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Abstract

MNDL Thresholding with Application od Data Denoising
© Azadeh Fakhrzadeh, 2007

Master of Applied Science (MASc)
Department of Electrical and Computer Engineering
Ryerson University

In this thesis, the problem of data denoising is considered and a new data denoising method
is developed. This approach is an adaptive, data-driven thresholding method that is based on
Minimum Noiseless Description Length (MNDL). MNDL is an approach to subspace selection
which estimates bounds on the desired Mean Square Error (MSE). The subspace minimizing
these bounds is chosen as the optimum one. In this research, we explore application of
MNDL Subspace Selection (MNDL-SS) as a thresholding method. Although the basic idea
and desired criterion of MNDL thresholding and MNDL-SS are the same, the challenges
in calculation of the desired criterion in MNDL thresholding are very different. In MNDL-
SS, the additive noise effects are in the form of samples of a Chi-Square random variable.
However, this assumption does not hold for MNDL thresholding anymore. In this research,
we developed a new method for calculation of the desired criterion based on characteristics
of noise in thresholding. Our simulation results show that MNDL thresholding outperforms
the compared methods.

In this thesis, we also explore the area of image denoising. In image denoising approaches,
some properties of the image are considered. One of the well known image denoising methods,
that outperforms other methods, is BayesShrink. We compare our method with BayesShrink.
We show that the results of MNDL thresholding are comparable with BayesShrink in our
simulations.
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Chapter 1

Introduction

We recognize different phenomena by collecting data from them. The data is digitalized and
saved in computer for analysis. Defective instruments, problems with the data acquisition
process, and interfering natural factors can all degrade the data of interest. Furthermore,
noise can be introduced by transmission errors and compression. Thus, denoising is often a
necessary step to be taken before data processing. Different approaches have been introduced
for denoising. Some of them like Wiener filters, are grouped as linear techniques. While
these methods are simple to implement, their results are not always satisfactory. Therefore,
researchers have improved the performance of existing methods by developing nonlinear
approaches ( for example [1] ,[2] and [41]). Although their approaches have succeeded in
improving the results, their suggested methods are usually computationally exhaustive and
hard to implement. In [3] Donoho and Johnstone introduced an interesting method which is
both simple and effective in comparison with other techniques. The main issue in such an
approach is to find a proper threshold. The threshold that Donoho and Johnstone introduced
is called VisuShrink [3]. This threshold is a non-adaptive universal threshold and depends
only on the number of data points and noise variance. Another recently introduced denoising
method is called Minimum Description Length (MDL) thresholding [4]. MDL defines the
Normalized Maximum Likelihood (NML) as the description length of the noisy data. of the
noisy data in each subspace of the basis functions. A threshold which minimizes an estimate

of the description of length is then chosen.
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Thresholding is also used in image denoising. An improper threshold may introduce

artifacts and causes blurring in the image. Different approaches have been suggested on
this subject and the famous ones are BayesShrink and SureShrink. SureShrink [5] uses a
hybrid of the universal threshold and the SURE (Stein’s Unbiased Risk Estimator)threshold.
The SURE threshold is chosen by minimizing Stein’s estimation. BayesShrink [6] attempts
to minimizes the Bayes’ Risk Estimator function assuming a Generalized Gaussian prior
distribution and thus yields a data adaptive threshold.

In this thesis, we develop a new denoising method called Minimum Noiseless Description
Length (MNDL) thresholding. This method is based on MNDL Subspace Selection (MNDL-
SS) which has recently been proposed by Beheshti and Dahleh [7]. MNDL-SS chooses the
subspace that minimizes the description length of "noiseless” data. For this purpose, MNDL
provides bounds on the reconstruction error. The 'subset of order m represents the bases with
only m nonzero coefficients of the estimated denoised signal. For each subset The bounds
on the reconstruction error are estimated and the subset that minimizes the upper bound of
the reconstruction error is chosen as the best subset for representing the noiseless data.

In MNDL thresholding the desired criterion is the same as MNDL-SS. However, the
characteristics of additive noise are different from MNDL-SS. Therefore, the main challenge
is to develop a new method for estimating the desired criterion. In this research, we analyze
the effect of additive noise in MNDL thresholding. Using the new approach, we calculate the
optimum threshold. This threshold is a function of the noise variance o2, the data length
N, and noisy data itself. We use some existing methods which are used as benchmark in
recent papers and compare MNDL with them. The results of MNDL are very interesting.
MNDL as a signal denoising method outperforms MDL and VisuShrink in our application. Its
performance as an image denoising method is much better than SureShrink and is comparable
to BayesShrink.

List of Notations:
N: Length of data
y: Noisy data,



7: Noiseless data

w: additive noise

7: Noiseless data estimation

0: Wavelet transform of y

0: Wavelet coefficients of §

0: Wavelet coefficients of §

V: Wavelet coefficients of w

y(7): The ith sample of y",

y™ :A vector with length of N, y¥ = [y(1),y(2), ..., y(N)]T
Y (f): Fourier transform of y

nr(.): is a function applies the threshold T on its input
Y: is a random variable and y is a sample of it

| ¥V ll2: lo -norm of vector yV:y/SN, y2(3)



Chapter 2

Background

2.1 Data Denoising in Wavelet Domain

The poor quality of acquisition systems has always caused data to become corrupted with
noise. Therefore, researchers, have been developing certain techniques to minimize the effects
of contaminating noise. In data denoising techniques, we estimate the noisecless data using
available noisy data, along with some statistical knowledge of additive noise. Different models
have been suggested to describe noise; one of such noise models, which is frequently used
in literature is Additive White Gaussian Noise (AWGN). This model has been known to be
successful in describing the noise and is tractable in both the spatial and frequency domains.
Therefore, in this work our focus is on data degraded with AWGN. This additive noise is
independent from noiseless data. The y(i) which is the i-th sample of noisy data is defined

as
y(8) = 9(2) + w(2), (2.1)

where §(2) is the i-th sample of noiseless data and w(z) is i-th sample of AWGN noise with
zero mean and constant variance 2. Different denoising techniques estimate the noiseless

data differently. Mean Square Error (MSE) is one of the standard criterion used to estimate

the noiseless data and is defined as:

MSE = E[| YV - YV |13] (22)



_ _ _ _ . 5
where YV is [P (1), 7(2),.., V(V)]T, N is the length of data, YV is an estimate of noiseless

data. The general algorithm for most of the data denoising methods is shown in Figure

2.1. As we can see in this figure, the first step in data denoising is to transform the data

_l?asis' Denoisi Inverse basis

. ransformation enoising transformation 50

y(l)—o —» Technique  |— — y(l)
+ — X X — +

Figure 2.1: General algorithm for data denoising

from time domain into another domain. We do this transformation in hope of seeing further
information of data, which is not obvious in time domain. More importantly, we hope to find
a new domain in which the noiseless data is represented with fewer coefficients than that of
additive noise. Applying a kind of transformation on data, we find the data representation
in space SV (N is the length of the data). The space SN can be expanded by its orthogonal
bases vectors [s(1), 5(2), (3), ..., s(IV)] such that

0 ifi# .

where < s(i),s(j) > is the inner product of vectors, s(i) and s(j) and is calculated as

<4adﬂ>={li“=j’ 23)

< 5(i).s(j) >= sT(i)s(j). The noiseless data, using this new base, is defined as follows:
N_<ng
g = _0()s(d) (2.4)
i=1

where (i) is the i-th coefficient of the noiseless data. The noisy data in space SV is:
N N
y™ =3 0(:)s(d) (2.5)
i=1

Please note that since SV is a space with orthogonal bases we still have a Gaussian noise
added to noiseless signal in SV. In other words, the Equation 2.1is held for the corresponding
coefficients:

0(i) = 0(3) + V (3), (2.6)
where W (4) is the i-th noise coefficient in SN . Different transforms have been suggested. The

most commonly used ones are the Fourier and wavelet transforms. The wavelet transform has
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some advantages over other transforms and has mostly been used in many areas. Although

we can generalize our research, here we focus on the wavelet transform. The next section

briefly introduces the wavelet transform and its properties.

2.1.1 The Wavelet Transform

The wavelet transform, has recently been introduced, and because of its unique properties
has become very popular. In order to see how the wavelet transform works and what its prop-
erties are, let us compare it with the well-known Fourier Transform. The Fourier transform

decomposes a signal into the spectrum of its frequency components:
+00 .
X(f)= [ sttt 27)
)

where z(t) is the signal in time domain and X(f) is its spectrum. Applying the inverse
Fourier transform on X(f), the time domain function can be synthesized. The inverse

Fourier transform is :

2t = [ X(e ity (2.8)

The Fourier transform provides information about the frequency components of a signal,
which can not be easily seen in time domain. Despite being very useful, the Fourier transform
does have one drawback. When one looks at the output of the Fourier transform, is not
able to discern where each of these frequency components has occurred in time domain.
There are situations, in which we would rather have both frequency and time information
simultaneously. To solve this problem, Gabor [8] has suggested the Short Term Fourier
Transform (STFT). In STFT we move a window over the entire signal and take the Fourier
transform in the windowed data. This approach solves the Fourier transform’s problem
to some extent. According to the Heisenberg’s Uncertainty Principle, one cannot measure
the frequency and time simultaneously with arbitrary precision, and Windowing-based the
Fourier transform provides only a range of frequency components. The STFT with large
window gives good frequency resolution and poor time resolution, while the STFT with

small window size makes a better time information but poorer frequency information. This
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shortcoming of the STFT was the motivation behind the development of a new transform.

Therefore, the wavelet transform was born. The wavelet transform is a windowing technique
like the STFT. However, rather than using a fixed window size for the entire signal, it
employs a varying window size for different parts of the signal. The Fourier analysis consists
of breaking up a signal into sinusoidal waves of various frequencies. wavelet analysis is the
breaking up of a signal into shifted and scaled versions of the mother wavelet. Wavelets are
a better tool for analyzing signals with sharp discontinuitics. The reason that the wavelet
transform can detect the discontinuity and the Fourier transform cannot, lies in the difference
between the basis functions of these two transforms. Sinusoid are smooth and predictable.
However, wavelets have a limited duration and are irregular and asymmetric. After taking
into consideration all the advantages that the wavelet transform has, we chose it as our

transform. In the next section, we briefly discusses the implementation of this transform.

