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Abstract 

The advent of Multi-Processor Systems-on-Chip (MPSoC) has emphasized the importance 

of on-chip communication infrastructures. Network on Chip (NoC) has emerged as a state of 

the art paradigm for efficient on-chip communication. Among the various components 

employed in NoC routers, Virtual Channel (VC) plays an important role in the performance and 

hardware requirements of an NoC system. The VC mechanism enables the multiplexing and 

buffering of several packets to travel over a single physical channel concurrently. VC 

arbitration (or arbiter) is another critical organization component of a router that has significant 

impact on the efficiency of an NoC system. Arbiter performs arbitration among the group of 

VCs that are competing for a single resource (e.g. output-port).   

In this dissertation, we propose novel approaches for dynamic VC flow control mechanism 

and VC arbitration. The first two approaches are based on the adaptivity of VCs in the router 

input-port that improves the efficiency of NoC system. In both of techniques, the input-port 

comprises of a centralized buffer whose slots are dynamically allocated to VCs according to a 

real-time traffic situation. The performance improvement is achieved by utilizing multiple 

virtual channels with minimal buffer resources. The VC arbitration approach is based on an 

efficient and fast arbiter that functions upon the index of its input-ports (or VC requests). The 

architecture of arbiter scales with the Log2 of the number of inputs where a conventional round 
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robin arbiter scales with the number of inputs. The index based behavior and the architecture of 

our arbiter leads to lower power consumption and chip area.  

 This dissertation presents the organizations and micro-architectures of NoC routers. We 

have employed SystemVerilog at the micro-architectural level design and modeling of NoC 

components. We employ three CAD platforms namely ModelSim, Quartus (FPGA) and 

Synopsys (ASIC level) to design, simulate and implement our router based NoCs. The 

simulation results support the theoretical concepts of our proposed VC organization and 

arbitration approaches. We have also implemented and conducted simulation and modeling 

experiments for conventional VC organization and arbitration models. The experimental results 

verify the efficiency of our proposed models in terms of power, area and performance in 

different NoC configurations. 
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Chapter 1 

Introduction  

 

 In this chapter, we introduce the approaches of Virtual Channel (VC) organization and 

arbitration for novel NoC router design. First of all, we try to present some commonly used 

terms, mechanisms and micro-architectures used in the design of Network on Chip (NoC) 

systems. We also introduce the problems related to the conventional NoC designs as well as the 

objectives that are pursued in this dissertation. Overall, we present three approaches related to 

NoC design. The first two approaches are related to VC organization and presented in Chapters 

3 and 4. The third approach is related to data flow arbitration and key to our rapid NoC router 

architecture presented in Chapter 5.  

1.1 Network on Chip a State of the Art Paradigm             

 Network on Chip (NoC) architecture provides a communications infrastructure for the cores 

of a multi-core System-on-Chip (SoC). The NoC enables the SoC-cores to communicate among 

each other concurrently by sending messages asynchronously. NoC structures improve the 

scalability and power efficiency of complex SoCs as compared to other conventional 



2 

 

communication systems. Figure 1.1a illustrates an SoC including some IP cores that are 

connected through a 3×3 Mesh NoC architecture. The NoC includes a network of routers 

(switches) that are interconnected by data links.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Wormhole Routing 

 A most viable communication mechanism employed in NoCs is packet-based wormhole 

routing [1]. The message in wormhole routing is made of multiple packets where each packet 

consists of multiple flits. A flit is a basic unit of data that is generally transferred at (the NoC) 

clock rate. Figure 1.2 illustrates the message structure of a packet-based wormhole flow control. 

The first flit of a packet is called the header flit and holds the route information of the associated 

packet. The remainder flits are called body flit where the last flit is known as tail flit. The body 

and tail flits contain data and may also contain two pieces of information: tail state and VC 

identification as shown in Figure 1.2. When the header flit of a packet passes through a route 

(a)  

 

(b)  
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Switch 
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Figure 1.1:  a) An SoC with 3×3 Mesh NoC architecture, b) A router architecture with N inputs and P outputs. 
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made of routers, the route path is reserved for that packet. The route path remains reserved until 

all the packet flits pass through it. 

 

 

 

 

 

 

 

 

 

 

 

  

 For example, consider a 2D mesh NoC wormhole communication situation depicted in Figure 

1.3, where the source, S1 sends a packet consisting of 4 flits (Hf, Bf1, Bf2 and Tf) to the 

destination D9. Assume that the data (packets) movement follows XY routing methodology 

where the packets first move in X direction to reach to the Y dimension of their destinations, 

then they move to Y direction to reach their destination. In a basic NoC communication (no 

VC), passing the header flit, Hf through each router leads the router’s input and output ports to 

be reserved, where no other packets can pass through those ports. After the passage of tail flit, 

Tf through each router leads the release of that port. During the packet transfer, the flits are 

temporarily kept in the input (or output) port buffers of the routers in a First-In First-Out (FIFO) 

fashion. One important feature of the data flow in the case of Figure 1.3 is that the route-path 

between S1 and D9 is reserved when the flits move through it. Therefore, the flow of data moves 

without any blocking. Such kind of data flow does not always provide optimum performance. 

