
Game Theoretical Approach for Utility-Based

Distributed Balanced Data Routing in

Wireless Sensor Networks

by

Afshin Behzadan

M.Sc., Amirkabir University of Technology Tehran, Iran, 2008

A Thesis

Presented to the School of Graduate Studies at

Ryerson University

in partial fulfilment of the

requirements for the degree of

Master of Applied Science

in the Program of Computer Networks

Department of Electrical and Computer Engineering

Toronto, Ontario, Canada, August 2010

@Afshin I3ehzadan 2010

Author's Declaration

I hereby declare that I am the sole author of this thesis.

1 authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

Author's Signature: __ '--

I further authorize Ryerson University to reproduce this thesis by photocopying or other

means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

Author's Signature: .

ii

Abstract

Game Theoretical Approach for Utility-Based Distributed

Balanced Data Routing in Wireless Sensor Networks

@Afshin Behzadan, 2010

Master of Applied Science

Computer Networks Program

Department of Electrical and Computer Engineering

Ryerson University

In this thesis, two distributed algorithms for the construction of load balanced routing

trees in wireless sensor networks are proposed. In such networks load balanced data routing

and aggregation can considerably decrease uneven energy consumption among sensor nodes

and prolong network lifetime. The proposed algorithms achieve load balancing by adjusting

the number of children among parents as much as possible. The solution is based on game

theoretical approach, where child adjustment is considered as a game between parents and

child nodes, in which parents arc cooperative and children arc t·;clfish players. The gained

utility by each node is determined through utility functions defined per role. Utility functions

determine the behavior of nodes in each role. At the game termination, each individual node

gains the maximulIl benefit based on its utility function, and the network reaches the global

goal of forming the balanced tree. The proposed methods are called Utility Driven Balanced

Communication (UDBC) algorithm which is designed for homogenous environment, where

all nodes are assumed to produce equal amount of information, and Heterogenous Balanced

Data Routing (HBDR) algorithm which is proposed for heterogenous environment, where

different applications use different aggregation functions, and nodes can be vary in terms

of the amount of produced information, energy levels, data transmission rate and available

bandwidth for transmission. The advantage of this work over similar work in the literature

is the construction of more balanced trees which results in prolonging network lifetime, with

the capability of adaption according to specific application needs for sensitivity to delay and

reliability of data delivery.

III

Acknow ledgement

I would like to express my gratitude to my supervisor, Dr. Alagan Anpalagan for his con

tinuous encouragement, tremendous guidance and kind supports throughout this research.

It was a great and unforgettable opportunity for me to work with him.

I also would like to thank Dr. Bobby Ma for his advice and supports in various steps of

Ill.\" \vork. His great and invaluable knowledge and experience was a great help and privilege

for me.

I would like to acknowledge the Computer Networks Department and the School of

Graduate Studies at Ryerson University for their support in terms of financial aid, and work

experience as a graduate assistant.

I would also like to thank my defense committee for taking the time and effort to reviev·,'

Ill~' work and provide me with their insightful comments.

In addition I would like to thank the members of RRI\l+RAN Research Group. Working

in such a friendly and productive environment was one of the basis of my progress in this

work.

I can never find the words to thank my beloved father and mother, without them I could

newr reach my current stage in life. Special thanks to my lovely brother and sister, Amir

Hossein and Nazanin, my playmates in childhood and the best friends and supporters now.

I never felt alone with their kind support and encourages.

iv

Contents

1 Introduction

1.1 Sensor Networks and Query Processing

1.2 Game Theory

1.2.1 Nash equilibrium

1.2.2 Repeated games.

1.3 Motivation and Contribution.

2 Literature Review

2.1 Query Processing in Sensor Networks

2.2 Load Balancing in Sensor Networks .

2.3 Application of Game Theory in Sensor Networks.

3 Load Balancing Algorithms: Game Theoretical Approach

3.1 Problem Definition

3.2 System model and Definitions

3.3 Construction of Communication Infrastructure, Graph G=(V,E)

3.4 Utility Driven Balanced Data Communication (UDBC) Algorithm

3.4.1 Initial Round

3.4.2 Subsequent Rounds .

3.4.3 Illustrative. Example

3.5 Heterogenous Balanced Data Routing (HBDR) Algorithm

v

1

1

5

6

6

7

10

11

13

18

23

24

33

34

36

38

39

42

44

4 Analytical and Experimental Evaluation

4.1 Analytical Evaluation of UDBC Algorithm

4.1.1 Theoretical Analysis

4.1.2 Worst Case Analysis

4.2 Analytical Evaluation of HBDR Algorithm

4.3 Simulation Results for UDBC Algorithm

4.3.1 Load Factor Comparison

4.3.2 Number of Iterations Comparison

4.3.3 Number of Message Exchanges Comparison

4.4 Simulation Results for HBDR Algorithm

4.4.1 Network Lifetime ..

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4.4.8

Average Node Lifetime

Standard Deviation of Node Lifetime

Cumulative Distribution Function of Node Lifetime

N umber of Message Exchanges

Updating Factor

Time and Frequency Factors .

Different Aggregation Functions

4.5 Summary

5 Conclusion and Future Research Directions

5.1 Summary

5.2 Future Research Directions.

vi

49

49

50

53

54

58

59

62

65

68

69

71

72

74

75

76

78

80

81

82

82

84

List of Figures

3.1 The initial topology of two layers in the network.

3.2 The topology of two layers at the beginning of round two.

3.3 The final routing tree formed by the proposed algorithm.

4.1 Three sample networks used in the simulations.

4.2 Number of Nodes vs. Load Factor. . ..

4.3 Communication Range vs. Load Factor.

4.4 Number of Nodes vs. Number of Iterations.

4.5 Communication Range vs. Number of Iterations.

4.6 Number of Nodes vs. Number of ivlessages (Data items).

4.7 Communication Range vs. Number of Messages (Data Items).

4.8 Number of Nodes vs. Network Lifetime.

4.9 Node Communication Range vs. Network Lifetime.

4.10 Number of Nodes vs. Average Node Lifetime. . ..

4.11 Node Communication Range vs. Average Node Lifetime.

4.12 Number of Nodes vs. Standard Deviation Node Lifetime.

4.13 Node Communication Range vs. Standard Deviation Node Lifetime.

4.14 Cumulative Distribution Function of Node Lifetime ..

4.15 Number of Nodes vs. Number of Message Exchange.

4.16 Node Communication Range vs. Number of Message Exchange.

4.17 Number of Nodes vs. Updating Factor.

vii

42

43

43

59

60

60

63

63

67

67

69

70

71

72

73

73

74

75

76

77

4.18 Node Communication Range VS. Updating Factor.

4. HI Tillle and Frequency coefficient VB. Time Factor. .

4.20 Time and Frequency coefficient VB. Frequency Factor.

4.21 Network Lifetime VB. Different Aggregation Functions.

viii

77

70

79

80

List of Tables

4.1 Number of Iterations with Variable Number of Nodes

4.2 Number of Iterations with Variable Communication Range ..

4.3 Default values of parameters in the simulation of HBDR algorithm.

ix

64

65

68

Chapter 1

Il1.trod uction

1.1 Sensor Networks and Query Processing

Wireless sensor networks (V/SNs) contain battery powered nodes. Each node consists of

one or more sensors for sensing the surrounding environment. Sensors are small and usually

inexpensive, and have limited processing resources. Sensors sense and gather information

from the environment, based on the decision guidelines provided by users in forms of queries.

Acquired data are transmitted, via embedded radio in nodes, among nodes in a multi-hop

way and finally reach the root, i.e., the base station [1].

Usually, a WSN has no infrastructure and has an ad-hoc topology. This topology is

motivated by the fact that sensor networks are typically deployed in hard-to-access environ

ment. Obstructions in the environment can limit the wireless communication between nodes,

affecting the network connectivity. WSNs have many applications, such as military target

tracking and surveillance [2,3]' natural disaster relief [4], biomedical health monitoring [5,6],

and hazardous environment exploration and sensing [7].

Data sensing and transmitting consume a considerable portion of nodes' energy which

is limited and vital [8]. The main goal of query processing is to answer queries posed by

users, while decreasing the energy consumption and prolonging network lifetime are also

1

considered [9J. Queries are declared by users to the network using a SQL-like language, and

the network returns the required data by using the query processing software [10J. However,

a single query processing assumes one active query in the network. In reality, different

users may connect to the base station through the Internet and query various data. In

many cases, although different users may have different requests, their requests are somehow

similar. Thus, assigning a network to a single query and running queries sequentially not

only lead to undesirable delays in responding to user requests, but also results in a vast

energy wasting by doing redundant operations corresponding to different queries. Therefore,

multi-query processing has been considered in which multiple queries run in the network

simultaneously Ill, 12J.

Severe energy constraints and consequently communication and processing limitations of

sensor nodes make centralized methods not suitable for these networks, as their execution

involve noticeable processing overhead and need a global view of the network. Generating

this global view especially when the network is large will lead to a quick energy drain of

nodes. Thus, distributed and lightweight methods which are executable by low-powered

sensor nodes and that need only local information to run properly, are required [13].

Multi-hop data routing, driven by the above mentioned limitations, is typically used in

a tree topology for data delivery, where intermediate nodes receive data from their beneath

nodes, apply in-network aggregation on them and their local data, and send the aggregated

data to the next hop towards the base station [9,10,14]. This topology is formed by issuing a

flood from the base station towards the network through which nodes are assigned to different

levels. Due to flooding and the location of nodes, each node might receive multiple flooding

messages from some other nodes which can be its candidate parents. Thus, each node can

have some candidate parents. However, at the end of flooding process, each node selects a

parent in one level lower than its level, to which it will send the acquired data [15J. Some

children might have the opportunity to select their parents from a set of possible parents.

Blind parent selection leads to an uneven distribution of children among those parents. In

2

this rasr, it is highly probable that some parents have more children while the others have

less or even no children. A higher number of children implies a higher amOllnt. of traffic

at a certain node, since it receives, processes and forwards data from its children. Higher

amount of traffic leads to faster energy depIction and the nodes suHering this problem have

a shorter lifetime compared to nodes dealing with a less amount of traffic [16]. Thus, uneven

distribution of children among parents implies uneven drain of energy and lifetimes for nodes.

As the nature of sensor networks is ad-hoc and randomly distributed, the connectivity of

the network highly depends on the lifetime of nodes.

\Vireless sensor networks are usually modeled via a graph G = (V, E) with set of nodes

(G) and their adjacency (E) [17]. As mentioned before, each node has a level equal to its

distance to the base station in terms of number of hops. Data routing tree is a tree topology

T = (VT' ET), VT ~ V and ET ~ E built on a graph C. Using this tree, the acquired

data from the network are streamed to the base station. The routing tree is formed when

each node selects a closer node to the base station as its parent to send its data. Different

policies can be considered for parent selection [18] such as random selection, selection based

on distance, or selection based on the quality of the link. However, as the network becomes

more dense, consideration of load on nodes looks more important, since nodes with higher

load have a faster energy depletion and failure [19]. Here, load is defined as the required

energy for receiving, processing and transmitting of data.

One of the advantages of sensor nodes is their processing ability [10]. Although this

ability is limited, it gives the opportunity of moving some of the data processing operations

into the network. As the energy resources are restricted in sensor nodes, the main goal of

in-network data processing is to decrease the amount of communication overhead among

nodes. In-network aggregation [20] is the most common case of such processing, \vhere each

node aggregates its acquired data with the received data from other nodes, and sends the

aggregated nata to its parent in the routing tree. Aggregation functions can be divided into

two main groups: perfect and imperfect [21]. For perfect aggregations, the number of output

3

data items is constant and independent of the number of input data items. Examples of these

kinds of aggregations are maximum and average functions. The former causes one data item

to be sent out from each node, and the latter leads to two output data items from each node,

i.e. the sum and the number of values. Perfect aggregations can be completely performed in

the network. On the other hand, the number of output data items for imperfect aggregation

is variable and depends on the number of input data items. Median function is an example

of such kind of aggregations. For the computation of a median function, all data should be

available. This requirement forces nodes to send all raw data to the base station, where the

result can be determined, after these data has been gathered.

While in-network aggregations decrease processing and communicating overheads on

nodes, load balancing techniques try to distribute them evenly among nodes [19J. Load

balancing tends to distribute excessive loads on nodes among other possible nodes in a fair

manner to prolong their lifetime [19J and maintain network connectivity as a global objective.

Most of the proposed works in the context of load balancing are accompanied by aggregation

techniques. Existing works in the literature which use aggregation along with load balancing,

can be divided into two groups. The first group considers perfect aggregation [21 23]. The

main feature of this consideration is the equal load sent out from each node. In the second

group, different loads from nodes are assumed [21J. This assumption makes the load bal

ancing problem more complicated when dealing with the second group compared to the first

group, but it is more practical. In this case, in addition to perfect aggregations, imperfect

aggregations can be included, where the load sent out from each node can be different due to

the fact that complete in-network aggregations cannot be performed. A perfect solution for

heterogenous case should also work for homogenous case as load homogeneity is a specific

case of load heterogeneity when the output load of nodes are equal.

Node heterogeneity is not limited to various amount of produced data. Nodes may also

differ in the amount of power supply, total amount of data which they can transmit in a time

slot, or the total bandwidth that they can allocate for data transmission to their' children.

4

Besides the energy issue, time and bandwidth are two important factors in the quality of

data delivery. Thus, the importance of load balancing can mainly be discussed from three

aspects: nodes energy consumption, delay and link quality in terms of available bandwidth,

all of which are critical for applications in sensor networks, and it would be more realistic if

they are considered in the proposed solutions.

1.2 Game Theory

Game theory is a discipline aiming to model situations in which decision makers have to

lllake spccific actions that have mutual, possibly conflictillg, COllscquences [24]. It has been

used primarily in economics, in order to model the competition between companies. In the

field of wireless networks, game theory is often used as a tool for making cooperation between

nodes, terminals or various authorities. Game theory is applied to help solving problems in

routing, resource allocation and power management [25,26].

Game theory is related to the actions of decision makers who know that their actions

affect each other. A game includes a set of players i = 1,2, ... , N, each of which selects a

strategy Si E Si, where Si is a strategy space including all possible strategies for i. Player i

has the objective of maximizing its utility Ui. A game can be modeled by a set of players,

a set of available resources in the game, all possible choices for each player, which are made

possible from the set of resources, and the payoffs assigned to each player after choosing a

specific resource.

Two types of games can be considered: m non-cooperative games, each player selects

strategies without coordination with others. On the other hand, in a cooperative game,

the players have the choice and try to cooperate with each other, so that they can gain a

maximum benefit which is higher than what they could have obtained by playing the game

without cooperation [27]. The objective is to allocate the resources so that the total utility is

maximized. In wireless networks, the formation of coalitions involves the sharing of certain

5

resources. However, when the costs of such resource sharing is more than the hcndits gainr-ri

by the nodes, they are less likely to participate.

1.2.1 Nash equilibrium

The equilibrium strategies are chosen by the players in order to maximize their individllal

payoffs. In game theory, the Nash equilihrium is a solution concept of a game involving two

or more players, in which no player has anything to gain by changing only his own strategy

unilaterally [28]. If each player has chosen a strategy and no player can benefit by changing

his strategy while the other players keep theirs unchanged, then the current set of strategy

choices and the corresponding payoffs constitute a Nash equilibrium.

1.2.2 Repeated games

In strategic games, the players make their decisions simultaneously at the beginning of the

game. On the contrary, the model of an extensive game defines the possible orders of the

events. In repeated games, players can make decisions during the game and react to other

players decisions. In this case, a game is played many times and the players can check the

outcome of the previous game before playing in the next repetition.

A game theoretic approach [29] looks suitable for this purpose, since it considers indepen

dent players with local knowledge. This feature supports the nature of sensor environments,

in that nodes have only local information due to their limitations. In proposing such an

approach, nodes are considered as players of the game trying to reach a higher benefit ac

cording to their individual utility functions. On the top level, a global utility function also

should be defined in a way that when each player tries to gain more individual utility, it

implicitly helps in maximizing the global benefit defined by the global utility function. As

each game should have a termination at the end, Nash equilibrium can be used to show that

the game will stop at some point. However, Nash equilibrium proves the terminaqon of the

game, and not necessarily the optimum outcome resulted by playing the game.

6

1.3 Motivation and Contribution

This work b motivated by the works proposed in [21,22]. In those works, a decentralized

utili ty-based algorithm for construction of load balanced data gathering tree, where nodes are

considered homogeneous, is presented. Although that heuristic is impressive, as mentioned

in [22], the algorithm produces optimum balanced trees in around 90% of scenarios. Also,

an algorithm in [21] b proposed specifically when in-network aggregation is not possible and

each node have to send information from all its beneath nodes without performing any data

merging. The solution is based on the cumulative cost from the base station to each node.

The cost of each link is defined by the remained energy of nodes. A node chooses a parent to

join which has the least cumulative cost among other available parents for that node. The

implementation is possible by distributed distance vector algorithm. However, this solution

has a problem, since the best parents are selected based on their remaining energy, and
'-

with a distance vector algorithm some nodes may attach to a node at a same time because

of its best condition. In this case, the fast energy depletion of the attached parent causes

more frequent update for re-construction of tree to keep the network connectivity. In this

work, two distributed methods for utility-based balanced data routing in sensor networks,

referred to as Utility-Driven Balanced Communication (UDBC) and Heterogenous Balanced

Data Routing (HBDR), are proposed. Specifically, we investigate the construction of load

balanced routing trees, where nodes in each level have a balanced amount of load in terms

of energy consumption compared to other nodes in that level, as much as possible.

Utility driven notation is derived from using a game theoretic approach used for the

construction of the tree. The solutions are based on the gained utility by each node. Utilities

are determined by utility functions which steer node behaviors. These functions are defined

based on different roles and in a way that while each node tries to reach its own maximum

individual benefit, it implicitly helps the whole network to achieve the global benefit.

