

VIRTUAL CHANNEL ORGANIZATION AND ARBITRATION FOR NETWORK ON

CHIP ROUTER ARCHITECTURE

by

Masoud Oveis Gharan

B.S., Isfahan University of Technology, Iran, 1991

M.A.Sc., Ryerson University, Canada, 2011

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2016

© Masoud Oveis Gharan 2016

ii

AUTHOR'S DECLARATION FOR

ELECTRONIC SUBMISSION OF A DISSERTATION

I hereby declare that I am the sole author of this dissertation. This is a true copy of the

dissertation, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

I understand that my dissertation may be made electronically available to the pubic.

iii

Virtual Channel Organization and Arbitration

For Network on Chip Router Architecture

 Doctor of Philosophy, 2016

Masoud Oveis Gharan

Electrical and Computer Engineering

Ryerson University

Abstract

The advent of Multi-Processor Systems-on-Chip (MPSoC) has emphasized the importance

of on-chip communication infrastructures. Network on Chip (NoC) has emerged as a state of

the art paradigm for efficient on-chip communication. Among the various components

employed in NoC routers, Virtual Channel (VC) plays an important role in the performance and

hardware requirements of an NoC system. The VC mechanism enables the multiplexing and

buffering of several packets to travel over a single physical channel concurrently. VC

arbitration (or arbiter) is another critical organization component of a router that has significant

impact on the efficiency of an NoC system. Arbiter performs arbitration among the group of

VCs that are competing for a single resource (e.g. output-port).

In this dissertation, we propose novel approaches for dynamic VC flow control mechanism

and VC arbitration. The first two approaches are based on the adaptivity of VCs in the router

input-port that improves the efficiency of NoC system. In both of techniques, the input-port

comprises of a centralized buffer whose slots are dynamically allocated to VCs according to a

real-time traffic situation. The performance improvement is achieved by utilizing multiple

virtual channels with minimal buffer resources. The VC arbitration approach is based on an

efficient and fast arbiter that functions upon the index of its input-ports (or VC requests). The

architecture of arbiter scales with the Log2 of the number of inputs where a conventional round

iv

robin arbiter scales with the number of inputs. The index based behavior and the architecture of

our arbiter leads to lower power consumption and chip area.

 This dissertation presents the organizations and micro-architectures of NoC routers. We

have employed SystemVerilog at the micro-architectural level design and modeling of NoC

components. We employ three CAD platforms namely ModelSim, Quartus (FPGA) and

Synopsys (ASIC level) to design, simulate and implement our router based NoCs. The

simulation results support the theoretical concepts of our proposed VC organization and

arbitration approaches. We have also implemented and conducted simulation and modeling

experiments for conventional VC organization and arbitration models. The experimental results

verify the efficiency of our proposed models in terms of power, area and performance in

different NoC configurations.

v

Acknowledgment

Hereby I truly thank all Ryerson University administrators and staffs who helped and support

me in financial and registration matters to do the best for my education. I really appreciate the

teaching efforts of the professors who taught me during these five academic years. Here I would

like to present my especial thanks to Prof. Gul N. Khan for being an exceptional advisor for my

entire graduate career. As advisor and friend, he has managed to perfectly balance

encouragement and criticism, and I am in his debt for providing me with the facilities to be a

successful researcher in an exciting field. I am astounded by his great breadth of knowledge, and

ability to focus on the details. His attention to details and network-on-chip opinion is an

invaluable asset, and I am really thankful to be his PhD student.

Above all, I am thankful for the love and support of my family. I am positively blessed

to have a wife Maryam, a daughter Ghazal, and a baby boy Erfan as wonderful as mine who

have given me an amazing life. Their belief in me was a motivator in everything I did, and their

advice and understanding could not be more appreciated.

I owe many thanks to all my friends especially those who are in Micro-system Research

Laboratory for their unwavering support and friendship. I love spending time with you guys,

some of my best memories have been made here.

vi

Table of Contents

Author's Declaration .. ii

Abstract ... iii

Acknowledgment ..v

List of Tables ..x

List of Figures ... xi

Chapter 1

Introduction ... 1

1.1 Network on Chip a State of the Art Paradigm ..1

1.2 Wormhole Routing..2

1.3 NoC Router Architecture ..4

1.4 VC organization ..5

1.4.1 FIFO Architecture ..6

1.4.2 Queue Buffers ..7

1.4.3 Traditional Wormhole Routing ..7

1.5 Static and Dynamic VC Organizations ...9

1.5.1 Problems in Static VC Organization ..9

1.5.2 Head of Line Blocking ...11

1.5.3 DAMQ: Dynamically Allocated Multi Queues ...11

1.5.4 Timing Problem of Adaptive Table-based VC Organization.......................................14

1.6 Data Flow Arbitration ...16

1.6.1 Arbiter Pipeline Stages ...17

1.7 Motivation ...18

1.8 Objectives ...19

1.9 Thesis Organization ..20

Chapter 2

Previous Research Work ... 22

2.1 Buffer Organization ..22

2.2 Serial and Parallel FIFO Architecture...23

2.3 DAMQ Buffer Organization Research Work ...26

2.3.1 Virtual Channel Regulator (ViChaR) ...28

2.3.2 Self-Compacting Buffers..29

2.3.3 Mask-based...31

2.4 Link-List based DAMQ Organization ..31

2.4.1 LLD and Static Read and Write Mechanism ...31

2.4.2 LLD Router ..32

2.4.3 LLD Communication ...33

vii

2.4.4 Slot-State Process ...34

2.4.5 Flit Arrival and Departure Process ...36

2.4.6 VC-block Signal ...36

2.4.7 VC-Selector Module ..37

2.4.8 Buffer-full Module or VC-full Module ..38

2.5 Buffering Organization Approach ..38

2.6 Heterogeneous Router Architectures ..43

2.7 Round Robin Arbiter...46

2.7.1 Conventional Arbiter Design ...47

2.7.2 Some Well-Known RR Arbiters ..49

Chapter 3

Statically Adaptive Multi-FIFO Buffer Organization .. 52

3.1 Static Multi-FIFO (SMF) Buffer Architecture ...53

3.2 Communication in CVC and SMF Models ...54

3.3 Similarity of CVC and SMF during Contention ...56

3.4 Statically Adaptive Multi FIFO ..58

3.4.1 Dynamic Mode Selector ...60

3.4.2 Deterministic Mode Selector ..61

3.5 CVC and SMF Router Micro-Architecture...63

3.5.1 Adaptivity Hardware in SAMF Architecture ...66

3.5.2 Synthesis of SAMF Router ..67

3.6 Experimental Results ..69

3.6.1 Adaptivity of SAMF Mechanism...69

3.6.2 Experiment Setup ...71

3.6.3 Experimental Results and Analysis ..73

3.7 Novelty of Approach...78

3.8 Summary ...78

Chapter 4

Efficient Dynamic Virtual Channel Organization ... 80

4.1 Overview ...81

4.1.1 Simpler Communication in EDVC ..81

4.2 EDVC Router Micro-Architecture ..83

4.2.1 Slot-State Table ..84

4.2.2 Blocking Circuit ...84

4.2.3 Enabling Blocked Request and VC-full ...85

4.2.4 Operation of Read and Write Pointers ...85

4.2.5 EDVC Closing and Requesting Approach ...86

4.3 Improving Input-Port Buffer Access ..87

viii

4.3.1 Fast Buffer Write ..87

4.3.2 Fast Buffer Read...88

4.4 Novelty of EDVC Mechanism ..89

4.4.1 VCs for Blocked and Unblocked Packets ..89

4.4.2 Lower Congestion ..90

4.4.3 Deadlock Avoidance ..93

4.4.4 Novel EDVC based VC Organization ..94

4.5 Experimental Results ..94

4.5.1 Hardware Requirements and Parameters of Input-Ports ..95

4.5.2 EDVC Performance Evaluation ...98

4.6 Concluding Remarks ...105

Chapter 5

Rapid and Efficient Router Architecture ... 107

5.1 Rapid Dynamic Queue Based Input-Port Structure ..107

5.1.1 Rapid Read and Write Pointers ..108

5.1.2 RDQ Closing and Requesting Approach (Blocking Circuit)111

5.1.3 Back Pressure for Low NoC Traffic ..112

5.2 Index-based Round Robin Arbiter (IRR) ..114

5.2.1 Grant Index ...115

5.2.2 Fixed and Variable Priority Arbiter ...115

5.2.3 IRR Arbiter Micro-Architecture...116

5.2.4 Functional Behaviour of IRR Arbiter ..117

5.2.5 IRR Hardware Analysis ...118

5.3 Switch Allocator ...119

5.3.1 NoC Switch Allocator Function ...120

5.3.2 VC Arbitration..121

5.3.3 Post Switch Allocator Circuits ...122

5.3.4 FIFO Arbitration and VC Selector ...123

5.3.5 RDQ Router Arbitration ...124

5.4 RDQ Based Router Architecture ..125

5.4.1 Rapid NoC Circuit Design ...125

5.4.2 Fast Router Circuits ..126

5.4.3 Pipelined RDQ-based Routers ...129

5.4.5 Communication in RDQ-IRR router ..131

5.5 RDQ and IRR based NoC Experimental Results ..133

5.5.1 IRR Arbiter Evaluation ..133

5.5.2 RDQ based Input-Port Implementation and Results ..136

5.5.3 RDQ based NoC Performance ...137

5.5.4 NoC Evaluation Result ...141

ix

5.5.5 RDQ-IRR based NoC Hardware Requirements ...142

5.5.6 Performance Evaluation of RDQ-IRR NoC ...145

5.6 RDQ-IRR Router based NoC Features ...149

5.7 Summary and Concluding Remarks ...151

Chapter 6

Conclusions ... 152

6.1 Future Work ..154

References ... 155

Glossary ... 159

x

List of Tables

Table 3.1. Connection in SAMF mode ..60

Table 3.2. Synthesis Results for 32nm technology and FPGA ...68

Table 4.1. Closing and Requesting Operations of EDVC Mechanism ...86

Table 4.2. Hardware specification of EDVC, LLD & ViCHaR input-ports96

Table 5.1. Closing and Requesting Operations of RDQ Mechanism ...112

Table 5.2. Electrical Parameters Gates from Synopsys Library ...118

Table 5.3. Characteristics of 4-input Arbiters based on Table 5.2 ...119

Table 5.4. Hardware Characteristics of Strong Fairness Round Robin Arbiters134

Table 5.5. Hardware Characteristics of Weak Fairness Round Robin Arbiters135

Table 5.6. Input-Port Characteristics for DAMQ Approaches ...137

Table 5.7. Input-port Hardware Characteristics ..143

Table 5.8. Arbiter Hardware Characteristics ..144

Table 5.9. Router Characteristics and Advantage Rate ..145

xi

List of Figures

Figure 1.1: a) An SoC with 3×3 Mesh NoC architecture, b) A router architecture2

Figure 1.2: A Typical Wormhole Packet Structure in NoC. ...3

Figure 1.3: Source, S1 sends a packet consisting of 4 flits (Hf, Bf1, Bf2 and Tf)4

Figure 1.4: A Multiplexer-based Crossbar Switch. ..5

Figure 1.5: Conventional VC Flow Control Communication. ..5

Figure 1.6: Register -based Parallel FIFOs ...6

Figure 1.7: SoC (NoC), Router and Queue Architectures. ...8

Figure 1.8: Four Different Scenarios in Conventional Wormhole VC Communication.11

Figure 1.9: Input-Ports with Dynamic and Static Queues ..12

Figure 1.10: Staic vs. Dynamic Input-Port Pipelines ..15

Figure 1.11: HF Flit in VC1 of Input-port 5 of Router 3 Traveling to Input-port 216

Figure 1.12: The pipelined stages of a typical VC-based arbiter. ...17

Figure 1.13: The pipelined stages of a typical virtual channel arbiter. ...18

Figure 2.1: Conventional Shift Register (serial) FIFO ...23

Figure 2.2: SRAM-Based FIFO Using Parallel Style. ..24

Figure 2.3: Buffer Threshold Utilization vs. Buffer Size. ..24

Figure 2.4: SRAM-based FIFO...25

Figure 2.5: A Positive-Edge-Triggered D-FF. ..25

Figure 2.6: Head of Line Blocking in DAMQ Output Channel. ..26

Figure 2.7: Reserved Space for Virtual Channels. ..28

Figure 2.8: One big table and two trackers used in ViChaR method. ..29

Figure 2.9: Write and Read Scenario in Self-Compacting Buffer ..30

Figure 2.10: Input-Ports with Two Queue Type ...32

Figure 2.11: LLD Based Input-Port. ...32

Figure 2.12: LLD Router (4-VC and 16-slot) – Lookup tables ..33

Figure 2.13: Timing Diagram of a Pipeline Communication inside a LLD Input-Port.34

Figure 2.14: Updating of LLD tables ..35

Figure 2.15: LLD Read and Write Pointers ..35

Figure 2.16: VC-Selector Request Logic ..37

Figure 2.17: Input-Port Buffer-Full and VC-Full Modules ..38

Figure 2.18: Any EB architecture derived for edge-triggered flip-flops42

Figure 2.19: Organization of the generalized ElastiStore Port. ..42

Figure 2.20: Integration of ElastiStore in NoC routers. ..43

Figure 2.21: Proposed Hybrid Scheme in A 4 × 4 Mesh with two VCs per Input-Port44

Figure 2.22: Heterogeneous NoC Router Example. ...45

Figure 2.23: A wormhole v-VC router, the Switch allocator consists of two sets46

Figure 2.24: A 4-Input Fixed Priority Arbiter Architecture. ..47

Figure 2.25: A 4-Input Variable Arbiter Architecture. ...48

file:///C:/Masoud/my_doc/Final-MOveis_PhD_Dessertation_4_8_2016.docx%23_Toc448092554

xii

Figure 2.26: A 4-Input RoR Arbiter Architecture. ...48

Figure 2.27: A 4-Input Matrix arbiter. ..49

Figure 2.28: A 4-Input PRRA Architecture. ...50

Figure 2.29: A 4-Input IPRRA Architecture. ..50

Figure 2.30: A 4-Input HDRA Architecture. ..51

Figure 3.1: A Typical SRAM-Based FIFO ...53

Figure 3.2: SMF Input-Port Architecture (nVC) ...53

Figure 3.3: CVC Input-Port Architecture (nVC) ..54

Figure 3.4: Conventional VC Flow Control ...54

Figure 3.5: SMF Flow Control..55

Figure 3.6: 4-VC CVC Buffer (VC3 Write and VC1 Read) ...55

Figure 3.7: 4-VC SMF Buffer (VC3 Write and VC1 Read) ...55

Figure 3.8: VC-Selector Circuit ..56

Figure 3.9: Selection Function of a Free Request ...57

Figure 3.10: nVC SAMF Architecture..58

Figure 3.11: 4-VC SAMF Architecture with 2 Active VCs. ..59

Figure 3.12: Flowchart Process of the Dynamic Mode-Selector ..61

Figure 3.13: Flow Process & Schematic of Deterministic Mode-Selector.62

Figure 3.14: 5×5 CVC Wormhole Router...63

Figure 3.15: 5×5 SMF Wormhole Router. ..64

Figure 3.16: 5-to-1 Multiplexer Schematic. ..64

Figure 3.17: A Multiplexer-based Crossbar Switch ...65

Figure 3.18: Power Breakdown for a CVC NoC Router ..66

Figure 3.19: SMF and SAMF Architectures ...67

Figure 3.20: MPEG4 mapping core graph to a Mesh Topology and its XY routing.71

Figure 3.21: AV Benchmark mapping core graph to a Mesh Topology and its XY routing........72

Figure 3.22: Fixed Communication for a 4×4 Mesh NoC ..73

Figure 3.23: Throughput for Different NoC Applications ..74

Figure 3.24: Power of a Router for Different NoC applications ...74

Figure 3.25: Area of a Router for Different NoC applications ...75

Figure 3.26: Throughput for High-Contention NoC Traffic ...75

Figure 3.27: Average Latency for High-Contention NoC Traffic ..76

Figure 3.28: Router Power for High-Contention NoC Traffic ...77

Figure 3.29: Router Area for High-Contention NoC Traffic ..77

Figure 4.1: EDVC Input-Port Block Diagram ..81

Figure 4.2: Three Steps of EDVC VC Flow Control. ...82

Figure 4.3: EDVC vs. LLD Buffer Pipelines ..82

Figure 4.4: 5×5 EDVC Router and Input-Port Micro-Architecture. ...83

Figure 4.5: Packet P1 is blocked. ..84

xiii

Figure 4.6: 4-bit Simple Read and Write Pointers ..85

Figure 4.7: Fast Read and Write pointer ...87

Figure 4.8: Write at location 15 occurs 14 cycles after a write at location 1.87

Figure 4.9: 4-bit EDVC Fast Write-Pointer ..87

Figure 4.10: 4-bit EDVC Fast Read-Pointer ..88

Figure 4.11: Packet Blocking in LLD and EDVC. ...90

Figure 4.12: (a) P4, P5 and P6 packets are blocked due to HOL of P0 (b) Free slots90

Figure 4.13: LLD Packet Flow Situations. ...91

Figure 4.14: EDVC Packet Flow Situations. ..92

Figure 4.15: High Contention Situation in a LLD NoC..93

Figure 4.16: Average Latency for MPEG4 Decoder Traffic ..99

Figure 4.17: Average Latency for AV Benchmark Traffic...99

Figure 4.18: Average Throughput for MPEG4 Decoder Traffic ..100

Figure 4.19: Average Throughput for AV Benchmark Traffic ...100

Figure 4.20: Average Latency for Hotspot Traffic ...101

Figure 4.21: Average Throughput for Hotspot Traffic ...101

Figure 4.22: Average Latency for Tornado Traffic. ...102

Figure 4.23: Average Throughput for Tornado Traffic. ...102

Figure 4.24: Average Latency for Complement Traffic. ..102

Figure 4.25: Average Throughput for Complement Traffic. ..103

Figure 5.1: RDQ Input-Port Micro-Architecture. ..108

Figure 5.2: Timing diagram of a 2-bit EDVC fast read-pointer for some Slot-State109

Figure 5.3: Rapid 4-bit Read-Pointer ..109

Figure 5.4: Rapid 4-bit Write-Pointer ...110

Figure 5.5: Timing Diagram of a 2-bit RDQ Write-Pointer. ..110

Figure 5.6: Low Flit Injection Traffic Scenario in EDVC, LLD and RDQ113

Figure 5.7: n-input fixed priority arbiter, where m =log2 (n). ...115

Figure 5.8: n-Input Variable Priority Arbiter ..116

Figure 5.9: n-Input IRR Arbiter, where m =log2 (n) ...116

Figure 5.10: Timing diagram for some input request scenarios. ..117

Figure 5.11: Timing diagram for some input request scenarios. ..117

Figure 5.12: An Input-First Separable Allocator. ..120

Figure 5.13: A 5×5 RR-Based Separable SA Micro-Architecture ..121

Figure 5.14: n×m SA architectures, n= # of inputs, m= # of outputs, v=#122

Figure 5.15: Output-Port 1 of Selection Module ...122

Figure 5.16: Input 3 of the Grant Module ..123

Figure 5.17: RR-based VC-Selector Utilized in LLD and ViChaR. ...123

Figure 5.18: RDQ-Based VC-Selector in the Input-port Mechanism. ..123

Figure 5.19: VC0, VC1, VC2 and VC3 Arbitration. RR for LLD and ViChaR124

Figure 5.20: VC-Block Circuit Associated to VC1 of Input-Port 3 ...125

xiv

Figure 5.21: A LLD-HDRA Router Micro-Architecture. ...127

Figure 5.22: A RDQ-IRR Router Micro-Architecture. ...128

Figure 5.23: RDL vs. Conventional Dynamic Input-Port (LLD or ViChaR)129

Figure 5.24: RC generates free requested output VC ...130

Figure 5.25: VC Allocator generates free downstream VC ..130

Figure 5.26: Three Steps of RDQ-IRR VC Flow Control. ...132

Figure 5.27: Latency for Tornado, Complement and Uniform Random Traffic.139

Figure 5.28: Throughput for Tornado, Complement and Uniform Random Traffic140

Figure 5.29: latency for Tornado, Complement and Uniform Random Traffic.147

Figure 5.30: Throughput for Tornado, Complement and Uniform Random Traffic148

1

Chapter 1

Introduction

 In this chapter, we introduce the approaches of Virtual Channel (VC) organization and

arbitration for novel NoC router design. First of all, we try to present some commonly used

terms, mechanisms and micro-architectures used in the design of Network on Chip (NoC)

systems. We also introduce the problems related to the conventional NoC designs as well as the

objectives that are pursued in this dissertation. Overall, we present three approaches related to

NoC design. The first two approaches are related to VC organization and presented in Chapters

3 and 4. The third approach is related to data flow arbitration and key to our rapid NoC router

architecture presented in Chapter 5.

1.1 Network on Chip a State of the Art Paradigm

 Network on Chip (NoC) architecture provides a communications infrastructure for the cores

of a multi-core System-on-Chip (SoC). The NoC enables the SoC-cores to communicate among

each other concurrently by sending messages asynchronously. NoC structures improve the

scalability and power efficiency of complex SoCs as compared to other conventional

2

communication systems. Figure 1.1a illustrates an SoC including some IP cores that are

connected through a 3×3 Mesh NoC architecture. The NoC includes a network of routers

(switches) that are interconnected by data links.

1.2 Wormhole Routing

 A most viable communication mechanism employed in NoCs is packet-based wormhole

routing [1]. The message in wormhole routing is made of multiple packets where each packet

consists of multiple flits. A flit is a basic unit of data that is generally transferred at (the NoC)

clock rate. Figure 1.2 illustrates the message structure of a packet-based wormhole flow control.

The first flit of a packet is called the header flit and holds the route information of the associated

packet. The remainder flits are called body flit where the last flit is known as tail flit. The body

and tail flits contain data and may also contain two pieces of information: tail state and VC

identification as shown in Figure 1.2. When the header flit of a packet passes through a route

(a)

(b)

 Arbiter

Crossbar

Switch

N×P VC1

VCv

Input-port N

Input-port 1

 Routing Computation (RC)
 VC Allocation (VA)

 Switch Allocation (SA)

 Switch Traversal (ST)

Credit

 Credit

out

Data

Data

Data

Data

Data

Data

Output Port P

Output Port 2

Output Port 1

grant

CPU

Memory

RF

DSP

RISC

0

1 2

3 4 5

Graphics

processor

I/O

6 7 8

Figure 1.1: a) An SoC with 3×3 Mesh NoC architecture, b) A router architecture with N inputs and P outputs.

3

made of routers, the route path is reserved for that packet. The route path remains reserved until

all the packet flits pass through it.

 For example, consider a 2D mesh NoC wormhole communication situation depicted in Figure

1.3, where the source, S1 sends a packet consisting of 4 flits (Hf, Bf1, Bf2 and Tf) to the

destination D9. Assume that the data (packets) movement follows XY routing methodology

where the packets first move in X direction to reach to the Y dimension of their destinations,

then they move to Y direction to reach their destination. In a basic NoC communication (no

VC), passing the header flit, Hf through each router leads the router’s input and output ports to

be reserved, where no other packets can pass through those ports. After the passage of tail flit,

Tf through each router leads the release of that port. During the packet transfer, the flits are

temporarily kept in the input (or output) port buffers of the routers in a First-In First-Out (FIFO)

fashion. One important feature of the data flow in the case of Figure 1.3 is that the route-path

between S1 and D9 is reserved when the flits move through it. Therefore, the flow of data moves

without any blocking. Such kind of data flow does not always provide optimum performance.

Other messages of other sources where routes or part of their routes are shared with the reserved

route have to wait until the route becomes free. These waiting conditions continue even when

there is no communication through the reserved route. Sometimes, the reserved route is

sometimes idle and will block other packets to pass through it. This kind of data flow incurs

higher latency and lower utilization of shared NoC resources. One way of alleviating this

Figure 1.2: A Typical Wormhole Packet Structure in NoC.

Body Body Body Header

Messages

Packet

Flits

1 0 1 1 1 1 1 x x 0 1 1 0 1 0 1 1

Source
address

Sink

address
Tail bit

1

VC_ID

Body Tail

1 0 1 1 1 0

Data

0 0

Pause Burst

1

Tail bit
VC_ID

4

problem and improve NoC throughput is by utilizing Virtual Channel (VC). To facilitate

creating multiple VCs per physical channel, the messages are allocated in units of flits. The term

“channel” or “physical channel” in this dissertation refers to a data link that connects the output-

port and input-port of two interconnecting routers. The critical role of VC mechanism and

architecture in the efficiency of NoC has encouraged us to present two novel VC organizations

in Chapters 3 and 4. To understand the VC organization, we need to explore the structure and

mechanism of a NoC router.

1.3 NoC Router Architecture

 An NoC router accepts packets from the source core (or other router modules) and delivers

them to the sink/destination core (or other router modules). The traditional micro-architecture of

a router consists of input and output ports, an arbiter, and a crossbar switch as illustrated in

Figure 1.1b [1]. The input and output ports can be simple data buses that connect a router to its

channels, but at least one of them should consist of a circuit to perform buffering and traversal

of the incoming flits. In this dissertation, the input-ports utilize the buffers, and the output-ports

are simple data buses. After buffering a flit, the input-port issues a request signal to the arbiter.

The arbiter performs arbitration among the potential VC flits that make request to access the

crossbar and other shared resources [2]. When a flit wins arbitration and is granted to exit the

router, it passes through the crossbar switch. For NoCs utilizing VCs, the structure of router

input-port becomes complex. However, it significantly improves the efficiency of NoC. The

crossbar switch can be configured to connect any input buffer of the router to any output channel

(port), but under the constraints that an input-port is connected to only one output-port. The

micro-architecture of crossbar switch is simple as illustrated in the multiplexer-based

architecture of Figure 1.4. The structure of a router arbiter can be simple when an NoC does not

5

2

7 8 9

1 3

4 6

S1

D9

Bf2 Bf1 Hf
Tf

5

2

7 8 9

1 3

4 6

S1

D9

Bf2

Bf1

Hf

Tf

Figure 1.3: Source, S1 sends a packet consisting of 4 flits (Hf, Bf1, Bf2 and Tf) to destination D9.

5

2

7 8 9

1 3

4 6

S1

D9

Bf2

Tf

5

utilize VC organization. However, the arbiter becomes complex for a VC based router that can

have a direct effect on the efficiency of NoC. The critical impact of arbiter on the efficiency of

NoC has encouraged us to design a fast and efficient arbiter in Chapter 5.

1.4 VC organization

 To improve the data flow efficiency in NoCs, each input or output port can utilize VCs to

share a physical communication channel by multiple packets. A VC virtually splits a single

physical channel to provide two or more virtual paths for the packets to be routed. Consider the

case illustrated in Figure 1.3, two packets can reserve and pass through the same route if there

are 2 VCs available for each physical channel. In other words, the flits of one packet will

interleave with the flits of the other packet over a physical channel by using a rotating flit-by-flit

arbitration. The routing of each flit can be guaranteed because the flits belonging to a packet are

attached with the VC identification (VC-ID) tag at each router. Then these flits become

differentiable at the downstream routers. Figure 1.2 illustrates a 2-bit VC-ID tag that exists in all

Physical channel

Input-port
VC Buffers

Figure 1.5: Conventional VC Flow Control Communication.

VC-ID signals

In0

In2

In3

In4

In1

Sel3

Sel1

Sel4

Sel0

Sel2

Out1

Out3

Out0

Out4
Out2

f

Figure 1.4: A Multiplexer-based Crossbar Switch.

 Arbiter

Crossbar

Switch

N×P VC1

VCv

Input-port N

Input-port 1

RC

Credit

 Credit
out

Data

Data

Data

Data

Data

Data

VA

SA

ST grant

6

the flits of a packet, and these tags are identical when the flits enter a router. Figure 1.5

illustrates the conventional micro-architecture of a VC decoder based on a simple de-

multiplexer. The VC-ID is connected to the selection port of the de-multiplexer and causes the

incoming flit to reside in the associated VC buffer. Basically, the flits of a packet are always

stored in the same VC buffer. We assume that a router implements VCs at the input-ports and

the input-port storage (buffer) temporarily stores the incoming flits. When a router receives a

packet flit, it puts the flit into its input-port buffer, and the flit remains there until the required

resources for departure becomes available.

1.4.1 FIFO Architecture

 We introduce the architecture and mechanism of data buffering organization (port

architecture) in the NoC routers. As mentioned earlier, the data buffering can be in the form of

First-In First-Out (FIFO) to keep the flits of a packet in correct order during communication.

Two types of FIFO schemes: serial and parallel have been utilized in digital design [3, 4, 5, 6].

The serial FIFO (e.g. shift register) that works on the fall-through principle (or pipeline) has

been the initial FIFO type. However, the architectures of conventional FIFOs are constantly

being improved. Currently, most of the FIFOs used are of parallel type, which are faster than

serial FIFOs [7].

 The proposed schematic of Figure 1.6 shows a parallel register-based FIFO. Write-pointer

and Read-pointer are two circular counters that are connected to the selection ports of de-

multiplexer and multiplexer. When a write is requested, the Write-pointer enables the tail

register to store the incoming flit. Then it is incremented to enable the next free slot in the FIFO.

Figure 1.6: Register -based Parallel FIFOs

 D

 Q

> en

 D

 Q

> en

 D

 Q

> en

D

 Q

> en

 D

 Q

> en

Write-Pointer

A=A+1

Write-Req

Flit out

Read-Req

Read-Pointer

(B=B+1)

‘1’

7

When a read is requested, the Read-pointer is incremented to select the output of head slot in the

FIFO. Since the pointers increment in a circular manner, the flits enter and exit in a circular

manner too. Due to which, the parallel FIFO is also known as a Circular Queue (CQ).

1.4.2 Queue Buffers

 In addition to FIFO, another buffering component used in a NoC router is the Queue. A

Queue temporarily stores the flit(s) of a packet in a first come first serve (FCFS) manner until

the network resources become available. FIFO and Queue terms are sometimes interchangeably

referred as an NoC buffer. However, a Queue refers to all types of buffers with the FCFS

concept that also contains FIFO buffers. In terms of architecture, FIFO mostly refers to serial or

parallel FIFOs as discussed earlier. Serial and parallel FIFO designs are very common in digital

design. The concepts discussed in this and previous sections are helpful to clarify the main

difference between the VC organizations presented in Chapter 3 and 4. The Chapter 3 approach

presents a simple and adaptive multi-FIFO buffer architecture, where the Chapter 4 approach is

a small and dynamic multi-queue buffer organization. In the following section, we explain the

mechanism and pros and cons of traditional VC organization.

1.4.3 Traditional Wormhole Routing

 Wormhole routing is a conventional communication mechanism used in VC based NoC

systems. To employ wormhole routing in NoCs, the flit that is part of a packet is buffered at

least at the input or output ports of the router [1]. Once the flit of a packet occupies the buffer of

a channel, no other packet can access the channel even when the channel buffer is empty. This

type of switching flow is prone to contentions and in some cases deadlocks. The contention

occurs when the latency of a flit becomes more than the time delay of its location (i.e. router).

For example, when a flit is blocked in a router, it should stay in the router until its requested

output becomes available. Therefore, the time delay of flit will get higher than the time delay of

router that creates a contention situation. Another important issue in the performance of NoCs is

the deadlock. Assume wormhole switching and a packet flit is not allowed to pass an element of

NoC twice. Then a deadlock will occur when no packet can advance because each packet

requires a channel that is already occupied by the other packet. Consider the deadlock situation

illustrated in Figure 1.7a. Assume the sources 1, 3, 7 and 9 start sending packet at the same time

to the destinations 6, 8, 2 and 4 respectively. The dashed lines in the figure show the route of

8

each packet. The communication becomes deadlock at routers 1, 3, 7 and 9 as each packet

requires a channel that is already occupied by the other packet.

 One of the traditional ways to alleviate contention and remove deadlock is to use the VC

mechanism [8]. Consider a configuration where the number of VCs for each channel is equal to

the maximum shared packets of that channel. Therefore, as soon as a flit reaches to a router,

there will be a free VC facilitating the flit to move to the next router. This means there will be no

blocking, and deadlock will not occur in the NoC. Virtual channels are also used to improve

message latency and NoC throughput. By allowing messages to share a physical channel, the

Figure 1.7: SoC (NoC), Router and Queue Architectures.

(a) An SoC with 3x3 Mesh NoC.

5

2

7 8 9

1 3

4 6

P5

P2

S3 S2

S4 S5

D9 S7

S1

(c) A static VC buffer with parallel FIFO.

 VC FIFO

F1 F4 Fn F0

F2 F3

Empty Full

Read Write

(b) A p×p static v-VC router.

Link 0 VC(v-1)

Link P-1

Link 0

 Crossbar

 (P×P)

VC(v-1)

VC0

VC_ID

VC_ID

f
f

Arbiter

(VC and SW

Allocator)

VC0

Link P-1

9

messages can make progress rather than remain blocked. Moreover, the overall time that a

message is blocked at a router and waits for a free channel is lowered. In this way, the sharing of

physical channel leads to faster NoC communication and an overall reduction in message

latency. In Conventional Virtual Channel (CVC) method, a physical channel support several

virtual channels that are multiplexed across the physical channel as shown in Figure 1.5. As

depicted in the router of Figures 1.7b, the implementation of VCs needs extra resources i.e.

FIFO buffer for each VC, De-multiplexers and Multiplexers for each input-port as well as VC

allocator and bigger switch allocator for the arbiter [1, 9, 10, 11, 12].

1.5 Static and Dynamic VC Organizations

 In this report, we have selected to provide buffering organization in the input-ports of

channels. The input-ports employ two types of data flow mechanisms commonly known as static

and dynamic to organize VCs [4]. In the static mechanism, the buffer slots are statically

allocated to the incoming packets, and in the case of dynamic mechanism such as Dynamically

Allocated Multi Queues (DAMQ), the buffer slots are dynamically allocated to the incoming

packet flits. Most of dynamic VC organizations are table based [13, 14], where a central buffer

includes multiple VC queues, and a table keeps the flits of each queue in FCFS order. Basically,

the table keeps the address of incoming flits in a FCFS orders.

1.5.1 Problems in Static VC Organization

 In the case of static buffering, the numbers of VCs and their buffers remain constant during

communication. Various studies have shown that for a large number of static VCs,

communication load is difficult to balance across them [1]. Some VCs remain idle while the

others are overloaded. Therefore, it is better to allocate more buffer storage to busy VCs and less

to the idle VCs. Moreover, static VC buffers are expensive components of routers and they

become more expensive for larger flit size or when the VC buffer depth becomes larger. The

above drawbacks of static VCs has resulted an adaptive VC organization to achieve VC flow

control with maximum buffer utilization.

 Now we discuss the conventional VC flow control in a router and a problem associated with

buffer utilization. First of all, we define the term, buffer utilization, which is the rate of

arrival/departure of flits in a slot buffer per clock cycle. For example, when a slot is empty, or it

is full but with the same data per clock cycle, the buffer utilization rate is 0%. Figure 1.7b shows

10

the architecture of a conventional static VC-based router [13]. The input-port stores data in VC

buffers in a FIFO fashion as illustrated in Figure 1.7c. The VC identification (VC-ID) of a flit is

issued before the flit is transferred to the router. The VC-ID selects the VC where the incoming

flit should be stored. Therefore, at the input of a router, the flit is stored at the tail of the selected

VC buffer (“FIFO” sometimes refers to “FIFO buffer” or “buffer of a VC” in this dissertation).

When the flit is reached at the head of the FIFO, a request signal is issued to the arbiter. After

the arbitration (VC allocation and switch allocation that will be discussed latter), three signals

are issued by the arbiter. First of all, VC-ID signal is sent out of the router to let the downstream

router know about the VC address of the incoming flit. Secondly, the output address of the flit is

issued to the crossbar module. Then, a grant signal is issued to the FIFO that leads the flit to

reach the crossbar. The flit passes through the crossbar and exit out of the router.

 In the VC buffer, the flow of flits follows a wormhole mechanism. Once the flit of a packet

occupies the buffer of a VC, no other packet can access it, even when the flit packet is blocked.

This type of flow control is problematic in the context of buffer utilization. We illustrate buffer

utilization problem through four different scenarios of data flow in a channel in Figure 1.8. In

Figure 1.8a, all the VC slots are served and the buffer utilization is maximum i.e. 100%. In

Figure 1.8b, one VC is employed in routing and the other VC’s slots are idle and cannot

participate in the flow result in lower buffer utilization i.e. 25%. In Figure 1.8c, when one slot of

a VC is used by a packet, the other slots are reserved and not used by the new packets and will

remain empty, which results in a buffer utilization of 25%. In Figure 1.8d, the tail flits (T1, T2, T3

and T4) are blocked in each VC. That will block any new packets such as P8, P7, P6 and P5. This

kind of blocking is called head-of-line (HoL) blocking [4]. No arrival/departure of flits results in

a buffer utilization of 0%. It also leads to higher contention and lower performance. The effect

of lower buffer utilization on power and area usage is obvious. The idle buffers are useless and

only increase the hardware usage. In fact, one of objectives of our VC organization approaches

presented in Chapter 3 and 4 is the adaptivity of channels. In adaptive channels, the idle buffers

are dynamically used to create new VCs or to increase the buffer depths of active VCs. More

VCs and higher VC buffer depth improve the performance and latency.

11

1.5.2 Head of Line Blocking

 This section introduces the Head of Line (HoL) blocking. In wormhole routing, when a

packet passes through a route, the route is reserved and no other packets can utilize that route.

This kind of routing cannot avoid traffic congestion when a packet is blocked. In fact, blocking

of a packet leads to the blocking of other packets in the channel causing HoL blocking (Figure

1.8d). The HoL blocking causes higher latency and lower throughput. HoL problem can be

alleviated by using Virtual Channels [13]. However, the traditional VC approach does not

remove HoL problem completely [13, 14, 15].

1.5.3 DAMQ: Dynamically Allocated Multi Queues

 The traditional adaptive VC organization and its limitations are introduced in this section.

Dynamically Allocated Multi Queues (DAMQ) is a single storage array that maintains multiple

FCFS queues. In DAMQ, packet flits are stored in a central buffer consisting of multiple queues.

The DAMQ buffers adapt to network traffic by dynamically allocating queue space amongst the

output-ports depending on the traffic [4]. The dynamic queues of DAMQ buffers improves

buffer utilization of port by sharing its buffer slots among all the VCs of port and allocating

more buffer slots to active VCs. Higher VC buffer depth keeps more flits of a packet and leads

to a free route of the packet in wormhole NoC communication. The more free routes lead to

lower contention and eventually improve the overall NoC performance. Figure 1.9a illustrates a

4-VC DAMQ buffer where the addresses of flits kept in a linked list table. The linked list table

records the flit addresses according to their VC-ID and in a FCFS orders.

(a) All VC are served.

Buffer Utilization=100%

(b) One VC is employed in

routing. Other VCs are idle.
Buffer Utilization=25%

(c) One slot of each VC is used.

Other slots are reserved and
cannot receive new packet due

to wormhole routing.

Buffer Utilization=25%

Figure 1.8: Four Different Scenarios in Conventional Wormhole VC Communication.

(d) One flit (T1, T2, T3, T4) is

blocked in each VC. New
packets (P8, P7, P6, P5) are

blocked due to FIFO service

(HOL).

T1 B1 B1 H1

 T2 B2 B2 H2

T4 B4 B4 H4

T3 B3 B3 H3

T1 B1 B1 H1

 H1

 H2

 H4

 H3

B5 B5 H5 T1

 B6 B6 H6 T2

B8 B8 H8 T4

B7 B7 H7 T3

12

 The micro-architecture of DAMQs can be used for organizing VCs in NoC systems. This

technique can also resolve contention, deadlock, or fault tolerance related issues. Despite the

performance merits of DAMQ organizations, they have a number of limitations as listed below.

 It has complex hardware due to linked list and dynamic queue management [4, 16].

