Compute X̂1|1 and P1|1 by using the following equations:

Measurement Residual: Ỹt = Zt −Ht ∗ X̂t|t−1. (3.13)

Innovation Covariance: St = Ht ∗Pt|t−1 ∗H
′

k +R. (3.14)

Kalman Gain: Kt = Pt|t−1 ∗H
′

t ∗ S
−1

t . (3.15)

Update: X̂t|t = X̂t|t−1 +Kt ∗ Ỹt. (3.16)

Pt|t = (I−Kt ∗Ht) ∗Pt|t−1. (3.17)

• Step 4: Repeat step 2 and compute X̂2|1 and P2|1.

• Step 5: Repeat step 3 and compute X̂2|2 and P2|2.

Repeat the procedure up to the last available observation.
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Algorithm 1 Kalman filter algorithm for time series data

Require: Z,H
Initial Values: X0,P0,R,Q,F
while t ≤ T do
Predict:
X̂t|t−1 = F ∗ X̂t−1|t−1 + (I− F) ∗ X̄
Pt|t−1 = F ∗Pt−1|t−1 ∗ F

′

+Q
Measurement Residual:
Ỹt = Zt −Ht ∗ X̂t|t−1

Innovation Covariance:
St = Ht ∗Pt|t−1 ∗H

′

t +R
Kalman Gain:
Kt = Pt|t−1 ∗H

′

t ∗ S
−1

t

Update:
X̂t|t = X̂t|t−1 +Kt ∗ Ỹt

Pt|t = (I−Kt ∗Ht) ∗Pt|t−1

t = t + 1;
end while

Maximum Likelihood Estimation

In order to optimize the parameters of each model, the log likelihood function is used since

the noises are assumed to be normally distributed. The details of the proof can be found at

[31], [10]. Here, we directly use the results.

The maximum likelihood estimation of the model parameters’ set θ = {F,Q,R} can be

done by performing the maximization of the log likelihood function logL for T observations

with respect to θ found in the below equation:

logL(θ|Zt) = −
T

2
∗ log(2π)−

1

2
∗

T∑

t=1

logSt −
1

2
∗

T∑

t=1

Ỹ
′

t ∗ S
−1

t ∗ Ỹt. (3.18)

The maximum likelihood estimates of θ are found by using a type of maximization routine

on equation (3.18) to find the set of parameters θ̂ = {F, Q, R} that maximize the likelihood.

In this thesis, we use the fminsearch function from Matlab which uses the multidimensional

unconstrained nonlinear minimization (Nelder-Mead) algorithm. The algorithm 2 shows the

details of the model’s parameters estimation procedure.
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Algorithm 2 Model’s parameters estimation using log likelihood function

Require: Z,H
Initial Values: X0, P0, θ = [R,Q,F].
while Optimum Set do
Run Algorithm 1.
Calculate the log likelihood function:
logL(θ|Zt) = −T

2
∗ log(2π)− 1

2
∗
∑T

t=1
log(St)−

1

2
∗
∑T

t=1
Ỹ

′

t ∗ S
−1

t ∗ Ỹt.
Matlab fminsearch(θ,(-logL))

end while
return θ̂

3.3 Empirical Tests

3.3.1 Empirical Tests Module

In the empirical tests module completed using the Kalman filter algorithm, there are two

observation models (CAPM and Fama-French ) along with three state space models (RW,

RC and MR). Thus, six different combinations of each observation model and state model

are set up for the Kalman filter:

• CAPM and Random Walk (denoted by CAPM-RW)

• CAPM and Random Coefficient (denoted by CAPM-RC)

• CAPM and Mean Reverting (denoted by CAPM-MR)

• Fama-French and Random Walk (denoted by FF-RW)

• Fama-French and Random Coefficient (denoted by FF-RC)

• Fama-French and Mean Reverting (denoted by FF-MR)

The details of the models and parameters selection are presented in the Algorithm 3.

3.3.2 Estimation Performance Criteria

Other than the two criteria (R2 and RMSE) that are used in chapter II, the two additional

Information Criterion (Akaike and Bayes) are used to evaluate the performance of the time-

varying beta estimation using Kalman filer.
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Algorithm 3 Parameters selection for different states and observation models

Require: Z, rI,t, SMB,HML, rf,t,R
Select an observation model
if SMB && HML is empty then
Ht = [1 (rI,t − rf,t)],X0 = [α0 β0]

T

I =

[
1 0
0 1

]
, P =

[
P0α 0
0 P0β

]
, Q =

[
σ2

ζα
0

0 σ2

ζβ

]
.

if RW then
F = I; X̄ = zeros(2)

else if RC then
X̄0 = [ᾱ0 β̄0]
F = X0 = zeros(2)

else

F =

[
φα 0
0 φβ

]

end if
else
Ht = [1 (rI,t − rf,t) SMBt HMLt];X0 = [α0 β0 s0 h0]

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, P =




P0α 0 0 0
0 P0β 0 0
0 0 P0s 0
0 0 0 P0h


, Q =




σ2

ζα
0 0 0

0 σ2

ζβ
0 0

0 0 σ2

ζs
0

0 0 0 σ2

ζh




if RW then
F = I; X̄ = zeros(4)

else if RC then
X̄0 = [ᾱ0 β̄0 s̄0 h̄0]
F = X0 = zeros(4)

else

F =




φα 0 0 0
0 φβ 0 0
0 0 φs 0
0 0 0 φh




end if
end if
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The AIC was developed by Akaike [11] and it measures the relative goodness of fit of a

statistical model.

Akaike Information Criterion (AIC):

AIC = −
2

T
logL̂+ 2

k

T
. (3.19)

Bayes Information Criterion (BIC):

BIC = −
2

T
logL̂+ k

logT

T
, (3.20)

where k is the number of estimated parameters, T is the number of observations, and logL̂

is calculated based on the equation (3.18).

The BIC was developed by Schwarz [54] and very closely related to the AIC. It is an

increasing function of error variance and an increasing function of the number of free param-

eters to be estimated. Hence, lower BIC implies either fewer explanatory variables, better fit,

or both. The AIC and BIC try to strike a balance between goodness of fit and parsimonious

specification of the model. In general, the model that minimizes the AIC and BIC is the

preferred one.

As suggested by [8], the Information Criterion should be used to compare non-nested

models like the random coefficient model versus the random walk model. For nested models,

such as the MR model, other tests like the likelihood ratio test or the Wald test can be used.

In this thesis, the likelihood ratio test is used to compare random coefficient versus mean

reverting and random walk versus mean reverting models.

Log Likelihood-ratio Test

Since the maximum likelihood is used to estimate the models’ parameters, it makes sense to

apply the log-likelihood-ratio test to evaluate the better fit model.

Null model hypothesis (H0): RW or RC model.

Alternative model hypothesis (H1): MR model.

The null hypothesis represents a special case of the alternative hypothesis. The test is based

on the likelihood ratio(D):

D = −2 ∗ logL(θ|ZH0,t) + 2 ∗ logL(θ|ZH1,t), (3.21)
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where logL(θ|ZH0,t) is the log likelihood for the null model and logL(θ|ZH1,t) is the log

likelihood for the alternative model. The probability distribution of the test statistic is

approximately a chi-squared distribution with degrees of freedom (d) equal to: d = d1 − d0,

where d0 and d1 represent the number of free parameters of the null model and the alternative

model respectively [12].

3.3.3 Data Sources

• Stocks return: CRSP database.

• Market return: the excess return on the market is the value-weight return on all

NYSE, AMEX, and NASDAQ stocks (from CRSP)

• Industrial portfolios return: the Fama-French website.

• Fama-French factors (SMB, HML) and the risk free rate: from the Fama-

French website.

For individual stocks testing, the following stocks in Table 3.1 are chosen. AAPL, MSFT,

IBM and XOM are stocks with very high market capitalization and are considered big size

companies.

Table 3.1: Historical Stocks’ Data for the Empirical Tests

Ticker Company’s Name Start Date End Date

AAPL Apple Computer Inc. 01/1981 11/2011
XOM Exxon Mobil Corporation 07/1926 11/2011
MSFT Microsoft Corp. 04/1986 11/2011
IBM International Business Machines Corp 07/1926 11/2011
GE General Electric 07/1926 11/2011
CSCO Cisco Systems, Inc 02/1990 11/2011
RIMM Research In Motion Limited 03/1999 11/2011

For portfolios testing, the five industrial portfolios are downloaded from the Fama-French

website. It is the historical data from April 1926 to December 2011. The categories of these

industries are presented in Table 3.3.
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Table 3.2: Historical Empirical Tests Stocks’ Market Cap in April 2012

Ticker Primary Industry Market Capitalization

AAPL Electronics 568.55B
XOM Oil and gas 388.59B
MSFT Information technology 265.15B
IBM Information technology 242.17B
GE Conglomerate 207.81B
CSCO Networking hardware 105.67B
RIMM Electronics 7.32B

Table 3.3: Historical Industrial Portfolios’ Data for the Empirical Tests

Portfolio Industrial Type

Industry I Consumer Durables, Non-Durables, Wholesale, Retail,
and Some Services (Laundries, Repair Shops).

Industry II Manufacturing, Energy, and Utilities.
Industry III Business Equipment, Telephone and Television Transmission.
Industry IV Health care, Medical Equipment, and Drugs.
Industry V Other such as Mines, Construction, Transit,

Hotels, Bus Services, Entertainment, Finance.

3.3.4 Results

Table Description

The tables show the estimation results including the optimized parameters for each model

and the calculated criteria values. The results in the tables are from both the CAPM and

Fama-French models with three different state models for the selected stocks and industrial

portfolios.

Time-varying beta in CAPM model:

Table 3.4 indicates the optimized model parameters based on the log-likelihood estima-

tion and the calculated criteria for the selected stocks in Table 3.1. The first observation

determined from the results is a great improvement in R2, which was used as the main eval-

uation criteria in the constant beta analysis in chapter II. The biggest improvement can be

found in AAPL with an increase of almost four times R2 (from 0.2351 in OLS to 0.9697 in

MRM using the Kalman filter). Other stocks results in a higher R2 and lower RMSE. In the

comparison of the time-varying beta models, the RCM performs better than the RWM based
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on it being higher in R2 and lower in RMSE, AIC and BIC for all the selected stocks in the

experiment. The log likelihood ratio test is performed to compare the performance between

the nested MRM and the RWM or RCM with a degree of freedom equal to four. At 5%

confidence level, the hypothesis test rejects the RC model hypothesis for all selected stocks

and rejects four out of seven cases in the RWM. This indicates that the results from the

time-varying systematic analysis of a single stock using the MR model based on the CAPM

are in favor of the RC model.

Table 3.5 indicates the optimized model parameters based on the log likelihood estimation

and the calculated criteria for the industrial portfolios in Table 3.3. The R2 which is around

0.85 in the five year OLS estimation improves when time-varying beta models are used. In

all of the selected portfolios, the R2 criteria for the RC model is higher than the RW model.

The log likelihood ratio test is also performed on two pairs of models (RW vs MR and RC

vs MR) at 5% confidence level. The test accepts the RC hypothesis for all portfolios and

rejects the RW hypothesis for only Portfolio III over the MR model. The results indicate

that the RC model is the best fit for the systematic risk estimation based on the CAPM

model for the portfolios.
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Table 3.4: Time-varying beta analysis in CAPM: empirical tests results of RW,RC and MR models for the individual stocks
including the estimated models’ parameters, the maximum log likelihood (Log(L)) and the performance criteria (RMSE, R2,

BIC, AIC ).