UDBC algorithm is a new distributed algorithm is proposed, which is able to produce

more balanced trees in different scenarios. Distributed term implies that the algorithm uses

7

just local data of nodes for execution. By adopting the game theoretic approach distrusted

condition is met, where each node as an independent player has only access to its local d8ta

and data of its adjacent nodes. Also, comparing to the similar work [21,22]' construction of

tree accomplishes faster, i.e., in an order less than maximum number of candidate children

in the adjacency of all nodes in the network. The low order of time complexity is the main

reason for low communication overhead imposed by tree construction. Overall, by adding

some small informative data items to certain messages and using a new distributed algorithm,

UDBC method achieves a better performance in terms of producing more balanced trees,

and less time and communication overheads.

The HBDR algorithm benefits from a game theoretic approach to solve the problem of

load balancing in heterogenous environment. It considers heterogeneity in terms of traffic

amount from nodes, energy levels, bandwidth, and data transmission rate. It also uses a

model to work with different kind of aggregation functions, covering perfect and imperfect

aggregation. Though the mentioned features are the advantages of HBDR algorithm over

UDBC algorithm, the UDBC algorithm has a simpler implementation and requires less

computational resources to run.

The main contributions of the proposed work are:

• We address the load balancing problem and formulate it using two utility based ap

proaches .

• vVe propose two new game theoretical approaches, which satisfy the distributive nature

of sensor environments, for balanced data routing in sensor networks. The first algo

rithm is called UDBC and is a light weight algorithm which produces more balanced

trees faster with lower communication overhead for perfect aggregation. The second

algorithm, referred to as HBDR, not only takes prolonging network lifetime into ac

count, but also considers delay and bandwidth as quality criteria for balanced routing

tree construction.

8

• We evaluated the performance of the proposed algorithms in terms of adjustment of

energy consumption among nodes, time and communication overheads required to

achieve load balancing, and adapt ion to ~pccific requirements of different applications

in terms of different aggregation function, data delivery delay and reliability.

• We prove and show that the two proposed algorithms improves balancing of load among,

nodes and improve the network lifetime, while they meet the mentioned above criteria.

The rest of the thesis is organized as follows: In chapter 2 a review of related existing work

in the literature is provided. Problem definition and formulation are presented in chapter 3.

Detailed explanations of algorithms are also provided in this chapter. Chapter 4 analytically

evaluates the performance of the algorithm and includes simulation results. Finally, chapter

5 summarizE'S the work and points to some future directions of the research.

9

Chapter 2

Literature Review

The proposed algorithms in this thesis lie in different arenas, which require us to review the

relevant work in the literature. Generally, the load balancing problem can be considered

from the routing and query processing point of view, since one of the main purposes of load

balancing in wireless sensor network is the data delivery in an energy efficient way. The

main fields for this purpose are routing and query processing fields. Routing aims to route

the data in the network with the least cost, mostly based on the energy and least number of

hops. On the other side, query processing tries to decrease the amount of data which travels

through the network. Both of the mentioned fields try to decrease the energy consumption

of individual nodes, and has many related concepts associated with each other.

Load balancing also tries to decrease the energy consumption not for individual nodes,

but for the whole network. Approaches which rely on load balancing adjust the load. The

load usually is defined as the energy consumption due to data communication, among nodes.

However, the inseparable parts of load balancing are routing and query processing, since it

benefits from the concepts and techniques, but in a balanced way. Thus, three fields should

be reviewed and investigated for proposing a solution for the load balancing problem.

When the concept of " utility" is considered for nodes in the sensor networks, utility based

approaches will be a relevant. field. Also, sensor nodes can be considered as independent

10

agents a::.; they have local information. A utility based approach which models the nodes

as inrlependent agents having their own local knowledge, implies using a game theoretic

approach with nodes as players. Game theory approaches have recently received attention

in different fields of sensor networks such as routillg, load balallcing and security, as the

nature of these networks encourages this tendency. As our work considers a utility-based

approach based on game theory concepts a section of this chapter is dedicated to reviewing

the use of game theory in sensor networks.

The the chapter is organized as follows. In Section 2.1, the existing concepts and tech

niques that mostly focus on energy saving are reviewed. As these concepts are aimed at

energy conservation, routing and query processing related works in the literature are in

cluded in this section. Section 2.2, specifically is devoted to works in load balancing field.

Finally, Game theory concepts and their applications in wireless sensor networks is reviewed

and discussed in Section 2.3.

2.1 Query Processing in Sensor Networks

~Iany works have been proposed in the area of query processing and energy conservation

techniques in wireless sensor networks. The authors in [14,30] present some fundamentals for

processing of queries and discuss some optimization techniques for data gathering. TinyDB

[10] and Cougar [31] are two query processors, considered as main references in this area.

TAG [20] introduces in-network aggregation for energy consumption decrease.

The following works propose various techniques to increase energy efficiency. The authors

in [9] moot some fundamentals for query processing systems and mention some optimization

techniques for query plan generation. The proposed work in [32] partitions the network

among multiple routing trees to run a single query, to increase performance and fault tol

erance. In [33], the authors propose some multi-query processing fundamentals and use a

framework to support it. In their work base station (BS) batches and aggregates queries

11

together and injects a new query resulted from them to the network. In the run time if

any new query arrives, it will be aggregated by the previous queries, but the new resulted

query will be sent as the second query to the network. This is a transient state in \vhich

two combined queries run in the network. The transient state continues until the first query

finishes, and then only the second query continues to run. However, the proposed solution

aggregates all the received queries together and, in cases that queries are not compatible

with each other their aggregation will not be beneficial.

The proposed works in [34 -36]are also similar to [33] as they introduce some multi-query

processing concepts. In [11] the idea of dividing the network into multiple zones and pro

cessing of results inside each zone is investigated. Results from each zone are collected

and aggregated by nodes inside the zone, and finally just one aggregated data will be sent

out. This way, the amount of outgoing traffic from each zone decreases, which leads to a

considerable energy conservation. The authors in [37] propose some routing techniques for

optimum result transition to BS in multi-query environments. The authors in [38] use some

pre-computed partial results, called materialized in-network views, to decrease energy con

sumption and share network among multiple queries. In their work, some partial aggregation

results are computed before running of queries and they are kept in nodes. When the queries

run, if a node has the desired value, it returns its partial aggregation value and does not

send the query further to its beneath nodes. This way a decrease in communication and

computation overhead can be gained. However, computation of materialized views at first

can impose a considerable energy overhead, and also in time dependent applications, after

a while views are spoiled and cannot be used anymore. The proposed work in [39] supports

concurrent run of queries; however, in that work each node has to aggregate received queries

and run aggregated query which can impose considerable computation overhead on it.

12

2.2 Load Balancing in Sensor Networks

Several authors studied balanced data gathering in sensor networks. Harvey et al. [40] pro

pose an optimum centralized method for making an optimal semi-matching which minimizes

the variance of the load among nodes. Considering a bipartite graph, a semi-matching is

a balanced assignment of vertices in one part to vertices in another part. The graph can

be represented as a set of tasks in one part and a set of machines in another part, each is

ablC' to process a subset of tasks. Then, an edge exists between a node from tasks part to

another node in machines part, if and only if that machine is able to perform the task. Loads

on machines are determined by the number of tasks they run. Thus, the goal is to assign

tasks to machines in a fair way, so at the end, machines run as equal number of tasks as

possible. Their method produces optimum load balanced assignments in all cases. To avoid

unbalanced assignments, formation of a kind of path, calleci alternating path in the graph is

pl'l'H'ntcd, as it is a sign of unbalancing.

Due to the limitations of sensor nodes and their autonomous mode, most of the proposed

work in the literature tend to be distributed. Sandagopan et al. in [22] and [21] propose a

decentralized utility based method for making the balanced data gathering tree. They use

(\ game theoretic approach, where nodes are the selfish players of a tree construction game.

Their method is suitable where in-network aggregation can be applied as they consider nodes

with similar amount of data. In-network aggregation gives the opportunity to interpret the

whole game as a number of games per level of tree. Thus in each level, the game is the

balanced joining of children to possible parents in one level higher. Parent selection is done

based on bids which are sent by parents to children. Each parent sends the guaranteed

bandwidth to its children. Initially, parents determine their bids by c- 1, where c is the

number of adjacent nodes from the next level or in other words the number of possible

children for them. Since children may receive various bids from their candidate parents in

their adj aceney, they select the sender of best offer, i.e., the highest received bid as their

parent. The game terminates when all parents are saturated meaning that the number of

13

children multiplying their guaranteed bids becomes one. If a parent is not saturated, and

there is no joining children for it, this means that its possible children currently have a

better bid from another parent. Thus, it will increase its bid to (c - 1)-1 and continue this

decrement in each round to either force its children to switch to it or reach a saturation

condition. However, this technique may cause a number of switchings by children among

parents when clifferent parents increase their bicls resulting in considerable communication

overhead.

In [21] the authors also discussed the construction of a spanning tree where no in-network

aggregation is applied. They assume each sensor node samples and transmits one unit of

data per epoch. With this situation, each leaf node transmits one unit of data, while every

intermediate node transmit its local data plus data from nodes in the subtree for which it

is the root. Assuming each data unit transmission consumes one unit of energy, each leaf

node dissipates one unit of data and each intermediate node dissipates energy proportional

to size of its subtree. The goal is to construct a spanning tree such that all the sensor

nodes are fairly utilized on the average. If S(T, i) shows the size of subtree rooted at node

i, and ei shows its current energy, then the fractional remaining energy of node i is defined

as ei-S,(T,i). To ensure fair utilization of energy resources the goal is the construction of
e

a spanning tree which maximizes the summation of the fractional remaining energy of all

nodes. If the network is modeled by graph G = (V, E), the strategy space of Sf.: of each node

i in iteration k is

Sk = {jl(i,j) E E} (2.1)

Thr.n, thr. utility function of each node is defined as follows:

(2.2)

where Qk is the length of the shortest path from sensor node j to the BS at iteration k.

Vk : QBS = O. Thus, at each iteration, a sensor node i chooses a node j that offers it the

14

shortest path to BS, by using e
1• as the metric of edge length for any edge (z, w) E E, where

z, w E V. This mechanism can be implemented by a distributed distance vector algorithm.

Thus, the energy balanced tree construction terminates when the distance vector algorithm

terminates.

Authors in [41] address a cluster-based load balancing multi-path routing (CLBt-.1) method

for Se11S01' networks. CLBt-.l classified nodes into multi-path routing nodes and cluster routing

nodes. The multi-path routing nodes are close to the base station and each time randomly

select next-hop nodes based on their next-hop routing tables. The cluster routing nodes

are clustered and form a routing tree in a cluster. Cluster heads are selected based on their

remaining energy and distance between them, and event center area. Authors in [42] propose

a hybrid inter-cluster routing strategy for energy efficient and balanced data gathering called

EEDP. In EEDP, each cluster head switches among direct and multi-hop aggregated data

forwarding towards the base station. Their hybrid strategy achieves a fair distribution of

communication overhead among cluster heads in different areas of a network and increase

network lifetime. A load balancing algorithm is presented in [43] for which the current local

traffic condition in the network is also taken into account resulting in a quicker data delivery

with less collision probability.

As mentioned earlier, different characteristics can be considered for classification of the

literature in the context of load balancing. First, the proposed works are either centralized

and decentralized (or distributed). The latter is preferred for sensor environment since it

is scalable and provides light weight solutions. Next, existing works can be investigated

from the heterogeneity aspect. Heterogeneity includes some criteria such as different power,

COllUIlUllication range, the amount of traffic from each node, transmission range and etc.

Considering the current literature, most of works can be divided into two major groups. The

first group cOllsiders homogenous nodes, and the second one considers two different types

of nodes. One type includes more powerful nodes having more abilities which are deployed

in a fewer number. The other group includes a higher number of nodes with less power

15

and capabilities. While consideration of homogenous nodes suggests flat network st,ructmc,

heterogeneity in the mentioned form suggests a hierarchy for the network structure formed

by clustering in which and powerful nodes act as cluster heads and the rest constitutes nodes

inside clusters. In the following, based on this brief discussion, some related works are briefly

discussed.

Ma et al. [44J considered the problem of load balancing in the hybrid sensor networks.

In this hybrid sensor network nodes are divided into two groups of static nodes and cluster

heads nodes. The network mostly consists of static nodes which sense data from the en

vironment. Cluster heads are less in number, but are more powerful, mobile and organize

clusters including static nodes. Beside scheduling and controlling decisions, cluster heads

act as a data aggregation point for clusters. In this scheme, static nodes deliver data in a

multi-hop way to cluster heads, but can hear queries directly from cluster heads because of

wider transmission range of cluster heads. As cluster heads and static nodes are different

in terms of their power and capabilities, the proposed scheme considers heterogeneous net

works. Considering mobile cluster heads, the problem is to position them for load balancing

in the network. By proposing a heuristic for this purpose, they show that moving the cluster

head to a better location can prolong network life time up to 35%.

Chu et al. [45J proposed a centralized approach for dynamic monitoring of nodes' energ:v to

determine if changing the parent of a node is necessary. The process includes two procedures

in the gateway. In the first procedure, priority of each node is determined. It starts from

the node with heaviest nodes and repeats for every node. The number of parents is used

for breaking ties, meaning that the node with the least parents is the winner. The energy

of selected node's parent is compared to the energy of other nodes from lower layer in its

communication range. The link among node and its parent is remains intact unless the

energy of parent is less than the other nodes from the lower layer in its communication

range. In that case, the second procedure starts and a new parent with the least load is

selected. The least number of neighbors is used for breaking ties in this procedure:

16

Huang ft al. [46] proposfd a routing protocol to build a l\1inimum Balanced Tree (MBT)

which is load balanced and dynamically adjustable. Their protocol is distributed and consid

ers homogenous nodes. For the purpose of tree construction, each node periodically checks

whether the status of its neighbors suggests any shorter path in terms of hop counts to the

sink node. If such a path can be found it will reselect its parent and reconstruct its sub-tree.

l\linimum neighbors criteria are used for breaking ties in this case. The authors showed that

the difference of degree among parent nodes which would be the candidate parents, is always

less than or equal to one. Tree adjustment process occurs in the case of a node failure or

existence of new node.

Based on ant colony algorithm [47], Hu et al. [48] introduced a distributed algorithm for

constructillg the data routing tree with nodes' residual energy consideration. Nourizadeh et

al. [49] prt'sented a distributed cluster based adaptive routing protocol which dynamically

adapts to node's failure and mobility. One of the features of the mentioned protocol is load

balancing by using fuzzy logic. Load is the sum of quality of links among a node and its

children. Link quality is defined as the reliability between a node and its parent. Daabaj

et al. [50] proposed a load balancing routing algorithm in which parent selection is based

on the residual power of the intermediate node and the channel state, and the hop count as

a third tier-break factor. Tree construction is performed in three stages: route setup, data

Lransmbsioll, and route maintenance.

Above brief review provides some im,tances of how current works focus on the load

balancing problem. Most of the present works assume homogenous network, which is not

practical. In reality, deployed nodes vary in terms of residual energy, transmission range

and bandwidth. Even if the initial deployment uses similar nodes, nodes are not the same

after awhile as each has different amount of processing and communication overhead based

on its location in the network. Thus, node heterogeneity should be considered in the real

implementation of load balancing algorithms for sensor networks.

17

2.3 Application of Game Theory in Sensor Networks

When a rational interaction is considered between nodes, the forwarding nodes can be en

couraged to cooperate in data routing. Then, based on a price-based scheme nodes try to

benefit other nodes to receive more benefits from them in a corporation scheme. In this

section, the discussion of game theory in wireless sensor networks is provided by surveying

recent work on routing among nodes, which relies on price-based or utility-based approaches

and use concepts of the game theory.

The authors in [51] use game theory to analyze the outcome of a game, in which the

deployed sensors belong to different authorities and can receive incentives for cooperative

forwarding for routing, data storage and aggregation. When sensors request a service from

another sensor belonging to a different authority, the other sensor may choose to cooperate

or decline based on its resources. In this game, where none of nodes from different domains

decline to cooperate with nodes from another domain, the Nash equilibria results in non

cooperation of nodes belonging to different sponsors. To avoid this situation, the authors

propose the use of tokens as incentives to encourage cooperation between sensors which

belong to different sponsors. Two organizations A and B deploy sensors {8Al' 8A2, ... , 8Ad

and {8 B1, 8132, ... , 8 Bk}, on a rectangular grid consisting of 2K nodes. Each sponsor pays the

nodes of the other sponsor at the end of a time period T. \Vhen a sensor node a belonging to

one sponsor requests a cooperation from a node b of another sponsor, it sends a request with

the token. If node b cooperates, it receives the token; otherwise, node a keeps the tokell.

The utility of a node is a function of the number of its received and provided cooperations

and the total number of requests it made. The utility for a sponsor is the sum of the utilities

of all its sensors plus the monetary transfer received by it at the end of T. Using this setting

where the sponsors can program their nodes for cooperation, the authors state and prove

the existence of various Nash equilibria for various conditions of acceptance or rejection of

contract.

The proposed work in [52] can be also considered in the field of approaches that use the

18

game theory in sensor networks, as it models the load balancing problem by using techniques

from game theory to make a routing tree in sensor network by a decentralized way. The

authors design the utility functions of individual nodes such that the network objectives

are met when the sensors maximize their individual utility functions. The problem here

is to construct a rout.ing tree rooted at the base station. Every node has a level in the

net\v·ork which is the number of hops from the sink node. A node must find and attach to

it parent with fewer childrE'll than the current one. The decisions taken by a node at every

level are independent of the decisions taken by nodes located at other levels. They describe

a distributed algorithm to design the utility functions of individual nodes, such that when

these utility functions are optimized by the sensor nodes, the overall objective of the network

is met.

A reliable query routing scheme is proposed in [53], where it is suggested that the number

of sensors working simultaneously to collaborate on aggregation should be chosen such that

global objectives are achieved. The global objectives are defined as increasing network

utilization, communication efficiency and energy consumption. For this purpose the authors

use a game-theoretic approach. In this approach, sensors are modeled as intelligent agents

cooperating to find optimal network architectures that maximize their payoffs. Payoff for a

sensor is defined as benefits resulted from its action minus its individual costs. The problem

is modeled as a reliable routing, in wh:ch a set of sensors are the players of the routing

game. When the base station sends a query to the nodes, it is checked for a match with the

attributes of the data sensed by the node. They model this idea by a value Vi that represents

the closeness of the match. If Vi = 0, it implies that the query does not match any attributes.