Other messages of other sources where routes or part of their routes are shared with the reserved 

route have to wait until the route becomes free. These waiting conditions continue even when 

there is no communication through the reserved route. Sometimes, the reserved route is 

sometimes idle and will block other packets to pass through it. This kind of data flow incurs 

higher latency and lower utilization of shared NoC resources. One way of alleviating this 

Figure 1.2: A Typical Wormhole Packet Structure in NoC. 
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problem and improve NoC throughput is by utilizing Virtual Channel (VC). To facilitate 

creating multiple VCs per physical channel, the messages are allocated in units of flits. The term 

“channel” or “physical channel” in this dissertation refers to a data link that connects the output-

port and input-port of two interconnecting routers. The critical role of VC mechanism and 

architecture in the efficiency of NoC has encouraged us to present two novel VC organizations 

in Chapters 3 and 4. To understand the VC organization, we need to explore the structure and 

mechanism of a NoC router. 

 

 

 

 

 

 

1.3 NoC Router Architecture 

 An NoC router accepts packets from the source core (or other router modules) and delivers 

them to the sink/destination core (or other router modules). The traditional micro-architecture of 

a router consists of input and output ports, an arbiter, and a crossbar switch as illustrated in 

Figure 1.1b [1]. The input and output ports can be simple data buses that connect a router to its 

channels, but at least one of them should consist of a circuit to perform buffering and traversal 

of the incoming flits. In this dissertation, the input-ports utilize the buffers, and the output-ports 

are simple data buses. After buffering a flit, the input-port issues a request signal to the arbiter. 

The arbiter performs arbitration among the potential VC flits that make request to access the 

crossbar and other shared resources [2]. When a flit wins arbitration and is granted to exit the 

router, it passes through the crossbar switch. For NoCs utilizing VCs, the structure of router 

input-port becomes complex. However, it significantly improves the efficiency of NoC. The 

crossbar switch can be configured to connect any input buffer of the router to any output channel 

(port), but under the constraints that an input-port is connected to only one output-port. The 

micro-architecture of crossbar switch is simple as illustrated in the multiplexer-based 

architecture of Figure 1.4. The structure of a router arbiter can be simple when an NoC does not 
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Figure 1.3:  Source, S1 sends a packet consisting of 4 flits (Hf, Bf1, Bf2 and Tf) to destination D9.  
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utilize VC organization. However, the arbiter becomes complex for a VC based router that can 

have a direct effect on the efficiency of NoC. The critical impact of arbiter on the efficiency of 

NoC has encouraged us to design a fast and efficient arbiter in Chapter 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 VC organization 

 To improve the data flow efficiency in NoCs, each input or output port can utilize VCs to 

share a physical communication channel by multiple packets. A VC virtually splits a single 

physical channel to provide two or more virtual paths for the packets to be routed. Consider the 

case illustrated in Figure 1.3, two packets can reserve and pass through the same route if there 

are 2 VCs available for each physical channel. In other words, the flits of one packet will 

interleave with the flits of the other packet over a physical channel by using a rotating flit-by-flit 

arbitration. The routing of each flit can be guaranteed because the flits belonging to a packet are 

attached with the VC identification (VC-ID) tag at each router. Then these flits become 

differentiable at the downstream routers. Figure 1.2 illustrates a 2-bit VC-ID tag that exists in all 
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Figure 1.5: Conventional VC Flow Control Communication. 
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the flits of a packet, and these tags are identical when the flits enter a router. Figure 1.5 

illustrates the conventional micro-architecture of a VC decoder based on a simple de-

multiplexer. The VC-ID is connected to the selection port of the de-multiplexer and causes the 

incoming flit to reside in the associated VC buffer. Basically, the flits of a packet are always 

stored in the same VC buffer.  We assume that a router implements VCs at the input-ports and 

the input-port storage (buffer) temporarily stores the incoming flits. When a router receives a 

packet flit, it puts the flit into its input-port buffer, and the flit remains there until the required 

resources for departure becomes available.  

1.4.1 FIFO Architecture 

 We introduce the architecture and mechanism of data buffering organization (port 

architecture) in the NoC routers. As mentioned earlier, the data buffering can be in the form of 

First-In First-Out (FIFO) to keep the flits of a packet in correct order during communication. 

Two types of FIFO schemes: serial and parallel have been utilized in digital design [3, 4, 5, 6]. 

The serial FIFO (e.g. shift register) that works on the fall-through principle (or pipeline) has 

been the initial FIFO type. However, the architectures of conventional FIFOs are constantly 

being improved. Currently, most of the FIFOs used are of parallel type, which are faster than 

serial FIFOs [7]. 

 The proposed schematic of Figure 1.6 shows a parallel register-based FIFO. Write-pointer 

and Read-pointer are two circular counters that are connected to the selection ports of de-

multiplexer and multiplexer. When a write is requested, the Write-pointer enables the tail 

register to store the incoming flit. Then it is incremented to enable the next free slot in the FIFO.  

 

  

 

 

 

 

 

Figure 1.6: Register -based Parallel FIFOs 
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When a read is requested, the Read-pointer is incremented to select the output of head slot in the 

FIFO. Since the pointers increment in a circular manner, the flits enter and exit in a circular 

manner too. Due to which, the parallel FIFO is also known as a Circular Queue (CQ).  