Betas’ Parameters

Ticker Model α0 β0 P0,α P0,β σζα σζβ ᾱ β̄ φα φβ σε Log(L) RMSE R2 BIC AIC

AAPL RW 0.6454 -1.5921 0.1788 0.4378 0.0015 0.2299 0 0 1 1 0.1235 229.9876 0.1167 0.3249 -1.1989 -1.1251

RC 0 0 0.2425 0.0303 0.0865 0.4025 0.0100 1.7207 1 1 0.0897 243.0267 0.0639 0.7975 -1.2690 -1.1952

MR 0.0180 0.0028 0.0518 0.2137 0.1215 0.3423 0.0112 1.4553 0.0057 0.8170 0.0170 239.3291 0.0023 0.9697 -1.2577 -1.1419

OLS 0.0963 0.2351

IBM RW 0.4685 0.0646 0.2791 0.1757 0.0005 0.0394 0 0 1 1 0.0528 1532.9 0.0515 0.4721 -2.9745 -2.9409

RC 0 0 0.2062 0.2764 0.0441 0.2472 0.0059 0.8272 0 0 0.0292 1531.3 0.0157 0.9506 -2.9713 -2.9376

MR -0.0035 -0.0035 0.2467 0.1769 0.0006 1.2091 0.7391 0.1547 1.0000 0.4027 0.0481 1395.2 0.0347 0.7602 -2.6982 -2.6453

OLS 0.0403 0.4131

MSFT RW 0.2346 1.1321 0.2868 0.0415 0.0017 0.0223 0 0 1 1 0.0872 306.0359 0.0851 0.3630 -1.9355 -1.8509

RC 0 0 -0.3976 1.3465 0.0687 0.5101 0.0142 1.2799 0 0 0.0515 309.6298 0.0300 0.9211 -1.9588 -1.8742

MR 0.0045 0.0001 0.0822 0.2243 0.0000 0.4203 0.0810 1.1849 1.0023 0.6145 0.0847 309.6996 0.0805 0.4308 -1.9333 -1.8004

OLS 0.0627 0.2932

CSCO RW 0.6017 0.7932 0.2560 0.0386 0.0028 0.0905 0 0 1 1 0.0903 244.9307 0.0873 0.4629 -1.8094 -1.7143

RC 0 0 0.3099 0.4239 0.0885 0.0000 0.0167 1.5895 0 0 0.0343 246.1206 0.0124 0.9892 -1.8184 -1.7233

MR 0.0124 0.0095 0.1884 0.1622 0.0788 0.1546 0.0177 0.4889 0.0875 0.9923 0.0481 244.4115 0.0244 0.9579 -1.7750 -1.6256

OLS 0.0708 0.4001

GE RW 0.6383 0.5277 0.2688 0.1108 0.0000 0.0344 0 0 1 1 0.0462 1672.9 0.0450 0.6805 -3.2474 -3.2138

RC 0 0 0.1253 0.5129 0.0257 0.3493 0.0008 1.1477 0 0 0.0351 1689.9 0.0268 0.8870 -3.2805 -3.2468

MR 0.0045 0.0014 0.1010 0.1182 0.0000 0.4880 0.9797 1.1522 1.0000 0.1639 0.0416 1683.5 0.0376 0.7776 -3.2602 -3.2073

OLS 0.0436 0.5661

XOM RW 0.2698 0.6088 0.2385 0.0732 0.0000 0.6818 0 0 1 1 0.0335 1609.2 0.0263 0.8079 -3.1232 -3.0896

RC 0 0 0.2121 0.1901 0.0354 0.4238 0.0037 0.7305 0 0 0.0155 1768.9 0.0057 0.9911 -3.4346 -3.4009

MR 0.0033 0.0008 0.1177 0.0711 0.0000 0.8707 0.4561 0.3307 1.0000 0.3284 0.0346 1690.9 0.0265 0.8051 -3.2747 -3.2218

OLS 0.0403 0.4185

RIMM RW 0.6791 -0.4372 0.1302 0.3063 0.0137 0.3415 0 0 1 1 0.1770 28.0809 0.1662 0.4568 -0.2738 -0.1357

RC 0 0 0.2448 0.0140 0.1716 1.6838 0.0354 2.4011 0 0 -0.0420 35.2008 0.0093 0.9983 -0.3662 -0.2282

MR -0.1185 0.0694 0.8372 0.6569 0.0163 2.7062 -5.7087 2.4712 0.9997 0.3609 0.1340 39.3014 0.1015 0.7975 -0.3676 -0.1506

OLS 0.1517 0.3374
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Table 3.5: Time-varying beta analysis in CAPM: empirical tests results of RW,RC and MR models for the industrial
portfolios including the estimated models’ parameters, the maximum log likelihood (Log(L)) and the performance criteria

(RMSE, R2, BIC, AIC ).

Portfolio Betas’Model Parameters

α0 β0 P0,α P0,β σζα σζβ ᾱ β̄ φα φβ σε Log(L) RMSE R2 AIC BIC

Industry I RW 0.0592 1.2177 0.2832 0.0987 0.0000 0.0361 0 0 1 1 0.0173 2647.9 0.0130 0.9084 -5.1479 -5.1142

RC 0 0 -0.0981 0.2301 0.0071 0.2030 0.0013 0.9205 0 0 0.0144 2643.5 0.0116 0.9537 -5.1393 -5.1056

MR -0.0030 -0.0476 -0.0371 -0.2872 0.0000 0.7480 4.4410 0.7021 1.0000 1.2518 0.0134 2182.5 0.0074 0.9811 -4.2330 -4.1801

OLS 0.0137 0.8437

Industry II RW 0.5052 -0.2215 0.0111 0.5974 0.0001 0.0197 0 0 1 1 0.0138 2881.0 0.0133 0.9438 -5.6023 -5.5686

RC 0 0 -0.0477 0.3145 0.0028 0.1766 0.0006 0.9625 0 0 0.0124 2861.5 0.0107 0.9632 -5.5644 -5.5307

MR 0.0094 0.0077 0.2429 0.2122 0.0000 0.3181 0.5407 -0.1805 1.0000 0.9690 0.0115 2690.1 0.0079 0.9802 -5.2225 -5.1696

OLS 0.0108 0.9014

Industry III RW 0.5963 0.2495 0.1649 0.1927 0.0000 0.0094 0 0 0 0 0.1427 1032.2 0.0238 0.8254 -1.9984 -1.9648

RC 0 0 0.1075 0.2304 0.0006 0.3001 0.0003 0.9973 0 0 0.0190 2419.6 0.0164 0.9166 -4.7030 -4.6693

MR 0.0064 0.0021 0.3079 0.0169 0.0000 0.9412 0.5950 -0.2333 1.0000 0.8259 0.0154 2114.1 0.0082 0.9791 -4.0996 -4.0467

OLS 0.0161 0.8381

Industry IV RW 0.5011 3.0418 0.1109 0.2653 0.0000 0.0489 0 0 1 1 0.0319 2029.6 0.0304 0.7188 -3.9426 -3.9090

RC 0 0 0.0428 0.1452 0.0114 0.3565 0.0023 0.8258 0 0 0.0263 2053.0 0.0216 0.8574 -3.9883 -3.9547

MR 0.0053 0.0012 0.2808 0.1063 0.0000 0.6385 0.7120 -0.3115 1.0000 0.8910 0.0267 1896.9 0.0194 0.8856 -3.6763 -3.6234

OLS 0.0248 0.6266

Industry V RW 0.2828 1.3868 0.1521 0.2455 0.0001 0.0623 0 0 1 1 0.0198 2483.8 0.0181 0.9234 -4.8281 -4.7944

RC 0 0 0.1121 0.4796 0.0145 0.2650 -0.0010 1.0891 0 0 0.0094 2525.1 0.0044 0.9955 -4.9086 -4.8750

MR 0.0036 0.0047 -0.0300 0.1371 0.0000 0.6279 0.7332 0.6267 1.0000 0.3881 0.0151 2317.8 0.0102 0.9759 -4.4967 -4.4438

OLS 0.0163 0.8637
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Time-varying Beta in Fama-French model:

Table 3.6 demonstrates the optimized model parameters based on the log-likelihood es-

timation and the calculated criteria for selected stocks in Table 3.1. There is great im-

provement in R2 within the time-varying beta models as compared to its constant beta OLS

estimation. The RMSE is also reduced for all cases with different state models. The RCM

is in favor of the RWM since it has a lower AIC, BIC, and RMSE. The R2 of RCM is also

higher than RWM in all testing stocks. In the log-likelihood ratio test at 5% confidence level,

the hypothesis test rejects the MRM and accepts RCM and RWM for all the testing stocks.

Thus, based on the emperical test, the RC model is the best fit for multi-factor risk in the

Fama-French model.

Table 3.7 indicates the optimized model parameters based on the log-likelihood estimation

and the calculated criteria for selected stocks in Table 3.3. While the R2 is very close between

RWM and RCM, the RWM has better AIC and BIC as compared to RCM. The log-likelihood

ratio test rejects the MRM and accepts RWM and RCM for all selected portfolios. These two

results confirm the important role of the RWMmodel in analyzing the multifactor systematic

risk for portfolios since its evaluation criteria is better than the other two models.

Graph Description:

In each ticker or industrial portfolio, there are two six-figures to display the results. Figure

3.1, for example, displays the results for the industry I portfolio. The three sub-graphs on

the left side are to display the three betas (β, βSMB and βHML)in the Fama-French model

with different state models (RW, RC, MR). The other three sub-graphs on the right side

are to compare the market risk (β) in the CAPM model versus the β in the Fama-French

model. Figure 3.2, for example, is the second graph to display the results for the industry

I portfolio. Each graph on the left side is a comparison of each beta (β or s or h) in the

Fama-French model with three different state models. Each graph on the right side is used

to compare the β, βSMB and βHML of the CAPM and Fama-French model with the RW

state models and the OLS rolling beta.
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Table 3.6: Time-varying betas analysis in Fama-French model: empirical tests results of RW,RC and MR models for the
individual stocks including the estimated models’ parameters, the maximum loglikelihood (Log(L)) and the performance

criteria (RMSE, R2, BIC, AIC ).

Parameters AAPL IBM CSCO GE XOM
RW RC MR RW RC MR RW RC MR RW RC MR RW RC MR

α0 0.2834 0 0.0014 -0.6154 0 -0.0040 0.1293 0 -0.0144 0.3138 0 0.0076 0.4306 0 -0.0084
β0 -0.3012 0 0.0021 0.4292 0 -0.0012 -0.4063 0 0.0027 -0.2019 0 -0.0130 2.0691 0 0.0003
s0 0.1521 0 0.0038 -0.0056 0 -0.0012 0.2211 0 0.0039 0.0958 0 0.0047 0.1237 0 0.0010
h0 0.2931 0 -0.0193 0.6041 0 0.0012 0.2046 0 0.0062 0.1119 0 0.0015 -0.0496 0 -0.0002

Pα0 0.0276 -0.0974 0.0764 0.1448 0.4905 0.0560 0.1569 0.0191 0.1425 0.3013 0.3384 0.1165 0.2247 0.0872 0.1832
Pβ0 0.3454 0.3261 0.1616 0.3286 0.2334 0.0749 0.3300 0.0781 0.1907 0.1802 0.2983 0.3260 0.1917 0.1003 0.0842
Ps0 0.1763 0.3244 0.1891 -0.1099 0.3403 0.1462 0.0956 -0.0561 0.1808 -0.0496 -1.2542 0.0147 0.0625 0.3844 0.1719
Ph0 0.1549 0.2833 0.1390 0.4451 0.0634 0.2669 0.1249 0.5452 0.1398 0.7073 1.2797 0.1369 0.0579 0.3472 0.3177

σζα 0.0011 0.0375 0.0000 0.0017 0.0243 -0.0000 0.0030 0.0414 0.0003 0.0000 0.0007 0.0412 0.0000 0.0010 0.0001

σζβ 0.0001 0.6047 0.2782 0.0000 0.3427 0.0736 0.0803 0.3170 1.2815 0.0033 0.3077 0.9659 0.1118 0.3907 0.0089

σζs
0.0052 1.4508 0.0165 0.1264 0.7362 0.3968 0.0084 1.1347 1.1902 1.4641 1.1796 0.7863 0.6375 0.3897 1.96383

σζh
0.5807 0.3595 3.3738 0.0653 0.7597 4.3818 1.5456 0.4330 0.1142 0.1358 0.9468 0.1241 0.0187 0.3479 0.0032