Data is routed to the sink node through an optimally chosen set of sensors. They call this

game as the reliable query routing (RQR) game. Each sensor node is modeled as relaying a

received data packet to only one neighbor and hence forms only one link between any pair

of source and destination nodes. The strategy space of a sensor node is modeled in the form

of a binary vector, {lil, li2, ... , lin}, where lij = 1/0 represents decision of a sensor node Si

19

to send or not to send a packet to sensor node S j. Each node's pClyoff is a function of the

reliability of the path between it and the base station and the expected value of information

at that node. This results in a routing tree that is optimal, since if a sensor node decides

to choose a different neighbor on another tree, it results in reduced payoffs to/from other

nodes. Hence, this also forms the Nash equilibrium for PQR game. Since the network is

unreliable, they use a path metric called the path weakness to evaluate various suboptimal

paths. The path weakness determines how much the node would have gained by switching

from its current path to an optimal one. A negative switching suggests that a node Si is

benefiting more from its given strategy, but at the expense of some other sensor. A positiv('

switching indicates that the sensor node could have performed better.

In [54], the authors consider the problem of packet forwarding in wireless sensor networks

using game theory. In classical game theory, players choose a particular strategy in response

to strategies of other players and this strategy does not change over time. However, in [54]

the frequency with which a player chooses a given strategy varies over the time in response

to the strategies chosen by other players. This allows players to choose from a set of actions

and strategies and use of only local information. The authors assume a heterogeneous

sensor network from different classes, where any two non-neighboring classes communicate

via multi-hop routing. Nodes can be selfish. They consider inter-class relaying, when a class

can cooperate and forward packets or decline to relay. They model the game as that of

non-cooperative repeated N-player game between classes of nodes, where nodes participate

repeatedly in games with other nodes. In repeated games, a node's action in a given round

is influenced by the actions of other nodes and corresponding payoffs in previous rounds.

Thus, a repeated game offers ways to punish nodes that do not cooperate by decreasing their

payoffs at the end of the game. This can be done by making bad reputation or decrease

in incentives resulting in reduced payoffs at the end of the game. Cooperation is similarly

rewarded, by examining the payoffs after repeated rounds of the game. Nodes with richer

history of cooperation have better reputation, accumulate incentives faster and are "included

20

ill routes. In transmitting or forwarding a packet, classes spend battery energy b and gain

an incentive c. If classes refuse to retransmit, they gain nothing and there is no cost to

them. They show that for packet forwarding between stationary classes, Nash equilibrium

is achieved if each player plays the Patient Grim strategy [54] and the discount factor is

approximately close to unity.

In general, to the best of our knowledge, the investigation of node heterogeneity in the

literature is rnostly limited to two aspects such as nodes with different load, or two kinds of

deployed nodes in the network with different capabilities like different communication ranges

for each type. Considering two different types of sensor nodes in the network is a big help

towards network clustering and localization of data processing and communicating in most

of nodes. However, uniform distribution of powerful nodes acting as cluster heads among

other normal nodes is a challenging problem in practice, especially in situations where human

interference in not possible. In such cases some cluster heads may have larger number of

nodes in their clusters, while other have less, and the existing load balancing algorithms

cannot achieve a good performance. Even, it is possible that a collection of nodes cannot

find a nearby cluster head, and have to connect in multi hop way to the closest cluster head.

Increasing number of cluster heads relative to number of normal nodes is a solution, but it

inevitably ends up with more expensive outcome. Thus, considering load balancing among

all nodes looks important. This is also true in large clusters which may be considered as

small networks.

Also, it looks very interesting if an algorithm can adapt itself according to different

application needs. \Vhile some applications are more sensitive to delay, for some others

more quality even with the cost of more delay is preferred. Thus, just consideration of

prolonging the lifetime of the network is not enough and a proper solution should consider

application needs too.

By considering pros and cons of the reviewed works, two decentralized utility-based

approaches for the load balancing data routing are explained in details and evaluated in

21

two later chapters. These algorithms are decentralized algorithms with the main goal of

prolonging network lifetime by balancing load among nodes. Because the sensor nodes can

be considered as independent interacting entities in the network and due to the advantages

of game theory and its compatibility with the nature of sensor networks, two proposed

approaches ill this thesis are utility-based with the benefit of using game theory concepts.

The first algorithm is a Utility-based Distributed Balanced COIllIllunication (UDBC)

algorithm. It is simple, fast and accurate algorithm for generating load balanced trees in ho

mogenous environments. The seconde one is Heterogenous Balanced Data Routing (UBDR)

algorithm. It is specifically designed for heterogenous environments, although it can support

homogenous environment when all nodes are considered the same. In the assumed het

erogenous environment, nodes are different in terms of the amount of their produced traffic,

energy resources, bandwidth and transmission rate. HBDR algorithm is more complicated

and produce less balanced tree is some cases in homogenoHs environments, compareo to

UDBC algorithm, but it can support all kind of aggregation functions by adopting a solu

tion to model them. However, HBDR algorithm can be adapted based on time sensitivity or

quality (in terms of bandwidth) sensitivity. Also, while it can be used for fiat networks to

cover homogenous case by considering all nodes with same capabilities, it can still be used

for hierarchical networks, where clustering is applied. In the latter case, cluster heads are

nodes with more power, or higher transmission rate and bandwidth. By considering these ca

pabilities for some nodes in the network, they are automatically considered as cluster heads,

and other normal nodes will tend to join them in a higher priority than other normal nodes.

As mentioned in chapter 1 proposing of two different algorithms for homogenous and

heterogenous environments is useful, as many applications rely only on perfect aggregation

functions, and load variety of nodes does not happen for them. Thus, deploying a fast and

simple, but accurate method for those cases is beneficial. On the other hand, for the other

applications which may have different kinds of queries along with different kinds of deployed

nodes, the design of a pervasive method is necessary.

22

Chapter 3

Load Balancing Algorithms: Game

Theoretical Approach

In this chapter two algorithms for balanced data routing in wireless sensor networks are

explained in details. Both approaches are based on are based on game theoretic concepts

by defilling of utility fuucti()llS for nodes as players of the games. Nodes' actions are based

Oil utility f1lnction so that tlwy gain more henefits according to utility function. The most

important of advantage of using game theory, is that nodes are viewed as indepndent entities

having their local knowledge, which facilitates the distributed implementations of algorithms.

Two algorithms are proposed for homogenous and heterogenous environments which referred

as UDBC and HBDR algorithms. To study and discuss the mentioned algorithms, this

chapter is organized as follows: Section 3.1 provides the definition and formulating of load

balancing problem in two contexts of homogeneity and heterogeneity of nodes. Section 3.2

contains definitions and assumptions used in two algorithms. As both algorithms run on a

communication infrastructure, the construction process of this infrastructure is explained in

section 3.3. UDBC algorithm is studied in section 3.4. Finally, the detailed description of

HDBR algorithm is provided in section 3.5.

23

3.1 Problem Definition

A wireless sensor network can be modeled as a graph G = (V, E) where sets V and E

correspond to nodes in the network and the connections between them respectively. An edge

eij E E exists between nodes Vi, Vj E V, if they are located within each other communication

range. Due to similar communication ranges, edge eij is considered as a bidirectional link

which can be used for both transmitting and receiving purposes. Streaming of data from

nodes towards the base station is supported by a routing infrastruct ure made by flooding,

mechanism starting from the base station. During this flooding, each node may accept

several flooding messages from other forwarding nodes in its adjacency. Howevcr, bascd on

an adopted parent selection policy, it finally selects only one of the sender nodes as its parent.

At the end of the parent selection process a topology is formed which can usually be stated

by a spanning tree T = (V, Er) where Er ~ E denotes parent-child relationship among

nodes. The root of this tree is the base station. There is a variety of policies for parent

selection in the literature. However, taking the energy constraint of nodes into account is

highly critical for network longevity. From the energy consumption point of view, as sensor

networks are deployed in an ad hoc manner, their connectivity is highly dependent on node

lifetimes.

As mentioned before, using aggregation functions is highly considered in sensor networks

as it decreases the data traffic in the network. Two major groups of aggregation functions

are perfect and imperfect aggregations. A high percentage of applications rely on perfect

aggregations. However, in some· other applications, queries impose the use of imperfect

aggregations, where in-network aggregation cannot be applied on the acquired data. As

perfect aggregations are suitable for many applications, and implementation of algorithms

based on perfect aggregations are much simpler than imperfect aggregations, an algorithm

first is proposed in our work which efficiently works for applications using perfect aggrega

tions. Then, another algorithm is proposed that is more comprehensive and covers all types

of aggregations, but is more complicated and impose more computational overhead.

24

For the case of perfect aggregation the following assumptions are made. Each node

transmits /1 data units per time unit, where 1'3 is a constant. This assumption is possible

because of using perfect aggregations, such as maximum function leading to one data item

transmitted from each node, or average leading to two data items sent out from each node. As

it is known, transmission and reception operations are two major causes of energy exhaustion

in nodes [10,14]. Thus, we omit energy consumption of computational operations as it is

negligible compared to transmitting and receiving energy. As a result, the load on a node

in a certain time is a function of data units it transmits or receives. If load on node v E V

with C(t) children at time t is shown by Lv(t), then it can be determined using (3.1):

(3.1)

where L~, and L~ are energy overhead required to send and receive one unit of data. If L(t)

is the average of load on nodes at time t and n is the number of nodes in the network, then

load factor corresponding to tree T this time, denoted by (/T(t), is the standard deviation of

load on all nodes Vi E V awl is defined as follows.

(JT(t) = 2:7=1 (LVi (t) - L(t))2
n

(3.2)

From now on, aT will be used as load factor of tree T at termination time i.e., t = T.

From the game theoretic point of view, the game is the construction of tree T* = (V, E*)

with E* ~ E, where the global utility function would be (T~' Thus aT- should be less than

the load factor of every other tree T = (V, ET)' However, maximizing of output for the above

mentioned function must result in the best utility for individual nodes as the players of the

game. A player can have two roles: parent for one lower level or child for one upper level.

For each role. a different utility function is defined. Before describing the utility function,

let us describe some notations.

Consider node u E V and set Pu C V where \Iv E Pu , U accepts a flooding message.

25

Then, Pu is the set of potential parents for u, and U is a common child for its members.

Also, each VI E Pu is a connected parent via u for each V2 E Pu ' For a node V E V, set

Cv induding all nodes that accept a flooding message from v makes the set of v's potential

children.

Let Nv be a set consisting of node v and its connected parents via members of Cv ' As a

parent, utility function for node v E V at time t is shown by Ut(t) and defined as:

(3.3)

where (J NlI (t) is the load factor of members of Nv at time t.

As a child, the utility function can be interpreted as its available bandwidth for data

transmission, similar to [22J. This bandwidth is allocated by the node's parent. If for a parent

v E V, the total available bandwidth that it can allocate to its children for transmitting their

data is 1 unit and it has c children, then a fair bandwidth allocation procedure assigns ~

of bandwidth to each child. More available bandwidth means less delay and more quality

in data transmission. Therefore, each node as a child tends to select a parent that offers

more bandwidth. If parent of node u is declared by v and its number of children at time t is

ICv(t)l, then u as a child, has the utility function U~(t) at time t, which can be determined

by (3.4):

(3.4)

Since each node can have two different roles and consequently two different utility func-

tions, its total utility function at time t would be:

Uv(t) = U~(t) + U~(t) (3.5)

Minimization of load factor implies more available bandwidth for children, and more

balanced load on parents. In some practical scenarios where applications are real time and

26

in-network aggregations are not possible, query results can not be determined unless all the

data are collected at the base station. In such cases, each parent has to send its children

results separately. As a result, higher number of children means longer time to wait for

sending their received data. Although the solution for the perfect aggregation case cannot

satisfy the imperfect aggregation case, still joining to a parent with less number of children

lmve desirable effects as it illlPoses less delay.

According to the definition of utility functions, it can be inferred that a node in the

parent role is a cooperative player which helps its connected parents to justify the number of

children. On the other hand, a node in the child role is a selfish player trying to join a parent

which has less number of children and provides more bandwidth. These two functionalities

together cause the achievement of the global goal which is the creation of an optimum load

balanced tree for that the load factor is minimum. Finally, a formal definition of the problem

of load balancing when the perfect aggregation is applied and consequently nodes can be

considered homogenous in terms off their outgoing traffic, is given as follows:

Given a wireless sensor network, modeled by graph G = (V, E), the game consisting of

nodes as player with two dzJJerent roles (cooperative in parent TOle and selfish in child TOle),

is to construct an optimum balanced routing tree T* = (V, E*), E* ~ E, for which the load

factor (aT) is minimized, and the utility gained by each player v E V at termination time

(T), i.e. Uv(T) is maximized.

For the imperfect aggregation case, beC8use different amounts of outgoing traffic from

nodes are considered as one of the factors in node heterogeneity, in the following explanations

load variety of nodes is assumed. Let E (v) show the initial energy of a node v. A portion

of this energy is consumed for sensing and processing purposes and the rest will be used

for communication. Again, as the energy required to sense and process data is negligible

comparing to communication energy consumption, it is omitted in the computations. A

simple and well-known model is used to model radio communication between sensor nodes.

Let Edcc is the energy needed to operate transmitter and receiver circuit, and Camp is the

27

required energy to amplify transmission for achieving an acceptable signal to noise ratio.

Then, energy required for sending k bits to distance d, and the energy required to receive

these k bit can be determined through (3.6) and (3.7).

(3.6)

(3.7)

To find out the value of k, consider C v as the set of v's children with ICvl members, and

each node u E C v sends L(u) bits. Then, ER(V) shows the consumed energy for reception of

all data units by v from its children, and can be determined by (3.8).

(,) - E ~IC1JI-1 L()
C R 'V - elec L...-i=O Ui (3.8)

After receiving data, v performs aggregation function on its local data and the received

data. Aggregation functions on k bits of data can be modeled by

(3.9)

where 0 ~ Al ~ 1 is the compression factor and A2 ~ 0 is the overhead factor. Compression

factor shows the average amount of compression obtained by applying the aggregation func-

tion, and the overhead factor shows the amount of data imposed by applying aggregation

function, regardless of the input data amount. For example maximum or minimum functions

can be shown by Agg(O, 1), average by Agg(O, 2), and median by Agg(l, 0).

Now, if v's local sensed data is S(v) bits, and it has ICvl children, 'the amount of data

after applying aggregation function, L(v), which will be sent by v is

(3.10)

28

Thus, the energy required to transmit the received data along with its local data is shown

by fS(V) and ddirwcl as:

(3.11)

\vhere r is the v's communication range. Considering (3.8) and (3.11), the energy that v

spends to receive, process and transmit data is determined by (3.12):

Then, the remaining energy of v is

Also, v's lifetime can be defined as

c(v) = fR(V) + ES(V)

f'(V) = E(v) - c(v)

.6.(V) = E(v)
f(V)

(3.12)

(3.13)

(3.14)

Network lifetime is defined as the time to the first node failure. By this definition, the

longer node lifetimes are, the longer network lifetime is.

From the delay point of view, if node v can receive and transmit with rate R(v) data

units, the time required to receive data from its children is shown by TR(V) and computed

by

T () - 1 "ICvl-l L()
R V - R(v) L....i=O Ui (3.15)

Then, v processes the received data and aggregates them with its local data. Assuming

that the processing time is negligible, the time in terms of epochs, required to transmitting

v's data can be determined by

Ts(v) = L(v)
R(v)

29

(3.16)

Thus, the total delay that v incurs to receive, process and transmit all data is defined

by:

(3.17)

The delay amount should be specifically considered for a.pplications that are realtime and

delay is important for them, such as safety or security monitoring systems. A specia.l case

can be obtained when each node v has the communication rate of one data unit, R(v) 1,

and produces one data unit per time slot, L(v) = 1, and the aggregation function is perfect,

with function Agg(O, 1). In this case TR{v) = ICvl and Ts(v) = 1 leading to the total delay

TR(V) = ICvl + 1 imposed by v.

On the other hand, when the reliability is more important and some delays can be

tolerated by the application, then a proper utilization of bandwidth should be considered.

The most common way suggests the division of available bandwidth among children relative

to the amount of their sent data. Thus, the available bandwidth for data transmission gained

by node u with parent v, shown by BT(u), is:

(3.18)

where BR{V) is the total bandwidth that v can allocate to its children for data transmission.

In the special case, as mentioned before, and when BR(V) is considered with unit of one,

BT(U) is equal to levi-I.

A combination of delay and bandwidth functions forms the utility function for nodes

when they play child role. This combination is able to support different kinds of application

needs for delay and reliability where response time and bandwidth have specific importance

30

based on the application. Utility function for child u with parent v is defined throll~h

where Ft and Ff are time and frequency coefficients correspondingly and indicate the impor

tcwce of them. r shows the bid p;enerated and sent hy the parent v, with remaining energy

E'(V) and levi children. EReh child in a selfish manner tends to join a parent hy which it

obtains the highest possible utility.

Load factor corresponding to an ar bi trary set S consisting of I S I nodes is dcfined as thc

standard deviation of loads on nodes v E S, and formulated as follows:

(Js =
Ll~o(E(Vi) - E0J)2

lSI
(3.20)

where lSI is the number of v E Sand E(Vi) is the average of loads on them. For a node v

when it plays parent role, the utility function can be defined as

(3.21)

where N v is the set of nodes two hops away in the same level as of v in the graph G including

v, or in other words, the set of connected parents to V including v. Minimizing (JN v leads to

maximizing the output of Up(v) which is the individual benefit for node v in parent role.