 Another problem is related to the queue structure that is tailored for deterministic

routing. It cannot look after fully adaptive routing since the routing decision for a new

packet is made in conjunction with the output queues. With such flow control

mechanism, the routing adaptivity cannot be established [4]. Packet flit buffers in

NoC routers can be placed at three locations: input-ports, output-ports or both input

and output ports [4]. The NoC routers with input-port buffers can easily support

adaptive routing as flits resided in an input-port can be processed by following an

adaptive methodology. In other words, the incoming flits remain in the input-port

buffer until an adaptive routing is implemented (at least one clock cycle) and

determines the outputs for the exit of flits. Routers with output-port buffering cannot

Figure 1.9: Input-Ports with Dynamic and Static Queues

Read-Pointer VC3
Read-Pointer VC2

Write-Pointer VC3
Write-Pointer VC2

Write-Pointer VC1

(b) static queues

Physical Channel

32 32

Read-Pointer VC1
Write-Pointer VC0 Read-Pointer VC0

VC-ID

T3 B3 B3 H3

 T2 B2

T1 B1 B1 H1

H0

Linked List Table

(a) DAMQ

Physical channel P3 P1 P2 P0 P3 P1 P3 P1 P3 P1 P2

Free list

VC state

0 1

 1 1

… …

 15 1

VC3 VC1 VC0 VC2 Free

VC-ID

Write-Pointer

Read-Pointer

H0 T1 B1 B1 H1 T2 B2 T3 B3 B3 H3

Occupied List

VC state

0 3

 1 4

 .. …

15 0

Central Buffer

13

implement an adaptive routing mechanism. An incoming flit should be arbitrated as

soon as a flit enters the router, and the flits that are buffered in the output-port can

only pass through that output (no adaptive routing can implemented). In the initial

versions of some DAMQ-based NoCs such as Link-list [14, 17, 18] and ViChaR [13],

VC organization techniques had VC buffers at the output-ports. However, some

newer versions of Link-list have introduced additional hardware in the form of recruit

registers to achieve adaptive routing [4]. Other researchers have also added buffers at

the input-ports to support adaptive routing [14].

 Configure limitation is the third problem with some DAMQ mechanisms. For

example, three limitations such as limitation in the minimum buffer space of each VC,

the number of VC, and the number of flits per packet has been employed in the

specifications of some DAMQ schemes [13, 14, 19].

 The Head of Line (HoL) blocking is the forth problem in the communication of some

DAMQ schemes. Assuming that a VC (queue) can receive more than a packet, and in

case of the packet header blockage, the other packet in the VC has to wait until the

blockage removed.

 There are interventions among the VCs of a DAMQ port that can lead to higher traffic

congestion as compared to static VCs [20].

 A flit arrival/departure has a large delay due to complex design of DAMQ based VCs.

 The initial two problems associated with DAMQ based VCs have also been reported by other

researchers and solutions have been proposed [4, 15, 16, 20]. The third and forth problems exist

in some DAMQ mechanisms and will be discussed in detail along with our optimal solution in

Chapter 4. The last two problems are being introduced in this section. Interventions among VCs

exist in all the DAMQ-based mechanisms. As already mentioned, a single storage array

maintains multiple VCs of a DAMQ port. Therefore, the communication behavior of a VC

directly affects the other VCs. For instance, a blocked VC can occupy the maximum free space

of its port buffer, and only a few buffer locations are available to unblocked VCs that lead to

higher traffic congestion. We discuss in detail the 5th problem along with our optimal solution

in Chapter 4. The longer flit arrival/departure delays mentioned as the last problem exist in

table-based DAMQ mechanisms such as Linked list [14, 18] and ViChaR [13] where a central

14

table, containing the registers, is employed for direct data flow. Registers are updated at a clock

edge due to which the table-based DAMQ mechanisms take one additional clock cycle than the

static VC-based NoC communication [1]. We further discuss this problem through the pipeline

stage analyses of two types of port buffers in the following section.

1.5.4 Timing Problem of Adaptive Table-based VC Organization

 In this section, we discuss the drawback of table based organizations as compared to static

VC organizations. Figure 1.9 shows the architectures of static and dynamic input-ports. The

control logic of the static input-port is simpler and each VC can be configured by using a

parallel FIFO buffer [20] as illustrated in Figure 1.9b. Each FIFO represents a VC and therefore

the number of VCs is equal to the number of FIFOs. The Read-pointer and the Write-pointer

point to the location of FIFO where a flit (data) is read or written respectively. A pointer works

like a simple counter, which is incremented circularly and continuously for each read and write

operation.

 The flit arrival/departure is also simpler in static input-port. If arbitration takes one step, the

arrival/departure of flits in a squeezed pipelined scheme consumes two clock edges as illustrated

in Figure 1.10a. At the entrance of an input-port, an arriving flit is decoded according to its VC

identification (VC-ID) and by means of de-multiplexer, then it waits to be latched in the FIFO

buffer (VC) before the first clock edge. At the first clock edge, the flit is stored in the VC where

a request corresponding to that flit is simultaneously issued to the arbiter. At the 2
nd

 clock edge,

the arbiter allocates the proper address for the crossbar switch (output) and ID for the

downstream router VC then issues a grant signal. The grant signal causes the flit to exit the

router. For proper operation of the decoder at the entrance of the input-port, the VC-ID should be

issued earlier than the latching of the flit in the buffer. Assuming that the flit and its VC-ID are

transferred at the same clock transition, each flit arrival/departure takes a two-clock event delay

in the static VC router. We have assumed that the FIFOs are dual-port, where the arrival of a flit

can coincide with the departure of another flit.

15

 In the case of dynamic VC input-ports, the VC buffers are allocated dynamically based on the

traffic resulting in more complex control logic. Linked-List based DAMQ has been employed as

a conventional DAMQ in many research projects [14, 17, 20, 21]. Using this mechanism, a

single buffer (queue) maintains multiple VCs, and the data flow is directed by Linked-List tables

as illustrated in Figure 1.9a [14]. The Read-pointer and Write-pointer are updated based on the

contents of the linked list tables. In a squeezed pipelined design, when arbitration takes one step,

the arrival/departure of flits will take four clock edges as illustrated in Figure 1.10b. A head flit

arrives at the input-port and waits to be latched in the VC (buffer). Then the flit is latched into

the input-port buffer at the first clock edge. In the 2
nd

 clock edge, the Linked-List tables are

updated according to the VC-ID, which leads to a request signal being issued to the arbiter. In

the 3
rd

 clock edge, the arbiter assigns a proper address for the crossbar switch (output) and ID

for the VC before issuing a grant signal. The grant signal causes the flit to exit the router, as

well as the linked list tables are updated at the 4
rd

 clock edge. In a Linked-List DAMQ based VC

organization, the read and write pointers cannot be updated at read or write events. Instead, they

will be updated one clock event after the read and write (i.e. after updating the tables). However,

in the static VC queue, the read and write pointers can be incremented at the read or write

events. This causes the pipeline stages in DAMQ table-based input-ports to be one clock cycle

longer than those of static input-ports. The same communication characteristics are expected for

Store flit in the

input-port

buffer

Edge 1 Edge 2 Edge 3 Edge 4

Update Tables

and make a

request

Arbitration in

the arbiter and

send grant

Store flit in the

input-port

buffer and

make a request

Update tables

and sent credit

out

Arbitration in

arbiter and

send grant
Flit &

Credit

Flit &

credit

Figure 1.10: Staic vs. Dynamic Input-Port Pipelines

Flit &

Credit

Flit &

Credit

a) STATIC

b) Dynamic

16

other table-based DAMQ mechanisms e.g. ViChaR [13]. The ViChaR has a central table that

contains registers to direct the data flow. Registers are updated at one clock edge that results in

the usage of one additional clock cycle. However, the VC organization approach presented in

Chapter 4 does not employ tables. Moreover, its flit arrival/departure delay is equal to that of

static VCs but with all the advantages of dynamic VCs.

1.6 Data Flow Arbitration

 In this section, we introduce the data flow arbitration that is the process after buffering. It

also introduces a state of art arbiter in Chapter 5. After buffering a flit in a VC of an input-port,

VC issues a request to the arbiter for accessing shared resources. The structure of arbiter

becomes more complex when an NoC utilizes VC mechanism in its data path (extra hardware

for VC and switch allocators). The arbiter can perform arbitration and allocation in four

pipelined stages as follows. First, the route must be computed to determine the output-port (or

ports) to which the packet can be forwarded. Then, a downstream router VC (VC in router’s

input-port) should be allocated. When the flit’s buffer space is booked in the downstream router,

the flit can begin to compete for access to the crossbar switch. Once a route has been determined

and a downstream router VC allocated and the crossbar switch configured, the flit is forwarded

over this VC to the downstream router on the route. For explaining, consider the case illustrated

in Figure 1.11 where the HF flit (header flit of a packet) is in VC1 of input-port 5 of router 3.

To advance the flit, HF to router 6, a space in a buffer in the input-port 1 of router 6 must be

allocated, and HF must win the allocation to traverse the crossbar switch. To begin advancing

the HF, the route computation is first performed to determine the output-port to which HF can

5

2

7 8 9

1 3

4 6

S1

D9

Bf2 Bf1 Hf
Tf

 Arbiter

Crossbar

Switch

5x5

VC1

VCv

Input-port 5

Input-port 1

RC

Credit

 Credit

out

Data

Data

Data

Data

Data

Data

Output-port 5

Output-port 2

Output-port 1

VA

SA

ST grant

 Arbiter

Crossbar

Switch

5x5

HF

VCv

Input-port 2

Input-port 1

RC

Credit

 Credit

out

Data

Data

Data

Data

Data

Data

Output-port 5

Output-port 4

Output-port 1

VA

SA

ST grant

3 6

Figure 1.11: HF Flit in VC1 of Input-port 5 of Router 3 Traveling to Input-port 2 of Router 6.

17

be forwarded. Based on XY routing (see Section 1.2) the output-port 4 is assigned. Then, HF

requests a VC from the VC allocator (assume VC2 of input-port 1 of router 6). When the buffer

space of HF is reserved in router 6 along the output to the downstream router, the flit can

compete to access the crossbar switch by means of switch allocator. Once the output-port has

been determined, a VC is allocated, and the crossbar switch is configured, the HF flit can travel

from output-port 4 to the VC2 of input-port 1 of router 6. We explain the above stages and their

timing processes in the following section.

1.6.1 Arbiter Pipeline Stages

 The pipelined stages of a typical VC-based arbiter are illustrated in the timing diagram of

Figure 1.12. Each flit of a packet must go through the stages of Routing Computation (RC),

Virtual channel Allocation (VA), Switch Allocation (SA), and Switch Traversal (ST) [2]. The

RC and VA stages perform computation only for the header flit (once per packet). Body and tail

flits pass through these stages without RC and VA computation. In fact, the SA and ST stages

operate on every flit of a packet, and only the header flit passes through all the stages.

In our design, the first three stages i.e. RC, VA and SA proceed in parallel and in one clock

cycle as illustrated in Figure 1.13. However, in other designs, each stage may take one or more

than a cycle. As one can notice in Figures 1.12 and 1.13, ST stage is the last stage and it needs a

separated clock cycle. It can work concurrently with the first stage of the following flit [22]. We

will discuss the advantage of our pipeline mechanism later. The arbitration process begins when

the header flit of a packet leads a request to be issued to the arbiter, assume at cycle event 0 of

Figure 1.12. During the following four cycles, the request of flit remains activated that leads all

the four stages to proceed. The header flit information is used by the RC stage to select the

Figure 1.12: The pipelined stages of a typical VC-based arbiter. A packet consists of 5

flits takes 8 cycles to be arbitrated in case of no stall in the communication.

Clock

Header flit

body flit 1

bodyflit 2

bodyflit 3

tail flit

0 1 2 3 4 5 6 7 8

RC

A

VA
B

SA
C

ST
C

SA

C

ST

C
SA

C

ST

C
SA
C

ST
C

SA

C

ST
C

18

requested output-port at the clock event 1. The result of RC stage along with the states of

downstream router VCs are used as inputs of VA stage to pick a free downstream router VC for

the packet at the clock event 2.

The information provided by RC stage along with the information of requested downstream

router VC are used by SA stage to determine the winner inputs VCs at the clock event 3. At the

clock event 3, two tasks such as the issuance of grant signal and crossbar address are performed

to prepare the route, where the flit passes at the following clock cycle. Therefore, the request of

next flit after the header flit can be processed during the fourth cycle. The flit travels to a

downstream destination by means of proper handshaking signals during the 4
th

 cycle (we assume

a credit-based flow control). At the end of RC and VA stages, the information generated by RC

and VA stages are saved in a register table and will be used for the following (body and tail) flits

of the packet. For example, the result of VA stage is recorded to be issued as a new VC-ID for

packet flits. When a body or tail flit makes the request, the recorded RC and VA information are

used by the SA stage, and these two stages are bypassed as illustrated in Figure 1.12. From this

point until the release of the channel by the tail flit, the recorded RC and VA information

remains unchanged. Therefore, the four stages proceed through two distinct frequencies: packet

rate and flit rate. RC and VA stages are performed once per packet. On the other hand, SA and

ST stages are performed per flit basis.

1.7 Motivation

The motivations for the research conducted and presented in this thesis are listed as follows.

Figure 1.13: The pipelined stages of a typical virtual channel arbiter. A packet consists

of 5 flits takes 6 cycles to be arbitrated in case of no stall in the communication.

Clock

Header flit

body flit 1

bodyflit 2

bodyflit 3

tail flit

0 1 2 3 4 5 6

RC

A VA

B SA
C

ST

C
SA

C

ST

C
SA

C

ST

C
SA
C

ST

C
SA
C

ST
C

19

 Network-on-Chip architectures are viewed as a possible solution to meet the wiring

challenges of MPSoC systems

 NoC design that consumes minimal power, IC area but with higher performance is a

necessity for SoC design especially for low power high performance applications.

 Current NoC router and NoC system designs are not optimal.

 The main problem with the current NoC design is related to lower performance under

high contention due to traffic congestion.

 Router is the key component of NoC, and if one improves its design, it will improve the

overall NoC performance.

 Both NoC performance and energy budget depend heavily on the routers' buffer

resources. One must use the buffer cleverly and intelligently for NoCs e.g. employ

Adaptive VCs.

 Adaptive VCs also have maximum buffer utilization of the router.

 Current DAMQ buffer design suffers a number of problems such as complexity, lower

buffer utilization, setup limitation, and HoL blocking.

 Arbitration is the other important activity in NoC routers. It can have some problems

such as complexity, lower speed, weak fairness, traffic starvation, and pipelined

difficulty.

 The above drawbacks and points related to current NoCs have motivated us to

investigate the high performance components of NoC router including input-port and

arbiter.

1.8 Objectives

 NoC architectures have been commonly presented in Globally Asynchronous Locally

Asynchronous (GALS) design style [23], and in this thesis we have also followed the GALS

style for our NoC router design. In NoC GALS architectures, the routers are locally

synchronous, but the NoC architectures are globally asynchronous, i.e. there can be different

clock rates for routers. In other words, the routers are independent in terms of clock design, and

the faster clock rates of routers leads to faster NoC. The main objectives of the research

presented in this dissertation are to design, present and evaluate an efficient NoC wormhole

router. The packet-based wormhole routing has been introduced as a viable communication

20

mechanism being employed in NoCs. The conventional wormhole routing flow is prone to

contentions and in some cases deadlocks. One of the traditional ways to alleviate contention and

to remove deadlock is to the introduction of VC organization. A traditional form of VC

organizations has been of static type. The numbers of VCs stay constant during communication

for static VCs. The static VC organization is also expensive in terms of higher number of buffer

cells and suffers from lower buffer utilization. To solve the problem related to static VC

organization, a commonly used dynamic VC organization namely DAMQ has been introduced.

Despite the performance merits of DAMQ organizations, they have a number of limitations such

as complexity, lower buffer utilization, lower frequency, longer pipelined stage, configure

limitation and HoL problem. The limitations of static and dynamic VC organizations have

encouraged us to present two efficient adaptive and dynamic VC organizations techniques.

 The arbitration is another important module requiring new and novel architecture for efficient

NoC router design. The arbitration organization is implemented in the arbiter module of router

that can have four pipelined stages: Rout Computation (RC), Virtual channel Allocation (VA),

Switch Allocation (SA), and Switch Traversal (ST). The arbitration and allocation functions are

performed inside the VC and switch allocators of arbiter module. The conventional NoC

arbitrations suffer from some drawbacks such as complexity, lower speed, weak fairness, traffic

starvation, and pipelining problems. The limitations of conventional arbiter organizations have

encouraged us to investigate design and present an efficient and fast arbiter.

 Finally, by employing novel VC buffering and arbitration organizations, our main objective is

to improve the performance and hardware metrics of routers and NoC systems. The

experimental results support the theoretical concepts of our proposed VC organization and

arbitration approaches for efficient NoC system.

1.9 Thesis Organization

 Chapter 2 reviews some important past research works related to DAMQ based VC

organizations and round-robin arbiter architectures.

 Chapter 3 presents and evaluates our adaptive and efficient VC organization based on

Statically Adaptive Multi FIFO (SAMF). The SAMF VC buffers are static during a

specific time of communication but subsequently adapted to the traffic demand.

21

 Chapter 4 describes our Efficient Dynamic Virtual Channel (EDVC) organization and its

novel features. The EDVC mechanism utilizes the common features of DAMQ input-

port to create a dynamic flow control.

 Chapter 5 provides a detailed presentation and evaluation of our novel and efficient

router architecture. The router utilizes two new components including an RDQ input-port

and IRR (Index-Based Round Robin) arbiter.

 Chapter 6 will discuss the thesis conclusions and our future works.

22

Chapter 2

Previous Research Work

 Three types of NoC research is reviewed and investigated in this chapter. First we discuss

some approaches related to adaptive buffer organization. Specifically, two major components

associated with the conventional buffer organization i.e. FIFO and DAMQ buffers are described

in detail in Sections 2.2 and 2.3 in an effort to highlight their problems. Our implementation of

a well-known DAMQ architecture i.e. Link-List is presented in detail in Section 2.4. Some

researches that focus on the design and organization of NoC routers are investigated in Section

2.6. Then various micro-architectures of a Round Robin arbiter used in the NoC router is

presented and discussed in Section 2.7.

2.1 Buffer Organization

 FIFO or Queue is frequently utilized for buffer organization in NoC routers. They

temporarily stores messages in the form of first come first serve (FCFS) order until network

resources become available. Commonly used terms, “queue” and “FIFO” sometimes have the

same meaning when the concept of first in first out is considered. However, in terms of

23

architecture, first-in-first-out queue is mostly referred to serial or parallel FIFOs, and the queue

is referred to all the buffers with FCFS concept that comprises FIFO buffers too.

 In industrial and academic research, many queue architectures have been proposed and the

FIFO, Circular Queue (CQ), dynamically allocated multi-queue (DAMQ) and their variants are

well-known queue designs [4, 15, 17, 18, 24, 25]. In the following section, the FIFO and CQ

organizations are discussed in detail under the name of serial and parallel FIFO [4].

2.2 Serial and Parallel FIFO Architecture

There are two types of FIFO designs and architectures: serial and parallel [4, 7, 13, 26, 27,

28, 29]. The serial FIFO (such as shift register) that works by fall-through principle has been the

first FIFO generation as shown in Figure 2.1. However, the architecture of conventional FIFOs

is constantly being improved. Currently, most of the FIFOs are parallel, which is an appropriate

mechanism to increase the number of stored words along with faster speed [7]. This trend is

suitable for network on chip due to two main reasons. The first reason is related to the fall-

through concept where the newly arrived data unit is store at the tail (cell) of the FIFO, and at

each shift request it is shifted one step toward the head of the FIFO queue. In this way, the data

units are shifted through all the storage location at each request. This concept has three

drawbacks of long fall-through delay, bubble cells and high dynamic power consumption. The

first drawback is due the fact that when the FIFO’s capacity is increased, its fall-through time

will increase leading to higher FIFI latency [7]. In fact, the minimum latency of a FIFO depends

on the depth of physical FIFO rather than the number of stored items. The second drawback of

bubble cells in the FIFO is illustrated in Figure 2.1. The bubble cells can occur when the data

input/output rates are different. The third drawback is the dynamic power consumption due to

data shifts from tail to the head of FIFO. Serial FIFO is simpler, but it is unsuitable for on-chip

implementation [26]. The FIFO architecture should not shift the data items through all the

memory locations. In other words, the arrival packet should be stored at the front of empty cell

rather than at the tail of a queue.

D Q

> sh

D Q

> sh

D Q

> sh

D Q

> sh

D Q

> sh

Rreq

Packet in Packet out

Bubble cells

Figure 2.1: Conventional Shift Register (serial) FIFO.

First in

New

Arrival

24

To solve these drawbacks of deep FIFOs, a parallel FIFO mechanism that relies on read and

write pointers has been introduced [13]. We have already discussed this mechanism and the

architecture of parallel register-based FIFO in Chapter 1, which is illustrated in Figure 1.6. The

same style is also used in SRAM-based FIFOs as shown in Figure 2.2. The write and read

address ports of the SRAM are the selection ports of de-multiplexer and multiplexer while the

Read-pointer and Write-pointer work as counters.

The register-based buffers are usually more expensive in terms of power because they use

more transistors than SRAM-based buffers [27]. However, register-based operations (read,

write, shift) only involve the occupied cells, while SRAM operations (read, write) involve all the

cells due to global bitline and wordline wiring. Therefore, register-based buffer may consume

less energy than SRAM based buffers when the buffer utilization is below a certain threshold

and higher energy when the buffer utilization is above the threshold [27]. Figure 2.3 shows the

threshold utilization of different register-based buffers with different sizes and technologies.

Figure 2.3: Buffer Threshold Utilization vs. Buffer Size.

0%

10%

20%

30%

40%

50%

60%

4 6 8 10 12 14 16

B
u

ff
er

 u
ti

liz
at

io
n

 t
h

er
es

h
o

ld

Buffer size (flit)

35nm

50nm

70nm

0.1um

Figure 2.2: SRAM-Based FIFO Using Parallel Style.

Read Address

Input

Write-Pointer

Read-Pointer

Write Address

Output

SRAM

25

The register-based implementation is still viable at 0.1μm technology with relatively smaller

buffer size and lower buffer utilization, but it is not a good choice for 35nm technology. This is

mainly due to increasing static power for 35nm or lower technologies, where the advantage of

fewer activities is completely diminished by the disadvantage of more transistors [27]. As the

buffer capacity increases to dozens of flits, the register-based implementation becomes

inefficient due to larger chip area occupied by the buffer [26]. The schematics of a dual-port

SRAM cell and a D-type flip-flop that are used for large-capacity FIFOs are shown in Figures

2.4 and 2.5 respectively. Assuming that a NOT gate and a NAND gate need two and four

transistors in their structures respectively [30]. A SRAM cell occupies only a third of the D-type

flip-flop register area. Now-a-days, NoC buffers are mainly implemented by SRAM due to the

area and power cost and the availability of the corresponding Intellectual Property (IP) cores

[24]. The above facts have encouraged us to use SRAM-based buffer and parallel style

mechanism in all the proposed designs presented in this dissertation.

Figure 2.5: A Positive-Edge-Triggered D-FF.

Q

Q

Clock

Data

Figure 2.4: SRAM-based FIFO.

SRAM cell circuit

Tbd

Tpw

Tm

Tc

Twd
Tpr

Sense amplifier

W

o

r

d

l

i

n

e

Bitline

Data In

Data Out

26

2.3 DAMQ Buffer Organization Research Work

DAMQ that is a unified and dynamically-allocated buffer structure was originally presented

by Frazier and Tamir [18]. It is a single storage array that maintains multiple FIFO queues. The

DAMQ mechanism dynamically allocates multiple queues on a physical channel. In other

words, the DAMQ buffers are able to efficiently adapt to network traffic by dynamically

allocating queue space among the output-ports according to the network traffic [4]. These

dynamic queues of DAMQ buffers lead to maximize buffer utilization. The DAMQ organization

can be used in the VC organization of NoC. This technique is able to solve or alleviate the other

NoC issues such as contention, deadlock, HoL blocking or fault tolerance. Jamali and

Khademzadeh [15] has used DAMQ buffer scheme for fault tolerance in NoC systems. There

are some drawbacks related to initial DAMQ scheme presented by Frazier and Tamir [18]. We

discuss these drawbacks in the following section. The first drawback of scheme is that the

packets are stored into the queues of a multi-queue of the output channel for routing. Therefore,

in the case of blockage of the output channel, the packets destined to that output-port become

blocked. According to Choi and Pinkston, this type of blocking is not HOL [4], but we argue

that it is HOL blocking as explained earlier in Section 1.4.5. In fact, packets in an output channel

have different destinations, and they travel to different output channels in the downstream

router. Therefore, if the head of line of these packets is blocked due to the blocking of its route

in the next downstream router, the remaining packets will be blocked even though their routes

are open in the next downstream router. Figure 2.6 illustrates a HOL blocking case where

eastward output channel of router1 is blocked due to the blocking of P1. The packets P2 and P3

are blocked despite the fact that their routes are open in the downstream router.

The second problem of scheme is again related to the location of queues in output channel. In

fact, the queue structure is tailored more for deterministic routing algorithms than for fully

Figure 2.6: Head of Line Blocking in DAMQ Output Channel.

Router1
Downstream

Router

P1 P1 P1

P2

P3

P3 P2 P1

Multi-Queue of Output Channel

27

adaptive routing algorithms. In the scheme, a routing decision for a new packet is made in order

to assign the packet to one of the output queues. This forces the packet to be routed only through

that output. In such a flow control, the routing adaptivity cannot be established [4]. The third

problem of initial DAMQ approach is that there is no reserved space dedicated for each output

channel [18]. The packets destined to one specific output-port may occupy the whole buffer

space. Therefore, the new packets destined to this output-port have no chance to get into the

buffer [15]. The fourth problem is related to its hardware complexity caused by the linked-lists

and dynamic queue management utilized in the scheme [4]. Despite the performance merits of

Link-List mechanism utilized in this scheme, it suffers from a few complications and limitations

that we will discuss in detail in Section 2.4. In fact, one of the objectives of our approach

presented in Chapter 4 is to implement a DAMQ buffer without Link-List mechanism.

Different buffer architectures are proposed to overcome various limitations of DAMQ used in

NoCs. Dynamically allocated multi-queue with recruit registers (DAMQWR) and virtual channel

dynamically allocated multi-queue (VCDAMQ) are proposed in an effort to overcome some of

the drawbacks of DAMQ [4]. DAMQWR uses DAMQ architecture with some recruit registers to

implement adaptive routing for on-chip communication. The main recruit registers assign the

packets of blocked sub queues to less congested sub queues. However, in addition to hardware

overhead, DAMQWR method has additional delays due to recruit register updates and packet

recruit operations. The queue organization that resembles DAMQ in the VCDAMQ method can

efficiently adapt to an unbalanced traffic load amongst the VCs by dynamically allocating queue

space to virtual channels. In fact, the difference between the VCDAMQ and the traditional

DAMQ lies in the fact that the sub queues of VCDAMQ are associated with router VCs while

those of the DAMQ are associated with the router output-ports.

 Lai et al. introduce a Link-List based DAMQ architecture with congestion awareness [20].

They have added congestion-avoidance logic to the arbiter for predicting congestion situation at

the immediate neighbors. Lai et al. also proposed DAMQ architecture to remove HoL blocking

[21]. Once a packet faces an HoL blocking, an extra VC is allocated. This method to remove

HoL blocking and congestion is expensive and complex when compared with our approach

presented in Chapter 4. Our approach intrinsically avoids congestion that also takes care of HoL

blocking. Zhang et al. presented a novel multi-VC dynamically shared buffer (DAMQ-PF) for

NoC systems [24]. Their design has a small pre-fetch buffer, which is used for each VC. This

28

buffer can store the data read from the shared buffer to provide dedicated storage for each

output-port. This allows continuous and concurrent access of the shared buffer without any

delay. Zhang et al. have also proposed a fair credit management method to avoid the situation

where a single VC can occupy the shared buffer exclusively [24]. Liu and Frias proposed a new

DAMQ buffer organization scheme with a reserved space for each of the virtual channels [31].

The main feature of scheme is that there is a reserved space dedicated for each virtual channel.

As shown in Figure 2.7, two buffer slots are reserved for each virtual channel before the buffer

accepts any incoming flit.

 Different schemes have been used to implement DAMQ mechanism [13, 14, 16, 18, 24]. All

of these schemes are either expensive in terms of hardware or inefficient due to data dependency

(specifically when the packet becomes bigger). We describe some of important DAMQ

mechanisms in the following sections.

2.3.1 Virtual Channel Regulator (ViChaR)

Nicopoulos et al. introduced a centralized shared buffer architecture called the Virtual Channel

Regulator (ViChaR) [13]. This design avoids using the linked list mechanism but its control logic

is expensive. In spite of the advantage of supporting a large number of adaptive VCs (as big as

the number of slots in a channel buffer), theoretically ViChaR cannot assign a specific room to

each VC. In some cases, this will create a deadlock or high traffic contention. ViChaR

dynamically allocates VCs and grants new flit on a First-Come-First- Served (FCFS) basis, and

there is no limitation for each VC. Therefore, in the case of blocking, a packet can occupy the

entire slots of a channel buffer and prevents any new packet to pass through the router. If the

blocking of that packet continues, all the upstream routers will be occupied by the packet, and no

other new packet can pass through the route. This blocking can be spread through the NoC

system and create deadlock. Technically, this problem is due to the specification of ViChaR

structure where the VC size varies from one to maximum size of buffer of a channel. Another

drawback of the approach is a huge NoC hardware in some configurations. In ViChaR method,

the information of incoming buffer is saved in a table and two trackers as illustrated in Figure 2.8.

Figure 2.7: Reserved Space for Virtual Channels [19].

VC0

Physical channel

P0 P1 P1 P3 P3 P3 P3

VC1 VC2 VC3 Free

29

The VC control table module that holds the slot IDs of all the current flits becomes very large

when the flit size is small or the packet size is big. Another drawback of approach is slower speed

of system operation. As mentioned before, ViChaR can support a maximum number of VCs as

the number of buffer slots (BS) in the channel buffer. This requires the arbiter in both VC

allocation and switch allocation stages to match the BS size. Such a size of the BS may create a

latency bottleneck in the critical path of arbiter and consequently the router, which can limit the

NoC frequency [16]. We will evaluate and compare it with our approach in Chapter 4.

Several features of ViChaR architecture have encouraged some researchers to employ this in

their designs. Nicopoulos et al. has presented the design of an intelligent buffer that logically

reorders the entries in a FIFO buffer to minimize overall leakage power consumption [32]. In this

design the buffer slots are first classified based on their leakage characteristics. Then, the write

module attempts to direct incoming flits to the least leaky slot. Moreover, all unused slots are

supply-gated using sleep transistors to minimize leakage power consumption. Xu et al. presented

another application that employs ViChaR architecture [16] where VCs are assigned based on the

designated output-port of a packet in an effort to reduce the HoL blocking. Unlike ViChaR, this

design uses a small number of VCs. In other words, their buffer design is similar to ViChaR

except that each VC can store multiple packets and the number of VCs is fixed. Their buffer

design uses a smaller arbiter and VC allocation scheme is hybrid type i.e. in-between static and

dynamic.

2.3.2 Self-Compacting Buffers

An approach called “self-compacting buffers” is presented by Park et al. to implement

DAMQ switching elements [25]. There is no reserved space dedicated for any VC, that is, the

Figure 2.8: One big table and two trackers used in ViChaR method [9].

VC availability tracker

VC ID Available

0 0

1 1

2 1

3 1

4 1

…. …

15 1

(c) 1 denotes the related VC in
input channel has flit, and

zero means it is empty.

16 1-bit registers

Slot availability tracker

Slot Available

0 0

 1 1

 2 1

 3 1

 4 1

…. …

15 1

(a) 1 denotes the slot in input

port memory is occupied,
and zero means it is empty.

16 1-bit registers

VC Control table

VC ID Direction Header Data Data Tail

VC0 East 1 3 N N

VC 1 South 2 4 N N

VC 2 West N 9 10 N

VC 3 East N N N 15

VC 4 N N N N N

…. …. …. …. …. ….

VC 15 N N N N N

(b) N denotes slot is free assume input-port memory
has 16 slots. When a flit arrives its

information recorded in the table.

16 19-bit registers

30

first drawback of approach. In fact, a VC can receive as many as flits to occupy the whole of

channel buffer. We will discuss in Section 4.5.3 that this specification of mechanism leads to

deadlock. Data in self-compacting buffer is stored in a FIFO manner within the region for each

VC. When an insertion of a flit requires space in the middle of the buffer, the required space will

be created by moving down all the flits which reside below the insertion address. Similarly,

when a reading operation conducted from the top of a region, data removed from the buffer may

result in empty space in the middle of the buffer, then the data below the read address is shifted

up to fill the empty space. For example, assume a scenario in self-compacting buffer as

illustrated in Figure 2.9. Assume the order of data in each VC as well as in the buffer is from left

to right. Figure 2.9a illustrate a condition that three packets A, B and C have been stored in

VC0, VC1 and VC2 respectively. Assume VC1 receives a new flit, B2 as illustrated in Figure

2.9b. B2 should be stored in right side of B1, as already mentioned that the data is stored in a

FIFO manner self-compacting buffer. For this reason, the data in right side of B1 should be

shifted a slot to the right. Figure 2.9c illustrates a read from the buffer. The flit, A0 is read, so all

the data in the buffer should be shifted a slot to the left.

The authors claim that their approach is efficient because the amount of hardware required to

manage the buffers is relatively small when it offers high performance. However, this approach

has some drawbacks. In terms of behaviour, the self-compacting mechanism looks like the fall-

through methodology already discussed in Section 2.2. Therefore, it can have some of

drawbacks of fall-through buffer e.g. long delay and high dynamic power consumption. The first

drawback is due the fact that when the buffer capacity is increased, its fall-through time will

increase, leading to longer latency of the buffer [7]. In fact, the latency of self-compacting buffer

depends on its depth rather than the number of stored items. The second drawback is high

dynamic power consumption due to data shifts in the buffer. To solve the above drawbacks of

self-compacting buffer, Frias and Diaz proposed a novel buffer [33]. They proposed a new cell

that has the capability of performing all the required data moves. The novelty of their approach

Figure 2.9: Write and Read Scenario in Self-Compacting Buffer

VC0 VC1 VC2 Free

A0 A1 B0 B1 C0 C1 C2

VC0 VC1 VC2 Free

A0 A1 B0 B1 B2 C0 C1 C2

shift

Free

A1 B0 B1 B2 C0 C1 C2

shift

VC0 VC1 VC2

a) b) c)

31

is at the transistor level rather than the gate level. In other words, to evaluate this approach, one

has to have their specific IP cell.

2.3.3 Mask-based

Mask-based approach has been introduced to implement DAMQ by Evripidou et al. [14]. It is

cheaper hardware-wise but slower in terms of performance. In fact, the credit for each VC

follows a round robin scheme and it is synchronized with the clock to send out its packet flit.

Therefore, Mask-based approach leads to synchronous communication that is not much useful

for NoC routers. Evripidou et al. have also presented a new version of Link-List mechanism,

which mimics the DAMQ organization presented by Frazier and Tamir. As compared to Mask-

based buffer, the Link-List buffer is expensive in terms of hardware but leads to higher

communication performance [18]. In the following section, we describe the architectural detail

of a Link-List based organization that follows the protocol of Evripidou approach.

2.4 Link-List based DAMQ Organization

 In this section, we present our implementation of the Link-List based DAMQ (LLD)

mechanism. The micro-architecture of LLD input-port of an NoC router is presented here to

illustrate the complexity and cost of LLD mechanism as compared to our proposed VC

architectures presented in Chapters 3 and 4.

2.4.1 LLD and Static Read and Write Mechanism

We compare the read and write mechanism in static and dynamic queue types before

presenting the LLD architecture in more detail. Please note a queue refers to a VC in this

dissertation. In Figure 2.10, the VC implementation of a physical channel is illustrated through

two queue types: static and DAMQ (dynamic). In a static queue, the buffer slots are statically

allocated to incoming packets where in the case of a DAMQ queue, the buffer slots are

dynamically allocated to incoming packets. As mentioned earlier, the pointers of each queue in

Figure 2.10a are updated circularly and sequentially for each read and write to the queue.

However, DAMQ technique updates the contents of read and write pointers by means of a

linked list format of saved flit addresses. The linked list information determines the order of

VCs in the channel buffer as well as the order of slots in each VC [18]. For each channel, a table

keeps the linked list addresses of the queues buffer.

32

The read pointer is updated according to the information stored in linked list table and points

to the first slot in a queue. For all the queues, there is one slot state table that is used to keep

track of free slots available for incoming packets. The write pointer is updated according to the

slot state information and point to an unoccupied slot where incoming flit can be stored. For

each read and write of the buffer, the linked list and the slot state tables are updated.

2.4.2 LLD Router

 An LLD router consists of input-port modules, an arbiter, and a crossbar switch as shown in

Figure 1.1. The LLD router input-port consist of a central buffer, five lookup tables, and some

other logic circuits and ports as illustrated in Figure 2.11.

Linked List Tables

Figure 2.10: Input-Ports with Two Queue Type

(b) dynamic

Physical

channel

T3 B1 T2 B3 H0 H1 B3 B1 H3 T1 B2

Slot state

sl state

0 1

 1 1

… …

 15 1

Read-Pointer VC3
Read-Pointer VC2

Write-Pointer VC3
Write-Pointer VC2

Write-Pointer VC1

(a) static

Physical Channel

32 32

Read-Pointer VC1
Write-Pointer VC0 Read-Pointer VC0

VC0 VC2 VC3 VC1 Free
VC-ID

VC-ID

Write-Pointer

Read-Pointer

H0 T1 B1 B1 H1 T2 B2

T3 B3 B3 H3

 T2 B2

T1 B1 B1 H1

H0

T3 B3 B3 H3

Link List

sl add

0 3

 1 4

 .. …

15 0

Central Buffer

Queue or VC buffer

32 32

Linked List Tables

Reserve one slot per

VC: ((add all empty

slots)-(add all empty
VC except the

corresponding VC))

16-bit 16-slot 4-VC LLD input-port micro-architecture.

.

Grant

Read-pointer

Credit-in

VC-ID

VC-ID-local

VC-State

VC state

0 1

 1 1

 2 1

 3 0

Header-List

VC Add.

0 2

 1 1

 2 7

 3 -

Tail-List

VC Add.

0 6

 1 5

 2 7

 3 -

L-L

slot Add.

0 3

 1 4

 .. …

15 0

 Read-Address

Central Baffer

Write-Address

 Data Out

 Data In

VC-full

Reg.

 In

 Out

Data-in

Flit-info

Data-out

Grant

 Credit-in

Slot-State

slot state

0 0

 1 1

.. ..

15 1

De

coder

VC-block

VC-State

VC state

0 1

 1 1

 2 1

 3 0

Read-pointer

Read-pointer

VC-req

Write-pointer

Slot-State

slot state

0 0

 1 1

… …

 15 1

Clk

16

4

VC-ID-local

4

VC-ID

16

2

4

3

Header-List

VC Address

0 2

 1 1

 2 7

 3 -

 -

 -

 +

 +

 +

Figure 2.11: LLD Based Input-Port.

0 1 2

VC-

Selector

<<
“00001”

3

4

16

33

A slot of the central buffer comprises of a packet flit, where the slot size of the buffer is equal to

the flit size. On the activation of credit-in, the data is stored in the slot pointed by the write-

pointer. The data pointed by the read-pointer appears at the central buffer output. Five lookup

tables are used to implement the LLD router where three of these tables are shown in Figure 2.12.

The VC-State and Slot-State tables keep a Boolean value for each VC and Slot (empty/occupied).

The Header-List table keeps the addresses of slots that contain the header flits of VCs. The Tail-

List table keeps the addresses of slots that point to the tail flits of VCs. The L-L table keeps the

addresses of the next slot of each slot, or it links the addresses of slots that are associated with

each VC in a FIFO manner. The Slot-State table has a record of the occupied slots in the central

buffer.