ᾱ 0 0.0127 1.1782 0 0.0066 1.3556 0 0.0188 1.0636 0 0.0045 1.4936 0 0.0031 0.6298
β̄ 0 1.1685 1.3304 0 0.8942 0.5988 0 1.4073 1.8544 0 1.0072 0.5236 0 0.8319 0.2509
s̄ 0 0.8003 1.1928 0 0.0282 1.6051 0 0.1362 0.5124 0 0.0269 0.6603 0 -0.4863 0.7944
h̄ 0 -0.7528 1.5601 0 -0.4559 0.3766 0 -0.9923 1.4468 0 -0.8686 2.2362 0 0.3489 1.9784

φα 1 0 0.9999 1 0 1.0000 1 0 1.0003 1 0 1.0064 1 0 1.0000
φβ 1 0 0.9525 1 0 0.9828 1 0 0.0052 1 0 -0.5738 1 0 -0.9965
φs 1 0 -0.9893 1 0 -0.7304 1 0 -0.6881 1 0 -1.0319 1 0 0.8577
φh 1 0 0.3172 1 0 3.9304 1 0 1.0007 1 0 0.9986 1 0 1.0000

σε 0.1167 0.1085 0.1416 0.0804 0.0366 0.1000 0.0802 0.0701 0.0552 0.0430 0.0366 0.0038 0.0494 0.0335 0.2090

Log(L) 236.6315 251.4094 197.5989 317.8894 1553.0 296.8920 226.5282 260.9132 229.5455 1509.1 1583.0 1129.3 1647.1 1836.9 165.2525
RSME 0.1083 0.0949 0.0964 0.0754 0.0255 0.0287 0.0632 0.0553 0.0469 0.0272 0.0268 0.00199 0.0297 0.0285 0.0215

R2 0.4183 0.5536 0.5394 0.5000 0.8706 0.8354 0.7181 0.7844 0.8447 0.8837 0.8868 0.9888 0.7545 0.7744 0.8713

AIC -1.2023 -1.2818 -0.9495 -1.9734 -3.0019 -0.6197 -1.6238 -1.8853 -1.5859 -2.9163 -3.0604 -2.1605 -3.1854 -3.5553 -0.3631
BIC -1.0654 -1.1448 -0.7282 -1.8163 -2.9394 -0.7206 -1.4472 -1.7087 -1.3007 -2.8538 -2.9979 -2.0595 -3.1229 -3.4928 -0.4640
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Table 3.7: Time-varying betas analysis in Fama-French model: empirical tests results of RW,RC and MR models for the
industrial portfolios including the estimated models’ parameters, the maximum loglikelihood (Log(L)) and the performance

criteria (RMSE, R2, BIC, AIC ).

Parameters Industry I Industry II Industry III Industry IV Industry V
RW RC MR RW RC MR RW RC MR RW RC MR RW RC MR

α0 0.0722 0 0.0079 0.3675 0 -0.0043 0.0027 0 -0.0370 0.0017 0 0.0018 -0.1029 0 -0.0030
β0 -0.8884 0 0.0093 -0.6398 0 0.0046 -0.5111 0 0.0038 2.8470 0 0.0000 -0.2879 0 0.0028
s0 0.1073 0 -0.0077 0.3229 0 0.0058 0.1242 0 0.0100 -0.1532 0 0.0028 -0.0415 0 0.0058
h0 0.0157 0 -0.0007 0.2390 0 0.0087 0.1899 0 0.0220 0.2079 0 -0.0086 -0.0311 0 -0.0091

Pα0 0.3281 -0.3770 0.1623 0.2140 0.1960 0.1428 0.1844 0.5835 0.2057 0.2618 0.3574 0.1191 0.3675 0.5525 0.0557
Pβ0 0.2105 0.1433 0.2128 0.1015 0.3301 0.1667 0.2145 -0.0142 0.4094 0.1974 0.2296 0.0843 0.0838 -0.3965 0.2908
Ps0 0.0884 0.1242 0.2953 0.1548 0.4001 0.1824 0.1113 -0.2153 0.2399 0.0257 0.0416 0.1413 0.0265 -0.3702 0.1334
Ph0 0.6516 0.9002 0.2521 0.5303 0.3144 -0.0129 0.5054 -0.1621 0.4848 0.1119 0.1795 0.2172 1.0011 -0.2286 0.1881

σζα 0.0000 0.0014 1.4940 0.0000 0.0001 0.0095 0.0000 0.0002 0.0000 0.0000 0.0003 0.0001 0.0000 0.0001 -0.0000

σζβ 0.0165 0.1609 0.1154 0.0095 0.5662 0.2457 0.0400 0.1863 0.0063 0.0546 0.2402 8.8718 0.0442 0.2594 0.0007

σζs
0.0289 0.3296 0.0245 0.0110 1.5361 0.6248 0.0359 0.6721 6.7398 0.0100 0.5084 9.0988 0.0296 0.9452 5.0102

σζh
0.0539 0.2588 0.0539 0.0587 1.1099 6.9513 1.2469 1.9722 0.1240 0.0479 0.5131 9.7878 0.0481 0.6864 0.2271

ᾱ 0 0.0012 0.6655 0 -0.0044 1.2252 0 -0.0015 0.7176 0 0.0033 0.9915 0 -0.0030 2.1859
β̄ 0 0.9631 0.9249 0 1.8173 1.1887 0 1.1506 -1.0360 0 0.9515 0.6841 0 0.9659 0.0027
s̄ 0 -0.0666 0.6807 0 0.6391 0.2628 0 -0.6995 -1.5782 0 -0.5808 0.8694 0 1.1080 1.0150
h̄ 0 -0.0068 0.1945 0 0.7726 0.7624 0 1.5952 -0.1925 0 -0.3485 0.7496 0 1.0454 -0.1983

φα 1 0 0.2584 1 1 1.0011 1 1 1.0000 1 1 1.0000 1 1 1.0000
φβ 1 0 0.5488 1 1 -1.1077 1 1 1.0002 1 1 0.6610 1 1 1.0002
φs 1 0 0.9991 1 1 0.9391 1 1 -0.1964 1 1 -0.8360 1 1 0.6553
φh 1 0 0.9889 1 1 0.6570 1 1 0.2472 1 1 0.1616 1 1 -0.9419

σε 0.0152 0.0132 0.0742 0.0113 0.0180 0.1946 0.0142 0.0194 0.0232 0.0286 0.0252 0.4474 0.0142 0.0118 0.2452

Log(L) 2723.7 2666.5 2015.5 3018.2 1738.6 248.1352 2233.8 1735.0 1286.1 2102.4 2059.2 645.5393 2754.6 2158.7 320.6732
RSME 0.0137 0.0100 0.0032 0.0101 0.0070 0.0233 0.0076 0.0098 0.0046 0.0264 0.0197 0.0186 0.0121 0.0056 0.0218

R2 0.9356 0.9656 0.9410 0.9673 0.9841 0.8271 0.9820 0.9704 0.9934 0.7875 0.8818 0.8944 0.9659 0.9926 0.8892
AIC -5.2839 -5.1725 -3.9698 -5.8580 -3.3638 -0.4428 -4.3290 -3.3566 -2.4660 -4.0730 -3.9886 -1.2993 -5.3443 -4.1827 -0.5842
BIC -5.2214 -5.1099 -4.0708 -5.7955 -3.3013 -0.3418 -4.2665 -3.2941 -2.3650 -4.0104 -3.9261 -1.4003 -5.2818 -4.1201 -0.4832
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Figure 3.1: Time-varying multi-factor beta of industry I (a): β, s and h in FF-RW, FF-RC
and FF-MR analysis; the RW, RC and MR of “market risk” in FFM vs in CAPM

41



0 100 200 300 400 500 600 700 800 900 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Month Index

V
al

ue
Industry I: Beta: FF−RW vs FF−RC vs FF−MR

 

 

beta FF−RW
beta FF−RC
beta FF−MR

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Month Index

V
al

ue

Industry I: Betas of FF−RW vs OLS−CAPM and OLS−FF

 

 

beta FF−RW
beta 5Y OLS−CAPM
beta 5Y OLS−FF

0 100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Month Index

V
al

ue

Industry I: Beta
SMB

 (or s): FF−RW vs FF−RC vs FF−MR

 

 

s FF−RW
s FF−RC
s FF−MR

0 100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Month Index

V
al

ue

Industry I: Beta
SMB

(or s) of FF−RW vs OLS−FF

 

 
s FF−RW
s 5Y OLS−FF

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Month Index

V
al

ue

Industry I: Beta
HML

 (or h): FF−RW vs FF−RC vs FF−MR

 

 

h FF−RW
h FF−RC
h FF−MR

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Month Index

V
al

ue

Industry I: Beta
HML

(or h) of FF−RW vs OLS−FF

 

 
h FF−RW
h 5Y OLS−FF

Figure 3.2: Time-varying multi-factor beta of industry I (b): FF-RW vs FF-RC vs FF-MR
analysis of β, s, and h; the time-varying β vs the 5 year rolling β
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Figure 3.3: Time-varying multi-factor beta of industry II (a): β, s and h in FF-RW,
FF-RC and FF-MR analysis; the RW, RC and MR of “market risk” in FFM vs in CAPM
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Figure 3.4: Time-varying multi-factor beta of industry II (b): FF-RW vs FF-RC vs FF-MR
analysis of β, s, and h; the time-varying β vs the 5 year rolling β
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Figure 3.5: Time-varying multi-factor beta of AAPL (a): β, s and h in FF-RW, FF-RC
and FF-MR analysis; the RW, RC and MR of “market risk” in FFM vs in CAPM
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Figure 3.6: Time-varying multi-factor beta of AAPL (b): FF-RW vs FF-RC vs FF-MR
analysis of β, s, and h; the time-varying β vs the 5 year rolling β
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Figure 3.7: Time-varying multi-factor beta of IBM (a): β, s and h in FF-RW, FF-RC and
FF-MR analysis; the RW, RC and MR of “market risk” in FFM vs in CAPM
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Figure 3.8: Time-varying multi-factor beta of IBM (b): FF-RW vs FF-RC vs FF-MR
analysis of β, s, and h; the time-varying β vs the 5 year rolling β
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Figure 3.9: Time-varying multi-factor beta of MSFT (a): β, s and h in FF-RW, FF-RC
and FF-MR analysis; the RW, RC and MR of “market risk” in FFM vs in CAPM
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Figure 3.10: Time-varying multi-factor beta of MSFT (b): FF-RW vs FF-RC vs FF-MR
analysis of β, s, and h; the time-varying β vs the 5 year rolling β
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3.4 Summary

In this chapter, we present the empirical test module to evaluate the performance of the

single and multi-factor time-varying systematic risk models. We extend the three well-known

time-varying models for “market risk” in the CAPM to the time-varying multi-factor risk as

described in the Fama-French model. Our test module using the Kalman filter provides a

comparison between the CAPM and the Fama-French model in the time-varying systematic

risk manner. Based on the standard criteria (RMSE, R2, AIC, BIC), the empirical tests for

individual stocks and industrial portfolios indicate that all three time-varying beta models

show great improvement on beta estimation performance. For the industrial portfolios, the

RCM shows the best fit for the CAPM while the RWM is the best fit for the Fama-French

model. For the individual stocks, the MRM is in favour for the CAPM and the RCM is in

favour for the Fama-French model. Besides, the Fama-French model with multi-factor risk

analyzed on the portfolios provide a more accurate estimation as compared to the individual

stocks. It is consistent to many financial experts’ suggestion in which systematic risk should

be estimated based on the portfolios rather than single stocks.
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Chapter 4

Apply Piecewise Constant
Multi-factor Beta Model on Event
Study

4.1 Introduction

Event-study is an empirical study done on a security that has gone through significant events

or impacted news related to the firm, and has subsequently changed dramatically in value

as a result of that event or news. An event can have either a positive or negative effect

on the value of the security. The traditional event-study methods try to detect abnormal

returns at a certain significance level [58]. Event studies are used in a large variety of studies,

including mergers and acquisitions, earnings announcements, debt or equity issues, corporate

reorganizations, investment decisions and corporate social responsibility [59], [60].

Previous research focuses only on mean returns during the event, while ignoring other

valuable factors such as systematic risk and accounting factors [28], [56]. In addition, the

choice of event intervals in previous scholars is not evident. A specific way to find the “right”

interval can not be determined. Researchers implicitly acknowledge this by providing results

over several different intervals.