Implementation of the Wavelet Transform

Before discussing implementation, we need to become familiar with wavelet basis functions
and see how we can find the new representation of signal using these bases. The continuous
wavelet transform is defined as a sum of the multiplication of signal to scaled and shifted

mother wavelet (basis functions) over all time. As a result of the wavelet transform we have

o7 = [ fewr, o)de (29)

where * denotes complex conjugation, 9, is scaled and shifted wavelet function, (I, 7) is a
wavelet coefficient which is a function of scale, [, and translation, 7. wavelet functions, ¥ -,

are defined based on mother wavelet 9;; as following,
1 t—-7
(t) = —=y(——— 2.10
vielt) = 20 () (210)

The inverse wavelet transform is defined as:

= :" [ :° 61, 7)9;, (t)drdl 2.11)
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The wavelet theory is based on the general properties of the wavelets. Here, we briefly take

a look at some wavelet properties. A wavelet function must satisfy the admissibility and the
regularity condition. The admissibility is defined as follows:
+oo [\ 2
ROy <o (2.12)
- |f]
where |U(f)| is the amplitude of Fourier transform of ¥(t). From admissibility, one deduces

that the amplitude of Fourier transform of (t) vanishes at zero:
1 (f)Plj=0 =0 (2.13)

The equation above tells us that the wavelet should be like a band pass filter. The Equation
2.13 is also equivalent with

+00
/_ (it =0 (2.14)

which means that the wavelet must be oscillatory (or in other words a wave). Another prop-
erty of the wavelet function is its regularity. Based on regularity condition, the wavelet func-
tion should have some smoothness and concentration in both time and frequency domains.

We need to discretize the data and transform tools (wavelets) to do all the computations by

Figure 2.2: Discrete wavelet Transform (DWT) algorithm.

computer. For discretization, data is sampled with Nyquist sampling rate so that no infor-
mation is lost. After data sampling, the discrete wavelet series is applied on data. To reduce
the computation time different algorithms have been introduced, and the most efficient one is

Discrete Wavelet Transform (DWT). DWT is implemented with the concept of filter banks,
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where a series of high-pass and low-pass filters are applied to a signal. A subsampling step is

done after filtering. The procedure is shown in Figure 2.2. Data u is passed from a low-pass
and high-pass filter followed by subsampling by two. The high-pass filter output which is
called detail subband, has half time resolution. The low-pass filter output which is called
approximation sub-band, is used for further decomposition. This method is simply extended
for 2D data (like images). For 2D data, the theory of DWT is the same as 1D but how we
apply the filters is different. Images are stored in the computer in a matrix format with M
rows and N columns. In every level of decomposition, a high-pass and a low-pass filter are
first applied on rows. Consequently, we will have two horizontal approximation and detail
subbands. Each of these two subbands is then filtered on columns. Therefore, in every level
of 2D DWT, we have four subbands. Three of them are details and one of them, which
is the output of low-pass low-pass filter, is the approximation subband . Just like 1D the
approximation is used for further decomposition levels. Figure 2.3 shows the three levels of
decomposition of Lena. After applying the wavelet transform we can employ one of the data

Recons. appeoxmmation ccef. of lzvel 3

Decommposition et level 3

Figure 2.3: 2D DWT with 3 levels of decomposition. The figure was generated using matlab
“wavemenue”
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denoising methods on wavelet coefficients and estimate the noiscless data cocfficients. The

inverse wavelet transform is applied on noiseless coefficient estimations and the denoising
data is complimented. Wavelet shrinkage is one of the well known denoising methods in the
wavelet domain. The denoising method that we suggest in the next chapter, is categorized

in this area. Thus, we review wavelet shrinkage in the next section.

2.2 Wavelet Shrinkage or Thresholding

Wavelet Shrinkage Method (WSM), also known as thresholding is a nonlinear and nonpara-
metric signal denoising technique. When orthogonal wavelet bases are used, the coefficients
with small absolute values tend to be attributed to the additive noise. By taking advantage
of this property, finding a proper threshold, and setting all absolute values of cocfficients
smaller than the threshold to zero, one can suppress the noise. Different applications for
wavelet Shrinkage exist. Weaver et. al. [9] have used it in signal and image processing for
the first time. The first thorough mathematical trcatment of wavelet thresholding has been
done by Donoho and Johnstone [3].
In general, two thresholding methods exist: hard and soft thresholding. Hard threshold-
ing kills or keeps the noisy coefficients by comparing them to the threshold
i -{ 10 101z e
where (3) is the i-th sample of estimate of noiseless data, and |0(3)| is the absolute value of i-
th noisy coefficients and T}, is the hard threshold and . Soft thresholding kills the cocfficients
below T} and subtracts the threshold from any coefficient that is greater than the threshold:

é(l) = { Zlgn(o)(w - TsD :g Iz; Z ;::’ (216)

where Ty is the soft threshold. Figure 2.4 shows the both thresholding methods.
The threshold that Donoho and Johnstone first suggested is called VisuShrink and is a
function of noise variance and data length. They have estimated the Mecan Square Error

(MSE) as defined in Equation 2.2, which is a measure of the error between the estimated
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.
/ T, ! / T,

Figure 2.4: Left: Hard thresholding , right: Soft thresholding

and noiseless data as a function of the threshold. VisuShrink is the threshold that minimizes

. this risk and is defined as follows:

Tyisu = Ouw\/2l0g N (2.17)

where o, is the variance of noise and N is the length of data. This threshold, is a hard
threshold and is more suitable for smooth signals. Later Walczak and Massart [10] and
Saito [11] used the Minimum Description Length (MDL) principle suggested by Rissenan
[4] and proposed hard thresholds which are very much like Ty;,. Their suggested hard
theresholds are o,,v/Iog N and 0,,v/3Tog N respectively. MDL is a technique from algorithmic
information theory. Based on MDL the best hypothesis for a given set of data is the one
that leads to the largest compression of the data. Here we refer to denoising method using
the threshold o+v/log N, as MDL thresholding. MDL thresholding and VisuShrink are two
signal denoising methods that we compare with our own in the hard thresholding section. As
we extend our denoising method to images , we briefly give an introduction about popular

image denoising methods in the next section.

2.3 Image Denoising
One of the most widely used image denoising method is based on Bayesian Least Square
(BLS) estimation [16] [34] . The BLS is defined as follows:

% pw(y — 7)pp(9)7dy
% (4 = D)pr @) (2.18)

+00
i) = B@ly) = [ prv(aly)gds =
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where y is a sample of random variable Y, 7 is a sample of random variable Y, P9y (WlY)

denotes the density function of § given y, py is the probability density function of noise
and py is the prior probability density function of noiscless data. To solve Equation 2.18,
in addition to probability of noisc coefficients, we must know the probability of the noiseless
data. If we assume a Gaussian distribution for noiseless data coefficients the BLS results
in a linear solution to estimate the noiseless data. This linear solution which is also called

Wiener Filter, is frequently used in the literature.

2.3.1 Wiener Filter

Wiener filter is a linear denoising method. For every pixels of image like y(i, j), the output

of the Wiener Filter is :
Oy
o5+ 0w

(2.19)

906, 3) = (i, 5)
where oy is the standard deviation of noiseless data and o,, is the standard deviation of
noise. For Wiener Filter, we need to estimate the variance of unavailable noiseless data. As
the image is not stationary, it is better to have a local estimate of variance. To estimate the
noiseless data variance, the simplest method which does not need any prior knowledge, is
the Maximum Likelihood (ML) estimator. In this estimator, for each data point, y(i, j), an
estimate of ag(z’, 7) is formed based on its local neighborhood . We choose a square window

B centered at y(%, 7), then compute the Maximum Likelihood (ML) estimator in B:

dy"(i,5) = argmax [ p(y(k,m)|o”) (2.20)
=" kmeB

where M is number of data points in B. When the variance is estimated, the denoised data
is calculated simply as Equation 2.19 shows. Using an ML estimator Ramchandran et. al.
showed in [13] that it is better to choose a different window size for the sharp and smooth
regions of image. This method is heavily computational. In [12] they employed the Maximum

A Posterior (MAP) estimator rather than the ML estimator. Before estimating oy, they
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estimated a prior marginal distribution fo, (a%) as a distribution of noiseless variance. These

lincar filters are simple in implementation, however, their performance are limited due to
their assumptions. For example, linear filters assume that data is stationary, while real time
images has a non-stationary nature. As nonlinear methods developed, experiments showed
that they have a better rate of convergence than linear systems. Alternative approaches
to nonlincar wavelet based denoising can be found in [14]- [45]. In some of them other
algorithms rather than DWT is used [24] [23]. Wavelet thresholding is one of most used of
such approaches. We discussed this method as signal denoising in the previous section and
introduced two popular hard thresholding method in signal denoising. In image denoising the
soft thresholding rule is preferred over hard thresholding. First, the optimal soft thresholding
estimator yiclds a smaller mean square error than the optimal hard thresholding estimator.
Second, in practice, the soft thresholding method yields more visually enhanced images
over hard-thresholding because the latter is discontinuous and yields abrupt artifact in the
recovered images, especially when the noise energy is significant. Here we are referring to
two of popular soft thresholding methods. Their performance is much better than linear
approaches. These methods are used as benchmarks in most of the wavelet shrinkage papers

and in this thesis.

2.3.2 SureShrink

Donoho et al. have suggested a threshold approach, referred to as “SURE” threshold [5]. This
method is a subband dependent method and treats every subband differently. SureShrink
method is based on Stein’s Unbiased Risk Estimate (SURE) [47]. Donoho et al. utilized
the SURE estimate and computed equation the M SE(T, 6) as a function of noisy data and
threshold in every decomposition subband. The SURE threshold which minimizes MSE is

as follows:

Tsure = arg min MSE(T, 6 cr:‘:,). (2.22)
0<T'<4/2log(N) /

where N is the number of coefficients in the considered subband, and 6 is the noisy coeffi-

cients in that subband which is normalized by dividing to ¢2. SureShrink, applies a hybrid
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threshold on an image, meaning that it applies the SURE threshold (as calculated above) to

dense subbands, and the T,,, threshold in Equation 2.17 to sparse subbands. The condition
which is checked to choose between T, and Tsyrge threshold is as the following:

i = { om0 2 @29
where 77(.) is a function that applies the threshold T on its input, £% and ~x are defined
as the following: Another soft thresholding method is the BayesShrink. In this method, the
threshold that minimizes the MSE is chosen through a different approach.