As nodes may have both child and parent roles based on their location in the network,

the utility function for an arbitrary node v is defined by

U(v) = Uc(v) + Up(v) (3.22)

31

At a top level, minimizing load factor with a set equal to the set of all nodes in the

network can be considered as the global goal in construction of routing tree. In this case,

no extra load is imposed on any node and all of them have as closest as possible lifetime

to each other. Although in this case the lifetime for all nodes is not the maximum possible

lifetime, 110 node suffers from extra load imposed by other nodes. Because the maximum

life time for a node can be achieved whe11 it behaves selfishly and does not accept children

to join itself. However, this behavior has the cost of joining its possible children to other

parents resulting in an extra load on them and shortening their and network lifetimes. For

simplicity of explanation V T is considered equal to V, though it does not limit the generality

of the solution. Thus, the game is to create a routing tree for which Uy , defined by (3.23),

is maximum.

1
Uy =-,

(Ty
(3.23)

The difference between various nodes in terms of their lifetime, imposed delay and of-

fered bandwidth to their children arises from the number of children. If some parents have

extra number of children or loads and some others have less, then based on the mentioned

definitions. the delay imposed by them in data transmission and the bandwidth offered by

them to their children for data transmission are also uneven. This unbalancing leads to a

longer delay and poorer quality for children of nodes with higher load, but less delay and

richer quality and even unused resources like energy or bandwidth for children of nodes with

lighter load. Thus, adjusting loads among parents is also a critical problem for quality of

service guarantee.

Totally, the problem of load balancing with considering of heterogeneity of nodes can

be defined as follows: given a wireless sensor network, modeled by graph G = (V, E), with

heterogenous nodes in terms of produced load (L), power supplies (E), and transmission

speed (R) and capacity (B) the problem is the assignment of children to parents in a t1'ny

that load factor of the network ((1 v) is as little as possible leading to maximum U v, 'U·lJile each

individual node v E V achietles its ma:rimurrL possible individual benefit (U(tl)). 7r:sulting in

32

prolonging network lifetime (~).

3.2 System model and Definitions

For a bettcr dcsrription of t hc algorithms, some definitions and system model are provided

ill thb section.

• G = (V, E): a graph which models the network and includes a set of nodes (V) and

their adjacency (set E).

• T = (VT,ET): a tree that models the routing tree, where V T C V is the set of its

com;titutive nodes with their adjacency set (ET) where ET s::; E.

• Node Level: Level of node v E V in graph G is its distance to the root in number of

hops.

• p~: Set of potential parents for node v in graph G, including nodes from which v

accepts flooding message during the contltruction procetlS of graph G.

• p~: Set of potential children for node v in graph G, including nodes that receive

flooding message from v during the construction process of graph G.

• N~: Set of nodes which are located in the same level as v and are two hops away from

it with the intermediate node u between ?J and them.

• N v : Set N~ Vu E p~, i.e. all two hops away nodes from v which are located in the

same level as of v.

• E,.: Set of children for node v in tree T, called v's existing children.

• P(v): v's parent in tree T.

The construction of tree T is implemented on graph G. The construction of graph G

itself is explained in section 3.3. By the end of construction of graph G each node v knows

sets p~ and P~.

For homogenous case, where aggregation functions are perfect, nodes are considered sim

ilar \ ill terms of the amount of their generated traffic, and other features of sensor nodes such

33

as initial energy, data transmission range and etc. On the other hand, for heterogenous case,

where aggregation functions are considered imperfect, nodes are considered heterogenous in

terms of their initial energy, data transmission rate, the amount of their produced data, and

the total bandwidth which they can provide their children with, to transmit their data.

The proposed solutions to the mentioned problems consider Stackelberg model for the

game. With this model nodes playing parent role are leaders of the game and nodes with child

role are followers. Parents have cooperative behavior, while children have selfish behavior.

Leaders make decisions before followers, since they can predict decision of followers. The

behavior of parents influences the behavior of their children, so that even with selfish actions

of children as followers, they still help to the global benefit of the game.

3.3 Construction of Communication Infrastructure, Graph

G==(V,E)

As mentioned in the previous section, it is assumed that the graph G = (V, E) exists. Thus,

before going through the details of algorithms, the construction process of this graph or

in other words infrastructure of both algorithms, is explained in this section. Algorithm 1

shows the construction process of communication infrastructure which is modeled by graph

G=(V,E).
The construction is based on the node distances to the base station, and starts with

broadcasting a flooding message from this point as the root in level 0 of the tree. Receiving

nodes of this message set their level to 1, their potential parent to the root, inform the

root about their setting and re-broadcast the flooding message. Upon receiving the flooding

message by other nodes in the network, each receiver node goes through a series of investiga-

tions. Firstly, it accepts the flooding message if its level is not determined yet. By accepting

this message, the node sets its level one more than the sender's level, adds the sender to its

potential parents set, and informs the sender of this new setting. \Yhen a sender of flooding

34

Algorithm 1 Graph G Construction, run in each node v E V
1: if v is root. then
2: v.let·el <-- 0
3: broadcast floodw.gM$g
4· else
5: if v.levPl = null and recewe(floodmgMsg) then
6: .:.Ie,'''' floorlingMsg.scnrler.1C!.·c/ + 1
7: Pi, t-/loodmgM sg.sender
8: send s/.a/.cAck
9: broadcast jZoodmgMsg

10: else if v.level ¥ null and recelVe(floodwgMsg} then
II: if floodingM sg.sender.let>el :::: v.level then
12: discard floodmgMsg
13: else if JloodingM$g.sender.levcl = v.level - 1 then
14: p~ t- floodingM sg.sender
15: send sta/eAck
16: else if JloodingM sg.sendcr.level < v.level - 1 then
17: remove all members in P::
18: send updateAck
19: v./evrl t- Jloodingflfsg.sendcr.level + 1
211: P~: t- floodingMsg .. scnder
21: send slateAck
22: broadcast floodmgMs.q
23: end if
24: end if
25: end if
20: if receIVe (stateAck) then
27: P:: t- 8IateAck.8ender
28: end if
29: if reccIVe(updateAck} then
30: remuve stateAck.sender from P~
31: end if

Illcssage' H'ce'ivC's a related setting message from another node, it adds the sender of the

setting message to its potential children set. If a node accepts the flooding message for the

first time, it re-broadcasts that message. Due to flooding nature, it is generally possible that

a node receives multiple flooding messages from different nodes. Thus, a node may receive

a flooding message after determination of its level raising one of the following cases: (i) The

sender has a higher level than the level of node's potential parents. In this case, receiving

node ignores the received message. (ii) The sender has a level equal to the level of node's

potential parents. In this case, receiving node accepts the sender as another potential parent

for itself and notifies it by sending a state acknowledgment message. (iii) The sender has

a lower level than the level corresponding to potential parents of the node. In this case,

receiving node removes all previous parents from its potential parents set and informs them

about this action, so they remove the node's ID from their potential children set. Then, it

adds the sender ID to its potential parents set as its new potential parent, sets its level one

35

more than the sender's level, informs the sender of this new setting, and fe-broadcasts the

flooding nwssagc. The flooding process conti niles uutil all nodes receive this request and do

uot broadcast it anymore. Eventually, each node v E V has a set of potential parents (P~)

and a set of potential children (P~).

3.4 Utility Driven Balanced Data Communication (UDBC)

Algorithm

UDBC algorithm is an algorithm proposed and designed for homogenous case of load balanc

ing problem. Similar to the works in [21,22]' the problem of making a load balanced routing

tree can be relaxed to independent games in each layer, and each of them can be viewed

as aS1::;igning balanced numbers of children to each parent. This is' possible due to applying

in-network perfect aggregation [10,20] where data from children of a certain parent can be

aggregated with its local data. In this case, all nodes produce the same loads. For example,

if the query is to find the maximum or minimuIIl of some parameters in the network, in a

simple scheme each node sends one unit of data corresponding to each parameter. If thf

query is to find the average, each node can seud two units of data per parameter; one is

the sum of its local acquired data and its children data, and the other is the number of

nodes. However, the proposed method does not provide the optimum solution for queries

for which in-network aggregation is not possible, and if one likes including them precisely,

has to consider the number of nodes in all levels beneath each node in the network. The

solution provided for heterogenous case in the later section considers the mentioned point.

An example of the queries for which in-network aggregation is not possible is the median

function. A complete study of different kind of queries is provided in [20J.

Algorithms 2 and 3 show the process of parent selection for nodes in child and parent

roles respectively.

For clarity, the child of a parent in graph G and the child of that parent in the balanced

36

Algorithm 2 Parent Node v E V ---1: if it is millal slate then
broadcast slaleMsg

end if
while <,(1') > 0 do

broadcast si,ateMsg
if at I"""t one joinReq message is received then

2:
3:
4:
5:
6:
7:
8:

minChild = Min{number of children of connected parents}
for i = c(u) to max(minChild+ 1, 9(u» do

9:
10:
11:
12:
13:
1~

maxChild __ a potential child which has a potential parent with maximum existing chtldren.
send acceptMsg to maxChild
remove maxChild from the potential children.

end for
send (rejectM 89) to other potential children,

end if
15: if at lea;;t one joinAck meHsage is received then
lU: update(st"te)
17: end if
18: end while

Algorithm 3 Child Node u E V
1: while P(u) = null do
2: if received(stMeMsg) then
3: update(statesQ)
4: if statesQ,size== 1 then
5: P(u) +- statesQ[O].sender
6: else if at leaHt one stateMsg=<l, 0> exists in statesQ then
7: P(u) +- a potential parent which sent this state
8: else if it is inttial state then
9: Broadcast joinReq

10: else if slatesQ.size> 1 then
11: bestStates Vector +- null;
12: be.9/Staies Vector +- all ~tates in statesQ with minimum ensting children
1:3: bcstSta/,es Vector +- all states in bes/State Vector with maximum common children
14: send JomRcq to sendf'l's or statf'S in bestStal.e Vector
1,5: end if
16: else if received (acceptMsg) then
17: node,parent +- one of acceptMsg.sender
18: broadcast(jotnAck)
19: end if
20: end while

37

tree T arc differentiated. As mentioned earlier, for the former the potential child and for

the latter existing child notations are used. Tree construction is implemented in a number

of rounds.

Parent selection process is possible using some informative records, called state of nodes.

State of node v E V is presented by a record <g(v), e(v), c(v» where g(v) initially is the

grade of v in graph G defined as the numoer of its potential children, e(v) is the v's grade in

tree T defined as the number of its existing children, and c(v) is the number of v's common

potential children with other parents in graph G. The state message (stateAf sg) from node

v includes two state fields, i.e. g(v) and e(v). Each receiving node can determine c(v) oy

subtracting e(v) from g(v).

Two main phases are considered for the whole game. (i) Initial round, where initial states

of parents are received by their potential children, and children with one potential parent

or best possible parent joins their only possible parent. (ii) Subsequent rounds, where all

common children gradually and in a balanced way join parents in their strategic space i.e.

set of their potential parents.

Since at the initial state, tree T does not exist, field e(v) has the value of O. Thus,

stateM sg of node v at initial state is <g (v), 0> and indicates the start of construction. The

construction starts by flooding this state from the root. Upon receiving it, each receiver node

broadcasts its initial state to its potential children and starts the execution of the algorithm.

3.4.1 Initial Round

When a child u E V receives the initial state from only one potential parent v E V, it

immediately joins that parent using a join message, as v is the only choice for being u's

parent. Also, if u receives a stateAI sg containing <1,0> from at least one potential parent it

immediately joins one of the senders of such state, since this state indicates that the sender

has just one potential child which is u. Thus, by joining to that sender, the m~ximllIll

bandwidth is guaranteed for u. Upon joining, parent v increases e(v) by 1. On the other

38

hand, if u receives the initial state messages from multiple potential parents v E p~, where

none of them is <1,0>, then it sends a null join request (joinReq) message to all of those

pot('Jltial parents. The reason is that initial states are not the actual states of nodes and

its lack of information avoids optimum parent selection by children. By sending the null

join request, nodes just inform potential parents of their commonality. Each parent node

increases its common children by 1 per reception of such null request. At the end of initial

round, each node v has specific e(v) and c(v) where e(v) + c(v) is equal to g(v). From this

point, the actual state of each node is formed which will be sent by that node starting the

next round. The "potential" notation for a child implies that it can become an existing child

for its potential parent or leave it and join another potential parent with better situation.

Either a child joins or leaves a parent, it exits from the set of common children of that

parent. If a child leaves a potential parent, it goes out from the potential children set of that

parent. In the consequent rounds of the game, g(v) can be determined by the sum of e(v)

and c(v) for a node v E V.

3.4.2 Subsequent Rounds

According to child utility function defined by (3.4), a child u tends to join a parent that

eventually has the minimum number of existing children leading to higher gained utility for

the child. For this purpose, the child node considers some priorities for the investigation

of fields in the received states from its potential parents. The operator» is defined which

indicates the priority of its operands. Given two operands a and b, a has higher priority

than b if and only if a »b. In UDBC algorithm, the priority for investigation of fields

in different states is e (v) » c(v). The behind logic is that, in a greedy manner, a child

u E V chooses parents with minimum number of existing children. Then from these chosen

parents, u chooses parents with maximum number of common children or the highest c(v)

in their states, since it is more probable some of their common children to join other parents

in the future and the utility gained by u to become more. Selected parents after these two

39

steps of investigation are the winners. Then, U shows its tendency to all winner parents

by sending joinReq messages. A joinReq message from child U to parent v, shown by

joinRequ(v), is a reconl containing three fields <Pm(u), cmax(u), Cmin(U», where Pm(u) is a

potential parent of u, except v, which has the maximum number of existing children, Cmax (u)

is this maximum number, and Cmin(U) is the minimum number of existing children among u's

potential parents, except v. If some of u's potential parents have cmax(u) existing children,

one of them will be included in the joinReq message. Although not including the rest in

the messages may cause non-optimum results in a few cases, including one parent 10 in

the messages considerably prevents uneven child acceptance by parents resulting in almost

optimum selections.

If a parent v E V receives some joinReq messages from some potential children, it chooses

a child u which has sent the maximum Cmax(u) among others. The parent utility function

explains this cooperative behavior; parent v E V accepts common children with parent

VI E V which has maximum existing children among other connected parents to reduce load

factor and help the network longevity. If there are some similar joinReq, parent v selects

children evenly from their relevant potential parents. This selection is based on the received

parent IDs in joinReq messages. Child selection continues if at least one child without any

parent exists in parent's neighborhood or in other words c(v) > O. However, the upper

bound for the number of children that a parent can accept in each round of child selection is

one child more than the minimum of Cmin(U) values received through the joinReq messages.

The reason for taking the upper bound for the number of children in each round is to avoid

a problem mentioned in [40]. The problem is the formation of a path, called altemating

path, that starts from a parent in one level of graph G and ends to another parent wit h

less number of children in the same level. The intermediate nodes in the path between two

endpoint parents can be a series of children and parents with edges in T with direction

from parents to children and edges in G with direction from children to parents. Thus, each

intermediate child in this path has one predecessor parent which is its current parent, and one

40

successor parent which is one of its potential parents. An alternating path has unbalanced

<'ll<ipoillt parents wit h a differcllcc in number of childrcn larger than 1, leading to unbalanced

trees. Unbalanced number of children among two endpoint parents can be balanced when

each child in the path switches from its predecessor parent to its successor parent. Taking

the mentiollcd upper bound into account in UOBe prevents formation of such alternating

paths. When a parent selects a child to join, it sends an acceptM 8g message to it indicating

the acceptance of its request. However, the parent might have a number of requests more

t han its upper bound for number of children acceptance in a specific round. Thus, for those

requests that have not chosen in a certain round, the parent sends rejectA189 message to

their senders, showing that their request is rejected for this round.

Upon receiving acceptM 8g messages by a child node, it attaches to the sender parent and

broadcasts a joinAck message to not only confirm its attachment to the selected potential

parent, but also to inform its other potential parent about its leaving to update their states.

All potential parents including the one that the child is joining and others that the child

left them, update their states by receiving this acknowledgement. Let x be the number of

children that join parent v E V and y be the number of children that leave v in a certain

round, where x + y < c(v). In this case, if <g(v), e(v), c(v» indicates current v's state, it

updates that state to <g(v) - y, e(v) +x, g(v) -x -V>. If a child receives multiple acceptance

messages from some parents, it chooses one of them randomly. \Vhen a change occurs in

a parent's state due to the joining or leaving of its potential children, it re-broadcasts its

state in the next round of the parent selection. On the other hand, when a child receives

an rf'jf'ctMsg in response to its joinReq, it waits for the next round of parent selection to

choose a parent again.

Based on the position of a node in the network, it can be a leaf or intermediate node. A

leaf node has just the child role, but an intermediate node has both child and parent roles.

III child role, a node finishes executing the algorithm when it finds a parent, and in parent

role, nodes stop running the algorithm when no child exists in its neighborhood without

41

having any parent. Formally, parent v E V can recognize this situation when in its state

g(v) = e(v) or c(v) = O. The game ends, when every nodes in the network has a parent or

in the other words for every parent no common child exists.

3.4.3 Illustrative Example

Consider Figure 3.1 as an example, which shows the initial topology for a set of parent and

child nodes. The following descriptions and figures illustrate how the game is played.

0606050
e(~0'C£:8~~c2)'e'~

Figure 3.1: The initial topology of two layers in the network. Top and bottom rows indicate
potential parents and potential children respectively. The state of each parent node is shown
on its top. Dashed lines show node adjacencies.

Round 1: Each parent broadcasts its stateAIsg. Nodes C1 and C2 join node PI, since

PI is the only potential parent from which they receive a state message. Node C3 has the

same states from parents PI and P2. Because this is the initial round, it broadcasts a Ilull

joinReq message. Node C4 only has the state from P2, thus it chooses P2 as its parent.

Node C5 has two different states from P2 and P3, but because of the initial round it also

sends a null joinReq message. Node C6 chooses P3. Nodes C7, C8 and C9 join node'S P4,

P5 and P6 respectively, since they have stateA! sg < 1 ,0> from them indicating they are the

only child of those parents. Parent nodes update their states based on the number of joining

and leaving children. Games ends for nodes P4, P5, P6, C1, C2, C4 and C6 through C9.

Round 2: Figure 3.2 shows the topology and the node states at the beginning of round

two.

