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Evacuation problems fall under the vast area of search theory and operations re-

search. Problems of evacuation of two robots on a unit disc have been studied for

an e�cient evacuation time. Work done so far has focused on improving the ’worst-

case’ evacuation time with deterministic algorithms. We study the ’average-case’

evacuation time (randomized algorithms) while considering the e�ciency trade-o↵

between worst-case and average-case costs. Our other contribution is to analyze

average-case and worst-case costs for the cowpath problem (another search prob-

lem) which helped us to set a parallel method for the evacuation problem.
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Chapter 1

INTRODUCTION

This section will familiarize the reader with a basic problem in the field of search

theory as well as some basic concepts that will be used in the latter part of this

thesis.

Consider the following simple sounding problem with two players, a hider and a

searcher. Somewhere on a long path there is a hidden treasure placed by the hider.

She does not want the treasure to be found and if found she wants to make sure that

it will take as long as possible to be located. On the other hand, the searcher knows

that there is a treasure somewhere on the path and she wants to locate it as soon as

possible. She does not know how far is the treasure located or in which direction.

In order to keep track of the distance and the direction, we shall call the starting

point for the searcher as the ’origin’. Searcher will follow some plan (algorithm) and

locate the treasure. It is implicit that among many possible algorithms some might

be feasible while others may not be feasible. A possible algorithm could be to start

search in one direction and search a portion of each side by travelling repeatedly

and alternatively in both directions until the treasure is found. For this problem,

we assume that the treasure is kept at a predetermined location by the hider and

the searcher is given a predetermined algorithm to follow. The searcher follows the

1
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Figure 1.1: Basic Cowpath problem: a searcher to locate a treasure on a straight
path.

zig-zag process until the treasure is located. We also assume that the searcher is

moving at a constant speed (unit) and wastes no time when making turns. The

treasure is located when the searcher and treasure are at the same location.

The problem, we just described, is a well-known problem in the field of computing

and is referred to as Cowpath problem which was initially introduced in 1963 [17]

and later reintroduced by computer scientists in the 1990s [60], [39]. While the

searcher, the hider and the search space are the three main elements of the problem,

there can be many variations to each of these elements. Therefore the extent of

academic work in this simple sounding field is vast and very detailed, some of which

will be referred to in the literature review section.

The searcher chooses an algorithm (search strategy) with the objective to find the

treasure in the shortest possible time (compared to the worst-case time). In order

to evaluate the performance of algorithms (with respect to the same input) search

time appears to be a straightforward measure but it is not an e↵ective measure,

because the hider will put the treasure as far away as possible since she wants the

treasure to be found as late as possible. For this reason we need to consider a

normalized measure. If the searcher knows the location of the treasure, then she
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can travel straight to the treasure via a shortest route. Time taken to complete this

search is referred to as o✏ine performance specific to that location of the treasure

(input). When searcher does not know the location of the treasure and she follows

an algorithm then time taken, to locate the treasure, is called online performance

specific to the algorithm and the input. It is obvious that any algorithm will have

its own worst-case online performance. The ratio of online performance and o✏ine

performance (for a specific input) indicates how well or poorly the algorithm has

performed. Of all the possible ratios, the worst-case ratio is crucial in analyzing the

performance of a plan and it is famously called the Competitive Ratio (CR). The

path followed by the searcher to locate the treasure to achieve the least-possible CR

is referred to as the optimal search path. In a systematic process searcher will travel

a certain distance across the origin and will gradually increase the step every time

until the target is located.

The basic concepts of search theory are further expanded and are used intricately

in the various search problems. Search problems have also taken the form of games

over the years. It is now an umbrella term for the science of optimization and

logical decision making in humans, and computers. Under the vast umbrella of

optimization, search problems found utilities in many real-life scenarios. Some of

the well known examples are in the military, search & rescue, scheduling, evacuation

planning etc. For example military personnel can plan their combat strategy to

optimally locate the enemy based on the terrain and availability of resources for a
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higher rate of success in the combat & military missions. High security areas such as

jails and o�cial buildings can plan the routes, frequency and number of personnels

for optimum surveillance so that the down time between each surveillance visit at

any point in the entire area can be minimized. In the area of transportation, delivery

truck-routes can be plotted and scheduled to improve delivery time and gas e�ciency

which can be used to assess the viability of the operations. Evacuation planning

can be done in large areas where persons need to be evacuated in the situation of

a disaster. Other examples may include robots trying to find a charging station;

boats trying to locate a safe harbour in a storm, etc.

Many games were developed utilizing the search strategies as the player tries to

minimize the possible loss for a worst case (maximum loss) scenario. Most games

address a zero-sum game, in which one participant’s gains results in losses for the

other participant. If the total gains of the participants are added up and the total

losses are subtracted, they will sum up to zero. These problems also paved the way

for many games with variations on the basic problem such as network colouring

game [24], high-low games [41], [57] , etc. Some famous problems related to optimal

search strategies are Princess and Monster [50], Swimming in the fog [16], Submarine

[65].
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1.1 Thesis Organization

Chapter 1 continues to broadly explore the academic work done in the areas of

’search theory’ and ’evacuation related problems’ respectively. We look at some of

the variations in the basic problems, that have been studied, and briefly touch on the

related results. In this section, we also introduce some concepts that will be used in

the latter part of the thesis. Chapter 2 specifically focuses on the Cowpath problem

where we look at the trade-o↵s between the worst-case and average-case costs. It will

lay out a structure of presenting the cowpath problem through a formal definition

of the problem, worst-case cost, calculation of the average-case cost followed by the

worst-case & average case analysis. Chapter 3 focuses on the specific evacuation

problem to evacuate 2 robots from a search space (unit disc) that has the exit

located on the perimeter using face-to-face communication. Similar to the structure

in Chapter 2, Chapter 3 will present the problem, calculate average-case cost and

discuss the results and their analysis.

1.2 Search Theory & Literature Review

While continuing to introduce more terminology used in the field of search theory,

this section will familiarize the reader broadly with academic work done in this field.

We noted that the search problems have three elements, the Searcher, the Hider

and the search space. The Searcher starts from origin O moving with a pre-

determined speed and wishes to minimize the search time to locate the Hider by
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following a search strategy. The intention of the Hider separates the basic problem

into either a Search Game problem or a Rendezvous problem [8]. If the Hider does

not want to be caught by the searcher, then she tries to maximize the search time.

In Rendezvous problems, on the other hand, Hider wants to be found and as a result

wants to minimize the search time.

The Searcher follows a search strategy and the Hider follows a hiding strategy.

A strategy can either be deterministic (a predetermined algorithm) or randomized

where player has the option to choose one strategy over another probabilistically. For

randomized strategy, expected search time cost is calculated by taking probabilistic

choices into consideration. In a feasible search strategy the Searcher moves back and

forth across from the origin until the treasure is found with multiple turning points

on both sides of the origin and a steady increase in each step, in order to cover all

the points on the trajectory. The time spent to search the treasure is the cost and

it is represented by a ’cost function’. If the Searcher starts by traveling distance

a in first step then incremental increase in ith step, given as ai, will be optimal

when the increase is exponential. Among many families of algorithms, the value of

a is optimum at 2 for the optimal search trajectory. Beck and Newman [15] solved

the linear search problem as a two-person zero-sum game. Gal [49] introduced the

idea of a normalized cost function, also now referred to as the competitive ratio. A

deterministic algorithm on Cow path problem guarantees a competitive ratio of 9 for

capture time. This solution was obtained in the framework of an online algorithm
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by Shmuel Gal [8]. Kao, Reif and Tate [60] used randomized search strategy and

reduced the competitive ratio to 4.59. Baeza-Yates et. al [11] theorized a cost model

for searching in any unbounded region that the cost is proportional to the distance of

the object from the searcher’s position. They also examined the e↵ects of reducing

the amount of information and determined that knowing the general direction of

the object’s location is much more informative than knowing the distance.

Alpern ([2], [3], [9], [5], [4]) and Gal ([6], [51], [52], [48], [13], [53], [54], [7],

[69], [55]) contributed significantly to this area of search theory. The basic search

problem has now been studied in great detail considering many scenarios with one

or more variations in the three elements. Following are some of the examples of the

variations that have been considered. The Hider can either be mobile or stationary.

When the Hider is mobile then the hiding strategy can either be deterministic or

randomized. Accordingly, the search algorithm changes. The Princess & Monster

is a game with two participants, a monster who is a searcher looking to catch the

princess, who is a mobile hider and does not want to be found by the monster. It

was solved by Gal [50] and Lalley & Robbin [64]. Optimal hiding strategy is for the

hider to move position not too often or rarely but this is not an e↵ective strategy if

hider knows searcher’s position.

There have been many variations to the speed of the Searcher (unit speed in

the original problem). In a search-and-rescue version of the problem, the searcher

is supposed to bring hider back to the nearest exit in the network. Here the speed
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of searching is not same as the return speed so, two-speeds [35] are taken into

consideration. Other variations include considering turn-time where some time is

added to the total cost when the robots make a turn [40]. In other scenarios, some of

the Searcher robots are assumed to be faulty [31], [34] therefore they either provide

no information or provide incorrect information. As a result the algorithm needs to

confirm the information. These additional steps increase the time.

The search space variations include, a bounded or unbounded (original cow path

problem) domain, a multi-dimensional region, a compact space or a network struc-

ture such as Eulerian network, tour (Chinese postman tour, Traveling Salesman tour

etc.), one or more arcs (path between two points) [8], figure-8 network [8], a spec-

tacle network [8] or unknown structure such as a maze [10], [8]. When considering

search space as a graph with nodes and edges, some natural search strategies such

as Chinese postman Tour, Random Chinese Postman tour, Traveling Salesman tour

etc. have existed for a long time. Chinese postman Tour is a minimal length of a

trajectory that covers all the edges and points in the search space and is a closed

trajectory. Traveling Salesman Tour is a trajectory that visits all the nodes in the

network and returns to origin in minimal time. Chinese Postman tour strategy

used for an immobile hider is an optimal search strategy [53] in a weakly Eulerian

network when the searcher can randomly move in any direction. Mathematicians

and computer programmers have worked on many problems to find optimal search

strategies in new networks.
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Problems in the field of Patrolling/ Search, Cops & robber games and network-

ing games have been explored in last few decades. ’Boundary / fence patrolling’

problems have multiple agents protecting an area from invasion by an intruder who

can enter the area from an unprotected point. They do not necessarily search for an

intruder but the objective is to minimize the idle time (time between each visit), to

reduce the uninspected time in the finite patrolling area leading to curb any intru-

sion. Czyzowicz et al [30] proposed the scenarios, with di↵erent number of agents,

each with a maximal speed, as to which strategy is optimal. They also determined

the scenarios where either of the two strategies does not provide the optimal idle

time. While here each point is visited multiple times by the searcher, Beachcomber’s

problem [28] deals with scenario when a point is visited at least once and the focus

is to have an algorithm for a fastest search considering two-speeds namely walking

speed and searching speed. Other variations include the certain number of robots

carrying out the search for a treasure or a hider; patrolling a fence [1], [25], [43],

[42], [58], [66], [70] or an area; two-speed robots that have a walking speed and a

patrolling speed, each of the multiple two-speed robots have speeds specific to them

[30], [28], [35]; robots with distinct maximal speed [30]; two robots on a circular

path with multiple exit points [27] search-and-fetch with two robots [56] etc.