2.3.3 BayesShrink

The BayesShrink method has been introduced by Chang ct al. [6]. They suggested a closed
form threshold, called Bayes threshold, Tz, which is a function of noise and observed data.
Through different graphs, they showed that this threshold is very close to the optimum
threshold that minimizes the MSE. When we use the soft thresholded data as an estimate

of noiseless data the MSE can be calculated as:
+o00 p+oo ~ 9 - _ _
MSE(T) = [ [ (n(6) - 9)°perp(018)p(8)d8dd (2.24)
-0 J—o0

where 77(0) is a soft thresholded noisy data using 7'(f), The optimum threshold that mini-

mizes the equation above is calculated numerically and is a function of noiscless cocfficients

variance:
T*(og) = arg mqin MSE(T) (2.25)

To solve the Equation 2.24 we first need to assume a priori distribution for 0. Different
distribution suggested [17, 19, 42, 48]. Mallat [48], has introduced Generalized Gaussian
Distribution (GGD) as a distribution of image coefficients. Chang ct al. have utilized
GGD and calculated the optimum threshold in the Equation 2.25 numerically. Then they

introduced an ad-hoc threshold which happened to be close to the optimum. Their threshold

is calculated as:

gn

(o}

Tp(og) = (2.26)

8|
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For an unknown noise variance case, they used the Robust Median Estimator to estimate
the value of noise standard deviation:
Median|6(i, j)|

7w(0) = — 575

,0(%, 7) € subband D1 (2.27)

where D1 is the diagonal subband at the decomposition level 1. The variance of noisy data

coefficients is estimated as follows:

N
o2 1%7- > 0(i, )%, 6(i, §) € a specific subband (2.28)
52

where N is the number of all pixels in the considered subband. BayesShrink estimates the
noiseless data coefficients variance in Equation 2.26 as follows:

. { Vo3, 5) — o2 if 6} > 02, (2.29)

o 0 if 02 < 02.
2.4 Conclusion

In this chapter we briefly reviewed several popular denoising methods. The denoising meth-
ods are categorized into two groups: linear and non-linear. As an example of linear methods
we studied the Wiener filter. Nonlinear approaches have better results than linear. Wavelet
shrinkage is a nonlinear approach which is preferred over existing methods due to its sim-
plicity and efficiency. Two of the well-known signal thresholding methods are MDL and
VisuShrink. These thresholds are function of data length and noise variance. BayesShrink
and SureShrink are two popular image denoising techniques. Both methods try to find
a threshold that minimizes MSE but with different approaches. BayesShrink outperforms
SureShrink. However, the calculation of BayesShrink threshold is through an ad-hoc ap-

proach resulted from experiments.



Chapter 3

New Subspace Selection Method

3.1 Minimum Noiseless Description Length (MNDL)

Minimum Noiseless Description Length (MNDL) is a new approach to subspace selection,
which has recently been proposed by Beheshti and Dahleh [7]. In the MNDL approach the
length of “noiseless” data is estimated in every subspace. The subspace with minimum data
length is chosen as the best subspace for representing data. The existing subspace selection
methods decide between competing subspaces based on noise variance and length of data.
MNDL, includes the characteristics of data as well in its judgment, and has shown advantages
over the existing methods [4]. For now, let us examinc how Data Length (DL) is computed.

When a Gaussian noise is added to data, the density function of noisy data is

=y -2
= (3.1)

1
@) = ——=—=—e *%
(y/2mo2)N
where fy(y™;7") is the definition of density function of random variable y" using the 7",
gV is the noiseless data and y" is the noisy data, N is length of data and o2 is the noise

variance. Let us consider y" which is a sample of Y. Using the Shannon code the code

length of y? is:

1
DL(y™; ") = — 4 loga(fr (v 7)) (3:2)
N _ =N ||2
= log, \/2m02 + H—Z/—%%—"—"’- log, e (3.3)

16
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In the equation above, the DL of ¥V is calculated by noiseless data; 7. However, we know

that 7V quantity is not available. The noiseless data belongs to a space Sy, assume that the
best representation of noisecless data belongs to subspace S, and is defined such:

vs, = 0s,.5(d) (3.4)

i=1

where_whcrc S € SV, m denotes the order of this subspace and the ésm is defined as:

O (i) = { 0  otherwise. (3.5)
We can calculate the DL of 3V using §¥ s as follows:
N, ANy _ 2 ” yN - ggvm ”%
DL(y";7s,,) = logy \/2m02 + ————==—=log, e (3.6)

202N
The comparison of DL calculated above in order to find the best subspace fails, since it
is monastically decreasing and we cannot be minimized. To solve this problem MDL [4]
method adds an ad-hoc extra term to the definition of DL in Equation 3.6. However, MNDL
proposes has a better solution. MNDL uses the estimate ;z}gm by noisy data and provides the

DL of “noiseless” data. This new definition of DL is a function of MSE and noise variance:

_N. - logy e
DL(yN;y.Igv,,,) = log, \/2m02 + 2522 zs,, (3.7
w

where zg,, is the MSE in Equation 2.2 corresponding to subspace S, and can be defined as
follows:

Zom = 19 — 9%, 13 (38)
For a known noise variance we need to estimate the MSE to compute the DL in (3.7).
Therefore, in MNDL, the first step before subspace selection is finding bounds on MSE. With
a proper choice of the competing subspace, this method not only chooses the optimum subset,
but can also provide the optimum threshold simultancously. The goal of this research is to
investigate the implementation of MNDL subspace selection (MNDL-SS) as data denoising

method.



3.2 Estimation of Mean Square Error(MSE) in MNDL

MNDL judges between subspace using the noiseless data description length given in Equation
3.7. This DL is a function of MSE. MNDL shows that the minimization of DL is equivalent
to the minimization of MSE, and uses the MSE as a criterion in subspace selection. However,
we know that MSE is not available due to its dependency on original data. MNDL suggests
probability bounds on it, using information from observed data. The probability bounds are
then used as an MSE estimate. Note that based on Parseval’s Theorem, the MSE error in

(3.8) can be written in the following form
28, = i ” 0— és ”2 (3 9)
m N m 2 :

where 0 represents noiseless coefficients and 5gm denotes the noiseless estimate coefficients.
The és,,. is a sample of random variable és,,,, so the zg,, in the equation above is a sample of
random variable Zs,, = % || 0~ Bs,. ||2. MNDL uses the expected value of this random vari-
able to provides bounds on zg,,. In the next section the expected value of Zg,, is calculated

and in the following sections we can see how this quantity can be used in MSE estimate.

3.2.1 Calculation of MSE and its Expected Value

To provide bounds on MSE, its expected value, is calculated. MNDL computes the expected
value of MSE as a sum of the noiseless and noisy parts. The noisecless part is roughly l,-
norm of noiseless coefficients which are not in S,,, and the noisy part is the l;-norm of
noise coefficients in subspace S,,. MNDL estimates these two parts separately. Now, let us
examine how MNDL calculates zg,, and its expected value. For the simplicity, we assume
that Sp, corresponds to only first m bases of S¥,(s; € Sp,i = 1, ...,m). The noisy data (in
Equation 2.6) in subspace Sy, can be rewritten as follows:

0
y" = [4s, Bs,] ( A‘:" ) +uwl (3.10)

m

where w" is a vector of noise coefficients with length of N, the columns of matrix Ag,,

are s; € Sp,1 < i < N, and the columns of matrix Bg,, are basis vectors that are not
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in Sp,8; € Sm. The vector 85, is the noiscless coefficients in Sp,. Therefore, the noiseless

cocfficients with length of NV can be represented as

5 55,,.

_ ( o ) (3.11)
where Ag,, is a vector of length N — m, corresponding to the coefficients of bases that are
not in S;,. Using Equations 3.10 and 3.11 the vector of the estimate coefficients és,,. is

. H N ] H . N
bs, = AsnY" ) = [ Osm+ As,w (3.12)
O(N—mxl) 0(N—mxl)
where H denotes the Hermitian. Exploiting the vectors defined in Equations 3.10, 3.11
and (3.12) zg,, can be expressed as a function of the basis vectors, additive noise, and the

N

where || As,, ||2 is the lx-norm of discarded coefficients in subspace Sp,. As in subspace
selection the additive noise effect is independent from data, it is known that Zg_ has a Chi-
square structure. Using the Chi-Square random variable the expected value and variance of

Zs,, is obtained, as follows:

m 1
E(Zs,) = NU?U ++ I Bsn, 113 (3.14)
2m ,
var(Zs,,) = N2 (3.15)

The first part of (3.14) is the expected value of the noisy part of MSE, which we briefly
refer to as the noisy part of MSE. The second part which is an unmoulded dynamic data is
referred to here as the noiseless part of MSE. With Chi-Square assumption, the noisy part
has found the linear form as a function of noise variance and order of subspace m. Using the
expected value of Zg,, in (3.14) one can estimate bounds on zg,,. The calculation of these

bounds are in the next scction.
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3.2.2 Probability Bounds on MSE using its Expected Value

Having the expected value and variance of a random variable, the bounds arc . The expected
value of Zs,, was calculated in Equation 3.14. The random variable Zs,, is near its mean

with probability p; as follows:

p{|Zs,, — E(Zs,,)|} £ Ds,, = p1 (3.16)

where p is the probability function, Ds,, is a function of p; and the structure of random
variable Zs,,. As Zs,, is a Chi-square random variable, Dg,, can be found using the table of
Chi-square random variable. Therefore, MSE error is between it lower bound zg,, (p1) and

its upper bound as Zg,,;,) as follows:
25, (P1) < 250 < Z5n(p) (3.17)
When by using (3.14) and (3.16) we have:

25, (p1) = <04 + = " As,, |13 —Ds,.(m) (3.18)

ZI

z5,.(p1) = =02 + '1\7 | As,, I3 +Ds..(p1) (8.19)

=|3

These bounds are functions of || Ag,, [|2, while in the real world the || As,, [I3 is not known.
Hence, to complete our estimate in Equations 3.18 and 3.19 we need to estimate || As,, |2
as well. MNDL introduces a new quantity so-called “Data error”, and utilizes it to validate

| As,, ||2. Data error is an accessible quantity and can be calculated using observed data.

