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Abstract

Convolutional neural networks have been asserted to be fast and precise frameworks with

great potential in image segmentation. Within the medical domain, image segmentation

is a pre-cursor to several applications including surgical simulations, treatment planning

and patient prognosis. In this thesis, we attempt to solve two major limitations of current

segmentation practices: 1) dealing with unbalanced classes and 2) dealing with multiple

modalities. In medical imaging, unbalanced classes present as the regions of interest that

are typically significantly smaller in volume than the background class or other classes.

We propose an improvement to the current gold standard cost function to boost the

focus of the network to the smaller classes. Another problem within medical imaging is

the variation in both anatomy and pathology across patients. Utilizing multiple imaging

modalities provides complementary, segmentation-specific information and is commonly

employed by radiologists when contouring data. We propose a image fusion strategy
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for multi-modal data that uses the variation in modality specific features to guide the

task specific learning. Together, our contributions propose a framework to maximize the

representational power of the dataset using models with less complexity and higher gen-

eralizability. Our contributions outperform baseline models for multi-class segmentation

and are modular enough to be scaled up to deeper networks. We demonstrate the effec-

tiveness of the proposed cost function and multimodal framework, both individually and

together, on benchmark datasets including the Breast Ultrasound Dataset B (BUS) [1],

the International Skin Imaging Collaboration (ISIC 2018) [2], [3] and the Brain Tumor

Segmentation Challenge (BraTs 2018) [4]. In all experiments, the proposed methods

match or outperform the baseline methods while employing simpler networks.
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Chapter 1

Introduction

1.1 Problem context

Medical image analysis plays a substantial role in determining patient prognosis and di-

agnosis. From a computer vision (CV) perspective, image segmentation is the process of

dividing the individual pixels of an image into a set of groups that have similar proper-

ties [5]. In the medical domain, the common property signifies that all pixels belong to a

specific anatomical structure. Image segmentation is arguably the most important part

of the image processing pipeline as it has applications in functional mapping, surgical

simulations, mass and tumor detections, clinical studies and treatment planning [6]. In

contrast to natural images, medical imaging modalities have varied acquisition protocols

and contrast injections which results in images that highlight different anatomical struc-

tures. For example, Magnetic Resonance Imaging (MRI) provides detailed soft tissue

definition and is commonly used to diagnose brain abnormalities. Computed Tomogra-

phy (CT) scans provide high resolution images in a short exposure time and are used

heavily in imaging bony structures [7]. Positron Emission Tomography (PET) images

have the property of high sensitivity due to the molecular imaging technique, but output

lower resolution images and are used to map functional processes [7]. Clinicians rely on

these varied imaging schemes to delineate tissue abnormalities. However, due to large

variations in pathology, imaging scanners, inter-observer variability and labor intensive
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manual contouring, clinicians have recently begun to benefit from computer-assisted in-

terventions.

Automatic and semi-automatic image segmentation practices rely on feature descriptors

based on shape, texture, spatial arrangement and image statistics [8]. These conventional

approaches are handcrafted based on prior knowledge and are tailored for specific imaging

modalities. Therefore, intelligent feature selection lies at the heart of such computer-

assisted approaches. Recently, deep learning approaches have had unprecedented success

in medical image segmentation due to their ability to learn task-specific features without

any human intervention. The burden of feature engineering is now absorbed into an

optimization problem allowing for automated approaches with improved generalization.

Most of the dominant approaches in image segmentation in the medical domain stem from

ideas proposed for natural images in the CV society. A common trend is to build deeper

models with more layers and parameters. This approach is highly effective when the

number of training samples is large such that the model has the capacity to extract highly

complex features from a diversified sample set. However, for medical applications, we are

limited to a small sample size due to privacy restrictions associated with open-source data

and cost associated with annotation. Therefore, one of the main challenges arises from

the ability to build deep models without suffering from over-fitting. Class imbalance is

another dataset issue that arises when the regions of interest (ROI) class is significantly

underrepresented in comparison to other classes. Within small lesion segmentation for

example, models are biased to the background class and produce predictions with low

sensitivity.

Another challenge within medical segmentation is that the variation in pixel space is

much smaller when compared to natural images that depict distinct objects. As a result,

deep models for medical applications can benefit from image fusion practices which in-

volve combining complementary imaging modalities of the same anatomy. It has been

empirically proven that multi-modal segmentation performance when compared to using

a single modality [9] is superior. In this thesis, we propose architectural and learning

based constraints to combat these commonly faced challenges in medical based segmen-

tation.
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1.2 Contributions

This thesis explores two prevalent problems related to medical image segmentation. ROI

in medical images typically occupy a small fraction of the image or volume space. The

imbalance between the ROI class and the background class leads to instability in training

and can produce segmentation maps with low sensitivity. We propose a new loss function

to mitigate the effects of class imbalance and empirically show it is superior to current

methods in terms of balanced precision and recall curves.

Secondly, we tackle the multi-modal data fusion problem. Large variations in pathology

make it difficult for one modality to delineate boundaries between healthy and non-

healthy tissue. We propose a latent model for feature fusion of multiple heterogeneous

imaging modalities. In contrast to conventional deep learning techniques, we show our ap-

proach is less complex in terms of learnable parameters and is able to achieve competitive

performance. Together, our contributions propose a framework that aims to maximize

the representational power of the small dataset for a given task and outperforms baseline

models with increased model complexity.

1.3 Structure of Thesis

The rest of this thesis is structures as follows: Chapter 2 reviews recent literature on

conventional methods to improve class imbalance and recent multi-modal strategies for

image segmentation. Chapter 3 describes in detail our proposed Focal Tversky loss

function with an attention U-net variant. In Chapter 4, we detail our multi-modal

fusion strategy. In both studies, we present implementation details, ablation studies and

experimental results on benchmark datasets. We conclude our work and discuss future

research direction in Chapter 5.
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Chapter 2

Related works

In this section, we review the literature on deep learning based approaches to medical

image segmentation. We highlight common strategies to deal with class imbalance and

popular learning-based pipelines for multi-modal data fusion.