Cops & robber type games were introduced in early 1980s where x cops are trying

to capture a robber in a network that has nodes and edges. The smallest number of

cops needed to catch a robber is called Cop number. The number of steps required

9



to capture make the length of the game. There have been many variations such

as invisible robber [62], [23], partially invisible robber [18], use of various forms of

detection such as traps, alarms, and photo radar [18], helicopter cops & robbers [46],

game on a circular graph [45] , catching a fast robber on the grid [12] etc. Meyniel’s

conjecture postulates the upper bound of cop number c(G) in a connected graph G

with n- vertices to be c(G) = O(
p
n). Frankl gave an asymptotic upper bound on

the cop number [47]. Meyniel’s conjecture has been proven to hold asymptotically

for the binomial random graph [67]. Cop density of a finite graph, is defined as the

ratio of the cop number and the number of vertices. In Cop & robber game played

in infinite graphs, cop density is proven to be any real number in [0, 1] [19]. In a

recent work in this area, Bonato et. al. [20] proved that the capture time decreases

monotonically when more cops are added to the game play. Other variations include

the game on a circular graph [45] , catching a fast robber on the grid [12] etc. While

Fitzpatrick & Larken determined that on a circular graph, maximum cop number

is 4, Balister et al determined the minimum number of cops required to catch the

robber if robber’s speed exceeds an absolute constant in an n⇥ n grid [12].

Considering search spaces as graph with nodes and vertices, Network colouring

and coloured coin games are another variation of search related problems. Intro-

duced by Kearn et al [61], they model dynamic conflict resolution in social networks

with the goal is to achieve a stable state in as less rounds of game as possible. In

this model individuals are represented as nodes on the graph who only have local
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information and they do not communicate with each other. Rossi & Ahmed [68]

studied the large complex networks and developed a unified framework to be able

to compare the methods across a wide range of social, web or biological networks.

Greedy games are interesting variations to the search games where the hider can

choose the amount of material to hide as opposed to the given quantity. Bigger

amount is associated with the higher possibility of detection. High-low games [41],

[57] are a variation of guessing game that have been studied. In Ed Gilbert’s prob-

lem, hider is mobile between consecutive guesses and the secret number may change.

Additionally the game is played in multiple rounds that remain the same.

In conclusion to the search, it can be said that we have come a long way from a

simple problem in 1946 (Koopman [63]) to Network colouring problems (Kearn et

al [61]) where complex networks are being studied to understand complex human

behaviour. It is now a very popular area of inquiry contributing to the applications

in the field of computer science, biology and economics.

1.3 Evacuation Problems & Literature Review

This section will familiarize the reader broadly with the academic work done in

the field of evacuation type problems. Then we narrow down the focus on specific

work done in the evacuation problem with 2 robots on a unit disc who communicate

face-to-face.

Studied since 1990s by computer scientists, Evacuation problems are a specific
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kind of search problems that have robots (or agents) searching for an exit to evac-

uate. Robots have information about the domain as well as the strategies of the

other robots at the start. The goal is to minimize the time to reach the exit for

all the robots in a worst-case scenario. Initial work considered evacuation planning

as flow-problems [14], [59] on dynamic network with a starting point (source) and

an end point (sink). The flow is governed by the distance and the time taken to

cover the path between these two points. Various scenarios are considered for ei-

ther the shortest time or the shortest path. Fekete et al. [44] explored the grid

polygon search area with fixed exit as well as with mobile exit. They determined

the worst-case bound between the fixed and the mobile exit scenarios. In the last

decade, evacuation problems are studied with other variations such as multiple exit

points [27], exit in a known or unknown domain [2], agents starting from a known

[42], [29] or an unknown point, unit or di↵erent speeds of the searchers [35], [42],

varied communication methods i.e. face-to-face (F2F) or wireless.

Communication among the agents is an important part of the strategy. It is

assumed that Robots can not see each other. Currently two models are primarily

studied in the field of evacuation, wireless model and face-to-face model (F2F). In

face-to-face communication, they can only communicate the information to each

other when they are at the same location. If they have devices that allow them

to communicate with each other from a distance then the communication model is

referred to as wireless communication.
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’Search and fetch’ variation of evacuation problems have searcher (one or more)

trying to find the target in an unknown search space [2] and bring the target back

with her. If there is more than one searcher then they communicate with each other

either wirelessly or face-to-face. Georgiou et al. [56], [32] determined an upper

bound in a wireless model as well as in a face-to-face model. For a face-to-face

model they also determined a lower bound.

The variation of evacuation problems that we are interested in was introduced

in 2014 by Czyzowicz et al. [29]. This problem had multiple (k) robots searching

for an unknown exit point located at the perimeter of a unit circular disc. They

found the lower bound for the optimal evacuation time in wireless as well as F2F

communication methods and showed the di↵erence in two methods for smaller values

of k (2 & 3). For the larger values of k, they found almost-tight bounds on the

asymptotic relation between evacuation time and team size. In a latter paper [27],

Czyzowicz et al. studied the case with multiple (k) exits and two robots who are

allowed to search freely. The exit is located on the perimeter of a unit disc. They

tackled di↵erent scenarios i.e. two robots and 1 exit; 3 robots and 1 exit; k robots

and multiple (4) exits on the perimeter. The communication model is wireless and

robots are only allowed to move around the perimeter of the disc. They analyzed the

algorithm where 2 robots start at the centre of the disc and then move to periphery

together. Then they travel in the opposite directions to search for the exit. Once

an exit is located by a robot then she travels to the other robot(s) to communicate
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this information. Then they evacuate together from the exit. They determined the

upper bound and lower bound for the cost when considering a single exit and k

number of robots in a F2F model. For the two robots scenario the upper bound

and the lower bound are calculated as ⇡ 5.740 and ⇡ 5.1999 respectively. They

also determined both lower (⇡ 4.826) and upper (⇡ 4.826) bounds for the wireless

model.

In the subsequent study Czyzowicz et al. [36] focused only on the evacuation of

2 robots from the unit disc using a F2F model. They introduced two new algorithms

and were able to improve the upper bound to ⇡ 5.628. They proved that if robots

follow an algorithm with a detour even if the exit is not found then it improves the

upper bound. First algorithm introduced a forced detour for the robots after a cer-

tain time when the exit is not found. The detour is a straightline path, inwards from

the periphery. The robot returns back to the periphery via the same path and then

continues the search on the periphery. Many families of algorithm are represented

by C(�,�) where � is the distance travelled by the robot on the perimeter between

0 and ⇡, and � is the angle at which the detour starts. This algorithm improved

the worst-case performance to ⇡ 5.644 for specific values of � and �.

The second algorithm introduced a forced detour where the robot follows a

triangular path. As a result, the algorithm has three points of significance in the

optimal evacuation algorithm. Here also, the two robots are forced to meet after

visiting a subset of vertices of the disc, even if an exit has not been found at that
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time. Each family of algorithms is denoted by C(�,�,�) and � is the time traveled

by the robot in the disc. An optimum CR value ⇡ 5.628 was achieved for the specific

values of � = 2.631865, � = 0.44916 and � = 0.05762. The lower bound was also

improved to ⇡ 5.255 from previous ⇡ 5.199.

Brandt et al. [22] further improved the upper bound to ⇡ 5.625 in the evacuation

of 2 robots from the unit disc using a F2F model but the lower bound remained

same at ⇡ 5.255. This was done by forcing multiple detours for both the robots.

This algorithm reduces the number of possible worst-case exits and this criterion

can be applied to any area shape.

A ”priority” version of evacuation [32], [33] was explored and solved in time at

most ⇡ 4.81854. There are 2 robots to be evacuated but one robot (queen) carries

a higher priority for evacuation. The goal is to save a robot (queen) with higher

priority and use their ’voice’ to communicate. Both robots can be evacuated in

⇡ 4.8264 by guiding the other person through their voice. The queen alone can

exit in at most ⇡ 4.81854. Any strategy for saving the priority-robot required at

least ⇡ 4.3896 in the worst case. For evacuating 2 robots, the time bound was

improved to ⇡ 3.8327 and ⇡ 3.3738 for 3 robots. The lower bounds were calculated

as ⇡ 3.6307 and ⇡ 3.2017 respectively for 2 and 3 robots. These results were

significantly improved as compared to the previous work [29].

In the recent work, Czyzowicz et al. [37] bring together linear and circular search

domains in the evacuation type problems for agents and provide a brief survey of
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recent developments in group search and evacuation by a set of n co-operating,

autonomous mobile agents. Both communication models between the mobile agents

are being considered for the worst case analysis of the algorithms. Survey also

covers the faulty agents, crash fault [38] and byzantine fault [34]. While a robot

with byzantine fault communicates incorrect information, a robot with crash faults

can stop movement and communication at any time.

While most evacuation type problems have focused on the worst-case scenarios,

Chuangpishit et al. [26] started to explore the algorithms’ average case analysis for

the problem of evacuating two robots from the disc in the face-to-face model. They

found that while worst-case performance of an algorithm improves, the average-case

performance worsens for all the previously studied algorithms. They introduced

new design of parameterized algorithm-families that minimize the average case cost

of the evacuation algorithm while maintaining the worst case. They also made an

observation that the average-case analysis is equivalent to designing randomized

algorithms for this problem.
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Chapter 2

COW PATH PROBLEM - WORST-CASE VS AVERAGE-CASE

PERFORMANCE

This section initiates an average-case analysis for the previously described cow path

problem and then compares the performance of the worst-case with the average-case.