3.2.3 Estimation of MSE using Data Error

Bounds on MSE were estimated in (3.18) and (3.19). These bounds arc dependent on
noiseless coefficients through || As,, ||3. Unfortunately, we only have access to noisy data
and || As,, || is not known. MNDL employs Data error which is an error between noisy
data and its estimate in a specific subspace, to find an approximation for || As,, [I3. The
Data error is calculated as follows:

1
25, = I 9" =38, 1B, (3:20)
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Where using Parseval’s theorem we have:

1 R

Since fs,, is a sample random variable Og,,, one can conclude that zs,, is a sample of
a random variable too. MNDL validates the expected value and variance of this random
variable and uses them in estimating || As,, ||2. In the next section we see how the second

order statistics of Xg,, can be helpful in the estimation of || Ag,, ||2.
Estimation of || Ag,, ||2 using Second Order Statistics of Xg,

In this section first, the expected value and variance of X, are calculated, and then we can

see how || Ag,, ||? is derived from them. The estimated data can be written as:
9% =[As, Bs,l0sn (3-22)
Using the equation above, the Data error is represented as:
2o = 37 19" = 88, IB= 3 Il B, As, + G, I3 (323)

where

Gs, =1 - As, A§ = Bs, B (3.24)
is a projection matrix. Due to the independency of noise effect from noiseless data, Xg,,
finds the Chi-square structure of N — m-th order and therefore has the following expected

value and variance:

m 1
E(Xs,)=(1- 7\,—)03, + 5 1 Asn, 13 (3-25)
2 m 1
var(Xs,) = (1~ )02 + 5 | As, I3 (3.26)

The similarity between E(Xg,,) and E(Zg,,) in Equations 3.14 and 3.25, becomes apparent as
they both have a linear noisy part with additive a term || Ag,, ||2. The noisy part of E(Zs,,)

is a decreasing function of m, while the noisy part of F(Xg,,) is an increasing function of m.
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When the variance of noiseless data is small, the expected value of Xg,, in Equation 3.25, is

very close to Data error, zs,,, therefore the 4 || Ag,, |13 is estimated as follows:

1

7 1 Bsn B 70 = (1 = )% (3:27)

If the variance is significant, a probabilistic validation for || As,, ||2 is suggested. Data error
Ts,,, is a function of % || Ag,, ||2 and by bounding it, onc can validate || As,, ||3. for cach

value of || Ag,, ||3, we have:

The bound Js,, is a function of || Ag,, ||3,0,,m and p,, the value of Jg,, is calculated based
on these values and Chi-square table. Given zs,,, and validation probability ps, the || Asg,, ||2

is validated as follows:
|z, — E(Xs,)| < Js,.(p2,05,m, || As,, |I3) (3.29)

The estimated 4 || As,, [|3 obtained from the equation above, can be used in Equations

3.18 and 3.19 and the estimation of zg,, is completed.

Bounds on MSE Using Data Error

Using the bounds on || Ag,, ||? in Equation 3.29, we can provide bounds on the reconstruction
error or MSE. With validation probability p, and confidence probability p; the MSE error

bounds are as follows:

25, (P, ¥~ p2) < zs,, < 25, (p1, Y7, P2) (3.30)
where
N . -
z ¥, p2) =min{0, min E(Zs,) — Dg,, 3.31
5. (PLL Y, D2) { ﬁlIAsmllge(Lsm-Usm){ (Zs,,) — Ds, }} (3.31)
and

z ,yV,p2) = max E(Zs,) — Ds,, 3.32
S (P1, YN, D2) ﬁuAsmngeusm.usm){ (Zs,,) = Ds,.} (3.32)



23
where Lg,, is the lower bound of & || As,, || and Us,, is its upper bound. Here, bounds

on zs,, are calculated using the Chi-square table, noise variance, subspace order, length of
data, noisy data for a choice of validation probability and confidence probability. These
bounds provide bounds on description length of data and can be used for subspace selection.
MNDL also suggests using the Central Limit Theorem (CLT) and estimates two Chi-square
random variables, X, and Zg, with Gaussian. Using Gaussian distribution obviates us

from Chi-square table. Readers please refer to the paper, [7] for more details.

3.2.4 Subspace Selection Using MSE Estimate

Thus far, probability bounds on MSE were calculated. From Equation 3.7, one can conclude
that comparing the description of length in different subspaces, is the same as comparing of
reconstruction error. MNDL suggests a comparison of the worst case of reconstruction error
or upper bound; Zs,,, and chooses the subspace that minimizes this quantity. Based on this
criterion we have:

S = arg rgin 25, (P1, YN, p2) (3.33)

where Sy, is the optimum threshold. The decision is made based on p; and p; which are
confidence probability and validation probability, respectively. If we form the competing
subspaces in a special form, the best subspace selection is equivalent with denoising with

thresholding. In other words MNDL can provide best subspace and threshold simultaneously.

3.3 Using MSE Estimate in Denoising by Thresholding

Searching between all 2 subspaces to find the optimum threshold is almost infeasible.
To solve this problem MNDL suggests comparing between the nested subspace of different
orders. The absolute value of noisy coefficients ©(i)s are sorted in decreasing order. This
provides a nested set of subspaces. In this case, the subspace S; is the subspace corresponding
to 0;, where 6; = max; 6(z) and subspace S; is spanned by the first ith bases associated with
the sorted set. With this approach the number of subspaces is at most N and optimum

subspace can provide the optimum threshold too. For the optimum subspace S;,, in which
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the data description is minimized, the optimum threshold is the minimum value of cocfficicnts

associated with S}:

T* = min|0(i)],i € jls; € Sy, (3.34)

This threshold is a function of observed noisy data. In the next chapter we cxamine the

application of this threshold in data denoising.



Chapter 4
MNDL Thresholding

We have reviewed about MNDL subspace selection (MNDL-SS) in the previous chapter.
MNDL-SS estimates the MSE in every subspace and chooses the subspace in which the MSE
is at minimum. We have also learned that if we form the competing subspaces in a special
way, the MNDL subspace selection is can be used for MNDL thresholding. While in MNDL-
SS, we assume that the subspaces are chosen a priori and are not functions of the observed
data, in MNDL thresholding, the subspaces are chosen based on the observed data. In other
words, in the MNDL thresholding approach, the competing subsets have to be chosen as
nested subsets based on the sorted version of absolute value of coefficients. For example, the
first subset represents the basis associated with the largest absolute value of the coefficients.
The subset with two coefficients includes this basis and the basis with the second largest value
from the absolute value of sorted coefficients. The thresholding question is then answered
by providing the optimum subset in which MSE is at minimum. Let us make this clear
with one example. We consider the Block signal and add a Gaussian noise with variance
one to this signal. The noiseless signal, noisy signal and their associated wavelet coefficients
are shown in Figure 4.1. Sorted version of absolute value of noisy coefficients are shown in
Figure 4.2. The basis associated with the first m coefficients in this graph belongs to S,
where 1 < m < N. We refer to m as the order of subspace. Let us assume m = 50. To find
the estimate of noiseless signal in S,,;, we keep the coefficients of noisy signal corresponding

to the first 50 coefficients of sorted version, and set the rest of coefficients to zero. This

25
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Figure 4.1: (A) Noiseless Block signal, (B) Noiseless Block coefficients (C) Noisy Block signal
(noise level is “1”) (D) Noisy Block coefficients. Haar wavelet is used with 4-level wavelet transform
decompostion.

estimate is shown in Figure 4.3. MSE in this subspace, zg,,, is calculated by finding the
error between estimated signal in Figure 4.3 and noiseless signal in part B of Figure 4.1. For
different values of m the zgs,_, is calculated. This error as a function of m is plotted in Figure
4.4. As we can see in this graph, the zg, has one minimum. This minimum happens at my.
For this especial case m,, is 80. This corresponds to the fact that the 80 largest coefficients
of noisy data is the best representation of noiseless signal. The estimated noiseless signal
is shown in Figure 4.5. mqy plays a crucial role in the MNDL thresholding. In MNDL
thresholding we are looking for an estimate of the desired zg, in Figure 4.4 to estimate the
Meope- We first tried the MSE estimate obtained from MNDL-SS for MNDL thresholding case
and noticed this approach dose not provide a proper cstimate of 2g,,. Figure 4.6 shows the
desired MSE and MNDL-SS estimate. The rcason that MNDL-SS estimate is not working
for MNDL thresholding is their difference in the effect of additive noise on them. In the
following sections we develop a new estimate of MSE for MNDL thresholding, taking into

account the new characteristics of noise.



27

Figure 4.2: Sorted version of absolute values of noisy coefficients

| T
‘I

* Figure 4.3: Estimate of noiseless signal in subspace Sy,, where m = 50

4.1 MNDL Hard Thresholding and the Main Chal-
lenge

In MNDL hard thresholding, we use the MNDL-SS to estimate theMSE. This estimate is
later used to find a proper threshold. In MNDL-SS we estimated the MSE using its expected
value. The MSE was first formed as the sum of noisy and noiseless parts in Equation

3.13. Afterwards, the expected value of MSE was calculated by estimating these two parts,
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Figure 4.5: The best representation of noiseless signal obtained with minimizing the true MSE.
separately. The expected value of zs,, in Equation 3.13 can be written as follows:
. 1 X e
E(Zs,)) = E(noisezsm) + N >63)". (4.1)
i=1

The first part of equation above is an estimate of noisy part of zg,,, and the second part is
the noiseless part. The noiscless part of E(Zs,,) was estimated using the expected value of

Data error, Xs, . The expected value of Xg,, can be defined as:
. 1 X 2
E(XSM) = E(nolsezsm) + —IV 29(1) . (4.2)
=1

We can see in Equations 4.1 and 4.2, that the noiseless part of E(Xs,,) is the same as

E(Zs,,). Finding the expected value of the noisy part of E(Xs,,), and deducting it from
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Figure 4.6: Desired MSE and its estimate as a function of m using the MNDL-SS. Noise variance
is “17.
E(Xs,,), one can obtain the noiseless part of zg,,. Now, let us revisit the effect of additive

noise in both errors. As we defined in the previous chapter, we have:
(i) = (i) + V(4) (4.3)

where 6(4) is noisy data coefficient, 8() is the noiseless coefficient and V(i) is the noise
coefficient, which is a sample of a Gaussian random variable with zero mean and variance
02. When we composc the competing subspaces of different orders, the MSE is estimated
as a function of the subspace order m. The mp in which MSE is minimum defines the best
subspace and threshold simultancously.