Based on the observation from our time-varying multifactor beta analysis in chapter III,

there are abnormal changes in the multifactor systematic risk. We believe that these changes

are impacted by significant economic events. However, no event study has researched based

on the time-varying multifactor systematic risk.
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The time-varying characteristic of beta researched in the previous sections shows im-

provement in reducing the estimation errors. Thus, our goal is to detect the sudden changes

in the whole time series beta resulting from the Kalman filter method and determine the

impact of financial events on these changes. The initial work is done by T. Rajbhandary [70]

on tracking the changes in beta using the Kalman filter with the CAPM observation model

and Piecewise Constant state model, which only focuses on the market risk represented by a

single factor in the CAPM. Based on the Fama-French model, we believe that other factors

such as market cap and book-to-market value also cause changes in the systematic risk.

Thus, event-study based on the multi-factor systematic risk including “market risk”,“size

risk”, and “value risk” is performed to demonstrate the significant effects of the economic

events on the multifactor systematic risk.

In this research, the Piecewise Constant (PC) multifactor beta model is used to detect the

significant events in the history of companies or industries based on the Fama-French model.

The macro-economic and micro-economic events are determined based on the sudden changes

in the betas’ time series. Our empirical tests indicate that significant events are successfully

captured by the PC multifactor beta model in connection with the Fama-French three-factor

model.

4.2 Apply PCM and Fama-French Model to Detect

Events using Kalman Filter

4.2.1 Piecewise Constant Model (PCM)

PCM is formulated for the “market risk” [69] in the following equation:

βt = βt−1 + ztut + ζt, (4.1)

where βt at time t is assumed to be the previous beta at time (t-1) plus the error term

ζt and the jump process ztut. The disturbances ut and ζt are assumed to be uncorrelated,

independently and identically normally distributed with zero means and σ2
u, σ

2

ζ variances

respectively:

u(t) ∼ N(0, σ2

u) and ζt ∼ N(0, σ2

ζ ).
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The zt is the Bernoulli random process as follow:

zt =

{
1 w.p. η,
0 w.p. 1− η

. (4.2)

4.2.2 Detect a Jump Using the Modified Kalman Filter Review

In order to detect an abnormal change in the multi-factor beta, we apply the modified

Kalman filter presented in [70] with additional modifications to fit the multi-factor beta.

In our event-study, we assume that during the event interval ∆t, there is either an event

or no events(P [N(∆t) > 1] = 0). Thus, there are two probabilities based on Poisson process

with density λ:

P [N(∆t) = 0] = e−λ∆t, (4.3)

P [N(∆t) = 1] = (λ∆t)e−λ∆t. (4.4)

The equation (4.3) represents the probability of no event (no jump) occurring in interval

∆t and the equation (4.4) represents the probability of one event (one jump) occurring in

interval ∆t. Let p0(.|.) and p1(.|.) represent the conditional likelihood distributions when zt

= 0 and zt = 1 respectively:

p0(rt|rt−1) ∼ N(rt; βt|t−1,P
0

t|t−1 +R),

p1(rt|rt−1) ∼ N(rt; βt|t−1,P
1

t|t−1
+R),

where N(rt; βt|t−1,P(.)) is a Gaussian density with argument rt, mean βt|t−1, and covariance

P(.).

In the Kalman filter method, the prediction step includes the error covariance calculation

(Pt|t−1). Since there are two probabilities that the beta will jump or not in this state model,

the two corresponding covariances are calculated. Thus, in order to apply the Kalman filter,

the algorithm needs to identify which state zt is more likely to be one or zero to select one of

the covariances. Based on the Bayes’ criteria, the jump is detected if there is a larger value

of the weighted likelihood: ((1− η) ∗ p0(rt|rt−1) ≤ η ∗ p1(rt|rt−1)) and otherwise. The details

of the modified Kalman filter algorithm can be found in [70].
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4.2.3 Event-study Based on the Kalman Filter

In order to apply the Kalman filter, a set of observations and state equations need to be set

up. In this event-study research, the Fama-French three-factor model is used as an obser-

vation equation and the multivariate Piecewise Constant model is used as a state equation.

Recall the Fama-French model:

rt − rf,t = α + βt.(rI,t − rf,t) + st.SMBt + ht.HMLt + εt. (4.5)

The Fama-French model can be rewritten in the matrix form as follow:

Zt = Ht ∗Xt + εt, (4.6)

where Zt = (rt − rf,t), Xt =




α

βt

st
ht


, Ht =




1
(rI,t − rf,t)
SMBt

HMLt




T

and εt ∼ N(0, σ2
ε ).

Since the observation model has three factors, the three state equations need to be

established. Assuming that alpha is constant and all three betas (β, s and h) follow the

Piecewise Constant model:

βt = βt−1 + zβ,tuβ,t + ζβ,t, (4.7)

st = st−1 + zs,tus,t + ζs,t, (4.8)

ht = ht−1 + zh,tuh,t + ζh,t. (4.9)

We can rewrite the three state equations above in the matrix form as follow:

Xt = F ∗Xt−1 + zt ∗ ut + ζt (4.10)

where ut ∼ N(0,U) and ζt ∼ N(0,Q).

F =




1 0 0
0 1 0
0 0 1


, U =




σ2
uβ

0 0

0 σ2
us

0
0 0 σ2

uh


, Q =




σ2

ζβ
0 0

0 σ2

ζs
0

0 0 σ2

ζh




Now we can apply the modified Kalman filter to detect the significant changes in “market

risk”, “size risk” and “value risk”. The modified multivariate Kalman filter is different from
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the traditional one since it uses the Bayes’ criteria selection to determine the jump in each

observation. When an abnormal change occurs, the algorithm will detect it and record it as

an index (denote by J). These indexes finally are mapped with the dates denoted by D to

find the events which caused these changes. The mid-steps are added on the original Kalman

filter to detect the jump right before the innovation covariance is calculated. The details of

the algorithm is described in Algorithm 4.

Algorithm 4 Modified Kalman Filter for Piecewise Constant and Fama-French Model

Require: Z, H, D
Initial Values: X0,P0, R, Q, U, η
while t ≤ T do
Predict:
X̂t|t−1 = F ∗ X̂t−1|t−1

P0

t|t−1
= F ∗Pt−1|t−1 ∗ F

T +Q

P1

t|t−1
= F ∗Pt−1|t−1 ∗ F

T +Q+U
Measurement Residual:
Ỹt = Zt −Ht ∗ X̂t|t−1

Determine the likelihood for the next observation:
p0(rt|rt−1) ∼ N(rt; βt|t−1,P

0

t|t−1
+R)

p1(rt|rt−1) ∼ N(rt; βt|t−1,P
1

t|t−1
+R)

if ((1− η) ∗ p0(rt|rt−1) ≥ η ∗ p1(rt|rt−1)) then
Pt|t−1 = P0

t|t−1

Jt = 0
else
Pt|t−1 = P1

t|t−1

Jt = 1
end if
Innovation Covariance:
St = Ht ∗Pt|t−1 ∗H

T
k +R

Kalman Gain:
Kt = Pt|t−1 ∗H

T
t ∗ S−1

t

Update:
X̂t|t = X̂t|t−1 +Kt ∗ Ỹt

Pt|t = (I−Kt ∗Ht) ∗Pt|t−1

end while
Event dates detection:
D = D(find(J == 1))
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4.3 Empirical Tests

In the empirical tests, instead of using a single factor model (CAPM) for individual stocks in

[70], the Fama-French three-factor model is used as the observation model and the empirical

test is performed on both industrial portfolios and individual stocks. The CAPM model is

also tested on the portfolios with the Piecewise Constant model (PCM). The empirical test

evaluates the performance of the PCM as compared to other models which are presented

in chapter III in each combination to the CAPM or the Fama-French model. Based on the

estimated multi-factor systematic risk, the abnormal changes in the three betas is detected

using the PCM when the betas are observed from the Fama-French model. The economic

events on the detected date changes are studied to verify the sufficiency of the methods and

explain the economic matters of the change in the multi-factor beta.

4.3.1 Procedure

• Select an observation model (CAPM or Fama-French model) and a security (individual

stocks or portfolios)

• Perform the beta tracking algorithm as described in Algorithm 4.

• Calculate the criteria: RMSE, AIC and perform the log-likelihood ratio test.

• Record the date indexes of the abnormal changes in beta, s, h; then , map to the

corresponding dates.

• Research the macro and micro-economic events on these dates.

4.3.2 Data Sources

Individual stocks

The same set of stocks from the previous empirical test (described in chapter III) is repeated

for usage in the event-study.

Industrial Portfolios

The data is downloaded from the Fama-French’s website including forty-eight industrial
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portfolios. All of these industrial portfolios have the same historical date range from July

1926 to December 2011. Six of these portfolios are selected for this experiment. The details

can be seen in Table 4.1.

Table 4.1: Industrial portfolios for the empirical tests of the PC beta model

Industrial Portfolio Standard Industrial Classification (SIC) code

Automobiles and Trucks 2296, 2396, 3010-3011, 3537, 3647, 3694, 3700,
3710, 3711,3713-3716, 3790-3792, 3799

Oil 1310-1339, 1370-1382, 1389, 2900-2912,
1300, 2990-2999

Computers 3570-3689, 3695, 7373-7373
Banking 6090-6100, 6010-6036, 6040-6062, 6080-6082,

6000, 6110-6113, 6120-6179, 6190-6199
Real Estate 6540-6541, 6510, 6512-6515, 6517-6532,

6500, 6550-6553, 6590-6599, 6610-6611

4.3.3 Results

By applying the Piecewise Constant model (PCM) on the two market models (CAPM and

Fama-French model), the multi-factor risks are estimated and the performance of the esti-

mation is evaluated based on the criteria displayed in Table 4.2 and Table 4.3.

Table 4.2 presents the criteria in the CAPM versus in the Fama-French model for the

empirical test for individual stocks. The RMSEs of both models are very close and have

slight improvement when using the Fama-French model in combination with the PCM (FF-

PC) as compared to the CAPM in combination with the PCM (CAPM-PC). The AICs are

balanced between the two models since four of the stocks have better AICs in FF-PC and

the other three are in contrast.

Table 4.3 presents the criteria for the CAPM versus the Fama-French model for the

industrial portfolios’ empirical test. While the AICs are lower in CAPM-PC, the RMSEs

show improvement in FF-PC for all portfolios.

These results confirm the validity of the multi-factor PC beta model since it still can

keep the advantage of the time-varying model as verified in the previous chapter (improve

RMSE and R2) and is also able to detect the significant events which affect the multi-factor

risk changes. The impacts of the significant events on the changes in the multifactor beta
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are studied in the following event-study cases.

Table 4.2: CAPM-PC vs FF-PC criteria for individual stocks

CAPM F-F Model

Ticker RMSE AIC Max-log RMSE AIC Max-log
likelihood likelihood

AAPL 0.1423 -1.1149 213.3745 0.1416 -0.9425 183.3078
IBM 0.0712 -2.8501 1468.1 0.0710 -2.8803 1485.6
GE 0.0801 -3.1175 1605.3 0.0797 -3.1721 1635.3
XOM 0.0607 -3.2717 1684.4 0.0602 -3.3583 1730.8
CSCO 0.1213 -1.608 216.4015 0.1209 -0.7237 103.17
MSFT 0.1056 -1.7551 277.1528 0.1050 -0.8210 134.8519
RIMM 0.2216 -0.0133 7.0211 0.2224 -0.0401 11.0804

Table 4.3: CAPM-PC vs FF-PC criteria for portfolios

CAPM F-F Model

Portfolio RMSE AIC Max-log RMSE AIC Max-log
likelihood likelihood

Oil 0.0620 -3.5953 1852.4 0.0528 -3.0047 1549.4
Autos 0.0818 -3.4973 1802.1 0.0643 -2.8688 1479.7

Banking 0.0729 -3.3864 1745.2 0.0569 -3.0419 1568.5
Real Estate 0.0995 -2.6232 1353.7 0.0768 -2.4082 1243.4
Computers 0.0744 -3.4218 1736.4 0.0643 -2.8688 1479.7

4.3.4 Event-study Cases

Apple Inc. (AAPL)

Figure 4.1 displays the significant changes in the three-factor systematic risk of Apple Inc.