To summarize the cow path problem, a stationary exit is placed at a point

somewhere on a line by an adversary. Searcher S is unaware of the location of the

exit and starts the search from origin O, moving at a maximal speed of 1. It can

move in any direction on this unbounded search path. We assume that she can only

locate the exit when she passes the exit and is at the same location as the exit.

Searcher’s objective is to locate the exit in the least possible time under worst-case

scenario and she wastes no time when making turns. The zig-zag search algorithm

(Figure 2.1) is the only feasible algorithm to locate the exit on a line path.

The Searcher announces the search strategy to the adversary, then adversary

chooses the hiding strategy that will maximize the cost. The time spent in locating

the exit is indicative of the cost, represented as Cost(A, x), which is determined by

the algorithm A (chosen by the Searcher) and x, the placement of the exit from the

origin.

Here Searcher starts by travelling a
0

distance to the right in the 1st step. If the
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x

Figure 2.1: Zig-zag Path: Created due to repeated turning points in the algorithm.
We further restrict the zig-zag algorithm A parametrized by an expansion factor ↵
as A

↵

such that a
i

:= ↵i.

exit is not found then it travels back to the origin and continues to travel a
1

distance

to the left of the origin. If the exit is not found then it travels back to the origin

and continues to travel a
2

distance to the right of the origin. Searcher continues this

multiple turn (zig-zag) algorithm in both the directions until the exit is found. We

assume that the treasure is not kept very close to the origin otherwise small value of

x will cause the competitive ratio to be arbitrarily high. When the Searcher starts

from the origin then i = 0 then i increases every time the Searcher returns back to

the origin. If i is even then Searcher travels a
i

to the right else travels a
i

to the

left. It is imperative that the location of the turning point will be negative (�a
i

)

for the odd value of i and positive (a
i

) for the even value of i. Although the left

and the right side are not identical but they behave symmetrically. Without loss of

generality the analysis will be done on one side, as it can be shown that it is similar

to the analysis for the other side so, for the ease of calculations and analysis, we

assume that the exit is placed on the positive side of the axis.

It is clear that the Searcher will travel a
2i

to the right and back to the origin or

a
2i+1

to the left and back to the origin, until the exit is found.
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Observation 2.1. Certain requirements must be met for a zig-zag algorithm to be
feasible:

• a
i

> 0

• a
i

< a
i+2

8 i > 0

• a
2i

, a
2i+1

! 1 as i ! 1

We further restrict the zig-zag algorithm A parametrized by an expansion factor

↵ as A
↵

such that a
i

:= ↵i. For any value of ↵, A
↵

will represent a specific algorithm.

In this case, cost is calculated in terms of time spent to locate the exit.

Definition 2.2. A
↵

is the family of algorithms that represent the zig-zag algorithm

with ↵i increment in the ith step. Cost(A
↵

, x) is the cost incurred by the Searcher

by following A
↵

algorithm where the exit is placed at distance x.

2.1 Competitive analysis

Searcher’s objective is to find the exit in the least possible time. Search space be-

ing an unbounded domain, the cost can be normalized as Cost(A

↵

,x)

x

. Determining

the performance of the algorithm in the worst case scenario will help establish the

benchmark for the least cost at the extreme end. Competitive ratio (CR) and Com-

petitive analysis are standard notions [21] in the context of online algorithms in the

area of computer science. We know that CR is the worst-case (supremum) ratio

of the online performance and the o✏ine performance and it indicates how well or

poorly an algorithm performs as compared to the o✏ine performance. For worst-

case analysis, we find an algorithm A
↵

that will minimize the cost for the worst-case
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scenario.

Wrs(A
↵

) = sup
x>1

✓
Cost(A

↵

, x)

x

◆

It is easy to observe that x must not be placed very close to the origin else the CR

will be very large. We will see that CR  9 [11] but we do a more general analysis

since we will be considering the average-case performance of the same algorithm.

Hence we need to know the worst-case performance.

We have the following lemma.

Lemma 2.3. Let ↵ > 1 and x 2 (↵2l,↵2l+2] then Cost(A
↵

, x) = 2 (↵

2l+2�1)

↵�1

+ x.

Proof. Considering the multiple turn-points for the cow path problem, total cost

can be calculated as following when the exit is placed between points ↵2l and ↵2l+1

Cost(A
↵

, x) = 2↵0 + 2↵1 + 2↵2 + ........+ 2↵2l + 2↵2l+1 + x

= 2
i=2l+1X

i=0

(↵i) + x

= 2
(↵2l+2 � 1)

↵� 1
+ x.

Consequently, we conclude with the following theorem

Theorem 2.4. Let ↵ > 1 then Wrs(A
↵

) = 2
�

↵

2

↵�1

�
+ 1.
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Proof. Let x > 1 since ↵ > 1, 9 l : x 2 (↵2l,↵2l+2]. Suppose x = ↵2l + ✏.

It is clear that the o✏ine cost x will be ↵2l + ✏. Then by lemma 2.3

Cost(A
↵

, x)

x
= 2

↵2l+2 � 1

(↵� 1)(↵2l + ✏)
+ 1

 2
↵2l+2 � 1

(↵� 1)(↵2l)
+ 1.

Therefore,

sup
x�1

Cost(A
↵

, x)

x
 sup

l2N

�
2

↵2l+2 � 1

(↵� 1)(↵2l)
+ 1

�

= lim
l!1

�
2

↵2l+2 � 1

(↵� 1)(↵2l)
+ 1

�

= 2
↵2

(↵� 1)
+ 1.

Therefore, competitive ratio (CR) for algorithm A
↵

can be written as

Wrs(A
↵

) = 2

✓
↵2

↵� 1

◆
+ 1.

We can conclude the upper bound value of competitive ratio for the cow path

problem with the following corollary.

Corollary 2.5. The best value of A
↵

is when ↵=2, then Competitive ratio for A
↵

is 9.
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Proof. In order to compute the best possible CR, we need to minimize Wrs(A
↵

),

when expansion factor ↵ > 1, given by function

f(↵) = 2
↵2

(↵� 1)
+ 1.

Therefore,

f 0(↵) = 0

or
4↵

(↵� 1)
� 2↵2

(↵� 1)2
= 0

2↵(↵� 2)

(↵� 1)2
= 0

or ↵ = 0 or 2

Since ↵ can not be 0 so it can only be 2. Now we prove that a = 2 is indeed a

minimizer.

f 00(↵) =
4

(↵� 1)
� 4↵

(↵� 1)2
� 4↵

(↵� 1)2
+

4↵2

(↵� 1)3

= �4� 4↵

(↵� 1)2
+

4↵2

(↵� 1)3
.

f 00(2) = 4
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Therefore for ↵ = 2, f 00(↵) > 0.

f(↵) =
2 · 22
2� 1

+ 1

= 8 + 1

Therefore,

f(2) = 9.

By minimizing the function f(↵), it proves this algorithm has competitive ratio  9

at the optimum expansion factor ↵ = 2. This confirms the upper bound for a subset

of algorithms.

We will also sketch the proof [11] as to why no deterministic algorithm can have

a competitive ratio better than 9. An algorithm for solving cowpath problem is

determined by the sequence of turning points {a
0

, a
1

, a
2

, .....} satisfying previous

properties (see observation 2.1).

Lemma 2.6. For any sequence {a
0

, a
1

, a
2

, .....} CR � 9.

Proof. Referring to figure 2.1, we have the sequence of turning points {a
0

, a
1

, a
2

, .....}

that satisfy the properties previously mentioned (see observation 2.1).
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For an exit placed near or after point a
0

CR � 2a
0

+ 2a
1

+ a
0

a
0

.

For an exit placed near or after point a
1

CR � 2a
0

+ 2a
1

+ 2a
2

+ a
1

a
1

.

For an exit placed near or after point a
k

CR � 2a
0

+ 2a
1

+ 2a
2

+ ...+ 2a
k

+ 2a
k+1

+ a
k

a
k

.

g
k

=
2
P

i=k+1

i=0

(a
i

)

a
k

+ 1.

Where g
k

is a lower bound to the competitive ratio for an algorithm where exit is

placed after k turning points and a
i

expansion factor. So a bound on CR can be

given by

min CR � g
k

, k = 0, 1, ..,1.

Theorem [11] says that the value of min CR can not be better than 9. Since g
k

has

infinite variables (a
0

, a
1

, ...), so to prove the theorem, we fix k by choosing a variable
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l to bound k s.t.

min CR � g
k

, k = 0, 1, .., l.

Now g
k

will have l+1 variables (a
0

, a
1

, ..., a
l

). We consider mathematical program to

determine the optimal value of CR. Let c
l

be the optimal value of CR. One can prove

that lim
k!1CR = 9 which is technical theorem. Following table shows the result

of the mathematical program when we compute various values of c
l

, numerically :

l c
l

0 5
1 6.23
2 7
3 7.49
4 7.82
5 8.06
6 8.23
7 8.36
8 8.46

Table 1: Values of c
l

(optimal CR) for the corresponding value of l generated using
Mathematica

2.2 Average-case analysis

In most cases of search problems, consideration of average-case performance of an

algorithm in comparison to the worst-case performance can help determine e�cient

usage of the resources. Our goal is to analyze average value of A
↵

when exit is
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placed uniformly at random. Also, because domain is unbounded there could be

infinite possible inputs. In order to bound the domain, we introduce a distance D

from the origin s.t. D ! 1. Since Average cost is calculated as the expected cost

over all the possible inputs in the given range (1, D], so we define Average CR in

this interval as

E
x2(1,D]


Cost(A

↵

, x)

x

�
.

Ideally we want to compute average-case CR as lim
D!1E

x2(1,D]

[Cost(A

↵

,x)

x

] but

analysis shows that the limit does not exist as D ! 1 therefore we take limsup.

Hence, the Average CR is defined as

Avg(A
↵

) = lim sup
D!1

E
x2(1,D]


Cost(A

↵

, x)

x

�
.

For average-case analysis, we need to find the algorithm A
↵

that will minimize the

expected cost. We introduce � andDl

�

s.t. � 2 (0, 1] andDl

�

is a convex combination

of ↵2l and ↵2l+2 s.t.