For now, let us consider the case that the length of noisy data is 16. We sort this noisy
data as shown in Figure 4.7 (A), then for every m (0 < m < 16), we compute the MSE. For
when m is equal to 7, the estimate of noiseless data which is the 7 largest coefficients of noisy
data is shown in Figure 4.7(B). Part (D) shows the difference between noiseless coefficients
in part (C) and its estimate in part (B). It is obvious that, this difference is equal to noiseless
coefficients in every point that estimate of noiseless data in part (B) is zero, and is equal to

noise coefficients (V/(z)) in all other points. The mean square of this difference is the MSE
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Figure 4.7: (A) Sorted coefficients, (B) Estimate of noiseless coefficients for m = 7 (C) Noiseless
coefficients (D) the difference between (B) and (C).

for this value of m. Therefore, the expected value of noise-related part of E(Zs,,) is
E(noise.sm) = -11\7 S E(V()?) (4.4)
i=1

The Data error is the mean square error between noisy data and its estimate in Figure 4.7,

part (B). Therefore, the expected value of its noisy part is defined as
1 N
E(noisezem) = — 3 E(V(i)?) (4.5)
N i=m

MNDL-SS assumed that V(i)s are samples of Chi-square random variable and found the

following estimations of Equations 4.5 and 4.5:

E(noisessm) = 7’3-03, (4.6)
and
E(noisezsm) = N ;, ma?‘, (4.7)

However, these estimations are not working for the case of MNDL thresholding. We have

plotted the desired noisy part of both errors and MNDL-SS estimations in Figure 4.8. In
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MNDL-SS the effect of noise in both errors are independent from the noiseless part. There-

fore, we could take zg,, and zg,, as two Chi-square random variables. In MNDL thresholding,
the dependency assumption is not exact and we cannot use the Chi-square structure in es-

timation of (4.1) and (4.2) anymore. Therefore, the main challenge in MNDL thresholding
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Figure 4.8: Desired noisy part of MSE and its estimate using MNDL-SS (top) and the desired
noisy part of Data error and its estimate (bottom) as a function of m. Noise variance is one and
signal is Block.

is to calculate the effect of addictive noise in MSE error and Data error.

4.1.1 The Effect of Additive Noise in MSE and Data Error

As discussed, the effect of additive noise is very important in MNDL thresholding. Here we
suggest two alternatives to determine the expected value of the noisy part of MSE and Data
error. To calculate the expected value, we need to assume a distribution for noise, V(i)s,
in Equations 4.4 and 4.5. This noise is associated with sorted noisy coefficients. When the
noise coefficients are dominant, by sorting noisy data coefficients, we assume that noise will
be sorted too. We know that the V(i)s, in Equation 4.3, are samples of Gaussian noise.
Therefore, we assume the noises effect in MSE and Data error are sorted Gaussian. As

sorted Gaussian is not an ordinary distribution, the expected value of § i, V(i)? can be
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calculated by Monte Carlo method [49]. The result of this approach is reasonable. However, it

is very time-consuming. We suggest another method which is based on the exact calculation
of Equations 4.4 and 4.5. This method leads to almost the same results of the first method.

However its running time is quite shorter.

The Effect of Additive Noise in MSE Using Monte Carlo Method

The first approach in calculating the effect of noise is based on sorted Gaussian distribution
with zero mean and variance of o,,2. We first focus on the noisy part of MSE. To calculate
this quantity, in this section, we generate the noisy part M times and calculate its mean.
In each trial, additive white Gaussian noisc with variance o2, is gencrated and the absolute
value of associated coefficients are sorted. Let us denote the sorted noise cocfficients of length
N with G{°*[n] where i represents the i-th trial. Thercfore, the expected value of noisy part
of zg,, is estimated as follows:
1 Mmoo
E(noise,sm) = i Z 3 (Getn])? (4.8)
i=1n=1

The quantify above is used as an estimate of noisy part of zs,,. We evaluate the cstimate

in equation above using two signals; Block and Mishmash. We have seen Block signal in

Figure 4.1 and Mishmash is shown in Figure 4.9. Figure (4.10) shows the true noisy part of

Mishmash signal

10

Figure 4.9: Mishmash signal and its associated coefficients.

the reconstruction error, zg,,, the estimate in Equation 4.6 (used by MNDL-SS) and the new



33
estimate in Equation 4.8 for Block and Mishmash signals. As Figure (4.10) shows, for the

Block signal with almost 70 nonzcro coefficients, and for the smaller values of m, the noisy
part coincides with %03,. However, for higher values of m, the new approximation from (4.8)
performs better than %aﬁ,. For Mishmash signal, with almost 1024 nonzero coefficients, and
for noise level one, the true noisy part of reconstruction error is very close to ﬁa;‘:,. For this
signal and smaller levels of noise, since the contribution of signal coefficients are more than
noise, in thresholding method we sort signal coefficients rather than the noise. Therefore we
do not have sorted Gaussian noise anymore. However, for this signal, when the level of noise
is high, the estimate using sorted Gaussian works better and Figure 4.10, part (D) confirms

this claim. Comparing the results in Figure 4.10 one can conclude that in most cases except

for Mishmash with noise of 1, the estimate in Equation 4.8 is a better estimate. We know
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Figure 4.10: The true noisy part of MSE, the estimate %a?v and the estimate in Equation 4.8
as a function of m. (A) Block signal, (B) Block signal, oy, = 5 (c) Mishmash signal, oy, = 1 (D)
Mishmash signal, 0, =5

that to complete the MSE estimate the next step is to estimate the noiseless part of MSE
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using the expected value of Data error. For this we nced to calculate the effect of noise in

Data error too.

The Effect of Additive Noise in Data Error Using Monte Carlo Method

The noiseless part of MSE is calculated using the expected value of Data crror. In this step,
we first calculate the expected value of Xg,,, as the sum of noisy and noiscless parts (like
what we have seen in Equation 4.2. The expected value of Data error in MNDL thresholding
is

N
B(Xs,) = $EIY. (06) + V)] (4.9)

t=m

We need to break up the expected value of Xg,, into noiseless and noisy parts. To do so, we
extend the equation above:

1 X VIR (. A = P
5 2 ElO@) + V@) =5 Y E0W) +5 X EVE) + 5 S E(20()V (9)). (4.10)

i=m i=m i=m i=1
The first part of above equation is the lp-norm of the noiseless part or %,—Agm, which we
would like to estimate. The second part is the expected value of noisy part of Data error.
The last part is a multiplication of noisy and noiscless cocfficients. If we assume that 0*(3)s
are independent from V/(i)s then the expected value of the third part becomes zero. Through
the estimating s, with its expected value in (4.9) we have

. 1 X 1 N

g5, = 5 2 06) + FE(Z V) (4.11)

i=m i=m

The second part of above equation is the same as E|(noisezg, )] in Equation 4.5, which we
would like to estimate it here. Following the same discussion we had for MSE, one approaches
to estimating this part with the sorted Gaussian. Using sorted Gaussian assumption the
estimate of this part is:

1 M N
E(noisezg ) = i Z Z (Gﬁ"’"[n])2 (4.12)

i=1 n=m

where G27¢[n] is the absolute value of sorted Gaussian vector and ¢ represents the i-th trial.

While for the noisy part of zs,, in (4.8), in every trial, we choose the first m cocfficients of
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G, here we consider N — m coefficients of it. This new estimate along with the linear

MNDL estimate for both Block and Mishmash signals are shown in Figure 4.11. In this case,

most of the time the new estimate works better.
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= Noisy image —Trus noisy pat
12 H == === New estimation % : 3 : = == New estimation |

1

06

04

02

o = =New estimation 5t ; = == =New estimation {

T r T v T T
h —True nosiy part = True noisy pat

Figure 4.11: The true noisy part of Data error, the estimate 7'30,2,, the new estimate in Equation
4.12 as a function of m. (A) Block signal, oy, = 1 (B) Block signal, o, = 5 (c) Mishmash signal,
ow =1 (D) Mishmash signal, gy, = 5

Exact Calculation Approach

The effects of additive noise were calculated in the previous parts using the sorted Gaussian.
The results of this estimate are reasonable. However, calculating Equations 4.12) and (4.8
by matlab is time consuming. This problem manifests itself when the length of the data is
long. Therefore, here we develope another method which is based on the exact calculation
of Equations 4.5 and 4.4. The noise part of sorted version of coefficients is a sample of V ()s,
where every V(i) has roughly a Gaussian distribution, with mean of () and variance of o2,

With this assumption the exact solution of expected value of additive noise is as follows:
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Figure 4.12: The distribution of V(m), V(m—1), V(m+1). The colored region is the permissible

region for 6,,

Calculation of expected value of noisy part of MSE, E(noise,, ): To find a

solution for Equations 4.5 and 4.4, we first focus on V(m), and then extend our solution for

all possible values of V (7)s. Figure 4.12 shows the distribution of V(m), V(m—1), V(m+1).