1.4.2 Queue Buffers 

 In addition to FIFO, another buffering component used in a NoC router is the Queue. A 

Queue temporarily stores the flit(s) of a packet in a first come first serve (FCFS) manner until 

the network resources become available. FIFO and Queue terms are sometimes interchangeably 

referred as an NoC buffer. However, a Queue refers to all types of buffers with the FCFS 

concept that also contains FIFO buffers. In terms of architecture, FIFO mostly refers to serial or 

parallel FIFOs as discussed earlier. Serial and parallel FIFO designs are very common in digital 

design. The concepts discussed in this and previous sections are helpful to clarify the main 

difference between the VC organizations presented in Chapter 3 and 4. The Chapter 3 approach 

presents a simple and adaptive multi-FIFO buffer architecture, where the Chapter 4 approach is 

a small and dynamic multi-queue buffer organization. In the following section, we explain the 

mechanism and pros and cons of traditional VC organization. 

1.4.3 Traditional Wormhole Routing  

 Wormhole routing is a conventional communication mechanism used in VC based NoC 

systems. To employ wormhole routing in NoCs, the flit that is part of a packet is buffered at 

least at the input or output ports of the router [1]. Once the flit of a packet occupies the buffer of 

a channel, no other packet can access the channel even when the channel buffer is empty. This 

type of switching flow is prone to contentions and in some cases deadlocks. The contention 

occurs when the latency of a flit becomes more than the time delay of its location (i.e. router). 

For example, when a flit is blocked in a router, it should stay in the router until its requested 

output becomes available. Therefore, the time delay of flit will get higher than the time delay of 

router that creates a contention situation. Another important issue in the performance of NoCs is 

the deadlock. Assume wormhole switching and a packet flit is not allowed to pass an element of 

NoC twice. Then a deadlock will occur when no packet can advance because each packet 

requires a channel that is already occupied by the other packet. Consider the deadlock situation 

illustrated in Figure 1.7a. Assume the sources 1, 3, 7 and 9 start sending packet at the same time 

to the destinations 6, 8, 2 and 4 respectively. The dashed lines in the figure show the route of 
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each packet. The communication becomes deadlock at routers 1, 3, 7 and 9 as each packet 

requires a channel that is already occupied by the other packet.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 One of the traditional ways to alleviate contention and remove deadlock is to use the VC 

mechanism [8]. Consider a configuration where the number of VCs for each channel is equal to 

the maximum shared packets of that channel. Therefore, as soon as a flit reaches to a router, 

there will be a free VC facilitating the flit to move to the next router. This means there will be no 

blocking, and deadlock will not occur in the NoC. Virtual channels are also used to improve 

message latency and NoC throughput. By allowing messages to share a physical channel, the 

Figure 1.7: SoC (NoC), Router and Queue Architectures.  
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messages can make progress rather than remain blocked. Moreover, the overall time that a 

message is blocked at a router and waits for a free channel is lowered. In this way, the sharing of 

physical channel leads to faster NoC communication and an overall reduction in message 

latency. In Conventional Virtual Channel (CVC) method, a physical channel support several 

virtual channels that are multiplexed across the physical channel as shown in Figure 1.5. As 

depicted in the router of Figures 1.7b, the implementation of VCs needs extra resources i.e. 

FIFO buffer for each VC, De-multiplexers and Multiplexers for each input-port as well as VC 

allocator and bigger switch allocator for the arbiter [1, 9, 10, 11, 12].  

1.5 Static and Dynamic VC Organizations 

 In this report, we have selected to provide buffering organization in the input-ports of 

channels. The input-ports employ two types of data flow mechanisms commonly known as static 

and dynamic to organize VCs [4]. In the static mechanism, the buffer slots are statically 

allocated to the incoming packets, and in the case of dynamic mechanism such as Dynamically 

Allocated Multi Queues (DAMQ), the buffer slots are dynamically allocated to the incoming 

packet flits. Most of dynamic VC organizations are table based [13, 14], where a central buffer 

includes multiple VC queues, and a table keeps the flits of each queue in FCFS order. Basically, 

the table keeps the address of incoming flits in a FCFS orders. 

1.5.1  Problems in Static VC Organization 

 In the case of static buffering, the numbers of VCs and their buffers remain constant during 

communication. Various studies have shown that for a large number of static VCs, 

communication load is difficult to balance across them [1]. Some VCs remain idle while the 

others are overloaded. Therefore, it is better to allocate more buffer storage to busy VCs and less 

to the idle VCs. Moreover, static VC buffers are expensive components of routers and they 

become more expensive for larger flit size or when the VC buffer depth becomes larger. The 

above drawbacks of static VCs has resulted an adaptive VC organization to achieve VC flow 

control with maximum buffer utilization.  