The detected month indexes are 7, 20, 141, 192, and 220 which corresponds to September

1982, October 1983, November 1993, February 1998, and June 2000. The following economic

events are studied in order to explain the sudden changes in the “market risk”, “size risk”,

and “value risk”.

October 1983

All three-factor risks decrease based on our analysis. During this time, Apple published

its fourth quarter results indicating that earnings were at 5.1 million of sales of $273.2
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Figure 4.1: FF-PC: abnormal changes in multifactor systematic risk of AAPL

million. The reason for the poor results in the fourth quarter was due to the aggressive price

competition from IBM. As a result, Apple was forced to cut Lisa’s price by 18%. Despite the

poor fourth quarter’s profit, AAPL still showed multiple positive signals allowing investors

to be optimistic in the next period which caused the decline in the market risk. There was

also talk of Apple’s newest computer product “Macintosh” that would be introduced early

of 1984 costing less and would aim at a different market. Sales still increased 69 % in the

fourth quarter and was promising for the next period when the new “Macintosh” released

causing the value risk and size risk to fall 1.

November 1993

The “market risk” and “size risk” increase suddenly during this month while there is a

small rally in “value risk”. They are affected by a big announcement made on 15-Oct-1993

by Apple Inc. declaring that the CEO, John Sculley, had resigned. Sculley’s resignation oc-

curred one day after Apple reported a 97 percent drop in earnings for its most recent quarter,

to just $2.7 million. The company blamed the decline on the industry-wide cut-throat pric-

ing war. Sculley stepped aside as chief executive officer in the midst of a personal-computer

1“Apple sharply lower in quarter”, Paul Taylor, The Financial Times Limited , 25-Oct-1983
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price war and internal tension over the company’s direction, while remaining chairman just

in June. The poor business performance and the unstableness in management caused the

increase in Apple stocks’ risk since investors lost confidence in the company 2.

February 1998

All three-factor risks are down based on our analysis. Apple announced in February 27,

1998 that they would stop producing Newtown software and products to centralize their

focus on the Macintosh operating system. This was due to the increased competition in the

palmtop computing market which used Microsoft Windows CE. After this news was released,

shares increased by 12.5%. In addition to this, Apple also acquired Compaq Computer Corp,

Timothy D. Cook to manage its manufacturing and operations distribution. Rumours were

also stating that Apple was in the process of developing a “media player” and would be

acquired by a bigger firm. Apple had taken some very positive steps to focus the business

to create trust in investors. This was indicated by the great decline in their risks 3.

June 2000

According to Figure 4.1 (month index: 220), the “market risk” and “size risk” increase

while the “value risk” decreases. The “market risk” and “size risk” are affected by the stock

split event on June 21, 2000. The stock split was acting as a catalyst to wake investors ahead

of Macworld in July or to the fact that the stock is oversold and undervalued. Shareholders

were following up on their Apple investment due to the stock split and may have responded

to the positive QuickTime news. In addition, investors were anticipating a strong earnings

announcement on July 18th from the company in spite of the slightly slower iMac sales.

However, the street.com article pointed out that the Janus Strategic Value fund has 3% of

their nearly $3 billion in assets invested in Apple’s stock. That places Apple in the top ten

picks of this hot new mutual fund which had recently opened at the end of February but

was up 5.9% in spite of the recent tech sell-off . This caused the decrease in the value risk

of AAPL 4.
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Figure 4.2: FF-PC: abnormal changes in multifactor systematic risk of IBM

IBM

Figure 4.2 displays the significant changes in the three-factor systematic risk of IBM Corp.

The detected monthly indexes are 369, 600, 683, and 697 which corresponds to October

1973, January 1993, December 1999, and February 2001.

October 1973

According to our analysis, all risks suddenly drop down. Looking at IBM’s history, Octo-

ber 1973 was the date that Dr. Leo Esaki, an IBM’s fellow, won the Nobel Prize in Physics

proving the tunneling phenomena in semiconductors 5. Esaki was engaged in semiconduc-

tor research at the IBM Thomas J. Watson Research Centre since 1960. He developed the

tunnel diode to be used in high frequency oscillation and amplification for circuit switching

to increase the speed of computers. This event provided people and shareholders confidence

and belief in IBM’s capability in technology innovation, as this year marked the first time

2Chicago Tribune News, 15 October 1993
3The New York Times, Page 3, Column1, 28-Feb-1998
4http://www.macobserver.com/news/00/june/000621/applstocksplit2.shtml
5http://www.nobelprize.org/nobel prizes/physics/laureates/1973/press.html
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ever that IBM’s gross income passed $10 billion dollar level in which they earned $10.99

billion and their net earnings increased to $1.57 billion 6.

January 1993

The analysis in Figure 4.2 indicates a decrease in market risk and an increase in the other

two risks. At the end of December 1992, IBM announced its plan to reduce its worldwide

workforce by about 25,000 employees in 1993 while further reducing its global manufac-

turing capacity. By announcing the reduction in the amount of employees worldwide and

manufacturing capacity, this caused the size and value risks to go up 7.

December 1999

While the “market risk” and “value risk” are down significantly, “size risk” is up according

to our analysis. The annual report indicated an exceptional business performance during

1999 with revenue increase of 7% and net earnings up by 22% over the prior year. IBM

also announced in December 1999 a $100 million research initiative to build “Blue Gene”,

a supercomputer that is 500 times faster than the top desktop computer of that time. The

speed and power of “Blue Gene” will aid scientists in modeling the folds of human proteins

to gain better knowledge in diseases and methods to control them. Market risk and size

risk would go down as this event would be perceived as good news by shareholders and the

general public because people would be impressed by IBM’s technology advancement and

business performance 8.

February 2001

Market risk is suddenly up along with the slight increase in two other risks shown in

index 697th in Figure 4.2. IBM was faced with an Alien Tort Claims Act filed against them

in February 2001 for their controversial business practice of their role in IBM’s subsidiary,

the Dehomag, during World War II. The Dehomag gave the Nazi party the means for a

large census of the population and for searching its data through the punch card technology

that facilitated the Holocaust. IBM was accused of providing the punch card, in which they

leased and maintained the Nazi’s collection of card punch machines, and for covering up the

6http://www-03.ibm.com/ibm/history/documents/pdf/1970-1984.pdf
7http://www-03.ibm.com/ibm/history/documents/pdf/1990-1995.pdf
8http://www-03.ibm.com/ibm/history/documents/pdf/1996-1999.pdf
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Dehomag’s actions. Market-risk would go up in this case as this is a very controversial issue

in which the general public’s view on the company’s morals and ethics are impacted. People

are less likely to invest or feel confident in a company that does not have a high standard of

business practice and ethics especially for a company that is as large as IBM 9.

GE
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Figure 4.3: FF-PC: abnormal changes in multifactor systematic risk of GE

Figure 4.3 displays significant changes in the three-factor systematic risk of General

Electric Co (GE). The detected month indexes are 20, 55, 318, 475, 895, and 964 which

corresponds to Sept. 1929, Aug. 1932, July 1954, Aug. 1967, Aug. 2002, and May 2008.

May 2008

The month index 964th indicates the decrease in the “market risk” in contrast to the

increase in the other two risk factors. In May of 2008, General Electric announced that it

would sell its appliances division. At that point, the appliances division was slow-growing

and putting a drag on the company. Thus, GE announced to close it down so that they

could focus on their faster-growth products. Shares of GE went down 24 cents. The closing-

9http://www-03.ibm.com/press/us/en/pressrelease/1388.wss
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down would reduce the size of the firm and increase the “size risk”. Shortly before this

announcement, GE had shocked analysts by falling short of their first quarter earnings

estimates. In addition, they had a 6% decrease in profit and lowered their forecast for the

rest of the year which explains the increase in value risk. One of the causes for the poor

results was due to the increase in metal prices and aggressive competition overseas as GE

only competes within America and did not expand overseas. However, the event did not

affect market risk much since it still showed a positive trend in GE when they were focused

on their fast-growing business division 10.

August 2002

All risks abruptly are down at month index 895th according to our analysis. GE co-

operated with NASA in August 2002 in a study to develop a jet engine to power the space

shuttle’s rocket booster back to land so that they would not have to be retrieved from the

ocean. Their current practice involved the rocket boosters being parachuted in to the sea and

retrieved from the sea for reuse after launch. GE’s study with NASA consisted of designing

and developing a jet engine that would fly the rockets’ boosters to a designated landing

place shortly after launch 11. Thia project boosts GE as a leader in Jet Engines and their

innovation capability. Investors would feel confident about this big project and the “market

risk” and “value risk” of GE stock during this time reduced significantly.

July 1967

What happened to GE stocks at index 475th when all the risks rise fiercely? The Surgeon

General of the U.S. Public Health Service said that General Electric Co. had been unable to

locate about 9000 color television sets that may be leaking excessive X-rays. He urged anyone

owning a suspected set pull the plug. With this serious problem with TV products and the

bad news announcement, it would be hard to convince stock buyers that the company’s

shares are not risky to invest in 12.

July 1954

All risks are down at index 318th which indicates a positive sign for GE stock. According

10Frank Ahrens , The Washington Post, 17-May-2008 and Shawn Langlois , Dow Jones Business News,
15-May-2008

11Associated Press Newswires, 29-Aug-2002
12J.V. Reistrup, The Washington Post, 22-July-1967
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to the quarterly report, the company’s earnings for the first six months of 1954 reached

a record of $93,856000, an increase of 24 per cent over last year’s first-half earnings of

$75,417,000, Ralph J. Cordiner, president, announced in 21-July-1954. This good news

would encourage investors to invest in GE as the company had strong earnings, thereby

reducing the systematic risks. 13.

Oil Portfolio:
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Figure 4.4: FF-PC: abnormal changes in multifactor systematic risk of oil portfolio

Figure 4.4 displays the significant changes in the three-factor systematic risk of the oil

portfolio. The detected monthly indexes are 394, 576, 647, and 688 which corresponds to

Feb. 1984, Apr. 1999, Mar. 2005, and Aug.2008.

August 2008

According to Figure 4.4, all three risk factors decrease. Oil prices plummeted because it

was predicted that demands for oil and gas will decrease in the future. Chairman Bernanke

issued a statement to the Senate that high energy prices and slower economic growth limited

US households to purchase fuel and other necessities. The prices of commodities were rapidly

deflating because of the recession US was facing. Oil prices were 16% from the closing high.

13Baltimore , The Sun, 21-Jul-1954
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The risks would decrease in this case as long-term investors saw the price decline in stocks as

a buying opportunity and the statement made by the chairman would create some reaction

from the government to recover the energy industry . For example, in 2006 when crude

prices fell from over $70 to $50 a barrel , investors flocked to buy oil stocks as they believed

it would be a “safe haven” as prices will eventually go back up again which Exxon Mobil

witnessed as one of its largest stock gains ever of over 30% 14.

March 2005

All three risk factors suddenly increase during this time. Shares in oil declined as oil

prices past $53 a barrel due to a series of refinery problems in Texas. Rising oil prices caused

a decrease in the stock market as they raised costs for companies and consumers. During

this time period, there was a shortage in the supply of oil and OPEC had announced that

they would increase the production ceiling by 1/2 a million barrels a day. Demand being

greater than supply drove the oil prices higher in trading while shares of oil fell greatly. A

part of the cause for a shortage of supply was due to China. China consumes roughly 6.4

million barrels a day and was predicted to double by 2020. China in 2005 had 20 million

cars and trucks which could easily be 120 million by 2020 15.