2.1 Deep learning

Deep learning based applications have been popularized by the success of AlexNet, a

Convolutional Neural Network (CNN) which won first place in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) in 2012 [10]. CNNs are a specialized type of

neural network that contain multiple layers of stacked convolution operations [11]. Filter

weights for each convolutional layer are learned by backpropagating the error computed

by a cost function. Gradient-based optimization methods minimize the cost function

which guides the model parameters to their most optimal setting. The strength behind

deep networks lies in their ability to extract rich hierarchical features. With progressive

convolutions, the effective spatial field of view of each filter (also known as the receptive

field), increases with more layers allowing for deeper models to extract more complex,

non-linear combinations of low level features.
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2.1.1 Semantic Segmentation using deep learning

AlexNet was the first of many CNNs proposed for image classification. Current state-of-

the-art CNNs boast deeper layers such as the Visual Geometry Group (VGG) network

[12], or contain branched layers for improved gradient flow as proposed in Residual Net-

works (ResNet) [13]. Progress on whole-image classification extended into structured

output tasks such as semantic segmentation. The Fully Convolutional Network (FCN)

was the first work to train CNNs in an end-to-end manner for pixelwise prediction using

supervised learning [14]. FCNs reuse the convolutional feature pipeline from classification

networks to encode the image space into a latent feature space resulting in coarse fea-

ture maps. A symmetric convolutional pipeline is used to decode the latent features into

pixelwise prediction maps through upsampling operations. The convolutional nature of

the encoder and decoder blocks allow the model to extract semantic features and localize

them with respect to the original input image. The FCN model has been widely adopted

in the CV society, however, it requires a large training set size to predict segmentation

maps with high localization accuracy. Since this is not within reach for biomedical tasks,

Ronneberger et al proposed U-Net, the current state of the art in medical image segmen-

tation tasks [15]. U-Nets build upon FCN by incorporating skip connections between

corresponding encoder and decoder blocks, as depicted in Figure 2.1. By combining high

resolution feature maps from the encoding path with upsampled decoded representations,

successive convolutions are able to assemble more precise segmentation predictions.

Several efforts to advance medically focused image segmentation try to encode or de-

code features by using newer and more powerful architectures. The popular ResNets

architecture introduces a residual identity branch of the input feature that skips one or

more layers [16]. Gradients can flow through the short-cut connections making it easier

to train deeper models with residual connections. In the medical community, several

authors adopt ResNet based encoders to improve feature extraction in the U-Net seg-

mentation pipeline [17], [18]. Dense connections were also proposed to improve gradient

flow by concatenating several feature maps of the same scale. Instead of going deeper,

DenseNets exploit the potential of the network through feature reuse. Similarly, many

medical works incorporate dense connections in their segmentation pipeline [19], [20].

Since U-Net is still the gold standard for medical segmentation problems, it is common
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to adopt typical CV strategies into the encoder, decoder or skip connection blocks.

Figure 2.1: The U-Net architecture proposed by Ronneberger et al [15]. Each blue box
corresponds to a multi-channel feature map. The number of channels present at each
layer is denoted on top of the box. The spatial dimensions are provided at the lower left
edge of each box. White boxes represent features that have been mirrored and propagated
to the decoding layers.

2.2 Class Imbalance

Within semantic segmentation in the medical community, class imbalance is a recurring

issue. Class imbalance arises when the ROI is under-represented in the dataset. In med-

ical imaging applications, this phenomenon is especially problematic as the unbalanced

training leads to predictions with low sensitivity. From a clinicians perspective, a model

with high precision but low recall to a certain pathology may not be useful. The exten-

sive review by Buda et al identify two major categories of methods for addressing class

imbalance [21]. The first is a data-level method that alters the dataset by changing class

distributions. The other category covers algorithmic level methods that keep the training

set unchanged while adjusting training or inference algorithms.
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2.2.1 Data-level methods

Oversampling is one of the most commonly used data-level methods to tackle imbalanced

datasets [21]. The most basic version uses random minority sampling which randomly

oversamples from minority classes. In the first FCN for segmentation, Long et al utilize

a patch-based approach and oversample the ROI class by a hyperparameter factor [14].

Standard efforts in oversampling involve extensive data augmentation through affine, ge-

ometric and photometric trasnformations [21], and very recently, Generative Adversarial

Networks (GANs) [22], [23]. Oversampling has been shown to be effective but can lead

to overfitting [24]. Conversely, Valverde et al randomly undersample the larger, negative

class in their data corpus by effectively ignoring certain images [25]. A major disad-

vantage of this approach is that it discards a portion of available data. To overcome

this shortcoming, the training set can be intelligently pruned for redundant or weak

data points. For example, one-sided selection identifies redundant examples close to the

boundary between classes and removes them from the training set [26].

2.2.2 Algorithmic Improvements

Cost functions

While sampling based methods are commonly used, these approaches tend to change the

apriori distribution of the classes and can result in biased, over-segmentations [21]. Cost

sensitive learning is an algorithmic effort to tackle class imbalance and is commonly ap-

proached using one of two popular loss functions. The Cross-entropy loss is commonly

used in the CV society for multi-class segmentation. It compares the model’s prediction

pic for class c, over pixel-space i with the true data distribution gic, depicted in Equation

2.1.

CE = −
∑
c

∑
i

giclog(pic) (2.1)

This loss is effective as it penalizes the model in an exponential fashion if predicted class

probabilities approach zero. The downside of cross-entropy is that it assumes that all
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classes are weighted equally, which is detrimental in the medical domain as the ROI

class is typically significantly smaller than the background class. A weighted variant of

cross-entropy Weighted Cross-Entropy (WCE) is notably used by Ronneberger et al [15]

in a medical image setting and is depicted in Equation 2.2.

WCE = −
∑
c

∑
i

wcgiclog(pic) (2.2)

where the class weights wc are pre-computed using the inverse class frequency [15] or

more commonly treated as a hyperparameter to be set through cross-validation [27].

Reweighting the cross-entropy loss is adopted in several works such as in brain lesions

[28], [29] and brain tumor segmentation [30], but it becomes difficult to calibrate the

class weights and is, therefore, very application-specific. To combat class-reweighting,

Milletari et al proposed a loss function based on the Dice Similarity Coefficient (DSC),

parametrized in Equation 2.3 [31].