Dl

�

= �↵2l+2 + (1� �)↵2l.

where D 2 (↵2l,↵2l+2]. We will calculate expected cost E
x2(1,Dl

�

]

⇥
Cost(A

↵

,x)

x

⇤
(see
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lemma 2.7). Then we compute

lim
l!1

E
x2(1,Dl

�

]


Cost(A

↵

, x)

x

�

(see lemma 2.8). Finally we calculate average CR as

sup
�2(0,1)

lim
l!1

E
x2(1,Dl

�

]


Cost(A

↵

, x)

x

�

(see lemma 2.9). Let f(�,↵) = lim
l!1E

x2(1,Dl

�

]


Cost(A

↵

,x)

x

�
. We need to find the

� that maximizes f(�,↵). Then we will choose the best ↵ so as to minimize that

limsup.

We have the following lemma.

Lemma 2.7. Expected CR is given as

E
x2(1,Dl

�

]


Cost(A

↵

, x)

x

�
=

4 ln↵

(↵� 1)(Dl

�

� 1)


↵2

↵2 � 1
(↵2l � 1)� l

�
+

2(↵2l+2 � 1)

(↵� 1)(Dl

�

� 1)
ln (Dl

�

/↵2l) + 1

where Dl

�

= ↵2l[�↵2 + 1� �]

For notational convenience, Dl

�

is replaced by D as analysis holds true when D 2

(↵2l,↵2l+2).
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Proof. Expected cost

E
x2(1,D]


Cost(A

↵

, x)

x

�
=

1

D � 1

Z
D

1

Cost(A
↵

, x)

x
dx

=
1

D � 1


l�1X

i=0

✓Z
↵

2i+2

↵

2i

Cost(A
↵

, x)

x
dx

◆
+

Z
D

↵

2l

✓
Cost(A

↵

, x)

x

◆
dx

�

=
1

D � 1


l�1X

i=0

Z
↵

2i+2

↵

2i

✓
2
↵2i+2 � 1

(↵� 1)x
+ 1

◆
dx+

Z
D

↵

2l

✓
2
↵2l+2 � 1

(↵� 1)x
+ 1

◆
dx

�

=
2

(↵� 1)(D � 1)


l�1X

i=0

(↵2i+2 � 1)

Z
↵

2i+2

↵

2i

1

x
dx+

(↵2l+2 � 1)

Z
D

↵

2l

1

x
dx

�
+ 1

=
2

(↵� 1)(D � 1)


l�1X

i=0

(↵2i+2 � 1) ln(↵2) + (↵2l+2 � 1) ln (D/↵2l)

�
+ 1

=
4 ln↵

(↵� 1)(D � 1)


↵2

↵2 � 1
(↵2l � 1)� l

�
+

2(↵2l+2 � 1)

(↵� 1)(D � 1)
ln (D/↵2l) + 1.

Therefore,

E
x2(1,D]


Cost(A

↵

, x)

x

�
=

4 ln↵

(↵� 1)(D � 1)


↵2

↵2 � 1
(↵2l � 1)� l

�
+

2(↵2l+2 � 1)

(↵� 1)(D � 1)
ln (D/↵2l) + 1.

This will be true 8D 2 (↵2l,↵2l+2)
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Lemma 2.8. For ↵ > 1 and � 2 (0, 1], let Dl

�

= ↵2l[�↵2 + 1� �]. Then

lim
l!1

E
x2(1,Dl

�

]


Cost(A

↵

, x)

x

�
=

2↵2

(↵� 1)(�↵2 + 1� �)


2 ln↵

↵2 � 1
+ln (�↵2 + 1� �)

�
+1.

Proof. Expected cost by lemma 2.7

E
x2(1,Dl

�

]


Cost(A

↵

, x)

x

�
=

4 ln↵

(↵� 1)(D � 1)


↵2

↵2 � 1
(↵2l � 1)� l

�

+
2(↵2l+2 � 1)

(↵� 1)(D � 1)
ln (D/↵2l) + 1.

lim
l!1

E
x2(1,Dl

�

]


Cost(A

↵

, x)

x

�
=

4 ln↵(↵2)

(↵� 1)(↵2 � 1)
lim
l!1


↵2l � 1

(D � 1)

+
2

↵� 1
ln (�↵2 + 1� �) lim

l!1

↵2l+2 � 1

(D � 1)

�
+ 1

=
4 ln↵(↵2)

(↵� 1)(↵2 � 1)


1

�↵2 + 1� �

+
2

↵� 1
ln (�↵2 + 1� �)

↵2

�↵2 + 1� �

�
+ 1

=
2↵2

(↵� 1)(�↵2 + 1� �)


2 ln↵

↵2 � 1
+ ln (�↵2 + 1� �)

�
+ 1.

Average-case, g(↵) calculated as sup
(�2(0,1]) liml!1E

x2(1,Dl

�

)


Cost(A

↵

,x)

x

�
can be

given by the following lemma.

Lemma 2.9. An upper bound to the Average-case CR is g(↵) =


exp

�
↵

2�1�2 log↵

↵

2�1

�
�1

�

(↵

2�1)

.

29



Proof. We have Expected CR (by lemma 2.8)

lim
l!1

E
x2(1,Dl

�

)


Cost(A

↵

, x)

x

�
=

✓
2↵2

↵� 1

◆
t
↵

(�) + 1,

where t
↵

(�) =
�

1

�↵

2

+1��

��
2ln(↵)

↵

2�1

+ ln(�↵2 + 1� �)
�
and � 2 (0, 1]

t
↵

(�) is dependent on �. To find sup
0<�<1

t
↵

(�) we maximize t
↵

(�) and calculate

t0
↵

(�) = 0 (which can be thought as an adversarial choice).

We know that

t
↵

(�) =

✓
1

�↵2 + 1� �

◆✓
2ln(↵)

↵2 � 1
+ ln(�↵2 + 1� �)

◆

Using Mathematica computation, we get the following �
↵

when t
↵

(�) is maxi-

mized

�
↵

=


exp

�
↵

2�1�2 log↵

↵

2�1

�� 1

�

(↵2 � 1)

where �
↵

2 [0, 1) 8↵ > 1 as shown in Figure 2.2. Then,

t
↵

(�
↵

) =
↵

�
2

↵

2�1

�

e
.
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⍺

ג

(a) (b)

⍺

Figure 2.2: (a): Graph between ↵ and � shows that ↵
�

is optimum close to approx
0.5. (b) Curve confirms that �

↵

is a maxima.

Therefore expected CR becomes,

g
↵

(�
↵

) =
� 2↵2

↵� 1

� ↵

�
2

↵

2�1

�

e
+ 1

where � 2 (0, 1] 8 ↵ > 1.

The value is maximized at �
↵

, if t00
↵

(�
↵

) < 0 8 ↵ > 1. Using symbolic calcu-

lations from Mathematica computation, we plot the following two graphs (Figure

2.2). Figure 2.2b proves that g
↵

(�
↵

) has a local maximum at �
↵

.

t
↵

(�
↵

) is entirely a function of ↵. One can verify that �
↵

2 [0, 1] 8 ↵ > 1.

Figure 2.2a plots �
↵

for the varying values of ↵.

Observation 2.10. The best value of ↵ is 2.70453 at 5.32685 expected evacuation

time.

Using Mathematica computation, we obtain the graph (Figure 2.3) between
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⍺

Co
st
	/	
tim

e

(~2.70453,	~5.32685)

Figure 2.3: Plot of expected cost (time) against expansion factor ↵ showing the
initially cost decreases until ⇡ 2.7 then it starts to increase.

the values of ↵ and the corresponding cost (in terms of time). We see that the

cost initially is reducing as the ↵ increases but after a certain point cost will start

to increase. The best value of ↵ is close to ⇡ 2.70453, which can be calculated

numerically by minimizing f(↵) so f 0(↵) = 0 and the corresponding CR to locate

the exit is ⇡ 5.32685.

2.3 Trade o↵ - Worst-case vs Average-case

Upon completing various relevant calculations, the following parametric curve (Fig-

ure 2.4a) gives us a visual representation of the trade o↵s between the costs for

the Average-case (g(↵)) and the Worst-case (f(↵)) scenarios. The curve is drawn

between (f(↵), g(↵)) where f is the worst-case performance of algorithm A
↵

and g

is the average-case performance of A
↵

. When the minimum worst-case value of f(↵)
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Figure 2.4: (a): Worst-case vs Average-case Trade o↵; (b): Critical points between
Average-case and Worst-case for the Cow path problem.

is ⇡ 9 then the average-case is ⇡ 5.67. When we try to minimize the average-case

value at ⇡ 5.32 then the worst-case is increased to ⇡ 9.58. Notice the curve between

the points (⇡ 9,⇡ 5.67) and (⇡ 9.58,⇡ 5.35) (Figure 2.4b). There is a delicate

balance of the e�cient values between these two points. As the worst-case perfor-

mance cost worsens from ⇡ 9 to ⇡ 9.58, the average-case performance cost improves

from ⇡ 5.67 to ⇡ 5.32. Similarly when average-case performance cost worsens from

⇡ 5.32 to ⇡ 5.67 then the worst- case performance improves from ⇡ 9 to ⇡ 9.58.

These points are crucial from the e�ciency perspective otherwise there are more

than one corresponding value for each f and g. We notice that those points fall

outside the range of these crucial points. For example, for worst-case CR 10 there

are two values for average-case CR ⇡ 5.4 and ⇡ 7. Its obvious that 5.4 is more

e�cient but both the values of f and g outside the crucial points proving that our

range covers all the e�cient combinations of worst-case and average-case scenarios.

It is clear that when we try to minimize f(↵) then there is little control over g(↵)
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and vice versa. Another important consideration at this point is the availability of

the resources (time, in this case). While considering worst-case, it is assumed that

we have unlimited resource available to be able to locate the exit but in reality,

consideration of limited resources is crucial as we may have limited time to evacuate

or limited gas in the vehicle to be able to search an area. We observed this trade-o↵

phenomenon for the Cowpath problem and it will be very interesting to see how this

relationship changes for other algorithms, for other problems.
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Chapter 3

EVACUATION PROBLEM ON A DISC

This section first describes a specific evacuation problem which is followed by the

relevant evacuation algorithms and their worst-case scenarios that have been studied

so far. Then we calculate average-case CR for them and compare the average-case

CR with the worst-case CR values. By understanding the specific phases of the

algorithms, that contribute positively and negatively to the CR, we introduce a new

algorithm that has best of the both worlds. Analysis of this new algorithm follows

afterwards with respect to its worst-case and average-case performance.