 Now we discuss the conventional VC flow control in a router and a problem associated with 

buffer utilization. First of all, we define the term, buffer utilization, which is the rate of 

arrival/departure of flits in a slot buffer per clock cycle. For example, when a slot is empty, or it 

is full but with the same data per clock cycle, the buffer utilization rate is 0%. Figure 1.7b shows 
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the architecture of a conventional static VC-based router [13]. The input-port stores data in VC 

buffers in a FIFO fashion as illustrated in Figure 1.7c. The VC identification (VC-ID) of a flit is 

issued before the flit is transferred to the router. The VC-ID selects the VC where the incoming 

flit should be stored. Therefore, at the input of a router, the flit is stored at the tail of the selected 

VC buffer (“FIFO” sometimes refers to “FIFO buffer” or “buffer of a VC” in this dissertation). 

When the flit is reached at the head of the FIFO, a request signal is issued to the arbiter. After 

the arbitration (VC allocation and switch allocation that will be discussed latter), three signals 

are issued by the arbiter. First of all, VC-ID signal is sent out of the router to let the downstream 

router know about the VC address of the incoming flit. Secondly, the output address of the flit is 

issued to the crossbar module. Then, a grant signal is issued to the FIFO that leads the flit to 

reach the crossbar. The flit passes through the crossbar and exit out of the router.  

 In the VC buffer, the flow of flits follows a wormhole mechanism. Once the flit of a packet 

occupies the buffer of a VC, no other packet can access it, even when the flit packet is blocked. 

This type of flow control is problematic in the context of buffer utilization. We illustrate buffer 

utilization problem through four different scenarios of data flow in a channel in Figure 1.8. In 

Figure 1.8a, all the VC slots are served and the buffer utilization is maximum i.e. 100%. In 

Figure 1.8b, one VC is employed in routing and the other VC’s slots are idle and cannot 

participate in the flow result in lower buffer utilization i.e. 25%. In Figure 1.8c, when one slot of 

a VC is used by a packet, the other slots are reserved and not used by the new packets and will 

remain empty, which results in a buffer utilization of 25%. In Figure 1.8d, the tail flits (T1, T2, T3 

and T4) are blocked in each VC. That will block any new packets such as P8, P7, P6 and P5. This 

kind of blocking is called head-of-line (HoL) blocking [4]. No arrival/departure of flits results in 

a buffer utilization of 0%. It also leads to higher contention and lower performance. The effect 

of lower buffer utilization on power and area usage is obvious. The idle buffers are useless and 

only increase the hardware usage. In fact, one of objectives of our VC organization approaches 

presented in Chapter 3 and 4 is the adaptivity of channels. In adaptive channels, the idle buffers 

are dynamically used to create new VCs or to increase the buffer depths of active VCs. More 

VCs and higher VC buffer depth improve the performance and latency.  
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1.5.2 Head of Line Blocking 

 This section introduces the Head of Line (HoL) blocking. In wormhole routing, when a 

packet passes through a route, the route is reserved and no other packets can utilize that route. 

This kind of routing cannot avoid traffic congestion when a packet is blocked. In fact, blocking 

of a packet leads to the blocking of other packets in the channel causing HoL blocking (Figure 

1.8d). The HoL blocking causes higher latency and lower throughput. HoL problem can be 

alleviated by using Virtual Channels [13]. However, the traditional VC approach does not 

remove HoL problem completely [13, 14, 15].  

 

1.5.3 DAMQ: Dynamically Allocated Multi Queues 

 The traditional adaptive VC organization and its limitations are introduced in this section. 

Dynamically Allocated Multi Queues (DAMQ) is a single storage array that maintains multiple 

FCFS queues. In DAMQ, packet flits are stored in a central buffer consisting of multiple queues. 

The DAMQ buffers adapt to network traffic by dynamically allocating queue space amongst the 

output-ports depending on the traffic [4]. The dynamic queues of DAMQ buffers improves 

buffer utilization of port by sharing its buffer slots among all the VCs of port and allocating 

more buffer slots to active VCs. Higher VC buffer depth keeps more flits of a packet and leads 

to a free route of the packet in wormhole NoC communication. The more free routes lead to 

lower contention and eventually improve the overall NoC performance. Figure 1.9a illustrates a 

4-VC DAMQ buffer where the addresses of flits kept in a linked list table. The linked list table 

records the flit addresses according to their VC-ID and in a FCFS orders.  
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Figure 1.8: Four Different Scenarios in Conventional Wormhole VC Communication.  
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 The micro-architecture of DAMQs can be used for organizing VCs in NoC systems.  This 

technique can also resolve contention, deadlock, or fault tolerance related issues. Despite the 

performance merits of DAMQ organizations, they have a number of limitations as listed below. 

 It has complex hardware due to linked list and dynamic queue management [4, 16]. 

 Another problem is related to the queue structure that is tailored for deterministic 

routing. It cannot look after fully adaptive routing since the routing decision for a new 

packet is made in conjunction with the output queues. With such flow control 

mechanism, the routing adaptivity cannot be established [4]. Packet flit buffers in 

NoC routers can be placed at three locations: input-ports, output-ports or both input 

and output ports [4]. The NoC routers with input-port buffers can easily support 

adaptive routing as flits resided in an input-port can be processed by following an 

adaptive methodology. In other words, the incoming flits remain in the input-port 

buffer until an adaptive routing is implemented (at least one clock cycle) and 

determines the outputs for the exit of flits. Routers with output-port buffering cannot 

Figure 1.9: Input-Ports with Dynamic and Static Queues 
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implement an adaptive routing mechanism. An incoming flit should be arbitrated as 

soon as a flit enters the router, and the flits that are buffered in the output-port can 

only pass through that output (no adaptive routing can implemented). In the initial 

versions of some DAMQ-based NoCs such as Link-list [14, 17, 18] and ViChaR [13], 

VC organization techniques had VC buffers at the output-ports. However, some 

newer versions of Link-list have introduced additional hardware in the form of recruit 

registers to achieve adaptive routing [4]. Other researchers have also added buffers at 

the input-ports to support adaptive routing [14]. 