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(2.3)

where the DSC is computed over all the predicted classes c. The Dice score is effective

because it is a harmonic mean of precision and recall and, therefore, weights false positive

(FP) and false negative (FN) predictions, equally. The Dice score is reshaped into the

Dice loss (DL) by minimizing the complement of DSC summed over all classes c, as

denoted in Equation 2.4 1:

DL =
1

C

∑
c

1−DSCc (2.4)

The Dice loss function is heavily adapted in the literature for both the binary and multi-

class segmentation as it takes into account the spatial arrangeoment of pixels in a holistic

1The Dice loss is typically calculated as 1 − DSC. However, in practice, it is common to simply
minimize −DSC. Moreover, because the DSC is a normalized metric, the DL is typically scaled by the
number of classes 1

C . However in practice, it is common to simply minimize the −DSC without class
normalization as this produces a larger error signal for gradient updates. In this case, the maximum
DSC is equivalent to the number of classes. In this thesis, we present normalized metrics for consistency
with the literature while our code repositories reflect the conventional code practices.
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manner. However, because medical images are still plagued by many small ROIs when

compared to the background class, the DL tends to produce segmentation maps with

high precision but poor recall due to large false negative predictions. Recently, Hashemi

et al have proposed to use the generalized form of the Dice loss to improve the balance

between precision and recall [32]. The Tversky Index (TI), also known as the F-score is

depicted in Equation 2.5:

TI =
2TP

2TP + αFP + βFN
(2.5)

where α and β are hyperparameters used to control the contribution of FPs and FNs,

respectively. Large values of β penalize the network more for false negative predictions

boost overall model recall. In practice, α and β are complements of each other to preserve

the normalized DSC score.

Following the strategy by Milletari et al, Hashemi and coauthors fashion the TI into the

Tversky Loss (TL) function by minimizing its complement, as formulated in Equation

2.6.

TL =
1

C

∑
c

1− TIc (2.6)

The authors report a 3% boost in DSC score using the TL(β = 0.7, α = 0.2) against the

standard Dice loss.

Focal Loss A more recent variant of the cross-entropy loss is the focal loss proposed by

Lin et al which attempts to mitigate intra-class imbalance [33]. The authors reason that

easy examples dominate the gradient while the gradient contributions from hard examples

are small and get averaged out. The focal loss therefore incorporates a modulating

parameter γ to down-weight easy examples and allow the network to focus more examples

it would ordinarily overlook. This form of the cross-entropy builds upon the weighted-

cross entropy as it aims to tackle class-imbalance between an ROI class for the object
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detection task. The full form depicted in Equation 2.7:

FL =
∑
c

∑
i

−wcgic(1− pic)γlog(pic) (2.7)

where wc is the class weight, (1− pic)γ is the modulation factor where γ >= 0.

Limitations of current losses

The Dice loss and cross-entropy are widely utilized for segmentation in the medical

community. The Dice loss provides improved spatial overlap for segmentation but small

misclassifications can lead to a large decrease in DSC accuracy. The cross-entropy is

robust to outliers however it treats all classes equally which requires substantial parameter

tuning. Several works propose hybrid versions of both the DL and variants of the cross-

entropy loss functions to get the benefits of both for class imbalance [27], [34]. However,

with an unbounded cross-entropy and normalized Dice loss, elaborate cost function tuning

is recquired to help the model converge. More recently, a hybrid focal Dice loss has been

proposed by Wang et al in [35]. The authors acheive a 1% boost in overall DSC accuracy

but lower, and sometimes equivalent, precision and recall than the conventional DL. We

propose a generalized loss to address most limitations within segmentation loss functions

in the medical community. Our cost function takes advantage of the spatial consistency of

the DL while addressing the issue of class imbalance and predictions with poor sensitivity.

Our loss function is an extension of the Tversky loss, motivated by [33] and is presented

in Section 3.1.1.

Attention based architectures

Improving a network’s focus on underrepresented classes can also be tackled through

architectural modifications. Existing applications rely heavily on multi-stage cascaded

CNNs such as the Dense-Net based FCN [36]. However, this approach leads to excessive

and redundant use of computational resources and model parameters; for instance, similar

low-level features are repeatedly extracted from all layers within the cascade increasing

the model’s memory requirement.
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Attention within deep learning can be defined as a feature pruning tactic to propagate

important features and suppress non-discriminative activations. Hard attention, for ex-

ample through iterative region proposal and cropping [37] is not a differentiable operation

and cannot be trained end-to-end. Contrarily, soft attention is probabilistic and can be

learned through standard back-propagation. A notable attention mechanism termed the

Squeeze and Excitation Networks (SEN), uses a channel-based attention scheme to learn

scaling coefficients that highlight important features [38]. The SEN architecture, depicted

in Figure 2.2 was a top performer in the ILSVRC 2017 Challenge, highlighting that archi-

tectural modifications rather than simply increasing layer depth can improve a model’s

predictive power. Residual squeeze blocks is used for organs-at-risks CT segmentation

with improved performance [34].

Figure 2.2: The notable Squeeze and Excite (SE) block used in Squeeze and Excite
Networks [38]. Each feature block X undergoes a global transformation U using a con-
volutional operator Ftr. Global features are squeezed by the Fsq operation into a 1-
dimensional tensor. Channel inter-dependencies are then modeled fully connected layers
which are excited by non-linear activations, Fex. The resulting Fscale coefficients weight
subsequent channels using global information and, thereby, eases the learning process
and enhances the representational power of the network.

.

The SE-block factors out spatial dependency by global average pooling to learn a channel

specific descriptor. Another aspect of architectural attention is improving local spatial

representations. Grid based attention uses information from coarser scales to guide fea-

ture propagation from more semantic level scales[39]. Oktay and collaborators use the

first grid-based attention gating scheme for medical image segmentation [40]. They com-

bine coarse spatial features with refined semantic level features and apply ReLU and

sigmoid non-linearities to obtain a scalar attention matrix. Similarily, the work in [41]

define a hypercolumn as a pixel-descriptor of all previous CNN activations above that
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pixel. This representation guides fine-grained feature extraction for all layers below the

pixel. In [42], authors combine a spatial based attention with the global SE block to im-

prove feature recalibration. Quantitative results on CT segmentation show that spatial

attention alone shows a larger improvement when compared to channel attention alone,

while the combination acheives the best results [42].

Architectural based attention is a promising approach to improve feature representations

when dealing with imbalanced classes. These tactics typically do not increase model

complexity by much when compared to simply increasing layer depth. For instance,

incorporating SE blocks in a network increases relative learnable parameters by roughly

4%. Moreover, pruning strategies can be tailored based on the severity of class imbalance

in the dataset. In this thesis, we combat class imbalance architecturally by using grid

based attention. Moreover, we supplement the model with additional multi-scale input

features by using an image pyramid. Details on the model architecture are discussed in

Section 3.1.2.
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2.3 Multimodal fusion

Multimodal fusion is the process of integrating multiple unimodal representations into

one compact joint representation [43]. The philosophy behind using multimodal data

stems from the fact that multiple sources of information can be exploited to make a bet-

ter decision than simply using a single resource. In medical imaging, multiple modalities

refer to images acquired from multiple scanners such as CT or MRI which produce dif-

ferent intensity responses to different tissue structures.2 Moreover, within each modality,

parameters such as exposure time and constrast can be adjusted to focus on specific

anatomy and create new modalities. For example, MRI is widely used in neuroimaging

studies to obtain a variety of complementary scans to assist radiologists in contouring.