With Gaussian assumption, and using the Bayesian theory, the expected value of MSE noisy

part under condition f(m + 1) < 8(m) < 0(m — 1) is calculated as follows:

—(vm =08(m))?

fe((m-;ll)) 2 1 e 202, d'Um
E[V(m)?} = dmtl) U oz — (4.13)
o 1 64%21_»1 o sl
6(m+1) V2ro, 6(m-1) V2ra, m
To make the calculation easier we shift the v,, to v,,4+1 and as a result we have:
O(m-1)-0(m) 2 _1 T dv
E[V(m)2] — fG(m+l) "20(171) Um V2row — (414)
P + 1 -
fot;on)-é(m) 27'2:rawe 2% QUm — fotme1)-G(m) Tora€ 7% dUm
The numerator of Equation 4.14 would be:
om-1)~0(m) , 1 =tk _[6(m = 1) = d(m))?
o% dvy, = f(m—1)—0 4.15
Loyt VT dim = 10 = 1) = Bmle” = (415)

[p(m +1) — 8(m)P?

[6(m +1) — 0(m)] )

+ﬁw@‘

-ﬁ%wm+n—mmm-

The denominator of Equation 4.14 is calculated as follows:

Ow Ow

2
202

m=1) = §(m), _
Ow

Q(

Ow

(4.16)
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and eventually by dividing nominator to denominator the E[(V(m))?] in Equation 4.14 is

calculated as :

E[V(m)? = o2 +e(dif f1,dif f2) (4.17)

where dif f1 = 0(m +1) — (m) and dif f2 =0(m — 1) — (m) and e(dif f1,dif f2) is

. . _ faiss1 — faigr2
e(iffL4if 1) = Bir ) = QUi TD) (4.18)

where fairs1 and faisso are defined as:

—diff12
faignn = \;;7 exp( d;o.f:'zfl )dif f1, (4.19)
and
—di f £22
fur = 2= oxpl G )aif 2. (4:20)

The expected value of noise coefficients, for the case of V(m), was calculated in Equation
4.17. Now we have to extend our calculations for all V(i)s when (i € [1,2,..., N]) and take
the sum over all possible values. To do so, let us to define two vectors, di f f1 and di f f2 as
follows:
diff1 = [0(3),0(4),6(5), ..] — [0(2),6(3),8(4),..] = 63— 62" (4.21)
diff2 = [9(1),6(2),6(3), ..] — [0(2),6(3),8(4),..] = 61— 62 (4.22)

where the index of 63 shows the starting point of the vector. Using di f f1 and di f f2 the
noisy part of MSE is such:

E(noisess, ) = -le(i BV(9)?) = b+ %,—is(di FA(L:m),diffed:m))  (4.23)

and the noisy part of Data error is such:

N _ m - -
E(noisezs, ) = %(Z E(V())?) = NNma?,, + 1 S e(dif fi(m : N),dif f2(m : N))

i=m N i=1
(4.24)

The last parts of equations above, are dependent on di f f1, di f f2 which are not available.

In the following section, we suggest some methods to estimate these two parameters.
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Estimation of the Important Elements

In the previous section, the expected value of the noisy part of MSE was calculated as a
function of di f f1 and di f f2. Two vectors di f f1 and dif, f2 in Equations 4.21 and 4.22
are the difference between the absolute value of sorted noisy coefficients and their associated
noiseless coefficients (ég) These two quantities are not available because of their dependency
on noiseless coefficients. Here we try to cstimate them using information we obtain from noisy
data. Estimate of di f f1 and di f f2, with their expected value is our solution. Following,

two alternatives are suggested to find an approximation of expected value of them.

1. Sorting method
This estimate is based on sorted Gaussian distribution. We used this distribution once
in Monte Carlo method in section (4.1.1). Here we exploit the vector G:°™* that we

generated in section (4.1.1) to estimate thedif f1 and dif f2 as follows:

e Generate a Gaussian vector with variance of noise and length of data.

o Sort the absolute value of associated cocfficients, éi"" ( where 7 representing the

number of trial).
e Find the expected value of 50 trials, E[G:™], where 1 < i < 50.

o Estimate the éz as follows:

8, ~ 6, — E[Get (4.25)

1

e Calculate di f fland di f f2 by replacing 6, with ég in Equations 4.21 and 4.22.

diff1 = 65 — 6s; (4.26)
diff2 =6, — 6y; (4.27)

o Calculate The noisy part of MSE in Equation 4.23 and 4.24 using the di f fland
dif f2:

E(noise,;_ ) = %l,-oﬁ, + % > e(di f f1,di f f2) (4.28)
i=1
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L N-m, 1X A& A
E(noisess ) = — %ty > e(dif f1,dif £2) (4.29)

2. Unsorting method

This method is like “sort” method; however, és,,. is estimated as follows:

—

6, ~ 6, — E[|Gi] (4.30)

.where |Gj| is the absolute value of a Gaussian vector with variance of noise and length

of data.

Noisy pant of Data emor-noise!

Noisy part of Data emror-nois o6

Figure 4.13: True noisy part and its estimates as a function of m, True: the unavailable noisy part,
"Sort”: when we use sorted Gaussian, ”Unsort” : when we use the unsort Gaussian to estimate

the diff1, diff2 .

These two methods are compared in Figure 4.13. In this figure, the true noisy part of MSE

and Data error are compared with their estimations. The test signal is Mishmash and the
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level of noise is one and six. From Figure 4.13, we can comprehend that in all of the cases,

estimate usipg the Unsort Gaussian fails. We introduced two approaches to estimating the
additive noise in both errors. The first one is called Monte Carlo approach, the sccond one
was the exact solution for this problem. The noisy part obtained from exact solution, in
Equations 4.29 and 4.28, are compared with the noisy parts from fist method in Equations
4.8 and 4.12, in Figure 4.14. We can sec that the results, obtained from both approaches,
are almost the same. However, in terms of running time, using the exact solution is much
better than using Monte Carlo method. Therefore, we decided to choose the exact solution

to estimated the effect of noise. Now that the effect of additive noise was determined, we
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Figure 4.14: The true noisy part of Data error and MSE along with their estimates as function of
m using Monte Carlo method “first” and using exact calculation “second” (A) Noisy part of MSE
0w =1 (B) Noisy part of MSE oy, = 5 (c) Noisy part of Data error oy =1 (D) Noisy part of Data
error oy, = 5. Signal tested is mishmash

can estimate the MSE. First using the Data error, the noiscless part is calculated, then this

quantity is added to the noisy part of MSE.
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4.1.2 Estimation of the Noiseless Part of MSE

We have suggested two approaches for estimating the E[(noise. )] in the previous section.
We preferred the exact solution in Equation 4.29, because of its better running time. Using
this estimate and Equation 4.24 the noiseless part of MSE can be estimated as follows:

1 a 2 1 N v .

¥ | As,. ||°= N—EG(z) = z5,, — E(noise ). (4.31)

i=1

The desired % || Ag,, ||? and its estimate using the equation above, along with its estimate
using MNDL-SS, have all been plotted in Figure 4.15. The plots are for two different noise
standard deviations, “1” and “5” and tested signals are Mishmash and Block. We can see

that MNDL thresholding provides a much better estimate for the noiseless part.
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Figure 4.15: Desired unavailable 717 | As,. || (solid line), and its estimate as a function of m
using MNDL thresholding (-.) and MNDL-SS (- -). (A) Block signal, o, = 1 (B) Block signal,
ow = 5 (c) Mishmash signal, oy, = 1 (D) Mishmash signal, o, =5

4.2 Bounds on MSE in Hard Thresholding Method

We summarize the steps of MSE estimate in MNDL thresholding as follows:

o Estimate the noisy part of zs,, using the Equation 4.24, (E(noisez;_)).
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¢ Estimate noiseless part of z5,, which is the same as the noiseless part of z, using the
Equation 4.31, (& || As,, ||?)
e Estimate noisy part of zs,, using (4.23), (E(noise,,,_))

e MSE is estimated as follows:

. 1 - .
s, = v I As,. ||2 +E(noise.s,, ) (4.32)

In Equation 4.32, an estimate of zg,, is calculated as a function of m. The next step in
MNDL thresholding is minimizing the zs,, over a different value of m and finding the mgy.

The mgpy-th coefficient in sorted version of noisy coefficients gives the threshold.

4.3 Simulation Results

Figure 4.16: Desired unavailable zg,, (solid line), and its estimate using MNDL thresholding (-.)
and MNDL-SS (- -) as a function of m. (A) Block signal, g, = 1 (B) Block signal, oy, = 5 (c)
Mishmash signal, oy, = 1 (D) Mishmash signal, oy, = 5.

The true zg,, and its estimates using MNDL-SS and MNDL thresholding methods have
been plotted in Figure 4.16. This simulation is for two different levels of noise. In both

levels, MNDL thresholding estimate performs much better than MNDL-SS. To have a better



L1 (3)
ow=1[ 72 7 91
ow=3| 34 29 40
ow=5| 22 18 37

Block optimal | MNDL-SS | MNDL Thresholding | MDL | VisuShrink
op=1 0.13 0.3 0.28 0.2 0.2
Ow=3 1.8 2.8 2 2.1 2.2
Ow =06 7.9 9.3 9 9 9.2
ow =10 14 17.6 17.2 17.7 15.4

Mishmash
Oy = 0.9 1.2 0.9 2 3.3
ow=3 7.1 7.8 7.5 74 7.3
Ow=2~0 7.8 7.8 7.8 10 7.9
ow =10 7.86 7.86 7.86 16 8
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Table 4.1: Comparing mgy and its estimations(1) true value; (2) estimate using MNDL hard
thresholding; and (3) estimate using MNDL-SS method.

Table 4.2: MSE comparison of different thresholding methods with proposed method “MNDL
Thresholding”. Averaged over ten runs.

comparison between these two methods, the optimum subspace order, Mopt, from different
approaches are provided in Table 4.1 for different noise variances. In Moyt the zg,, is at its
minimum. This value directly provides the optimum threshold. A method whose Mopt 1S
closer to true zg,’s is a better method. _

Table (4.1) shows that m, of MNDL thresholding is closer to true Moy than the MNDL-
SS for all levels of noise variance. In table (4.2), the MSE of the proposed hard thresholding
method is compared to the existing methods; VisuShrink and MDL. The explanation of these
method can be found in section (2.2). The comparison is also included the optimal method
in which we assume that the noiseless data is known. The method with the smaller MSE is
the best one. In every case the smallest MSE is in boldface. The results are the average of

10 runs.