  Configure limitation is the third problem with some DAMQ mechanisms. For 

example, three limitations such as limitation in the minimum buffer space of each VC, 

the number of VC, and the number of flits per packet has been employed in the 

specifications of some DAMQ schemes [13, 14, 19].  

 The Head of Line (HoL) blocking is the forth problem in the communication of some 

DAMQ schemes. Assuming that a VC (queue) can receive more than a packet, and in 

case of the packet header blockage, the other packet in the VC has to wait until the 

blockage removed. 

 There are interventions among the VCs of a DAMQ port that can lead to higher traffic 

congestion as compared to static VCs [20]. 

 A flit arrival/departure has a large delay due to complex design of DAMQ based VCs. 

 The initial two problems associated with DAMQ based VCs have also been reported by other 

researchers and solutions have been proposed [4, 15, 16, 20]. The third and forth problems exist 

in some DAMQ mechanisms and will be discussed in detail along with our optimal solution in 

Chapter 4. The last two problems are being introduced in this section. Interventions among VCs 

exist in all the DAMQ-based mechanisms. As already mentioned, a single storage array 

maintains multiple VCs of a DAMQ port. Therefore, the communication behavior of a VC 

directly affects the other VCs. For instance, a blocked VC can occupy the maximum free space 

of its port buffer, and only a few buffer locations are available to unblocked VCs that lead to 

higher traffic congestion. We discuss in detail the 5th problem along with our optimal solution 

in Chapter 4.  The longer flit arrival/departure delays mentioned as the last problem exist in 

table-based DAMQ mechanisms such as Linked list [14, 18] and ViChaR [13] where a central 
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table, containing the registers, is employed for direct data flow. Registers are updated at a clock 

edge due to which the table-based DAMQ mechanisms take one additional clock cycle than the 

static VC-based NoC communication [1]. We further discuss this problem through the pipeline 

stage analyses of two types of port buffers in the following section. 

1.5.4 Timing Problem of Adaptive Table-based VC Organization 

 In this section, we discuss the drawback of table based organizations as compared to static 

VC organizations. Figure 1.9 shows the architectures of static and dynamic input-ports. The 

control logic of the static input-port is simpler and each VC can be configured by using a 

parallel FIFO buffer [20] as illustrated in Figure 1.9b. Each FIFO represents a VC and therefore 

the number of VCs is equal to the number of FIFOs. The Read-pointer and the Write-pointer 

point to the location of FIFO where a flit (data) is read or written respectively. A pointer works 

like a simple counter, which is incremented circularly and continuously for each read and write 

operation. 

 The flit arrival/departure is also simpler in static input-port. If arbitration takes one step, the 

arrival/departure of flits in a squeezed pipelined scheme consumes two clock edges as illustrated 

in Figure 1.10a. At the entrance of an input-port, an arriving flit is decoded according to its VC 

identification (VC-ID) and by means of de-multiplexer, then it waits to be latched in the FIFO 

buffer (VC) before the first clock edge. At the first clock edge, the flit is stored in the VC where 

a request corresponding to that flit is simultaneously issued to the arbiter. At the 2
nd

 clock edge, 

the arbiter allocates the proper address for the crossbar switch (output) and ID for the 

downstream router VC then issues a grant signal. The grant signal causes the flit to exit the 

router. For proper operation of the decoder at the entrance of the input-port, the VC-ID should be 

issued earlier than the latching of the flit in the buffer. Assuming that the flit and its VC-ID are 

transferred at the same clock transition, each flit arrival/departure takes a two-clock event delay 

in the static VC router. We have assumed that the FIFOs are dual-port, where the arrival of a flit 

can coincide with the departure of another flit. 
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 In the case of dynamic VC input-ports, the VC buffers are allocated dynamically based on the 

traffic resulting in more complex control logic. Linked-List based DAMQ has been employed as 

a conventional DAMQ in many research projects [14, 17, 20, 21].  Using this mechanism, a 

single buffer (queue) maintains multiple VCs, and the data flow is directed by Linked-List tables 

as illustrated in Figure 1.9a [14]. The Read-pointer and Write-pointer are updated based on the 

contents of the linked list tables. In a squeezed pipelined design, when arbitration takes one step, 

the arrival/departure of flits will take four clock edges as illustrated in Figure 1.10b. A head flit 

arrives at the input-port and waits to be latched in the VC (buffer). Then the flit is latched into 

the input-port buffer at the first clock edge. In the 2
nd

 clock edge, the Linked-List tables are 

updated according to the VC-ID, which leads to a request signal being issued to the arbiter. In 