T1-weighted MR scans and Fluid-Attenuated In-version Recovery (FLAIR) sequences

can both delineate basic brain anatomy but FLAIR can also detect white matter ab-

normalities associated with a variety of neuropathological conditions. Similarly, cerebral

edema can be contoured from T2-weighted MRI but FLAIR is used to cross-check the

extension and discriminate against healthy ventricular structures [4]. Figure 2.3 depicts

the complementary information present within each MR modality and its utility in ap-

plications such as tumor delineation.

Automated methods to fuse information from multiple modalities is therefore of primary

interest due to its ability to maximize the statistical power of each individual biomarker.

In the context of deep learning based fusion, the key architectural challenge lies in how to

fuse information and where in the pipeline to incorporate a fusion block. There are three

such fusion pipelines that are commonly used in deep learning and are thus adopted by

the medical community for the segmentation problem.

2.3.1 Early fusion

Early fusion methods create a joint representation of input features from multiple modal-

ities, often by concatenation in the input image block [43], as depicted in Figure 2.4(a).

The model architecture typically follows a simple encoder-decoder design and implicitly

2In the medical literature, fusion between different imaging modalities, such as between CT and MRI,
is typically referred to as cross-modal sinces images do not contain pixel-to-pixel correspondances.
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(a) FLAIR (b) T1 (c) T2

Figure 2.3: Mutli-parametric MR sequences of a patient with glioblastoma taken from
the Brain Tumor Segmentation Challenge (BraTs 2018) dataset [4]. Each MR modality
highlights different types of intra-tumoral structures such as the tumor core visible in T1
and the cerebral edema visible in both FLAIR and T2 sequences.

assumes a single network can capture the joint, task-specific semantics from the low-level

image space. Moreover, since early fusion methods propagate information from the first

layers, these fusion models are often susceptible to noise that affects a single modality.

Despite these challenges, most works on multimodal segmentation use early fusion to

aggregate joint representations under the assumption that deep networks can learn both

modality invariant and noise invariant features [44], [45], [46].

2.3.2 Late fusion

Late fusion methods utilize different models for each modality and fuse predictions at

the decision level by means of averaging, voting or a learned model [47]. This allows for

flexibility in the case of missing modalities and is more robust to noise as each modality is

processed independently. However, late-fusion operates at the decision level which means

it is unable to model intra-modality interactions at the feature level.
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(a) Early fusion (b) Late fusion

(c) Latent fusion

Figure 2.4: Locality of the fusion operator is an important architectural decision. Typical
feature fusion can occur at early in the pipeline, as depicted in (a) or at the decision level,
depicted in (b). Latent fusion models, illustrated in (c), map each modality to a latent
feature space where fusion operations such as addition or averaging are used to create a
joint feature space.

2.3.3 Latent fusion

Recent efforts in multi-modal fusion operate in the latent space and employ a CNN to

learn modality specific features. These latent features are combined into a single, joint

representation and transformed into class segmentation maps using a learnt decoder.

Latent space fusion is commonly carried out by concatenation of representative features

as proposed in [48]. This method essentially allows the network to learn for itself the

best combination of modality-specific features. Despite its effectiveness when used with

a large enough parameter space, concatenation is an inefficient operation as it increases

the dimensionality of the feature space leading to increased model complexity. Moreover,

this approach does not scale well when there are multiple modalities involved. Since the

latent space is essentially an embedding of the image space, arithmetic operations such
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as addition or averaging are well-defined and have semantic meaning [49].

To this end, Van et al propose average fusion of N latent representations based on the

argument that each modality specific network should output similar representations. The

fused representation Zfused is depicted below as:

Zf
fused =

1

N

∑
N

(Zf
1 , ..., Z

f
N) (2.8)

where Zf
N represents the f feature plane for modality N .

In a highly complex space, the modality specific features should embody highly correlated

representations. However, the differences between MR modalities depicted in Figure 2.3

will be reflected in their latent space projections. Therefore, the average representa-

tion may not account for the outlier features which contribute rich information to the

segmentation task.

In [50], Chartsias and coauthors propose to use the maximum activation of each modality

plane as the fused representation, as depicted in Equation 2.9.

Zf
fused = max(Zf

1 , ..., Z
f
N) (2.9)

Selecting the pixel-wise maximum activation between latent responses guarantees that

outliers are not suppressed by averaging out feature planes and can have an effect on the

class decision. The challenge now is that the maximum activation may be reflective of

an outlier feature or a noisy response. This allows for outlier features to be propagated

forward which may deter the network from its segmentation task.

A more robust latent fusion model, termed Hetero-modal Image Segmentation (HeMIS)

fusion was formulated by Havaei et al in [49]. The fused representation is the concatena-

tion of the first and second moments of each modality’s feature planes:
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Zf
fused = concat(Zf

mean, Z
f
var) (2.10)

where : Zf
mean =

1

N

∑
N

(Zf
n , ..., Z

f
N) (2.11)

Zf
var =

1

N − 1

∑
n∈N

(Zf
n − Zf

mean)2 (2.12)

The base assumption with HeMIS fusion is each modality is independent of each other

and so feature-wise variances can be computed without modelling conditional covari-

ances. Using deep networks and even so with HeMIS-like fusion, the network still cannot

explicitly rely on more informative outputs because it can potentially learn to ignore the

covariance features and focus on decoding the average representations [50].

2.3.4 Improvements to Multimodal latent fusion

The optimal fusion pipeline will be robust to missing modalities and find an effective

way to combine modality specific information into a joint feature representation. Latent

fusion models are able to create a modality invariant latent space and apply an operation

or a sequence of non-linearities to create a joint feature. One limitation is the location

of the fusion block. In the most latent layer, features are highly abstract representations

of the image space but they have reduced locality. Creating fused representations at

multiple scales would benefit the network’s ability to both learn and use multi-scale joint

representations. The very recently proposd MMFNet adopts this scheme [51]. Moreover,

within the modality invariant space, dominant modalities have the ability to take over

and force the task-specific decoder to learn how to operate with its features as opposed

to the joint representation.