2.4.3 LLD Communication

 We are employing an asynchronous communication among routers, destination and source

cores. A credit based handshaking is used to establish communication between the source,

intermediate and destination routers. A credit signal is generated when a source core sends a

packet flit. In the case of a destination router, the credit signal causes the data to be stored in the

input-port buffer. If the buffer is full then an acknowledge signal, VC-full is sent back to the

source, signaling it to cease sending flits to the input-port. Following steps describe the

communication of flits in the router’s input-port, where Figure 2.13 illustrates the timing diagram

of the communication.

1) Data and VC identification (VC-ID) appears at the input-port of the router at clock event 1.

2) At clock event 3, Credit-in signal becomes high and leads the storage of data in the input-

port buffer.

Figure 2.12: LLD Router (4-VC and 16-slot) – Lookup tables

Header-List

VC address

0 2

 1 1

 2 7

 3 -

(b) Addresses of

first flit of each VC

Four registers (4-bit)

L-L

Slot Linked

addresses

0 3

 1 4

 2 7

 3 6

⋮ ⋮
15 N

(a) Link addresses of VCs

16 registers (4-bit)

Tail-List

VC address

0 6

 1 5

 2 7

 3 -

(c) The address of last-

stored flit of each VC

34

3) At clock event 4, all the tables of the input-port are updated according to VC-ID and the

request signal is set, which causes the arbiter to read the flit-data information.

4) At the positive clock edge 5, a grant signal is issued after arbitration. This leads the data

and its new VC-ID to exit the input-port.

5) All the tables are updated and request signal is reset at clock event 6.

6) A high level of grant signal causes the credit-out to be set and the grant to be reset at the

positive clock edge 7.

7) A high level of credit-out signal will also reset the credit-out at the positive clock edge 9.

The pipelined communication illustrated in Figure 2.13 shows that in the case of LLD routers,

flit-data is stored for two clock events and transferred at two clock events. The tables are updated

at the negative clock edge, and the signals are detected and issued at the positive clock edge.

2.4.4 Slot-State Process

 The Slot-State table keeps a record of the occupied slots in the central buffer by maintaining a

Boolean flag for each slot in the Slot-State table. The flowchart of Figure 2.14a illustrates the

process of recording the states in a Slot-State table. When a flit occupies a slot in the central

buffer, the corresponding bit for that slot is set. When a flit leaves the slot, the corresponding bit

of the slot is reset in the Slot-State table. The decoder module that decodes the content of the Slot-

State table is shown in Figure 2.15a. The decoder generates the write-pointer signal and it is

Figure 2.13: Timing Diagram of a Pipeline Communication inside a LLD Input-Port.

00

clk

Data in

Credit-in

Stored data

Request

Grant

Data out

Credit-out

 1 2 3 4 5 6 7 8 9 10 11 Time

Update
Tables

Update
Tables

Update

Tables

Update
Tables

Update
Tables

0C 0B

0A 0B 0C

0A 0B

0A

00

00

35

Reset

Figure 2.14: Updating of LLD tables

Reset

-ve edge clock

Reset Slot-State table

Y

N

Incoming (credit-
in)

Y

N

Set related entry
Slot-State[i] = 1

 where

 i = write-pointer

Departing

(grant)

Y

N

Reset related entry

Slot-State[i] = 0
 where

i = read-pointer

 (a) Slot-state

process
 (b) Flit arrival and departure

process

-ve edge
clock

Reset L-L, VC-State, Header-List, and Tail-List tables

Y

N

Incoming

(credit-in)

Y

N

Update Tail-List, Header-

List and VC-State tables

Departing

(grant)

Y

N

Update VC-State table

Is VC
empty?

Update Tail-List and L-L
tables

Update Header-List table

N

N

Y

Y

Tail = = Header

connected to the Address-Write port of the central buffer. The decoder points to the first

unoccupied slot of the buffer.

(a) 4-bit decoder for the Write-pointer

0

1

2

14

15

Decoder

Write-pointer

0

1

2

3

4

5

6

7

.

.

.

15

0

1

0

1

1

1

1

0

Slot-State

1
:
:

:

:

:

:

 (b) 4-bit Read-pointer

Header-List

VC-ID-local

Read-pointer
0

1

2

3

1

2

15

-

Figure 2.15: LLD Read and Write Pointers

36

2.4.5 Flit Arrival and Departure Process

We briefly describe the arrival and departure of data flits and updating of LLD tables. The

updating mechanism of the LLD tables can be illustrated by the two processes of Figure 2.14.

These two processes are sensitive to the negative edge of the router clock. The flit arrival and

departure is detected by credit-in and grant signals, respectively. Assume that a VC (e.g. VC3) is

empty and ready to accept data. Upon the arrival of a flit for VC3, three things happen

simultaneously. First of all, the corresponding bit of VC3 is set in the VC-State table indicating

that VC3 is occupied. Then the content of the write-pointer is stored in the Tail-List and Header-

List tables. Finally, the corresponding bit is set in the Slot-State table. The write-pointer is then

updated that points the next free slot for the incoming flit. When another incoming flit tries to

move into the same VC (VC3), three things occur at the negative clock edge. The content of the

write-pointer is stored in a location of the L-L table where the Tail-List table points to it. Then

the write-pointer content is stored in the Tail-List table. Finally, the Slot-State table is updated,

which leads to the updating of write-pointer.

When a flit exits from a VC (e.g. VC3), three types of events take place. If the Header and

Tail addresses are the same (the last flit), the corresponding bit is reset in the VC-State indicating

an empty VC3. In case the Header and Tail addresses are not same, the location of the L-L table

is identified by the Header-List table, and it is stored as the new header address of VC3 in the

Header-List table. Finally, the corresponding bit of the Slot-State table is reset, which causes the

write-pointer to be updated.

As the flit arrival and departure occurs at two different locations of the input-port buffer, there

is no storage conflict in the Slot-State table. When the Tail and the Header addresses are same,

the VC-State table is updated (i.e. when the departing flit is the last flit of VC). Therefore, if the

arrival and departure are for the same VC then the Header value is already updated. It means that

the Tail and Header addresses are not the same and there will be no table updating at the flit

departure. If the flit arrival and departure is for two different VCs, there would be no storage

conflict due to independency of different cells of the Header-List table.

2.4.6 VC-block Signal

 As illustrated earlier in Figures 2.13 and 2.14, all the tables are updated at the negative edge of

the router clock that issues request signals and the read-pointer address. These signals are stable

for arbitration at the positive clock edge (when request signals are checked by the arbiter

37

module). When any one of the request signals is high, the arbiter reads the information of the

requested flit for arbitration. If the requested output of a flit is free, the arbiter issues a grant

signal. The grant signal causes the flit to exit the router at the positive clock edge. If the

requested output is blocked, the arbiter issues a block signal (VC-block) that causes the VC-

Selector to select any other available VC for service as illustrated in Figure 2.16.

2.4.7 VC-Selector Module

 The VC-Selector module in the router input-port selects a VC for arbitration. It issues the

request signal, VC-req and is used to generate the read-pointer address as illustrated in Figures

2.16 and 2.15b. The VC-Selector module has a logic circuit that operates on the contents of VC-

State table and creates VC availability signal (VC-ava). In fact, the VC-block signal is reversed

and ANDed with its corresponding bit in the VC-State as illustrated in Figure 2.16. For example,

if the VC0 is blocked then VC-block[0] signal is high to prevent the selection of VC0. The VC-

Selector module selects a VC depending on the VC-ava signals and it consists of a logic circuit

based on the following logic code.

if (VC-ST[0]&& !VC-block[0]) VC-req =1; // VC0 request

else if (VC-ST[1] && !VC-block[1]) VC-req =2; // VC1 request

 else if (VC- ST[2] && !VC-block[2]) VC-req =4;

 else if (VC- ST[3] && !VC-block[3]) VC-req =8;

 else VC-req =0; // no request

The above code illustrates a deterministic scheduling policy that establishes a first priority for

VC0, 2nd priority for VC1, and so on. VC-ID-local signals select a free or available VC for

arbitration. In fact, the Header address of a VC is selected as the read-pointer as shown in Figure

2.15b.

Figure 2.16: VC-Selector Request Logic

VC-block[0] VC-ava

0

1

2

3

VC-State

1

1

1

0

VC-Req

VC-ID-local

0
1

2

Fixed priority arbiter

<<

“00001”

3

4

38

2.4.8 Buffer-full Module or VC-full Module

In the traditional DAMQ scheme, a VC can occupy the entire input-port buffer space.

Therefore, a Buffer-full signal is enough to represent the state of an input-port buffer. The Buffer-

full signal is used to close the input-port. When the input-port buffer is full, all the cells of the

Slot-State table are high. Therefore, the logical ANDing of the Slot-State cell values can issue the

Buffer-full signal as shown in Figure 2.17a.

 In case that the mechanism has control over the size of VCs, a credit signal (VC-full) is

required for each VC instead Buffer-full signal. We present the scheme illustrated in Figure 2.17b

where one slot is reserved for each VC. Assume that S0 to S15 represent the cell states of Slot-

State table, and V0 to V3 represent the cell states of VC-State table. The state of VC-full signal is

determined according to the logic equation as follows. VC-full[i]=((S0+…+S15)-(V0+…+V3)-

Vi) where iє{0…3}. For example, if VC0, VC1 and VC2 have at least a flit and VC3 is empty,

their associated adder outputs, ad_0, ad_1, ad_2 and ad_3 become 1, 1, 1 and 0 respectively.

When at least a slot of buffer is empty, the associated adder output, ad_4 becomes 1. Now the

states of VC-full[0], VC-full[1], VC-full[2] and VC-full[3] become 1, 1, 1 and 0 that means only

VC3 is free.

2.5 Buffering Organization Approach

A number of researchers have focused on the design and organization of routers buffers due

to its tight relation with the NoC power, performance and area. Some of them have used a

complex architecture as compared to conventional VC-based router architecture, or they are

efficient under certain NoC configurations or data flow circumstances [19, 34, 35, 36]. Some of

these research works are discussed in this section.

b) VC-full signals

16

 +

0

1

2

.

.

.

.

15

1
1

1

1

1
1

0

Slot-State

1
:
:

:

:

:

:

ad_4

VC-full[0] 3

 -

 +

VC-State

VC-full[2] 3

 -

 +

VC-full[3] 3

 -

 +

VC-full[1] 3

 -

 +

0

1

2

3

1

1

1

 0

ad_0

ad_1

ad_2

ad_3

0

1

2

.

.

.

.

15

a) Buffer-full signal

Buffer-full

1
1

1

1

1
1

1

Slot-State

1
:
:

:

:

:

:

Figure 2.17: Input-Port Buffer-Full and VC-Full Modules

39

An NoC router architecture called CUTBUF has been presented by Zoni et al. [34].The

approach dynamically assigns VCs to input-port depending on the actual input-port load and

reusing each queue by packets of different types. The approach significantly reduces the number

of physical buffers in routers, thus saving area and power without decreasing NoC performance.

They have assumed that a VC in conventional VC protocol can be re-allocated to a new packet

only if the tail of its last allocated packet is sent out, i.e. it is empty. However, a reserved VC in

CUTBUF protocol is released when either the tail flit traverses the same pipeline router stage, or

when the related packet gets blocked. In other words, to increase buffer utilization and

preventing HOL blocking in CUTBUF communication, a VC can be re-allocated to a new

packet under two conditions. First, the tail of its last allocated packet is sent out, i.e. it is empty.

Secondly, the packet that is stored in the queue buffer is guaranteed to traverse the switch in a

fixed number of cycles. In such a way, the newly allocated packet is guaranteed not to be

blocked because the previous one is guaranteed to traverse the switch. To implement above

mechanism, the following conditions are checked to let a new packet to allocate a no empty VC.

Once a packet has been granted by a router and its tail flit is stored in the input buffer VC, and

the downstream router has enough credits to store all the flits of the VC. As mentioned before,

these conditions are required for buffer reuse i.e. assigning a no empty VC to a new packet. A

drawback of approach can be the protocol constrain assumed for conventional VC protocol. In

fact, they assume that a VC in conventional VC protocol can be re-allocated to a new packet

only if it is empty. Therefore, we expect that the results of approach are created based on this

protocol constrain. Moreover, the efficiency of NoC without aforementioned protocol constrain

has not been investigated in the research.

This part of conventional NoC protocol has also been investigated in an approach called

Packet-Based Virtual Channel (PBVC) [35]. A VC in PBVC scheme is reserved when a packet

enters the router and released when the packet leaves. A VC will hold the flits of only one

packet at a time that subsequently removes the Head-of-Line (HoL) blocking. PBVC technique

is more efficient in dynamically allocated multi-queue (DAMQ) schemes where an input or

output port employs a centralized buffer whose slots are dynamically allocated to VCs. The

experimental results show that in the case of HoL specific traffic, the average latency and

throughput are improved for the PBVC approach as compared to conventional DAMQ-based

NoC.

40

Yung-Chou and Yarsun have presented a new DAMQ-based buffer organization called

DAMQ-MP that can accommodate multiple packets more than the number of virtual channels

[19]. The approach can solve certain data transmission issues under some circumstances, such as

heavy network congestion or short packets to improve the performance. To implement the

DAMQ-MP, two assumptions are applied to the conventional DAMQ configurations as follows.

First, a virtual channel only holds one packet each time for easy control and preventing HoL

blockings. In other words, if all virtual channels contain packets whose tail flits have entered but

not left yet, the remaining free buffer resources are wasted. The second assumption is to

presume a long interval between the departure of tail flit belonging to the current packet and the

header flit belonging to the next packet. By considering the above two assumptions, they have

introduced the DAMQ-MP data flow as follows.

Whenever the tail flit of a packet enters the input buffer via one of the VC, this packet

releases the virtual channel by alerting a notification signal to the upstream router. Therefore, a

new packet from the upstream router can be sent out and enters this free VC. In fact, the new

packet does not need to wait until the tail flit of previous packet gets out of the VC. This

approach can saves a lot of times, especially in case that the routing computation for the arriving

packets is high (see the second assumption). The aforementioned two assumptions and above

data flow organization leads the DAMQ-MP to be efficient in the cases of short packets, large

buffer capacity, heavy congested traffic (including saturated network), and small number of

virtual channels. As one may notice, the DAMQ-MP approach is in reverse conclusion to the

PBVC approach. The DAMQ-MP approach lets a VC to accept new packet when the VC is not

empty, but the PBVC approach prevents a VC to accept new packet when the VC is not empty.

In fact, both approaches are efficient under different NoC schemes and traffic patterns.

A router architecture, RoShaQ that allows sharing multiple buffer queues has been presented

by Tran and Baas [36]. In this approach, each input-port allocates one buffer queue and shares

all remaining queues. The router architecture maximizes buffer utilization by allowing the

sharing multiple buffer queues among input-ports. Sharing queues, in fact, makes using buffers

more efficient by reducing packet stall times at input-ports. The RoShaQ is able to achieve

higher throughput when the network load is heavy. On the other side, at light traffic load,

RoShaQ router achieves low latency by allowing packets to effectively bypass these shared

queues and reducing zero-load packet latency. In conclusion, the proposed router achieves

41

higher performance in both cases i.e. when the traffic load becomes heavy or at low-load traffic.

An RoShaQ NoC is deadlock-free due to the following reasons. At light load, packets normally

bypass shared queues, so the RoShaQ acts as a wormhole router hence the network is deadlock-

free. At heavy load, if a packet cannot win the output-port, it is allowed to write only to a shared

queue which is empty or contains packets having the same output-port. Clearly, in this case the

RoShaQ acts as an output-buffered router which is also shown to be deadlock-free. A drawback

of this approach is that the approach has achieved a weak contribution to NoC. In fact, the

approach combines two switching mechanisms: VC-based and simple wormhole to improve the

performance. When the first packet enters to an input-port, it is serviced through wormhole

switching without involving VC pipelines. However, when the second packet enters (assume the

first packet is still there), it is serviced through VC-based switching with involving VC

pipelines. Therefore, the RoShaQ routers should accommodate both circuits related to wormhole

switching and VC-based switching i.e. more hardware. Moreover, an extra circuit is needed to

detect wormhole packets from VC-based packets. Therefore, the RoShaQ router architectures

become more complex and consume more hardware as compared to conventional VC-based

routers. The performance improvement of RoShaQ is due to higher hardware overhead not due

to efficient architecture.

To eliminate buffer cost, Michelogiannakis and Dally have proposed an Elastic Buffer (EB)

flow control [37]. Flits advance to the next EB using a ready-valid handshake. An EB asserts its

ready signal routed upstream to indicate that it has at least one free storage slot. Furthermore, an

EB asserts its valid signal routed downstream to indicate that it is driving a valid flit. When

ready and valid are asserted between two EBs at a rising clock edge, a flit has advanced. This

timing requires at least two storage slots per EB to avoid unnecessary pipeline bubbles as

illustrated in Figure 2.18. In other words, an EB is a FIFO with two storage locations. EB

channels use many consecutive EBs to form a distributed FIFO. Without virtual channels,

deadlock prevention is achieved by duplicating physical channels.

In other words, EB is a primitive and simplified form of NoC buffering, which can be easily

integrated in a plug-and-play manner at the inputs and outputs of the routers as well as on the

network links to act as a buffered repeater. EB assumes only one form of handshake on each

network channel. The handshake cannot distinguish between different flows, thus making the

EB operation serial in nature. This feature prevents the interleaving of packets and the isolation

42

of traffic flows, while it complicates deadlock prevention. Due to this limitation, direct support

for VCs is abandoned and replaced by multiple physical networks or implemented via complex

and non-scalable hybrid EB/VC buffering architectures [37]. Hybrid routers operate as EB

routers in the common case, and as VC routers when necessary. However, hybrid EB/VC

technique removes the basic property of the EBs to act as elements that can be placed seamlessly

anywhere in the NoC.

Seitanidis et al. have extended EB architectures to support multiple virtual channels [38].

They called their EB architecture, ElastiStore. The ElastiStore approach minimizes buffering

requirements without sacrificing performance and without introducing any dependencies

between VCs, thus ensuring deadlock-free operation. It uses just one register per VC and a

shared buffer sized large enough to only cover the round-trip time that appears either on the

NoC links or due to the internal pipeline of the NoC routers as illustrated in Figure 2.19.

D Q

master

en

D Q

slave

en

Latch EB Control vin

rout rin
vout

out in

clock

Figure 2.18: Any EB architecture derived for edge-triggered flip-flops can also be implemented with latches[55].

Figure 2.19: Organization of the generalized ElastiStore Port. The shared buffer consists of as

many buffer slots as required to cover the round-trip time of the flow-control signals [56].

D Q

D Q

D Q

D Q

D Q

 ElastiStore Control

Data_in

 Data(2)

 Data(1)

 Data(0)

 Shared

In_valid(2)

In_valid(1)

In_valid(0)

In_ready(2)

In_ready(1)

In_ready(0)

D Q

 Main

43

The integration of ElastiStore scheme in an NoC router is illustrated in Figure 2.20. This

integration enables the design of efficient architectures, which offer the same performance as

baseline VC-based routers, but at a significantly lower cost.

In fact, this approach represents the DAMQ architecture with a reserved slot per each VC,

since it has been stated in [38] that ElastiStore architecture rely on fairly complex logic to keep

track of the location of flits within the unified buffer (see buffers illustrated in Figure 2.19). The

ElastiStore-based NoC results are only compared with those of conventional VC-based NoC.

For sake of fair evaluation, this approach could be also compared with a DAMQ NoC.

2.6 Heterogeneous Router Architectures

A number of researchers have focused on the design and organization of routers that have

direct impact on the NoC power, performance and area [39, 40, 41]. Some of these research

works are discussed in this section. A hybrid switching mechanism, Virtual Circuit Switching

(VCS), is proposed by Jiang et al. [39]. The approach intermingles the Circuit Switching (CS)

and Packet Switching (PS) to obtain low latency and power consumption in NoCs. They have

also proposed a path allocation algorithm to determine VCS connections and CS connections in

a mesh-connected NoC. VCs in the VCS approach are exploited to form a number of VC

connections by storing the interconnect information in routers. Flits can directly traverse the

routers by using only Switch Traversal (ST) stage (see Section 1.6.1). The main advantage of

VCS approach is that it can have a similar router pipeline with circuit switching, and can have

multiple VCS connections to share a common physical channel. In this hybrid scheme, VCS

connections cooperate with PS connections and CS. Once flits on CS or VCS connections arrive

Crossbar

Switch

RC RC RC RC RC Input VC

State
RC RC Output VC

State

Output

Port

SA

VA

 Input Buffer

ElastiStore

Figure 2.20: Integration of ElastiStore in NoC routers. ElastiStore modules can be integrated at the inputs and at

the outputs of a router. In general, ElastiStores can be placed seamlessly and in a plug-and-play manner

everywhere within the NoC [56].

44

at routers, crossbar switches are immediately configured so that the CS or VCS flits can bypass

directly to the ST stage. When there is no CS or VCS flit, the corresponding ports of crossbar

switches are released to PS connections. Figure 2.21 shows VCS, CS, and PS connections of the

VCS scheme. The VCs of routers in VCS connections are preconfigured in such a way that they

are only connected to the particular downstream router VCs. Crossbar switches of routers are

preconfigured during the Switch Allocator (SA) stage before VCS flits require passing through.

As VCS connections are established over VCs, a physical channel can be shared by n VCS

connections at most where n is the number of VCs. Other communications competing for the

same physical channel must follow the packet switching, e.g. the communication from node 4 to

8 shown in Figure 2.21. There are two drawbacks regarding of the VCS approach. Firstly the

VCS routers have to the circuitry required for both packet and circuit switching mechanisms.

Moreover, an extra hardware is needed to detect VCS packets from PS packets. In this way, the

VCS router architectures are complex and required more hardware as compared to conventional

VC-based wormhole routers. The second drawback is that despite the higher hardware of VCS,

the approach is not efficient for varying communication application. On the other hand, it is

efficient for deterministic communications e.g. the communication in application-specific NoCs.

12 14 13 15

 4 6 5 7

 8

 10

 9
 11

0 2 1 3

Figure 2.21: Proposed Hybrid Scheme in A 4 × 4 Mesh with two VCs per Input-Port [47].

VCS connection

Virtual Channels connection

CS

PS

VCS connection

45

In application-specific NoCs, the routing connections are determined and fixed, and the router

can be preconfigured for CS or VCS connections in advance, so that the CS or VCS packets can

pass through their specific routes to reach their destinations. However, our proposed NoC

routers in Chapter 3 and 4 are efficient for any type of NoC communications. Moreover, they

improve the performance while their architectures are simpler and accommodate lower hardware

overhead.

Another heterogeneous NoC router architecture has been introduced by Ben-Itzhak et al.

[40]. They exploit a shared-buffer technique in order to handle the heterogeneity of NoC link

bandwidths. Their approach reduces the number of shared-buffers required for a conflict free

router without affecting the performance. Reducing the number of required shared-buffers also

reduce the crossbar size and overall it will reduce the chip area and power consumption. The

heterogeneous router architecture supports different link capacities and different number of VCs

for each unidirectional link while keeping the router frequency fixed as illustrated in Figure

2.22.

The heterogeneous architecture utilizes serial-to-parallel converters in order to store incoming

flits to different input buffer slots at each link clock cycle, and parallel-to-serial converters can

be used in order to transmit several flits in Time-Division Multiplexing (TDM) fashion

depending on the link frequency. In fact, the shared-buffer technique presented by Ben-Itzhak et

al. optimizes the number of shared-buffers related to arrival and departure conflicts discussed by

Ramanujam et al. in [41]. The drawbacks of VCS approach discussed earlier can be considered

for the heterogeneous approach. In other words, the heterogeneous router architecture is tailored

for a specific type of NoC communication. However, NoC has emerged as a network with

scalable, reusable and global communication architecture to address the SoC design challenges.

The NoC features enable it to be easily expandable and more important to provide services for a

Hetrogenous

NoC router

1 flit/clk, 2VCs

3 flit/clk, 1VC

4 flit/clk, 3VCs

2 flit/clk, 4VCs

3 flit/clk, 2VCs

4 flit/clk, 1VCs

2 flit/clk, 3VCs

1 flit/clk, 1VC

Figure 2.22: Heterogeneous NoC Router Example [48].

46

variety of SoC communications. The standard heterogeneous feature of the approach violates the

scalability and reusability of NoC, and it needs more research and investigation.

2.7 Round Robin Arbiter

 In digital system design, arbiters are used to allocate and access shared resources. Whenever

a resource, such as a buffer, channel or a switch-port is shared, an arbiter is required to assign

the access to the resource at a particular time. The most common usage of arbiters is the shared-

bus arbitration of a bus-based system where multiple master modules can initiate their

transactions. The modules must be arbitrated for access to the bus before initiating a transaction.

In this dissertation, we investigate the arbiters used in NoC systems. Figure 2.23 illustrates a

wormhole v-VC router where the Router Arbiter module includes a Switch Allocator module

consisting of two sets of simpler arbiter. A simpler arbiter arbitrates among a group of requesters

for a single resource as illustrated in form of a symbol for an n-input in the right side of Figure

2.23.

 The arbiter accepts n requests (r0, r1, . . ., rn−1), arbitrates among the asserted request lines,

and selects an ri for service, and then asserts the corresponding grant line, gi. For example,

assume the arbitration for the output-port of a crossbar switch among a set of requests from the

VCs of some input-ports. The input-port VCs that have flits will issue request signals for having

access to one of the desired output-port. Assume, there are 5 VCs and VCs 0, 2, and 4 assert

their request lines, r0, r2, and r4 respectively. The arbiter will then arbitrate and select one of

these VCs for assigning the desired output-port. Assume the grant of VC2 (i.e. g2) is asserted.

VCs 0 and 4 lose the arbitration and must hold their requests active until they receive the grant

signal for their output-ports.

r0 g0

r1 g1

Arbiter
rn-1 gn-1

 Arbiter symbol.

Switch

 allocator

r0 g0

r1 g1

Arbiter
rn-1 gn-1

r0 g0

r1 g1

Arbiter
rn-1 gn-1

r0 g0

r1 g1

Arbiter
rn-1 gn-1

r0 g0

r1 g1

Arbiter
rn-1 gn-1

Figure 2.23: A wormhole v-VC router, the Switch allocator consists of two sets of simpler arbiter.

VC(v-1)

Crossbar

VC0

Input-port

RC

SA

ST
grant

Router
Arbiter

47

2.7.1 Conventional Arbiter Design

Arbiters can be categorized in terms of fairness (weak, strong or FIFO) arbiters [2, 42]. In a

weak fairness arbiter, every request is eventually granted. The requests of a strong fairness

arbiter will be granted equally often. The requests of FIFO fairness are granted in a first come

first served basis. Moreover, arbiters in terms of priority can be grouped in two fixed and

variable architectures. For a fixed priority arbiter, the priority of requests is established in a

linear order. Figure 2.24 illustrates a 4-input fixed-priority arbiter where r0 has the highest and

r3 has the least priority [2]. The architecture can be expanded to n-input arbiter where for each

middle request, there is an arbiter cell consisting of two ANDs and an Inverter. The first and last

arbiter cells can be simplified (see Figure 2.24). For each request input ri, there is a carry input

ci, a grant output gi, and a carry output, ci+1 where i ϵ {0, 1... n-1}. Therefore, a low level ci

indicates that at least one of requests from r0 to ri-1 was has been asserted. Moreover, in case

that the request ri and carry ci are high, the grant, gi is set, and all the following grants i.e. gi+1

to gn-1 will become reset. It is obvious that the critical path of the circuit is from the first

request, r0 to the last grant, gn-1 due to propagation of carry from head to the tail of the arbiter.

Fixed priority arbiters provide weak fairness arbitration because when a request is continuously

asserted, none of its following requests will ever be served.

 In order to have a fair iterative arbiter, we can use a variable priority arbiter as illustrated in

Figure 2.25. An OR gate and a priority input signal, pi is added to each cell of the fixed priority

arbiter shown in Figure 2.24. When p1 is set, its corresponding request, r1 has high priority and

the priority decreases from that point cyclically around the circular carry chain.

g0

g1

g2

r0

r3

r1

r2

g3

c1

c2

c3

Figure 2.24: A 4-Input Fixed Priority Arbiter Architecture.

48

 Now we can create a fair iterative arbiter by changing its priority from cycle to cycle. In an n-

input arbiter, if the grant, gi (where i ϵ {0, 1, ... n-1}) is connected to the next priority vector

pi+1, a Round Robin (RoR) arbiter is created. Figure 2.26 illustrates a 4-input RoR arbiter. If a

grant, g1 becomes high at the current cycle, it causes p1 to be set high on the next clock cycle.

This leads the request, r2 to become the highest priority at the next cycle, where the request, r1

becomes the lowest priority. For the sake of simplicity, we assume that the arbitration cycle

takes one clock cycle in all the architectures describe in this dissertation.

 The functionality of a round-robin arbiter can be explained as a request that is just granted

will have the lowest priority on the next arbitration cycle [2]. The round robin arbiters are

simple, easy to implement, and starvation free. When the input requests are large in numbers, the

structure of round robin arbiter grows that leads to large chip area, higher power consumption,

and critical path delay. In an NoC design, the critical path delay of arbiter usually dominates

among the critical path delays of input-port and crossbar switch due to the architectural

complexity of arbiter as compared to those of port and crossbar switch. Therefore, the arbiter

circuit determines the maximum frequency (or the speed), fmax of an NoC router. The critical

g0

g1

g2

g3

p3

r0

p1

r2

p2

r3

p0

r1

 ri ci

 gi

 pi ci+1

 ri ci

 gi

 pi ci+1

 ri ci

 gi

 pi ci+1

any_g

p0

p1

p2

p3

D Q

>

D Q

>

D Q

>

D Q

>

Figure 2.26: A 4-Input RoR Arbiter Architecture.

 ri ci

 gi

 pi ci+1

 ri ci

 gi

 pi ci+1

 ri ci

 gi

 pi ci+1

g0

g1

g2

g3

p0

r0

p2

r2

p3

r3

p1

r1

Figure 2.25: A 4-Input Variable Arbiter Architecture.

49

impact of arbiter on the performance of the NoC system and the characteristic behaviour of

round robin architectures have created a lot of interest of NoC researchers as we will discuss

some of them in the following section.

2.7.2 Some Well-Known RR Arbiters

The architecture of a popular Matrix round robin arbiter is presented by Dally and Towles [2].

A 4-input Matrix arbiter architecture is shown in Figure 2.27. It implements a least recently

served priority scheme where a request, ri wins arbitration. It resets the bits of row i and sets the

bits of column i to make itself the lowest priority where i ϵ {0,..3}. The Matrix arbiter is claimed

to be useful for small number of inputs as it is fast, economical, and performs strong fairness

arbitration. However, no evaluation is presented. Fu and Ling evaluated and compared the RoR

and Matrix arbiters in terms of resource, performance and power consumption for an FPGA

platform [43]. They concluded that the Matrix arbiter consumes more resource, same power but

can process data more quickly than the RoR arbiter.

Zheng and Yang proposed a Parallel Round Robin Arbiter (PRRA) based on a simple binary

search algorithm as illustrated for a 4-input PRRA in Figure 2.28 [44]. They further proposed an

Improved PRRA (IPRRA) design where the output signals, gL and gR of PRRA are disconnected

and directly ANDed with grant signals to generate new grant signals as shown in Figure 2.29.

The IPRRA reduces the timing of PRRA significantly.

g0

g1

g2

g3

r0

r2

r3

r1

23

12 13

01

03

32 31 30

21 20

D Q

> rst

02

 01

10

Figure 2.27: A 4-Input Matrix arbiter.

50

A High speed and Decentralized Round robin Arbiter (HDRA) has been presented by Lee et

al., which is illustrated in Figure 2.30 [45]. Each circuit enclosed with dash circle represents a

filter circuit whose main components are a D flip-flop and a multiplexer. The filter circuit filters

out the input without request or the one with request that has already been granted at that

arbitration cycle. The un-filtered inputs with their requests participate in the arbitration again next

cycle by setting its corresponding D-type flip-flops to 0 that are done by enabling the ack signals

from higher lower level. The HDRA arbiter will reset itself asynchronously by the input self_rst

from the root. The sys_rst indicates the system reset signal and is used initially before each

arbitration cycle for all requests. A 4-input HDRA arbiter has a simpler circuit than a higher input

HDRA architecture because the act, rnext and self-rst are connected together. The HDRA

architecture is used later in some other works e.g. in the router model of simulation framework

implemented by Guderian et al. [46]. In Chapter 5, we introduce a novel RR arbiter that is

2-input IPRRA 2-input IPRRA

r-node

g0 g1 g2 g3

gL gR

g0

g1

g2

g3

Figure 2.29: A 4-Input IPRRA Architecture.

gL gR

g0 g1 g2 g3 r0 r2 r3 r1

D Q

> rst

D Q

> rst

D Q

> rst

D Q

> rst

r-node

Figure 2.28: A 4-Input PRRA Architecture.

51

simpler, faster and consume lower hardware overhead as compared to the aforementioned arbiters

(i.e. RoR [2, 43], Matrix [2, 43], HDRA [45], PPRA [44] and IPRRA [44]).

g0

g1

g2

g3

r0

r2

r3

r1

0

1

D Q

> rst

D Q

> rst

D Q

> rst

D Q

> rst

0

1

0

1

0

1

sys-rst
self-rst rst

1

rnext

act

Figure 2.30: A 4-Input HDRA Architecture.

52

Chapter 3

Statically Adaptive Multi-FIFO Buffer Organization

In this chapter, we present a new technique for efficient flow control and adaptive VC

allocation for on-chip applications. We implement an adaptive virtual channel flow control to

demonstrate higher buffer utilization, improved message latency and NoC throughput. In terms

of hardware, we present an NoC architecture leading to lower size and power consumption due

to SRAM-based buffer sharing. In terms of pipeline stages, we show that our mechanism is

similar to the conventional static VC mechanism, so we can benefit of fastest arrival and

departure of data. Our contribution is described as follows. The basic concept and

communication of our approach while they are compared with a conventional VC-based

architecture are described in Sections 3.1 and 3.2 respectively. In Section 3.3, we discuss that

our model is similar to the conventional static model in term of functionality, but it can provide

advanced adaptivity as described in Section 3.4. The hardware modeling of our approach is

discussed and evaluated in Section 3.5 while the adaptivity of our approach is evaluated by

various experimental results in Section 3.6. Finally, novel features and summary of the approach

are listed in Sections 3.7 and 3.8.

53

3.1 Static Multi-FIFO (SMF) Buffer Architecture

 In a typical SRAM based FIFO, two pointers point to the address of memory where the data

is read or written [23, 47, 48]. Figure 3.1 shows a simple scheme of an SRAM-based FIFO. For

a read operation, the Read-Pointer is incremented to point at the next slot (assume P1).

 Consequently, the content of the slot (P1) appears at the output. In the case of a write event, the

incoming data is stored at the location pointed by the Write-pointer (assume P5), and the Write-

Pointer is incremented to the next empty slot. The difference between Write-pointer and Read-

pointer determines whether the FIFO is full or empty. A buffer-full condition occurs when a

write results in the difference of these pointers to zero. An empty condition occurs when the

difference of two pointers become zero after a read. Both Read-pointer and Write-pointer

increase circularly. This FIFO mechanism has enabled us to create a multi queue buffer by using

an SRAM. In fact, by switching multiple read and write pointers to the address port of a SRAM,

multiple FIFO buffers are created in a single SRAM. Figure 3.2 shows the architecture of a

channel buffer (input-port) that employs our proposed Static Multi FIFO (SMF).

 In order to investigate and evaluate our proposed architecture, a Conventional Virtual

Channel (CVC) NoC router input-port architecture is considered for comparison and it is

Figure 3.1: A Typical SRAM-Based FIFO

Write
Pointer

 P5 P4 P3 P2 P1

Read
Pointer

Figure 3.2: SMF Input-Port Architecture (nVC)

Flit-size

SRAM

Physical Channel

Read

Address

VCn

VC1

P1

P1

Pn-1

Pn-1

Pn

P1

Write-pointer VCn

Write-pointer VC1

Read-pointer VCn

Read-pointer VC1

Write
Address

VC_ID

Rd

 Mux

Wr

 Mux

54

illustrated in Figure 3.3. In CVC architecture, each FIFO represents a VC, and the number of

VCs will be equal to the number of FIFOs [1]. The number and the size of FIFOs (VCs) are

constant in a CVC architecture. In the following sections, we present the details of CVC and

SMF micro-architectures in an effort to illustrate both these mechanisms that are similar in terms

of their functionality. However, the SMF architecture can easily accommodate the advanced

adaptivity of the VCs.

3.2 Communication in CVC and SMF Models

 A VC-based wormhole communication in the CVC and SMF models are shown in Figures

3.4 and 3.5 respectively. We assume parallel communication in both models i.e. the width of

physical channel is equal to the size of the flits. Moreover, each physical channel has four VCs

and four packets are going to share a physical channel on a flit-by-flit basis. Furthermore, an

NoC router must be able to de-multiplex the flits of packets at their entrance and direct them to

their respective VC buffers. For this purpose, an identification signal (VC-ID) is sent before

latching a flit to indicate its VC at the entrance of the input-port [49, 50]. As shown in Figures

3.4 and 3.5, the VC-ID signals can be transmitted on dedicated wires and connected to the select

lines of the de-multiplexer. When a flit enters the input-port, it is directed to the VC location

pointed by the VC-ID. In the case of SMF, these VC-ID signals select the Write-pointer, which

should be connected to the write address port of an SRAM (see Figure 3.5). Therefore, a flit is

stored in its dedicated VC area of SRAM on its arrival.

Figure 3.3: CVC Input-Port Architecture (nVC)

Read-Pointer
VCn

Write-Pointer
VCn

Physical Channel

Flit-size

Write-Pointer
VC1

Read-Pointer
VC1

VC-ID

 P1 P1 P1

Pn

Rd

Mux

Wr

de-

Mux

Physical channel

Input-port VC Buffers

Figure 3.4: Conventional VC Flow Control

VC-ID signals

55

Consider a packet P3 has a VC-ID of 3 that switches Write-pointer VC3 as the writing address

of SRAM as shown in Figures 3.6 and 3.7. The values of read and write pointers indicate that

the VCs are occupied, full or empty. When a VC is full, the input-port issues an

acknowledgment signal to the upstream router to stop any further flit transfer to it. In the case of

no empty VC, the input channel issues a request signal to the arbiter. In case of multiple requests

for an output channel, the request of one of the VCs can be processed by the arbiter. After

arbitration, a grant signal (grant) is issued by the arbiter to latch the head flit of selected VC in

the output register, O-reg in Figures 3.6 and 3.7. This leads the flit to move out of the input-port.

Figure 3.6: 4-VC CVC Buffer (VC3 Write and VC1 Read)

VC-Sel=1

Read-Pointer VC3
Read-Pointer VC2

Write-Pointer VC3
Write-Pointer VC2

Write-Pointer VC1

Data Out

Read-Pointer VC1
Write-Pointer VC0 Read-Pointer VC0

VC-ID=3

P0 P0 P0 P0

 P1 P1

P2 P2 P2 P2

P3

Grant

O-reg

 In Out

Data In

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Figure 3.7: 4-VC SMF Buffer (VC3 Write and VC1 Read)

SRAM

Data In

Read Address

 VC1

VC2

VC3

VC0

Write-pointer VC1

P0
 P0
 P0

P1

P2

P1

P2

 P2

 P2

 P3

P0

Write-pointer VC2

Write-pointer VC3

Write-pointer VC0

Read-pointer VC2

Read-pointer VC3

Read-pointer VC0

Read-pointer VC1

Write Address

VC-Sel =1

VC-ID=3

 Data Out

Grant

O-reg

 In Out

Physical Channel

 SRAM-based FIFO

Figure 3.5: SMF Flow Control

VC-ID Signals

Input-port

56

In Figure 3.6, the Read-Pointer of VC1 will be switched to the read address of SRAM when

VC-Sel is active. In this way, the communication process indicates that the SMF model

resembles the CVC model in terms of arrival and departure pipeline of flits.