Our problem comes under the umbrella of ’Evacuation problems’ in the field of

mobile agent computing. The algorithm and the analysis in the previous section

(Cowpath problem) will help to lay the groundwork for our specific problem.

3.1 Problem Definition

We consider two mobile search agents, robots R
1

and R
2

, who start from the centre

O, of a unit disk. They are trying to locate a hidden exit and evacuate, in the least

possible time, determined only when the last robot has evacuated. The stationary

exit is located somewhere on the periphery of this disc and its location is unknown

to the robots. The exit is discovered only when the robot is at the same coordinates
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as the exit. Robots can move anywhere on the disc with a maximal speed 1. Robots

can not see each other. In order to communicate information to each other, they

have to be at the same location. This is called face-to-face (F2F) communication.

When the last robot reaches the exit that is the Evacuation time for that algorithm.

The trajectories of both the robots are determined prior to the start and both know

the trajectories of one another. Therefore, at any given time each robot is aware of

the location of the other robot.

Similar to the Cowpath problem, the search strategy (algorithm) is announced

first and then the adversary determines the location of the exit. On one hand when

we consider the worst-case cost, the adversary has the power to choose the worst-

possible exit after searcher announces a deterministic search strategy but when a

randomized search strategy is announced adversary’s power to choose worst-possible

exit diminishes because searcher’s starting point will be arbitrary as a point x chosen

uniformly at random on a unit circle (x 2 (0, 2⇡)) which assumes that there are

unlimited number of random bits. On the other hand when we consider average-

case cost, for a deterministic strategy chosen by the searcher, no matter which point

adversary chooses (uniformly at random) the algorithm followed by the searcher

will achieve the same average-case cost. It is due to the unique nature of our

problem on a disc that adversary has no power to choose a worst exit in cases

of the randomized algorithm with deterministic input or deterministic algorithm

with randomized input. It is important to mention another unique situation in
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this evacuation problem of the two robots on a unit disc. For our problem, the

competitive ratio will be same as the worst case cost due to the unit disc.

In the field of computer science, e↵orts have been to solve the search problem

assuming the availability of unlimited time-resource. We may have unlimited time

but other energy resources such fuel available to run a ship or plane for evacuation

will be limited. For example, while doing rescue operation in the sea, the ship may

have limited capacity in the fuel tank that will limit search due to the unavailability

of the fuel after a certain point. If searchers do not have the resources to achieve

the worst-case scenario, we would like to consider the average-case scenario where

the possibility of achieving the goal of evacuation is still high despite the limited

resources therefore, we will analyze the evacuation costs of the worst-case scenario

and the worst average-case scenario for a randomized algorithm considering limited

resources. We continue to determine the cost in terms of time spent and the e�ciency

of the algorithms to locate and evacuate.

A feasible algorithm is determined by the trajectories of the robots, in which

both robots evacuate eventually through the exit. If R
1

(t) and R
2

(t) represent the

location of the robots R
1

, and R
2

at time t then we say that trajectories R
1

(t), R
2

(t)

are feasible if

• R
1

(0) = R
2

(0)

• Trajectories R
1

(t), R
2

(t) have speed  1

• There is some time t
0

> 1, such that each point of the unit circle is visited
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(searched) by at least one robot in the time window [0, t
0

]. We refer to the
smallest t

0

as the search time of the circle.

• At the exit, robots will be at the same location at time t0, R
1

(t0) = R
2

(t0)
eventually

The performance of the algorithm is determined by how fast can it evacuate all

the robots through the exit.

3.2 Terminology

The centre O of the disc has the coordinates (0,0) in the Cartesian plane. Any point

on the perimeter of the circle can be represented by
�
cos(x), sin(x)

�
, x 2 (0, 2⇡]. For

the ease of presentation we will denote it as cycle(x). A represents an evacuation

algorithm. The cost C(x) incurred by an algorithm is considered as the time taken

to evacuate both the robots when exit is at cycle(x). The searcher can either

follow a pre-determined algorithm or randomly choose an algorithm over another

probabilistically. The Average-case cost is calculated as the expected cost E[C(x)]

when exit is placed uniformly at random.

Since we are concerned with the performance of the algorithm, to determine the

tradeo↵s between the worst-case and the average-case costs, so we define E�ciency

of the algorithm A as

✓
Avg(A),Wrs(A)

◆
where:

Avg(A) := E
x2[0,2⇡)[C(x)],

Wrs(A) := sup
x2[0,2⇡)

[C(x)].
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We introduce a value ! to bound the worst-case performance of an algorithm A

such that the worst-case performance will not exceed !. Then we consider problem

min 1

2⇡

R
2⇡

0

C(x)dx s.t. C(x)  !, 8x 2 [0, 2⇡)

where C(x) is the total cost. In the latter part, we will see that problem is interesting

when we consider the performance of the algorithm between two specific points (!
1

& !
2

) on the e�ciency graph, as the other values become trivial when considering

e�ciency of the algorithm.

3.3 Evacuation Time

For the ease of calculations and analysis, we will consider the entire operation to be

divided into search phase S(x) and evacuation phase "(x). S(x) is the time spent in

searching for the exit, located at a point x and "(x) is the time spent in locating the

other robot. Since both the robots will be travelling back together to the exit point

so "(x) will be doubled. Therefore, the total cost for an algorithm C(x) to locate

an exit and then evacuate both the robots is calculated by adding the search time

(S(x)) to evacuation time (2"(x)). Therefore cost,

C(x) = 1 + S(x) + 2"(x).

It is worth noting that C(x) represents cost of any algorithm. In an e↵ort to simplify

notation, we will determine the trajectories of the robots from the moment the two
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robots reach the perimeter of the disc until the disc is searched & robots exited.

Therefore, worst-case cost,

Wrs
�
C(x)

�
= sup

x2[0,2⇡)
C(x)

= 1 + sup
x2[0,2⇡)

✓
S(x) + 2"(x)

◆
. (3.1)

For average case cost,

Avg
�
C(x)

�
=

1

2⇡

Z
2⇡

0

C(x)dx

= 1 +
1

2⇡

Z
2⇡

0

✓
S(x) + 2"(x)

◆
dx. (3.2)

We have the following lemma.

Lemma 3.1. Suppose exit is located at cycle(x) and Robot R
1

finds the exit first,

by following the algorithm A. Then "(x) = t̄� S(x) where t̄(x) is the smallest root,

t̄ � S(x), of function

k(x, t) := ||R
2

(t)�R
1

(S(x))||� t+ S(x)

Proof. We will prove that k(x, t) has roots and t̄(x) � S(x).

k(x, t) is a continuous function, defined at time t. For fixed x, k : R
+

! R. When

exit is located, t = S(x) and both robots are not at the same location (R
2

(S(x)) 6=
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R
1

(S(x)), then

k(x, S(x)) := ||R
2

(S(x))�R
1

(S(x))||| {z }�S(x) + S(x)| {z }

:= > 0 0

k(x, S(x)) > 0

Therefore, k(x, S(x)) will be positive. k(x, S(x)) = 0 when both robots are moving

together and locate the exit then R
2

(S(x)) = R
1

(S(x).

After a large enough time t0 where R
1

and R
2

arrive together at exit,

k(x, t0) := ||R
2

(t0)�R
1

(S(x))||| {z }� t0|{z} +S(x)|{z}

:= 0 � large t0 + fixed S(x)

k(x, t0) < 0

By mean value theorem, 9t̄ > S(x) : k(x, t̄) = 0. We choose smallest t̄ � S(x).

Now we show that "(x) = t̄� S(x).

We assume R
1

locates the exit (Figure 3.1). Therefore, at the search time S(x),

robots R
1

and R
2

will be at R
1

(S(x)) and R
2

(S(x)) respectively. R
1

then locates

R
2

via the shortest route at point T after t̄. Then both return to exit. Therefore at

t̄,

R
1

(t̄) = R
2

(t̄)
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Figure 3.1: The distance, travelled by R
1

and R
2

after time t, will be the same and
since both are moving at the same speed so the time taken by both the robots to
travel to a point T will also be the same.

Since R
1

and R
2

move at unit speed, kR
2

(t̄)�R
1

(S(x))k = t̄ � S(x). Clearly,

evacuation time "(x) = t̄� S(x) or "(x) = kR
2

(t̄)�R
1

(S(x))k.

This theorem is useful as it provides us with a general equation that can be

applied widely for any search spaces.

3.4 Benchmark Algorithms

In this section we provide brief overview of some benchmark algorithms that have

helped us lay the ground to explore new algorithms with improved performance.

B
1

and B
2

are two benchmark algorithms with worst-case costs ⇡ 7.28 & ⇡ 5.740

respectively as well as average-case costs ⇡ 4.14 & ⇡ 5.1172 respectively.
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R1

R2

O

Figure 3.2: Naive algorithm - R
1

and R
2

start at origin O then arriving on periphery,
both move together in one direction until the exit is found. Once the exit is located,
both evacuate together.

3.4.1 Benchmark Algorithm B
1

- Naive

In this benchmark algorithm, robots follow a very simple algorithm to reach the

exit and to evacuate. Robots R
1

and R
2

start from the centre of the disc towards

the periphery (Figure 3.2). Once on the periphery both move together in the same

direction. After the exit is located both evacuate together.

Mathematically, B
1

can be represented as

"(x) = 0

S(x) = x

8t 2 (0, 2⇡], R
1

(t) = R
2

(t) = cycle(t)
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From equation 3.1, worst-case cost,

Wrs
�B

1

�
= sup

x2[0,2⇡)
C(x)

= 1 + sup
x2[0,2⇡)

✓
S(x) + 2"(x)

◆

= 1 + sup
x2[0,2⇡)

S(x) (note : "(x) = 0)

= 1 + sup
x2[0,2⇡)

x

= 1 + 2⇡

⇡ 7.28

So, in the worst-case scenario, exit is found almost at the end on the periphery.