We propose to build upon HeMIS fusion by importance weighting the mean and variance

of the modality specific features. Moreover, we incorporate our fusion block at every

scale to use multi-scale modality specific information. Our model architecture is detailed

in section 4.1.1.
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Chapter 3

Class Imbalance

3.1 Technical Approach

3.1.1 Focal Tversky loss

The cross-entropy and Dice loss work well in balanced dataset scenarios while the Tversky

loss can be tuned to perform well in unbalanced cases. However, all loss functions are

plagued by gross variations within the ROI class itself. To this end, we propose the

Focal Tversky loss (FTL) parametrized by γ, for control between easy and hard training

examples. In [33], the focal parameter exponentiates the cross-entropy loss to focus on

hard classes detected with lower probability for the object detection task. Motivated by

their contribution, we exponentiate the TI to focus on hard examples within the ROI

class and balance precision and recall better. In this context, the FTL improves both the

inter-class balance, caused by imbalance between the background and foreground classes

and the intra-class imbalance caused by varying sizes of the foreground, ROI class.

The focalized Tversky Index (FTI) is defined as follows:

FTI = (
2TP

2TP + αFN + βFP
)
1/γ = TI1/γ (3.1)
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Therefore, training with the FTL is defined as the minimization of the of the focalized

Tversky Index, summed over all the classes c:

FTL =
1

C

∑
c

(1− TIc)1/γ (3.2)

Figure 3.1: The focal Tversky loss non-linearly focuses training on hard examples (TI <
0.5). With increasing values of γ,the FTL increases the network’s focus on examples
classified poorly.

The behavior of the FTL as a function of the Tversky Index is depicted in Figure 3.1.

With increasing values of γ, the network is non-linearly forced to focus more on examples

that are misclassified with low TI scores (ie TI < 0.5). This phenomenon is depicted

in the curvature of each FTL plot in Figure 3.1. For example, a pixel classified with

TI = 0.7 will result in a TL = 0.3 while the FTL(γ = 1.33) = 0.405. The FTL proves

to be beneficial to small ROIs as depicted in ablation studies in Section 3.3 however its

exponential behavior can sometimes lead to instability. To combat this, we propose to

use the FTL with deep supervision where multiple loss functions can average out the

parabolic effects.
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The proposed FTL is a generalized version of the commonly used Dice loss. When γ = 1,

the FTL simplifies to the TL and when α = β = 0.5, the TL simplifies to the DL.

In this manner, our focal Tversky loss function is able to take advantage of structure

that is a characteristic of overlap-based loss functions while at the same time, penalize

poor predictions without the need to tune class weighting parameters. In all our works,

β = 1−α therefore, the proposed FTL only requires two hyperparameters to be tuned,α

and γ. From our empirical evaluations, α ∈ [0.6−0.7] and γ ∈ [1.1−1.4] produce results

with improved precision and recall curves than when using the conventional Dice loss.

3.1.2 Network Architecture

We utilize an Attention U-Net with the addition of an input image pyramid inspired by

conventional image pyramids. The network architecture is depicted in Figure 3.3.

Attention gates

Attention gates (AG) produce attention coefficients αi ∈ [0, 1] at each pixel i. These co-

efficients scale input feature maps xli, at layer l, to output semantically relevant features,

x̂i
l , as depicted in Figure 3.2. A gating signal, g, is used for each pixel i to determine

focus regions. It is collected from a coarser scale than the input query signal, xli to

compute intermediate activation maps:

qlattn = ψT (σ1(W
T
x x

l
i +W T

g gi + bg)) + bψ (3.3)

where the linear attention coefficients, qlattn, are computed by the element-wise sum and

1x1 linear transformations, parameterized by Wx, bx, Wg and bg. The intermediate maps

are transformed by ReLU and sigmoid non-linearities applied as σ1 and σ2, respectively:

αli = σ2(q
l
attn(xli, gi)) (3.4)

The attention coefficients αi scale the low level query signal xli by an element-wise product

and retain only relevant activations. These pruned features are then concatenated with
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Figure 3.2: Schematic of additive attention gate (AG) adapted from [40]. Input features
xl are scaled with attention coefficients αi to propagate relevant features to the decod-
ing layer output x̂l. The coarser gating signal g provides contextual information while
spatial regions from the input xl provide locality information. Feature map resampling
is computed by bilinear interpolation.

upsampled output maps at each scale in the expansive stage. The lowest-level feature

maps, i.e. the first skip connections, are not used in the gating function as they do not

represent input data in a high dimensional space [40]. A 1x1x1 convolution and sigmoid

activation is applied on each output map in the expansive stage.

Input pyramid

Some class details are more easily accessible at different scales. Motivated by the success

of image pyramids [52] and recent interpretations such as PSP-Net [53], we inject the

encoder layers with a down-scaled input image before each of the max-pooling layers.

Each input image is sub-sampled using average pooling and fed through two Conv-ReLU-

BatchNorm2d blocks. We combine the input image features through concatenation with

the feature representations from previous layers. This method enforces spatial priors

into each convolutional layer combined with cascaded feature maps to maximize the

representation of each image. The image pyramid offers a convenient, multi-resolution

set of features that prove to be useful when the ROI pixel space is severely imbalanced.

3.1.3 Training strategy

The hyperbolic nature of the FTL results in instability during training as the model

approaches convergence. This phenonmenon is visbile in the focal Dice work [35] where

training is depicted to be very noisy and spurious. To combat this, we employ deep
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supervision at multiple intermediate layers to average out the contributions from the FTL.

Moreover, we train the last layer with the TL to retain true gradients to the segmentation

task. In addition to stable training, deep supervision improves the segmentation accuracy

for datasets where small ROI features can get lost in cascading convolutions and helps

to ensure that attention unit has the ability to influence the responses to a large range

of image foreground content.

3x3 conv + bn + relu
2x2 max-pooling2x2 max-pooling

2x2 learnable upconv
skip connection

1x1 conv + sigmoid

attention gateAG

multi-scale inputs deep supervision

] ]

AG

AG

AG

Figure 3.3: Proposed Attention U-Net architecture with the addition of an input image
pyramid. The model is deeply supervised with the FTL at every layer except the final
layer which is trained with the TL.
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3.2 Experiments

3.2.1 Datasets

We validate the FTL on two datasets where the ROI class is significantly smaller than

the background class and achieve large performance gains.