Nodes PI through P3 broadcast their states, since their states are changed and 'also the

game still continues for these nodes. Node C3 sends joinReq <PI, 2, 2> to P2, since P2

42

<3.2,1> <3,1.2> <2.1,1> <1,1.0> <1,1,0> <1.1.0>

, ,
... \,

... I , e C4 e
Figure 3.2: The topology of two layers at the beginning of round two of parent selection.
Top and bottom rows indicate potential parents and potential children respectively. The
state of each parent node is shown on its top. Dashed lines show node adjacencies. Solid
lines show parent-child relationships.

has a less existing number of children than PI. This message contains the maximum and

minimum number of existing children among its other potential parents. Node C5 sends

joinReq including < 1, 1> to P2, since it has greater number of common children than P2.

I\linimum existing children of connected parents in N P2 is 1 which belongs to P3. Thus, P2

can have maximum number of two existing children at the end of this round. However, it has

two joinReq messages from C3 and C5. Thus, it accepts one of them and rejects another.

The accepted child is C3 and the rejected child is C5, since based on its received joinReq

messages, cmax (C3) = 2 is greater than cmax (C5) = 1.

The only join request for P2 is from C3 that results in C3 becoming a child for it. In a

similar way, node C5 becomes a child for node P3. Parent nodes update their states. Game

ends for nodes PI through P3 and nodes C3 and C5, leading to termination of the whole

game. Figure 3.3 shows the final balanced routing tree formed by the proposed algorithm.

<2,2,0> <2,2,0> <2,2.0> <1,1,0> <1,1,0>

Figure 3.3: The final routing tree formed by the proposed algorithm. Top and bottom rows
indicate potential parents and potential children respectively. The state of each parent node
is shown on its top. Solid lines show parent-child relationships.

43

3.5 Heterogenous Balanced Data Routing (HBDR) Al

gorithm

In this section details for the other algorithm, called HBDR, is explained. The proposed

algorithm is not only suited for the case that imperfect aggregation functions are used and

nodes are heterogonous, but also works for homogenous case as well where perfect aggregation

functions are used. However, HBDR algorithm is more complicated than UDBC algorithm

and needs more resources to run. HBDR algorithm includes a series of games, each is played

in one level of graph C. These games are played in a sequential order. The first game is

the game in the highest level among leaf nodes and their parents. As soon as this game

terminates, the second game starts in one level lower, and after its termination, next game

corresponding to one level lower can start. This procedure continues until the termination

of game in the lowest level, among nodes in the first level and the root that is base station.

In fact, playing order follows a bottom-up model from leaves towards root.

Each game includes a number of rounds. In each round some children join parents. Like

UDBC algorithm, the first ro11no of the games is calico initial round. Generally, in this round,

nodes gather information about their one-hop neighbors. In the following rounds, r('[err('d

as subsequent rounds, children gradually join parents in a load balanced way. Algorithms -1

and 5 show the process of tree construction.

The first ganw start from kaves. I3as(~d on tlw information obtaiIH~d through flooding,

each node knows the set of its potential parent and potential children. If a node has just on('

potential parent, it immediately joins that parent, since the joined parent is its only option.

On the other hand, if a node has some potential parents, it sends a join request (joinReq)

message indicating it is a common children among some potential parents. Each joinReq

message contains three fields. First field indicates the data amount which was sent by the

sender of message. Two other fields, which will be discussed later in this section .. do not

have any value or in other words are null in the first round. Therefore, the joinReq message

44

2; if initial round then
3: wait for all u E p~,

update(£(v» 4;
5:
6:
7:
Ii;

e'(v) +- E(v) - e(v)
if receive(joinReq) then

update(cl'iv»
t:;,(v) t- E(v) - cp(v)

U: end if
10: generate bid(v) and bid!,(v)
11: bldPair(v) f- {bid(v), bid" (v)}
12; broadcast bidPair(v)
13; else

wait for JomRcq timeout
if receive(joinReq) then

nextbld(v) t- bid(v)
oidA! inParent f- null
boolean sktpFlag t- false

14:
15:
16;
17;
18:
19: while nextbi,d(v) > bid(w), vw of received bids and

skt.pFlag = false do
20:
21:
22:
2:3:

minBid t- minimum(l'eceived bidMin E joinReq)
se1cctedChild t- joinRcq,sender
minParent f- the parent which sent minBid to selectedChild
if rnmParent = oldAfinParent then

24: skipFiag t- true
25; else
25: oldAfmParent t- min Parent
27: compute Nextbid(v} based on new load
28: acceptMsg(v,seiectedChild) t- bid{v)
2~J: send(acccptM sg(v, selectcdChild), selectedChild)
30: end if
31; end while
32; send rejectM 8g to the re~t requesters
33; wait for jomAck ttmeout
34; for all received joinAck(u,w) do
35: P:, t- P:: - {u}
36: if v '" w then
37: update i;(V), c,.(v), "(v), e;,(v)
31i: else
3Y: update "p(v),,,~}(v)
40; end if
41: end for
42: g<'llPrate bidPair(v)
43: else
44: wait for jotnAck timeout
45; end if
46: broadcast(bidPai.r(v»
47; end if

45

Algorithm 5 Node U E V in Child Role
1: while p(u) = </> do the following steps
2: if mitial round and v is leaf then
3: if IP"I = 1 then
4:
5:
6:

join(P(v»
else if JPH I > 1 then

send(joinReq, P;,)
7: end if
8: else if receive(bidPair) then
9: wait for all v E Pi,

10: set BestBids </>

11: set BestParents ¢
12:
13:
14:
15:
16:
17:
18:
19:
20:

BestBids received bids with maximum bid
BestBids bids E BestBids with maximum bidp

BestParents bid. sender, IIbid E BestBids
for all w E l3estParents do

bidmax maximum(bid(v», "Iv E pC - {w}
bidmin minimum(bid(v», "Iv E Pi, - {w}
joinReq(u,w) {L(u),bidmax,bidmm}
send(joinReq(u, w), w)

end for
21: else if receive(acceptMsg) then
22: wait for all involved parents
23: bestChoice minimum(bid(v» in all received acceptMsgs
24: bestParent bestChoice.sender
25: join(bestParent)
26: broadcast (J oinAck(u, best Parent »
27: else if receive(rejectMsg) then
28: wait until next round
29: end if

in the initial round is referred as null joinReq, and is used to inform potential parents about

their potential children status.

Each parent v E V, updates its load (c(v)) and potential load (cp(v)) based on joining

nodes and received joinReq messages respectively, using (3.12). In the computation of c(v),

Cv = Ev, and in the computation of E'p(v), Cv = Ev U P~. In fact, E'p(v) shows the load on

v when all its potential children join it, in the worst case. After determining the remaining

energy and potentially remaining energy, v computes its bid, i.e. bid(v) = r(v, c(v), Ev) and

potential bid, i.e. bidp(v) = r(v,E'p(v),Ev U P~), which it can offer to its children. These

bids are broadcasted to its potential children in the form of {bid(v), bidp(v)} pairs, called bid

pair.

Each child node can receive some bid pairs according to the number of its potential

parents. By receiving these pairs, child node u E V selects parent v E p~ which offers the

highest benefit or bid. Based on the formula for bid, the highest bid from a node implies

better quality of service in longer time meaning more stability of the offer than others. If for

46

~omr pilr('!lt~ tlH~ off~rrrl. hids arr. the ~ilm~, th(~ir potr.ntial bids are used for breaking ties.

Thi~ llH'all~ from parcllt~ with equal offered bids, those arc ch()~cn which have the maximum

the potential bid. Thus, in the worst case when all potential children join that parent it

still has better benefit for 11. The chosen parents after these two steps investigation are the

best choice for children. Child tL shows its willingness for joining those parents by sending

joinReq messages to them. As mentioned before, a joinReq from node u to node v contains

three fields. The first field includes the amount of data which tL will send to v in each time

unit. The second and third fields indicate the maximum and minimum bids respectively

among the received bids by 'll from its parents except v.

A joinRcq from child u to parent v is an indication about the load on other parent in

N:~. Based on the t.hird field in t.he received joinReq messages, v chooses a child which has a

parent \vith minimum offered bid indicating a combinat.ion of high load and short lifetime for

that parent. This cooperative behavior relaxes the load on the second parent and helps it to

have a longer lifetime. After choosing u, based on its joinReq message, v adds the amount

of dat a indicated as the first field in joinReq to its current amount data, and computes the

benefit based on this new amount of data showing the benefit. in t.he case that u finally joins v.

This predicted bid is called nextBid. Also, v sends an acceptance message to u to inform it.

Each accept message contains the nextBid value. Then, v compares next Bid to the second

fields of received joinReq messages which show maximum bids of other potential parents.

If the nextBid is larger than all other maximum bids, v continues with child acceptance in

a same way as before and recomputes the nextBid. Child acceptance continues unless one

maximum bid larger than nextBid can be found. In that case, v stops child acceptance and

sends the reject message to the rest of potential children which request joining.

A child may receive some acceptance messages. By receiving acceptance messages, child

tL chooses a parent with maximum included nextBid in its acceptance message. When u

joins a parent, it broadcasts a join acknowledge message to not only inform the joined parent,

but also to inform other parents about leaving them.

47

Let child u joins parent v. Then, u is added to Ev and also removed from p~, \;fw E P~.

By reception of every joinAck message which is destined for v, v re-computes its remaining

energy, bid and potential bid, and re-broadcasts the bid pair. From this point and by

broadcasting the new bid pair to the its potential children, the next round begins with

similar steps mentioned above.

When a child joins a parent the game terminates for it. For a parent v, when IP~I 0

the games ends. As mentioned before, games are played in a sequence from leaf nodes

towards the base station. An intermediate node has two roles: parent for its children in one

level higher and child role for its potential parents in one level lower. Thus, it plays two

games. Because the sequence of games is from higher level to lower levels, such nodes first

playa game in parent role with nodes in one level higher, and after its termination they

start playing another game in child role with nodes in one level lower. This way may effect

synchronization among nodes in different levels of the graph, as some nodes may finish their

first game faster than others, and start the second game sooner. Thus, in the initial round of

each game a node in parent role waits to receive null joinReq from all its potential children

and then each child node waits to receive bidPair from all its potential parents. Considering

such scheduling helps to synchronization of related nodes to each other and guarantees when

a nodes continues the game it has received all necessary data. Let node VI waits for V2. To

make sure that V2 has not failed and is waiting for reception of data from some other nodes,

VI and V2 can exchange a Hello messages on some certain intervals to differentiate between

node failure and waiting status.

Algorithm terminates when the last games ends, Le. when nodes in the second level join

t he parent in the first level.

The performance of two algorithms, are examined in the next chapter through analytical

and experimental evaluations.

48

Chapter 4

Analytical and Experimental

Evaluation

In this chapter UDBC and HBDR algorithms are evaluated through analytical and experi

mental evaluations. Some theoretical aspects of the algorithms are proved through analytical

evaluation, such as reaching to Nash equilibrium and some upper-bonds for the time and

number of message exchanges needed for trees construction. Experimental evaluation is

aimed to investigate the performance of algorithm under the different conditions when some

parameters are varying. This chapter is organized as follow: sections 4.1 and 4.2 are assigned

to analytical evaluation of UDBC and HBDR methods, respectively. Then, experimental re

sults from conduction of simulations for two methods are provided in sections 4.3 and 4.4.

4.1 Analytical Evaluation of lJDBC Algorithm

In this section, validation of some statements about the algorithm are proved first, and then

the worst case of some performance parameters are studied.

49

4.1.1 Theoretical Analysis

Lemma 1: Given graph G = (V, E), for a node v E V with state <g(v),e(v),c(v», g(v) is

non-increasing and e(v) is non-decreasing in number of parent selection rounds.

Proof: According to UDBC algorithm, g(v) changes iff k potential children leave v and

join other potential parents. Then,

g'(v) g(v) - k, (4.1)

where g'(v) is the new grade of v after leaving. This is the only case when g(v) changes.

Therefore, g(v) is non-increasing in number of parent selection rounds.

. Also, the number of existing children for v increases from 0 at the initial state to g(v) at

the algorithm termination. e(v) changes iff k' potential children join v. Then:

e' (v) e (v) + k', (4.2)

where e' (v) is the new number of v's existing children. This is the only change made on e(v).

Thus, e(v) is non-decreasing in number of parent selection rounds. 0

Lemma 2: Given graph G = (V, E) and the parent selection game, for a parent v E V

with state <g(v), e(v), c(v» that receives at least one joinReq message in round r, at least

one of its potential children joins or leaves it in that parent selection round. Also, c(v) is

non-increasing in number of rounds.

Proof: Consider the following notations:

Pv : set of potential parents for node v,

P:; : set of potential parents that accept v's join request,

P; : set of potential parents that reject v's join request,

50

ri : the first (initial) round,

rs : an arbitrary round in subsequent rounds,

with the following conditions: P: s:;; Pv, P~ s:;; Pv, P: n P~ = </J, P: U p~ = Pv.

Based on the UDBC algorithm, nodes as potential children send joinReq message to a subset

of their potential parents in each round, unless they are attached to a parent. Also, for a

parent in subsequent rounds there are some children in its potential children set which still

do not join a parent. Consider u E Vasa potential child at round rs. Node u sends joinReq

to a subset of its potential parent. Upon receiving joinReq, some potential parents reject

u's request (P~), and some accept it (P:). Node u selects a node v E P:: as its parent. Then,

joining u to v ~ e'(v) = e(v) + 1,g'(v') = g(v') - 1, 'IIv' E Pu - {v} (4.3)

Upon attaching u to v, e(v) increases by 1, and'llv' E Pu other than v, g(v') decreases by

1, since u leaves them. Thus, a potential child u joins a potential parent in Pu and leaves the

rest in that set. As a result, for a parent v which does not terminate algorithm execution in

subsequent rounds, at least one of its common children joins or leaves it per round.

Now, assume that all v E V reject u's request. This means they have more critical

joinReq messages from other potential children, and send the acceptance message for them.

Then, selected children join them or leave them after acceptance. In both cases number of

potential children will decrease for them. Thus, C(v) decreases 'IIv E P~.

Number of common children for parent v, c(v), can be determined by g(v) - e(v) in

each round of parent selection. Based on Lemma 1, g(v) and e(v) are non-increasing and

non-decreasing in number of rounds. Consequently, c(v) becomes decreasing in number of

parent selection rounds. 0

Lemma 3: At the termination of algorithm, a Nash Equilibrium exists where neither parent

nodes want to get more children, nor child nodes want to switch to another parent.

Proof: On termination of the algorithm, a parent node v E V has a final state <g*(v), e*(v), 0>,

51

where g* (v) = e* (v). Switching from v to another potential parent v' with state <g* (v'), e* (v'), 0>

by a child u is desirable if and only if e* (v) - e* (v') > 1. In that case, switching form v

to Vi decreases the load variance factor of both parents and increases the utility gained by

u. However, we claim that every potential parent v' of u, has at least e*(v') = e*(v) - 1

children. This can be proved by contradiction. Assume that Vq is a potential parent of u

that has e* (vq) = e* (v) - 2 children. Let r~ be the final round of parent selection where v

terminates algorithm execution. According to Lemma 1, e(v) and e(vq) are non-decreasing

in number of parent selection rounds. Thus, there would be a round r v ~ r~ for v such that

e(v) = e*(v) -1 and Vq has e(vq) ~ e*(v) - 2. Then, based on the assumption u should join v

resulting in e*(v). However, this is in contradiction with the algorithm logic, where v has an

upper bound for selecting a child in each round that is Min {e(v')} + 1, \lv' E Nv • Therefore,

node v can not take additional children more than e(vq) + 1 at round r, and rejects u which

joins another parent in the next round. o

Lemma 4 The routing tree T = (V, E') formed by the proposed algorithm is a local optimum

tree in terms of load factor, i.e. (TNv(T) is optimum \Iv E V.

Proof: Different forms of the routing tree can be constructed by replacing edges in T with

some other edges in G, e.g. replacing a parent of a child with another potential parent of

that child. Let v E V be the parent of node u E V at the algorithm termination. According

to Lemma 2, all other potential parents of a child u have at least e(v) - 1 children. \Ve

distinguish potential parents of u with number of existent children equal to e(v) - 1 (set

PI) from other potential parents with number of existent children greater than e(v) -1 (set

P2). Switching from v to a parent v' E PI does not change load factor of v and v', since

in that case e(v) changes to e(v) - 1, which is equal to previous e(v') and e(v') changes to

e(v') + 1 which is equal to previous e(v). Therefore, the load variance does not change. Also,

switching from v to a parent v" E P2 results in a larger variance of load on v and V/~. Thus,

every other load factor is equal to or greater than the load factor at the termination time.

This means that all children are distributed among parents uniformly as much as possible

52

at that time. D

4.1.2 Worst Case Analysis

In the following the worst cases parent selection delay and number of message exchanges

when running the algorithm are evaluated .

• The worst case of parent selection delay for a child: This delay is defined as the

number of iterations required for the construction of tree. Game terminates when every

potential child joins a parent, or in other words V parent v E V, c(V) = O. Based on Lemma

2, c(v) is non-increasing in number of iterations. Thus, for a child u E V the worst case

occurs if it sends joinReq message t.o a v E P[; in each round and it. rejects u. However,

based on Lemma 2, number of common children decreases for those rejecting parents, lets

say by 1 per round in the worst case. At some round, say r, finally one of u's potential

parents will have just u as its only remaining common children, and when u send a jc;inReq

to it, it will accept u. Thus, the worst time for u is k, rounds waiting, where k is the number

of u's potential parents (IP[;!) and, is the minimum number of potential children "Iv E P[;.

Therefore, the worst case of delay in the whole network is the maximum of k" "Iv E V or

in the other words in the order of O(k,) .

• The worst case for number of message exchanges: Consider the following notations.

lvlv: set of node v's common children,

IPv\: number of potential parents of node v,

nj: number of potential children in levell with exactly one potential parent,

nj+: number of potential children in level l with multiple potential parents.