the 3
rd

 clock edge, the arbiter assigns a proper address for the crossbar switch (output) and ID 

for the VC before issuing a grant signal. The grant signal causes the flit to exit the router, as 

well as the linked list tables are updated at the 4
rd

 clock edge. In a Linked-List DAMQ based VC 

organization, the read and write pointers cannot be updated at read or write events. Instead, they 

will be updated one clock event after the read and write (i.e. after updating the tables). However, 

in the static VC queue, the read and write pointers can be incremented at the read or write 

events. This causes the pipeline stages in DAMQ table-based input-ports to be one clock cycle 

longer than those of static input-ports. The same communication characteristics are expected for 
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other table-based DAMQ mechanisms e.g. ViChaR [13]. The ViChaR has a central table that 

contains registers to direct the data flow. Registers are updated at one clock edge that results in 

the usage of one additional clock cycle. However, the VC organization approach presented in 

Chapter 4 does not employ tables. Moreover, its flit arrival/departure delay is equal to that of 

static VCs but with all the advantages of dynamic VCs. 

1.6 Data Flow Arbitration 

 In this section, we introduce the data flow arbitration that is the process after buffering. It 

also introduces a state of art arbiter in Chapter 5. After buffering a flit in a VC of an input-port, 

VC issues a request to the arbiter for accessing shared resources. The structure of arbiter 

becomes more complex when an NoC utilizes VC mechanism in its data path (extra hardware 

for VC and switch allocators). The arbiter can perform arbitration and allocation in four 

pipelined stages as follows. First, the route must be computed to determine the output-port (or 

ports) to which the packet can be forwarded. Then, a downstream router VC (VC in router’s 

input-port) should be allocated. When the flit’s buffer space is booked in the downstream router, 

the flit can begin to compete for access to the crossbar switch. Once a route has been determined 

and a downstream router VC allocated and the crossbar switch configured, the flit is forwarded 

over this VC to the downstream router on the route. For explaining, consider the case illustrated 

in Figure 1.11 where the HF flit (header flit of a packet) is in VC1 of input-port 5 of router 3.  

 

 

 

 

 

 

 

To advance the flit, HF to router 6, a space in a buffer in the input-port 1 of router 6 must be 

allocated, and HF must win the allocation to traverse the crossbar switch. To begin advancing 

the HF, the route computation is first performed to determine the output-port to which HF can 
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be forwarded. Based on XY routing (see Section 1.2) the output-port 4 is assigned. Then, HF 

requests a VC from the VC allocator (assume VC2 of input-port 1 of router 6). When the buffer 

space of HF is reserved in router 6 along the output to the downstream router, the flit can 

compete to access the crossbar switch by means of switch allocator. Once the output-port has 

been determined, a VC is allocated, and the crossbar switch is configured, the HF flit can travel 

from output-port 4 to the VC2 of input-port 1 of router 6. We explain the above stages and their 

timing processes in the following section.  

1.6.1 Arbiter Pipeline Stages 

 The pipelined stages of a typical VC-based arbiter are illustrated in the timing diagram of 

Figure 1.12. Each flit of a packet must go through the stages of Routing Computation (RC), 

Virtual channel Allocation (VA), Switch Allocation (SA), and Switch Traversal (ST) [2]. The 

RC and VA stages perform computation only for the header flit (once per packet). Body and tail 

flits pass through these stages without RC and VA computation. In fact, the SA and ST stages 

operate on every flit of a packet, and only the header flit passes through all the stages.  

 

 

 

 

 

 

 

In our design, the first three stages i.e. RC, VA and SA proceed in parallel and in one clock 

cycle as illustrated in Figure 1.13. However, in other designs, each stage may take one or more 

than a cycle. As one can notice in Figures 1.12 and 1.13, ST stage is the last stage and it needs a 

separated clock cycle. It can work concurrently with the first stage of the following flit [22]. We 

will discuss the advantage of our pipeline mechanism later. The arbitration process begins when 

the header flit of a packet leads a request to be issued to the arbiter, assume at cycle event 0 of 

Figure 1.12. During the following four cycles, the request of flit remains activated that leads all 

the four stages to proceed. The header flit information is used by the RC stage to select the 

 

Figure 1.12: The pipelined stages of a typical VC-based arbiter. A packet consists of 5 

flits takes 8 cycles to be arbitrated in case of no stall in the communication. 
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requested output-port at the clock event 1. The result of RC stage along with the states of 

downstream router VCs are used as inputs of VA stage to pick a free downstream router VC for 

the packet at the clock event 2.  

 

 

 

 

 

 

 

 

The information provided by RC stage along with the information of requested downstream 

router VC are used by SA stage to determine the winner inputs VCs at the clock event 3. At the 

clock event 3, two tasks such as the issuance of grant signal and crossbar address are performed 

to prepare the route, where the flit passes at the following clock cycle. Therefore, the request of 

next flit after the header flit can be processed during the fourth cycle. The flit travels to a 

downstream destination by means of proper handshaking signals during the 4
th

 cycle (we assume 

a credit-based flow control). At the end of RC and VA stages, the information generated by RC 

and VA stages are saved in a register table and will be used for the following (body and tail) flits 

of the packet. For example, the result of VA stage is recorded to be issued as a new VC-ID for 

packet flits. When a body or tail flit makes the request, the recorded RC and VA information are 

used by the SA stage, and these two stages are bypassed as illustrated in Figure 1.12. From this 

point until the release of the channel by the tail flit, the recorded RC and VA information 

remains unchanged.  Therefore, the four stages proceed through two distinct frequencies: packet 

rate and flit rate. RC and VA stages are performed once per packet. On the other hand, SA and 

ST stages are performed per flit basis. 