We experiment with the Breast Ultrasound Dataset B (BUS) open-sourced in [1]. This

dataset consists of 163 ultrasound images of breast lesions from different women. The

average image size is 760 x 570 pixels where each of the images presented one or more

lesions. Example lesions are depicted in Figure 3.4 with their corresponding ground truth

segmentation masks. It is evident from Figure 3.4 that the variability in segmentation

contours presents a challenge for generalized learning. Moreover, the speckle noise from

the ultrasound acquisition process makes it hard to delineate boundaries and focus on

the ROI class. For our experiments, this dataset is resampled to 128 x 128 pixels with a

75-25 train-test split.

To extend our proposed method to larger datasets, we extract training data from the

Skin Lesion Analysis Towards Melanoma Detection Challenge collected by International

Skin Imaging Collaboration (ISIC 2018), [2], [3]. This dataset consists of 2,594 RGB

images of skin lesions with an average image size of 2166 x 3188 pixels. Examples from

the ISIC 2018 are presented in Figure 3.5. Contrary to the BUS dataset, the RGB color

space allows for improved contrast between background and foreground. However, the

variability between ground truth annotations presents a challenge as some images depict

sharp boundaries while others have been contoured with less detail. For our experiments,

the ISIC 2018 dataset is resampled to 192 x 256 pixels with 75-25 train-test split.

To present a fair evaluation of our multi-scaled attention U-Net supervised with the focal

Tversky loss, we do not augment our datasets or incorporate any transfer learning. We

study 7 cases of variations within U-Net and the Tversky loss function while comparing

to the baseline U-Net trained with Dice loss. Ablation test results are recorded in Section

3.3 where each experiment is averaged 5 times with a random test fold each time. We

present results for Dice scores, precision and recall.
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Figure 3.4: The BUS dataset B examples with corresponding ground truth. The lesion
class in the BUS dataset B occupies on an average 5.43% ± 4.84% pixels when compared
to the background. Moreover, the dataset contains speckle noise which makes it hard to
delineate the lesion contours from the background class and image noise. The dataset is
also very small, containing only 163 images in total.

Figure 3.5: The ISIC 2018 dataset and corresponding ground truth. The ISIC 2018
dataset contains 2,594 high resolution RGB images. The skin lesions vary largely in size,
roughly occupying 21.4% ± 20.3% of every image in the dataset. The variability between
ground truth annotations presents a challenge as some images depict sharp boundaries
(first column) while others have been contoured with less detail (second and third column)

.
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3.3 Results

Table 3.1: Performance on BUS 2017 Dataset B with 40 test images

Model DSC Precision Recall

U-Net + DL 0.547 ± 0.04 0.653 ± 0.171 0.658 ± 0.146
U-Net + TL 0.657 ± 0.02 0.732 ± 0.072 0.723 ± 0.074

U-Net + FTL 0.669 ± 0.033 0.775 ± 0.047 0.715 ± 0.057
Attn U-Net + DL 0.615 ± 0.020 0.675 ± 0.042 0.658 ± 0.049

Attn U-Net + Multi-Input + DL 0.716 ± 0.041 0.759 ± 0.092 0.751 ± 0.046
Attn U-Net + Multi-Input + TL 0.751 ± 0.042 0.802 ± 0.073 0.768 ± 0.056

Attn U-Net + Multi-Input + FTL 0.804 ± 0.024 0.829 ± 0.027 0.817 ± 0.022

Table 3.2: Performance on ISIC 2018 dataset with 649 test images

Model DSC Precision Recall

U-Net + DL 0.820 ± 0.013 0.849 ± 0.038 0.867 ± 0.048
U-Net + TL 0.838 ± 0.026 0.822 ± 0.051 0.917 ± 0.033

U-Net + FTL 0.829 ± 0.027 0.797 ± 0.040 0.926 ± 0.012
Attn U-Net + DL 0.806 ± 0.033 0.874 ± 0.080 0.827 ± 0.055

Attn U-Net + Multi-Input + DL 0.827 ± 0.055 0.896 ± 0.019 0.829 ± 0.076
Attn U-Net + Multi-Input + TL 0.841 ± 0.012 0.823 ± 0.038 0.912 ± 0.026

Attn U-Net + Multi-Input + FTL 0.856 ± 0.007 0.858 ± 0.020 0.897 ± 0.014

Table 3.1 shows that the baseline U-Net trained with the Dice loss function has the worst

performance. The large standard deviation in the precision and recall scores suggest

the learning is not stable. In contrast, U-Net models trained with TL and FTL show

increased DSC and more balanced precision-recall scores which occurs due to weighting α

higher in the loss function than β. We observe incorporating attention in U-Net trained

with DL depicts lower Dice scores than the baseline, probably due to the intra-lesion

variation. Injecting an input pyramid into the model improves the DSC significantly

suggesting features of small lesions are easily lost when class imbalance is high. Training

the attention model with FTL combines the benefits of improved feature selection with

focused training to outperform all other methods. The proposed architecture (last row)

is able to segment lesions with a Dice score of 0.804 on training with a small subset of

100 images.
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Contrary to the BUS scores, ISIC 2018 results in Table 3.2 show the baseline U-Net

trained with DL performs well due to the large training sample size, variation in lesion

structures and distinct features present in the RGB images. Training U-Net with TL

and FTL, we observe an improved DSC score. However, when the Tversky index is high

for misclassified examples, the focal exponent γ suppresses the contribution to the error

signal and since α is weighted higher than β, the model converges to the highest reported

recall at 0.926, but lowest precision. To address this issue, when training the proposed

attention model, we supervise the last layer with TL so that a true error signal will

still propagate back when the model is close to convergence. As a result, our improved

attention U-Net model with FTL (last row) obtains slightly lower but overall better

balanced recall and precision and consequently, the best DSC score. We outperform the

baseline by 3.6% with a low spread of 0.7%.
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(a) (b)

(c) (d)

Figure 3.6: Example segmentation contours from the BUS dataset. Green contours
reflect the ground truth annotation and red contours reflect the standard U-Net model
trained with the Dice loss. The blue contours depicts our proposed model, improved
attention U-Net trained with FTL. In (a) and (b), the improvement in our method is
evident as the contour matches the ground truth boundary much closer. However, as
the FTL encourages more false positive predictions when compared to false negatives, we
sometimes observe over-segmentation as depicted in (c) and (d). In both these example
instances, the DSC is higher than the red contour but at the cost of specificity. Since
the ratio of false positives to false negatives is not very high, we are still able to achieve
a good balance, as depicted in the last row of Table 3.1.