April 1999

During this period, while market risk (β) increases firmly, the two other risk factors

decrease. Oil share prices increased in April 1999 because of the Balkins crisis in Kosova

between the Serbs and ethnic Albanians combined with the export cuts by Iran and Saudi

Arabia. Crude increased as reports of the Serbian force had crossed the border into Albanian

territory. War creates a great demand for jet fuel and heating oil causing oil prices to become

more expensive. To summarize, oil prices rose and shares fell as people were uncertain about

the war in Kosova and the supply cut from major exporting countries. This affected the

market risk in a negative way since investors were worried about the war which would

decrease the stocks’ price16. In addition, this was also a time period of increasing oil surplus

due to the economic recession in Asia lowering demand for oil. However, major oil producing

14http://money.cnn.com/2008/07/16/markets/oil/index.htm
15Robert J., “A New Era for Oil”, The Washington Post, 30 March 2005
16Catherine Evans, “Oil firms cash in on price rises”, Reuters News, 1 April 1999
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nations were trying to impose productions quotas to curve worldwide oil surplus. This action

to reduce the surplus situation caused the reduction in the value risk and size risk as investors

reacted to the the reduction of the oil surplus. This was indicated in crude futures rising 64

cents and oil companies such as Exxon rose $3.25 in share price confirming that the problem

was effectively being dealt with.

February 1984

There is a significant increase in value risk as compared to the two other factors during

February 1984. Fears of an Iranian blockade off the Strait of Hormuz, which is one of the

main lifelines of world oil supply, caused international oil prices on spot markets to rise.US

spot crude oil prices rose sharply to reflect the fear that individuals faced. Investors were

uncertain about the outcome of this potential blockade, thus making them unsure about the

real market value of oil stocks relative to companies value. As a result value risk went up.

Again, we can see the important role the Arab countries play in controlling the oil industry.

The war in the area affected the world oil supply and more specifically the US 17.

Banking Portfolio

Figure 4.5 displays the significant changes in three-factor systematic risk of the banking

portfolio. The detected month indexes are 277, 447, 566, 680, and 777 which corresponds to

Nov. 1966, Jan. 1981, Dec. 1990, May 2000, and July 2008.

June 2008

All risks increase significantly according to our analysis. US bank stocks declined at

their lowest level after analysts predicted that credit losses would increase. Analysts also

predicted that quarterly earnings would fall short of already low expectations involving more

capital raises, dividend cuts, and more asset sales which caused panic in the stock markets.

Bad news had piled up in the U.S. Several issues had caused the decline. The first was the

failure of a mid-sized bank, IndyMac Bancorp, owning $18 billion in deposits marked the

biggest US bank failure in nearly 25 years. However, IndyMac was not the only bank as

ninety other banks were also on the watch. Falling home prices contributed to the losses

17Seth Mydans, “Oil Up Sharply on Fear Of an Iranian Blockade”, The New York Times, 28 February
1984
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Figure 4.5: FF-PC: abnormal changes in multifactor systematic risk of banking portfolio

for financial institutions holding mortgages. Fannie Mae and Freddie Mac, government

sponsored agencies that held 5.2 trillion in mortgage debt and owned half of US home loans

had also cried for help. In addition to the bank failure, falling unemployment rates added

to delinquency problems among mortgage borrowers 18.

May 2000

All risks decrease in April 2000 (index 680th) and then quickly increase a few months

after. After the long term effect by the world economic crisis and $3 billion collapse of the US

hedge fund Long Term Capital Management (LTCM), the Clinton administration described

the financial situation as the most serious in the post-war period. Interest rate cuts at the

end of 1998 and in the lead-up to 2000 helped inflate the US financial bubble even further,

until it reached its peak in April 2000 19. The bubble was caused by the public’s obsession

with the Internet and speculation in stocks which caused the stock market to be overvalued.

Investors poured money into Internet stocks. What this meant for the financial side is that

when the economy is in a bubble, the financial systems have excessive monetary liquidity

18Dan Wilchins, Reuters News , 7 July 2008
19http://www.theamericanconservative.com/articles/banking-on-the-bubble/
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translating to easy credit and large disposables income. Thus, more money, credit, and debt

are created. All risks would go down because this was a time period where everyone would

turn to banks to borrow money in order to invest in higher return investments as interest

rates were low and returns would be greater than having a savings account at the bank 20.

December 1990

According to our analysis, the market risk increases strongly at index 566th while other

risks have very small fluctuations. December 1990 marked the announcement made by the

Federal Deposit Insurance Corporation, which guaranteed deposits in US banks, that they

could run out of money by mid-1991 due to the crisis faced by US banking industry that could

lead to widespread failures the following year. The US had their largest banks operating over

the edge of insolvency. The FDIC projected that there would be $63 billion linked to bank

failures. The crisis in the banking system arose from declining industrial production, rising

unemployment, high inflation, depressed retail sales, and declining property market. Market

risk increased in this case because of the public’s fear of bank failures and their deposits not

being guaranteed. The FDIC was predicted to run out of money for these guarantees. By

the end of 1990, three hundred and eighty two banks had failed in the US and two hundred

and seventy one banks failed the following year 21.

December 1980

All risks are down according to our analysis. Wall Street trading volumes sky-rocketed

to 69.6 million shares in December 1980 as banks reached what investors called “peak fever”.

There was an expectation of a cresting in interest rates. The prime rate was at 21 percent

a record high. Bank stocks in particular increased as analysts, James Wooden and James

Carter from Merrill Lynch, stated that near-term earnings would be favorable for banks in

a period of falling interest rates. All risks would go down because of the optimistic feedback

from the analysts providing a belief that investments in the banking industry would yield a

positive return 22.

20http://www.wsws.org/articles/2002/mar2002/lec2-m15.shtml
21Simon T,“Banking industry faces widespread failure”, Washington Post, 17 December 1990
22Vartanig G., “Utility, Bank Stocks up in 5th-heaviest Trading”, The New York Times, 19 December

1980
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Figure 4.6: FF-PC: abnormal changes in multifactor systematic risk of real estate portfolio

Figure 4.6 displays the significant changes in the three-factor systematic risk of the real

estate portfolio. The detected month indexes are 198, 397, 406, and 418 which corresponds

to Nov. 2002, Feb. 2001, Nov. 2001, and Jul. 1984.

November 2002

Figure 4.6 shows the rise in the “market risk” and the decrease in the “value risk” and

“size risk”. According to analysis, November 2002 was when sale of previously owned houses

jumped to their highest level in six months. Low interest rates helped boost the purchase of

pre-owned homes by 6.1%. Rates for 30-year fixed mortgages were below 6.5% - the lowest

in at least 31 years 23. However, this caused people to worry that increased housing sales

and housing prices caused by low interest rates could lead to a housing bubble in the midst

of popping. The public was concerned with the growing distance between the increasing

home prices and income, which did not increase fast enough to keep pace with the rising

costs of homes. It was feared that as soon as interest rates started rising again then the

23Barbara H., USA Today, 26 November 2002
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bubble would pop. This caused market risk to go up as people lost confidence and were not

certain about the housing market due to the oversupply of housing and a worry that as soon

as there is weak income growth, job losses, and a decrease in consumer confidence, the buble

would pop. People did not buy homes as their fear surpassed the low interest rates 24.

November 2001

November 2001 indicates an increase in “market risk” and “value risk”. Even though the

housing market had begun to rebound after a miserable September, consumer confidence

increasingly weakened. This was due to the rising unemployment and continued layoff an-

nouncements. In November, 23% of consumers said jobs were hard to get, up from 20.6% in

October. The decline in consumer confidence pushed stocks lower. Even with the previous

month rebound, sales were still weaker than they were late summer of 2001, when sales of

existing homes had hit a record pace of 5.54 million units. The inventory of available homes

fell 10.1% to a total of 1.95 million homes. That drop suggested that fewer homeowners were

putting their houses up for sale, possibly because they viewed the market as weakening. “If

people are not listing their homes to sell, those are the same people that would have bought

a trade-up house and now won’t”, said David Lereah, the NAR’s chief economist 25.

February 2001

The “market risk” is up according to our analysis. The Dow index dropped down to 106.8

from 115.7 in January for the fifth straight month due to an uncertainty in employment and

declining economic conditions. Consumer confidence was low and was indicated by a decrease

in consumer spending, which accounts for two-thirds of U.S. economic activity. New home

buyers hit the lowest level in 11 years, dropping 10.9% even with falling mortgage rates.

Existing-home sales plunged 6.6 percent in January, to an annual rate of 4.65 million units.

It was the slowest sales rate since the 4.54 million in January 2000 and well below the 4.98

million level forecasted by economists 26. Pre-owned home sale, which made up 80% of

the overall US housing market declined by 6.6% to an annual rate of 4.65 million units;

indicating the slowest sales rate since January 2000. “Given the fears of layoffs and an

24Nena G., “Is housing market a bubble that’s waiting to burst”, The Boston Globe, 24 November 2002
25Patrick &Greg , The Wall Street Journal, 28 November 2001
26Reuters News, 27 February 2001
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economic recession, more and more people are starting to sit on the sidelines, and take a

wait-and-see attitude” before buying a home, said Sung Won Sohn, chief economist at Wells

Fargo & Co. He said his bank, one of the largest mortgage lenders in the country, was

seeing a particularly noticeable drop-off in sales of high-end homes 27. Thus, the real estate

industry was performing poorly because of the low sales of homes causing the market risk

to rise as people were uncertain about the economic condtions.

July 1984

“Market risk” and “size risk” increase strongly while “value risk” is down based on our

analysis. The Deficit Reduction Act of 1984, now called the Tax Reform Act, was signed

into law by the President on July 18, 1984 to help cut the federal deficit by $50 billion

over a three-year time span and proved to be a very controversial piece of legislation. Many

American taxpayers were unfavourably affected by this new tax law, but especially real estate

investors. The new law consisted of tax implications on real estate sellers who helped buyers

in the financing of investment property. Prior to the act taking effect, sellers of investment

property had to charge buyers on mortgages offered by sellers at least 9% interest. After

the act, an interest rate of no less than 10% of the prevailing rate on Treasury notes of

similar maturity must be charged by sellers . The real estate investors perceives this Act to

be bad news because real estate companies would face a harder time selling property, thus

market risk and size risk would go up. As stated by investment advisor Arnold G Rudoff. of

California-based Spectrum Financial Group,“A real killer in the new act, especially for real

estate transactions, was the provision requiring that all depreciation recaptured be taken

into account in the year of the installment sale regardless of the amount of cash or other

consideration receive at that time” 28.

4.4 Summary

In this chapter, the PCM used to determine the changes in the market risk in [69], [70] is

applied to detect the significant changes in the multi-factor beta. Accordingly, the multi-

27Patrick B., The Wall Street Journal, 27 February 2001
28“ Real estate investors may feel bite of Deficit Reduction Act”, Gary S.Meyers, Herald Journal, 8-Oct-

1984
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variate modified Kalman filter is also presented in order to track the “market risk”, “size

risk” and “value risk” simultaneously. The empirical test results and event-study indicates

the great application of the multi-factor beta PCM in detecting the significant events. The

economic events in the case studies also explain the sudden changes in the multi-factor beta.

By analyzing the abnormal changes in the multi-factor systematic risks based on the signal

processing modeling technique and the economic events, we prove that the signal processing

technique is a promising method for financial market analysts.
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Chapter 5

Piecewise Mean Reverting
Multi-factor Beta Model

5.1 Introduction

In chapter III, the availability of the time-varying multi-factor beta models used to describe

the market models are tested and show great improvement in the betas estimation. These

results confirm the time-varying characteristic of the multi-factor beta. Moreover, chapter

IV indicates the reliability of the jump process in detecting the abnormal changes in the

multi-factor beta while still maintaining an accurate estimation. The Piecewise Constant

Model (PCM) introduced in chapter IV, is in fact the Random Walk Model (RWM) with a

jump process because it assumes beta follows the random walk process if there is no jump.

Alternatively, this chapter introduces a new way of detecting sudden changes in the multi-

factor beta by modeling beta as a mean reverting process after each jump, called Piecewise

Mean Reverting (PMR) model. This model is based on the observation seen in the previous

two chapters that the “market risk”, “size risk” and “value risk” tend to revert around their

means and incur sudden jumps when there are important events. Different to the PCM

in chapter IV, which the multi-factor beta stay almost constant after each jump, the PMR

model allows the three betas to revert to their means after each jump with different reverting

speeds depending on the model’s parameters.