1.7 Motivation  

The motivations for the research conducted and presented in this thesis are listed as follows. 

 

Figure 1.13: The pipelined stages of a typical virtual channel arbiter. A packet consists 

of 5 flits takes 6 cycles to be arbitrated in case of no stall in the communication. 
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 Network-on-Chip architectures are viewed as a possible solution to meet the wiring 

challenges of MPSoC systems 

 NoC design that consumes minimal power, IC area but with higher performance is a 

necessity for SoC design especially for low power high performance applications. 

 Current NoC router and NoC system designs are not optimal. 

 The main problem with the current NoC design is related to lower performance under 

high contention due to traffic congestion. 

 Router is the key component of NoC, and if one improves its design, it will improve the 

overall NoC performance. 

 Both NoC performance and energy budget depend heavily on the routers' buffer 

resources. One must use the buffer cleverly and intelligently for NoCs e.g. employ 

Adaptive VCs. 

 Adaptive VCs also have maximum buffer utilization of the router. 

 Current DAMQ buffer design suffers a number of problems such as complexity, lower 

buffer utilization, setup limitation, and HoL blocking. 

 Arbitration is the other important activity in NoC routers. It can have some problems 

such as complexity, lower speed, weak fairness, traffic starvation, and pipelined 

difficulty. 

 The above drawbacks and points related to current NoCs have motivated us to 

investigate the high performance components of NoC router including input-port and 

arbiter. 

1.8 Objectives 

 NoC architectures have been commonly presented in Globally Asynchronous Locally 

Asynchronous (GALS) design style [23], and in this thesis we have also followed the GALS 

style for our NoC router design. In NoC GALS architectures, the routers are locally 

synchronous, but the NoC architectures are globally asynchronous, i.e. there can be different 

clock rates for routers. In other words, the routers are independent in terms of clock design, and 

the faster clock rates of routers leads to faster NoC.  The main objectives of the research 

presented in this dissertation are to design, present and evaluate an efficient NoC wormhole 

router. The packet-based wormhole routing has been introduced as a viable communication 
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mechanism being employed in NoCs. The conventional wormhole routing flow is prone to 

contentions and in some cases deadlocks. One of the traditional ways to alleviate contention and 

to remove deadlock is to the introduction of VC organization. A traditional form of VC 

organizations has been of static type. The numbers of VCs stay constant during communication 

for static VCs. The static VC organization is also expensive in terms of higher number of buffer 

cells and suffers from lower buffer utilization. To solve the problem related to static VC 

organization, a commonly used dynamic VC organization namely DAMQ has been introduced. 

Despite the performance merits of DAMQ organizations, they have a number of limitations such 

as complexity, lower buffer utilization, lower frequency, longer pipelined stage, configure 

limitation and HoL problem. The limitations of static and dynamic VC organizations have 

encouraged us to present two efficient adaptive and dynamic VC organizations techniques.  

 The arbitration is another important module requiring new and novel architecture for efficient 

NoC router design. The arbitration organization is implemented in the arbiter module of router 

that can have four pipelined stages: Rout Computation (RC), Virtual channel Allocation (VA), 

Switch Allocation (SA), and Switch Traversal (ST). The arbitration and allocation functions are 

performed inside the VC and switch allocators of arbiter module. The conventional NoC 

arbitrations suffer from some drawbacks such as complexity, lower speed, weak fairness, traffic 

starvation, and pipelining problems. The limitations of conventional arbiter organizations have 

encouraged us to investigate design and present an efficient and fast arbiter.  

 Finally, by employing novel VC buffering and arbitration organizations, our main objective is 

to improve the performance and hardware metrics of routers and NoC systems. The 

experimental results support the theoretical concepts of our proposed VC organization and 

arbitration approaches for efficient NoC system. 

1.9 Thesis Organization 

 Chapter 2 reviews some important past research works related to DAMQ based VC 

organizations and round-robin arbiter architectures.   

 Chapter 3 presents and evaluates our adaptive and efficient VC organization based on 

Statically Adaptive Multi FIFO (SAMF).  The SAMF VC buffers are static during a 

specific time of communication but subsequently adapted to the traffic demand. 
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 Chapter 4 describes our Efficient Dynamic Virtual Channel (EDVC) organization and its 

novel features. The EDVC mechanism utilizes the common features of DAMQ input-

port to create a dynamic flow control. 

 Chapter 5 provides a detailed presentation and evaluation of our novel and efficient 

router architecture. The router utilizes two new components including an RDQ input-port 

and IRR (Index-Based Round Robin) arbiter. 