3.3 Similarity of CVC and SMF during Contention

The structure of the VC-Selector module shown in Figure 3.8 illustrates the similarity in the

flit departure process for the SMF and CVC models, especially in the case of NoC contention

(blockage). The VC-Selector module is generally located in the arbiter, and it may have the same

structure for both SMF and CVC models as shown in Figure 3.8. It works and behaves like a

fixed priority arbiter. When the read and write pointers of a VC are different, the input-port

issues a request signal (Req) to the arbiter. The request signals of all the VCs of a channel and

the state of the corresponding outputs of those VCs (VC-block) are connected to the inputs of the

VC-Selector module. The VC-Selector module contains a combinational logic circuit that selects

a VC for arbitration in the arbiter module of router. The logic associated with the Req signals

and the VC-block signals (active when the VC is blocked) create the VC availability signal (VC-

ava). Actually, the VC-block signal is inversed and ANDed with its corresponding Req signal as

shown in Figure 3.8. For example, if the requested output of VC0 is blocked then the VC-block0

signal is high to prevent the selection of VC0. A VC is selected depending on the VC-ava signal

and a VC-Sel signal is issued. The VC-Sel is connected to the select lines of the read multiplexer

of the input-port as shown in Figure 3.7. The output of the multiplexer contains the packet flit

under arbitration.

Consider the non header flit of a packet (i.e. packet is already arbitrated), the packet

information is already saved in the arbiter and its related VC-block contains the status of the

associated output. In case that the flit is a header (new packet); its associated output will not be

assigned. The circuit for finding an output is not sequential i.e. as soon as the VC-Selector

Figure 3.8: VC-Selector Circuit

Req0

VC-block0

VC-ava

VC-Sel

0
1

2

VC-Selector

3

N0 Req Write-pointer VC1

Write-pointer VC2

Write-pointer VC3

Write-pointer VC0

Read-pointer VC2

Read-pointer VC3

Read-pointer VC0

Read-pointer VC1

!=

!=

!=

!=

Req3

57

selects a VC, its associated VC-block will have the state of the requested output. In a situation

where the output is blocked, the VC-Selector selects another VC. One important feature of the

dual-ported SRAM is that its reading function can be asynchronous (i.e., its output depends on

the present value of the read address). Two important features, i.e. asynchronous SRAM reading

and choosing the output-port allow a free packet to be selected for arbitration before the next

clock cycle.

Figure 3.9 illustrates the selection function of a free VC. When the VC-block is active, there

is either no free downstream VC (in the case of a new packet) or the associated downstream

router VC becomes blocked. As previously mentioned, all of the circuits in the loop (VC-

selector, reading part of SRAM, routing allocator, VC allocator, and OR gate) are not sequential.

Moreover, the iteration in the loop leads to the selection of a free VC request. As already

mentioned, we have presented the SMF and CVC architectures in detail to show that the

arrival/departure function of a flit is similar for both SMF and CVC models especially in the

case of a blockage in the NoC. The above discussion illustrates that the functional performances

of both CVC and SMF mechanisms are the same. The reading delay from SRAM is bigger for

SMF than that of CVC input-port buffers. However, the SMF architecture can provide advanced

adaptivity for the VCs in a channel that will lead to higher performance, lower latency,

improved buffer utilization, less power and lower IC area overhead as discussed in the following

sections.

Flit-info

Figure 3.9: Selection Function of a Free Request

Routing Computation

(Combinational Logic)

VC Allocator

(Combinational Logic)

0
1

2
3

Requested

Output

No free downstream VC

VC-Selector

SMF Input Port

Req0

VC-Sel

SRAM

Data In Data Out

VC-block0

Downstream
VC State table

58

3.4 Statically Adaptive Multi FIFO

The SMF model includes multiple VCs that are created in an input-port by multiplexing their

pointers. We have developed an adaptive feature for the SMF model by further multiplexing of

pointers and controlling signals to create a Statically Adaptive Multi FIFO (SAMF) model. We

call it statically adaptive as the VC buffers are static during a specific time of communication,

and then they are subsequently adapted to the traffic demand. The SAMF model improves buffer

utilization by closing redundant VCs and allocating their buffers to the active VCs. Higher VC

buffer depth reduces contention and, subsequently improves performance. We incorporate some

additional modules such as a Mode-Selector for each channel and a multiplexer for each VC, as

well as employ the VC-Full (it is activated when a VC becomes full) signal to create an adaptive

mechanism, as illustrated in Figure 3.10. The Mode-Selector module generates “adaptivity”

signal (adapt) to cover n adaptivity modes where n is equal or less than the number of VCs per

channel. Each adaptivity mode is defined by m×VC; where m represents the number of VCs of a

channel and 1 ≤ m ≤ n. In the situation where m is less than n, the Mode-Selector issues the

closing signal, VC-close to close the unused VCs. The VC-close signals are NORed with VC-full

signal to represent the state of VCs as illustrated in Figure 3.10. In other words, when a VC is

full or redundant within a channel (either VC-full or VC-close is set), the upstream router does

not send flits for that VC.

Figure 3.10: nVC SAMF Architecture.

VC-Sel

VC-ID

SRAM

Data in

VC0

VCn-1

P0

P0

P0

P1

P1

P1

P1

P0

Write-pointer VCn-1

Write-pointer VC0

Read-pointer VCn-1

Read-pointer VC0

Write address

Read Address

nVC

2VC

1VC

nVC

2VC

1VC

nVC

2VC

1VC

nVC

2VC

1VC

Mode-

Selector

Adapt

Adapt

VC- full0

Data out

Adapt

Adapt

VC-close

59

To discuss the details of our approach, an SAMF architecture for four VCs and an SRAM of

16 slots (flits) is illustrated in Figure 3.11. In this example, the adaptivity modes are illustrated

as follows. In case of a 4VC mode, each VC takes a quarter of the total SRAM slots. The 3VC

mode activates VC0, VC1 and VC2 where VC0 has double the space than each of VC1 or VC2.

The 2VC mode means that two VCs are accommodated in the SRAM (VC0 and VC1), where

each VC contains half of the SRAM capacity. 1VC mode accommodates only one VC (VC0) in

the SRAM. Table 3.1 shows the connections in the architecture to implement such adaptivity.

The pointers can address the overall SRAM and their width is of four bits: a, b, c and d. VC-Sel

has two bit signals x and y, and VC-ID also has two bit signals p and q. Different combinations

of above bits (i.e. a, b, c, d, x, y, p and q) are used to specify different modes. For example, in

1VC mode all the output lines of pointers are connected to the address of the SRAM. In the case

of a 2VC mode, three least significant bits of the pointers are used as least significant bits of the

address ports. The least significant bits of VC-Sel and VC-ID are used for the most significant bit

of read and write address ports of SRAM respectively. In 4VC mode, two least significant bits

of pointers are used as the least significant bits of address ports, and two bits of VC-Sel and VC-

ID are used for the two most significant bits of read and write address of SRAM.

Consider 4VC mode of Figure 3.11 and Table 3.1, where read address is ‘0011’ i.e. two least

significant bits of Read-Pointer VC0 are ‘11’ and two bits of VC-Sel are ‘00’. In 2VC mode, the

Mode-

Selector

Adapt=0

VC- full0

VC-close

Figure 3.11: 4-VC SAMF Architecture with 2 Active VCs.

VC-Sel

VC-ID

32

SRAM

Data in

VC1

Write-pointer VC1

P0

P0
P0

P2

P2
P2
P2

P0

Write-pointer VC2

Write-pointer VC3

Write-pointer VC0

Read-pointer VC2

Read-pointer VC3

Read-pointer VC0

Read-pointer VC1

Write address

Read Address

4

4VC

3VC
2VC

1VC

4

4

4VC
3VC

2VC
1VC

4VC

3VC

2VC
1VC

4VC

3VC

2VC
1VC

 VC0

VC2

VC3

60

write address is ‘1100’ i.e. three least significant bits of Write-Pointer VC1 are ‘100’ and the

least significant bit of VC-ID is ‘1’. The Mode-Selector module is designed in such a way that

different modes are deterministically applied based on the configuration of an NoC system.

Mode-Selector module can also be designed in a complex form where different modes are

dynamically applied according to NoC communication. We present our dynamic and

deterministic Mode-Selector schemes in the following sections.

Table 3.1 Connection in SAMF Mode

Mode Adapt VC-Sel Pointers Read add. VC-ID Write add. VC-close

4VC 00 x,y a,b,c,d x,y,c,d p,q p,q,c,d 0000

3VC

VC0

01

x,y a,b,c,d y,b,c,d p,q q,b,c,d 1000

VC1,VC2 x,y a,b,c,d x,y,c,d p,q p,q,c,d 1000

2VC 10 x,y a,b,c,d y,b,c,d p,q q,b,c,d 1100

1VC 11 x,y a,b,c,d a,b,c,d p,q a,b,c,d 1110

3.4.1 Dynamic Mode Selector

 A dynamic Mode-Selector module dynamically selects an optimum number of VCs

according to the traffic demands in a channel and closes unused VCs. Figure 3.12 illustrates the

process flow diagram of our dynamic Mode-Selector. The process is invoked when a packet

enters an input-port. A variable, Pkt-N keeps a record of the number of new and varied packets.

A new and varied packet means a packet with different source or destination ID. In such case,

the variable VC-N is incremented by passing a varied packet through the associated channel.

After a specific number of incoming packets that we call the Selection-Factor, the VC-N

determines how many VCs are needed to handle the communication in an optimal fashion. The

dynamic Mode-Selector process iteratively determines the number of channel VCs based on two

factors: the channel traffic demand and the Selection-Factor. At the end of each iterative process

all the variables reset. In fact, the traffic of a channel is measured in terms of the number of

varied packets in each iteration of the process. According to this number, an appropriated

adaptivity mode will apply. Switching from a higher mode (i.e., more VCs per channel) to a

lower mode (i.e., less VCs per channel) is easy. It has no negative impact on communications

and incurs little cost for an NoC system. We investigate this kind of switching in detail in the

following sub-section. However, switching from a lower mode to a higher mode is complicated

and slows NoC communication during mode switching. For example, assume a 4-VC input-port

where the 1VC (VC0) is the current VC mode allowing data to be everywhere in the input-port

61

buffer. In a situation where the 4VC becomes the new mode, the easiest way to accomplish

mode switching is when the buffer becomes empty. This delay in empting the buffer slows

communication at mode switching time.

3.4.2 Deterministic Mode Selector

 As mentioned earlier, switching from a higher mode to a lower mode is simple. It has no

negative impact on communication and incurs very little cost for an NoC system. These

advantages have encouraged us to introduce a deterministic routing based NoC architecture. In

deterministic routing, packets with similar routing information always pass through a specific

route. Therefore, when an embedded application is mapped to NoC, the number of various

New Packet?

N

Is Pkt-N = Selection-

Factor?

Y

N

Y

Reset

Apply new VC Mode

Reset all Variables

Increment Pkt-N

Figure 3.12: Flowchart Process of the Dynamic Mode-Selector

Increment VC-N

Different
Packet

N

Y

Is VC-N < =
Previous VC-N?

Stop all VCs

Wait until Channel

Buffer becomes

empty.

Y

N

62

packets passing through a channel will be constant throughout the communication. Figure 3.13

illustrates the process flow and schematic diagrams of an efficient and simple deterministic

Mode-Selector. The process performs once for an input-port. In fact, after the number of

incoming packets reaches a specific number (Selection-Factor), the mode is assigned based on

the maximum number of VCs to be used. Assume that there are four VCs per input-port and the

arbiter is designed deterministically and sequentially to assign new and varied packets to VC0,

VC1, VC2 and VC3. In such a situation, the same packets will always enter the same VC.

On reset, all the registers of the Mode-Selector become zero that leads to 4VC mode as the

default mode (i.e. a maximum number of VC). At the positive edge of the clock

the Mode-Selector process determines whether an incoming flit is the first flit of the packet. If

the VC-ID of a new packet is different than the VC-ID of previous packets, it will be saved in a

register, VC-N. The number of packets is recorded in a counter, Pkt-N. When the number of new

 Figure 3.13: Flow Process & Schematic of Deterministic Mode-Selector.

Reset Adapt, VC-N, Pkt-N and VC-state

registers

Y

N

Incoming
header flit?

N

VC-N= higher used VC-ID

Is Pkt-N =

Selection-Factor?

Y

N

N

Y

Y

Reset

Posedge

CLK?

VC-N =0;

(One VC)
Adapt-0=3;

Adapt-1=3;

Close all VCs

except VC0

(Two VCs)
Adapt-0=0;

Adapt-1=1;

Close VC1

Close VC3

(Three VCs)
Adapt-0=1;

Adapt-1=1;

Close VC3

End

Y Y

N N

VC-N =2; VC-N =1;

Increment Pkt-N

 D

 Q

 En

Adder Pkt-N

1-VC

+

VC-ID

“3”

CLK
Header

=

“1”

Selection-factor

VC-N

VC-N[0] <=

vc-id[0] |VC-N[0];
VC-N[1] <=

(!vc-id[0] & VC-

N[1])|(vc-id[1] &!VC-

N[0])|(vc-id[1] & VC-

N[1]);

4-VC

CLK

63

packets reaches to the Selection-Factor, the Mode-Selector process decides about the mode to be

switched depending on the value of VC-N. In each selected mode, all the redundant VCs are

closed. For example in the 2VC mode, VC2 and VC3 virtual channels will be closed. The

deterministic Mode-Selector module can be designed by employing a much simpler logic. The

modes of each channel can be assigned at the setup time by the user. This design requires each

channel to have k registers to hold the modes signals (adapt), where k is the log2 of

the number of modes. A single-bit register is used for holding the VC-close signal, and one NOR

gate is needed for the acknowledgement signal of each VC. We consider this as a simple scheme

that clearly shows and evaluates the efficiency of our approach.

3.5 CVC and SMF Router Micro-Architecture

 The micro-architectures of routers for CVC [50] and our proposed SMF mechanisms are

presented in Figures 3.14 and 3.15 respectively. We assume same number of VCs and channel

buffer capacity for both the architectures. The first advantage of SMF is the hardware saving in

terms of multiplexer (MUX) and de-multiplexer (de-MUX) blocks. The size of input and output-

Link E

Link S

Link W

VC-full

Link N FIFO NVC

rclk

Link E

Link N

Link S

 FIFO 1

 FIFO NVC

In N Select out N

In E out E

 Crossbar
In S out S

 (5×5)

In W out W

In L out L

 FIFO 1

Link W
 FIFO NVC

 FIFO 1

Link L
 Router_id

Router

 FIFO NVC

FIFO NVC

FIFO 1

Link L

Figure 3.14: 5×5 CVC Wormhole Router.

VC-ID

VC-ID

 Ntag

f f

Req N Grant N

Req E Grant E

Req S Grant S
Arbiter

(VC and SW Allocator)

Req W Grant W

Req L Grant L

Arbiter_id Credit in
Aclk VC-ID

Aselect

Empty Full

Read Write

64

ports of CVC MUX and de-MUX is the same as the flit size. However, the size of input and

output ports of SMF multiplexers is equal to log2(d), where d is the of VC depth. Figure 3.16

shows the schematic of a 5-to-1 MUX module. Assuming two transistors for an inverter gate,

one needs (10+6) transistors to create the MUX module despite the fact that only 10 transistors

participate in data communication. Consequently, the number of transistors to create a 5fs-to-fs

multiplexer will be (10×fs)+6, where fs is the flit size.

Figure 3.16: 5-to-1 Multiplexer Schematic.

In_4

In_2

In_1

In_0

Sel_2

In_3

Sel_0 Sel_1

Output

Link E

Link S

Link W

VC-full

Link N

rclk

Link E

Link N
Link S

In N Select out N

In E out E

 Crossbar
In S out S

 (5×5)

In W out W

In L out L

Link W

Router_id

Router

Link L

Figure 3.15: 5×5 SMF Wormhole Router.

Link L

VC-ID

VC-ID

f
f

Req N Grant N

Req E Grant E

Req S Grant S

Arbiter
(VC and SW Allocator)

Req W Grant W

Req L Grant L

Arbiter_id Credit in
Aclk VC-ID

Aselect

Empty

Full

Read

Write
ln(d)

ln(d)

65

 Assuming the same formulation for a de-MUX, the percentage of saving transistors in SMF

MUXs as compared to CVC can be determined by the following equation.

R = {1- ([10× 6 - log2(d)]/[10×fs+6])}×100 (1)

For a flit size of 32-bits and a VC depth (d) of 4 slots, the transistor saving R in SMF MUXs

as determined by Eq. (1) will be almost 92%. In order to determine the power based advantage

of SMF router model with the CVC models, we can use a comparative method as follows. One

of the implementations of the crossbar module is based on MUXs.

Figure 3.17 illustrates the schematic of a MUX-based crossbar switch. There is a 5fs-to-fs

MUX for each output-port in the crossbar. If we assume five VCs per channel in a CVC router,

the size of MUX or de-MUX of each input channel will be 5fs-to-fs. Assuming the same

hardware elements for MUXs in the input channels and the crossbar, the total hardware elements

of MUXs and de-MUXs of input channels are two times of those in the crossbar switch.

Furthermore, power consumption breakdown of a router in NoC based 80-tile Teraflops

processor is shown in Figure 3.18, where a crossbar consumes 15% of the total power of

Teraflops processor router [51]. We can assume the same power breakdown for our CVC router.

Therefore, the MUXs and de-MUXs of a CVC router consume two times i.e. 30% of the total

power of router. It can be determined that an SMF router consume 27.6% (92% × 30%) less

power as compared to a CVC router in terms of MUXs used in the router by employing all the

above assumptions.

In0

In2

In3

In4

In1

Sel3

Sel1

Sel4

Sel0

Sel2

Out1

Out3

Out0

Out4

Out2

f

Figure 3.17: A Multiplexer-based Crossbar Switch

66

3.5.1 Adaptivity Hardware in SAMF Architecture

The detailed architectures of SMF and SAMF models are illustrated in Figure 3.19. However,

the SAMF architecture is a trimmed version of the architecture presented earlier in Figure 3.11,

where the mode selection is of deterministic type as shown in Figure 3.13. Both architectures are

configured for a maximum of four VCs, where the depth of each VC is of four slots.

Each input of SMF MUX can be 2-bits because x, y and p, q signals can be directly connected

to the read and write addresses of the SRAM respectively. Some extra hardware is needed in the

SMF architecture to provide adaptivity feature as follows. VC0 takes part in all the four modes,

which requires the pointers of four bits size. To involve VC1 in the 2VC mode, its place is

exchanged with the VC2. The VC1 takes part in 4VC, 3VC and 2VC modes and it has the same

size in 3VC and 2VC modes, and therefore the size of its pointers is three bits. Virtual channels,

VC2 and VC3 take part only in the 4VC mode, and therefore the size of their pointers is of 2-

bits. The sizes of VC-Sel and VC-ID multiplexers of SAMF are increased to four bits to support

SRAM address for 1VC mode. Signals, c0, d0 and c2, d2 can be directly connected to the inputs

of next multiplexers, and therefore two 2-bit wide 4-to-1 multiplexers and two 2-bit wide 2-to-1

multiplexers are required to switch the Read and Write Pointers to implement all the four

adaptivity modes.

Figure 3.18: Power Breakdown for a CVC NoC Router

33%

22%

7%

6%

 17%

15%

clocking

FIFO+Data path

Arbiters+control

MSINT

Links

Crossbar

0% 10% 20% 30% 40%

67

3.5.2 Synthesis of SAMF Router

To analyze the area and power overhead, the NoC routers for VC-free (VC free), CVC [49,

50], SMF and SAMF architectures are implemented in structural Register Transfer Level (RTL)

Verilog and then synthesized using the Synopsys Design Compiler for 32nm Generic Library and

Altera FPGA (Cyclone IV). The resulting designs operate at a power supply of 0.85V and a clock

4

4

SRAM

Data In

Read Address

VC1

VC2

VC3

VC0

2 bits pointer VC1

2 bits pointer VC2

2 bits pointer VC3

2 bits pointer VC0

2 bits pointer VC2

2 bits pointer VC3

2 bits pointer VC0

2 bits pointer VC1

Write Address

VC-Sel=x, y

VC-ID=p, q

“a0 b0”
 x, y, a0, b0

x, y, a1, b1

x, y, a2, b2

x, y, a3, b3

p, q, a0, b0

p, q, a1, b1

p, q, a2, b2

p, q, a3, b3

32

2

2

(a) SMF

VC-Sel=x, y

VC-ID=p, q

32

SRAM

Data In

P0

P0

P0

P1

P1

P1

P0

Write address

Read Address

4

y, x, c2, d2

x, b2, c2, d2

4

4

“c3 d3”

p, q, c0, d0
q, b0, c0, d0

q, b0, c0, d0

a0, b0, c0, d0

“a0 b0 c0 d0”

“a0 b0 c0 d0”

“c1 d1”

“b2 c2 d2”

x, y, c0, d0

y, b0, c0, d0

y, b0, c0, d0

a0, b0, c0, d0

y, x, c1, d1

x, y, c3, d3

 q, p, c2, d2

 p, b2, c2, d2

 q, p, c1, d1

p, q, c3, d3

“c3 d3”

“c1 d1”

 “b2 c2 d2”

3 bits pointer VC1

2 bits pointer VC2

2 bits pointer VC3

4 bits pointer VC0

2 bits pointer VC2

2 bits pointer VC3

4 bits pointer VC0

3 bits pointer VC1

Adapt

Adapt

Adapt

Deterministic
Mode-Selector

(6 registers)

Adapt

VC- full0

VC-close0

VC2

VC1

VC3

VC0

2

1

Figure 3.19: SMF and SAMF Architectures

(b) SAMF

68

frequency of 100 MHz. Each router has five input-ports with 4 VCs per input-port, where each

VC is of two-flit deep, and flit size is 128 bits. The crossbar has identical architecture for the four

(VC-free, CVC, SMF and SAMF) routers, and also the same arbiter architecture (Arbiter 4-VC)

performs arbitration for the three (CVC, SMF and SAMF) routers. The comparison of area and

power overhead of four routers is shown in Table 3.2. It should be noted that all the four routers

have equal buffer space of 8 slots per input-port. An important characteristic of high scaled

CMOS technology like 32 nm is that the static (leakage) power supersedes the dynamic power.

For example, the average dynamic power of ports includes almost 4% of their total powers as

shown in Table 3.2. This characteristic indicate that the power is more or less proportional to the

hardware overhead of a design than its functionality. In other words, the more cells consume

more static power and the synthesis results given in Table 3.2 also confirm it. As mentioned in

the previous section, the CVC input-port incurs an overhead due to bigger MUX and de-MUX

blocks. This overhead leads to a bigger CVC input-port than our proposed SMF or SAMF input-

ports in terms of area and power consumption.

Table 3.2. Synthesis Results for 32nm Technology and FPGA

Component

ASIC Design
(32 nm Generic Library) saed32rvt_ff0p85v125c

FPGA Design (Cyclone IV)
EP4CE115F29I8L

Total Area (µm
2
) Total Power (µW) Combin. logic elements Registers (bits)

Ports VC-free 78590 1570 (65
*
) 3295 5795

Ports CVC 88840 1820 (80
*
) 6550 5820

Ports SMF 80440 1595 (55
*
) 3485 5840

Ports SAMF 82870 1715 (105
*
) 3780 5910

Arbiter VC-free 2023 111 (43
*
) 330 60

Arbiter 4-VC 14274 644 (202
*
) 2682 280

Cross-bar 6499 121 (6
*
) 256 0

Router VC-free 87112 1802 (114
*
) 3881 5855

Router CVC 109613 2585 (288
*
) 9488 6100

Router SMF 101213 2360 (263
*
) 6423 6120

Router SAMF 103643 2480 (313
*
) 6718 6190

CVC/VC-free 20% extra 30% extra 59% extra 4% extra

SAMF/VC-free 16% extra 27% extra 42% extra 5% extra

SMF/CVC 8% saving 9% saving 38% saving 0.3% extra

SAMF/CVC 5% saving 4% saving 34% saving 1.5% extra

SAMF/SMF 2% extra 4.8% extra 5% extra 1% extra

* Dynamic Power

As illustrated in Table 3.2, the SAMF model provides area and power savings of around 5%

and 4% as compared to those of CVC model respectively. We assumed that a router consists of

an arbiter, a crossbar switch and 5 input-ports with equal-size input-port buffers for all the router

69

designs including VC-free, CVC, SMF and SAMF. The synthesis results for Altera FPGA also

confirm this trend and show the advantage of SAMF model as compared to CVC model in terms

of combinational logic cells. The overhead related to the MUX and de-MUX blocks of CVC

leads to smaller number of combinational logic cells for SAMF. In this way, an SAMF router

saves 34% combinational cells at the expense of using 1.5% extra registers when compared to a

CVC router. We have further experimented and evaluated the efficiency of our SAMF

architecture and the results are presented in the next section.

In order to illustrate the approximate size of CVC [1, 49] and our SAMF, the area and power

parameters for a basic VC-free NoC router is also synthesized and evaluated. Our SAMF based

router consumes 16% additional area and 27% additional power as compared to a VC-free router.

However, this extra hardware area and power is less than the area and power consumption for a

CVC router model proposed by Dally and Towels [1, 49]. From the router architecture point of

view, arbiter of a VC-free router is much simpler and consumes less power when compared with

an SAMF or CVC arbiter. The main reason for SAMF or CVC routers having a larger area and

power than a VC-free router is due to the complexity of their arbiter as confirmed by our

synthesis data presented in Table 3.2. However, to achieve higher or comparable performance for

a VC-free NoC, injection control and intelligent NoC level measures are needed that will also

incur additional cost we could not include in the synthesis of a VC-free NoC router. The extra

hardware associated with our SAMF VC mechanism provides a significant performance gain as

compared to CVC and VC-free mechanisms. As indicated earlier, our SAMF router consumes

less area and power as compared to CVC. Moreover, when compared to VC-free router, SAMF

extra area and power is 16% and 27% respectively as compared to 20% and 30% extra area and

power consumed by a CVC router.

3.6 Experimental Results

3.6.1 Adaptivity of SAMF Mechanism

 We have evaluated the adaptivity level of our SAMF architectural model as compared to that

of CVC and Dynamically Allocated Multi Queues (DAMQ) [14] based models. As discussed

earlier in Section 3.3, the CVC mechanism is similar to our SMF approach in terms of its

functionality. Therefore the performance evaluation presented here is also acceptable for the

SMF mechanism. We demonstrate the efficiency of SAMF mechanism by two experiments. In

70

the first experiment, we evaluate the SAMF and CVC models for two NoC applications. We

mapped MPEG4 Decoder and AV Benchmark [52] to 3×4 and 4×4 mesh homogeneous NoCs.

Then we investigated the effect of adaptivity modes in terms of chip area, power and

performance of NoCs.

 In the second experiment, three models: CVC [1, 49], SAMF and DAMQ [14] are evaluated.

A 4×4 mesh NoC with fixed traffic and high contention is configured for better evaluation of the

SAMF model. The DAMQ model is based on the Link-List design presented by Evripidou et al.

[14]. We have already described our implementing architecture of Link-List DAMQ (LLD)

design in Section 2.4. First of all, we explain the timing drawback existed during flit arrival and

departure of LLD mechanisms. As mentioned before, the LLD design is a table-based

mechanism where a central table that contains registers directs the data flow mechanism. The

registers are updated at one edge of the clock cycle. This property of registers causes the table-

based mechanism such as LLD [14] or ViChaR [13] to take one clock cycle longer than a static

mechanism such as SAMF or CVC that do not employ tables.

To clarify this claim, we provide a brief example of the flit arriving/departing process in the

two mentioned mechanisms. In the table-based DAMQ mechanism, the arriving/departing of a

flit can be described as follows. (1) The flit arrives the router (e.g. at the +ve edge). (2) The

credit of flit leads the flit to be stored in the input-port buffer and the flit information to be

recorded in the input-port table (e.g. at the -ve edge). (3) After arbitration the flit cannot go out

at the following clock edge because its information should be recorded in the table, so it can go

out one clock cycle after it is recorded (e.g. at the -ve edge). (4) If we assume all the routers

have the same timing process, the credit of the flit should reach at the same edge in the

downstream router i.e. at the following two clock edges (e.g. at the -ve edge). For the above

example, the arriving/departing of a flit takes two cycles (4 clock events). In our proposed

mechanism, the arriving/departing of a flit take one cycle as follows. (1) A flit arrives at the

SAMF router (e.g. at the +ve edge). (2) The credit of the flit leads the flit to be stored in the

input buffer (e.g. at the -ve edge). (3) After arbitration the flit can exit the router at the following

clock edge (e.g. at the +ve edge). (4) The credit of the flit goes out at the following clock edge

(e.g. at the -ve edge). We consider the above timing process in our simulation results in this way

that the arriving/departing of a flit in the DAMQ (Link-List based) takes 2 clock cycles and one

clock cycle in the SAMF model. It should be considered that the deterministic switching mode

71

in SAMF mechanism takes a small time interval of the communication (e.g. a maximum of 16

clock cycles to evacuate a 16-slot input-port buffer). Therefore, this tiny time is over-

compensated by a larger performance improvement of our SAMF approach. FAANOS is our in-

house SystemC based NoC simulator [53], which is used to measure the two important metrics

of NoCs such as throughput and latency. For hardware chip area and power, we used Synopsys

Design Compiler with 32nm Generic Library with the same technology configurations

employed earlier in Section 3.5.2. The resulting NoC hardware operates at 100MHz and 0.85V

power supply.

3.6.2 Experiment Setup

 We setup our FAANOS simulator for an SAMF NoC and then apply the adaptivity modes of

the SAMF architecture. The topology used for NoC is mesh and the communication of packets

follows a deterministic XY routing algorithm. Due to the deterministic routing, the SAMF

mechanism can utilize a deterministic Mode-Selector (see Figure 3.13) that applies the new VC

configuration after 16 packets received by each input-port. The packet communication is in the

form of parallel wormhole switching where the flit size is equal to the channel width. Each flit is

of 128-bits and a packet can have ten flits. Assume that the time delays of channel links are

negligible as compared to the time delay of a router. As mentioned earlier, we evaluate the

adaptivity modes in two parts. In the first part of experiment, two application specific NoCs

illustrated in Figures 3.20 and 3.21 are evaluated.

 Figure 3.20: MPEG4 mapping core graph to a Mesh Topology and its XY routing.

M-CPU

2

IDCT

10

RAST

6

AU

0

VU

1

SD

RAM

5

BAB

9

SRAM2

11

RISC

7

U-SMP

8

ADSP

4

SRAM1

3

0.5

910

670

32 173
500

250

40

60 40

600

0.5 190

4 6 5 7

8 10 9 11

0 2 1 3

72

It is assumed that the size of buffers is constant in every physical channel. In the adaptivity

mode, the channel buffers are divided to multiple VCs statically. The number of VCs per

channel is determined according to the number of packets that can simultaneously pass through

the physical channel. For example, if only two different packets pass through a physical channel

at the same time, the channel is divided into two VCs. We also evaluate the SAMF model as

compared to a VC-free model with the same input-port buffer size. In the second part of the

experiment, we employ a 4×4 mesh NoC topology given in Figure 3.22. All the source cores

send packets randomly and uniformly to one destination core at a time. The source cores are

clocked at 40ns, and the destination and router modules are clocked at 10ns. As we argued

earlier in section 4, the SAMF model improves the buffer utilization by increasing the buffer

depths of VCs. An increase in the VC depth reduces contention and, eventually increases

performance. We deliberately increase the contention in the NoCs to investigate the adaptivity

of our SAMF model properly. For this reason, one destination is chosen for all the source cores

to create high traffic around the destination core that creates more contention. Figure 3.22 shows

this condition for destination core #10. In XY routing if all the source cores send packets to

destination #10 simultaneously, the north side input channel of destination will have eight flits

request.

Figure 3.21: AV Benchmark mapping core graph to a Mesh Topology and its XY routing.

12 14 13 15

 4 6 5 7

 8 10

 9 11

0 2 1 3

26924

26924 DSP5

11

DSP5
11

DSP2

12

DSP2

12

DSP1

13

DSP1

13

DSP7

3

DSP7

3

ASIC1

1

ASIC1

1
 DSP3

6

DSP3

6

 CPU
10

CPU

10

DSP6

7

DSP6

7

DSP8

2

DSP8

2

ASIC2

0

ASIC2

0

ASIC3

4

ASIC3

4
 ASIC4

9

ASIC4
9

MEM1

14

MEM1

14

MEM2
5

MEM2

5

25

25
80

80

25

25

80

80

28265

28265

764

764

640

640

641

641

7005

7005

7705

7705

38016

38016

144

144

197

197
197

197

33848

33848

20363

20363

33848

33848
116873

116873

7061

7061

75205

75205

38016

38016

7061

7061

MEM3

15

MEM3
15

75584

75584

38016

38016

DSP4
8

DSP4

8

3672

3672 33848

33848

73

3.6.3 Experimental Results and Analysis

The routing graphs show mapping of two applications (MPEG4 Decoder and AV

Benchmark) of a Mesh NoC as shown in Figures 3.20 and 3.21. The XY routing (arrow lines)

specifies the number of VCs needed for each channel. For example, three arrows toward the

north input channel of router #5 (Figure 3.20) means three packets will pass through the channel.

Three packets require three VCs to service the three packets without any contention. In the CVC

model, all the channels have the same number of VCs. Some channels may have some idle VCs

and their buffers can be used by the other busy VCs in our SAMF model. For example, when a

channel requires only one VC, all the buffer space reserved for the channel is used by that one

VC.

The efficiency of SAMF model can be better evaluated under two configurations of NoC.

First of all, the NoC should be configured in such a way that high contention traffic occurs in the

communication. Under high contention, the bigger VC buffer size leads to more data to store in

the channel buffer. Subsequently, congestion will diminish and contention will be reduced in the

NoC. Secondly, the NoC configuration should be in such a way that with the increase in VC

buffer size, the performance will improve. Our simulator creates two configurations as follows.

For the first condition, we create a configuration for the NoCs to deal with contention. In the

case of MPEG4 decoder, 2-3 VCs can create contention in NoC, and in the AV application, only

two VCs can create contention. These conditions have helped us to investigate the SAMF model

11 8 9 10

 3 0 1 2

7 4 5 6

 15 12 13 14

Figure 3.22: Fixed Communication for a 4×4 Mesh NoC

74

for the MPEG4 and AV benchmark NoCs as follows. The simulation results given in Figure

3.23 shows that the average throughputs for MPEG4 and AV application NoCs are increased by

5% and 2% respectively for SAMF as compared to those of CVC.

Synopsys Design Compiler generated router hardware and power parameters are presented in

Figure 3.24. These results are based on 32nm Generic Library for 0.85V power supply and an

operating frequency of 100MHz. These results demonstrate that the average router power

consumptions in MPEG4 and AV NoCs are decreased 4% for SAMF as compared to those of

CVC.

The average router areas for MPEG4 and AV NoCs are decreased 6% in the SAMF as

compared to a CVC as demonstrated in Figure 3.25. Figures 3.23 to 3.25 also show that the

SAMF model improves the average throughput by 27% as compared to VC-free model in

exchange to the extra cost of 11% in area and 18% in power consumption in MPEG4 application

Figure 3.23: Throughput for Different NoC Applications

40

50

60

70

80

90

100

MPEG4 AV

Th
ro

gh
p

u
t

(r
at

e
o

f
re

ce
iv

ed
 t

o
 m

ax
. s

en
t)

 6-slot VC-free
2-VC CVC
2-VC SAMF
3-VC CVC
3-VC SAMF

Figure 3.24: Power of a Router for Different NoC

applications

0

0.5

1

1.5

2

2.5

MPEG4 AV

R
o

u
te

r
p

o
w

er
(m

W
)

VC-free 2-VC CVC 2-VC SAMF

3-VC CVC 3-VC SAMF

75

and with the same size of input-port buffer of 6. The performance results indicate a little

improvement for SAMF model for applications such as MPEG4 decoder and AV benchmark.

In the second experiment, the CVC, SAMF and DAMQ models are evaluated. The size of the

input-port buffers in CVC and SAMF varies at each VC number. In other words, each input-port

buffer in the S-slot SAMF or CVC configurations has the size of VC number multiply by S. For

example, for 8 VCs and 2-slot SAMF configuration, the size of the input-port buffer is 16.

Figure 3.25: Area of a Router for Different NoC

applications

0

0.02

0.04

0.06

0.08

0.1

MPEG4 AV

R
o

u
te

r
A

re
a

(m
m

2)

VC-free 2-VC CVC 2-VC SAMF

3-VC CVC 3-VC SAMF

Figure 3.26: Throughput for High-Contention NoC Traffic

500

550

600

650

700

750

800

850

900

950

1000

2 3 4 5 6 7 8

Th
ro

u
gh

p
u

t
(P

ac
ke

ts
 p

e
r

1
0

u
s)

Virtual Channel

2-slot CVC 2-slot SAMF 3-slot CVC

3-slot SAMF 4-slot CVC 4-slot SAMF

16-slot LLD

76

However, the size of DAMQ input-port buffer is constant and equal to 16 slots (the slot size

is equal to the flit size) in all the recorded results. A high efficiency of the adaptivity of our

SAMF model can be noticed under high contention traffic in the NoCs as shown in Figure 3.22.

All the source cores send packets to one destination (sink) core (#10 in this setup). The

simulation results for NoC throughput are shown in Figure 3.26. These results confirm that the

throughput increases when the number and depth of VCs are increased. This is a much improved

situation for the SAMF model. The average throughputs of SAMF are 19% higher than those of

the CVC. This improvement can also be seen in the latency graphs shown in Figure 3.27. The

average latencies of CVC models are 23% higher than those of the SAMF model.

The hardware requirement results from the synthesis also show the advantage of SAMF

model as illustrated in Figures 3.28 and 3.29. As mentioned before, this hardware advantage is

due to saving in smaller multiplexers of SAMF input-ports. The average power consumptions

of SAMF router is 4% lower than that of a CVC router, where the average area occupied by an

SAMF router is 5% smaller than that of a CVC router. As mentioned earlier, for 32nm

technology the static power dominates the dynamic power and one should expect the same trend

shown in Figures 3.28 and 3.29. As illustrated in Figures 3.26 and 3.27, with four VCs, the

performance of CVC models is almost constant and any increase in the number of VCs does not

affect the throughput and latency of NoC. It is due to the Mesh topology of NoC where each

router has five input-ports and for each output-port (in XY routing) four packet requests can

Figure 3.27: Average Latency for High-Contention NoC Traffic

40

45

50

55

60

65

70

75

80

85

90

2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

K
 c

yc
le

)

Virtual Channel

2-slot CVC 2-slot SAMF 3-slot CVC

3-slot SAMF 4-slot CVC 4-slot SAMF

16-slot LLD

77

occur simultaneously. Therefore, in the case of CVC, four VCs of a channel usually take part in

the communication. Increasing the number of VCs (from four) will not improve performance.

However, in the SAMF model, the buffers of these useless VCs are used for the other VCs and

will improve the performance of NoCs. An interesting feature of the SAMF model is to extract

higher performance when the number of VCs is less than the CVC model. For example, all the

configurations of 3-slot SAMF NoCs are more efficient (higher throughput and lower latency)

than all the configurations of CVC based NoCs. This feature becomes more interesting when the

power and chip area are also considered.

Another model simulated in the second experiment is the LLD model. As we already

discussed, the LLD model has two major drawbacks. The first drawback is the longer flits

arrival/departure (one extra cycle) as compared to that of SAMF or CVC models. The second

Figure 3.28: Router Power for High-Contention NoC Traffic

3

3.2

3.4

3.6

3.8

4

4.2

4.4

2 3 4 5 6 7 8

R
o

u
te

r
p

o
w

er
(m

W
)

Virtual Channel

16-slot CVC
16-slot SAMF
16-slot LLD

Figure 3.29: Router Area for High-Contention NoC Traffic

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

2 3 4 5 6 7 8

R
o

u
te

r
A

re
a

(m
m

2)

Virtual Channel

16-slot CVC

16-slot SAMF

16-slot LLD

78

drawback of LLD mechanism is the monopoly of input-port buffer by a VC especially in high

contention traffic. This condition may cause a deadlock in communication [15]. Therefore, we

expect lower performance of LLD as compared to that of SAMF as one can confirm from the

results presented in Figures 3.26 and 3.27. The LLD model latency and throughput are 23%

higher and 17% lower than those of 16-slots SAMF respectively. This should be considered that

the input-port buffer size (2-slot, 8-VC) and (4-slot, 4-VC) for SAMF configuration is equal to

16. For the sake of fair comparison, the hardware requirement results for all the three models

have the same port buffer size (i.e. 16-slot) in their routers. A LLD router is 5% larger than an

SAMF router due to extra registers of the link-list table used to implement and to manage a LLD

mechanism. The power consumption of LLD is mere 2% higher than that of SAMF model. The

power overhead is due to the higher static power associated with a bigger LLD router as

compared to SAMF model router.