Therefore, Wrs(B
1

) ⇡ 7.28. From equation 3.2, average-case cost,

Avg
�B

1

�
=

1

2⇡

Z
2⇡

0

C(x)dx

= 1 +
1

2⇡

Z
2⇡

0

✓
S(x) + 2"(x)

◆
dx

= 1 +
1

2⇡

Z
2⇡

0

xdx

= 1 + ⇡

⇡ 4.14

Average-case, Avg(B
1

) ⇡ 4.14. Hence the E�ciency for algorithm B
1

is repres-

nted as (1 + ⇡, 1 + 2⇡).

44



R1

R2

x

x+!x

!x

(a) (b)

Figure 3.3: Opposite Direction algorithm - R
1

and R
2

start at origin O then arriving
on periphery, both move together in opposite directions until the exit is found. Once
the exit is located by one robot, she meets with other robot then, both evacuate
together.

3.4.2 Benchmark Algorithm B
2

- Opposite

Czyzowicz et al.[29] were the first to introduce the unit disc evacuation algorithm

for two robots (Figure 3.3). Here robots R
1

and R
2

start from the centre of the disc

towards the periphery. Once on the periphery, both move in the opposite direction.

When the exit is located by one robot then she locates the other robot via the

most e�cient path/chord. Then both robots return to the exit by the same chord

distance and evacuate. The cost of the algorithm is parameterized by the location

of the exit x, on the perimeter from the starting position. It is easy to observe

that for each t 2 (0, 2⇡], trajectories R
1

(t) and R
2

(t) are symmetric with respect

to the horizontal axis so it will take a maximum of ⇡ time to search the disc on

periphery. As we know that the distance covered (x+ �
x

) by both the robots until

they meet will be same so chord �
x

is a function of x and it equals the roots of

�
x

= 2sin(2x+�

x

2

).
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This would be the same result as from Theorem 3.1. In this case we do not use the

theorem to compute since it is far more easier through geometric theorem. For any

x, "(x) = �
x

and S(x) = x therefore, C(x) = 1 + x+ 2�
x

.

We use Mathematica calculations to calculate worst-case performance for algo-

rithm B
2

,

Wrs(B
2

) = sup
x2[0,⇡]

C(x)

= sup
x2[0,⇡]

(1 + x+ 2�
x

) ⇡ (5.740) [29]

We also calculate the average-case performance, using Mathematica calculations

Avg(B
2

) = E
x2[0,⇡]C(x) =

1

⇡

Z
⇡

0

(1 + x+ 2�
x

)dx ⇡ 5.1172.

The worst-case performance of the algorithm occurs when x ⇡ 0.968 (Figure 3.4).

Therefore, the E�ciency for B
2

is (5.1172, 5.740).

3.4.3 Benchmark Algorithms B
2.1

and B
2.2

Algorithms B
2.1

and B
2.2

use B
2

as the base algorithm to evacuate two robots from

the unit disc in a F2F model and they provided further enhanced results as compared

to the base algorithm. Czyzowicz et. al [36] introduced two new algorithms with

forced detour and improved both the lower and upper bounds of the evacuation

times. While we briefly mentioned both the algorithms in the literature review
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Figure 3.4: (a) Comparing the worst and average case performance of Benchmark
algorithms B

1

and B
2

; (b) Detailing the critical point ⇡ 0.968 when cost is the worst
(⇡ 5.74).

section, we will be focusing on B
2.1

algorithm (Figure 3.5a) in this section as it is

closely related to our problem. B
2.1

algorithm improved the worst-case performance

to ⇡ 5.644. It was achieved by introducing a detour as a part of the algorithm

that forced detour for the robots after a certain time when the exit is not found.

There are two points of significance, B and C in the algorithm. B is the point on

periphery where the robot starts the detour and C represents the location of the

detour point on the disc, before the robot returns back to the periphery. So after

a pre-determined time robot turns in to follow the detour at point B (B ! C) and

then it returns back to the periphery via the same path (C ! B). Each set of B

and C represents a family of algorithms denoted by C(�,�) where � is the distance

travelled by the robot on the perimeter, � is the angle at which the detour starts. In

their optimal evacuation algorithm, the two robots are forced to meet after visiting

a subset of vertices of the disc, even if an exit has not been found at that time.
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Figure 3.5: Algorithms showing the trajectories of the robots R
1

and R
2

with forced
detour - (a) With one forced meeting detour- B

2.1

; (b) With multiple forced detours
-B

2.2

.

An optimum CR value ⇡ 5.644 was achieved for the specific values of � = 2.62359,

� = 0.

Brandt et al [22] (Figure 3.5b) further improved the upper bound to ⇡ 5.625. We

refer to the latter algorithm as B
2.3

. The worst-case evacuation time was improved

by forcing multiple detours for both the robots.

Therefore,

Wrs(B
2.1

) ⇡ 5.644 [36] (when � = 2.62359, and� = 0)

Wrs(B
2.2

) ⇡ 5.625 [22]

3.4.4 Cost and E�ciency Comparison for B
1

and B
2

Table 2 summarizes the average and worst-case costs for both algorithms B
1

and

B
2

:
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Cost:
Average-case

Cost:
Worst-case

Benchmark Algorithm B
1

1+⇡(⇡ 4.14) 1+2⇡(⇡ 7.28)
Benchmark Algorithm B

2

⇡ 5.12 ⇡ 5.74

Table 2: Values of average-case and worst-case for B
1

and B
2

benchmark
algorithms.

We plot (Figure 3.6) the costs for both the algorithms B
1

and B
2

together. We

notice that the curve for B
2

is symmetric because when the robots are moving in

the opposite directions then the exit will be located when x 2 (0,⇡] and the worst-

cost (⇡ 5.74) is observed at x ⇡ 0.968. We also notice that while B
1

performs very

well in the earlier part of the algorithm but the cost-rise is significant towards the

later part of the algorithm. Yet the average value looks relatively good due to large

variation in the cost over the entire process. In contrast to B
1

, B
2

has a higher cost

in the earlier part of the algorithm and it varies through the entire process. As a

result, the worst performance of B
2

is better than B
1

but the average cost of B
1

is

better than B
2

.

We previously discussed that our intention is to consider the average-case sce-

nario where the possibility of achieving the goal of evacuation is still high despite the

limited resources. So we did a rough representation of the E�ciency Comparison

for benchmark algorithms B
1

and B
2

(Figure 3.7a). Similar to the Cowpath exam-

ple earlier, we notice that when the worst-case performance cost improves then the

average-case performance cost increases and vice versa. It is not uncommon for

many problems to have the lower and upper bounds to be only available numeri-
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Figure 3.6: Comparing the worst and average case performance of Benchmark algo-
rithms B

1

and B
2

for varying position of exit

cally. For evacuation problems with two robots having F2F communication and a

maximum of ! worst-case time also, the cost of best-solution does not exist because

at the point where worst-case cost is low, the average-case is high and vice versa.

Between these two points, M and O, on the plot (Figure 3.7a), the ’best solution’

will depend on the searcher’s objective i.e. if she wants low average cost then she

will choose a point M or a point in its vicinity while, if she needs worst-case to be

low then she will choose point O or a point in its vicinity. This gives us a motivation

to explore the algorithms for which e�ciency would fall in the vicinity of points M

and O, ideally close to line MO.

It is also important to mention the results (Figure 3.7b) of a performance analysis

[26] recently done for benchmark algorithms B
2

. Figure 3.7b shows a consolidated

e�ciency-plot for various algorithms as we consider various combinations of � and �

for varying detour-point C as shown in Figure 3.5 where C is the last point located

on the disc to end the detour before robot’s return back to the periphery. The plot
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Figure 3.7: E�ciency Comparison: (a) benchmark algorithms B
1

and B
2

; (b) A
consolidated e�ciency plot [26] for families of B

2

.1 algorithm with varying values of
↵ and the detour-point C

depicts more than 500,000 di↵erent parameter values using lemma 3.1. Since the

red point represents the least average ⇡ 5.12 for a corresponding worst-case cost

⇡ 5.74 which is same as our B
2

therefore they concluded that no other algorithm

has an average better than 5.12.

In the next section, we will explore a new algorithm.

3.5 New Algorithm

In an e↵ort to find a possible solution that will help us cover the current gap between

points M and O (Figure 3.7), we will explore a new algorithm. We will further

analyze to see if this algorithm has an e�cient worst-case as well as average-case

performance as compared to the benchmark algorithms. We will refer to this new

algorithm as B
3

(↵), parametrized by the distance ↵ where detour takes place, ↵ 2

(0,⇡].
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For an algorithm A, e�ciency is defined as (Avg(A), Wrs(A)). For a fixed

! 2 [5.74, 1+2⇡], we restrict our attention to Wrs(A)  !. Among them we would

like to minimize Avg(A). Since our goal is to devise an algorithm parametrized by

↵, so we introduce a family of algorithms B
3

(↵) where ↵ 2 (0,⇡]. When ↵ = 0

then B
3

(0) is the benchmark algorithm B
1

and when ↵ = ⇡ then B
3

(⇡) is the

benchmark algorithm B
2

. In general, we will find functions f and g such that

Avg(B
3

(↵)) = g(↵) & Wrs(B
3

(↵)) = f(↵). Given any ! 2 [5.74, 1 + 2⇡], we will

find f(↵)  ! and so as to min g(↵). While we are able to determine f(↵) exactly

(closed formula) but g(↵) will be computed only numerically.

This way we propose one solution to the optimization problem for an algorithm

A with min Avg(A) such that

Wrs(A)  ! where ! 2 [5.74, 1 + 2⇡]

We will find B
3

(↵) for A where ↵ 2 (0,⇡]. It may/not be the optimal solution.

3.5.1 Trajectories of R
1

and R

2

in algorithm B
3

R
1

and R
2

start together from the centre of the disc towards the periphery. Once

on the periphery both move in the opposite direction. When the exit is located by

one robot then she locates the other robot via the most e�cient path/cord. Both

return to the exit by the same chord distance and then both evacuate. In case the

exit is not located until time ↵ then R
2

turns inwards on chord and follows �
↵

to
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Figure 3.8: R
1

and R
2

trajectories, (a) the exit is found in the latter part of the
algorithm when they move together; (b) the exit is found by R

2

; (c) the exit is found
by R

1

; (d) the exit is found by R
1

after R
2

has turned in to catch R
1

.

meet R
1

on the other side at the periphery. Then both robots move together, on the

part of the periphery that is not yet been searched, until the exit is located. Once

the exit is located then both evacuate together.