Our simulations and empirical tests demonstrate that the proposed model outperforms

the traditional PC and RWmodel based on the RMSE criteria. It also does well in explaining

the effects of different type of events on the market risk.
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5.2 Piecewise Mean Reverting Model

Assuming that the “market risk”, “size risk” and “value risk” follow a jump-reverting process.

That is, the three betas will jump when a significant event occurs and then revert to their

means depending on a reverting factor. This mean reverting process will continue until

another jump occurs. The reverting factor is denoted by φt and the means are denoted by

β̄, s̄ and h̄. The piecewise jump process (zt), the error terms (ut, ζt), and other parameters

are assumed to be the same as described in chapter IV for the PCM. This model becomes

an original PCM if the reverting factor is set to be one. The PMR model is formulated as

follow for the “market risk”:

βt = (1− φβ,t)β̄ + φβ,tβt−1 + zβ,tuβ,t + ζβ,t, ζβ,t ∼ N(0, σ2

ζβ
), (5.1)

In contrast to the traditional MR model, the φβ,t in this model is time variance. The

parameter φβ,t changes when a jump occurs and stay the same until the next jump occurs.

In order to estimate φβ,t for each jump, we use the maximum likelihood estimation algorithm

in chapter III. The details of the φt estimation can be found in the Algorithm 5.

Based on the observation from chapter III and IV, the “size risk” and “value risk” are

not significant as compared to the “market risk”, we focus on tracking the “market risk”

in this model. The “size risk” and “value risk” are assumed to follow the PCM which is a

specific case of the PMR when φs and φh are set to one. The s and h are modeled below:

st = (1− φs)s̄+ φsst−1 + zs,tus,t + ζs,t, ζs,t ∼ N(0, σ2

ζs
), φs = 1. (5.2)

ht = (1− φh)h̄ + φhht−1 + zh,tuh,t + ζh,t, ζh,t ∼ N(0, σ2

ζh
), φh = 1. (5.3)

For ease in applying the modified Kalman filter in chapter IV, the above equations can

be rewritten in the matrix form:

Xt = (I− Ft) ∗ X̄+ Ft ∗Xt−1 + zt ∗ ut + ζt, (5.4)

where Xt = [βt st ht]
′

, X̄ = [β̄ s̄ h̄]
′

, zt = [zβ,t zs,t zh,t]
′

, ut = [uβ,t us,t uh,t]
′

,

ζt = [ζβ,t ζs,t ζh,t]
′

, ut ∼ N(0,U), and ζt ∼ N(0,Q) .

The error terms ut, ζt are assumed to have normal distributions and uncorrelated. The

other multi-factor model parameters matrix, such as Ft,Q, and U definition can be found
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in chapter IV. Notice that Ft(1,1) = φβ,t while Ft(2,2) = Ft(3,3) = 1. The algorithm 4 in

chapter IV can now be applied to track the multi-factor beta, following the PMR model, by

replacing the “prediction step” (calculate X̂t|t−1) with the following equation:

X̂t|t−1 = (I− Ft) ∗ X̄+ Ft ∗ X̂t−1|t−1. (5.5)

Figure 5.1 displays a simulated 500-sample of the model with the standard derivations σε

= 0.01, σuβ
= 1, σus

= σuh
= 0.2 and σζβ = σζs = σζh = 0.1. The jumps (zt) are set to one

at index t = [40, 90, 150, 190, 260, 350, 320, 400, 430] and φ = [1 0.3 0.9 1 0.95 1 0.5 1 0.7

0.6] accordingly at jump intervals. We can see how the model behaves before and after each

jump occurs. The beta fluctuates around their means, jump significantly and then revert to

their means like an exponential function while s and h behave as in the PC model. In this

model, the parameter φ decides the sharpness of the reverting process and is assumed to be

in the range of [0:1]. The larger φ is, the slower the reverting process is after each jump.
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Figure 5.1: A simulated sample of PMRM

5.3 Modified Kalman Filter Algorithm for PMR Beta

Tracking

In this model, we assume that the parameter φ changes over each jump. In finance, this

means that the effect of each event to the market risk is different. Some events could make
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the risk go up suddenly but it can also recover very quickly while the others could cause long

term recovery. Thus, assuming φ is constant over the whole time series, may increase the

error in the estimation and reduce the ability in expressing the type of event of the market

risk.

In order to estimate the parameter φ, an algorithm based on the log likelihood function is

constructed. Similar to the idea of estimating the model’s parameters in the previous chapter,

the chosen φ satisfies the maximum likelihood function in each jump interval. Algorithm

6 shows the complete procedure in estimating the PMR multi-factor beta. At first, the

jumps are detected by using the modified Kalman filter in chapter IV with an additional

modification mentioned in the above section for this model. The model parameters (except

φ) are also optimized using the maximum likelihood method. Then, the parameter φ is

estimated for each jump interval based on the optimized parameters from the previous step.

Finally, the multi-factor beta is estimated based on these parameters.

Algorithm 5 Estimate φ using log likelihood function for each jump interval:

Require: Z,H,θ̂ = [X0,P0,R,Q,U,η]
Initial Values: φ0;
while Optimum set do
Run Algorithm 1.
Calculate the Log likelihood:
logL(φ|Zt) = −T

2
∗ log(2π)− 1

2
∗
∑T

t=1
logSt −

1

2
∗
∑T

t=1
Ỹ

′

t ∗ S
−1

t ∗ Ỹt

Matlab fminsearch(φ,(-logL))
end while
return φ̂

5.4 Simulations

The simulation procedure includes the following steps:

• Create the multi-factor beta signals (β, s and h) using the PMR Model as described

in the previous section.

• Create the random market return, SMB and HML signals.
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Algorithm 6 Modified Kalman filter for PMR multi-factor beta tracking

Require: Z,H
Initial Values: X0,P0,F0,R,Q,U,φ, η

while t ≤ T do
Model’s parameters estimation:
θ̂ = run Algorithm 2
[jump] = run Algorithm 4 (θ̂)

Estimate φβ,k:
while k ≤ length(jump) do

ˆφβ,k = run Algorithm 5 (θ̂)
end while
Estimates beta:
run Algorithm 4 (θ̂, φ̂)

end while

• Calculate the asset return signal based on the Fama-French model using the simulated

market return, SMB, HML signals and multi-factor beta signals.

• Using the modified Kalman filter Algorithm 6 to track the β, s and h using the simu-

lated asset return, market return, SMB, and HML signals.

• Compare the tracking result to the original simulated multi-factor beta signal based

on the RMSE.

• Vary the φ, σ2
ε , σ

2
η parameters to test the tracking performance when the noise variance

changes.

Monte-Carlo simulations are performed one hundred times to evaluate the estimation perfor-

mance based on the average RMSE of the multi-factor beta and errors in the asset’s return.

The effects of changing the noise standard deviation in the observation model σε and the

noise standard deviation in the state model ση, are determined by the simulation results

shown below.

Simulation 1: Testing the efficiency of the tracking method assuming that the multi-

factor beta follows the PMR model.

Figure 5.2 and 5.3 display the multi-factor beta tracking results using the simulated signals

with 500 samples. The set of noise’s variance and model’s parameter are the same as de-

scribed in Section 5.2. The estimates of β in Figure 5.2, s and h in Figure 5.3 detected all
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the jumps accurately and very closely to the original signals as compared to the PCM. This

shows the modified Kalman filter is efficient in tracking the multi-factor PMR beta in the

Fama-French three factors model, if the multi-factor beta is following the PMR Model.
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Figure 5.2: An example of PMR multi-factor beta tracking for β
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Figure 5.3: An example of PMR multi-factor beta tracking for βSMB and βHML

Simulation 2: The effect of noise in the Fama-French observation model.

The standard deviation of noise σε from the observation model is set in the range of [0.025:0.25].

The other parameters are set as follow: σuβ
= 1, σus

= σuh
= 0.2, σζβ = σζs = σζh = 0.1,

φβ,0 = 0.7. Figure 5.4 indicates that when the noise in the observation model increases, the

accuracy in multi-factor beta estimation decreases implied by the increase in RMSE. Figure

5.4(a) displays the RMSE of the calculated asset return from the estimated multi-factor beta
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as compared to the generated asset return. Figure 5.4(b)(c)(d) show the RMSE of estimated

β, s, and h in comparison to the generated signals. In all cases, the modified Kalman filter

with PMR state model and the Fama-French observation model results in a better estimation

of time-varying β, s, and h as compared to traditional PC and RW models.
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Figure 5.4: Effect of noise in the observation model on the PMR beta tracking

Simulation 3: The effect of noise in the PMR state model.

The variance of the noise σζ from the state model is set in the range of [0.05:0.20]. The other

parameters are set the same as the simulation 2 except σε = 0.025. The results in Figure 5.5

and Figure 5.6 indicate a great improvement in the estimation of β, s, and h using the PMR

model in comparison to the RW and PC, based on the assumption that the multi-factor risk

follows a PMR hold.
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Figure 5.5: Effect of noise in the state model on the PMR β tracking
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Figure 5.6: Effect of noise in the state model on the PMR βSMB and βHML tracking

5.5 Empirical Tests

In this empirical test, we use the same data set of individual stocks and portfolios in chapter

IV. The RMSE and AIC criteria are calculated to evaluate the performance of the modified

Kalman filter in tracking the PMR multi-factor beta. The test results are displayed in Table

5.1 and 5.2.

The following are case studies that indicate the abnormal changes in market risk and the

time variance in the mean reverting factor φ; the manner in which it adapts to the different

type of events and how the stocks or portfolios perform after significant events.

Cisco System Inc. (CSCO)
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Table 5.1: FF-PMR test results for individual stocks

Ticker RMSE AIC Max-loglikelihood

AAPL 0.1144 -1.3252 213.7317
IBM 0.0498 -3.0169 1464.2
GE 0.0419 -3.3103 1605.9
XOM 0.0335 -3.5985 1745.1
CSCO 0.0778 -1.8676 196.5568
MSFT 0.0680 -2.0869 266.8225
RIMM 0.1299 -0.3899 25.3264

Table 5.2: FF-PMR test results for portfolios

Portfolio RMSE AIC Max-loglikelihood

Oil 0.0318 -3.8096 1847.0
Autos 0.0362 -3.5530 1723.1

Banking 0.0329 -3.5615 1727.2
Real Estate 0.0587 -2.6856 1304.1
Computers 0.0354 -3.6751 1782.1
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Figure 5.7: PMR multi-factor β tracking of CSCO

Figure 5.7 displays the multifactor beta estimation results for CSCO based on the PMR

model. There are two significant jumps at index 67th and index 149th in the “market

risk” (β), which corresponds to September 2001 and July 2008. In CSCO history, there

was an important announcement made by Daniel Scheinman, the Senior Vice President, on
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September 13th that “its board of directors has authorized a stock repurchase program of

up to $3 billion over the next two years. The program is effective immediately” 1. During a

stock repurchase program, a company asks stockholders to tender their shares for repurchase

by the company. Although stockholders who offer their shares for repurchase may be at a

disadvantage if they are not fully aware of all the details. As such, an investor may file a

lawsuit with the company, which is seen as a risk 2. In July 2008, our analysis show that

the market risk suddenly went up, then dropped down and reverted slowly to its mean.

CSCO shares slipped to a new 52-week low in the first week of July 2008 after a pair of Wall

Street analysts voiced concerns about the high-tech giant’s upcoming quarter, which may be

pressured by a slowing U.S. economy. The stock has lost about one-third of its value since

hitting a 7-year high in November of 2007, the Wall Street Journal reports. Wednesday’s

drop came after analysts for UBS and RBC Capital Markets issued reports that suggested

the company’s outlook for the fourth fiscal quarter (end of July) would be soft 3. However,

the official quarter report announced that the company’s profit and growth still increased 4.

With low prices and a promising future for the company, investors would be more confident

to invest in the stock considering the risk was going down. The two different φ values were

estimated for the two events which are 0.9162 for September 2001 and 0.9728 for July 2008.

The larger φ indicates the effect of the events in the long term investment.