Based on previous explanations, the worst case of delay for a child u E Cv to join a

parent is Au = Min{c(v)}, Vv E Pu' Also, each child at round r has sent joinReq message

r times. If child u faces Au delay for attaching to a parent, it means that Au - 2 common

children had been attached before u. Moreover, it can be inferred that u sent Au messages,

53

and another child that joined before it sent 1 to Au - 1 messages. This results in

(4.4)

messages sent by children. From a parent's point of view, each Pu E Pu has to send its state

unless U attaches to a parent. This totally causes lPul x Au messages for set Pu.

Note that, r - 1 joins of other common children had occurred before the selection of a

child u in round r. This guarantees that the total number of messages sent by all children
1

in level l to join parents in levell - 1 is always less than nt+ + 2:~~1 Au;.

According to previous discussion, if a parent Vl-l has Cv common children, the maximum

delay caused by its children is ~~-l = :rvlax(A(ui)), where 1 ::; Ui ::; ICvl. Thus, considering

messages sent by their parent in the upper level to them, the number of message exchanges

n 1

never reaches nl-l x ~~-l +nr + 2:i~l AUi • Therefore, the upper-bound for number of message

exchanges in a graph G = (V, E) with L levels is:

L nl
L[nl-l x ~~-1 + ni+ + L Au;] < n"/, (4.5)
1=1 i=l

where n is number of nodes in the network, and 'Y is the maximum degree of nodes or in

other words maximum number of potential children for nodes.

4.2 Analytical Evaluation of HBDR Algorithm

For HDBR algorithm, the game starts from leaves towards the root. In an arbitrary tree

topology, all leaves are not located in the same level. This difference leads to nodes, located

at the same . level, begin the game in various times. If a parent has some children with

different starting times of the game, it has to wait unless it receives data from all its children;

54

meanwhile, it should inform its other children of this waiting if they start the game sooner.

\Vhen a waiting parent receives all the required data, it informs other children that are

in waiting status. In general, when a node goes into waiting mode, it replies with a wait

message to each received message. Also, during this waiting it saves the information in the

received massages for the later usage, i.e. after coming out from waiting status.

Because of different starting and terminating times for different nodes at the same level,

computing the exact termination time for each node in every run is not possible and it

depends on when its beneath nodes terminate the game. Thus, determining an upper-bound

for the game's termination time is important to make sure that the game always finishes

before the determined time. This time is equivalent to time complexity of the proposed

algorithm.

A fraction is shown by F and defined as a bipartite graph (VI U \12, EF) such that Vi is

a set of nodes located at level l, V2 is the set of nodes located at level l - 1, VI U V2' ~ V,

EF ~ E and each VI E Vi u \12 is reachable via a path form any V2 E VI U \12. A path

from node VI to node V2 consists of a subsequence of edges, with intermediate nodes and two

endpoints VI and V2 in VI. and \12, respectively. Since edges are considered as directional, if

VI is also reachable from V2, V2 also is reachable from VI'

Based on the above definition, for two different fractions FI = (ViI U V21 , EFl) and

F2 = (V12 U V22 , EF2) , none of VI E Vu U V21 is reachable from any V2 E VI2 U V22 , and

vice versa. Otherwise, if a node can be found in one of them so that it can be reached

from another node in the other fraction, all nodes can be reached from every node in both

fractions. Because those two nodes are reachable from every node in their corresponding

fraction. Thus, in fact those fractions are not separate and form a larger fraction together.

Two separate fractions at the same level do not have any dependency to each other, as

no path can be found connecting a node from one of fractions to another node in the other

fraction. This independency guarantees that playing game in any of them does not affect on

the game played in the other fraction. Therefore, the game at one level can be considered

55

as some independent games per fraction.

On the other hand, termination time in one level depends on the termination time in

its beneath layers. Thus, the latest game termination time of fractions in one level can be

considered as the game termination time for that level, since game is played concurrently

and independently in each fraction.

For determining maximum delay in a fraction, let u E V1 has PE potential parents. The

worst case of delay for this child is when it sends joinReq to its potential parents based on

the received bids from them, and bid values induct a permutation of candidate parents for

sending jonReq from u. In this case if v E 112 rejects u' join request because it has another

requesting child that has a worse condition than u, it will receive another joinReq from u,

I PE I rounds later.

According to HBDR algorithm, if a parent has some joinReqs in a round, it accepts at

least one of them. On the other hand, if a child has some accept.M 89 it surely accepts one of

them. This means, if a parent v rejects u in a round, it accepts another child, say 'UJ. Child

w will attach to v or rejects its acceptM 89 and attach to another parent. In either case it

comes out from v's common children set. This procedure continues when v accepts all of its

children except u, meaning that P~ = u. In this case, if u sends a joinReq message to v for

sure it will be accepted, and it will either join v or other parents, and the game terminates

for it.

For child u, the maximum delay is equal to time needed for one of its potential parents

to have only u as its potential children. The worst case of this condition occurs when bids

from u's parents induce an order on selected parents for sending joinReq messages from u,

in which u sends joinReq to one parent in each round, and it rejects u. Also, whenever

number of potential children of one parent reaches to one, it means u is its only potential

child. In this case, if the parent's bid is worse than others, u does not select it. In the worst

case, this procedure continues until all of u's parents have only u as their potential child.

Then, when u sends a joinReq to any of them it will be accepted and the game terminates

56

for it.

Thus, the maximum delay for child u is

IPZ'I

Du = 1 + I)IP~I-l) where Vi E P~ (4.6)
i=1

'When the game ends for all children of a parent it can start the game in one layer lower

as a child. Therefore, for a parent V E V2 the maximum delay to finish the game in parent

role is

(4.7)

Also, termination time of game in level I, independent of other level, is

Dl = Max{DuJ 'r:/Ui located in levell (4.8)

Since starting time of the game in level 1 depends on termination time of the game in

level I + 1. The total time needed for termination of the game is

(4.9)

where L is the number of levels in graph G. Thus, the order of algorithm is O(LDI)'

In the following it is shown that the solution reached by the proposed algorithm is a

Xash equilibrium. In HBDR algorithm child nodes selfishly choose the best bids sent from

parents. Thus no child will change its strategy, since it has already received the maximum

possible benefit. Also, parents in cooperative way help other parents to reduce the load on

them and increase their lifetimes. Based on their utility function, choosing a parent to help

another parent implies that the selccted parcnt has offered the worst bid among its connected

parent which indicates the worst condition for it in terms of load, remaining energy, delay

and offered bandwidth. If helping parent chooses another parent to help, its benefit and also

the benefit of children for the not selected parent ,,,ill be decreased. Thus, the benefit of any

57

other choice is lower than the current choice, since it will not help to prolong the lifetime of

the node which is in the bad condition and the consequent network lifetime is shorter than

the network lifetime resulting from the current strategy.

4.3 Simulation Results for UDBC Algorithm

In this section, simulation results for UDBC algorithm are presented. A network with size

500m x 500m is used to compare the performance of UDBC method to other related work

in [21,22] and [40]. The brief description of both methods was provided in chapter 2. For

the comparison purpose, the proposed method in [40] and [21,22] are referred as centralized

and decentralized methods respectively. The sensor node model is based on the 1\fica2Dot

which is commercially produced and its characteristics are available in [55]. Specifically,

node communication ranges are considered according to this device. During simulation

experiments, one node is considered per square meter. Performance of methods are compared

by investigation of load factor at termination time, number of iterations and number of

message and data item exchanges required for algorithm termination, where variable factors

are number of nodes and communication ranges.

Figure 4.1 shows three randomly produced sample networks used in simulations. Each

sample shows different number of nodes and communication ranges. In all experiments,

a node with the least Euclidean distance to the top left corner is considered as the sink

node, and then by issuing a flood from this node, adjacency and levels of other nodes

are determined. At the end of flooding, communication infrastructure, i.e. graph G is

formed, as shown in Figure 4.1 by gray colored edges. Three compared methods run on this

infrastructure. Both variable factors have direct effect on overlaps among communication

range of nodes. The higher overlap among nodes results in more dense network where

existence of alternating paths [40] are more probable. Generally, the difference between

algorithms arise from this point. In the following, different scenarios are dis~ussed to compare

58

the performance of the methods. To obtain more reliable results, each experiment is repeated

20 times and the average of results are reflected in the corresponding figures.

(al ~ 01 Nodes:20. ~cahon Range:200 met.s. ~ (bl r-unb. d Nodes:150, Cornrn.riClll:ion Range:100 m.t_, , Ie) N",** of Nodes:500, Cornm..noation R~:l00 met ••.
-.:;- ... _- ------.~----.-.

Figure 4.1: Three sample networks used in the simulations using UDBC method. Network
area is 500m x 500m. Nodes are shown by black circles. Dashed gray lines show adjacency
of nodes. Black lines show parent-child relationships. (a) Network consisting of 20 nodes
with communication range of 200 meters. The first numb~r on top of each node indicates
its ID, and the second shows its level in the tree. (b) Network consisting of 150 nodes with
communication range of 100 meters. (c) Network consisting of 500 nodes with communication
range 100 meters. Note that in figures (b) and (c), ID and level of nodes are excluded to
avoid indistinctive figures.

4.3.1 Load Factor Comparison

In the first scenario, the effect of number of nodes on load factor is investigated. Since

centralized method always produces the optimum tree, it is considered as the benchmark

method for comparison between two other methods. First, the effect of number of nodes

on load factor (O"T) is investigated and Figure 4.2 shows the results. In this scenario node

communication ranges are considered fixed at 100 meters, and number of nodes is increased

from 50 to 500 nodes in steps of 50. Then, the effect of communication range on load factor

is evaluated and Figure 4.3 shows the results. For this scenario, number of nodes is fixed at

300 nodes, and the communication ranges are increased from 25 to 300 meters in steps of

25.

59

1,15

-9- UDBC Method
-a-Decentralized Method
-0-Centralized Method

O.~LO----'10LO--l....15-0--2...l0-0--2.J.50---3.J..OO---3.L50---40"'O---45 ... 0--....J
500

Number of Nodes

Figure 4.2: Number of Nodes vs. Load Factor.
1.4

1,2

i -¢- UDBC Method
0,2 -a- Decentralized Method

-<>- Centralized Method
OLI ____ ~ ______ '~ ____ ~I ____ ~!c=====II====~
o 50 100 150 200 250

Communication Range (m)

Figure 4.3: Communication Range vs. Load Factor.

60

-VVhen the number of nodes or communication ranges increases, their communication

range overlap also increases. The increase in communication range overlap causes more

adjacent nodes resulting in more dense network. In a dense network the probability of

formation of alternating path increases. If these kinds of paths are not considered during

the tree construction process, even nodes are locally balanced but nodes at both ends of

such paths are not. Thus, more number of alternating paths means more unbalanced tree.

The difference between UD I3e method and decentralized method arises from this point. In

the decentralized method, a number of children can join a parent in each round of parent

selection regardless of the number of children for its connected parents. This can generate

alternating paths. However, in UDBC method in each round, a parent can accept only

one child more than the minimum number of children among its connected parents. This

limitation prevents the mentioned problem in most cases. Thus, as shown in both Figures

4.2 and 4.3, the load factor of UDBC method is much closer to load factor of the centralized

method, implying that trees produced by it are more balanced, comparing to decentralized

method.

The obtained figures can be interpreted as follows. For the scenario with variable number

of nodes, when number of nodes is 50 the network is sparse. Thus, the amount of node

adjacencies and consequently the probability of alternating path generation are low. In this

case, load factors of the produced tree by three methods are almost the same. However,

when the number of nodes is 100, because of the increase in adjacencies, load factors of

three methods also increase. Further increment in number of nodes leads to a general

decrement in load factors, since the growth of number of nodes (n) in the denominator is

more than the corresponding numerator in the load factor formula. However, for the variable

communication range scenario, the number of nodes is constant. Thus, the denominator of

load factor formula is a constant value. In this case, when the communication increases,

increment in amount of adjacencies causes an overall growth of formula's numerator which

leads to increment of load factor for the compared methods. Note that in the simulations a

61

portion of load factor is imposed by the network topology and the location and adjacency

of nodes, since networks are produced by randomly deployed nodes. Because of this reason

the base for comparison is the centralized approach.

4.3.2 Number of Iterations Comparison

Next, the impact of number of nodes on the number of iterations required for the termination

of algorithms is investigated. Note that, in the following explanation, the term iteration is

used equivalently to the term round. Because in the centralized approach a general view

of the network is assumed, and having this view leads to generation of a balanced tree in

one round, the centralized approach is excluded for this section. For two other methods,

i.e. UDBC and decentralized approach, the number of iterations are important as it causes

not only delay in the construction of tree, but also communication overhead. The reason for

communication overhead is that each round of parent selection includes a number of message

exchanges between potential parents and children. This message exchange results in node

energy drain which eventually leads to network connectivity loss. Based on the proposed

algorithm in decentralized method, if one parent has at least one departure or attachment

of children in one iteration, it will not send any message in the next round. However, our

simulation results show that when the number of nodes exceeds 50 nodes, some message

are exchanged in each round. Again, simulations are done under two different scenarios:

variable number of nodes (Figure 4.4) and variable communication ranges (Figure 4.5). The

effect of number of nodes on number of iterations is shown in Figure 4.4. In this scenario,

node communication ranges are fixed to be 100 meters, and the number of nodes is increased

from 50 to 300 nodes in steps of 50. The impact of variation in communication range on the

number of iterations is investigated using Figure 4.5. In this scenario, number of nodes is

fixed to be 300, and their communication ranges increase from 25 to 300 meters in steps of

25.

As discussed before, increase in either number of nodes or node communication ranges

62

-0- UDBC Method
-0- Decentralized Method

100 150 200 250 300 350 400 450
Number of Nodes

Figure 4.4: Number of Nodes vs. Number of Iterations.
300

'" c:
·g200
~
2
15 150

~
§ 100
Z

50

~ UDBC Method
-0- Decentralized Method

50 100 150 200 250
Communication Range (m)

500

300

Figure 4.5: Communication Range vs. Number of Iterations.

63

lead to increase in the amount of their communication ranges overlaps. Referring to Figures

4.4 and 4.5, the number of iterations for UDBC method, especially when the amount of

overlaps is high, is much better than the decentralized approach. The reason can be explained

by considering the theoretical bounds for number of iterations in both methods. As proved

in Section 4.1.1, the theoretical upper bound for number of iterations in UDBC is O(k,),

where k is the number of potential parents for children, while for utility-based approach, as

mentioned in [21], is 0(11[,2), where AI is the number of parents in a game. Higher overlaps

cause higher amount of adjacency among nodes, which itself results in increase in the number

of parents and the maximum degree (number of potential children) among nodes. Increase

in the number of parents is not effective on UDBC method. Also, while the order of, is 1

for UDBC, its order for decentralized approach is 2, making more rapid increase in number

of iterations for decentralized method. Tables 4.1 and 4.2 show the values of experimental

and theoretical upper bounds for number of iterations in UDBC and decentralized methods.

The theoretical bounds for each experiment are determined using the mentioned orders of

algorithms and appropriate values of " k and M from networks in simulations. Table

4.1 includes values when the number of nodes is variable and the communication range is

fixed and corresponds to scenario of Figure 4.4. On the other hand, Table 4.2 indicates

values when node communication ranges are different and number of noues is fixcu, which

is corresponding to scenario of Figure 4.5.

Table 4.1: Number of Iterations with Variable Number of Nodes.
Number of UDBC UDBC.

Nodes (Experimental) (Theoretical) •

50 4.38 5.37
100 5.85 10.43 15.15 2582.01
150 7.97 14.93 23.44 8036.35
200 7.85 19.65 31.20 18701.25
250 8.45 22.87 35.95 32668.10
300 8.85 26.75 44.35 52375.21
350 9.45 30.40 50.11 78470.15
400 9.55 35.35 57.55 122966.68
450 10.45 37.85 65.55 162384.63
500 10.63 43.85 72.05 250935.56

As inferred from both tables, the theoretical bound of decentralized method increases

64

Table 4.2: Number of Iterations with Variable Communication Range.
Number of UDBC UDBC Decentralized Decentralized

Nodes (Experimental) (Theoretical) (Experimental) (Theoretical)

25 2.45 2.95 1.39 14.77
50 6.18 9.45 14.53 3279.80
75 7.73 17.81 28.25 18465.64

100 9.15 27.55 44.54 55940.93
125 10.34 39.16 63.45 139790.65
150 12.15 53.85 89.15 300121.33
175 13.23 68.75 114.55 618844.54
200 16.05 87.23 147.05 988813.48
225 16.31 110.55 180.48 1774429.00
250 18.85 131.65 214.75 3049310.25
275 23.43 159.74 260.81 4903674.27
300 29.56 176.65 272.85 5841982.65

rapidly by increase in amount of node overlaps. This upper bound also caused higher exper-

imental bound compared to UDBC method.

4.3.3 N umber of Message Exchanges Comparison

Comparing number of iterations allows to investigate the amount of time overhead (or de

lay) imposed by methods. In the previous scenario we claimed that increase in number of

iterations causes increase in communication overhead except the time overhead. This com-

munication overhead is a result of message exchanges occurred in each iteration of parent

selection. Also, it was discussed for both UDBC and decentralized methods, that each iter-

ation is followed by a number of message exchanges. Thus, in this section, the number of

messages required for tree construction in both methods are compared. This way, a more

precise factor can be provided for communication overhead comparison.

The difference of messages in compared methods are StateM 8g and J oinReq messages.

The counterpart of State.M 8g in UDBC method is Bid message in decentralized method. [21]

which is the guaranteed bandwidth from a parent for its children. Each Bid message contains

one unit of data, while each JoinReq message contains two units of data. Moreover, JoinReq

message in UDBC method has a corresponding message in decentralized method which is for

showing the will of a child to join some parents. While will messages are just for informing

of parents, each joinReq message carries two units of data to help more accurate decisions.

65

Thus, it can be argued that UDBC method reaches more balanced tree at the cost of adding

more overhead to messages. In fact, this experiment examines the additional data units in

messages. In the experiments, each message which does not carry any number is considered

as one unit of data, and messages carrying some data units has the cost equal to the number

of data units they hold.