Robot R
1

: go to cycle(0)

Search clockwise until cycle(0)

Robot R
2

: go to cycle(0)

Search counter clockwise until cycle(↵)

Move along line segment cycle(↵) until cycle(�↵� �
↵

)

Continue search clockwise until cycle(0)

By definition of function �
↵

, two robots meet at time (1 + ↵+ �
↵

).

When exit is located after R
1

and R
2

have met at point A, then both travel

together (Figure 3.8a). When the exit is located by R
2

then R
2

will travel to locate

R
1

(Figure 3.8b) then both travel back together. When the exit is located by R
1

then R
1

will travel to locate R
2

(Figure 3.8c) then both travel back together. Lastly
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when the exit is located by R
1

after ↵ then R
1

will travel towards the R
2

and will

catch R
1

(Figure 3.8d) somewhere on the chord then both travel back together.

When considering the extreme values for ↵, we notice an interesting behaviour of

the new algorithm. When ↵ = 0 then both the robots are together and B
3

behaves

like the naive algorithm B
1

. When ↵ = ⇡ then B
3

behaves like the B
2

algorithm.

We will discuss the behaviours of the algorithm as it gets closer to the extreme case

in the latter part of this section.

3.5.2 Cost Calculation

For calculating worst-case or average-case performances, we need to find the total

cost

C(x) = 1 + S(x) + 2"(x) 8x 2 [0, 2⇡).

In order to simplify the calculations for B
3

, we have subdivided the entire search

into various cases based upon the location of the possible exit (Figure 3.9). After

completing the calculations we put them all together to determine the worst-case

and average-case performances.

When exit is at cycle(x) then x 2 [0, 2⇡) and the value of C(x) will depend on

the values of S(x) and "(x). 3 main cases could result from the di↵erent positions

of the exit x. In Case 1, exit is located at cycle(x) where x 2 [0,↵] and robots

will follow Figure 3.8b trajectories. In Case 2, exit is located at cycle(x) where
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Figure 3.9: (a) Algorithm followed by R
1

and R
2

; (b) 3 Cases based upon the
location of the exit.

x 2 (↵, 2⇡ � ↵ � �
↵

] and robots will follow Figure 3.8a. In Case 3, exit is located

by robot R
1

and it is subdivided into 3a and 3b (Figure 3.9b, see also Figure 3.8c

& d). Note that for small enough ✏, R
1

has time to catch R
2

while it is still on the

periphery, when exit is at cycle(�✏). Case 3a includes all these locations of the exit

between the points 2⇡ and the last point where R
1

will be able to catch R
2

while

it is still on the periphery. Case 3b contains the rest of the points. Here R
2

has

already started the inwards-detour. As a result, R
1

and R
2

will meet somewhere on

segment AB. Therefore, Case 3b will include all the points between 2⇡�↵� �
↵

and

earliest point where R
1

will be able to catch R
2

on segment AB.

Case 1: When the exit x is located in the range [0,↵] (Figure 3.9b) and it is

searched by R
2

then

Search time S(x) = x

�
↵

is the length of the chord traveled by R
2

after turning inwards for the detour,
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until it reaches the periphery of the disc on the other side. When the exit is at x

then the distance travelled on the chord will be �
x

. Therefore,

Evacuation time "(x) = �
x

.

Therefore, C(x) = 1 + x+ 2�
x

Of all the possible values of ↵ there is a point ↵
0

, where C(x) has the maximum

value (Figure 3.6) so,

sup
x2(0,↵]

C(x) =

8
>>>><

>>>>:

C(↵) ↵  ↵
0

C(↵
0

) ↵ > ↵
0

and C(↵
0

) ⇡ 5.74 for ↵
0

⇡ 0.968. From 0 to ↵
0

the cost increases steadily as the ↵

increases but after ↵
0

cost starts to decrease as the total cost (search & evacuation)

cost reaches its max due to the longest possible path covered by the robots. After

↵
0

, we see a decrease in the cost despite increasing the value of ↵. It happens

because algorithm has achieved the maximum cost due to the the longest possible

path been covered. The total length of the search path will only reduce after ↵
0

as

robots are moving towards each other, resulting in the reduced time to catch the

other robot.

Case 2: Exit x is located in the range (↵, 2⇡ � ↵ � �
↵

]. As a result, the exit

will be located by both the robots together. Hence

"(x) = 0.

S(x) = 2⇡ � x.
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Point	A

Point	B

Figure 3.10: (a) Case 3 trajectory; (b) Case 3a - A segment of the trajectory.

It is notable that S(x) is worst when x is very close to ↵ s.t. x ! ↵+. There-

fore,

sup
x2(↵,2⇡�↵��

↵

]

C(x) = (1 + 2⇡ � ↵).

Case 3: Exit x is in the range (2⇡�↵� �
↵

, 2⇡] and is located by R
1

. For the ease

of calculations, we will further divide case into 3-a and 3-b (Figure 3.10).

We define y
↵

as the farthest location of exit for robot R
1

so that R
1

has time to

catch R
2

while still on the circle i.e. a maximum time ↵. If �
y

is the chord travelled

by R
1

to reach point A before R
2

turns on chord �
↵

then �
y

is represented by the

roots of

�
y

= 2sin

✓
�
y

+ 2y
↵

2

◆
.

Definition 3.2. Let y
↵

be the maximum point on the disc where R
1

will be able to
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catch R
2

before turning in. Then y
↵

is the unique roots of

y
↵

+ �
y

= ↵.

Therefore, by replacing �
y

we get

y
↵

+ 2sin

✓
�
y

+ 2y
↵

2

◆
= ↵.

Case 3-a: Exit x 2 (2⇡ � y
↵

, 2⇡]. Since y
↵

is the optimum point away from

2⇡ which will allow R
1

to catch R
2

at point A on the periphery before turning on

the path AB then the value of y
↵

will be the largest when y
↵

+ �
y

= ↵ and point

A = cycle(↵). Therefore,

Search cost S(x) = 2⇡ � x.

"(x) = �
2⇡�x

.

Therefore, C(x) = 1 + 2⇡ � x+ 2�
2⇡�x

.

Case 3-b: Exit x 2 (2⇡ � ↵� �
↵

, 2⇡ � y
↵

].

In this case, exit x is located between (2⇡�↵��
↵

) and (2⇡�y
↵

) (refer to Figure

3.11). Robot R
1

locates the exit after R
2

has turned in on AB then, R
1

will catch

R
2

somewhere on the line AB. Point A (Figure 3.11) is the location where R
2

turns
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Figure 3.11: Case 3-b.

towards the line segment AB and

PointA = cycle(↵)

PointB = cycle(2⇡ � ↵� �
↵

).

For this case, we re-parameterize the position of exit by introducing t such that

x 2 (2⇡� ↵� �
↵

, 2⇡� y
↵

). t is the location of exit from the last point on the circle

where R
1

will catch R
2

on the periphery. Therefore location of exit,

x = 2⇡ � y
↵

� t

or t = 2⇡ � y
↵

� x.

After catching R
2

somewhere on line AB, both R
2

and R
1

will travel back to the exit

for evacuation.
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Therefore, value of t will vary as follows,

0  t  2⇡ � y
↵

� (2⇡ � ↵� �
↵

)

or 0  t  ↵+ �
↵

� y
↵

.

Observation 3.3. Considering two distinct points A = (a
1

, a
2

) and B = (b
1

, b
2

) in

R, the trajectory of the robot moving along the line AB at a time t, can be given

by the parametric equation

line(A,B, t) :=
� b

1

� a
1

kA�Bk t+ a
1

,
b
2

� a
2

kA�Bk t+ a
2

�
.

A is the initial position of the robot, travelling from A to B with a unit speed.

If length of segment T
�

S is the distance travelled by the robot R
1

to catch R
2

then T
�

S can be given as kT
�

� Sk where T
�

is a meeting point for R
1

and R
2

on

line AB after time �,

T
�

= line

✓
cycle(↵), cycle(2⇡ � ↵� �

↵

), �

◆
.

Point S represents the exit located by robot R
1

so,

S = cycle(�y
↵

� t).

Definition 3.4. Let exit cycle(x) on the periphery, t such that 0  t  ↵+ �
↵

� y
↵

then h
t

defines the path travelled by R
1

to catch R
2

. h
t

, a function of t and ↵, is

given as

h
t

= kT
�

� Sk.
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At meeting point T
�

(Figure 3.11), R
1

and R
2

would take the same time therefore,

y
↵

+ t+ h
t

= ↵+ �

� = y
↵

+ t+ h
t

� ↵

where h
t

= kT
�

� Sk.

The placement of the exit x is a known value along with ↵. y
↵

and �
↵

can be

easily calculated since both are functions of ↵.

Computing h

t

:

We notice that since h
t

= kT
�

� Sk so T
�

is a function of ↵ and �.

And � = y
↵

+ t+ h
t

� ↵ so � is a function of ↵ and t.

It means that the non-linear equation h
t

= kT
�

� Sk needs to be solved to deter-

mine h
t

. We find the roots through computation using Mathematica (see Appendix

A).

Cost for locating the exit at cycle(x), in range [2⇡ � ↵� �
↵

, 2⇡ � y
↵

],

Search cost S(x) = y
↵

+ t (Figure 3.11)

= y
↵

+ 2⇡ � y
↵

� x

= 2⇡ � x.

Evacuation cost "(x) = h
t

.

Total cost C(x) = 1 + S(x) + 2"(x). Therefore total cost,
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C(x) = 1+ 2⇡ � x+ 2h
t

When we summarize all cases, cost

C(x) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

1 + x+ 2�
x

, 0  x  ↵

1 + 2⇡ � x, ↵ < x  2⇡ � ↵� �
↵

1 + 2⇡ � x+ 2h
t

, 2⇡ � ↵� �
↵

< x  2⇡ � y
↵

1 + 2⇡ � x+ 2�
2⇡�x

, 2⇡ � y
↵

< x  2⇡

(3.3)

3.5.3 Worst-case & Average-case Analysis

Above piecewise function C(x) represents the total cost for many families of al-

gorithms B
3

with varying value of ↵. Since we do not have a closed formula and

function needs to first calculate the roots therefore, we use Mathematica computa-

tion (for code see Appendix A) with the cost function (3.3) to numerically calculate

the value of average-case cost, Avg(C(x)) for various values of ↵. First 2 cases of

equation 3.3 are important from the worst-case perspective as they determine the

worst-cost. From equation 3.1, worst-case cost can be calculated as

Wrs
�
C(x)

�
= sup

x2[0,2⇡)
C(x).
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For all ↵ 2 [0,⇡], we have that

Wrs(B
3

) =

8
>>>><

>>>>:

1 + 2⇡ � ↵ ,↵  ↵̄

C(↵̄) ,↵ > ↵̄

where ↵̄ is the solution to

1 + 2⇡ � ↵ = C(↵
0

).