4.4 MNDL Soft Thresholding “

In many applications soft thresholding gives a smaller MSE than hard thresholding, especially
in image denoising. In soft thresholding, not only we set values smaller than the threshold
to zero, but also we reduce the value of coefficients bigger than the threshold by the amount
of the threshold. Thus, we need to take into account this changing level of cocfficients in
our estimations. As we have seen in MNDL hard thresholding, to estimate MSE, we need
to determine the effect of additive noise in the expected value of MSE and Data error. In
other words, we have to find an estimate for E(noise,s,) and E(noise;sy,) in Equations 4.1
and 4.2 before estimating MSE. In soft thresholding we also, follow the same procedure as
hard thresholding. However, we try to involve the effect of soft threshold in every step. To
start, let us revisit the expected value of MSE and Data crror in the soft thresholding case.

Here, the expected value of MSE in subspace Sy, is:
1 m . 2 1 N TR
E(Zu) = 3 E(_(VH) = T + 5 2. 06) (433)
i=1 i=1

where T}, is the the smallest coefficient in subspace S;,,. The first part of the equation above
is the expected value of MSE noisy part. The difference between expected value of MSE
in soft thresholding (Equation 4.33) and in hard Thresholding (Equation 4.1), lics in their
noisy part. Here the noise elements are subtracted from soft threshold in every subspace.
We have plotted the MSE noisy part for both hard and soft thresholding cases in Figure
4.17. The signal which was used is Block and the noise variance is one. We can sce the
effect of the soft threshold as an overshoot at starting point of the related graph. The soft
threshold also affects the expected value of data error. The expected value of Xg,, in soft
threshoding is as follows:

E(Xs,) = —(Z E(T2)+ Z E((0G)+V()*) = —T2 +5 . E E((0() +V(5))?). (4.34)

i=m i=m

The second part of the equation above is exactly the same as the expected value of Data
error in the hard thresholding case, in Equation 4.9. Therefore all the estimations we have

used there are valid here too. In the following sections we try to find an estimate for noisy
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part of MSE and X, in Equations 4.33 and 4.34, and then we use these estimations in MSE

calculation. The MSE is later used in providing a proper threshold.

== Hard thresholding
-| = = = Soft thresholding |-

Figure 4.17: Noisy part of MSE error using hard and soft thresholding. The signal used is Block
and the noise variance is one .

4.4.1 The Effect of Additive Noise in MSE (Exact Calculation)

As a first step of MNDL thresholding, we want to estimate the expected value of the noisy
part of MSE. This quantity is later used as an approximation of MSE’s noisy part !. Based
on Equation 4.33, the expected value of MSE’s noisy part is as follows:

E(noise,,, ) = % S E(V(i) - T)?, (4.35)

=1

where V (2)s are the associated noisy part of coefficients in subspace S, (V (z) € {V (1), V(2), ...

We introduced two approaches in MNDL hard thresholding to estimate the expected value of
MSE noisy part. We have seen that both approaches have the same results. As exact calcu-
lation leads to a faster algorithm, here we use this approach too. We use the same approach

we had exploited in hard threshoding and find the exact solution of above equation.

1The expected value of MSE noisy part is an estimate of it. Therefore, in this thesis we sometimes refer
to the “expected value of MSE’s noisy part “ as the ”MSE noisy part”
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Calculation of expected value of MSE’s noisy part, E(noise,, ): Like MNDL

hard thresholding, we first solve the Equation 4.35 for V(m) and then extend our solution
for all possible values of V/(7)s. With Gaussian assumption, and using the Bayesian theory,
the expected value of MSE noisy part under condition 8(m + 1) < 6(m) < 6(m — 1) is

calculated as follows:

—v2

- B
fe(:: - ag'l')(vm — T(m))?—st—e % duy,
E[(V(m) — T(m))?] = Am )i ) oz - (4.36)

o P
Jotmr -y Toram® " 40m = Jolmo1)-a(m) Torag € " dvm

The numerator of equation (4.36) will be:

6(m—1)—8(m) 1 -_v,_fn 6(m—1)—-§(m) 1 ‘—"gn
2 20 2 20
Vo ———e 7w dv, +/ T(m)*———-e 2w dv 4.37
/0(m+1)-§(m) ™ V2ro, ™" Jo(ma1)—a(m) ) V2ray, " (4.37)
6(m—1)- 0(m) _—_v,gm
- e 2w dupy, (4.38)

m
(m+1)- o(m) umT( )\/ Oy
The equation above has three parts; the integral of the first part is

6(m—1)—6(m) 1 2a H(me- [g(m _ 1) _ 9_(m)]2
/e(m+1)—é(m) o \/2_7ra.,,e dv'" - \/— Jazltm = 1) = 0(m)] 202, (4.39)

_[6(m +1) — 6(m)]?

~ e o+ 1) - g LD IOIE g =D =Tl g lomx D= Al

Ow w

The integral of the second part would be like:

e 20,

(m+1)—8(m) V2moy, Ow Oy

/GO(m—l)—é(m) T m)2 1 ——"&ld’vm = T( )2[Q( [9(1’” + 1) — 0(m)])_Q( [0(771 - 1) - o(m)] )]
(4.40)
and the third part is:
'—”’Pd 2T(m)0w[ -[6(m+1) - 5(m)]2_e_ [0(m —1) — 5(m)]2)]

20g,
¢ Vo 202 202
(4.41)

o(m—1)— B(m)
m
/e(m+1) e(m) vnT( )v TOw

The numerator is calculated by adding up Equations 4.39 to (4.41). The denominator of
Equation 4.36 is calculated as follows:

(m+1) - é(m)]) _ ([0(m — O(m)]

Ow Ow

) (4.42)

ol
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and eventually by dividing the numerator by the denominator the E[(N,, —T},)?] in Equation

4.36 is calculated as :
E[(N(m) — T(m))?*] = T(m)? + 02 + e(dif f1,dif f2) (4.43)

where dif f1 = 0(m + 1) — 6(m) and dif f2 = 0(m — 1) — 8(m) and e(dif f1,dif f2) is

) . _ faign + faigg2
(TN AT = Gy — Qdif 2 (1.44)

and fgirs1 and fgisso are defined as:

w _d' 2 . w —di 2
fasgn = \;ﬁcxp( 2’({1{ ! )(dszl)—2T(m)\(/Tﬁexp( d;r{,{ ) (4.45)
w —dif f2? w —dif 22, .
fusn = 2T (m) P exp( 55 ) - F= (<G )i a0

The expected value of MSE noisy part, for V(m), was calculated in Equation 4.43. Now
we we have to extant our calculations for all V'(¢)s when (i € [1,2,...,m]) and take the sum
over all possible values. We use two vectors that we defined as di f fland di f f2 in the hard
thresholding case in Equations 4.21 and 4.22, and generalize our solution for different values
of m. Thus, the noisy part of MSE is defined as:

E(noises;, ) = -}V(i B(V (i)~ T(m))?) = TT(m)? + o+ % S e(diff1, diff2) (4.47)

i=1 i=1

We explore the same estimate of di f f1 and di f f2 in the hard thresholding case (based
on Sorting method) and estimate the noisy part of MSE using the above equation. The
noisy part that we have estimated here is later used in the estimate of MSE. The MSE
is estimated using its expected value in Equation 4.33. As we can see in this equation, to
calculate the expected value of MSE, we need to validate the noiseless part as well. However,
in order to evaluate the estimate of the noisy part using Equation 4.47, we first estimate
the MSE for a known noiseless part (Ag,) and in the next section we consider the case
with an unknown Ag, . We estimate the noisy part using Equation 4.47, then add up this
quantity to the noiseless part and estimate MSE. Figure 4.18 shows the desired MSE and its

estimate. In MNDL thresholding, we minimize the MSE estimate over all possible values of
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Block | mopt | Topt | Topt | Topt
Ow=1 293 | 158 | 1.2 | 1.8
Ow=206 170 | 130 | 89 | 9.8

Mishmash

ow=1 948 | 809 | 0.3 | 0.84

Oy =206 45 110 | 13.3 | 10.5

Table 4.3: Comparing mgpt, iop: and their corresponding threshold when we assume that Ag,, is
known.

m, to find mem. We know that the closer 1y is to the desired mop (in which the true MSE
is minimized), the better denoising we will have. Thercfore we have compared the gy ,
Mept and corresponding thresholds in table (4.3). This table and Figure 4.18 show that our
estimate works better when the level of noise is high. Also, the performance of our estimate
is dependent on the number of nonzero coefficients. This estimate works better for signals
with a few zero coefficients (like Mishmash) than a signal with many zero coefficients(like

Block).

4.4.2 The Effect of Additive Noise in Data Error

So far we have estimated the noisy part of MSE in the soft thresholding. The next step is to
estimate its noiseless part. The noiscless part of MSE is estimated using the expected value
of Data error. We have calculated the expected value of Data error for the soft thresholding
case in Equation 4.34. The second part of the expected value of Data error in Equation
4.34 is the same as the expected value of Data error in hard thresholding in Equation 4.9.
Therefore, we can exploit the results we had there, for soft thresholding too. Using the

estimations in section (4.1.1), the expected value of Data crror will be as follows:

m 1 N PR 1 N 2
E(ss,) = 5T(m) + 5 3 06)" + 5 E(XC V) (4.48)

i=m

We have T'(m) and therefor to derive 4 DA é(i)2 we need to estimate the third part. The

third part is exactly the same as noisy part of Data error in hard thresholding and can be

. o
[ ENE” &« BN .
R "4"‘.<.'v;"/1n R
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Figure 4.18: Comparison of MSE and its estimate. The estimate is obtained by adding up the
known noiseless party to noisy part estimate in Equation 4.50 as a function of m. (A) Block signal,
ow =1 (B) Block signal, oy, = 5 (¢) Mishmash signal, o, = 1 (D) Mishmash signal, g, =5

estimated using Equation 4.29. Therefore we have

LAg, =5, — Pr(m) — LB V) (4.49)
NTSm T e TN N '

To evaluate the performance of our estimate in Equation 4.49, we have plotted the true

i=m

noiseless part and its estimate in Figure 4.19. In contrast with the noisy part, the noiseless
part works better when the level of noise is small and the nonzero coefficients of the signal

are a few (like Block signal).