3.7 Novelty of Approach

The approach (SAMF) presented in this chapter is a static adaptive VC organization that

improves the buffer utilization and eventually the performance of NoC. It has following

novelties.

 The SAMF data flow mechanism is as simple as that of a static VC organization, so it

can benefit of fastest arrival and departure of data.

 The SAMF organization can easily switch to different static VC configurations

according to the data flow traffic to provide the optimum buffer utilization

and, subsequently higher performance.

 The extra hardware utilized for the adaptivity of mechanism is miniature as compared to

the hardware of organization.

3.8 Summary

The virtual channel (VC) flow control mechanism is critical to the performance and energy

problem of NoC. This mechanism suffers from some drawbacks such as contention, lack of high

buffer utilization, HoL blocking and higher cost. First of all, we introduced a low cost VC

mechanism (SMF) that has same functionality performance as a conventional static VC

mechanism (CVC). An SMF router consumes 8% less area and 9% less power as compared to a

conventional router that is confirmed by our synthesis results. We took the advantage of SMF

79

architecture and introduced an adaptive model of VC (SAMF) to improve buffer utilization of an

NoC channel. In a 4×4 mesh SAMF NoC with contention oriented traffic, 19% throughput and

23% latency improvements are gained with a 5% decrease in the area and 4% decrease in the

power as compared to CVC. Another interesting feature of the SAMF model is to achieve higher

performance for a lower hardware overhead as compared to the LLD (Link-List based DAMQ)

model.

80

Chapter 4

Efficient Dynamic Virtual Channel Organization

In this Chapter, we present a state of the art micro-architecture of input-ports for dynamic VC

organization. As mentioned in Chapter 1, most of the DAMQ organizations are table based, and

they suffer from higher hardware overhead. Our DAMQ approach presented in this chapter does

not use table, and it utilizes a circuit based mechanism for VC-based buffer organization. The

description of our contribution is organized as follows. An overview of our approach is

presented in Section 4.1. The micro-architecture called Efficient Dynamic Virtual Channel

(EDVC) is discussed in detail in Section 4.2. The buffer access in our approach is improved by

proposing two fast read and write pointers in Section 4.3. The novelty of the approach is

described in Section 4.4. We compare the hardware requirement and the performance of EDVC

with those of two DAMQ based VC organizations in Section 4.5. Finally, the concluding

remarks are made in Section 4.6.

81

4.1 Overview

 The simplicity of our EDVC mechanism is shown in the block diagram illustrated in Figure

4.1. A small table, Slot-State (Boolean value) is required to manage the EDVC mechanism. The

depth of the Slot-State table is equal to the depth of input-port buffer.

The EDVC mechanism utilizes the common features of DAMQ input-port to create a

dynamic flow control. For example, The VC identification (VC-ID) is saved with the flit-data in

the input-port buffer to assist in our efficient VC mechanism for issuing the request signals to

the arbiter. VC-full and VC-block signals assist the VC organization to maintain the order of flits

associated with each VC.

4.1.1 Simpler Communication in EDVC

 In this section, we explain the EDVC mechanism when there is no contention in the NoC

communication. In such a communication, the EDVC buffer works like a static VC (a parallel

FIFO). Assume there is no blockage, each incoming flit and its VC-ID is stored in the buffer

location pointed by the write-pointer. The flit pointed by the read-pointer is read and based on

its VC-ID arbitrated and sent out of the buffer. Therefore, we expect that the flit arrival/departure

time in EDVC is the same as that of a static VC organization and consumes three steps as shown

in Figure 4.2. We employ asynchronous communication in our EDVC organization for NoCs.

Following functions describe the working of EDVC in detail.

 Flit Arrival (Clk-edge #2): A Credit-in signal causes the incoming flit and its VC-ID to

be saved in a slot pointed by the write-pointer. Meanwhile, the corresponding bit of the

Slot-State table is set.

Figure 4.1: EDVC Input-Port Block Diagram

 P0 P2 P1 P0 P2 P1 P0 P3 P3 P0

x 0 x 2 1 0 x 2 1 0 x 3 x 3 x 0

Write-Pointer Read-Pointer

VC-ID

0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1

Slot-State Table

(0: empty slot, 1: slot is occupied)

VC Request

Physical
Channel

82

 Request Signal (Clk-edge #2): When the read-pointer points to a slot and its Slot-State

bit is set (the slot containing data), a Request signal is issued according to the VC-ID.

The arbiter will read the flit information and perform arbitration.

 Grant Signal (Clk-edge #3): If the requested output-port is open, the arbiter allocates

the proper address for the crossbar switch and VC-ID before issuing a Grant signal to

the input-port.

 Flit Departure (Clk-edge #3): The Grant signal causes the flit to leave the buffer.

Meanwhile, the corresponding bit of the Slot-State table is reset.

 Credit Signal (Clk-edge #4): The high level of Grant at the negative clock edge causes

the Credit-out and the Grant signals to be set and reset respectively.

In Figure 4.3, the above EDVC working process is compared with the LLD working process

illustrated in Figure 2.13, as one can notice the LLD takes additional one clock cycle. If the

requested output-port of a VC is closed (i.e. blocked), the arbiter issues the VC-block

Store flit in the

input-port

buffer

Stage 1 Stage 2 Stage 3 Stage 4

Update Tables

and make a

request

E
D

V
C

Arbitration in

the arbiter and

send grant

Store flit in the

input-port

buffer and

make a request

Update tables

and sent credit

out

Arbitration in

arbiter and

send grant
Flit &

Credit

L
L

D

Flit &

credit

Figure 4.3: EDVC vs. LLD Buffer Pipelines

Figure 4.2: Three Steps of EDVC VC Flow Control.

00

00

Clk

Data in

Credit in

Stored Data

Request

Grant

Data Out

Credit-Out

 1 2 3 4 5 6 Clk

0C 0B

0A 0B 0C

0A 0B

0A

00

83

signal to close the corresponding VC. Closing a VC means that a request is not issued and no flit

enters the buffer for the VC. We further discuss the blocking condition later in this chapter.

4.2 EDVC Router Micro-Architecture

 The structure of an NoC router with our EDVC input-port is shown in Figure 4.4. Our

proposed EDVC router for a mesh NoC consists of five input-port modules, an arbiter and a

crossbar switch as illustrated in Figure 4.4a.

(a)

Figure 4.4: 5×5 EDVC Router and Input-Port Micro-Architecture.

(b)

Simple
Counter

 Read-Address

SRAM

Write-Address

 Data Out

 Data In

VC–full

 Out

Reg.

 In Data- in

Flit–info

Data out

Grant

Credit-in

Slot-State

slot state

0 0

 1 1

.. ..

15 1

read-pointer

VC-ID

read-pointer

VC-req

Grant

Control

Counter

Set

D-latch

Res

VC-block
 Stop-Req

read-pointer==15

Set

D-latch

Res

VC-block

VC-block

write-pointer

Credit-in

VC-ID

read-pointer==0

Slot-State

write-pointer

clk

Stop-Req

read-pointer

write-pointer

In N out N

In E out E

 Crossbar

In S out S

(5×5)

In W out W

In L out L

VC-full

Router

Link S

Link N

EDVC Input

Port E

Link W

Link L

Link E

Link S

Link L

Link N

LinkW

 Req N grant N

Arbiter
(RC, VA, SA and ST)

 VC_block VC_full

Aselect

config
Link E

VC-ID

Credit-in

Credit-out

VC-ID_L

VC-full EDVC Input

Port N

EDVC Input

Port S

EDVC Input

Port W

EDVC Input

Port L

84

In fact, it is similar to the LLD router architecture we presented earlier in Figure 2.11. However,

the architecture of EDVC input-port shown in Figure 4.4b is much simpler in terms of less and

efficient hardware and buffering hardware. The EDVC input-port micro-architecture includes an

SRAM, a Slot-State table, two counters, and some other logic circuits and ports that are shown

in Figure 4.4b. The SRAM module served as the input-port central buffer. The slot size of the

SRAM is equal to the flit size plus VC-ID size (see Figure 4.1). The flit-data pointed by the

read-pointer appears at the SRAM output. When the Credit-in signal is activated, the flit-data is

stored in the SRAM slot pointed by the write-pointer. Various modules of the EDVC input-port

are described in detail in the following sub-sections.

4.2.1 Slot-State Table

 The process of the Slot-State table organization is the same as that of the LLD input-port

illustrated earlier in the flowchart of Figure 2.14a. However, in the case of EDVC, the content of

the Slot-State table is used to control the write-pointer and to issue the virtual channel request,

VC-req signals to the arbiter.

4.2.2 Blocking Circuit

 When the requested output-port of a VC is closed, the arbiter issues the VC-block signal for

that VC. The VC-block signal sets both D-latches as can be seen in the upper part of Figure 4.4b.

One D-latch prevents the blocked VC to be requested while the other is involved to generate

VC-full signal to block the incoming flit for the full/blocked VC. These two conditions keep the

blocked packet in the buffer and maintain its order until the blocking is removed. Consider the

example of a channel buffer in Figure 4.5 showing a packet, P1 that was blocked and now its

output-port is open. To read P1 flits in order, its request should first be enabled. After all the flits

of P1 are read the VC can now accept new flits. We will discuss the removal of VC blocking in

the following section.

Figure 4.5: Packet P1 is blocked.

 P1 P1 P1

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read-Pointer

85

4.2.3 Enabling Blocked Request and VC-full

 Consider the channel buffer example of Figure 4.5 again. The read-pointer increments from

right to left in the buffer and the ordering of P1 flits is also from right to the left direction.

Therefore, to remove the blockage of P1, its flit at buffer location 3 should first be read. To

implement this mechanism, the blockage should be removed by starting the read-pointer from

location 0. The circuits in the top-right corner of Figure 4.4b implement this mechanism such

that a VC-block request is freed when read-pointer becomes zero.

 The write-pointer can be anywhere when the blockage of packet P1 is removed. However, the

writing of any new flit of P1 cannot be placed in-between the P1 flits residing in the buffer (e.g.

locations 4, 6 and 7). To prevent such condition from occurring, the entire buffer should be read

once to send out all the freed flits that were blocked. A typical logic circuit shown in the top-left

corner of Figure 4.4b implements the mechanism. When the read-pointer reaches at the end of

the buffer and the related request is free, the blocked VC-full is freed (reset).

4.2.4 Operation of Read and Write Pointers

 The read-pointer works like a counter that counts the clock cycles as shown in Figure 4.6a.

The write-pointer also works as a counter but it is controlled by the Slot-State table. It also

counts the clock cycle when the slot of the input-port buffer is full as shown in Figure 4.6b.

When the write-pointer points to an empty slot, it stops counting. When the data is stored in the

slot, its corresponding bit is set and causes the write-pointer to increment at the next clock. If the

following slot is already full, the input-port does not issue a Credit signal to upstream routers.

 Figure 4.6: 4-bit Simple Read and Write Pointers

Slot-State

D Q

Adder
4-bit D-FFs

CLK

+

(a) Read-pointer

+

D Q

Adder 4-bit D-FFs

CLK

“1”

(b) Write-pointer

0

1

2

3

4

5

6

7

.

.

.

15

0

1

0

0

1

1

0

1

1
:
:

:

:

:

:

86

This will cause the upstream router to stop sending flits to the buffer. Moreover, when the slot is

occupied, the write-pointer is incremented until it reaches an empty slot. When it reaches an

empty slot, the write-pointer stops, and a Credit signal is simultaneously issued to the upstream

router to resume sending flits. The VC-full signals implement the role of Credit signals. In other

words, when the slot pointed by write-pointer is occupied, all the VC-full signals become set.

4.2.5 EDVC Closing and Requesting Approach

 Table 4.1 lists the conditions associated with the closing and requesting operations of a VC

(blocking circuit). The closing and requesting operations are actuated by the VC-full and VC-req

signals respectively. There are three conditions according to the state of VC-block. The VC-block

is issued to input-port by the arbiter to inform about the state of associated VC in terms of

arbitration service. In fact, if the VC cannot succeed to win a free VC of the downstream input-

port router, it becomes set. For condition 1, the VC-block is reset, so that the closing (VC-full)

and the requesting (VC-req) operate in normal condition (see table). For condition 2, the VC-

block become set, so that the mechanism stops receiving flits and requesting to the arbiter for the

VC. In this condition, the order of VC flits inside the port buffer is kept until the blockage is

removed. In condition 3, the VC-block switches from one to zero i.e. the VC can succeed in the

arbiter. In case that the read-pointer ≠0, the VC issues no request to the arbiter and receives no

incoming flit. The read-pointer continues incrementing becomes zero. At this point, the VC can

only issues request to the arbiter leading its flits to exit the router without new flits enter the VC.

The read-pointer continues incrementing until reaches to the end of port buffer. At this point,

the closing and requesting operations of the VC return to the normal condition.

Table 4.1. Closing and Requesting Operations of EDVC Mechanism Associated with a VC

condition VC-block Stop-Req VC-req VC-full

1 0 0 X: Normal
1: read-pointer points to a flit of the VC.

0: read-pointer points to no flit of the VC.

X: Normal
0: write-pointer points to empty slot.

1: write-pointer points to occupied slot.

2 0 to 1 1 0: No request 1: No incoming flit

3 1 to 0 1: read-pointer ≠ 0 0: No request 1: No incoming flit

0: read-pointer = 0 X: Normal 1: No incoming flit

0:read-pointer = 15 X: Normal X: Normal

87

Figure 4.9: 4-bit EDVC Fast Write-Pointer

D Q

WR
WR+

1
WR+1

5
WR+14

WR+

1

WR

Slot-State

WR+1
4

0

1

2

.

.

.

.

15

1
1

0

0

1
1

1

0
:
:

:

:

:

:

 write-pointer (WR)

4-bit D-FFs

CLK

4.3 Improving Input-Port Buffer Access

 The input-port mechanism presented earlier is very slow especially when the NoC is crowded

with packets. This problem stems from the structures of the read-pointer and write-pointer that

are implemented as simple counters. For example, the situation illustrated in Figure 4.7, shows

the read-pointer in front of the write-pointer such that the packet P1 is read after 13 cycles after

it was written. The same scenario occurs for the write-pointer. Figure 4.8 shows a situation

where the write at location 15 occurs 14 cycles after a write at location 1. In fact, there is no

write in the buffer during 14 cycles. These latencies amongst the buffer write and read events

lead to performance deterioration. We present a faster buffer organization for fast read and

write.

4.3.1 Fast Buffer Write

 Ideally, after a write takes place, the write-pointer should point to the next empty slot

anywhere in the buffer at the next clock edge. Considering the situation shown in Figure 4.8, it

only happens when the write-pointer points to location 15 at the next clock cycle after writing at

location 1. Figure 4.9 illustrates our proposed circuit for a 4-bit write-pointer that facilitates a

much faster buffer write.

Figure 4.7: Fast Read and Write pointer

 P4 P2 P1 P3

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write-Pointer

Read-Pointer

Figure 4.8: Write at location 15 occurs 14 cycles after a write at location 1.

 P3 P1 P0 P0 P1 P1 P1 P1 P1 P2 P1 P3 P1

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write-Pointer

88

Figure 4.10: 4-bit EDVC Fast Read-Pointer

D Q

RD+1

 read-pointer (RD)

RD+2

RD

RD+15

RD+1 RD+2

Slot-State

RD+15 0

1

2

.

.

.

.

15

1
1

0

0

1
1

1

0
:
:

:

:

:

:

4-bit D-FFs

CLK

The write-pointer, WR points to the first empty slot of the channel buffer and remains there

until a write occurs. After a buffer write, the corresponding Slot-State is set to 1. The write-

pointer then points to the next empty buffer slot at the next clock edge.

4.3.2 Fast Buffer Read

The ideal condition that enables a faster buffer read to take place is when the read-pointer

points to the next occupied location of the channel buffer in one clock cycle. For example, in

Figure 4.7, the read-pointer is currently pointing location 7 and it should point to location 11 as

this is the next location that is occupied. When some locations of the channel buffer are

occupied, the read-pointer should only points to those locations one by one per clock cycle. We

propose a 4-bit fast buffer read circuit to generate a read-pointer (RD) as illustrated in Figure

4.10.

The RD only counts and produces the address of occupied locations of the channel buffer.

For example in Figure 4.7, the read-pointer (RD) will count and produce addresses of 11, 1, 4

and 7 for consecutive clock cycles. The output of the read-pointer circuit (RD) points to the

initial location of Slot-State table that is set and remains there for one clock cycle. During the

same clock cycle, the state of current flit location is determined whether it is blocked or not.

Regardless of the flit condition, the read-pointer advances to the next occupied location at the

next clock. Similarly, it will continue to access flit-occupied locations per clock cycle.

Considering the buffer locations 1, 4, 7 and 11 are occupied as shown in Figure 4.7, starting

from location 7 the read-pointer accesses the other three locations in the following three clock

cycle one by one. It does not matter whether one or more of the flits at location 1, 4, 7 and 11 are

blocked. The analysis shows that the read-pointer does select occupied slots with the same

89

priority. In fact, there is no priority and any flit in the buffer will be pointed by the read-pointer

for one clock cycle one by one. It doesn’t matter whether the occupied slot flit is blocked or not,

the read-pointer stays at each occupied slot for one clock cycle.

4.4 Novelty of EDVC Mechanism

 The virtual channel mechanism for wormhole routing is a common approach used in many

NoC designs [24, 25, 50]. When the header flit of a packet enters a VC buffer, the packet

reserves that specific VC. The reservation of a VC is maintained until the tail flit enters. At this

point, the VC can accept a new packet if it has free space. In this way, a VC can contain two

parts of two packets at a time. Assume that a VC has two parts of two packets simultaneously.

The first packet can block the second packet in spite of the fact that the route of the second

packet is open. It is commonly known as HoL (Head of Line) blocking. HoL blocking leads to a

number of problems in NoC systems such as congestion, deadlock, and monopoly of one VC

over the whole input-port buffer space.

 As mentioned in Section 4.2.2, a common feature of VC-based mechanisms such as LLD is

the closing of a VC when a packet head flit associated with the VC faces a blockage. When the

head flit of a VC faces with a blockage, the arbiter sends a VC-block signal to the input-port to

prevent the VC to generate request signal (see Figure 3.13). In EDVC mechanism, the VC-block

signal also closes the blocked VC (by activating its VC-full signal). This blocking process

travels back through the routers that are related to the blocked VC and leads the associated VCs

to be closed too. In short and in terms of functionality when compared with LLD, the LLD

mechanism blocks a VC when it is full, and in the case of our EDVC a VC is blocked when it is

full or if it is blocked in the downstream router indicated by the corresponding VC-full signal

from the relevant VC. This behavior of EDVC mechanism leads to some features such as high

alleviation of HoL problem, lower buffer space for blocked VCs, and preventing of deadlock

without dedicating in default any buffer space for each VC. We further discuss these features in

the following sections.

4.4.1 VCs for Blocked and Unblocked Packets

 The probability of obtaining a free VC for the unblocked packets in EDVC is much higher

when compared with LLD. For better understanding, we compared two situations. Figure 4.11a

represents a situation for LLD, where packets P4 and P5 remain blocked until the packet P0

90

becomes unblocked. Figure 4.11b represents the EDVC situation where the blocked packet P0

causes the VC0 stops receiving flits, so the packets P4 and P5 can occupy the buffer when one

of the VC1, VC2 or VC3 becomes free.

In our EDVC approach, when a packet faces a blockage, its VC will utilize a minimum space

of the input-port buffer. Consider a situation of a blocked packet in the VC. In the case of

traditional LLD, the upstream router continues to send new packets to the VC that will allocate

more buffer space to accommodate these packets leading to the allocation of a large but useless

buffer space as illustrated in Figure 4.12a. However, the new packets in our EDVC approach

remain in the upstream router until a downstream VC becomes empty. In fact, more free space

for other unblocked VCs is provided as shown in Figure 4.12b. Consequently, the performance

and buffer utilization of EDVC is much higher when compared with the LLD methodology.

4.4.2 Lower Congestion

 When a packet travels in an NoC, it reserves a VC in each router of its route. The packet flow

rate depends on various NoC conditions including scheduling and traffic patterns. For example,

in the case of a round-robin scheduling, the packet flow shown in Figure 4.13a is more crowded

Figure 4.12: (a) P4, P5 and P6 packets are blocked due to HOL of P0 (b) Free slots are used by the other VCs

(b) EDVC Buffer is equally divided among all VCs (a) LLD VC0 has a large buffer space

VC3

P6 P4 P5 P4 P4 P3 P5 P5 P4 P2 P0 P0 P1 P0 P0 P0

VC1 VC0 VC2

B2

T1

H3

H6 T5 B5 B5 H5 T4 B4 B4 H4 T0 B0 B0 H0

VC3

P3 P3 P2 P3 P2 P2 P3 P0 P1 P0 P0 P0

VC1 VC0 VC2 Free

T1

T3 B3 B3 H3

T0 B0 B0 H0

T2 B2 B2

(a) LLD: P0 blockage leads to HOL blocking

(b) EDVC: No HOL blocking

Figure 4.11: Packet Blocking in LLD and EDVC.

VC3

Physical
channel

P4 P4 P5 P4 P4 P3 P2 P2 P2 P2 P1 P0 P1 P0 P0 P0

VC1 VC2 VC0

T2 B2 B2 H2

T1 B1

H3

H5 T4 B4 B4 H4 T0 B0 B0 H0

VC3

Physical
channel

 P3 P2 P2 P2 P2 P1 P0 P1 P0 P0 P0

VC1 VC0 VC2 Free

T2 B2 B2 H2

T1 B1

H3

T0 B0 B0 H0

91

than in Figure 4.13b due to different traffic conditions. One of the conditions, which leads to

congestion in a DAMQ based NoC, takes place when the packets become blocked. Packet

blocking at each router causes the packet flow to become congested on its route. For example,

Figure 4.13c shows the route of packet A as it passes through Router1 and Router2 and then

becomes blocked in Router3. If packet A has a large number of flits, it can consume all the

buffer space of the input-port in the routers on its path and creates a serious level of congestion.

As described earlier that in the case of our EDVC mechanism, the VC-block signal of upstream

router also activates the VC-full signal of the related VC. This process spreads back through the

routers that are related to the blocked VC as illustrated in Figure 4.14a. In EDVC, each router

acknowledges its upstream routers about the state of its VCs. The lowest possible buffer

capacity is assigned to the blocked packets. For example, consider the packet flow scenario in

Figure 4.14a. Assume that the data flow is in a pipelined communication, the VC requests are

issued in a round-robin style, and the acknowledgement is sequential among the routers. As soon

as the flit A0 in Router3 is blocked, the Router3 informs the Router2 at the following clock

(c) Packet flow is congested due to the blocking of packet A.

(a) Packet flow rate is uniform/high for high level of traffic.

(b) Packet flow rate is uniform/low for low level of traffic.

Router1

VC0 VC1 VC2

A C C B B B A C A

VC0 VC1 VC2

A C C A B C B A B

VC0 VC1 VC2

A B A C A B C C B

C B C C A A A B B B B A A A C C C B C C C B B B A A A

Router2 Router3

Router1

VC0 VC1 VC2

 C B A A C B A B C

C B A

Router2 Router3

free VC0 VC1 VC2

C A B

free VC0 VC1 VC2

A B C

free

Router1 Router2 Router3

VC0 VC1 VC2

A C A B A A A A A

C B A A A A A A A

VC0 VC1 VC2

A C A A A A A A B

VC0 VC1 VC2

A B A C A A A A A

C B A A A A A A A C B A A A A A A A

Figure 4.13: LLD Packet Flow Situations.

92

cycle. Due to round-robin form of VC requests, the router2 sends the 2nd flit of A after sending

a flit of packets B and C. Therefore, the blockage of A1 is reached sooner than its arbitration.

The flit A1 in Router2 becomes blocked, and the Router2 informs the Router1 at the following

clock cycle. The same condition of A1 occurs for A2. In such scenario, the blocking is

transferred back in 2 clock cycles per router. In this way, all the upstream routers cease sending

the blocked packets during the blockage and the router buffers are assigned to other VCs holding

free unblocked packets. As shown in Figure 4.14a, one slot of each router is assigned for packet

A. When the blockage is removed, the flow of packets returns to normal as depicted in Figure

4.14b resulting in high buffer utilization and overall higher NoC performance.

Consider the above conditions for ViChaR. The ViChaR cannot theoretically reserve a

specific room for each VC, and its VC size varies from one to the maximum size of the channel

buffer [13]. Therefore, in some cases this mechanism will create a deadlock or a high traffic

contention. ViChaR dynamically allocates VCs and grants new flit on a first come first served

basis and there is no priority for the new packets. In the case of blocking, a packet can occupy

all the slots of a channel buffer and thus prevents any new packet to pass through the router. If

this blocking continues, the packet will occupy all of the upstream routers and no other new

packet will be able to pass through the route. This blocking can spread in the entire NoC leading

to a deadlock.

Figure 4.14: EDVC Packet Flow Situations.

(a) Packet A occupies minimum VC buffer space during blockage.

(b) Uniform packet flow after the blockage of packet A is removed.

Router1

VC0 VC1 VC2

C C C B C B B B A

VC0 VC1 VC2

A C B C B C C B B

VC0 VC1 VC2

A B C C B B B C C

C7 B4 C6 C5 C4 A1 B7 B6 B5 B2 B1 A0 C3 B0 C2 C1 C0 B3 Cb Ca C9 Bb Ba B9 B8 C8 A2

Router2 Router3

Router1

VC0 VC1 VC2

A C A B A A A A A

VC0 VC1 VC2

A C A A A A A A B

VC0 VC1 VC2

A B A C A A A A A

C B C C A A A B B B B A A A C C C B C C C B B B A A A

Router2 Router3

93

4.4.3 Deadlock Avoidance

Another feature of EDVC is deadlock avoidance. We illustrate this feature by way of a

deadlock scenario in traditional LLD mechanism. Assume that there is no reserved space

dedicated for each VC in the LLD mechanism. The packets destined for a specific VC may

occupy the entire input-port buffer space, and any new packet destined to this port may not be

able to gain access of the input-port buffer [15]. Moreover, sharing channels and buffers

increase the probability of packet blocking exponentially that will lead to more contention and

deadlock like conditions for the NoC communication. Figure 4.15 shows a deadlock like

situation for the LLD mechanism in a 4×4 NoC. Assume there are four flits per packet, two VCs

per input-port, two slots per buffer, XY routing, round-robin scheduling, and packets are sent by

the source cores S1, S2, S4 and S5 to the destination core D10.

 When the first flits of all the source cores are injected in the NoC, packets P2 and P5 can reserve

a complete path to their destination D10 due to the availability of two VCs in the northern input-

port of router#10 and their flits can reach D10. However, packets P1 and P4 can only reserve a

path up to router#6. After the injection of second flits of all the sources, P1 and P4 will occupy

all the buffer space of north and west input-ports of router#6. When the third flits of all the

source cores are injected, a deadlock will occur. The first flits of packets P1 and P4 cannot

advance in the NoC because the two VCs of north input-port of router#10 is already reserved by

P2 and P5, and the third flits of packets P2 and P5 cannot advanced in the NoC because the north

Figure 4.15: High Contention Situation in a LLD NoC

11

3

7

12 13 14
15

5

1

8 9 10

0 2

4 6

P5

P1

S2

S5

D10

S1

S4

P2

P4

94

and west input-port buffers of router#6 are already occupied by packets P1 and P4. However, this

problem would not occur in our EDVC mechanism. In fact, when the first flits of P1 and P4 are

blocked in router #6, their associated input-ports cease receiving those packets. In this way,

there will be free space for P2 and P5 to pass the router#6 and reach the destination D10. This

section also illustrates another feature of EDVC approach that it prevents deadlock without

dedicating in default any buffer space for each VC.

4.4.4 Novel EDVC based VC Organization

The novelty of our EDVC approach can be summarised as follows.

 We have introduced a new DAMQ-based input-port architecture that improves NoC

performance considerably by adding a little hardware.

 The EDVC mechanism employs logic circuits instead of tables to manage shared VC slots and

to determine the next free write-slot and available read-slot. It saves one clock cycle for each

flit arrival/departure from input-port.

 Our EDVC approach is much simpler as compared to table-based DAMQ mechanisms such as

LLD [14, 18] or ViChaR [13]. The main component of EDVC is the pointer circuits of Figures

4.9 and 4.10, which has a scalable structure to optimize its design and timing performance.

 There is no configuration constraints in our EDVC approach as compared to other DAMQ

mechanisms, and it can work in any configuration. For example, the LLD based approaches

require a reserved space for each VC, and the ViChaR buffer grows bigger with the increasing

number of flits per packet.

 The EDVC approach employs a simple congestion avoidance mechanism.

4.5 Experimental Results

In this section, we compare the hardware requirement and performance of our EDVC

mechanism with traditional Link-list based LLD and ViChaR mechanisms. Three types of EDVC

organizations, Fast-Read, Fast-Write, and Fast-Read/Write are evaluated. The Fast-Read

architecture employs a simple write-pointer and fast read-pointer shown in Figures 4.6b and 4.10

respectively. The read-pointer of Fast-Write architecture is a simple counter (see Figure 4.6a);

while its write-pointer employs a fast write mechanism, as shown in Figure 4.9. The Fast-

Read/Write architecture utilizes the fast write-pointer and fast read-pointer illustrated in Figures

4.9 and 4.10 respectively.

95

4.5.1 Hardware Requirements and Parameters of Input-Ports

The hardware requirements and characteristics of EDVC Fast-Write, Fast-Read/Write, LLD

and ViChaR input-port architectures are determined by employing Synopsys Design Compiler

for generic 90nm technology and Mentor Graphics ModelSim for Stratix-III FPGA. We have

coded the micro-architectures using Verilog and simulation is performed by employing the

ModelSim to measure various hardware metrics. The Synopsys design compiler is used to

measure the power consumption and area of NoCs. We measure the hardware metrics of the

input-ports of EDVC, LLD and ViChaR routers. All the ports use a dual-ported SRAM for data

buffering. We apply the same setup constrains to all the input-ports. The setup for the input-port

ASIC power and area employs CMOS technology parameters of Synopsys Generic 90nm

Library, global operating voltage of 1.2V and time period of 5nsec (200MHz). The width of slot

buffer is equal to the flit size of 16 bits.

The characteristics of input-port micro-architecture are listed based on their buffer sizes in

Table 4.2. The details of the other modules including arbiter and crossbar are also listed at the

end of table. The EDVC Fast-Write input buffer has the optimum area and timing characteristics

among all the input-ports. On average, the EDVC Fast-Write consumes 15% less IC area, 58%

less power consumption, 64% less critical path delay, 4% less combinational logic elements and

15% less registers as compared to LLD. For FPGA implementation results, the table also

provided the amount of SRAM based registers in the brackets. EDVC Fast-Write uses a simple

read-pointer (Figure 4.6a) versus a fast read-pointer (Figure 4.10) employed in EDVC Fast-

Read/Write approach. The simple read-pointer increments per clock cycle regardless of the flit

existence in the input-port buffer that leads to 9% higher power consumption of Fast-Write

versus Fast-Write. In spite of optimum hardware characteristics, the EDVC Fast-Write and Fast-

Read has lower performance than EDVC Fast-Read/Write that is also investigated in this section.

The LLD and ViChaR architectures are table based designs where a register-based control table

directs the mechanisms. Registers and/or latches are updated on one edge (or level) of clock

causing the table-based mechanisms like LLD and ViChaR to take one clock cycle longer than

our EDVC approach that uses dedicated logic circuits.

96

Table 4.2. Hardware Specification of EDVC, LLD & ViChaR Input-Ports

Type of input-port

ASIC design
(90 nm Generic Library)

FPGA design
(Altera Stratix III)

Total Cell Area
(µm

2
)

Power
(µW)

Critical path delay
(ns)

Comb.
Logic elements

Registers (bits)
fmax

(MHz)

LLD 4-slots 5809 218 1.57 95 112(64
b
) 352

ViChaR 4-slots 6646 319 1.56 75 132(64
b
) 300

EDVC Fast-Read/Write

4-slots
4991

106
(60

a
)
 1.11 83 107(64

b
) 384

EDVC Fast-Write

4-slots
4674 108 0.57 78 97(64

b
) 1082

LLD 8-slots 10328 370 1.54 180 204(128
b
) 286

ViChaR 8-slots 21274 1236 2.26 306 392 (128
b
) 197

EDVC Fast-Read/Write
8-slots

9524
150
(88

a
)

1.62 206 186(128
b
) 244

EDVC Fast-Write 8-slots 8687 162 0.47 174 174(128
b
) 851

LLD 16-slots 19813 688 2.02 332 388(256
b
) 271

ViChaR 16-slots 48463 2968 2.76 548 896 (256
b
) 175

EDVC Fast-Read/Write
16-slots

19448
240

(147
a
)

2.22 441 340(256
b
) 171

EDVC Fast-Write
16-slots

17016 263 0.92 324 327(256
b
) 726

LLD 32-slots 39174 1306 3.23 670 764(512
b
) 218

ViChaR 32-slot 109849 6989 2.86 1183 2040 (512
b
) 125

EDVC Fast-Read/Write
32-slots

40716
413

(262
a
)

4.64 964 646(512
b
) 118

EDVC Fast-Write
32-slots

34295 457 0.94 727 632(512
b
) 597

Arbiter 4-VC 28380 1904 4.17 1116 240 127

Cross-bar 2502 611 - 160 - -

a
 Power consumption at 100 MHz,

b
SRAM registers

The ViChaR architecture is expensive in terms of hardware cost among all the other

architectures. The higher cost of ViChaR is due to large control table (even bigger than that of

LLD). The following equations show the Size of LLD and ViChaR Control Tables (SCT).

SCTLLD = SB.ln(SB)+ SB+VC + 2.VC.ln(SB) (1)

SCTViChaR = SB.ln(SB).FP + SB + 2.SB.ln(FP) (2)

 Where

 SB is the number of slots per port buffer.

 FP is the number of flits per packet.

 VC is the number of virtual channels.

97

Assuming a configuration for the experiments where VC=4, SB=16, and FP=16, the SCTViChaR

is almost 10 times of the SCTLLD (VC = SB in ViChaR). The only advantage of ViChaR is its

lower critical path delay for 32-slot buffer. This is due to the lower dependency among the cells

of its control table. In other words, the address location of each stored flit in the input-port buffer

is recorded in the control table, and there is no link among these addresses. However, a large

control table of ViChaR can lead to a lower fmax (maximum frequency) than all the other input-

ports.

For larger 32, 16 and 8-slot input-buffers, EDVC Fast-Read/Write has lower fmax for FPGA

implementation and higher critical path for ASIC design as compared to LLD. It is due to the fast

read-pointer module that grows bigger with the size of the input-port buffer. The critical path of

EDVC Fast-Read/Write includes the fast read-pointer having a large number of Multiplexers.

When the size of input-port buffer increases, the multiplexing stages of fast read-pointer grows

that will in-turn increase the critical path delay for EDVC Fast-Read/Write and Fast-Read. There

are different ways to optimize the critical path of EDVC Fast-Read/Write. First of all, the critical

path delay of an input-port can be ignored when the arbiter critical path delay is larger than that

of the input-port. For example, the critical path of a 4-VC arbiter in our implementation is longer

than 4, 8 and 16-slot EDVC Fast-Read/Write input-ports (as listed in Table 4.2). An optimal

design of fast read-pointer will also lead to lower critical path delay for EDVC Fast-Read/Write

input-port. We will present optimal architectures for fast read-pointer and write-pointer in the

following chapter. Another timing advantage of EDVC approach should also be kept in mind that

it takes one less clock cycle for flit arrival/departure than LLD approach.

The EDVC Fast-Read/Write based input-port shows a significant saving in the power

consumption and register usage as compared to ViChaR and LLD input-ports. As one can

observe from Table 4.2, EDVC Fast-Read/Write, on average consumes 61% less power and 10%

less buffer as compared to LLD. The switching associated with the control table (Registers) is

larger causing a higher power consumption of LLD and ViChaR as compared to our EDVC Fast-

Read/Write. We expect that as the input-port buffer depth is increased, the Fast-Read/Write

input-port hardware area becomes lower than those of LLD input-port. However, the Fast-

Read/Write hardware area increases more than the LLD area of input-port for 32-slot buffer. This

increase is due to the impact of the Fast-Read/Write-pointers logic illustrated in Figures 4.9 and

4.10.

98

4.5.2 EDVC Performance Evaluation

1) Application Specific and Hotspot Traffic Patterns

In the first experiment, we simulated and tested EDVC mechanism for two different traffic

patterns including Application-Specific and Hotspot traffic patterns [53, 54]. For Application-

Specific traffic, two NoC applications presented in Section 3.6.2: MPEG4 Decoder and Audio-

Video (AV) benchmarks are tested for 3×4 and 4×4 mesh topology NoCs as given in Figures

3.20 and 3.21 respectively. For Hotspot traffic, one destination is chosen for all the source cores

during a time period. By evaluating the results of these three traffic patterns, we demonstrate the

efficiency of our EDVC approach in terms of throughput and latency of the NoCs.

The NoC topology selected is either 3×4 or 4×4 mesh, and packet communication follows the

XY routing as shown in Figures 3.20b and 3.21b. The communication of packets is based on

wormhole switching where the channel width is equal to the flit size (16 bits). Each packet is

made of sixteen flits. Each input-port utilizes 2 VCs and 8 slots per input-port buffer in the

Application-Specific traffic. In the case of Hotspot traffic, each input-port has 4 VCs and the

buffer depth is varied from 4 to 32 slots. The link delay between two routers is negligible as

compared to the delay of a router and it is ignored. All the source/destination cores and routers

operate at the same clock rate. In the case of Hotspot traffic pattern, all the source cores send their

packets to one destination (e.g. destination core#10 of Figure 4.15).

We measured throughput and latency where throughput is measured by the rate of packets

received to the maximum number of packets being injected at a specific time. The average

latency is measured by the average time delays (per clock cycle) associated with the departure

and arrival of a specific number of packets in the NoC. We apply different packet injection rate to

measure the performance in the Application-Specific traffic. Packet injection rate is changed per

time unit. The time unit is determined based on the maximum bandwidth of the source cores. For

example, Source Core#8 in the MPEG4-decoder has a maximum bandwidth of 1580 flits.

Therefore, the time unit will be 1580 clock cycles (assuming one flit per clock injection by each

source core). The same measurement is performed for the AV application i.e. Core#14 has a

maximum bandwidth of 192078 flits for a time unit of 192078 clock cycles.

The results of Figures 4.16- 4.19 provide throughput and latency for MPEG4-decoder and

AV-benchmark applications. The throughput and latency of Fast-Read/Write is almost 100% and

99

50% better than those of LLD mechanism. This improvement is due to the fact that there is a little

contention in the data flow, where the only determining factor is the speed of routers. As

mentioned earlier, the passage of a flit through a LLD router takes 4 clock-events where it takes

two clock-events for an EDVC router as illustrated in Figure 4.3. Flit arrival/departure in EDVC

router is one cycle (two clock events/edges) as compared to two cycles for LLD routers.

Moreover, the contention is low because the destination of each source is fixed, and most of the

source cores send a few flits per time unit.