Chapter 4

Multimodal Fusion

4.1 Technical Approach

4.1.1 Fusion Architecture

Early fusion and late fusion are classical approaches to the multi-modal problem. Recent

fusion architectures aim to model inter-modality features using latent space models. In

our work, we exploit the inter-modality dynamics by creating fusion blocks at every

convolutional scale.

We follow a similar approach to most latent fusion models and use a modality specific

encoder and one common decoder for the segmentation task. Each encoder has four

convolutional blocks which each encompass a Conv2d-BatchNorm-ReLU operation and

are followed by a 2x2 max-pooling. We use the notation C
(s)
k to describe the feature

map at each scale s prior to the max-pool operation. The modality invariant decoder

uses four transpose convolution layers followed by a final 1x1 conv layer to upsample

joint representations. Using the same encoder structure for each modality ensures that

at every scale, each modality’s features have the same receptive field and so operations

such as addition and averaging have semantic meaning. Subsequently, we compute the

HeMIS feature representation at each intermediate scale as opposed to just in the latent

space.
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Let C
(s)
k,l represent the convolutional feature map at an intermediate scale s, for modality

k ∈ [0, 1, ..., K], at layer l. At every scale, the joint multimodal representation Cs
l is

computed using HeMIS mean and variance features:

El[C
(s)
l ] =

1

K

∑
k∈K

C
(s)
k,l (4.1)

V arl[C
(s)
l ] =

1

K − 1

∑
k∈K

(C
(s)
k,l − El[C

(s)
l ])2 (4.2)

Higher level image moments can be calculated using non-linear combinations of the the

mean and variance. However, this requires a complex decoder or a prior on the feature

space to encourage the network to learn useful representations. To mitigate the need for

increased layer complexity, we use a Moment Gated Fusion (MGF) feature recalibration

block with HeMIS features to aid the network at selecting useful representations.

Moment Gated Fusion block

As previously discussed in [50] and [54], the average multimodal feature can capture

significant structural information. The variance features on the other hand are a rep-

resentation of disagreement between modality specific features. We argue that they are

still important attributes as they account for possible fringe cases that might be missed

if only the average feature was used. We are motivated by the fact that different image

modalities have varying intensity responses to certain tissues, as depicted in Figure 2.3

and will on occasion deviate from the mean multimodal representation. Therefore, we

propose to recalibrate the variance features using an SE block in the channel dimension.

A squeeze and excite operation will allow the network to learn relevance to the outlier

features and learn to ignore or pay more attention to them based on the error from the

segmentation task.

A naive approach would be to apply the SE blocks to all HeMIS features. However, by

design, the SE block factors out any spatial dependency by using global average pooling

to learn a channel specific descriptor. Instead, we introduce a hybrid channel-wise and

spatial-wise re-weighting block termed the MGF. Image moments computed from the
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Figure 4.1: Overview of our proposed MGF block. The upper portion of the MGF
pipeline excites variance (E2(x)) features in order to capture possible outlier represen-
tations that are important for segmentation. The lower portion guides the mean (E(x))
feature extraction by following a similar spatial squeeze operation. By applying non-
linear activations independently to feature moments, we discourage the network from
being biased to only the mean features and therefore can account for outlier features in
the fused representations.

HeMIS abstraction layer are gated using non-linear excitation operations. Depicted in

Figure 4.1, the variance features are independently gated using the squeeze and excitation

pipeline. The non-linear activations include a global average pooling to reduce maps into

a single descriptor which is then squeezed and excited using a multilayer perceptron

and ReLU activations. The mean features are spatially excited using a similar workflow

as the channel-wise SE blocks. As depicted in Figure 4.1, this workflow includes a

reduction using a 1x1 Conv2d block, followed by a ReLU, 1x1 Conv2d and a Sigmoid

activation operation. Independently processing both spatial and channel-wise activations

will encourage the network to learn relevance to structural features but also relevance to

outlier features captured in the variance maps.

Utilizing the mean multimodal features to gate subsequent representations allows our

network to scale well when compared to the commonly used concatenation based fusion.

In Figure 4.2, we present our proposed architecture which scales to N modalities as the

modality fusion occurs at the intermediate abstraction layer.
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Figure 4.2: Overview of our proposed Multimodal Fusion Network. Each blue encoder
block represents a Conv2d-BatchNorm-ReLU operation while each gray decoder block
represents a transpose Conv2dTranspose-BatchNorm-ReLU operation. The last gray
block utilizes a Sigmoid activation across every channel. MGF blocks are used to extract
and prune multimodal feature representations based on HeMIS features abstraction.

4.1.2 Loss function

We utilize our generalized, multi-class FTL to supervise the multomodal attention net-

work, reiterated in Equation 4.3 below:

FTL =
1

C

∑
c

(1− TIc)1/γ (4.3)

The hyperbolic nature of the FTL encourages the network early on to penalize false

negative predictions. However, when close to convergence, the network is sometimes

unstable. We improve the performance of FTL by incorporating a decay schedule for the

exponent 1/gamma . In our work, we decay 1/gamma in steps of 0.05 until 1/gamma = 1. We

empirically find that the network is close to convergence around 25 epochs and accordingly

decay gamma step-wise every 5 epochs.
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4.2 Experiments

We validate our multimodal fusion network on the BraTs 2018 dataset [4]. This dataset

consists of 220 patients with co-registered T1, T1c, T2 and FLAIR MRI scans. Each

patient has a volume of 240x240x155 however we discard the first and last 15 blank slices

and operate our 2D model at the slice level. The BraTs 2018 ground truth consist of three

classes: non-enhancing/necrotic tissue, peritumoral edema and enhancing structures [4].

A combination of each of these classes forms a sub-category for the evaluation board.

Enhancing Tumor (ET) denotes the enhancing class structures, Tumor Core (TC) consti-

tutes the nonenhancing structures and edema classes and the Whole Tumor (WT) refers

too all classes in the annotation. We adopt the strategy in [46] and train the network to

predict sub-regions ET, TC and WT.