For the decentralized method, number of sent data units and sent messages are the

same, since each has the cost of one data unit. For UDBC method StateAJ 8g and JoinReq

messages have the extra cost of 3 data units. Thus the number of sent messages and sent

data units are not equaL Therefore, both sent message and sent data units are provided in

the simulation results for better comparison. Figures 4.6 and 4.7 show the simulation results

under two different scenarios. The scenario of Figure 4.6 investigates the impact of variation

in number of nodes on the number message exchanges, while Figure 4.7 indicates the effect

of variation in transmission ranges.

As inferred from figures, number of sent message required for construction of load bal

anced tree in UDBC method is much less than the decentralized approach. The main reason

for this difference is the difference in the number of iterations investigated before. More

over, by comparing the number of sent data items, although the decentralized approach has

a better performance first, when the communication overlaps increase the performance of

UDBC becomes better. Also, additional information added by UDBC to messages is not too

much and still the information can be sent through one longer message, instead of multiple

messages. According to [9,10,14]' transmission of one longer message for an amount of data

is less energy consuming than sending some shorter messages for them. Thus, it can still

be claimed that whenever the number of sent data units by two methods are close to each

other, UDBC has a better performance, since it sends them via longer messages, but in a

less number.

66

4

.,3.5 x 10
E r-----------~~--------_,

Q) -0- USDC Method, Sent Messages
~ 3 - 0 - USDC Method, Sent Data Items
1ii -<l- Decentralized Method, Sent Messages
~2.5 _1>_ Decentralized Method, Sent Data Items
Q)

~ 2
III
Q)

:2 1.5
C
Q)