4.5 Bounds on MSE in Soft Thresholding Method

Two different parts of the expected value of MSE (in Equation 4.33), were estimated in
sections 4.4.1 and 4.4.2. The MSE expected value can be used as its approximation. We can

say that the procedure of estimating MSE in soft thresholding method is as follows:

e The expected value of MSE is computed as a sum of noiseless part and noisy part,

Equation 4.33.

PROPERTY OF
RYERSON UNIVERSITY LIBRARY
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Figure 4.19: The true noiseless part and its estimate in soft thresholding case as a function of
m. (A) Block signal, oy, = 1 (B) Block signal, oy, = 5 (c) Mishmash signal, oy, = 1 (D) Mishmash
signal, o, =5

e The noisy part is estimated :

1. Two parameters, dif f1 and dif f2 are estimated, using Equations 4.26 and (4.27).

2. The di f f1 and di f f2 is employed in Equation 4.47
e The noiseless part is estimated using Equation 4.49
e MSE is estimated as follows:

1 -
Zs, = N | As,. |I* +E(noise.g, ) (4.50)

The MSE in (4.50) is calculated as a function of m. The value of m, whose corresponding
MSE is minimum, is picked up as the optimum m and the m-th largest absolute value of

coefficients is the optimum threshold.
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4.6 Comparison of Results

In MNDL thresholding, the threshold is provided by minimizing the estimate of unavailable
MSE. The MSE and its estimate for the soft thresholding case are shown in Figure 4.20.

The plots are for Mishmash, Block and for two different levels of noise. We can see that

A

True
+ =« = Estimation

500 1000

10 : 30

0 500 1000 0 500 1000

Figure 4.20: The true MSE and its estimate in soft thresholding case as a function of m. (A)
Block signal, o, = 1 (B) Block signal, oy, = 5 (c) Mishmash signal, g, = 1 (D) Mishmash signal,
Ow=25 )

the estimate of MSE is very close to its true value in this figure. This estimate works well
for block signal and with variance of one. The estimate of MSE is computed as a function
of m and the value of m which minimizes the MSE is picked up as optimum value. The
Mept directly provides the threshold. The mgy in which the true MSE is minimum and
its corresponding threshold are compared with our estimations in table (4.4). We denoised
the signal with MNDL thresholding then calculated the error between noiseless data and its
estimate (MSE) using MNDL. The MSE of our method is compared with optimum denoising
method (in which we assume the noiseless data is known), in table (4.5). The comparison

includes the different range of noise. We can see in this table that the proposed method
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Block Mopt | Mopt | Topt | Topt
op=1 308 | 285 | 1.1 | 1.2
Ow=2©6 163 78 8.9 | 12.2

Mishmash
ow =1 964 | 766 | 0.3 | 0.98
" ow=0 104 | 137 | 10.7 | 9.7

Table 4.4: Comparing mep , Tept and corresponding thresholds in the soft thresholding case.
Averaged over ten runs.

Block optimal | MNDL-soft
ow=1 0.3 0.3
ow =3 2.1 2.2
ow=20 6.5 6.9
oy =10 12.1 12.5
Mishmash
ow=1 0.89 1.2
Ow=23 4.8 49
ow=~0 7.3 7.5
ow=10 7.7 8.8

Table 4.5: Comparison of MSE of MNDL soft-thresholding method with optimal method. Aver-
aged over ten runs.

has its best performance for an intermediate noise, such as noise with level of 3. It means
that our estimate of MSE for this level of noise is better. To estimate the MSE we first
formed it as a sum of the noiseless and noisy part and then treated every part separately.
The noisy part was estimated in section (4.4.1) and the noiseless part in section (4.4.2).
We evaluated our estimations through different graphs and noticed that the estimate of the
noiseless part works better when the level of noise is small; on the other hand, the noisy
part estimate performs better for high levels of noise. Therefore, for an intermediate level
of noise, in which the estimations of both the noisy and noiscless part are reasonable, the
proposed method works better. Also comparing table 4.5 with 4.2, we can sce that the soft

thresholding method, in most of the cases, results in a smaller MSE.



4.7 MNDL Image Denoising ”

The MNDL soft thresholding is simply extended for 2D data, like images. In the image
denoising area, soft thresholding works better than hard thresholding in terms of MSE value
and visual quality. Besides, experiments have shown that subband-dependent thresholding
converges better than universal thresholding methods. In the subband-dependent method,
one provides a different threshold for every subband of the wavelet transform. Here we
study the MNDL soft thresholding as a subband dependent image denoising method. For
this purpose, we estimate MSE in every subband and find the threshold that minimizes it.

The procedures of MNDL image denoising method is as follows:

1. Take the Wavelet transform of image.
2. In every subband the MSE is estimated with its expected value as follows:

e The expected value of MSE is formed as the sum of noisy and noiseless parts,
Equation 4.33.

e The noisy part is estimated using Equation 4.47.

e The noiscless part is estimated using Equation 4.49.

e MSE is estimated as a function of m by adding the noiseless part and the noisy

part.

3. The MSE is minimized over all possible values of m, and mgy is chosen, where (m €

{1,2,..,N}) and N is the number of coefficients in a specific subband.
4. The mp-th largest absolute value of coefficients is chosen as the optimum threshold.
5. The image is denoised using the provided threshold.

6. Take the inverse Wavelet Transform.
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Figure 4.21: Test images, on the left Cameraman and on right the Barbara

H \Y D

levell | 1.2 | 1.6 | 0.7
level2 | 25)] 3.9 | 1.6
level3 | 5.7 7.2 | 3.1
leveld | 9.2 |1 14.2 1 6.6

Table 4.6: SNR of every subband of cameraman when the level of noise is “10”

We tested two images, Cameraman as a sample of soft image and Barbara as a sample of
a highly detailed image. These images arc shown in Figure 4.7 the wavelet transform em-
ploys Daubechies’s wavelet with eight vanishing moments [50] with four scales of orthogonal
decomposition. The MSE and its estimate, in all subbands, are seen in Figure 4.22. As wc
have discussed in the previous sections the MNDL performance is dependent on the SNR
(Signal to Noise Ratio). The SNR of every subband in Figure 4.22 can be seen in table
(4.7). In Figure 4.22, the worse estimate is for D1, which is the diagonal subband of level
one. In table (4.7), we can sce that the SNR of this subband is very small. We know that
when the level of noise is small, the estimate of MSE noisy part does not work well and
that is why our estimate is far from true in this case. We compared the MSE of the MNDL
thresholding with two well-known methods: BayesShrink and SureShrink in table (4.7). The
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cameraman | Optimum | MNDL soft thresholding | BayesShrink | SureShrink

Ow =9 16.3 16.9 18 16.5

ow =10 47 52 50 53
ow=15 86 92 88 143
Barbara

Ow =295 16.7 17.8 17.4 16.8

oy =10 47.8 54.7 48.9 59.17
ow =15 80.7 87.2 82.1 107

Table 4.7: MSE comparison of proposed method with the existing methods. Averaged over five

runs.

BayesShrink method [20], uses the Bayes theorem and assumes the GGD structure for the

image coefficients. The SureShrink estimates the MSE using the “ SURE” estimate and pro-

vides a threshold that minimizes it. These methods are both soft thresholding method and

subband-dependent. The proposed rﬁethod works better than the SureShrink and its result

is very close to BayesShrink, which is one of the best known wavelet denoising methods. The

MNDL soft thresholding is compared visually with BayesShrink in Figure 4.23. It seems that

MNDL works better, the ringing effect in edges of image in MNDL soft thresholding is less

than BayesShrink.
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Figure 4.22: The MSE and its estimate as a function of m. the tested image is Cameraman, the
level of noise is “3”. the first column corresponds to first level of decomposition, the second column
is the second level and so on. In every row the subbands are ordered as horizontal (H), Diagonal
(D), Vertical(V), from left to right .
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Figure 4.23: (A) noseless image, (B) Noisy image noise level is “5”, (C) the estimate of
BayesShrink (D) the estimate of of MNDL soft thresholding.



Chapter 5

Conclusion

A new thresholding method based on Minimum Noiseless Description Length subspace selec-
tion (MNDL-SS) approach was proposed. MNDL-SS provides bounds on the desired Mean
Square Error (MSE) for subspaces of different orders. The approach uses the available Data
Error to provide an estimate of the desired MSE for comparison of competing subspaces. In
this approach, the structures of the desired MSE and the Data error play important roles.
These two quantities are samples of two random variables and the approach heavily relies on
the second order statistics of these two random variables. In MNDL thresholding, although
the desired criterion is the same as MNDL-SS, the structure of these two random variables
are very different from that in MNDL-SS. In this thesis, we develop a new approach to esti-
mate the noisy part of Data Error and MSE in thresholding. We study the applications of
MNDL thresholding for both the Soft and Hard thresholding. In either cases, the second or-
der statistics are estimated accordingly in our experiments. We have seen that MNDL Hard
thresholding outperformed the well known existing signal denoising methods. Implementing
it as Soft thresholding made the results even better than hard thresholding.

We have extended the MNDL soft thresholding for image denoising as well. The new
image denoising method was compared with well known methods. SureShrink chooses the
threshold minimizing the upper bound of MSE estimation. MNDL thresholding leads to
better results. We also included the BayesShrink method in our comparison. BayesShrink is

an ad-hoc denoising approach performs very well. The MNDL results are comparable with
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this method too.

It is very important to note that in our research we dealt with random variable and
important elements of the approach are expected value or samples of those random variables.
In MNDL thresholding, we estimated expected value of random variables with samples of
that random variable. Although we have tested the validity of these estimates in our work,
to generalize this approach, a complete study of the method based on the variance of the
error in this estimation is needed. This will be expansion of probabilistic events which has
been introduced in MNDL-SS for MNDL thresholding.

MNDL thresholding developed in this thesis is a new approach to denoising which has a
great potential in application. This research constructs the foundations of MNDL threshold-
ing. There is a lot to explore in this area, both in theory and application. For example, more
research can be done in finding the statistics of random variables involved in this approach
and also in considering noiseless signal with specific statistical structure. Due to rich theory

of this approach, MNDL thresholding can be explored in the area of quantization.
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