EDVC Fast-Read/Write has lower latency than that of LLD for all the injection rates as shown

in Figures 4.16 and 4.18. However, it is higher for the EDVC Fast-Read or Fast-Write. For

MPEG4, seven source cores send data to one destination core#5 causing high contention. The

Figure 4.17: Average Latency for AV Benchmark Traffic

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

 K
cy

cl
e

)

Inject Rate (Time Unit)

LLD EDVC Fast-Read/Write

EDVC Fast-Write EDVC Fast-Read

Figure 4.16: Average Latency for MPEG4 Decoder Traffic

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

 K
 c

yc
le

)

Inject Rate (Time Unit)

LLD EDVC Fast-Read-Write EDVC Fast-Write EDVC Fast-Read

100

higher contention results in higher latency for EDVC Fast-Read and Fast-Write as compared to

LLD. For AV benchmark, the NoC communication is less congested (e.g. a maximum of 4 cores

send packet to destination core #10). Due to which, the latency is lower in EDVC Fast-Write for

all the injection rates and for higher injection rates as compared to the latencies for EDVC Fast-

Read. A slower write to an input-port buffer of EDVC Fast-Read router affects all the

downstream input-ports that may intend to send packets to that router. However, a slower read

from an input-port buffer of an EDVC Fast-Write router will only affect one input-port that is

itself.

In the case of Hotspot traffic, we compared our EDVC approach with LLD as well as ViChaR

approaches. The performance of EDVC mechanism is better than LLD and ViChaR approaches

as shown in Figures 4.20 and 4.21. In fact, all the EDVC mechanisms including Fast-Read, Write

Figure 4.18: Average Throughput for MPEG4 Decoder Traffic

2.5

12.5

22.5

32.5

42.5

52.5

62.5

72.5

82.5

0 1 2 3 4 5 6 7 8

Th
ro

gh
p

u
t

Inject Rate

LLD EDVC Fast-Read/Write

EDVC Fast-Write EDVC Fast-Read

Figure 4.19: Average Throughput for AV Benchmark Traffic

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Th
ro

gh
p

u
t

Inject Rate

LLD EDVC Fast-Read/Write

EDVC Fast-Write EDVC Fast-Read

101

and Read/Write has higher throughput and lower latency than those of LLD and ViChaR. This is

due to the fact that one destination is chosen for all the source cores and traffic becomes

congested creating large number of packet blockages. The average throughput and latency of the

Fast-Read/Write approach is 100% higher and 48% lower (respectively) than those of LLD and

ViChaR. The high contention causes the performance of EDVC Fast-Read and EDVC Fast-Write

becomes lower than EDVC Fast-Read/Write. The simple write-pointer and read-pointer are very

slow when the input-port buffer is crowded (Figure 4.6).

Figure 4.21: Average Throughput for Hotspot Traffic

0

1

2

3

4

5

6

7

8

9

4 8 16 32

Th
ro

u
gh

p
u

t

Input Port Buffer Size(Slot)

ViCHaR LLD EDVC Fast-Read/Write EDVC Fast-Write EDVC Fast-Read

Figure 4.20: Average Latency for Hotspot Traffic

0

2

4

6

8

10

12

14

16

18

20

4 8 16 32

A
ve

ra
ge

 L
at

e
n

cy
 (

 K
 c

yc
le

)

Input Port Buffer Size(slot)

ViCHaR LLD EDVC Fast-Read/Write EDVC Fast-Write EDVC Fast-Read

102

Figure 4.23: Average Throughput for Tornado Traffic.

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.5 1

A
ve

ra
ge

 T
h

ro
gh

p
u

t
(%

)

Injection Rate Flit/Node/Cycle

ViCHaR LLD

EDVC Fast-Read/Wr. EDVC Fast-Write

EDVC Fast-Read

Figure 4.22: Average Latency for Tornado Traffic.

0.005

0.05

0.5

5

50

0.1 0.2 0.3 0.5 1

A
ve

ra
ge

 L
at

e
n

cy
(

K
cy

cl
e

)

Injection Rate (Flit/Node/Cycle)

ViCHaR LLD EDVC F-R/W EDVC F-W EDVC F-R

Figure 4.24: Average Latency for Complement Traffic.

0.005

0.05

0.5

5

50

0.1 0.2 0.3 0.5 1

A
ve

ra
ge

 L
at

e
n

cy
(

K
cy

cl
e

)

Injection Rate (Flit/Node/Cycle)

ViCHaR LLD

EDVC Fast-R/W EDVC Fast-Write

EDVC Fast-Read

103

The performance results also indicate a faster EDVC Fast-Write as compared to Fast-Read.

This is due to a slower write to the input-port buffer for an EDVC Fast-Read router that affects to

all the downstream input-ports. However, a slower read from an input-port of EDVC Fast-Write

router will only affect one input-port that is itself. The throughput and latency improvements for

Fast-Write are 4% and 10% better than the Fast-Read mechanism. In spite of higher VC numbers

of ViChaR (VC number is equal the slot numbers), the ViChaR and LLD have the same

performance as both ViChaR and LLD use control tables for their dynamic VC mechanism i.e.

both have the same flit arrival/departure delays. Moreover, in the mesh topology, there are a

maximum of 4 requests for an output-port at each clock cycle and four VCs are adequate for the

NoC communication.

2) Performance Analysis for 8×8 NoC Topology

In the 2nd experiment, we explore and compare our EDVC approach for a larger 8 × 8 mesh

topology and for some other commonly used traffic patterns such as Tornado and Complement

[16, 55]. Tornado and Complement traffic benchmarks create high contention traffic uniformly in

an NoC. For an m×m mesh topology, source address (Sx, Sy) where 0 ≤ x, y ≤ m-1, and a

destination address (Dx, Dy) is determined by the following equations for Tornado and

Complement traffic:

For Tornado: Dx = Sx+(m/2)-1, Dy = Sy+(m/2)-1 (3)

For Complement: Dx = m-Sx-1, Dy = m-Sy-1 (4)

Figure 4.25: Average Throughput for Complement Traffic.

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.5 1

A
ve

ra
ge

 T
h

ro
gh

p
u

t
(%

)

Injection Rate (Flit/Node/Cycle)

LLD EDVC Fast-R/W

EDVC Fast-Write EDVC Fast-Read

ViCHaR

104

In XY routing and Tornado traffic, all the routers are uniformly crowded, where in the case of

Complement traffic the side routers are more crowded than the middle. A packet consists of 16

flits, and each input-port includes one central 8-slot buffer. There are 4 VCs per each input-port

except for ViChaR that has 8 VCs to prevent deadlock in ViChaR communication. The LLD

mechanism reserves at least a slot per VC to prevent deadlock in its communication. The

performance metrics are measured per flit injection rates as illustrated in Figures 4.22- 4.25. The

results show higher performance for EDVC Fast-Read/Write in high injection rates. For example,

the average latencies of Fast-Read/Write at 0.3, 0.5 and 1 injection rates are 46% less than those

of LLD for Complement traffic. The average throughput of EDVC Fast-Read/Write is higher

than those of LLD in both patterns i.e. 29% and 50% higher in Tornado, and Complement traffics

respectively.

For higher injection rates, the NoCs become populated with higher rate of contention. As

previously discussed, EDVC improves NoC performance in high contention. EDVC mechanism

reduces the probability of monopolizing an input-port by a growing VC. Another feature of

EDVC is the prevention of congestion by propagation of VC-full signal from the remote routers

along the routing path. The LLD and ViChaR show similar performance and their similarities are

also due to the same flit arrival/departure delays.

We expect two times better throughput and lower latency for EDVC Fast-Read/Write at low

injection rates (assuming no contention) as compared to LLD or ViChaR due to two times faster

clock for EDVC Fast-Read/Write NoC. However, the movement of flits is a bit slower in Fast-

Read/Write mechanism than that of LLD or ViChaR mechanisms. The slow flit movement is due

to the hardware/technique used for handling blocked VC that is discussed and presented in

Section 4.2.3. A blocked VC becomes free to be read when the read pointer points to the first

location of the input-port buffer, and it becomes free to be written when the read pointer points to

the last location of input-port buffer. The slower movement of flit for EDVC Fast-Read/Write

leads to a bit higher latency, however, the throughput is higher as compared to LLD or ViChaR

for lower injection rates as illustrated in the results given in Figures 4.23 and 4.25. A bit higher

latency of EDVC Fast-Read/Write is shown in Figures 4.22 and 4.24 for injection rates of 0.1 and

0.2. However, for the same injection rates of 0.1 and 0.2, EDVC Fast-Read/Write throughput is

32% and 28% higher when compared with LLD/ViChaR for Tornado and Complement traffic

105

patterns respectively. In the following chapter, we improve the EDVC architecture to illustrate

higher performance in low injection rate too.

The EDVC Fast-Read and Fast-Write have the lowest performance and their weakness is due

to slower read and write scenario due to simpler/cheaper counter implementations for read/write

pointers, discussed earlier in Section 4.3. The slow read and write happens repeatedly for

Tornado and Complement Traffic patterns, and eventually leads to the lowest performance of

EDVC Fast-Read and Fast-Write. However, the number of slow read and write do not happen

often for AV and MPEG4 benchmark experiments that leads to better performance of Fast-Read

and Fast-Write mechanisms. In the case of Hotspot traffic, the contention is high and only one

destination receives all the data. Therefore, all the flits have to wait around that destination core

to be served. A slower flit movement speed in the NoC under such condition does not improve

the performance. In other words, the very slow receiving of flits by a destination causes the slow

movement of flits that leads to a low performance of EDVC Fast-Read and Fast-Write

mechanisms. However, the two times faster clock cycle of Fast-Read and Fast-Write mechanism

causes a bit higher performance than LLD mechanism as indicted by the results shown in Figures

4.20 and 4.21.

4.6 Concluding Remarks

The micro-architecture of conventional DAMQ input-port for NoC routers consists of complex

and large number of control modules that lead to higher pipeline stages and latency in the NoC.

To remedy the drawback of DAMQ based NoC routers we have introduced a few DAMQ input-

port architectures having simple yet novel mechanisms requiring lower hardware resources. The

micro-architecture of EDVC input-ports are presented and compared with two conventional

(table-based) DAMQ input-port designs. The advantage of our EDVC mechanisms are

investigated and highlighted. The evaluation results presented support the efficiency of our

EDVC mechanism in terms of both performance and hardware overhead. An EDVC input-port

consumes on average, 10% less registers for FPGA design and 61% less power for ASIC design.

It also has 10% higher fmax (maximum frequency) as compared to the LLD input-port

implementation for small buffer sizes (e.g. 4 slots). Moreover, the EDVC mechanism improves

the latency and throughput by 48-50% and 100% respectively as compared to LLD approaches

in the case of Application-Specific traffic in the NoC system. EDVC mechanism also shows

106

better performance for various traffic patterns when compared with LLD and ViChaR

techniques.

107

Chapter 5

Rapid and Efficient Router Architecture

 In this chapter, we present our latest NoC router architecture. The chapter is organized into

the following sections. The EDVC input-port architecture presented in the last chapter is further

improved in terms of structure and mechanism in Section 5.1. In Section 5.2, we propose a new

Round Robin (RR) arbiter architecture. The architecture of switch allocators utilized in NoC

routers is discussed in detail in Section 5.3. A novel router architecture is presented in Section

5.4 by accommodating the new input-port and RR arbiter described in Sections 5.1 and 5.2. The

experimental results for various NoC metrics related to performance and hardware overhead are

discussed in Section 5.5. The main features of the approach are listed in Section 5.6.

5.1 Rapid Dynamic Queue Based Input-Port Structure

The EDVC mechanism described in Chapter 4 has some minor drawbacks. First of all, the

fast read-pointer and write-pointer modules presented in Figures 4.9 and 4.10 grow large with

the size of the input-port buffer [55]. For example, if the size of the input-port buffer increases n

times, the first multiplexing stages of read-pointer and write-pointer will grow exponentially i.e.

108

n
2
 times that will in-turn increase the hardware overhead and the critical path delay, which has

direct effect on the speed of EDVC router. The second drawback of EDVC design is its higher

latency at lower flit injection rates. To solve these drawbacks, we propose an improved

architecture for EDVC called Rapid Dynamic Queue (RDQ), which is more efficient for various

NoC configurations and most of the known NoC traffic situations. Figure 5.1 illustrates the

micro-architecture of our RDQ input-port. We compare the EDVC and RDQ input-port micro-

architectures given in Figures 4.4b and 5.1 respectively. Three modules of EDVC input-port

including the read-pointer, the write-pointer and the blocking logic illustrated in the upper parts

of two architectures are improved. The RDQ input-port buffer is illustrated in two parts as

compared to one central buffer in EDVC. We present the details of improved input-port modules

of RDQ including rapid read/write pointers and blocking circuits.

5.1.1 Rapid Read and Write Pointers

As mentioned in Chapter 4, Section 4.3.2 that when some locations of the channel buffer are

occupied, the read-pointer should only points to those locations. This kind of pointing follows a

Read-

pointer

VC-req
Slot-
State

VC-Selector

Module

 >>

Figure 5.1: RDQ Input-Port Micro-Architecture.

<
Next read-

pointer
Read-

pointer

 VC Buffer

VC-ID

 Read-Address

 Write-Address Out

Rapid

read-

pointer

 Read-Address

Input Buffer

 Write-Address

 Data Out

Data In

VC–full

 Out

Reg.

 In Data- in

Flit–info

Data out

Grant
 Credit-in

Slot-State

slot state

0 0

 1 1

.. ..

15 1

Read-

pointer

Grant

Rapid
write

pointer

VC-block

Write-

pointer

Credit-in

VC-ID

VC-block S
 D Q

R

Stop-Req VC-req
“0”

rst rst

Buffer

full

S
 Q D

R

“0”

Stop-Req

Credit-in

Slot-State

109

Round Robin (RR) priority scheme. In other words, a slot that is just read should have the

lowest priority for the next cycle [56]. In this way, each asserted bit of Slot-State table is pointed

per clock-cycle in an ascending and circular order. Figure 5.2 shows the timing diagram of a 2-

bit EDVC fast read-pointer (see Figure 4.10) for some scenarios of Slot-State content. During

the time 1-6 cycles a fixed entry, ‘1111’ is applied that is pointed circularly and bit by bit per

clock cycle. At the 6
th

 cycle, the content of Slot-State table is changed to ‘1101’ that means the

second slot of input buffer becomes empty. At 7
th

 cycle, the content of Slot-State table becomes

‘1001’ and will be unchanged till 12
th

. During cycles 7
th

 and 12
th

 cycles, the first and last slots of

the input buffer are read per clock cycle.

We present the micro-architecture of a novel rapid read-pointer that follows RR scheme, and

it is illustrated in Figure 5.3. Assume Sx represents the state of an xth bit of the Slot-State table

where xϵ {0, 1…15}, and Mx represents the xth multiplexer of 16 multiplexers shown in Figure

5.3. The multiplexer, Mx generates the xth address if the Sx is asserted (the xth slot is occupied).

 Otherwise, it generates the address of first asserted bit after Sx. Therefore, by further

multiplexing of these multiplexers (i.e. M0 to M15), we can generate the address of first asserted

bit after the current pointed address of read-pointer. For example, when read-pointer=1, the

output of multiplexer M2 is selected. M2 generates an address of 2 if S2 is asserted; otherwise, it

generates the index of first asserted bit after S2 in a circular order. The OR logic, or-g is used to

Figure 5.2: Timing diagram of a 2-bit EDVC fast read-pointer for some Slot-State entries.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clk

Slot-State

Read-pointer

0 1 2 3 0 1 2 3 0 3 0 1

1111 0001 0010 0001

0

1001

cycle

0 3

1101

1
1

1
1

 :

4-bit D-FFs

D Q

>

`0`

`1`

`15`

 M0
Slot-State

0

1

2

.

.

.

.

15

1

0

1

0
:
:

: : :

read-pointer

M15

 M1

0

1

.

.

.

15

or_g

1 0

1 0

1 0

+
`1`

Figure 5.3: Rapid 4-bit Read-Pointer

110

prevent an infinite looping among M0-M15 multiplexers, so that when all the slots of input

buffer are empty, the read pointer points to the address zero.

 We also propose the rapid write-pointer (4-bit) architecture, which is shown in Figure 5.4. If

the Sx is de-asserted (i.e. slot is empty), the x address is generated by Mx. Otherwise, it

generates the index of the first de-asserted bit after Sx in a circular order. Therefore, by further

multiplexing with M0-M15 multiplexers, we can choose the address of first de-asserted bit from

the current pointed address of the write-pointer. For example, when write-pointer =1, the output

of multiplexer M1 is selected. Then M1 generates a value 1 in cases where S1 is de-asserted,

otherwise, it generates the index of first de-asserted bit after S1. The AND logic, and-g is used

to prevent of infinite looping among the M0-M15 multiplexers when all the slots of input buffer

are full. Figure 5.5 illustrates the timing diagram of a rapid 2-bit RDQ write-pointer for some

Slot-State entries.

Our novel rapid write-pointer points to an empty slot buffer and will stay there until the slot

is written (or occupied). Then it points to the first empty slot in ascending and circular order.

The hardware of rapid read-pointer and write-pointer modules, which are illustrated in Figures

5.3 and 5.4, grow linearly with the size of the input-port buffer. For example, if the size of input-

port buffer increases with n, the size of first multiplexing stages of Figures 5.3 and 5.4 will also

1
1

1
1

 :

4-bit D-FFs

D Q

>

`0`

`1`

`15`

0 1
 M0

Slot-State

0

1

2

.

.

.

.

15

0

1

1

0
:
:

: : :

write-pointer

M15

and_g

 M1
0 1

0

1

.

.

.

15

0 1

Figure 5.4: Rapid 4-bit Write-Pointer

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clk

Slot-State

write-pointer

0 1 2 3 0 0 2 3 3 3 3 0

0000 1000 0001

1

0110

cycle

3 3

0011 0000 0001 0011 0110 1010 1010 0100

Figure 5.5: Timing Diagram of a 2-bit RDQ Write-Pointer.

111

grow with n. This characteristics of RDQ pointers leads to a rapid NoC router and we will

verify it further in the experimental results section.

5.1.2 RDQ Closing and Requesting Approach (Blocking Circuit)

 In the EDVC type mechanism (presented in Chapter 4), the asserted VC-block signal causes

the VC to stop requesting (stop-req signal is asserted) the arbiter and halts to receive of a new

flit (VC-full signal is asserted). We improve the blocking circuit, which uses stop-req and VC-

full signals by involving one more condition i.e. VC-req to assert both the stop-req and VC-full

signals as illustrated in the upper part of Figure 5.1. In this way, we have prevented a condition

in data flow when a reserved VC with no data flit becomes closed. In other words, an empty VC

cannot make a request, and in case it is reserved by a packet and the packet is blocked (or its

VC-block is asserted), its stop-req and VC-full signals cannot be asserted. In summary, an empty

VC in any condition cannot be closed for incoming flits. The reason of involving VC-req

condition is further discussed in this section.

The usage of VC-req in the blocking circuit has a direct impact on the performance of RDQ-

based NoC router during the low NoC traffic. One AND gate per VC is needed for introducing

the VC-req condition in the blocking circuit. The blocking signals, stop-req and VC-full are reset

based on the condition of read-pointer. At each event, when the read-pointer returns to point to

the least-significant occupied slot, the stop-req signal is reset. This event occurs when the

current read address becomes equal or greater than the next read address. It is to be noted that

the output and input of read-pointer registers represent the current and the next addresses

respectively. The VC-full signal is de-asserted when the read-pointer returns to point to the

least-significant occupied slot and the stop-req signal is asserted.

 Table 5.1 lists the conditions associated with the VC closing and requesting operations. The

closing and requesting operations are actuated by the VC-full and VC-req signals respectively.

There are three conditions according to the state of VC-block. As mentioned earlier, the VC-

block becomes set when the VC cannot succeed to win a free VC of the downstream input-port

router. We call this VC as a downstream VC in this dissertation. In the first condition, the VC-

block is reset, so that the closing (VC-full) and requesting (VC-req) operate in normal condition

(see table). The normal condition is when there is no packet blockage in the communication. In

the 2
nd

condition, the VC-block becomes set. In case, the read-pointer does not point to a flit of

the VC, the VC is open to incoming flits. As soon as the read-pointer points to a flit of the VC,

112

the VC-req switches from 0 to 1 and returns to 0. In other words, the mechanism stops receiving

flits for that VC as well as requesting the arbiter. In this condition, the order of VC flits inside

the port buffer is kept until the blockage exists. In 3
rd

 condition, the VC-block switches from one

to zero i.e. the VC can succeed in the arbiter. In case, the read-pointer points to a slot that is not

the least significant occupied slot of buffer, the VC issues no request to the arbiter and receives

no incoming flit. The read-pointer continues pointing to the occupied slots until its registers’

output becomes greater than its registers’ input as illustrated in Figure 5.3. It means that the

read-pointer points to the least significant occupied slot of buffer. At this point, the VC can only

issues request to the arbiter leading its flits to exit the router without any new flit enters the VC.

The read-pointer continues pointing to the occupied slots until it points to the least significant

occupied slot of buffer again. At this point, the closing and requesting operations of the VC

return to the normal condition.

Table 5.1. Closing and Requesting Operations of RDQ Mechanism Associated with a VC

condition VC-block Stop-Req VC-req VC-full

1 0 0 x: Normal

1: read-pointer points to a flit of the VC.
0: read-pointer does not point to a flit of the VC.

x: Normal

1: Input-port buffer is full.
0: Input-port buffer is not full.

2 1 0 0: read-pointer points to no flit of the VC. x: Normal

1: Input-port buffer is full.

0: Input-port buffer is not full.

1 0 to1 then returns 0:

 read-pointer points to a flit of the VC.

1: stop incoming flit for the VC

3 1 to 0 1: read-pointer registers’ output < input 0: stop request 1: stop incoming flit for the VC

0: read-pointer registers’ output > input x: Normal 1: stop incoming flit for the VC

0: read-pointer registers’ output > input x: Normal x: Normal

5.1.3 Back Pressure for Low NoC Traffic

A specific situation can arise in our RDQ mechanism when a packet blockage condition

travels back to the up-stream routers that are related to the blocked packet. This situation assists

the VC organization in maintaining the order of flits associated with the blocked packet. This also

leads to chain-blocking and the creation of back-pressure in the NoC. The implementation of this

situation has a direct affect on the performance of RDQ especially at low injection rates. The

EDVC approach cannot handle this situation effectively [55] and when there is no credit for an

output, the input VC associated with that output becomes blocked despite having some flit in the

VCs related to blocked packet. Consequently, when there is no flits in all the upstream VCs

related to blocked packet, the blockage spread back in the NoC.Even for low injection rate traffic,

the blockage reaches to the source that will stop injecting any new flit. Moreover, the blockage

113

removal at the upstream routers will also take more times as compared to downstream routers. In

other words, a small blockage delay leads to a huge delay at the source core.

Consider the scenario of low flit injection rate shown in Figure 5.6, where the latency of the

three mechanisms: EDVC, LLD and RDQ are illustrated. Assume that the flit injection rate is low

e.g. 1/6 flit per clock cycle. The flits are injected by the source cores at 6 clock cycle intervals.

Moreover, assume that flit arrival/departure delay of RDQ and EDVC routers are one clock

cycle, and that of LLD router is 2 clock cycles.

(b) EDVC: All the related VCs are blocked at 18
th

 cycle.

Router1

VC0 VC1 VC2

 A

A1

Arbiter

Blocking

Circuit

VC-block Credit VC-full

VC0 VC1 VC2

Arbiter

Blocking

Circuit

VC-block VC-full

VC0 VC1 VC2

Arbiter

Blocking

Circuit

VC-block VC-full Credit Credit

Router2 Router3

X X X X

(a) EDVC: Packet A becomes blocked at the 3
rd

 cycle,

Router1

VC0 VC1 VC2

 A

A1

Arbiter

Blocking

Circuit

VC-block Credit VC-full

VC0 VC1 VC2

Arbiter

Blocking

Circuit

VC-block VC-full

VC0 VC1 VC2

Arbiter

Blocking

Circuit

VC-block VC-full Credit Credit

Router2 Router3

X

(d) LLD: Three flits are saved in the VC0 of router1 at 18
th

 cycle.

Router1

VC0 VC1 VC2

 A A A

A2 A1 A3

Arbiter

Blocking

Circuit

VC-block Credit VC-full

VC0 VC1 VC2

Arbiter

Blocking

Circuit

VC-block VC-full

VC0 VC1 VC2

Arbiter

Blocking

Circuit

VC-block VC-full Credit Credit

Router2 Router3

X

Router1

VC0 VC1 VC2

 A

A1

Arbiter

Blocking

Circuit

VC-block Credit VC-full

VC0 VC1 VC2

 A

A2

Arbiter

Blocking

Circuit

VC-block VC-full

VC0 VC1 VC2

 A

A3

Arbiter

Blocking

Circuit

VC-block VC-full Credit Credit

Router2 Router3

X X X X

(c) RDQ: At least one flit saved in related blocked VCs at 18
th

 cycle.

Figure 5.6: Low Flit Injection Traffic Scenario in EDVC, LLD and RDQ

114

Assume at time zero, three flits A1, A2 and A3 are being injected with 1/6 injection rate, and

these flits pass through three routers, router3, router2 and router1 reserving VC0, VC1 and VC2

of those routers respectively. Figure 5.6a demonstrates the EDVC mechanism such that the flit

A1 is blocked in VC0 of router1 at the 3
rd

 cycle (three cycles need to pass three routers). Then

three cycles are needed for the blockage signal to go back and reach the source core located

before router3. In the EDVC mechanism, the empty and reserved VCs can be blocked.

Therefore, the second flit, A2 cannot be injected, and this condition will remain till the blockage

is removed at the 18
th

 cycle as illustrated in Figure 5.6b. After 18
th

 cycle, 7 clock cycles are

needed to send out three flits A1, A2 and A3. In other words, three cycles are needed for

removing the blockage in router1, router2 and router3, and four cycles are required for A3 to

pass through the three routers (including one clock to wait for the flit A2). We assumed that the

flits, A2 and A3 are injected (after 6 and 12 cycles delay) by the source core as soon as their

outputs are free.

In the case of RDQ based VC-buffer organization, a VC can be blocked when at least one flit

is saved in it as illustrated in Figure 5.6c. Flits A1, A2 and A3 are saved in router1, router2 and

router3 by the 18
th

 cycle. Then 5 clock cycles are needed to send out three flits from router1. In

fact, it needs two cycles to remove the blockages and 3 cycles for passing the flit A3 through

three routers. In the case of conventional LLD, three flits are saved in the VC0 of router1 by 18
th

cycle as shown in Figure 5.6d. There is no back-pressure, and we assume that VC0 capacity for

router1 is more than three flits. Then 6 clock cycles need to send out the three flits from router1.

The packet flow cases of Figures 5.6a to 5.6d illustrate that the RDQ has a delay of 23 cycles,

which is faster than the EDVC (25 cycles delay) and LLD (24 cycles delay) mechanism.

5.2 Index-based Round Robin Arbiter (IRR)

In this section, we present a new arbiter, Index-based Round Robin (IRR) arbiter that

employs a least recently served priority scheme and achieve strong fairness arbitration. The

proposed arbiter has smaller arbitration delay, lower chip area and it also consumes less power

as compared to the arbiters described earlier in Section 2.6.2. Before describing the IRR arbiter

architecture, we introduce an inseparable and critical output in the arbiter design.

115

5.2.1 Grant Index

All the arbiters have output signal, grant whose width is the same as that of input width.

However, in practical designs, the index of grant signals, g_id is also generated that is used to

address the granted request in some other components, such as control tables, multiplexers and

memories used in NoC routers. When a crossbar switch is made of multiplexers, the g_id can be

connected to the selection port of multiplexer to switch the granted input to the requested output-

port (see Figure 2.23). The width of g_id is the log2 of the width of grant. We used the g_id as

the first output of our proposed arbiter design and due to lower width of g_id, our arbiter design

is smaller and faster as compared to other arbiters. Due to the critical use of g_id in NoC design,

we consider all the arbiters covered in this chapter to generate both grant and g_id as outputs.

5.2.2 Fixed and Variable Priority Arbiter

Our fixed priority arbiter is simpler and economical and its details are illustrated in Figure

5.7. The priority of requests is linear and in the ascending order where r0 has the highest priority.

The index of first asserted request is switched to the output as the index of grant, g_id. Then the

g_id is decoded to create the grant signals.

The last request, rn-1 has a simplified circuit where instead of being multiplexed like other

requests, it is ANDed by gn-1. If the g_id output of the fixed priority arbiter of Figure 5.7 is

connected to the last multiplexer, each request behaves as it has the highest priority through

ascending order of the loop. For example, for four requests (r0, r1, r2 and r3) the output of

multiplexer, M1 generates an index where r1 has the highest priority then r2, r3, and r0.

Therefore, by further multiplexing these outputs, we can choose an input as the highest priority

request as shown in Figure 5.8. For example, when P=1, the output of multiplexer M1 is selected

and the request, r1 has the highest priority. In the case of no request asserted i.e. r0 is asserted,

g_id issues the same value (i.e. zero). In order to separate these two conditions, ORing of

Figure 5.7: n-input fixed priority arbiter, where m =log2 (n).

g_id

g0

g1

gn-2

rn-1
gn-1

m

0
1

n-2

r0
r1

rn-2

0

1

n-1

M1

116

requests, any_r is ANDed with the g0 so that when all the requests are zero, all the grants also

become zero.

5.2.3 IRR Arbiter Micro-Architecture

If the next index of granted request is employed for the next priority selection, the current

granted request receives the least priority, and its next request receives the highest priority

among all the requests. To accomplish it, the g_id array is stored in a register whose output is

incremented and connected to the selection port of multiplexer, MP as shown in Figure 5.9. In

this way, the arbiter follows the least recently served priority scheme or a round robin scheme.

Figure 5.9 illustrates our proposed IRR arbiter that takes one clock cycle for arbitration. To keep

the priority unchanged, the priority register output, next_g is fed back into SF multiplexer to

cater for no request. It guarantees strong fairness arbitration in our design discussed below.

Figure 5.9: n-Input IRR Arbiter, where m =log2 (n)

D Q

>

m

MP

next_g

m

g_id

g0

g1

gn-1

0

1
n-1

r0

r1

rn-1

0

1

 M1

 1

 SF

 0

any_r

any_r

next_g

+

1

 Mn-1

 M0

Figure 5.8: n-Input Variable Priority Arbiter

m

m_p P

m

0 1
n-1

r0
r1

rn-1

0

1

g_id

g0

g1

gn-1

 M1

any_r

117

5.2.4 Functional Behaviour of IRR Arbiter

We present the functionality and behaviour of our round robin arbiter illustrated by its

timing diagram in Figure 5.10. During time 1-6, a fixed input request, ‘1111’ is applied and

granted bit by bit per clock cycle. At time 6, the request is changed to ‘0000’, i.e. no request is

asserted. For no request situation, the priority of last granted request is recorded and applied

when a new request is asserted. For example, at time 6, the priority of second bit of the request

is recorded and applied at time 8. Consequently, the forth bit of request is granted at time 8. We

tested our arbiter along with some past arbiters (RoR, Matrix, PRRA, IPRRA, and HDRA) for

the same testbench and request scenario, and timing results are shown in Figures 5.10 and 5.11.

When no request is asserted, the RoR, Matrix and our IRR arbiters record the current priority

shown in Figure 5.10. However, the PRRA, IPRRA and HDRA arbiters couldn’t record the

priority and show different waveforms shown in Figure 5.11. For a no request condition, the

highest priority is given to the least significant bit of the request for PRRA, IPRRA and HDRA

waveforms. This arbitration behavior of PRRA, IPRRA and HDRA is due lack of any circuit to

handle the no request condition. Keeping the last priority during no request condition has a

direct impact on the fairness of an arbiter. The first advantage of our IRR arbiter is to perform a

stronger fairness arbitration.

Figure 5.10: Timing diagram for some input request scenarios of strong fairness round robin arbiters.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clk

Request

Grant

0001 0010 0100 1000 0001 0010 1000 0001 1000 0001 0010 0001

1111 0000 0011 0001 1000

1000 0000

1001

Time

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clk

Request

Grant

0001 0010 0100 1000 0001 0010 0001 1000 0001 1000 0001 0010

1111 0000 0011 0010 1000

1000 0000

1001

Time

Figure 5.11: Timing diagram for some input request scenarios of weak fairness round robin arbiters.

118

5.2.5 IRR Hardware Analysis

We also perform a hardware overhead analysis to compare the expected speed and hardware

overhead of the aforementioned round robin arbiters with our proposed IRR arbiter. We don’t

apply any algorithm to optimize the circuits as an Electronic Design Automation software does.

The main figures of merit of an arbiter circuit are speed, area and power consumption. The usual

measure for speed of an arbiter circuit is the delay time or maximum clock frequency (fmax). The

clock frequency of an arbiter depends on the longest delay (critical path) between two registers

clocked at the same time. The circuits of 4-input arbiters, which have been discussed in Chapter

2 (Figures 2.26, 2.27, 2.28, 2.29 and 2.30) and Figure 5.9, are decomposed at the gate level. The

electrical parameters of the logic gates are derived from Synopsys 90nm Digital Standard Cell

Library as listed in Table 5.2. We calculated the sum of the areas and powers of all the cells of

each arbiter to estimate their power and area that are listed in Table 5.3. The power includes

both static and dynamic powers. For speed estimation, the critical path delay between two

registers of each circuit is calculated. We have also provided the critical path of each circuit

through the number in parentheses for the last column of Table 5.3. The increment is done by a

half adder (XOR2x1). As discussed earlier, RoR and Matrix arbiters have strong fairness, and

the HDRA, PRRA and IPRRA are weak in fairness.

Table 5.2. Electrical Parameters Gates from Synopsys Library

Gate name Propagation Delay (ps) Static Power (nW) Dy. Power (nW/MHz) Area (um2)

INVX1 38 88 12 6.5

AND2X1 85 298 19 7.4

AND3X1 119 297 34 8.3

NAND2X1 51 336 15 5.5

OR2X1 85 226 23 7.4

OR3X1 114 250 39 9.2

OR4X1 137 261 56 10.1

NOR2X1 64 170 15 6.5

MUX21X1 107 815 43 11.1

MUX41X1 168 827 58 23.0

DEC24X1 119 1238 66 29.5

XOR2X1 133 454 26 13.8

DFFARX1 217 620 100 32.2

119

Therefore, we introduce a weak fairness version of IRR named IRR_WF for comparison with

the HDRA, PRRA and IPRRA arbiters. The only difference between IRR and IRR_WF is the

SF multiplexer shown in Figure 5.9 that affects the critical path delay. We expected a faster

IRR_WF arbiter than IRR. Table 5.3 list the characteristics of all the arbiters. IRR has the

optimum performance and hardware overhead among all the listed arbiters. In terms of speed,

the IRR can run 15% to 50% faster than the other arbiters. Moreover, the IRR saves the chip

area from 10% to 47% and power from 1% to 44%. We also evaluated our IRR arbiter with the

other arbiters in terms of area, power and timing by using the EDA tool in the experimental

section of this chapter.

Table 5.3. Characteristics of 4-input Arbiters based on Table 5.2

Type of 4-input arbiters Area (um
2
) Power (uW) Critical path Delay (ps)

IRR 294 296(282
d
) 625 (217+133+168+107)

RoR 328 298(289
d
) 1242(217+5*(85+85)+137+38)

Matrix 556 479(465
d
) 747 (217 +2*38 +3*85+114+85)

IRR_WF 280 274(262
d
) 518 (217+133+168)

HDRA 431 360(348
d
) 609 (217 +64+51+85+85+107)

PRRA 510 493(479
d
) 861(217+2*38+3*85+85+2*114)

IPRRA 528 488(473
d
) 747 (217+2*38 +3*85+85+114)

IRR/RoR 10% Saving 1% Saving 50% Faster

IRR/Matrix 47% Saving 38% Saving 16% Faster

IRR_WF/HDRA 35% Saving 24 % Saving 15% Faster

IRR_WF/PRRA 45% Saving 44% Saving 40% Faster

IRR_WF/IPRRA 47% Saving 44% Saving 31% Faster

d
dynamic power

5.3 Switch Allocator

While an arbiter arbitrates among multiples requesters for a single resource (e.g. output-

port), an allocator arbitrates among a group of requesters for a group of resources. Each

requester may request one or more of the resources, but each resource is assigned to only one

requester [22, 56]. An allocator structure is utilized in the Switch Allocator (SA) module of the

arbitration module in NoC router, which will be described in this chapter. The allocators can be

designed in a unit form such that the requesters are interconnected in order to maximize the

matching among the requesters and the resources. The allocators in the form of unit design are

120

difficult to be parallelized or pipelined, and they are too slow for applications in which latency is

important [22]. Latency-sensitive applications typically employ fast and fair matching designs

such as separable allocators. A separable allocator has significantly less logic complexity by

separating the requesters in some groups. Moreover, the critical path delay of a separable

allocator can be improved by choosing a fair and fast arbitration among each group. For these

reasons, separable allocators are usually utilized and investigated in most of the NoC research

projects. In a separable allocator, two sets of arbiters can perform arbitration: one across the

inputs and one across the outputs as illustrated in Figure 5.12. In an input-first separable

allocator, arbitration is first performed to select a single request at each input-port. Then, the

outputs of these input arbiters become the inputs to a set of output arbiters to select a single

request for each output-port [22].

In order to ensure fairness, avoid traffic starvation, and to perform arbitration in a single

iteration, a RR scheme can be utilized for any given arbiter which is shown in Figure 5.12.

5.3.1 NoC Switch Allocator Function

Figure 5.13 shows an input-first separable SA (switch allocator) micro-architecture

implemented in our design. The first set of modules, input-arbiters perform arbitration among

the VCs of each input-port of the router. Therefore, the size of each input-arbiter is v×v, where v

is the number of VCs in each input-port (v=4 in the architecture of Figure 5.13). The number of

input-arbiters, n is the same as the number of input-ports in a router (n= 5 in the architecture of

Figure 5.13). The decoder modules generate the requested outputs of the winner VCs of input-

ports as illustrated in the lower part of Figure 5.13. Each bit of decoder output is corresponding

to an output-port, and each active bit of decoder output shows the requested output by the

winner VC of relevant input. Assume that the v0 becomes winner in the in_3 arbiter, whereas it

Figure 5.12: An Input-First Separable Allocator.

r0 g0

r1 g1

Input
Arbiter

rn-1 gn-1

r0 g0

r1 g1

Output
Arbiter

rn-1 gn-1

r0 g0

r1 g1

Input
Arbiter

rn-1 gn-1

r0 g0

r1 g1

Output
Arbiter

rn-1 gn-1

121

requests the second output-port. Therefore, the second bit of the c_3 output i.e. out1 becomes

asserted, and the remaining bits are de-asserted. The second set of arbiters, output-arbiters

performs arbitration among the winner input-ports for the output-ports. Therefore, the size of

each output-arbiter is n×n. The number of output-arbiters is m, where m is the number of

output-ports in the router (n=m=5 in the architecture of Figure 5.13). Assume the inputs, In0,

In2, In3 and In4 make request for out_1. When In3 wins, bit g_out1_in3 of out_1 arbiter is

asserted, and rest of the bits are de-asserted. It should be considered that the winner VC of In3

(assume v0) is already determined in In_3.

5.3.2 VC Arbitration

In the previous section, we have discussed that the input-port VC arbitrations are usually

implemented in SA stage by means of input-arbiter modules as illustrated in Figure 5.13.