So,

↵̄ = 1 + 2⇡ � C(↵
0

)

= 1 + 2 · 3.14� 5.74

↵̄ = 1.54

Here ↵̄ is the critical point corresponding to each ↵ when the cost is worst,

↵ 2 (0,⇡). We know that ↵
0

represents the critical point corresponding to the

worst-case cost in benchmark algorithm B
2

(Figure 3.6).

Wrs(B
3

(↵)) =

8
>>>><

>>>>:

C(↵̄) , C(↵̄) > C(↵
0

)

C(↵
0

) , C(↵̄)  C(↵
0

)

We discussed the cost of cycle(↵) in detail but it is implicit that the cost of cycle(↵)

and cycle(�↵) will be the same as they are mirror image on the axis and Case 3a

63



will be included in cycle(�↵).

Average-case vs Worst-case values

From equation 3.2, average-case cost can be calculated as

Avg
�
C(x)

�
=

1

2⇡

Z
2⇡

0

C(x)dx

Using Mathematica computation, we assembled the following table that shows the

corresponding values of Avg(B
3

) and Wrs(B
3

) for various values of ↵

↵ Wrs(B
3

) Avg(B
3

)

0 7.2769 4.14149
0.5 6.78319 4.54365
1 6.28319 4.78305
1.5 5.78310 4.95007
2 5.73906 5.05315
2.5 5.73906 5.10357
3 5.73906 5.11704
⇡ 5.73906 5.11728

Table 3: Varying values of Avg(B
3

) and Wrs(B
3

) for the corresponding value of ↵
generated using Mathematica.

(a) Referring to figure 3.14, we notice that for each ↵ as we go further in the distance

cost is much less in the latter part of the curve which occurs due to the fact that

both robots are moving towards each other so they are able to catch each other

much quicker and evacuate as compared to the earlier part of the algorithm where

it takes longer to locate and evacuate.
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Figure 3.12: Various values of ↵ for Algorithm B
3

: (a) plot for ↵ = 0 and ↵ = 2⇡
shows exactly the same graphs as B

1

and B
2

respectively; (b) plot for Algorithm B
3

when ↵ = 1; (c) some more plots comparing the behaviour for Algorithm B
3

) when
↵ = 0, ↵ = 0.5 and ↵ = 2⇡.

(b) Function C(x) follows the same algorithms same as benchmark algorithms B
1

and B
2

for the extreme values of ↵, i.e. 0 and 2⇡, respectively. These plots numeri-

cally prove that our function C(x) represents a spectrum of algorithms.

Figures 3.12(a) and 3.6(a) seem identical plots where 3.12(a) shows the behavior

of algorithm B
3

for the extreme values of ↵ (0 and 2⇡) and 3.6(a) is a plot that

compares the two previously defined benchmark algorithms B
1

and B
2

. Since all

the other possible values of ↵ must fall between 0 and 2⇡ so we can say that C(x)

covers a wide spectrum of algorithms between 0 and 2⇡. Graph shows that the

worst-case cost of C(x) is between⇡ 7.2769 and ⇡ 5.73906 as well as average-cost

between ⇡ 4.13945 and ⇡ 5.11653. While figure 3.12(b) shows the complete plot for

↵ = 1, 3.12(c) represents multiple graphs for di↵erent values of ↵ i.e. 0, 0.5, and

2⇡.

(c) Recall that our goal was to find an algorithm B
3

(↵) among A where ↵ 2 (0,⇡]
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Figure 3.13: (a) Comparing the behaviour of Algorithm B
3

for various values of ↵
e�ciency plot; (b) a 3-D plot showing the behaviour of Algorithm B

3

.

with min Avg(A) such that

Wrs(A)  ! where ! 2 [5.74, 1 + 2⇡]

Referring to figure 3.14, Avg(B
3

) ⇡ 4.95. We further observe the behaviour of C(x)

in graph 3.13(a) that compares the plots for ↵ = 0.5, 1, 1.5 and 2. It is noticeable

that the cost of algorithms remains largely similar to the B
2

cost in the early phases,

with one sharp increase towards the B
1

cost. The jump is caused when the exit is

placed just after the robot has turned inwards on the segment. The average-cost

of the algorithms changes significantly in the latter phases of the algorithm as the

placement of exit moves closer to 2⇡ and the curve get closer to the B
1

algorithm

that has the lowest average-case cost. Figure 3.13(b) shows a 3-D plot representing

the behaviour of Algorithm B
3

for various values of ↵ between 0 and 2⇡. In earlier

section, we also defined E�ciency of the algorithm A as

✓
Avg(A),Wrs(A)

◆
. Fol-
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Figure 3.14: (a) E�ciency plot for various families of algorithms B
3

; (b) Point graph
depicting the e�ciency behaviour of Algorithm B

3

.

lowing the same concept of E�ciency, we plot Avg(B
3

) and Wrs(B
3

) for various

families of algorithms. We obtain 3.14(b) point graph and when we compute more

points closer to each other then we get 3.14(a) graph.

(d) E�ciency for the algorithm B
3

starts to plateau when ↵ is close to ⇡ 1.54419.

Referring to figure 3.14, we notice that when the worst-case value is low (⇡ 5.7906)

then average-case is least at (⇡ 5.05315). At this point, worst-case cost is reached

its max.

A minor variation in the value of ↵ causes significant variation to the average-

case cost closer to the worst-case cost. On the other hand, when the worst-case cost

is low then any variation in worst-case causes minor variation in the average-case

cost until ↵̄ = 1.54. After that, worst-case cost remains unchanged even if there is

an increase in the average-case cost.

Referring to figure 3.14, we notice that when the worst-case value is high (⇡ 5)
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Chapter 4

CONCLUSION

While the naive evacuation algorithm B
1

sets a high goal (⇡ 4.14) for the average-

case cost in the evacuation problem with 2 robots on a unit disc but it’s worst-case

cost (⇡ 7.276) is extremely high. Algorithm B
2

manages to bring the worst-case

cost down to (⇡ 5.625) but the average-case cost increases to (⇡ 5.1172). We notice

the similar phenomenon of trade-o↵ between the costs for cowpath problem, another

famous problem in the field of search theory. We study a new evacuation algorithm

B
3

which represents a family of algorithms based on the varying values of ↵. We are

able to devise a piecewise function to calculate the cost which we use to numerically

calculate average-case and worst-case costs for the corresponding value of ↵ using

Mathematica when worst-case cost ⇡ 5.73906. We conclude that B
3

has the lowest

possible average-case cost (⇡ 5.05315) while keeping the worst-case cost (⇡ 5.73906)

to be low at ↵ ⇡ 1.544.

4.1 Future work

Although in a rather recent work by Chuangpishit et al. [26], new algorithms help

reduce the average-case but problem is still open for an algorithm that has average

value close to ⇡ 4.14 while maintaining the worst-case cost between ⇡ 7.276 and
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⇡ 5.625 for the 2-robots evacuation problem. Average-case/worst-case trade-o↵s

for the randomized algorithms for evacuation problems needs to be studied. Other

trade-o↵ variations may include evacuation problems with:

- the consideration of the exit in an unknown search space

- multiple searcher robots

- multiple exits

- robots with speed other than unit
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Appendix A

MATHEMATICA CODE FOR COMPUTING WORST-CASE AND

AVERAGE-CASE COST FOR ALGORITHM B
3

MYIntegrate(↵ , l , u ) := Module[{temp=0, counter, prec=500., sizze},

sizze= 1.(u�l)

prec

;

Do [

temp = temp + ↵ [l + sizze * counter] * sizze,

{counter, 0, prec}

];

temp - sizze⇤(↵(l)+↵(u))

2

]

MYNMaximize(↵ , l , u ) := Module[{temp=0, counter, prec = 500., sizze},

sizze = 1.(u�l)

prec

;

Do [

temp = max[temp,↵[l + sizze ⇤ counter]],

{counter, 0, prec}

];

temp

]
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cycle(angle ) := {cos(angle), sin(angle)};

line(a1 , b , a2 , d , t ) := {a1 . t + b, a2 . t + d};

linePoints(A , B , t ) := line

✓
B[[1]]�A[[1]]

|A�B| , A[[1]], B[[2]]�A[[2]]

|A�B| , A[[2]], t

◆

�(x ) := y/. FindRoot[y = 2sin(x+ y

2

), {y, 1}]

y(a ) := yy/. Quiet[FindRoot[yy + �(yy) = a, {yy,1}]]

TT(w , a ) := linePoints(cycle(a), cycle(2 ⇡ - a - �(a)), w);

SS(t ,a ) := cycle(-yy(a)-t);

ww(x ,a ) := w/.

FindRoot[w = 2⇡ - x + kTT(w, a)� SS(2⇡ � yy(a)� x, a))k -a, {w,1}]

hh(x , a ) := ww(x, a) + a + x - 2⇡ ;

simplealgo(x ) := 1 + x + 2�(x) ;

costcase1(x , a ) := 1 + x + 2�(x);

costcase2(x , a ) := 1+ 2⇡ -x;

costcase3(x , a ) := 1+ 2⇡ -x +2 hh(x,a);

costcase4(x , a ) := 1+ 2⇡ - x + 2�(2⇡ � x);

cost(x , a ) := Piecewise[{

{costcase1(x, a), 0  x  a},
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{costcase2(x, a), a < x  2⇡ � a� �(a)},

{costcase3(x, a), 2⇡ � a� �(a) < x  2⇡ � y(a)},

{costcase4(x, a), 2⇡ � y(a) < x  2⇡}

}]

NEWwrsa(a ) :=

Quiet[NMaximize[{cost(x, a), 0  x  2⇡}, x][[1]]]

NEWavga(a ):=

Quiet [ NIntegrate[{cost(x, a), {x, 0, 2⇡} }. 1

2⇡

]
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