Research In Motion Limited (RIMM)

Figure 5.8 displays the multifactor beta analysis of RIMM. Focussing on the market risk,

there is a jump and it slowly reverts to its previous risk as estimated φ = 0.847 at index

67th which corresponds to October 2010. This jump can be explained as an important

announcement was made on September 27, 2010. RIMM unveiled the long rumoured Black-

Berry PlayBook tablet that will compete with Apple’s iPad. With all fancy features such

as uncompromised web browsing, true multitasking and high performance multimedia, the

new product was expected to bring RIMM back to being a leader in technology. This good

1http://www.sec.gov/Archives/edgar/data/858877/000109581101504917/0001095811-01-504917.txt
2http://www.investopedia.com/exam-guide/cfa-level-1/corporate-finance/stock-dividends-

repurchases.asp#axzz1yLISDwNT
3http://www.marketwatch.com/story/correct-cisco-hits-new-low-on-worries-about-it-spending-economy
4http://www.financial-gauges.com/2008/08/csco-financial-analysis-through-july.html
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Figure 5.8: PMR multi-factor β tracking of RIMM

news gave investors a higher confidence level to invest in RIMM stock, causing a reduction

in risk 5. The BlackBerry PlayBook was officially released to US and Canadian consumers

on April 19, 2011.

Microsoft Corp. (MSFT)
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Figure 5.9: PMR multi-factor β tracking of MSFT

Figure 5.9 indicates the multifactor beta risk of MFST. There are two significant drops in

5http://wallstreetpit.com/46020-rim-unveils-its-long-rumored-blackberry-playbook-tablet
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the market risk at index 68th and index 230th which corresponds to May 2011 and October

1997. The reverting after the jumps are also very quick as the estimated φ = 0.109 and

φ = 0.23, respectively. In October 1997, the Department of Justice (DOJ) filed a motion

in the Federal District Court, stating that Microsoft violated an agreement signed in 1994

and asked the court to stop the bundling of Internet Explorer with Windows 6. Microsoft

filed its response to the DOJ petition by producing numerous documents demonstrating

that the company had planned to incorporate Web browsing functionality into the Microsoft

Windows 95 operating system (code-named “Chicago” ) as early as 1993, and that the DOJ

knew of Microsoft’s intent prior to the signing of the 1994 consent decree 7. Through all of

their efforts, Microsoft launched Windows 98 on schedule on June 25, 1998 and earned profit

after that. This would explain why the risk recovered so quickly after the bad news as the

risk jumped down to -1.5.

In May 10, 2011, Microsoft confirmed that they had bought Skype for $8.5 billion. This

is one of the biggest acquisitions Microsoft has ever made up to date 8. Buying Skype, the

leading brand within VoIP technologies with 60 million registered users globally, Microsoft

has a significant advantage to compete with both Google and Apple as these companies are

in the process of developing their own VoIP technologies: Apple (FaceTime) and Google

(Voice). This move could help Microsoft recover its loss in online communication. However,

on the investors side, they were concerned about this high price purchase. Michael Clendenin,

director of consulting firm RedTech Advisors, implied that “Microsoft has a high wall to climb

to prove to investors that Skype is a necessary linchpin for the company’s online and mobile

strategy”. Ben Woods, head of research group of CCS Insight, also concerned with “how do

Skype assets work for Microsoft... how do you justify the price?” 9.

Automobile Industry Portfolio

Figure 5.10 displays the abnormal changes in market risk of the automobile industry

portfolio. Using the PMR model, the four significant jumps are detected at index 84 (Aug-

1989), 182 (Nov-1997), 281 (Feb-2006), and 319 (Apr-2009). The abnormal change in beta in

6http://news.bbc.co.uk/2/hi/in depth/business/2000/microsoft/637808.stm
7http://www.microsoft.com/en-us/news/press/1997/nov97/dojpetpr.aspx
8http://www.bbc.co.uk/news/business-13343600
9http://online.wsj.com/article/SB10001424052748703730804576313932659388852.html?ru=yahoo
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Figure 5.10: PMR multi-factor β tracking of automobile industrial portfolio.

November 1997 is due to the global mini market crash on 27 October, caused by the economic

crisis in Asia 10. Risk went down and quickly reverted to the equilibrium with estimated φ =

0.2943. Recovery was fast since the market recovered the following day. In the U.S., the Dow

Jones Industrial Average gained a record of 337.17 points, closing at 7,498.32. One billion

shares were traded on the New York Stock Exchange for the first time ever. In February 2006,

the foreign carmakers were expanding, hiring, and stoking local growth brought upon good

news about America’s auto industry 11. Nissan (NSANY), Toyota (TM), Honda (HMC),

and Mercedes (DCX), opened assembly plants and made investors believe that there would

be growth in the auto industrial portfolio in the market since many companies expanded

their production. The market risk went down and slowly reverted to one with the estimated

reverting factor φ = 1 according to our analysis.

In April 2009, the effect of the automotive industry crisis of 2008-2010, a part of the

global financial downturn, to US automobile industry peaked. The two out of American

“Big Three” automakers (General Motors, Ford, and Chrysler) faced bankruptcy. On April

30, Chrysler filed for Chapter 11 bankruptcy protection from its current creditors. The

U.S. government had described Chrysler’s action as a “pre-packaged surgical bankruptcy”

10http://money.cnn.com/1997/10/27/markets/marketwrap/
11http://www.businessweek.com/magazine/content/06 07/b3971057.htm
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through which it hopes the company will be able to exit the bankruptcy process within 30 to

60 days 12. GM also announced that it would cut 21,000 jobs and close 13 factories. GM had

until the end of May to convince the government it had a viable business plan to restructure

outside the Chapter 11 reorganization13. GM then filed for Chapter 11 in June. The crises

involving the two typical examples above of US automobile industry causes the portfolio’s

market risk to go up significantly. Fortunately, due to the US and Canadian government’s

bailout, the industry slowly recovered indicated by the slow reversion in risk at estimated φ

= 0.9998. 14

5.6 Summary

In this chapter, the PMR model is proposed to express the market risk behaviour based on

the Fama-French model. The model allows beta to change according to the significant events

and revert to its mean with different reverting rates. The empirical test cases indicated that

the RMSE reduces by using the PMR for our selected stocks and portfolios. The sudden

changes in beta and the variance in the reverting rate can also be explained efficiently through

the economic events in our case studies. By simulation and empirical test, we prove that the

model is efficient in tracking multifactor beta of stocks and portfolios in the market.

12http://www.thestar.com/business/article/626832–chrysler-files-for-bankruptcy
13http://money.cnn.com/2009/06/01/news/companies/gm bankruptcy/
14http://www.thestar.com/business/article/626832–chrysler-files-for-bankruptcy
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Chapter 6

Conclusion and Future Works

In this thesis, the performance of the Fama-French model in estimating the systematic risk

is tested in comparison to the CAMP model. The better performance of the Fama-French

model over the CAPM in estimating the systematic risk observed in our analysis, indicates

that not only “market risk” but other risk factors such as “value risk” and “size risk” are also

important for investors to look at. We face the challenges in finding the optimal interval and

data frequency for the multi-factor beta using the traditional OLS estimation. The variance

in the performance criteria of the empirical test confirms the previous research in a sense

that there is no particular method in finding the best time interval for the constant betas

assumption. Although this assumption has been used broadly in practice, economists need

to consider the time-varying issues of risks.

The constant multifactor beta analysis results lead us to explore the time-varying char-

acteristic of the multi-factor beta. By applying the time-varying MR, RW and RC models

to the multi-factor beta analysis using the Kalman filter, great improvement is shown in

the multi-factor beta estimation as compared to the OLS method. The time-varying multi-

factor beta empirical test is conducted on both selected individual stocks and industrial

portfolios. Our tests prove the validity of the time-varying signal processing models in an-

alyzing the multifactor systematic risk in the Fama-Fench model for both individual stocks

and portfolios.

Based on the observation from the time-varying multi-factor beta analysis, there are

significant jumps in the multi-factor systematic risk. The PCM and modified Kalman filter

are used for the purpose of making these observations more clear. Our empirical test indicates
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that the “market risk”, “value risk”, and “size risk” can be tracked using the PCM and the

modified multivariate Kalman filter. Through multiple case studies, the abnormal changes

in the multi-factor beta are explained by economic events. This study demonstrates the

important effects of events on the sudden changes in the multifactor systematic risk.

The economic events found in our case studies are able to explain the abnormal changes

in the multifactor beta for both individual stocks and portfolios. The types of events we

found on the testing stocks and portfolios are very diverse such as stock split, changing in

company management, government control, war, financial crisis, industry bubble and bust,

recession, and etc. An event could affect not only one of the multi-factor risk but it can

also affect all the factor risks. By building the beta tracking framework using the modified

multivariate Kalman filter based on the PCM and Fama-French model, we provide a new

tool which hopefully helps financial analysts to have a more in depth look into the business

performance of firms or industries in order to analyze and predict the risk of their invested

securities.

The MR, RW, RC and PC models bring us a new idea of modeling the multi-factor

systematic risk based on the observation that beta tends to jump when there is a significant

event then reverts to its mean. The proposed PMR model expresses that beta is affected

by economic events on the market and the investments in different scenarios. The model

not only captures the event but also considers the effect of the event afterwards, given the

time varying reverting parameter φ. Some events could cause a sudden jump in beta and

quickly revert it to the mean value while other events could take a long time to recover after

its sudden change. Our new model outperforms the traditional RW and PCM in tracking

the multifactor beta based on the simulations. Our case studies indicate that the model

does convey the behaviour of the market risk during the event period while still maintaining

minimal errors in beta estimation. This model shows potential in becoming one of the

efficient time-varying beta models to analyze the systematic risk in stock markets.

In summary, our research verifies that the time-varying characteristic of multifactor sys-

tematic risk exists and needs to be considered when investing in stocks. The time-varying

signal processing models are more efficient in tracking the multifactor beta as compared to

the traditional regression method. The new piecewise mean reverting model implies the
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significant impacts of different types of events on beta. The beta behaviour varies depending

on the type of economic event. Our multifactor systematic risk analysis based on the signal

processing models framework indicates the connection between signal processing principles

and financial manner.

In the future, we would like to continue researching the following matters:

• The model’s parameters estimation.

In the thesis, the models’ parameters are estimated based on the traditional maximum

log likelihood function. However, in the empirical test, sometimes the estimated set

of parameters fail to describe the model and the initial parameter needs to change

manually to reestimate the model’s parameters. We would also like to build a more

accurate estimation algorithm that is not only based on the log likelihood but also on

other criteria such as RMSE or AIC.

• Apply the multi-factor piecewise mean-reverting model in a more flexible way.

In chapter V, because of limited time, we were only able to test the effect of the model

on the market risk. However, we believe that if applied correctly and a satisfactory

estimation algorithm for φ is achieved, the PMR could also work well in analyzing the

“size risk” and “value risk”. An empirical test needs to be done to explore this.

• An alternative algorithm to detect the jump process.

In chapter IV and V, the modified Kalman filter with Bayes’ criteria is used to detect

the jumps in beta. However, there may be an alternative method that could perform

better. Tracking jump processes using particle filtering has been paid more attention

to recently [69]. It would be a great candidate in building a new multi-factor beta

tracking and used to compare the performance to our current algorithm. In addition,

the Markov Switching model with the two states one and zero can also be used to test.

• Try different models for each risk factor and evaluate the performance.

Our empirical test done on the multi-factor beta assumes that all risks follow the same

model such as MR, RW or PMR. However, we could perform an empirical test on a

larger amount of stocks or portfolios to evaluate if there is a different set of models for
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the multi-factor beta. For example, is it possible for the “market risk” to follow the

PMR model while the “size risk” follows the RWM and the “value risk” follows the

PCM?

• Carhart’s four-factors model.

The model is similar to the Fama-French three-factor model, with an additional factor

“PR1YR” to capture momentum. According to Carhart, the model can be thought

of as a performance attribution model, where the coefficients of the factor-mimicking

portfolios indicate the proportion of mean return explained by the four factors [26]. It

can be applied to our framework to test the performance of this multi-factor model in

comparison to the Fama-French model.
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