However, in our NoC arbiter design they are implemented in input-port by means of VC-

Selector modules due to two reasons. Firstly, a central buffer stores all the VC flits of an input-

port. Secondly, the arbitration is done in one clock event. In fact, when a grant signal is issued

to an input-port, the read-pointer should have been already pointing to winner VC flit, or the

Figure 5.13: A 5×5 RR-Based Separable SA Micro-Architecture

 0

1 ad_in3_v0

ad_in3_v1

ad_in3_v3

v0

v1

v3

0
out0

out1

out4

0

1
0

1

Input
Arbiter

In_0

Decoder

c_0

out0

out1

out4

Output
Arbiter

 out_0

Input
Arbiter

In_1

Decoder

c_1

out0

out1

out4

Output
Arbiter

 out_1

Input
Arbiter

In_4

Decoder

c_4

out0

out1

out4

Output
Arbiter

 out_4

g_out0_in0 v0

v1

v3

v0

v1

v3

v0

v1

v3

g_out0_in1

g_out0_in4

g_out1_in0
 g_out1_in1

g_out1_in4

g_out3_in0

g_out3_in1

g_out3_in4

r_in0_v0

r_in0_v1

r_in0_v3

r_in1_v0

r_in1_v1

r_in1_v3

r_in3_v0

r_in3_v1

 r_in3_v3

In0

In1

In4

In0

In1

In4

In1

In4

122

winner flit should be loaded at the output-port of the buffer. The input-port micro-architectures

of Figure 2.11 and 5.1 illustrate this scheme in such a way that the VC-Selector selects a VC for

requesting to the arbiter, and simultaneously the flit of the VC is loaded at the buffer output.

Moreover, the output of VC-Selector is used in the input-port mechanism. The VC_req signals in

the LLD input-port of Figure 2.11 are used to generate read-pointer, and for RDQ input-port of

Figure 5.1 these signals are used in the blocking mechanism. One may think that the VC-

Selector modules can be accommodated in the switch allocator, and the VC_req signals can be

fed back to the input-port. The problem of this design is that the input-port and arbiter become

dependent on each other in terms of hardware and their speed. In fact, part of the critical paths of

input-ports is shared with the arbiter. To prevent of such sharing, we implement the input-port

VC arbitration as part of the input-port, and remove the input-arbiter modules from SA as

illustrated in Figure 5.14.

5.3.3 Post Switch Allocator Circuits

The micro-architecture of the Selection module is presented in Figure 5.15 that generates the

credit and selection address of crossbar multiplexers (see Figure 1.5) related to an output-port of

the router. When g_in3_out1 is asserted, the circuit generates the number 3 at the Sel output that

leads the input-port 3 to be connected to output-port 1 in the crossbar switch (see Figure 1.5).

 Figure 5.15: Output-Port 1 of Selection Module

4

0

1

g_in4_out1

5

Sel

0

1
0

1 1

0

g_in1_out1

 g_in0_out1

Cr-out From SA

Sel_1

Figure 5.14: n×m SA architectures, n= # of inputs, m= # of outputs, v=# of VCs per input-port.

G1

Gn

G1

Gn

Decoder

c_1

O0

Om

Output
Arbiter

n×n

 out_1

Decoder

c_n

O0

Om

Output
Arbiter

n×n

 out_m

R1

Rv

R1

Rv

I0

In

I0

In

123

Moreover, a credit signal, cr_out is issued to the Switch Traversal (ST) module. The ST

module issues a credit, credit-out signal to the 1
st
 output-port to store the flit in the associated

downstream VC at the following clock events. Figure 5.16 shows the Grant module that

generates the grant signal associated with the 3
rd

 input-port of the router. The asserted

g_in3_out1 allows the flit of VC0 to transmit across the crossbar switch.

5.3.4 FIFO Arbitration and VC Selector

We discussed the selection of a VC from the input-port VCs in LLD and ViChaR in Chapter

2. It is implemented in the VC-Selector module by employing a fixed priority arbiter as

illustrated in Figure 2.16. The fixed priority arbiter is substituted with a Round Robin (RR)

arbiter to ensure fairness and avoid traffic starvation as shown in Figure 5.17.

However, selection of a VC from the input-port VCs in RDQ mechanism happens in the data

flow mechanism as discussed in Section 4.1.1. It is based on the location of read-pointer and the

state of data in the input-port as indicated in Figure 5.18. In fact, the RDQ-based VC-Selector is

part of input-port mechanism, and it cannot be substituted with a RR arbiter.

VC-req

Round
Robin

Arbiter

VC-block

Figure 5.17: RR-based VC-Selector Utilized in LLD and ViChaR.

GR_3

Figure 5.16: Input 3 of the Grant Module

5

grant

g_in3_out4

g_in3_out0

From SA

VC-req

Stop-Req

Read-pointer

Slot-State

 >>

 VC Buffer

Input

Read-Address

 Write-Address output

read-pointer

Figure 5.18: RDQ-Based VC-Selector in the Input-port Mechanism.

VC-ID

write-pointer

124

The VC-req is updated according to the location of the flit data in the input-port buffer. This

feature of RDQ VC-Selector requires the arbitration among the input-port VCs to follow a FIFO

fairness priority [42]. In FIFO fairness priority, the requesters are granted in a FIFO order of

their requests.

Consider a scenario of data flow in an input-port as illustrated in Figure 5.19. There are 4

VCs containing data flits. In LLD and ViChaR mechanisms, all the four VCs issue requests to

VC-Selector. The VCs are sequentially selected due to RR priority employed in VC-Selector.

For example, in Figure 5.19 VC0, VC1, VC2, VC3, VC0, VC1, VC2 and VC3 and their

associated flits, H0, B1, B2, H3, B0, T1, B2 and B3 can become winner in the VC-Selector

sequentially. On the other hand, the VCs in RDQ mechanism are selected according to the

location of read-pointer and the position of data flits in the input-port buffer. Assume that the

read-pointer is located at the rightmost side of buffer in Figure 5.19 and counts toward the left

side of buffer, and a flit in the right side is stored sooner than a flit in left of the buffer. The VCs,

i.e. VC0, VC0, VC0, VC1, VC0, VC3, VC2 and VC2 and their associated flits, H0, B0, B0, B1,

T0, H3, B2 and B2 become winner in VC-Selector sequentially. The order of VC selection in

this scenario follows the order of stored flits, which is a FIFO order. The write-pointer also

counts from right to left. In this way, as read-pointer and write-pointer always count in a

direction, the VC-Selector in RDQ router follows a FIFO fairness priority scheme. However, in

the case of a blockage, the flits associated with a blocked VC remain in the buffer until the

blockage is removed. When the blockage is removed, as the order of stored flits is not in a FIFO

order, the flits of blocked VCs may be serviced late according to the location of read-pointer.

The fairness of VC arbitration in a RDQ router is as strong as those of LLD and ViChaR routers,

and the arbitration avoids traffic starvation.

5.3.5 RDQ Router Arbitration

 In conventional DAMQ architectures (such as LLD), when the requested output of a VC is

blocked (i.e. no output credit), the arbiter issues a block signal that causes the input-port to select

Figure 5.19: VC0, VC1, VC2 and VC3 Arbitration. RR for LLD and ViChaR and FIFO Priority in RDQ Routers.

VC3

 P3 P3 P2 P1 P3 P2 P2 P3 P0 P1 P0 P0 P0

VC1 VC0 VC2 Free

T1 B1

T3 B3 B3 H3

T0 B0 B0 H0

T2 B2 B2

125

any other available VC for service. No output credit means the corresponding VC-full of the

downstream router is set. However, the RDQ arbiter will issue the block signal under two

conditions i.e. either on losing switch arbitration to some other input-port or no output credit.

This behavior of RDQ approach requires some extra hardware in the arbiter of the router as

compared to LLD. The LLD arbiter updates a table at each clock cycle. The table consists of an

array of registers where each bit represents the blocking state of a VC of the input-ports. Figure

5.20a illustrates the LLD blocking circuit of one-bit register associated with VC1 of input-port

3. If there is no output credit at each clock cycle, the VC-block signal is asserted, otherwise it is

de-asserted. In our RDQ approach, the blocking circuit consumes extra hardware (an OR gate

per VC) as shown in Figure 5.20b. When the requested output is closed or the input VC loses

arbitration to other input-ports, the VC-block is asserted; otherwise, it is de-asserted.

5.4 RDQ Based Router Architecture

In this section, we present the micro-architecture of RDQ router. First of all, we investigate

the effect of RDQ port and IRR arbiter presented in this chapter on the efficiency of NoC

systems. As already discussed, one of the important contributions of our approaches is to

provide a simpler NoC router architecture. This architectural simplicity of our approach also

leads to higher speed (higher clock rates) of NoC circuitry that will be discussed in the following

sub-sections, while presenting our RDQ router architecture.

 5.4.1 Rapid NoC Circuit Design

NoC architectures have been commonly presented in Globally Asynchronous Locally

Asynchronous (GALS) design style [23], and we have also followed the GALS style in our

router designs for 2D mesh NoC. In NoC GALS designs, the routers are locally synchronous

(a) LLD Blocking circuit

No

output

credit

S

R

VC_block[3][1]

CLK

(b) RDQ Blocking circuit

Losing

arbitration

S

R

VC_block[3][1]

CLK

No output

credit

Figure 5.20: VC-Block Circuit Associated to VC1 of Input-Port 3

126

(thus they are easier to be designed), but the NoC architectures are globally asynchronous, i.e.

there can be varied clock rates for routers. In other words, the routers are independent in terms

of clock design, and the faster clock rates of routers leads to the faster speed of NoC. NoC

architecture includes a network of switches (routers) that are interconnected by data links as

illustrated in Figure 1.1a. The structures of data links can be either simple wires or complex

communication mechanisms like FIFOs. The data links in our design are considered as wires,

and we assume that they do not affect the speed or performance of NoC. Regarding the NoC

routers, we already described their structures in Chapter 1 and mentioned that the NoC routers

investigated in this thesis consist of some input-ports, an arbiter and a crossbar switch as

illustrated in Figure 5.21 and Figure 5.22. The NoC router illustrated in Figure 5.21 utilizes the

LLD input-port and HDRA arbiter related to the past approaches. The router is called LLD-

HDRA. The two proposed components i.e. the RDQ input-port and IRR arbiter are utilized in

our NoC router that is called RDQ-IRR and illustrated in Figure 5.22. Except the Routing

Computation (RC), Virtual channel Allocation (VA), and Switch Traversal (ST) modules, the

other components of the routers shown in Figures 5.21 and 5.22 have been discussed in detail in

the earlier sections of this chapter. In the following sections, we discuss the structures of RC and

VA router components that determine the speed of router and consequently the NoC.

5.4.2 Fast Router Circuits

The digital circuits of a router can be divided into synchronous and asynchronous

components. In asynchronous components, the state of the components can change at any time

in response to their changing inputs. Therefore, the speeds of these circuits are almost

proportional to the ASIC technology of silicon. For example, an asynchronous circuit created

with 15nm IBM technology will run faster than that of 32nm IBM technology. The state of

synchronous components changes only in response to their clock signals. Therefore, the speeds

of these circuits are determined based on their maximum possible clock rates (fmax). The fmax is

determined by critical path, i.e. the slowest logic path in the circuit. In an NoC router consisting

of some pipelined components, the synchronous components determine the speed of the router.

The synchronous components of a NoC router are those that utilize synchronous data buffers

(e.g. registers or RAM). The crossbar switch component has an asynchronous architecture in our

design, and it does not affect the speed of router.

127

Figure 5.21: A LLD-HDRA Router Micro-Architecture.

Output-req

VC-ID-out
VC-full_0_0

VC-full_4_3

VC

Allocator

Module

RC_4

Local output “00001”

Router ID

Output-req

RC_0

Flit_info

==

North output “10000”

Down

stream

VC-full
VA_0

Selection

Module Sel

Sel_0

5

grant

5×4

VC-req

 Grant

 Module
Downstream

VC state
VC_0_0 1

.. 0

 .. 1

.. ..

VC_4_3 1

VA_4

VC-block

Out_0

g_in0_out4

g_in1_out4

 g_in4_out4

Out_4

HDRA

Output
Arbiter

In0

In1

In4

GR_0

GR_4

Credit

-out

Sel_4

Decoder

 Module

C_0

O0

O1

O4

C_4

VC-ID-out

5×2

5×4

5×4

5×3

5

Linked List Tables

16-bit 16-slot 4-VC LLD input-port micro-architecture.

.

Grant

Read-pointer

Credit-in

VC-ID

 VC-req

VC-State

VC state

0 1

 1 1

 2 1

 3 0

Header-List

VC Add.

0 2

 1 1

 2 7

 3 -

Tail-List

VC Add.

0 6

 1 5

 2 7

 3 -

L-L

slot Add.

0 3

 1 4

 .. …

15 0

 Read-Address

Central Baffer

Write-Address

 Data Out

 Data In

VC-full

Reg.

 In

 Out

Data-in

Flit-info

Data-out

Grant

 Credit-in

Slot-State

slot state

0 0

 1 1

.. ..

15 1

De

coder

VC-block

VC-State

VC state

0 1

 1 1

 2 1

 3 0

Read-pointer

Read-pointer

VC-req

Write-pointer

Slot-State

slot state

0 0

 1 1

… …

 15 1

Clk

16

4

4

VC-ID

16

2

4

3

Header-List

VC Address

0 2

 1 1

 2 7

 3 -

 -

 -

 +

 +

 +

16

HDRA

Arbiter

0

.

3

VC-Selector

16

 Arbiter

Crossbar

Switch
5x5

inS outS

Input-port N

Input-port L

VC-full

 VC-full
out

Data

Data

Data

Data

Data

grant

Input-port S

Credit-in

16

4

VC-req
4

Credit-out

5×4

 VC-block
sel

Flit-info

4

5

RC
VA

SA ST

Buffers Buffers Buffers

 ST Module

ST_4

ST_0

5

Cr-out

Buffers

128

Output-req

VC-ID-out
VC-full_0_0

VC-full_4_3

VC

Allocator

Module

RC_4

Local output “00001”

Router ID

Output-req

RC_0

Flit_info

==

North output “10000”

Down

stream

VC-full
VA_0

Selection

Module Sel

Sel_0

5

grant

5×4

VC-req

 Grant

 Module
Downstream

VC state
VC_0_0 1

.. 0

 .. 1

.. ..

VC_4_3 1

VA_4

VC-block

Out_0

g_in0_out4

g_in1_out4

 g_in4_out4

Out_4

IRR

Output
Arbiter

In0

In1

In4

GR_0

GR_4

Credit

-out

Sel_4

Decoder

 Module

C_0

O0

O1

O4

C_4

VC-ID-out

5×2

5×4

5×4

5×3

5

Buffers Buffers Buffers

 ST Module

ST_4

ST_0

5

Cr-out

Buffers

Figure 5.22: A RDQ-IRR Router Micro-Architecture.

 VC Buffer

VC-ID

 Read-Address

 output

 Write-Address

 Read-Address

Central Buffer

 Write-Address

 Data Out
 Data In

 Out

Reg.

 In
Data- in

Flit–info

Data out

Grant

Credit_in

Slot-State

slot state

0 0

 1 1

.. ..

15 1

Read-pointer

Grant

Rapid 4-bit

write pointer

Write-pointer

Credit-in

S

 D Q

R

Stop-Req
“0”

rst

16-bit 16-slot 4-VC RDQ input-port micro-architecture.

16

Read-pointer

VC–full

VC-block

VC-ID

VC-block VC-req

rst

Buffer

full

S

 Q D

R

“0”

Stop-Req

Slot-State

Grant

<
Next-read-

pointer
Read-

pointer

Rapid 4-bit

read pointer

16

4

4

2

4

4

Slot-

State

 Arbiter

Crossbar
Switch

5x5

inS outS

Input-port N

Input-port L

RC

VC-full

 VC-full

out

Data

Data

Data

Data

Data

VA

SA ST

grant

Input-port S

Credit-in

16

VC-req
4

Credit-out

5×4

 VC-block
sel

Flit-info

4

5

16

4

Losing

arbitration

Read-

pointer

VC-req
Slot-
State

VC-Selector

Module

 >>

129

However, two components i.e. input-port and arbiter utilize synchronous buffers to temporarily

store data flits or information and affect the speed of a router. These two components are

investigated in terms of their pipelined stages as part of our research.

5.4.3 Pipelined RDQ-based Routers

 The RDQ port model that is an updated and faster version of the EDVC port behaves like a

static model as discussed in Chapter 4 for the EDVC router. Therefore, the RDQ-based router

pipeline consumes two clock events in a squeezed scheme if the arbitration takes one clock

event (step), as illustrated in Figure 5.23a. We have also explained that the LLD and ViChaR

port models are table based where their associated router pipeline consumes four clock events in

a squeezed design if the arbitration takes one clock event (step), as shown in Figure 5.23b. In

this way, the pipeline stages in LLD and ViChaR routers take two clock events longer than that

of RDQ router, where arbitration is assumed to take one clock event.

 The arbitration stages in our implementation follow the timing diagram of Figure 1.13. Each

head flit of a packet must proceed through the stages of Routing Computation (RC), Virtual

channel Allocation (VA), Switch Allocation (SA), and Switch Traversal (ST). To better

illustrate the pipelined stages of our arbiter, the micro-architectures of the aforementioned stages

are described in the following section.

Store flit in the

input-port buffer

Update

Link-List Tables

and make a

request

Arbitration in

the arbiter and

send grant

Store flit in the

input-port buffer

and make a

request

Update tables

and sent credit

out

Arbitration in

arbiter and send

grant
Flit &

Credit

Flit &

credit

Figure 5.23: RDL vs. Conventional Dynamic Input-Port (LLD or ViChaR) Router Pipelines

Flit &

Credit

Flit &

Credit

b) RDQ-based router pipeline

b) LLD or ViChaR-based router pipeline

RC

VA

SA

SRAM

SRAM

RC

VA

SA

sl state

0 1

 1 1

… …

 15 1

sl add

0 3

 1 4

 .. …

15 0

sl state

0 1

 1 1

… …

 15 1

sl add

0 3

 1 4

 .. …

15 0

130

5.4.4 Pipeline Stages Micro-Architectures

 The structure of RC can be a simple multiplexer as shown in Figure 5.24, because a simple

XY routing algorithm is considered for communication in our 2D mesh NoC design. The figure

illustrates that the ID of destination, Flit_info (which is already stored in the header flit of a

packet) is compared with the ID of the current router. Then, the requested output-port is

generated at the RC output according to XY routing algorithm.

The structure of VA can be a fixed-priority arbiter as given in Figure 5.25. The first free VC of

the downstream router input-port is selected in an ascending order. The fixed-priority arbiters

are simple and have been discussed in detail in Section 2.6.1. The SA module includes the

Decoder, Output-arbiter, Selection and Grant modules that have been presented in Section 5.3.

 The structures of arbiter sub-modules of routers as given in Figures 5.21 and 5.22 such as RC

(see Figure 5.24), VA (see Figure 5.25), Decoder (see downside of Figure 5.13), output-arbiter

(see Figures 2.26, 2.27, 2.28, 2.29, 2.30 and 5.9), Selection (see Figure 5.15) and Grant (see

Figure 5.25: VC Allocator generates free downstream VC

Downstream_VC

0 1

3

VC-full_0_0

0

1

4 (i.e. No VC)

0

1 2

no_out_v
c

0

1
0

1

Output-req

VC-full_0_1
 VC-full_0_2

 VC-full_0_3

0
1

3

VC-full_4_0

0

1

0

1 2

0

1 0

1

VC-full_4_1
 VC-full_4_2
 VC-full_4_3
 4 (i.e. No VC)

5×4

Downstream

 VC-full

Local output “00001”

Router ID

Flit_info

==

North output “10000”

Output-req

Figure 5.24: RC generates free requested output VC

From

Input-port

131

Figure 5.16) illustrate that the circuit routes from the inputs of RA to the outputs of Selection,

Grant or VA modules are not sequential. In other words, the outputs of Selection, Grant or VA

modules are not relative to clock cycle. Therefore, the RC, VA and SA stages can determine the

winner VC and winner input-port of each output-port in a single iteration. In this way, the data

flit related to winner VCs can get out of the router at the following clock event, and the VCs can

make new requests. There is no intermediate register among the paths from the inputs of RC to

the outputs of SA, and the registers related to the output-arbiters only keep the state of SA for

the following clock event (Figure 5.9 and 5.14). Among the longest path that passes through the

RC (Figure 5.24), VA (Figure 5.25) and SA (Figure 5.14, 5.15 and 5.16), there is no

intermediate registers. In this way, all the arbitration stages are performed in one clock event.

 At the end of SA stage, if the output-arbiter output associated with a VC is active, the

following actions are performed according to the kind of flits.

 If the request is from a header flit, the associated RC and VA outputs are reserved, and

the associated downstream router VC, grant, and crossbar address are issued.

 If the request is from a body flit, the associated downstream router VC, grant, and

crossbar address are issued.

 If the request is from a tail flit, the reservations are removed, and the associated

downstream router VC, grant, and crossbar address are issued.

 The credit, credit_out signals associated with grants are issued at ST stage to store the data in

the downstream input-port at the following clock event. In fact, the signals, cr_out generated in

Selection module of Figure 5.15 are repeated in the ST module at the following clock event. In

the following sections, we experiment the above features and advantages of our approaches,

especially their effects on the performance of NoC system are investigated.

5.4.5 Communication in RDQ-IRR router

 In this section, RDQ-IRR data flow mechanism is presented when there is no contention in

the NoC communication and the buffer is empty. We employ asynchronous communication

among the routers. The following steps describe the working of RDQ-IRR as illustrated in

Figure 5.22 according to the timing diagram given in Figure 5.26.

132

Flit Arrival State (e.g. Clock edge #1 of Figure 5.26)

1) A Credit-in signal causes the incoming flit (e.g. flit F1) and its VC-ID to be saved in a

slot pointed by the write-pointer. Meanwhile, the corresponding bit of the Slot-State

table is set.

2) When the read-pointer points to a slot and its Slot-State bit is set (occupied slot), a

request signal is issued by the VC-Selector module according to the VC-ID. The read-

pointer also causes the flit to appear at the output of central buffer that leads the flit

information (flit-info signals) to be read by the arbiter.

3) The RC module of the arbiter will read the flit information and determine its requested

output-port.

4) The VA module reads the RC output and state of VCs in the downstream router, and

determines if a free VC of the downstream router input-port is available.

5) If the VC is available, then the SA module (Decoder and Output-Arbiter modules) reads

the RC output and VC-req signals and performs arbitration among the winner VCs for

the output-ports. (see Sections 5.3.1and 5.3.2)

6) The Selection module reads the SA output and determines the associated address for the

crossbar switch module.

7) The Grant module reads the SA output and sets the grant signals for the winner VCs.

8) The VC-block module generates the VC-block signals under two conditions.

 Losing switch arbitration to some other input-ports. It happens when VC-req is set,

but its associated grant is reset.

Figure 5.26: Three Steps of RDQ-IRR VC Flow Control.

00

Clk

Data in

Credit in

Stored Data

Request

Grant

Data Out

Credit-Out

 1 2 3 4 6 clk

F3 F2

F1 F2 F3

F1 F2

F1

00

133

 No output credit (see Section 5.3.5). It is determined by RC, VA and Downstream-

VC-state outputs as illustrated in the VC-block module of Figure 5.22.

9) The ST module reads the Cr-out signals and keeps record of them to issue credit-out

signals after two clock events.

Flit Departure State (e.g. Clock edge #2 of Figure 5.26)

 All the signals produced in steps 2 to 8 are issued to their associated modules as described

below.

10) A grant signal causes the associated flit (e.g. flit F1) to exit the input-port and the

corresponding bit of the Slot-State table is reset.

11) The Sel signals cause the crossbar module to switch the input-ports to their associated

output-ports.

12) The VC-ID-out signals carry the VC-ID of the flit.

13) In case of no output credit or arbitration loss, the VC-block signals cause the associated

VC to become blocked (there is no grant signal).

Credit and Next Flit Arrival State (e.g. Clock edge #3 of Figure 5.26)

14) The credit-out signals are issued by the ST module and cause the transferred flits (e.g.

flit F1) to be stored in the downstream router input-ports’ buffers.

15) Steps 1 to 9 are repeated for the next incoming flits (e.g. flit F2, F3, etc.).

5.5 RDQ and IRR based NoC Experimental Results

 Our novel RDQ and IRR organizations and structures presented in this dissertation are

modelled and experimented in three parts here. First of all, we evaluate the IRR arbiter as

compared to some previous arbiter designs in terms of its speed and hardware overhead. The

second part of our experiment is related with RDQ based input-port organization. RDQ input-

port is investigated and evaluated as compared to some previous input-port designs in terms of

performance and hardware requirements. Finally, the overall effects of employing IRR and RDQ

input-port are investigated on the performance, hardware and speed of NoC systems.

5.5.1 IRR Arbiter Evaluation

IRR arbiter is evaluated and compared with other arbiters. To analyze the speed, area and

power overhead, all the arbiters are implemented in System Verilog and synthesized using the

134

Synopsys Design Compiler for 90nm Synopsys Generic Library and Altera FPGAs (Stratix V).

The resulting designs operate at 400 MHz and 1.2 Volt. Different structures of each arbiter are

synthesized, and their results for total chip area, critical path delay, and power (dynamic as well

as static) consumption are listed in Tables 5.4 and 5.5. The Synopsys Design Compiler executes

various algorithms iteratively to find an optimum architecture. There is always a trade off among

the power, area and critical path characteristics of a design. This trade off behaviour has dictated

us to consider the arbiter structure that has smaller power, area and critical path delay as an

efficient design. The critical path is the limiting factor preventing us from decreasing the clock

period. For a fair comparison, we group the arbiters into strong and weak fairness arbiters and

present their results in Tables 5.4 and 5.5. Table 5.4 lists the IRR, RoR and Matrix arbiter

characteristics. We listed two synthesised versions of IRR at 16 and 32-input configurations

indicating the IRR having efficient area, power and timing characteristics than RoR and Matrix

arbiters.

Table 5.4. Hardware Characteristics of Strong Fairness Round Robin Arbiters

Input

Design

ASIC design (90 nm Generic Library) FPGA design (Stratix V)

Total Cell Area (µm
2
) Power (µW)

a
Critical path(ns) Comb. Element Reg. (bits)

4

RoR 299 76 0.99 13 4

IRR 295 53 0.54 9 2

Matrix 431 80 0.56 16 6

8

RoR 1066 204 0.90 25 8

IRR 705 105 0.66 37 3

Matrix 1838 313 0.73 58 28

16

RoR 1846 251 1.46 56 16

IRR

1390 155 1.24 95 4

2140
b

182
b

0.71
b

Matrix 7817 1242 0.73 238 120

32

RoR 3175 384 2.39 109 32

IRR

2859 219 1.23 205 5

4224
b

351
b

0.89
b

Matrix 31498 4663 0.92 958 496

IRR/RoR 19% saving 44% saving 43% shorter 28% extra 73% saving

IRR/Matrix 70% saving 75% saving 7% shorter 48% saving 90% saving

a
Frequency for power estimation= 400 MHz.

b
The second version of IRR for comparison with the Matrix arbiter.

135

It consumes on average 19% and 70% less chip area, 44% and 74% less power (static and

dynamic), and 43% and 7% shorter critical path delay as compared to RoR and Matrix arbiters

respectively. The results of 4-input arbiters follow the analytical results of Table 5.3. We

consider IRR_WF for comparison with the HDRA, PRRA and IPRRA arbiters. Table 5.5 shows

the analysis results indicating that IRR_WF is more efficient as compared to PRRA and IPRRA

arbiters for all the input configurations.

Table 5.5. Hardware Characteristics of Weak Fairness Round Robin Arbiters

In

put

Design

ASIC design (90 nm Generic Library) FPGA design (Stratix V)

Total Cell Area (µm
2
) Power (µW)

a
Critical path delay (ns) Comb. element Registers (bits)

4

IRR_WF 278 45 0.48 9 2

HDRA 352 117 0.6 11 4

PRRA 344 85 0.79 9 4

IPRRA 373 74 0.69 9 4

8

IRR_WF 667 100 0.61 37 3

HDRA 754 172 0.72 28 8

PRRA 777 158 1.02 24 8

IPRRA 848 153 0.87 28 8

16

IRR_WF 1478 179 0.77 95 4

HDRA 1588 249 0.85 62 16

PRRA 1683 262 1.25 56 16

IPRRA 1809 267 1.05 73 16

32

IRR_WF 2801 211 1.11 205 5

3831
b

315
b

0.93
b

HDRA 3204 398 0.94 125 32

PRRA 3466 442 1.48 126 32

IPRRA 3719 454 1.27 159 32

IRR_WF/HDRA

at 4, 8 and 16-inp.

Saving

13%

Saving

44%

Shorter

15%

Extra

12%

Saving

63%

IRR_WF/PRRA 16% 46% 34% 33% 73%

IRR_WF/IPRRA 22% 45% 24% 23% 73%

a
Frequency for power estimation= 400 MHz.

b
IRR_WF for comparison with the HDRA arbiter.

It saves on average 16% and 22% less chip area, 46% and 45% less power, and 34% and 24%

shorter critical path delay as compared to PRRA and IPRRA arbiters. The IRR_WF is also more

136

efficient as compared to HDRA arbiter for various input arbiter structures. It saves 13% less

chip area, 44% less power, and 15% shorter critical path delay on average. Overall, IRR and

IRR_WF arbiters consume the least amount of power among all the arbiters due to its usage of

fewer registers. The fewer number of registers wed in IRR also leads to simpler design and chip

layout due to a simple clock tree organization. To illustrate the clock tree advantage, we

measured the maximum frequency, fmax of IRR_WF and HDRA for (32-input configuration) on

FPGA implementation. The IRR_WF arbiter can operate at 15% higher frequency as compared

to HDRA when implemented on an FPGA.

5.5.2 RDQ based Input-Port Implementation and Results

Hardware characteristic of RDQ based router input-port is compared with three DAMQ based

input-port and VC organization mechanisms commonly known as LLD [14], ViChaR [13] and

EDVC [55]. We have implemented the input-port micro-architectures using SystemVerilog. The

hardware parameters are determined by employing Synopsys Design Compiler for generic 32nm

NAND technologies. Also, some parameters are derived from Quartus-II for Stratix-V FPGA.

The setup constrains as well as CMOS technology parameters of global operating voltage of

0.85V and time period of 2.5ns (400MHz) is applied for input-port design of all the four

mechanisms including LLD, ViChaR, EDVC and RDQ. The width of slot buffer is set to the flit

size i.e. 16-bits. The resulting characteristics of input-port micro-architecture are listed in Table

5.6 for different buffer size in terms of slots. The RDQ input-port has the optimum chip area,

power and timing characteristics among all the other input-ports. On average, the RDQ input-

port consumes 13% less IC area, 21% less power and has 49% less critical path delay for an

ASIC design. It also has 10% less registers for an FPGA design as compared to LLD based

input-port. In terms of FPGA combinational elements, the RDQ employs on average 24% fewer

elements as compared to ViChaR and EDVC [13, 55]. An interesting point can be concluded

from the results presented in table.

Basically, 49% less critical path delay will allow an RDQ input-port to operate two times

faster than the LLD port. The critical path delay of EDVC and RDQ includes the read-pointer

logic. When the size of input-port buffer increases, the multiplexing stages of EDVC fast read-

pointer grows exponentially and the increase in the critical path delay of EDVC is also more

than RDQ input-port. RDQ approach also consumes one clock cycle less than LLD and ViChaR

approaches for flit arrival and departure.

137

Table 5.6. Input-Port Characteristics for DAMQ Approaches

Type of input-port

ASIC design FPGA design

Area (µm
2
) Power (µW)

a
Delay (ns) Combinational elements Registers (bits)

LLD 4-slot 1883 48 0.83 95 112(64
b
)

ViChaR 4-slot 1917 48 1.07 75 132(64
b
)

EDVC 4-slot 1515 35 0.45 86 108(64
b
)

RDQ 4-slot 1469 34 0.27 84 108 (64
b
)

LLD 8-slot 3305 90 1.26 180 204(128
b
)

ViChaR 8-slot 6139 151 1.62 306 392 (128
b
)

EDVC 8-slot 3132 72 0.69 206 186(128
b
)

RDQ 8-slot 2913 65 0.55 188 186 (128
b
)

LLD 16-slot 6147 154 1.16 332 388(256
b
)

ViChaR 16-slot 24265 558 2.29 548 896 (256
b
)

EDVC 16-slot 6551 146 1.06 441 340(256
b
)

RDQ 16-slot 5518 126 0.94 380 340(256
b
)

LLD 32-slot 11968 289 2.06 689 769 (512
b
)

ViChaR 32-slot 109361 2296 2.42 1183 2040 (512
b
)

EDVC 32-slot 14040 311 1.52 964 646(512
b
)

RDQ 32-slot 11141 260 0.94 793 646 (512
b
)

a
Frequency for power estimation= 400 MHz.

b
SRAM registers.

An important characteristic of high scaled CMOS technology like 32/28 nm is that the static

(leakage) power supersedes the dynamic power at 400 MHz frequency. For example, the

average dynamic power of input-ports includes almost 10% of their total power. This

characteristic indicate that the power is more or less proportional to the hardware overhead of a

design than its functionality. In other words, the more cells consume more static power and the

synthesis results given in Table 5.6 also confirm it. The ViChaR architecture is expensive in

terms of hardware cost among all the past architectures (i.e. LLD, ViChaR and EDVC). An extra

OR gate per VC in the arbiter (mentioned in Section 5.3.5) is ignored in our comparison due to

its tiny hardware usage as compared to the overall input-port hardware.

5.5.3 RDQ based NoC Performance

We compare the performance of three DAMQ based VC organization mechanisms (i.e. LLD,

ViChaR and EDVC) with the RDQ mechanism. Simulation is performed by employing

138

ModelSim to measure various NoC performance metrics. We explore and compare our RDQ

approach for 8×8 mesh topologies and for some commonly used traffic patterns such as

Uniform-random, Tornado and Complement [16, 55]. Tornado and Complement traffic

benchmarks create high contention traffic uniformly in the NoC as described in Section 4.5.2.

We have measured the performance metrics of throughput and latency. Throughput is measured

by the rate of packets received to the maximum number of packets being injected at a specific

time. The average latency is measured by the average time delays associated with the departure

and arrival of a specific number (e.g. 2048) of packets in the NoC. The link delay between two

routers is negligible as compared to the delay of a router and it is ignored. The communication

of packets is based on wormhole switching where the channel width is equal to the flit size (16

bits). A packet consists of 16 flits, and each input-port includes one central 8-slot buffer. There

are four VCs per input-port except for ViChaR that has 8 VCs (We have already explained that

the number of VCs in ViChaR is equal to the number of input-port buffer slots). The throughput

and latency are measured for flit injection rates per time unit (20 ns) and presented in Figures

5.27 and 5.28. For example, flit injection rate 8 means each node (source core) injects 8 flits per

20ns. The flit arrival/departure for RDQ and EDVC routers is one cycle as compared to two

cycles for LLD and ViChaR routers.

In spite of higher VC numbers of ViChaR (VC number is equal to the number of slots), the

ViChaR has the lower performance as compared to LLD especially at high injection rate. This is

because the ViChaR mechanism does not employ any reserved slot for each VC. When the

traffic is populated, the probability of monopolizing an input-port by a growing VC is increased.

Consequently, the performance of ViChaR decreases as compared to that of LLD.

The performance of EDVC is lower than LLD but higher than ViChaR at high injection rates

for Complement and Tornado traffics. This is different as compared to the results in Chapter 4

(Figures 4.22 to 4.25). The only difference between two experiments is the VC-Selectors utilized

by LLD and ViChaR mechanisms. The LLD and ViChaR VC-Selectors follow a fixed priority

scheme in the experiments of Chapter 4 and a RR priority scheme is used in the experiment here

(see Figure 5.21). The performance metrics of LLD mechanism are improved by the RR based

VC selection and become better than EDVC. For example, the LLD has 63%, 48% and 70%

lower average latency as compared to EDVC at high injection rates for Tornado, Complement

and Uniform-random traffic patterns respectively.

139

(c) Latency (Uniform-random Traffic)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

 2
.5

 u
s)

Inject Rate (Time Unit)

LLD ViChaR EDVC RDQ

(a) Latency (Tornado Traffic)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

 2
.5

 u
s)

Inject Rate (Time Unit)

LLD ViChaR EDVC RDQ

(b) Latency (Complement Traffic)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

 2
.5

 u
s)

Inject Rate (Time Unit)

LLD ViChaR EDVC RDQ

Figure 5.27: Latency for Tornado, Complement and Uniform Random Traffic in 8x8 Mesh Topology.

140

(b) Throughput (Complement Traffic)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

Th
ro

gh
p

u
t

(%
)

Inject Rate

LLD ViChaR EDVC RDQ

(a)Througput (Tornado Traffic)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

Th
ro

gh
p

u
t

(%
)

Inject Rate

LLD ViChaR EDVC RDQ

Figure 5.28: Throughput for Tornado, Complement and Uniform Random Traffic for 8x8 Mesh Topology.

(c) Throughput (Uniform-random Traffic)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

Th
ro

gh
p

u
t

(%
)

Inject Rate

LLD ViChaR EDVC RDQ

141

The results of Figures 5.27 and 5.28 indicate the highest performance for RDQ for all the traffic

patterns. For example, the average latencies of RDQ are 51%, 68% and 57% less than those of

LLD for Tornado, Complement and Uniform-random traffics respectively. The average

throughput of RDQ is higher than those of LLD. It is 53%, 56% and 55% higher in Tornado,

Complement and Uniform-random traffic patterns respectively. For higher injection rates, more

flits are injected, and the NoCs become populated producing higher contention. There is back-

pressure associated with the blocked packets in the RDQ communications. The back-pressure at

high contention shows some performance improvements [55]. First of all, the probability of a

monopoly of an input-port buffer by a growing VC is reduced. Secondly, the free packets

receive more buffer free space to pass through the NoC. The EDVC has lower performance as

compared to the RDQ. This is due to the fact that the RDQ mechanism has been improved as

discussed in Section 5.1.3. The average latencies of RDQ are 82%, 84% and 87% less than those

of EDVC for Tornado, Complement and Uniform random traffic patterns respectively.

5.5.4 NoC Evaluation Result

One way to increase the speed of NoC circuits is by using superior technology. However, it

can be also achieved by improving the architectural components of NoC system by utilizing

simpler and smaller circuits. This may lead to even more impressive improvement in other

metrics of NoC systems as we are investigating in the following experimental sections.

We structure eight types of NoCs based on the conventional and novel approaches discussed

in this dissertation. The hardware structure and performance of these NoCs are evaluated and

compared to illustrate the efficiency of our proposed approaches. As discussed earlier, the NoC

architectures follows GALS scheme and the links between routers are assumed to have no effect

on the performance and hardware requirements of the NoCs. Therefore, the architectures of

router are the main factors in the speeds (clock rate) and the hardware overhead. The

architectures of seven NoCs are presented as follows. The first NoC is called RDQ-IRR and

includes the RDQ input-port and IRR arbiter in its router architectures. The second NoC is

called EDVC-IRR and its structure is based on the EDVC input-port and IRR arbiter

architectures. The third, fourth and fifth NoCs utilize LLD input-port and one of the RoR,

Matrix or HDRA arbiters in their structures, and we call them LLD-RoR, LLD-Matrix and LLD-

HDRA according to the arbiters utilized in routers. The remainder of the NoCs utilize ViChaR

input-port and one of the RoR, Matrix or HDRA arbiters, and we call them ViChaR-RoR,

142

ViChaR-Matrix and ViChaR-HDRA based on their utilized arbiters. The crossbar switch

module has an identical structure due to the same input-port buffer width (16 bits) and the same

NoC topology i.e. 2D mesh.

5.5.5 RDQ-IRR based NoC Hardware Requirements

All the above mentioned eight NoCs are evaluated based on three hardware characteristics

including power consumption, chip area, and speed (maximum frequency) that are measured

with Synopsys Design Compiler. ASIC technology libraries such as 15nm NanGate are

employed to illustrate our evaluation [57]. As discussed earlier, the routers mainly represent the

hardware characteristics of the NoC systems in our implementation. Therefore, the hardware

parameters related to experimental results are associated with the routers. The setup constrains

as well as CMOS technology parameters such as global operating voltage of 0.8V and time

period of 1 ns (1 GHz) is applied to all the components evaluated. The width of the slot buffer is

equal to the flit size of 16-bits.