III 1
'0

1l 0.5

~~~~~~=:~~~~---~~ 
450 o 100 150 200 250 300 350 400 500 

Number of Nodes 

Figure 4.6: Number of Nodes vs. Number of Messages (Data items). 
4 

.,10 x 10 
E ,---------------------------, 
~ -0- USDC Method, Sent Messages 

~ 8 
e. 
1/1 

~ 6 
~ 
III 
Q) 

:2 4 
C 

- 0 - USDC Method, Sent Data Items 
-<l- Decentralized Method, Sent Messages 
-1>- Decentralized Method, Sent Data Items 

Q) -~ III .()o __ -<>" -
'0 2 .o---.()o--

1l L __ -o~~~~~~~~~::~O~-=-=-~O~-=-=-=:==~========::==~ __ -0---

J 0
0 50 100 150 200 250 300 

Communication Range (m) 

Figure 4.7: Communication Range vs. Number of Messages (Data Items). 

67 



4.4 Simulation Results for HBDR Algorithm 

In this section the performance of HBDR is investigated and discussed. A network with 

size 500 m x 500 m is considered. Again, the node model is Mica2Dot. Comparing to 

UDBC algorithm, more parameters are involved in the HBDR algorithm. Changes in each of 

these parameters can effect on the algorithm performance. Thus, in the simulation different 

scenarios are considered through which one or some parameters are variable and the rest 

are fixed. Then, the impact of changes in the variable parameters on the performance of 

algorithms are investigated. 

The performance of the algorithm is compared to the proposed algorithm in the [21.] 

which explained in chapter 2 and we refer to it as cumulative algorithm, since it considers 

cumulative cost based the residual energy of nodes on the path from each node to the base 

station. 

'With the similar method for simulation of UDBC algorithm, graph G is generated first, 

and on top of this graph the compared algorithms are run. To gain more precise results, 

each experiment is run 20 times and the average of the results are reflected in the diagram 

of scenarios. 

Table 4.3 includes default values of various parameters in simulations. Scenario-specific 

changes in this default values is mentioned in the corresponding section of each scenario. 

The following are explanations of different scenarios. 

Table 4.3: Default values of parameters in the simulation of HBDR algorithm 
Parameter Value 

Network Dimension 500(m)x500(m) 
Number of Nodes 150 

Node Communication Range 150(m) 
Aggregation Function (AI ,A2) (1,0) 

(Time Coefficient, Frequency Coefficient) (1,1) 

Eelec 50 nj 

EAmp 100 pj 
Initial Energy 10 joule 
Data Amount 128 bits 

Data Rate 3 kbps 
Bandwidth 30 KBuad (BPSK modulation is used) 

68 



4.4.1 Network Lifetime 

Xetwork lifetime is defined as the time from the start of running the network until the first 

node failure. Network lifetime is an important factor, since as mentioned earlier, sensor 

networks have ad-hoc topology and consequently network connectivity depends on aliveness 

and data forwarding of nodes. In this scenario the effect of changes in number of nodes 

and node communication ranges on network lifetime is investigated. Generally, increase in 

number of nodes or node communication range leads to higher adjacency among them which 

gives more chance of load balancing. In one scenario, number of nodes increase from 50 

nodes to 300 nodes in steps of 50 and the communication ranges is fixed on 150 meters. In 

the other, communication range increases from 50 Tn to 350 Tn in the steps of 50 Tn and the 

number of nodes is fixed on 150 nodes. Figures 4.8 and 4.9 depict the results of these two 

scenarios respectively. 

240°r-------.-------~------~======~======,1 
-A- HBDR Method 
___ Cumulative Method 

400~------~------~------~------~----~ 
50 100 150 200 

Number of Nodes 
250 300 

Figure 4.8: Number of Nodes vs. Network Lifetime. 

As shown in the figures, HBDR method has a better performance than cumulative method 

in both cases. The reason is that cumulative method run proactive distance vector algorithm 

updating and regenerating routing tree periodically. Since it is implemented in a distributed 

way, and the flooding mechanism is used and during this flooding nodes choose a parent 

with minimum cost to join. Thus, it is probable that a bunch of potential children joins a 
69 



1800 
i -.....- HBDR Method 

1600 
I -.- Cumulative Melhod 

1400 

Sl .:: 
~ 1200 
....:l 

-t: 
0 

~ 
r. 

600 

400 
50 100 150 200 250 300 350 

Communication Range (m) 

Figure 4.9: Node Communication Range vs. Network Lifetime. 

specific potential parent because it has the best cost among others. Although the algorithms 

is able to update, the routing tree joining of number of nodes to one parent because of its 

appropriate offer results in faster energy drain of that node. This fast energy drain forces a 

sooner regenerating process of routing tree. However, for HBDR the balanced assignment of 

potential children based on their load and also the cost of the parent is considered. 

For the scenario in which communication range is considered variable when the com-

munication range is short because of less amount of adjacency among nodes, the strategy 

space of nodes for parent selection is limited. Thus, two methods have similar performance. 

\Vhile the communication range increases, the chance of selection among different parents 

also increases. This increases the chance of more load balancing specifical for HDBR algo-

rithm, resulting in longer network lifetime. vVhen the communication range becomes larger 

than 200 meters, since the network dimension is 500 m x 500 m, more nodes can directly 

connect to base station, and this decreases the impact of load balancing, resulting in the 

same performance for both methods. 

70 



4.4.2 Average Node Lifetime 

In this scenario, the effect of variation of number of nodes and node communication range 

on average node life time is investigated. Average node lifetime is determined by summation 

of lifetime of all nodes in the network, except the base station, divided by the their· total 

number. Again, number of nodes increases from 50 nodes to 300 nodes in steps of 50 and the 

communication ranges is fixed on 150 meters. In the other, communication range increases 

from 50 m to 350 m in the steps of 50 m and the number of nodes is fixed on 150 nodes. 

Figures 4.10 and 4.11 show the simulation results for two cases. 

2_3 
X 10' 

--...- HBDR Method 
-...- Cumulative Method 

'" ..<:: 

" 2_2 a 
0. 

~ 
Q) 

~ 2_15 

~ ..... 
'" 2.1 "" 0 
z 

W 
> 

2.05 

-< 
2 

1_95 
50 100 150 200 250 300 

Number of Nodes 

Figure 4.10: Number of Nodes vs. Average Node Lifetime. 

As it can be inferred from the figures the average of node lifetimes for HBDR method is 

less than the cumulative method. The reason is, because in cumulative method the number 

of nodes which are under-used and have a longer lifetime is more than the HBDR method, 

and this higher number causes a better total average for nodes' life time. On the other hand, 

some nodes are over-used, which causes faster network disconnection and shorter network 

lifetime. In the next scenario, the variance of node life time is investigated to check the 

diversity of node lifetime from the average values. 

71 



-4- HBDR Method 
-.-Cumulative Method 

~~O----~1~070----~1~50~--~2~OO~--~25~O-----3~O-O----~350 
Communication Rani(€' (Ill) 

Figure 4.11: Node Communication Range vs. Average Node Lifetime. 

4.4.3 Standard Deviation of Node Lifetime 

As mentioned before, standard deviation from the average node lifetime is an indication 

of load balance efficiency of the methods. The used formula for computation of standard 

deviation is shown in (4.10). 

(4.10) 

where n is the number of nodes, li is the node i's lifetime, and I is the average node life 

time, mentioned in section 4.4.2. Higher variation to the average implies shorter lifetime for 

some nodes leading to shorter network lifetime. Figures 4.12 and 4.13 shows the standard 

deviation of network lifetimes, when number of nodes and node communication range are 

variable respectively. All the parameters for simulation are the same as the previous scenario. 

As shown in the figures, HBDR method has less standard deviation compared to cumu

lative method. This means that nodes that run HDBR algorithm have closer lifetime to each 

other, resulting from more balanced assignment of loads to nodes. For the case ip which 

communication range is variable, when communication range relative to network dimension 

increases, more nodes are able to attach base station directly. As a result, both methods 

72 



OJ 

.3 
l! 
:.:l 

OJ 

"'" 0 
7-
':s 
'" .;< 

.1$ 

Jl 
11 
"'" '" !'l 
en 

1.2 

1.21 

1.2 

1.19 

1.1Sl 
1.) 

50 100 150 200 
Number of Nodes 

-4- HBDR Method 
___ Cumulative Method 

250 

Figure 4.12: Number of Nodes vs. Standard Deviation Node Lifetime. 

100 150 200 

-4- HBDR Method 
___ Cumulative Method 

250 300 
Communication Range (01) 

350 

Figure 4.13: Node Communication Range vs. Standard Deviation Node Lifetime. 

73 



have close node lifetime leading to similar standard deviation of node lifetime. 

4.4.4 Cumulative Distribution Function of Node Lifetime 

Cumulative distribution function (CDF) describes the probability that a real-valued random 

variable X with a given probability distribution will be found at a value less than x. In our 

scenario random variable is node lifetime, and the Figure shows the probability of finding the 

node lifetime less than a specific number. Thus, a higher value of probability indicates more 

number of nodes have lifetime less than that value, implying less probability value is more 

desirable. For this simulation 500 nodes with communication range of 150 m are considered. 

The rest of parameters are as the same as default parameters. 

lrr===~=====c~--.----'r----'----~--~ 
I - Cumulative Method! 

0.9 rl-- HBOR Method 

0.8 

0.7 

0.6 

0.3 

0.2 

0.1 

o 0.5 1.5 2 
Node Lifetime 

2.5 3 3.5 
x 10" 

Figure 4.14: Cumulative Distribution Function of Node Lifetime. 

As it can be seen in the figure, the probability of having nodes with longer lifetime than 

3000 epoch for cumulative method is more than HBDR method. However, by checking 

two CDF graphs, the probability of finding nodes with lifetime less than 3000 epoch for 

cumulative algorithm is more than HBDR method. This implies that the probability of 

loosing the connectivity using cumulative method is higher than HBDR method. The fact 

that can negate the benefit of having longer lifetime for other nodes. 

74 



4.4.5 Number of Message Exchanges 

As the communication consumes a considerable portion of nodes' energy, reducing the 

amount of communications between nodes is important. Each algorithm has communication 

overhead to run. This communication overhead is a result of transmission and receiving 

messages during the execution of the algorithms. Thus, less message exchange required by 

algorithms for construction of routing tree is more desirable. In this scenario, the number of 

exchange is compared between HDBR and cumulative algorithm. Variable parameters are 

number of nodes which is increased from 50 to 300 in steps of 50, and node communication 

range which is increased from 50 m to 350 m in steps of 50 m. For the reflection of re

sults, total number of messages which exchanged in whole network among nodes using both 

algorithms is investigated and the results are shown in Figures 4.15 and 4.16. 

18000 

16000 

14000 

§l, 12000 

~ 10000 :;; 
~ 

0 .... 8000 v 

~ 
;:j 6000 Z 

4000 

2000 

50 

-...... HBDR Method 
_ Cumulative Method 

100 ~50 200 
Number of Nodes 

250 300 

Figure 4.15: Number of Nodes vs. Number of Message Exchange. 

As shown in the figure, HD I3R suffers from more total number of message exchange for 

tree construction. Because in HDBR different types messages are used for construction of 

more balanced tree, such as BidPair, joinReq, Accept, and Reject messages. On the other 

hand, cumulative method uses the flooding mechanism which only requires messages that 

have the same usages as BidPair and Accept messages in HDBR. Therefore, total number of 

messages which are needed to be exchanged among nodes for tree construction in cumulative 

75 



100 150 200 250 300 350 
Communication Range (m) 

Figure 4.16: Node Communication Range vs. Number of :Message Exchange. 

method is less than the HBDR method. 

4.4.6 Updating Factor 

Although the total number of message exchanges is important, it is not a precise factor 

for communication overhead of algorithms. For more precise investigation, the frequency 

of exchanges should also be investigated. The reason is that it is probable a large number 

of message exchanges occurs but not frequently, and on the other hand less number of 

message exchanges occurs more frequently. The latter case may impose larger communication 

overhead, specifically when the difference of message exchanges is not high. The mentioned 

point is a good reason to define updating factor as below: 

total number of message exchanges 
updating factor = . . 

network lIfetime 
(4.11) 

Network lifetime is a good indication of how fast it is needed that the tree is regenerated. 

Thus, updating factor is an indication of what amount of message exchanges is required 

in each epoch for keeping the tree up-to-date and network connected. The less the updat

ing factor is, the less communication overhead per epoch is imposed. Again, simulation 

76 



results are reflected under the condition of different number of nodes, and different node 

communication range respectively. 

18 
-.A.- HBDR Method 

16 ___ Cumulative Method 

14 

£ 12 

~ 10 
t..O 

11 
'" 8 -0 
"'-
~ 

6 

4 

2 

100 150 200 
Number of Nodes 

250 

Figure 4.17: Number of Nodes vs. Updating Factor. 

20 
5 

~ 
t..O 15 .§ 
'" -0 
<0.. 

~ 10 

5 

-.A.- HBDR Method 
___ Cumulative Method 

300 

~~0------1~0~0----~'5~0~----2~0~0-----2~5~0----~3~00----~350 
Communication Range (m) 

Figure 4.18: Node Communication Range vs. Updating Factor. 

As it can be seen in figures, HDBR method mostly outperforms cumulative method. This 

is because, although cumulative method imposes less amount of message exchanges, it is not 

a more balanced algorithm than HDBR algorithm. Thus, over-used nodes have faster energy 

depletion and updating of the tree have to occur more often than HBDR method, resulting 

77 



in a higher updating factor than HBDR method. However, as indicated in Figure, when 

the communication range is variable and it becomes close to the network dimension, more 

nodes can directly connect to base station. This direct connection causes less load on nodes in 

both approaches. Thus, both approaches updates trees less frequently. However, because the 

number of message exchanges needed in each construction of tree using cumulative method 

is less than the number of message exchanges required in each construction of tree using 

HBDR method, it outperforms HBDR method in this case. 

4.4.7 Time and Frequency Factors 

HDBR algorithm is capable to provide support based on application needs in terms of delay 

and reliability. As mentioned before, for some application which have realtime needs the de

lay in data delivery is critical, while for some others which can tolerate more delay, reliability 

of data delivery is more important. To support both cases, time and frequency coefficients 

are considered in the children utility function formula. By adjusting these coefficients, bids 

can be weighted based on time or bandwidth supplies. time factor and frequency factor are 

defined based on (4.12) and (4.13) respectively. 

R(v) 
Time Factor = -----~.:,-----

Al(L(v) + :Ei~o' L(Ui)) + A2 
( 4.12) 

(4.13) 

Time' factor is an indication of the time that node should wait for forwarding its data by 

its parent toward the base station. Frequency factor indicates how much bandwidth needs 

to be assigned to the node from its parent to send transmit its data to that parent. In this 

scenario, the effect of changes in the time and frequency coefficients on the mentioned factors 

are investigated. In both cases, time coefficient is increased from 0 to 1 in steps of 0.1, and 

frequency factor is decreased from 1 to 0 in steps of 0.1. Node data transmission rate is 

78 



considered 10, 15, 20, 25, 30 KBauad randomly, with BPSK modulation. Bandwidths which 

parents can assigns to their children for data transmission are randomly selected from {I, 2 

and 3} Kbps. The rest of parameters are set as default values. Figures 4.19 and 4.20 shows 

the results. 

~ 

.3 
~ 
S< 
.5 
E-< 

4.4 

4.35 

4.3 

4.25 

4.2 

4.15 

4.1 

3'(~,1) (.1,.9) (.2,.8) (.3,.7) (.4,.6) (.5,.5) (.6,.4) (.7,.3) (.8,.2) (.9,.1) (1,0) 

(FT,FF) 

Figure 4.19: Time and Frequency coefficient vs. Time Factor. 

63.---~--~--.----r---.---.---'----.---.---. 

5(~,1) (.1 .. 9) (.2,.8) (.3,.7) (.4,.6) (.5,.5) (.6 • .4) (.7,.3) (.8,.2) (.9,.1) (1.0) 
(FT,FF) 

Figure 4.20: Time and Frequency coefficient vs. Frequency Factor. 

As shown in the figures, when time coefficient increases the average of time factor for 

nodes in the network increase. On the other hand, when the frequency coefficient increases 

the effect of frequency factor increases and the effect of time factor decreases. 

79 



4.4.8 Different Aggregation Functions 

In the last scenario, network lifetime under the condition of running various aggregation 

functions is examined. Different functions can be modeled by 3.9 and two coefficients Al and 

A2' Increasing in the value of each of this coefficients implies higher data overhead imposed 

by the aggregation function. In this scenario A2 has values 0, 0.5, 1, 2, 3 under the condition 

of Al having the values of 0.5, 1 and 2. The values of other parameters are kept as default. 

Figure 4.21 indicates the results. 

1400 0 

1200 o~ 
10000 

] 
800 

3 600 
~ 

j 400 

0 

0 

0 

200 '0 
.... 

o 0.5 1.5 
Lambda2 

2 

I-lambdal = .5 r 
-4- lambdal = 1 
___ lambdal = 2 

2.5 3 

Figure 4.21: Network Lifetime vs. Different Aggregation Functions. 

As it is inferred from the figure, where the value of A coefficient increases, network life 

decrease. Because increases of A causes higher amount of traffic going out from each node 

which leads to higher communication overhead and energy consumption. Coefficient Al has 

more effect, since it has aggregating effect of the total data gathered from all nodes beneath 

a specific node. Hence, the smaller coefficient value means the better compression of data 

resulting much less traversing data in the network. 

80 



4.5 Summary 

Based on the evaluations provided in this section, it is inferred that UDBC method has 

outperforms the related work. It improves the time overhead which is incurred by the algo

rithm and the amount messages needed to be exchanged among nodes for the construction 

of tree. UDBC is simple algorithm which is implement able in a distributed way. Compared 

to decentralized method, UDBC is able to generate more balanced routing tree, in terms of 

even assigning of children to parents. This more accurate result results in longer network 

connectivity and lifetime. 

Comparison of HBDR to cumulative methods leads to a longer network lifetime. This 

lifetime is the result of generating more load balanced tree compared to cumulative method. 

This balancing results in less frequent update and re-construction of tree. HBDR needs 

more time for construction of tree, and impose more message exchange in each construction. 

However, since updates occurs less frequently when using the HBDR algorithm, the overall 

number of messages per epoch required to keep the tree up-to-date is less than the cumulative 

method. Also, defining of A1 and A2 factor was shown that can properly model different 

aggregation functions, and the amount of produced data by using them. Time and frequency 

coefficients, as simulation results shows, can be easily adj usted to meet the needs of different 

applications regarding to sensitivity to the delay or quality of data delivery. 

81 



Chapter 5 

Conclusion a11d Future Research 

Directions 

5.1 Summary 

In this work, two algorithms based on game theoretic approach for load balanced data routing 

in wirdess sensor networks are proposed and analyzed. Load is defined as the amount of 

energy required to receive, process and transmit information by nodes. Load balancing is 

critical for sensor networks as the only energy resource for sensor nodes is their limited 

battery supplies resulting in computation and communication limitations. The proposed 

algorithms sp(~cifically aim to solv(~ the problem of ("onstructing a load balanced tree for 

data routing. 

The game theoretic approach implies designing of games in that, nodes as players have 

two roles as child and parellt. In a child role, nodes arc selfish players trying to gain more 

possible available bandwidth, while in parent role they act as cooperative nodes trying to 

decrease the load on their connected parents which are tvvo-hop away nodes in the same 

level. Each parent is connected to its connected parents via nodes in one lower leVE~1. 

The first approach is a Utility-driven Distributed method for Balanced data Communi-

82 



cation in SC'Dsor nC'tworks, caUrd UOBC. It is sp(X'ifically dcsignrd for homogenous environ

lll<'nts ill t<'l'IllS of ollt-going traffic amount from llo(ks. The proposed algorithm considers 

t be liwit ations of sensor netwurks ami offers a distributed method \vhich requires less com

munication and still has a simple implementation and computation cost. UDBC method can 

produce an optimally load balanced tree, where in-network perfect aggregation is applied. 

Analytical evaluations and simulation results show better performance of the algorithm in 

terms of producing more balanced trees and, time and communication overheads compared 

to other related work. 

In the above work nodes are considered homogenous which produce similar amount of 

dat.a. However, considering load heterogeneity of nodes opens a challenging area. Heteroge

Ileous nodes in terms of their sending data is a solution for applications for which in-network 

aggradation is not possible. As this case is more general than the homogenous case, solv

ing this problem will lead to a solution for all kinds of queries. For this purpose, another 

approach is proposed for Heterogenous Balanced Data Routing in wireless sensor networks, 

called HBOR. It not only considers different amount of data from each node, but also con

siders bandwidth and delay as the criteria to achieve a data routing scheme with better 

quality. For this purpose, besides the remaining energy of nodes, their bandwidth and data 

transmission rate are also imported as metrics in the nodes utility function. HOBR models 

different kind of aggregation and can adapt itself based on the application needs . 

Although HDBR algorithm can support all kind of queries and homogenous and heteroge

nous environments, it has more complicated implementation and requires more computation 

and communicating resources rather than UDBC algorithm. As in most of applications, 

ba..<;ed on user queries use of only in-network perfect aggregation is sufficient, developing a 

simple, fast and more accurate algorithm to support homogenous environment is beneficial. 

83 



5.2 Future Research Directions 

Considering a few number of mobile nodes in the network will add some challenging dynamics 

to the problem, where some nodes move from one communication area to another. This will 

cause different load for both nodes which are located in the communication range of the 

mobile node and mobile node itself, when it goes through communication range of diffcrf'nt 

nodes. 

Although the proposed algorithms are discussed for construction of routing tree, they 

can easily be adapted to support updating a portion of trees, i.e. subtrees during runtime. 

Because in a long duration of query running, it is probable from a certain time, initial 

conditions based on which the construction is conducted change and consequently the current 

tree topology becomes non-optimum. However, reconstruction of the whole tree may not be 

beneficial, and fixing the problem in a subtree of the whole tree solves the problem. 

Also, nodes can have different communication ranges as another heterogeneity criterion. 

This difference may rise from different levels of residual energy, or deploying nodes with 

different cases. In both cases, importing different range of communication in the formulas 

looks practical. In the HDBR algorithm, considering the communication range as a metric in 

the energy consumption formula for data transmission can support this issue, when instead 

of equal values for transmission ranges of nodes, different values for every or some of them. 

For this purpose, a function can be defined which determines the communication range of a 

node, based on its remaining energy or based on a pre-configured mapping function. 

84 



Bibliography 

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, "Instrumenting the world with wire

less sensor networks," in International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP), pp. 2033 2036, 11ay 2001. 

[2J G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai, and 

K. Frampton, "Sensor network-based countersniper system," in the Second International 

Conference on Embedded Networked Sensor Systems (Sensys), (Baltimore, MD), 2004. 

[3] J. Yick, B. Mukherjec, and D. Ghosal, "Analysis of a prediction-based mobility adap

tive tracking algorithm," in the IEEE Second International Conference on Broadband 

Networks (BROADNETS), (Boston), 2005. 

[4] M. Castillo-Effen, D. Quintela, R. Jordan, W. \Vesthoff, and \V. Moreno, "Wireless 

sensor networks for flash-flood alerting," in the Fifth IEEE International Caracas Con

ference on Devices, Circuits, and Systems, (Dominican Republic), 2004. 

[5] T. Gao, D. Greenspan, M. Welsh, R. Juang, and A. AIm, "Vital signs monitoring and 

paticnt tracking over a wireless network," in the 27th IEEE EMBS Annual International 

Conference, 2005. 

[6] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, G. Main

land, t-.1. Welsh, and S. Moulton, "Sensor networks for emergency response: challenges 

and opportunities," Pervasive Computing for First Response (Special Issue), IEEE Per

vasive Computing, October/December 2004. 

85 



[7] G. \Vener-Allen, K. Lorincz, 11. Ruiz, O. Marcillo, J. Johnson, J. Lees, and M.Walsh, 

"Deploying a wireless sensor network on an active volcano," Data-Driven Applications 

in Sensor Networks (Special Issue), Marchi April 2006. 

[8] V. Potdar, A. Sharif, and E. Chang, "Wireless sensor networks: a survey," in WAINA 

'09, (Australia), pp. 636 641, May 2009. 

[9] J. Gehrke and S.l\fadden, "Query processing in sensor networks," Pervasive Computing, 

vol. 3, January IMarch 2004. 

[10] S. Madden, f\L Franklin, J. Hellerstein, and W. Hong, "Tinydb: An acquisitional 

query processing system for sensor networks," ACM Transactions on Database Systems, 

vol. 30, pp. 122-173, March 2005. 

[11] N. Ttigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman, "Multi-queryoptimiza

tion for sensor networks," in the First IEEE International Conference on Distributed 

Computing in Sensor Systems (DCOSS 2005), (Marina del Rey, CA, USA), June 2005. 

[12] W. Yu, T. X. Le, J. Lee, and D. Xuan, "Effective query aggregation for data services in 

sensor networks," Computer Communications, vol. 29, pp. 3733 3744, November 2006. 

[13] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "vVireless sensor networks: 

a survey," Computer Networks, vol. 38, pp. 393 -422, March 2002. 

[14] Y. Yao and J. Gehrke, "Query processing in sensor networks," in the First Biennial Con

ference on Innovative Data Systems Research (CIDR) , (Asilomar, California), January 

2003. 

[15] L. Zhao, G. Liu, J. Chen, and Z. Zhang, "Flooding and directed diffusion routing 

algorithm in wireless sensor networks," in the 5th International Conference on Hybrid 

Intelligent Systems, vol. 2, pp. 235239, August 2009. 

86 



[16] H. Dai and R. Han, "A node-centric load balancing algorithm for wireless sensor net

works," in IEEE Global Telecommunications Conference, vol. 1, pp. 548 552, December 

2003. 

[17] E. Fasolo, M. Rossi, J. "Vidmer, and M. Zorzi, "In-network aggregation techniques 

for wireless sensor networks: a survey," Wireless Communications, vol. 14, pp. 70 87, 

t-.larch 2007. 

[18] J. AI-Karaki and A. Kamal, "Routing techniques in wireless sensor networks: a survey," 

Wireless Communications, vol. 11, pp. 6- 28, 2004. 

[19] F. Bouabdallah, N. Bouabdallah, and R. Boutaba, "On balancing energy consumption 

in wireless sensor networks," IEEE Transactions on Vehicular Technology, vol. 58, 2009. 

[20] S. Madden, M. Franklin, J. Hellerstein, and \V'. Hong, "Tag: a tiny aggregation ser

vice for ad-hoc sensor networks," in 5th symposium on Operating systems design and 

implementation, (Boston, Massachusetts, USA), December 2002. 

[21] N. Sadagopan, M. Singh, and B. Krishnamachari, "Decentralized utility-based design 

of sensor networks," Mobile Networks and Applications, vol. 11, pp. 341 350, 2006. 

[22] N. Sadagopan and B. Krishnamachari, "Decentralized utility-based design of sensor 

networks," in 2nd Workshop on Modeling and Optimization in Mobile Ad Hoc and 

Wireless Networks (WiOpt '04), (University of Cambridge, UK), March 2004. 

[23] B. A. and A. A., "Utility driven balanced communication (udbc) algorithm for data 

routing in wireless sensor networks," in 25th IEEE Biennial Symposium on Communi

cations, (Queen's University, Canada), May 2010. 

[24] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991. 

87 



[25] D. Niyato and E. Hossain, "Radio resource management games in wireless networks: 

an approach to bandwidth allocation and admission control for polling service in ieee 

802.16," Wireless Communications, vol. 14, pp. 27 35, 2007. 

[26] A. E., MacKenzie, and L. A. DaSilva, "Game theory for wireless communications," 

2006. 

[27] I. Uliman, R. C. Pomalaza, I. Oppernann, and J. Lehtomaki, "Radio resource allo

cation in heterogeneous wireless networks using cooperative games," in Nordic Radio 

Symposium 2004/Finnish Wireless Communications Workshop, August 2004. 

[28] D. E. Charilas and A. D. Panagopoulos, "A survey on game theory applications in 

wireless networks," Computer Networks, 2010. 

[29] E. Jorswieck, E. Larsson, M. Luise, and H. Poor, "Game theory in signal processing 

and communications," Signal Processing Magazine, vol. 26. 

[30] R. Rosemark, \V. Lee, and B. Urgaonkar, "Optimizing energy-efficient query processing 

in wireless sensor networks," in International Conference on Mobile Data Management, 

(Mannheim, Germany), May 2007. 

[3:1.] Y. Yao and J. Gehrke, "The cougar approach to in-network query processing in sensor 

nnetworks," SIGMOD Record, vol. 31. 

[32] A. Munteanu, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, "Multiple query routing 

trees in sensor networks," in the lASTED International Conference on Databases and 

Applications (DBA 05), (Innsbruck, Austria), pp. 145 150, February 2005. 

[33] R. Muller and G. Alonso, "Efficient sharing of sensor networks," in IEEE International 

Conference on Mobile Adhoc and Sensor Systems, (Vancouver, Be, Canada), October 

2006. 

88 



[34] R. t-.luller and C. Alonso, "Shared queries in sensor networks for multiuser support," 

Technical Report 508, February 2006. 

[35] S. Xiang, H. B. Lim, and K. L. Tan, "Multiple query optimization for wireless sen

sor networks," in 23rd IEEE International Conference on Data Engineering (IEEE07), 

(Istanbul, Turkey), April 2007. 

[313] S. Xiang, H. B. Lim, K. 1. Tan, and Y. Zhou, "Two-tier multiple query optimization for 

sensor networks," in 27th International Conference on Distributed Computing Systems 

(ICDCS'07), (Toronto, ON, Canada), June 2007. 

[37] N. Trigoni, A. Cuitton, and A. Skordylis, "Routing and processing multiple aggregate 

queries in sensor networks," in the 4th international conference on Embedded networked 

sensor systems, (Colorado, USA), pp. 391 392, 2006. I 

[38] K. Lee, W. Lee, B. Zheng, and J. Winter, "Processing multiple aggregation queries in 

geo-sensor networks," in the 11th International Conference on Database Systems for 

Advanced Applications (DA SFA A 06), (Singapore), April 2006. 

[39] X. Zhang, X. Yu, and X. Chen, "Inter-query data aggregation in wireless sensor net

works," in international Conference on Wireless Communications, Networking and Mo

bile Computing (WCNM 2005), (\Vuhan, China), September 2005. 

[40] N. J. Harvey, R. E. Ladner, L. Lovasz, and T. Tamir, "Semi-matchings for bipartite 

graphs and load balancing," in Workshop on Algorithms and Data Structures (WADS 

2003), (Canada), July 2003. 

[41] H. Huang, Y. Xu, Y. e Sun, and L. Huang, "Cluster-based load balancing multi-path 

routing protocol in wireless sensor networks," in 7th World Congress on Intelligent 

Control and Automation, (China), June 2008. 

89 



[42] D. Mandala, F. Dai, X. Du, and C. You, "Load balance and energy f!fficif!nt dRta p;ath

ering in wireless sensor networks," Wireless Communications and Mobile Computing, 

vol. 8, pp. 645659, June 2008. 

[43j M. Fyffe, M. SUll, and X. Ma, "Traffic-adapted load balancing in tiensor networks em

ploying geographic routing," in 8th IEEE Wireless Commun'ications and Networking 

Conference, pp. 4392 4397, March 2007. 

[44] M. Ma and Y. Yang, "Clustering and load balancing in hybrid sensor net\vorks with 

mobile cluster heads," in the 3rd international conference on Quality of service in het

erogeneous wired/wireless networks, (Waterloo, Ontario, Canada), 2006. 

[45] Y. Chu, C. Tseng, C. Hung, K. Liao, C. Ouyang, C. Yen, J. Jiang, Y. Wang, C. Tseng, 

and E. Yang, "Application of load-balanced tree routing algorithm with dynamic mod

ification to centralized wireless sensor networks," in IEEE Sensors, (New Zealand), 

pp. 1392-1395, October 2009. 

[46] C. Huang, R. Cheng, T. Wu, and S. Chen, "Localized routing protocols based on 

minimum balanced tree in wireless sensor networks," in the 5th International Conference 

on Mobile Ad-hoc and Sensor Networks (MSN '09), (China), pp. 503 510,2009. 

[47] M. Gunes, U. Sorges, and I. Bouazizi, HAra: The ant-colony based routing algorithm for 

manets," in Internatinal Conference on Parrallel Processing Workshops (ICPPW 02), 

(USA), pp. 79 85, 2002. 

[48] G. Hu, P. Zhang, and \V. Zhang, "The optimal design of tree structure based on ant 

colony of wireless sensor networks routing," in the 8th IEEE international Conference 

on Dependable, Autonomic and Secure Computing (DASC '09), (China), pp. 772 776, 

December 2009. 

[49] S. Nourizadeh, Y. Song, and J. Thomesse, "An adaptive hierarchical routing protocol for 

wireless ad-hoc sensor networks," in the 3rd International Conference on Next Genera-

90 



/,ion Afobile Applications, Services and Technologies (NGMAST '09), (UK), pp. 452 460, 

September 2009. 

[GO] K. Daabaj. ~l. Dixoll, and T. Koziniec, "Experimental study of load balancing rout-

ing for improving lifetime in sensor networks," in the 5th International Conference on 

Wireless communications, (China), pp. 3471 3474, 2009. 

[51] Z. Han, Z. Ji, and K R. Liu, "Non-cooperative resource competition game by virtual 

referee in llluiti-cell ofdma networks," IEEE Journal on Selected Areas of Communica-

liol1S. \'01. 2G. p. 10791090, 2007. 

[32] S. Frattasi. II. Fathi, and F. Fitzek, "4g: A user-centric system," Special Iss1te on 

Ad/'anres in Wirelcss Communications: Enabling Technologies for 4 G, 2006. 

[53] L. \\"ang. Y. Xue, and E. Schulz, "Resource allocation in multi-cell ofdm systems based 

on nOll-cooperath'e game," in 17th Annual IEEE International Symposium on Personal. 

Indoor and Mobile RadiO Communications, 2006. 

[.J-l] J. 5mb. L. DaSih'a. Z. Han, and A. l\lacKenzie, "Cooperative game theory for dis

tributed spectrum sharing," in IEEE International Conference on Communications, 

2007. 

[55] "~lica2dot cataloug." ab\'ailabe at: http://wwy.xbow.com/products/Product_pdf _ 

files/Wireless_pdf/MICA2DOT_Datasheet.pdf. 

\
. ,. . 

_ \- J 

91 