We create a train, validation and test dataset based on a 70-20-10 split. We train all fusion

models with Stochastic Gradient Descent (SGD); local fusion models used learning rate

of 0.0001 while global fusion models used a larger learning rate of 0.001 as convergence

was an issue with smaller learning steps. To allow for a fair evaluation between fusion

practices, each model trains for a maximum of 300 epochs with an early stopping policy

that ensures the validation loss cannot stagnate past a patience of 10 epochs. Each

model was trained three times and average DSC, precision and recall scores are reported

in Section 4.3.

4.3 Results

Below we outline results from common latent fusion strategies. The networks were trained

with the DL.

We observe that concatenation of features results in the highest DSC score when com-

pared to using the mean or variance features as the multimodal representation. However

concatenation inefficiently scales the latent space by number of modalities and greatly

increases the model complexity. Moreover, we observe applying the squeeze block did not

have any benefit on the model’s predictive power probably due to the simplistic decoder.

Compared to HeMIS fusion and the squeeze HeMIS versions, our proposed MGF block in
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Table 4.1: Performance of latent space fusion on BraTs 2018 dataset of 22 patients

Latent Models DSC Precision Recall Params

concat 0.8301 ± 0.0055 0.8927 ± 0.0128 0.8123 ± 0.0128 2.130 M
concat + SE blocks 0.8250 ± 0.0060 0.8869 ± 0.0073 0.8146 ± 0.0123 2.163 M

mean 0.8167 ± 0.0082 0.8630 ± 0.0147 0.8178 ± 0.0021 1.312 M
variance 0.8002 ± 0.0060 0.8500 ± 0.0158 0.8067 ± 0.0091 1.312 M
HeMIS 0.8105 ± 0.0038 0.8709 ± 0.0110 0.8005 ± 0.0122 1.475 M

HeMIS + SE blocks 0.8100 ± 0.0104 0.8569 ± 0.0196 0.8127 ± 0.0103 1.478 M
MGF 0.8251 ± 0.0022 0.8928 ± 0.0120 0.8020 ± 0.0111 1.475 M

the latent space produces competitive results with similar parameter complexity. When

compared to concatenation latent model, our proposed MGF block only results in a 0.5%

reduction in DSC score while maintaining competitive precision, but reduces the number

of parameters to 1.475M from 2.13M (last column of Table 4.1). This implies that the

MGF block can achieve similar performance utilizing a much more efficient network.

Since the BraTs 2018 dataset contains MRI volumes that are co-registered, all feature

maps have the same receptive field. Therefore, we extend our latent MGF model to

fuse modality specific features at every feature scale. We compare our network with the

conventional U-Net that is most commonly employed for BraTs 2018 segmentation. Since

U-Net with early fusion essentially learns non-linear combinations of all modalities from

all scales, we term it a global fusion model. From Table 4.2, we observe our proposed

multimodal fusion architecture is able to achieve competitive results when compared

to its U-Net counter part with roughly 50% fewer model parameters. Using the FTL,

the proposed results (last row of Table 4.2) depicts balanced precision and recall scores.

Through cross validation, the best FTL parameters were found to be: alpha = 0.7,

beta = 0.3, 1/γ = 0.7.

Table 4.2: Performance of global fusion on BraTs 2018 dataset of 22 patients

Global Models DSC Precision Recall Params

U-Net + DL 0.8349 ± 0.0016 0.9010 ± 0.0129 0.8242 ± 0.0055 9.335 M
MGF Net + FTL 0.8408 ± 0.0068 0.8529 ± 0.0271 0.859 ± 0.0154 4.449 M
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Chapter 5

Conclusion

5.1 Thesis Summary

In this thesis, we have tackled the class imbalance problem for lesion segmentation and

the multimodal fusion problem in glioma segmentation.

Our first work presented a novel improvement to the gold standard Dice loss function

for medical image segmentation. By exponentiating the Tversky index, we achieve a

loss function that focuses more on mis-classified examples. Through experimentation, we

justify the use of a parabolic loss function by incorporating a decay schedule for 1/gamma

such that a network is initialized with our proposed focal Tversky loss and eventually

decays to the Tversky index. In our earlier work, we were also able to mitigate any

parabolic instabilities by incorporating deep supervision which had an averaging effect

on any large gradient swings. We improve upon lesion segmentation by incorporating a

conventional image pyramid to force the network to retain its attention to small image

features where certain ROIs are more visible. Across two datasets with significantly small

ROIs and large variance in annotations, we achieve 25.7% and 3.6% performance boost

over the conventional U-Net, respectively.

Our second work explores commonly employed latent space fusion models for multimodal

segmentation. We build upon HeMIS feature extraction by selectively pruning the mean

and variance features independently. We propose the Multimodal Fusion block to weight
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variance features in the channel dimension and utilize a spatial version of SE blocks to

weight structural features. We train our proposed model with the multi-class version of

the FTL and observe 1% in improvement over the conventional U-Net with early fusion

with 50% fewer parameters for theBraTs 2018 segmentation problem.

5.2 Future Work

The most direct extension of both our works is to expand model architectures to incorpo-

rate space information either with 3D models or temporal structures such as convolutional

RNNs. From the literature on the BraTs 2018 challenges, multimodal segmentation with

co-registered images is very commonly solved using early fusion. Our explorations in 2D

demonstrate that feature pruning can attain similar if not better results with almost half

the parameters. Future research can focus on pruning temporal features independently

from spatial and channel-wise features. This has the potential to mimic a radiologists

action’s when contouring data as every anatomical plane is typically analyzed indepen-

dently. Moreover, combining attention pipelines with image fusion practices might en-

courage joint, task specific modality mixing at various scales which has potential to

improve segmentation performance.

On a more general note, an interesting direction would be to incorporate generative

modelling into image segmentation pipelines. In both the unimodal and multimodal

setting, one has access to several information resources (scale, texture, modality-specific

etc.) which one could use to construct a generative latent space. Sampling from a

common manifold would improve a model’s generalizability to varying ROI shapes and

locations. Such a network would have a large impact on the adoption of deep networks

in clinical use because generative models such as the Variational Autoencoder (VAE) for

example are explained by their factors of variation. The authors in [46] had success in

using the VAE to encourage a generalized encoder for segmentation, however the latent

representations were not strongly encouraged to follow the Gaussian prior and were also

not decoded for segmentation. This suggests a stronger image prior is needed for latent

variable models, especially in the medical realm as the variations in ROI structure and

locality are quite large. A good starting point might be to adopt feature pruning via our
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proposed attention or recalibration strategies to reduce noisy features from contributing

to a latent manifold.
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