The hardware characteristics of various modules of the NoC router are evaluated, and the

results are presented in Tables 5.7 and 5.8. Table 5.7 results are sorted according to the VC and

slot numbers utilized in each input-port. For example, the input-port (port_LLD_HDRA_4v_4s)

presents the hardware characteristics of a LLD-HDRA input-port utilizing 4 VCs and having

four slots in its buffer. The LLD-HDRA input-port is based on LLD mechanism and utilizing

HDRA arbiter in its VC-Selector (see Figure 5.21). As we mentioned earlier in Section 5.3.4, the

EDVC and RDQ input-ports do not utilize separate VC-Selector. LLD and ViChaR input-ports

that utilize Matrix arbiter consume more chip area but have less critical path delay. The trend

among the (router hardware) characteristics shown in Table 5.7 follows the trend given in Tables

5.4, 5.5 and 5.6. The RDQ based input-ports shows the optimum hardware characteristics as

compared to the other input-ports with the same number of VCs and buffer slots. An important

difference between the LLD and ViChaR input-ports listed in Table 5.6 and Table 5.7 is the

(utilization of fixed priority arbiter based) VC-Selectors in the input-ports of Table 5.6. The

fixed priority arbiter is smaller than the RR arbiter, and we expect that the RDQ input-ports of

Table 5.7 will be more effective and efficient.

The main differences among the architectures of arbiters are the RR arbiters utilized in their

SA modules, some extra OR gates used in RDQ and EDVC VC-block modules and the number

of utilized VCs.

143

Table 5.7. Input-port Hardware Characteristics

VC

number

Slot

number

Input-port model ASIC design 15 nm NanGate Library

Area (µm
2
) Power

(a)
(uW)

Critical path (ps)

4

4

port_LLD_RoR_4v_4s 376 172 111

port_LLD_Matrix_4v_4s 382 173 97

port_LLD_HDRA_4v_4s 377 183 109

port_ViChaR_RoR_4s 391 202 135

port_ViChaR_Matrix_4s 397 206 116

port_ViChaR_HDRA_4s 392 220 130

port_EDVC_4v_4s 290 64 70

port_RDQ_4v_4s 281 59 56

8 port_LLD_RoR_4v_8s 632 252 123

port_LLD_Matrix_4v_8s 638 254 112

port_LLD_HDRA_4v_8s 633 264 121

port_EDVC_4v_8s 596 96 88

port_RDQ_4v_8s 566 91 73

16 port_LLD_RoR_4v_16s 1197 435 147

port_LLD_Matrix_4v_16s 1202 435 133

port_LLD_HDRA_4v_16s 1198 453 140

port_EDVC_4v_16s 1281 175 132

port_RDQ_4v_16s 1144 159 100

32 port_LLD_RoR_4v_32s 2409 851 195

port_LLD_Matrix_4v_32s 2415 847 195

port_LLD_HDRA_4v_32s 2410 863 195

port_EDVC_4v_32s 2714 359 168

port_RDQ_4v_32s 2388 324 117

8 8 port_LLD_RoR_8v_8s 881 392 172

port_LLD_Matrix_8v_8s 937 437 142

port_LLD_HDRA_8v_8s 887 421 174

port_ViChaR_RoR_8s 1194 741 195

port_ViChaR_Matrix_8s 1237 777 162

port_ViChaR_HDRA_8s 1198 771 190

port_EDVC_8v_8s 623 102 89

port_RDQ_8v_8s 592 95 73

16 port_LLD_RoR_8v_16s 1424 555 179

port_LLD_Matrix_8v_16s 1469 595 149

port_LLD_HDRA_8v_16s 1430 586 173

port_ViChaR_RoR_16s
(b)

4578 3016 302

port_ViChaR_Matrix_16s
(b)

 4814 3217 232

port_ViChaR_HDRA_16s
(b)

 4589 3054 265

port_EDVC_8v_16s 1333 185 132

port_RDQ_8v_16s 1197 167 100

32 port_LLD_RoR_8v_32s 2667 983 202

port_LLD_Matrix_8v_32s 2700 1021 202

port_LLD_HDRA_8v_32s 2673 1024 202

port_ViChaR_RoR_32s
(b)

 19004 13258 454

port_ViChaR_Matrix_32s
(b)

 19888 14062 327

port_ViChaR_HDRA_32s
(b)

 19024 13291 343

port_EDVC_8v_32s 2820 377 169

port_RDQ_8v_32s 2488 339 120

(a) Frequency for power estimation= 1GHz; the static power is around 10% of total power.

(b) The number of VCs of ViChaR input-port is equal to the number of slots of input-port.

144

For example, the arbiter, IRR_8v utilizes 8 VC, an IRR arbiter in its SA module, and 5 OR gates

in VC-block modules as illustrated in Figure 5.22. Therefore, we expect that the trend among the

arbiter characteristics given in Table 5.8 follows the trend among the RR arbiter characteristics

of Tables 5.4 depending on the number of VCs. The arbiters, IRR_WF_4v and IRR_WF_8v

consume the optimum power and chip area as compared to other arbiters. An important point is

related to the same critical path delays of 4-VC and 8-VC arbiters as shown in Table 5.8 results.

This is due to the same RR arbiters (5-input) used in both 4-VC and 8-VC arbiters. In Section

5.3.2, we described that the size of RR output-arbiters (used in SA) is equal to the number of

input-ports of the router. The crossbar module does not have any critical path delay as it does

not utilize any register in its structure (see Figure 1.5).

Table 5.8. Arbiter Hardware Characteristics

VC

Number

Router Arbiter Model ASIC design 15 nm NanGate Library

Area (µm
2
) Power

(a)
 (uW)

Critical path (ps)

4 Matrix_4v 773 436 36

RoR_4v 701 377 58

HDRA_4v 710 432 56

IRR_4v 712 366 42

IRR_WF_4v 701 359 40

8 Matrix_8v 2092 877 36

RoR_8v 2020 817 58

HDRA_8v 2029 874 56

IRR_8v 2031 806 42

IRR_WF_8v 2020 798 40

4 or 8 crossbar 104 35 0

(a) Frequency for power estimation= 1GHz; the static power is around 10% of total power.

 One can observe that the critical path delays of the arbiters shown in Table 5.8 are less than

those of the corresponding input-ports of Table 5.7 despite their higher area and power

characteristics. For example, the critical path of arbiter Matrix_4v is almost half of the

port_LLD_Matrix_4v_4s critical path. This is due to two features of our arbiters. First of all, the

SA module is separable, while reduces the SA logic complexity as described in Section 5.3.

Secondly, the input-arbiters of SA are accommodated in the input-port as discussed in Section

5.3.2. Therefore, considering the critical path delays of input-ports, arbiters and crossbar switch

modules, the critical path delays of input-ports determine the maximum operating frequency,

145

fmax of the routers as listed in Table 5.9. The power and area characteristics of each router given

in Table 5.9 is calculated by the summation of 5 input-ports, an arbiter, and a crossbar switch

characteristics listed in Tables 5.7 and 5.8. Table 5.9 also lists the advantage rate of RDQ-IRR

router as compared to the other routers. One can see that the RDQ-IRR routers have at least 17%

less chip area, 45% less power consumption, and 73% faster frequency as compared to the LLD

and ViChaR routers for 4-VC and 4-slot implementations. For the 8-VC and 8-slot buffer

implementations, they have at least 22% less chip area, 53% less power consumption, and 95%

faster frequency as compared to the LLD and ViChaR routers. We ignore the other VC and slot

configurations of routers for the hardware implementation results listed in the table.

Table 5.9. Router Characteristics and Advantage Rate

VC

Number

Slot

Number

NoC Router

model

ASIC design 15 nm NanGate Library RDQ-IRR Advantage Rate

Area

(µm
2
)

Power
 (a)

(uW)

Critical path

(ps)

Area

 (saving)

Power

(saving)

Frequency

(faster)

4

4

LLD-RoR 2684 1272 111 17% 45% 98%

LLD-Matrix 2787 1336 97 20% 48% 73%

LLD-HDRA 2699 1382 109 18% 50% 95%

ViChaR-RoR 2759 1422 135 19% 51% 141%

ViChaR-Matrix 2862 1501 116 22% 54% 107%

ViChaR-HDRA 2774 1567 130 20% 56% 132%

EDVC-IRR 2266 721 70 2% 3% 25%

RDQ-IRR 2221 696 56 N/A N/A N/A

8

8

LLD-RoR 6528 2812 172 22% 53% 136%

LLD-Matrix 6881 3097 142 26% 58% 95%

LLD-HDRA 6568 3014 174 22% 56% 138%

ViChaR-RoR 8093 4557 195 37% 71% 167%

ViChaR-Matrix 8381 4797 162 39% 73% 122%

ViChaR-HDRA 8123 4764 190 37% 72% 160%

EDVC-IRR 5250 1351 89 3% 3% 22%

RDQ-IRR 5095 1316 73 N/A N/A N/A

(a) Frequency for power estimation= 1 GHz; the static power is around 10% of total power.

5.5.6 Performance Evaluation of RDQ-IRR NoC

The main metrics of NoC performance are latency and throughput, which are measured for

our NoC evaluation by employing the ModelSim platform described in Section 5.5.3. The other

setup configurations such as the NoC topology, packet communication, packet structure also

follows the experimental setup employed in Section 5.5.3.

 We explore and compare various NoCs mentioned earlier such as RDQ-IRR, EDVC-IRR,

LLD-RoR, LLD-Matrix, LLD-HDRA, ViChaR-RoR, ViChaR-Matrix and ViChaR-HDRA for

146

8×8 NoC mesh topologies and for some commonly used traffic patterns such as Uniform-

random, Tornado and Complement. In this experiment, the performance metrics of each NoC

depends on its functional behaviour of the data flow mechanism and the timing characteristics

associated with the router. In other words, the speed of NoC depends on the latency and

throughput metrics. The critical path delays associated with the router of each NoC must be

considered in the evaluation of NoC performance. Therefore, we test these NoCs under different

clock rates according to the critical path delays associated with their routers. In this experiment,

the performances parameters of aforementioned NoCs are evaluated and the results are shown in

Figures 5.29 and 5.30. The clock rate has linear relation with the performance metrics. For

example, if n packets passes through an NoC system during t times at the f clock rate, then at

p×f clock rate, p×n packets passes through the NoC system during t times.

As mentioned earlier, the experimental setup adjustments of the NoCs are the same as

described in Section 5.5.3, except that the clock rates of the NoCs are different. Our experiments

(not shown in this chapter) indicate that the LLD-RoR, LLD-Matrix and LLD-HDRA behave

similar to each other in terms of functionality at the same frequency. This is because the RoR

arbiter functionally behaves similar to the Matrix arbiter, and it is very close to the HDRA

arbiter that has discussed in Section 5.2.4. Therefore, the LLD-Matrix with faster clock rate

supersedes the LLD-RoR and LLD-HDRA NoCs in terms of performance. The same conclusion

can be drawn for the ViChaR-MatrixNoC. Therefore, five fast NoCs that include LLD-Matrix,

ViChaR-Matrix, EDVC-IRR and RDQ-IRR are selected for evaluation and comparison (see

Table 5.9). The LLD-Matrix, ViChaR-Matrix, EDVC-IRR, and RDQ-IRR run at 514, 451, 820

and 1000 MHz clock respectively with 8-VC configuration. These clock rates are corresponding

to the critical path delays listed in Table 5.9.

One can expect that the RDQ-IRR results presented in Figures 5.29 and 5.30 shows better

performance than those of RDQ illustrated in Figures 5.27 and 5.28. This is due to two reasons.

The same advantage discussed for RDQ in Section 5.5.3 is expected for the RDQ-IRR NoC in

this section. Moreover, the RDQ-IRR NoC frequency employed for the results presented in this

section is higher than those of the other approaches. However, the LLD-Matrix performance in

Figures 5.29 and 5.30 become worse than the LLD performance shown in Figures 5.27 and 5.28.

This is due to the lower frequency of LLD-Matrix as compared to EDVC-IRR and RDQ-IRR

approaches.

147

(c) Latency (Uniform-random Traffic)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

 2
.5

 u
s)

Inject Rate (Time Unit)

LLD-Matrix ViChaR-Matrix

EDVC-IRR RDQ-IRR

(a) Latency (Tornado Traffic)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

 2
.5

 u
s)

Inject Rate (Time Unit)

LLD-Matrix ViChaR-Matrix

EDVC-IRR RDQ-IRR

(b) Latency (Complement Traffic)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
at

e
n

cy
 (

 2
.5

 u
s)

Inject Rate (Time Unit)

LLD-Matrix ViChaR-Matrix

EDVC-IRR RDQ-IRR

Figure 5.29: latency for Tornado, Complement and Uniform Random Traffic patterns in 8x8 Mesh Topology.

148

(b) Throughput (Complement Traffic)

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

Th
ro

gh
p

u
t

(%
)

Inject Rate

LLD-Matrix ViChaR-Matrix EDVC-IRR RDQ-IRR

(a)Througput (Tornado Traffic)

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

Th
ro

gh
p

u
t

(%
)

Inject Rate

LLD-Matrix ViChaR-Matrix EDVC-IRR RDQ-IRR

Figure 5.30: Throughput for Tornado, Complement and Uniform Random Traffic patterns in 8x8 Mesh Topology.

(c) Throughput (Uniform-random Traffic)

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

Th
ro

gh
p

u
t

(%
)

Inject Rate

LLD-Matrix ViChaR-Matrix EDVC-IRR RDQ-IRR

149

The average RDQ-IRR latencies are 85%, 86% and 89% less than those of LLD-Matrix for

Tornado, Complement and Uniform-random traffic patterns respectively. The average

throughputs of RDQ-IRR are 74%, 76% and 75% higher than those of LLD-Matrix for Tornado,

Complement and Uniform-random traffic patterns respectively. The above results also support

our conclusions regarding to the results of Sections 5.5.3 and 5.5.6. In other words, the average

throughput of RDQ NoC is 55% higher than those of LLD NoC presented in Section 5.5.3, but

the average throughput of RDQ-IRR is 75% higher than that of LLD-Matrix NoC presented in

Section 5.5.6 for all traffic patterns. Also, the average latency of RDQ is 59% less than that of

LLD in Section 5.5.3 when the average latency of RDQ-IRR is 87% less than that of LLD-

Matrix in Section 5.5.6 for all traffic patterns.

5.6 RDQ-IRR Router based NoC Features

The main features and advantages of our RDQ-IRR based NoC can be divided into three

parts. Firstly, the RDQ input-port provides the following advantage and feature as compared to

some previous approaches.

 The RDQ improves our EDVC approach [55] in terms of functionality and lower

hardware overhead.

 The RDQ approach improves NoC performance considerably by adding a little

hardware.

 The RDQ mechanism employs logic circuits such as rapid read-pointer, write-pointer

and other blocking circuits instead of tables to manage shared VC slots.

 Our RDQ approach is simpler as compared to table-based mechanisms such as LLD

[14, 18] and ViChaR [13]. The main components of the RDQ structure is the

read/write pointer circuits, which are scalable that optimize the NoC design and

timing performance. The RDQ is faster than table-based DAMQ approaches in terms

of arrival/departure time delay. It saves one clock cycle for each flit arrival/departure

from input-port.

 There are no configuration constraints in the RDQ approach as compared to other

DAMQ mechanisms.

 The RDQ employs a simpler congestion avoidance mechanism.

150

 The RDQ approach avoids deadlock without reserving in default any buffer space for

each VC

Secondly, our IRR arbiter can be utilized for buffering and arbitration in NoC routers to

ensure fairness and avoid traffic starvation. It has the following novel features.

 The IRR arbiter has the same functionality as conventional RR arbiters.

 The IRR approach is fast and it requires less hardware as compared to other arbiters.

 The IRR arbiter provides faster arbitration, whereas the arbitration components has

dominant role in determining the speed of routers and consequently NoC systems.

 The micro-architecture of IRR arbiter scales logarithmically (log2) with the number

of input-ports as compared to a conventional round robin arbiter that scales with the

number of input-ports.

 The IRR architecture has the capability to present both strong and weak fairness

arbitrations.

 The IRR arbiters consume less power due to fewer numbers of buffers employed.

Finally, we have proposed an efficient and fast DAMQ router architecture called RDQ-IRR

whose main features are given below.

 The arbitration among the VCs of RDQ-IRR routers follows a FIFO type operation.

 The arbitration in the switch allocation module of RDQ-IRR routers ensures strong

fairness and avoids traffic starvation.

 The RDQ-IRR router arbiter architecture benefits from easy separation or pipeline,

and it is much fast that made it suitable for the NoC applications where lower latency

is critical.

 The flit arrival/departure in RDQ-IRR routers is faster than that of other table-based

DAMQ routers. In addition to saving one clock cycle for each flit arrival/departure

from the input-port, the critical path delays of RDQ-IRR router components are lower

as compared to the other DAMQ routers.

 In addition to a higher performance RDQ-IRR mechanism, the RDQ-IRR routers are

simpler and faster as well as consume lower power consumption and chip area.

151

5.7 Summary and Concluding Remarks

We have presented our latest NoC router architecture, which is based on new approach called

Rapid Dynamic Queue (RDQ). We also presented an efficient and fast arbiter, Index-Based

Round Robin (IRR). The effects of a new RDQ input-port and the IRR arbiter have been

investigated on the efficiency of NoC systems. The experimental work has been presented, and

the results of NoCs utilizing the RDQ and IRR mechanisms have been evaluated and compared

with the NoCs utilizing some previous buffering and arbitration techniques. The RDQ-IRR

based NoCs have on average 74%, 76% and 75% higher throughputs and 85%, 86% and 89%

less latencies than those of LLD based NoCs for Tornado, Complement and Uniform-random

traffics respectively.

152

Chapter 6

Conclusions

NoCs are on-chip communication infrastructures introduced to be utilized in SoC systems.

They typically employ packet switching mechanism and VC organization to improve the

performance with minimal extra hardware. The VC organizations of NoCs have some

drawbacks including complex logic, lower buffer utilization, configuration limitations and HoL

blocking. The arbitration is another important component used in NoC router that has some

critical drawbacks such as lower speed, weak fairness, traffic starvation, and pipelining problem.

In this thesis, we have presented approaches to improve the overall efficiency of NoC rouers and

systems.

Some important past research works related to DAMQ based VC organizations and round-

robin arbiter architectures are reviewed in Chapter 2. In Chapter 3, we presented an adaptive

and efficient VC organization based on Statically Adaptive Multi FIFO (SAMF) [58]. We have

explored SAMF architecture and its novel features in detail. Then the experimental work based

on SystemC based NoC simulations and Verilog modeling are presented. The SAMF modeling

results are compared with some conventional VC (CVC) organizations. A SAMF based 4×4

153

mesh NoC shows an improvement of 19% for throughput and 23% for latency and it also

requires 5% less chip area and 4% less power consumption as compared to CVC NoC for

applications with contention traffics.

Efficient Dynamic Virtual Channel (EDVC) organization and its novel features are discussed

in Chapter 4 [54, 59]. A 4-slot EDVC input-port consumes on average 10% less registers, 61%

less power, and it operates at 10% higher frequency as compared to the LLD (Link-List based

DAMQ) input-port for its ASIC design and implementation. EDVC based NoC simulation

shows that EDVC mechanism has 48-50% lower latency and 100% higher throughput as

compared to LLD approaches for Application-Specific traffic.

A novel and efficient router architecture has been presented and evaluated in Chapter 5. The

router utilizes two new components including an RDQ input-port and IRR (Index-Based Round

Robin) arbiter. The architecture of RDQ input-port is an improved version of EDVC based

input-port [60]. The micro-architecture of RDQ input-port is evaluated and compared with some

conventional table-based input-ports (LLD and ViChaR) as well as the EDVC input-port

designs. The evaluation results confirm that our RDQ mechanism is efficient in terms of both

performance and hardware overhead. An RDQ input-port consumes on average 13% less chip

area, 21% less power consumption, and 49% less critical path delay as compared to the LLD

input-port implementation. Moreover, the RDQ mechanism improves the throughput by 55%,

59% and 55% as compared to LLD approaches for Tornado, Complement and Uniform-random

traffics respectively. A strong fairness index based round robin (IRR) arbiter design is also

presented [61]. Our IRR arbiter design provides strong fairness arbitration, which is not

guaranteed by some of the earlier designs including HDRA, PRRA and IPRRA. The index based

arbitration is simple, fast and requires little hardware overhead. The ASIC level modeling results

for 90nm technology show that our IRR arbiter requires 70% less chip area, 74% lower power,

and around 43% timing improvement when compared with RoR and Matrix arbiters.

The micro-architectures of routers that utilize our proposed VC organization and arbitration

modules i.e. the RDQ input-port and IRR arbiter have been explored. The NoC routers we have

designed and implemented are independent in terms of clock rate, and the faster clock rates of

routers leads to faster NoCs. We have presented the micro-architectures of our proposed EDVC

and RDQ routers in Chapters 4 and 5 and compared them with conventional routers. Among the

router modules, the crossbar switch component has an asynchronous architecture. Therefore, it

154

does not affect the speed of router. However, the input-ports and arbiter affects the speed of

router due to synchronous buffers. The micro-architectures of arbiter sub-components have been

presented, and it is confirmed that the arbitration stages (RC, VA and SA) can be performed in

one clock event.

Our state of the art RDQ-IRR router presented in Chapter 5 consumes at least 17% less chip

area, 45% less power consumption, and operate at 73% higher frequency as compared to LLD

and ViChaR based routers for a 4-VC and 4-slot implementation. Similarly, for 8-VC and 8-slot

implementations, the RDQ-IRR routers have at least 22% less chip area, 53% less power

consumption, and operates at 95% higher frequency when compared with the LLD and ViChaR

based routers. The performance of RDQ-IRR router based NoC has also been modeled and

simulated. The average throughput of RDQ-IRR router is 74%, 76% and 75% higher than those

of LLD-Matrix (LLD input-port with Matrix arbiter) router for Tornado, Complement and

Uniform-random traffic patterns respectively. The average RDQ-IRR latencies are 85%, 86%

and 89% lower than those of LLD-Matrix router for Tornado, Complement and Uniform-

random traffic.

6.1 Future Work

 Alleviate the latency related to blocking mechanism in RDQ approach. When a blocked

VC in RDQ approach becomes freed, the read pointer should point to the first location of

buffer maximum two times. This leads to higher latency in NoC. We are going to

improve the RDQ mechanism to point one time to the first location of buffer.

 Experiment with the RDQ-IRR NoC approach with different benchmark applications in

terms of size and traffic congestion.

 Evaluate the efficiency of RDQ-IRR in terms of hardware and performance by using

workloads and traces from existing NoC based SoC architectures.

 Extend the RDQ-IRR router for other NoC topologies including application specific

NoCs

155

References

[1] W.J. Dally and B. Towles. (2004). Buffered Flow Control. In: Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers, pp. 233-256.

[2] W.J. Dally and B. Towles. (2004). Arbitration. In: Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers, pp. 349-362.

[3] L. Benini and G.D. Micheli (2006). Register designs for queuing buffer. In: Networks on Chips: Technology

And Tools. San fransisco: Morgan Kaufmann Publishers . pp. 65–66.

[4] Y. Choi and T. M. Pinkston, “Evaluation of queue designs for true fully adaptive routers,” Journal of Parallel

and Distributed Computing, vol. 64, no. 5, pp. 606–616, May 2004.

[5] K. Donghyun, K. Kwanho, K. Joo-Young, L. Seung-Jin, and Y. Hoi-Jim, "Solutions for Real Chip

Implementation Issues of NoC and their Application to Memory-Centric NoC," in Proc. First International

Symposium on Networks-on-Chip, pp. 30-39, Princeton, New Jersey, May 2007.

[6] H.J. Yoo, K. Lee, and J.K. Kim. (2008). Network on Chip based SoC. In: Low-Power NoC for High-

Performance SoC Design. Boca Raton: CRC Press. p 142-145.

[7] P. Forstner. (1999). FIFO Architecture, Functions, and Applications.

http://www.ti.com/lit/an/scaa042a/scaa042a.pdf Last accessed 2nd Apr 2014.

[8] Y. J. Yoon, N. Concer, M. Petracca, and L. Carloni, "Virtual channels vs. multiple physical networks: A

comparative analysis," 47th ACM/IEEE Design Automation Conference (DAC), pp. 162 - 165, Anaheim,

CA, June 2010.

[9] W. Danyao, N.E. Jerger, and J.G. Steffan, "DART: A programmable architecture for NoC simulation on

FPGAs," Fifth IEEE/ACM International Symposium on Networks on Chip (NoCS 2011), pp. 145 - 152,

2011.

[10] K. Latif, A.M. Rahmani, E. Nigussie, H. Tenhunen, and T. Seceleanu, "A Novel Topology-Independent

Router Architecture to Enhance Reliability and Performance of Networks-on-Chip," International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 454 - 462,

Vancouver, B.C. Canada, October 2011.

[11] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and D. Rahmati, "An Adaptive Approach to Manage the Number

of Virtual Channels," 22nd International Conference on Advanced Information Networking and

Applications, pp. 353 - 358, Gino-wan, Okinawa, Japan, March 2008.

[12] R. Mullins, A. West, and S. Moore, "Low-latency virtual-channel routers for on-chip networks," in Proc.

31st Annual International Symposium on Computer Architecture, pp. 188 - 197, München, Germany, June

2004.

[13] C.A. Nicopoulos, P. Dongkook, K. Jongman, N. Vijaykrishnan, M.S. Yousif, and C.R. Das, "ViChaR: A

Dynamic Virtual Channel Regulator for Network-on-Chip Routers," in Proc. 39th IEEE/ACM International

Symposium on Microarchitecture, pp. 333-346, Orlando, Florida, Dec. 2006.

[14] M. Evripidou, C. Nicopoulos, V. Soteriou, and J. Kim, "Virtualizing Virtual Channels for Increased

Network-on-Chip Robustness and Upgradeability," in Proc. IEEE Symposium on VLSI, pp. 21-26,

Amherst, MA, Aug. 2012.

[15] M.A.J. Jamali and A. Khademzadeh, "A new method for improving the performance of network on chip

using DAMQ buffer schemes," in Proc. International Conference on Application of Information and

Communication Technologies, pp. 1-6, Baku, Azerbaijan, Oct. 2009.

[16] Y. Xu, B. Zhao, Y. Zhang, and J. Yang, "Simple virtual channel allocation for high throughput and high

frequency on-chip routers," in Proc. International Symposium on High Performance Computer

Architecture, pp. 1-11, Bangalore, India, January 2009.

[17] Y. Tamir and G.L. Frazier, "Dynamically-Allocated Multi-Queue Buffers for VLSI Communication

Switches," IEEE Transactions on Computers, vol. 41, no. 6, pp. 725-737, June 1992.

156

[18] G.L. Frazier and Y. Tamir, "The design and implementation of a multiqueue buffer for VLSI communication

switches," in Proc. IEEE International Conference on Computer Design: VLSI in Computers and

Processors, pp. 466 - 471, Cambridge, Massachusetts, 1989.

[19] T. Yung-Chou and H. Yarsun, “Design and Evaluation of Dynamically-Allocated Multi-queue Buffers with

Multiple Packets for NoC Routers,” Sixth International Symposium on Parallel Architectures, Algorithms

and Programming (PAAP), pp. 1 – 6, Beijing, China, July 2014.

[20] M. Lai, Z. Wang, L. Gao, H. Lu, and K. Dai, "A Dynamically-Allocated Virtual Channel Architecture with

Congestion Awareness for On-Chip Routers, " in Proc. 45th annual Design Automation Conference, pp.

630-633, Anaheim CA, USA, June 2008.

[21] M. Lai, L. Gao, W. Shi, and Z. Wang, "Escaping from Blocking: a Dynamic Virtual Channel for Pipelined,"

in Proc. International Conference Complex, Intelligent and Software Intensive System, pp. 795-800,

Barcelona, Spain, March 2008.

[22] D.U. Becker and W.J. Dally, "Allocator Implementations for Network-on-Chip Routers," Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis, pp. 1-12, Portland, OR,

2009.

[23] M. Fattah, A. Manian, A. Rahimi, and S. Mohammadi, "A High Throughput Low Power FIFO Used for

GALS NoC Buffers," IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 333 - 338,

Lixouri, Kefalonia, Greece, July 2010.

[24] H. Zhang, K. Wang, Y. Dai, and L. Liu, "A Multi-VC Dynamically Shared Buffer with Prefetch for Network

on Chip," in Proc. IEEE 7th International Conference on Networking, Architecture and Storage, pp. 320-

327, Fujian, China, June 2012.

[25] J. Park and B.W. O"Krafka, S. Vassiliadis and J. Delgado-Frias, "Design and evaluation of a DAMQ

multiprocessor network with self-compacting buffers," in Proc. Supercomputing, pp. 713-722, Washington,

DC, Nov. 1994.

[26] J.H. Woo, J.H. Sohn, and H.J. Yoo. (2010). Application Platform. In: Mobile 3D Graphics SoC: From

Algorithm to Chip. Singapore: John Wiley & Sons (Asia). p 36-37.

[27] H. Wang, L. Peh, and S. Malik, "A technology-aware and energy-oriented topology exploration for on-chip

networks," in Proc. Design, Automation and Test in Europe, pp. 1238-1243, Munich, Germany, March 2005.

[28] J. Kathuria, A. Chhabra, G. Kaur, and R. Chadha, "Low power synchronous buffer based Queue for 3D

MPSoC," in Proc. World Congress on Information and Communication Technologies, pp. 778-782,

Mumbai, India, Dec. 2011.

[29] J. Liu and J. G. Delgado-Frias, “A Shared Self-Compacting Buffer for Network-on-Chip Systems,” in Proc.

49th IEEE International Midwest Symposium on Circuits and Systems, pp. 26–30, San Juan, Puerto Rico,

August 2006.

[30] J.M. Rabaey, Digital Integrated Circuits, A Design Perspective, Chapter 6: Designing Combinatorial Logic

Gates in CMOS, Prentice Hall 1996, 2002.

[31] J. Liu and J. G. Delgado-Frias, "DAMQ Self-Compacting Buffer Schemes for Systems with Network-On-

Chip," in Proc. International Conference on Computer Design, pp. 97-103, Las Vegas, June 2005.

[32] C. Nicopoulos, A. Yanamandra, S. Srinivasan, N. Vijaykrishnan, and M. J. Irwin, "Variation-Aware Low-

Power Buffer Design," In Proc. Conference Record 41st Asilomar Conference on Signals, Systems and

Computers, pp. 1402-1406, Pacific Grove, California, Nov. 2007.

[33] J. G. Delgado-Frias and R. Diaz “A VLSI Self-Compacting Buffer for DAMQ Communication Switches”

IEEE Proceedings of the 8th Great Lakes Symposium on VLSI, Lafayette, LA, 1998.

[34] D. Zoni, J. Flich, and W. Fornaciari,” CUTBUF: Buffer Management and Router Design for Traffic Mixing

in VNET-based NoCs,” IEEE Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1-14 ,

2015.

157

[35] M. Oveis Gharan and G. N. Khan, "Packet-based Adaptive Virtual Channel Configuration for NoC

Systems," International Workshop on the Design and Performance of Network on Chip, Procedia Computer

Science, vol. 34, pp. 552–558, 2014.

[36] A.T. Tran and B.M. Baas, ”Achieving High-Performance On-Chip Networks With Shared-Buffer Routers,”

IEEE Transactions on very Large Scale Integration (VLSI) Systems, vol. 22 , no. 6, pp. 1391 – 1403, 2014.

[37] G. Michelogiannakis and W. J. Dally, “Elastic buffer flow control for on-chip networks,” IEEE Transactions

on Computers, vol. 62, no. 2, pp. 295–309, Feb. 2013.

[38] I. Seitanidis, A. Psarras, K. Chrysanthou, C. Nicopoulos, and G. Dimitrakopoulos,“ ElastiStore: Flexible

Elastic Buffering for Virtual-Channel-Based Networks on Chip,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. PP, no. 99, pp. 1, Jan. 2015.

[39] G. Jiang, Z. Li, F. Wang, and S. Wei," A Low-Latency and Low-Power Hybrid Scheme for On-Chip

Networks," IEEE Transactions on Very Large Scale Integration Systems, vol. 23 , no. 4, pp. 664 - 677, April

2015.

[40] Y. Ben-Itzhak, I. Cidon, A. Kolodny, M. Shabun, and N. Shmuel,” Heterogeneous NoC Router

Architecture,” IEEE Transactions on Parallel and Distributed Systems, vol. 26 , no. 9, pp. 2479 – 2492,

2015.

[41] R. Ramanujam, V. Soteriou, B. Lin, and L. Peh, “Design of a high-throughput distributed shared-buffer NoC

router,” Fourth ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pp. 69–78, Grenoble,

France, May 2010.

[42] K.A. Helal, S. Attia, T. Ismail, H. Mostafa, "Priority-select arbiter: An efficient round-robin arbiter," IEEE

13th International Conference on New Circuits and Systems (NEWCAS), pp. 1-4, Grenoble France, June

2015.

[43] Z. Fu and X. Ling, "The design and implementation of arbiters for Network-on-chips," 2nd International

Conference on Industrial and Information Systems, pp. 292-295, Dalian, 2010.

[44] S. Q. Zheng and M. Yang, “Algorithm-Hardware Codesign of Fast Parallel Round-Robin Arbiters”, IEEE

Transactions on Parallel and Distributed Systems, vol. 18, issue 1, pp. 84-95, Jan., 2007.

[45] Y. Lee, J. M. Jou, and Y. Chen, "A High-Speed and Decentralized Arbiter Design for NoC," IEEE/ACS

International Conference on Computer Systems and Applications, pp. 350-353, Rabat, 2009.

[46] F. Guderian, E. Fischer, M. Winter, and G. Fettweis, "Fair rate packet arbitration in Network-on-Chip",

2011 IEEE International SYSTEM-ON-CHIP Conference (SOCC), Taipei , pp. 278 – 283, 2011

[47] J. Hyunjun, A. Baik Song, N. Kulkarni, Y. Ki Hwan, and K. Eun Jung, "A Hybrid Buffer Design with STT-

MRAM for On-Chip Interconnects," IEEE/ACM International Symposium on Networks on Chip (NoCS),

PP. 193 - 200, Copenhagen, Denmark, May 2012.

[48] M.A. Khan and A.Q. Ansari, "n-Bit multiple read and write FIFO memory model for network-on-chip,"

2011 World Congress on Information and Communication Technologies (WICT), pp.1322 - 1327, 2011.

[49] W. J. Dally and B. Towles. (2004). Router Datapath Component. In: Principles and Practices of

Interconnection Networks, CA: Morgan Kaufmann Publishers, pp. 325-348.

[50] M. Oveis-Gharan and G. N. Khan, “A Novel Virtual Channel Implementation Technique for Multi-core On-

chip Communication,” in Proc. IEEE 24th International Symposium on Computer Architecture and High

Performance Computing (WAMCA 12), pp. 36-41, Columbia Univ. NY, Oct. 2012.

[51] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V.

Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-W tera FLOPS processor

in 65-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 29–41, Jan. 2008.

[52] V. Dumitriu and G.N. Khan, "Throughput-Oriented NoC Topology Generation and Analysis for

Performance SoCs," IEEE Transactions on VLSI Systems, vol. 17 , no. 10, pp. 1433-1446, Piscataway NJ,

USA, October 2009.

[53] M. Oveis-Gharan and G. N. Khan, "Flexible Simulation and Modeling for 2D Topology NoC System

Design," in Proc. IEEE Symposium Computers, Software and Applications, pp. 180-185, Niagara Falls,

Canada, May 2011.

158

[54] M. Oveis-Gharan and G.N. Khan, " Efficient Dynamic Virtual Channel Organization and Architecture for

NoC Systems," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume 24 , Issue 2,

pp. 465-478, March 2015. http://dx.doi.org/10.1109/TVLSI.2015.2405933

[55] N. Alfaraj, J. Zhang, Y. Xu, and H.J. Chao, “HOPE: Hotspot Congestion Control for Clos Network On

Chip,” in Proc. IEEE/ACM International Symposium on Networks on Chip, pp. 17-24, Pittsburgh, PA, May

2011.

[56] L. Shaoteng, A. Jantsch, and L. Zhonghai, "A Fair and Maximal Allocator for Single-Cycle On-Chip

Homogeneous Resource Allocation," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

Volume 22 , Issue 10 , pp. 2229 - 2233, October 2013.

[57] NANGATE. 2014. Nangate Releases 15nm Open Source Digital Cell Library. [ONLINE] Available at:

http://www.nangate.com. [Accessed 15 December 15].

[58] M. Oveis-Gharan and G. N. Khan, "Statically Adaptive Multi FIFO Buffer Architecture for Network on

Chip,” Microprocessors and Microsystems, Volume 39, Issue 1, pp. 11–26, February 2015.

[59] M. Oveis-Gharan and G. N. Khan, "Efficient Virtual Channel Organization and Congestion Avoidance in

Multicore NoC Systems," in Proc. International Symposium on Computer Architecture and High

Performance Computing Workshop (SBAC-PADW), Paris, pp. 30-35, Oct. 2014.

[60] M. Oveis-Gharan and G.N. Khan, "Dynamic VC Organization for Efficient NoC Communication," in Proc.

IEEE 9th International Symposium Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Turin, pp.

151-158, Sept. 2015, http://dx.doi.org/10.1109/MCSoC.2015.12.

[61] M. Oveis-Gharan and G.N. Khan, "Index-Based Round-Robin Arbiter for NoC Routers," in Proc. IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), Montpellier, pp. 62-67, July 2015,

http://dx.doi.org/10.1109/ISVLSI.2015.27.

http://dx.doi.org/10.1109/MCSoC.2015.12
http://dx.doi.org/10.1109/ISVLSI.2015.27

159

Glossary

2D Two-dimensional

Altera An American manufacturer of Programmable Logic Devices

Arbiter A component in electronic circuitry that allocates shared resources

ASIC Application-Specific Integrated Circuit

AV Audio-Video Benchmark

Crossbar Switch A switch connecting multiple inputs to multiple outputs in a matrix manner

CVC Conventional virtual channel method

Complement Traffic benchmarks create high contention traffic uniformly in the NoC

CQ Circular queue

DAMQ Dynamically Allocated Multi-Queue

EDA Electronic Design Automation software

EDVC Efficient Dynamic Virtual Channel (our second presented approach)

FAANOS A Flexible And Accurate NoC Simulator coded in SystemC in our Lab

FCFS First Come First Serve

FIFO First-in First-out

fmax Maximum clock frequency where a system can be clocked

FPGA Field programmable gate array

GALS Globally Asynchronous Locally Asynchronous

HoL Head of Line blocking problem

HDRA High speed and Decentralized Round robin Arbiter presented in [45]

Hotspot One destination is chosen for all the source cores during a time period

IP (Intellectual Property core), a reusable design unit owned by one party

IPRRA Improved Parallel Round Robin Arbiter presented in [44]

IRR Index-Based Round Robin

IRR_WF Weak Fairness version of IRR

Link-List A linear data structure where each element refers to the next element.

LLD Linked-List based DAMQ

Matrix A Round Robin arbiter presented by Dally and Towles [2]

MPEG Moving Picture Experts Group (kind of video format) (MPEG4 decoder)

160

MPSoC Multi-Processor Systems-on-Chip

MUX MultiPlexer Component

NoC Network on Chip

PRRA Parallel Round Robin Arbiter presented in [44]

Queue A type of data structure where stores data in a first come first serve manner

RC Routing Computation (arbiter sub-component)

RDQ Rapid Dynamic Queue

RR Round Robin

RoR A Round Robin arbiter presented by Dally and Towles [2]

RTL Register Transfer Level

SMF Statically Multi FIFO

SMAF Statically Adaptive Multi FIFO

SoC System on Chip

SA Switch Allocation (arbiter sub-component)

ST Switch Traversal (arbiter sub-component)

Synopsys DC. A logic-synthesis tool presented by Synopsys Inc.

Table-based Using a table-based approach to determine shared resource

Tornado Traffic benchmark that creates high contention traffic uniformly in the NoC

Uniform-Random Traffic benchmark that creates a random traffic uniformly in the NoC

ViChaR A table based dynamic multi-queue architecture presented in [13]

VA Virtual channel Allocation (arbiter sub-component)

VC Virtual Channel

Wormhole Wormhole routing is a system of simple flow control in NoC

XY Routing algorithm: first route horizontally then route vertically

+ve Positive

-ve Negative