 Chapter 6 will discuss the thesis conclusions and our future works.   
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Chapter 2 

Previous Research Work 

 Three types of NoC research is reviewed and investigated in this chapter. First we discuss 

some approaches related to adaptive buffer organization. Specifically, two major components 

associated with the conventional buffer organization i.e. FIFO and DAMQ buffers are described 

in detail in Sections 2.2 and 2.3  in an effort to highlight their problems. Our implementation of 

a well-known DAMQ architecture i.e. Link-List is presented in detail in Section 2.4. Some 

researches that focus on the design and organization of NoC routers are investigated in Section 

2.6. Then various micro-architectures of a Round Robin arbiter used in the NoC router is 

presented and discussed in Section 2.7.  

2.1 Buffer Organization  

 FIFO or Queue is frequently utilized for buffer organization in NoC routers. They 

temporarily stores messages in the form of first come first serve (FCFS) order until network 

resources become available. Commonly used terms, “queue” and “FIFO” sometimes have the 

same meaning when the concept of first in first out is considered. However, in terms of 
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architecture, first-in-first-out queue is mostly referred to serial or parallel FIFOs, and the queue 

is referred to all the buffers with FCFS concept that comprises FIFO buffers too.  

 In industrial and academic research, many queue architectures have been proposed and the 

FIFO, Circular Queue (CQ), dynamically allocated multi-queue (DAMQ) and their variants are 

well-known queue designs [4, 15, 17, 18, 24, 25]. In the following section, the FIFO and CQ 

organizations are discussed in detail under the name of serial and parallel FIFO [4]. 

2.2 Serial and Parallel FIFO Architecture 

There are two types of FIFO designs and architectures: serial and parallel [4, 7, 13, 26, 27, 

28, 29]. The serial FIFO (such as shift register) that works by fall-through principle has been the 

first FIFO generation as shown in Figure 2.1. However, the architecture of conventional FIFOs 

is constantly being improved. Currently, most of the FIFOs are parallel, which is an appropriate 

mechanism to increase the number of stored words along with faster speed [7]. This trend is 

suitable for network on chip due to two main reasons. The first reason is related to the fall-

through concept where the newly arrived data unit is store at the tail (cell) of the FIFO, and at 

each shift request it is shifted one step toward the head of the FIFO queue. In this way, the data 

units are shifted through all the storage location at each request. This concept has three 

drawbacks of long fall-through delay, bubble cells and high dynamic power consumption. The 

first drawback is due the fact that when the FIFO’s capacity is increased, its fall-through time 

will increase leading to higher FIFI latency [7]. In fact, the minimum latency of a FIFO depends 

on the depth of physical FIFO rather than the number of stored items. The second drawback of 

bubble cells in the FIFO is illustrated in Figure 2.1. The bubble cells can occur when the data 

input/output rates are different. The third drawback is the dynamic power consumption due to 

data shifts from tail to the head of FIFO. Serial FIFO is simpler, but it is unsuitable for on-chip 

implementation [26]. The FIFO architecture should not shift the data items through all the 

memory locations.  In other words, the arrival packet should be stored at the front of empty cell 

rather than at the tail of a queue. 
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To solve these drawbacks of deep FIFOs, a parallel FIFO mechanism that relies on read and 

write pointers has been introduced [13]. We have already discussed this mechanism and the 

architecture of parallel register-based FIFO in Chapter 1, which is illustrated in Figure 1.6. The 

same style is also used in SRAM-based FIFOs as shown in Figure 2.2. The write and read 

address ports of the SRAM are the selection ports of de-multiplexer and multiplexer while the 

Read-pointer and Write-pointer work as counters.          

 

 

 

 

 

 

 

 

The register-based buffers are usually more expensive in terms of power because they use 

more transistors than SRAM-based buffers [27]. However, register-based operations (read, 

write, shift) only involve the occupied cells, while SRAM operations (read, write) involve all the 

cells due to global bitline and wordline wiring. Therefore, register-based buffer may consume 

less energy than SRAM based buffers when the buffer utilization is below a certain threshold 

and higher energy when the buffer utilization is above the threshold [27]. Figure 2.3 shows the 

threshold utilization of different register-based buffers with different sizes and technologies.  

 

 

 

 

 

 

 

 

 

 
 

Figure 2.3: Buffer Threshold Utilization vs. Buffer Size. 
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The register-based implementation is still viable at 0.1μm technology with relatively smaller 

buffer size and lower buffer utilization, but it is not a good choice for 35nm technology. This is 

mainly due to increasing static power for 35nm or lower technologies, where the advantage of 

fewer activities is completely diminished by the disadvantage of more transistors [27]. As the 

buffer capacity increases to dozens of flits, the register-based implementation becomes 

inefficient due to larger chip area occupied by the buffer [26]. The schematics of a dual-port 

SRAM cell and a D-type flip-flop that are used for large-capacity FIFOs are shown in Figures 

2.4 and 2.5 respectively. Assuming that a NOT gate and a NAND gate need two and four 

transistors in their structures respectively [30]. A SRAM cell occupies only a third of the D-type 

flip-flop register area. Now-a-days, NoC buffers are mainly implemented by SRAM due to the 

area and power cost and the availability of the corresponding Intellectual Property (IP) cores 

[24].  The above facts have encouraged us to use SRAM-based buffer and parallel style 

mechanism in all the proposed designs presented in this dissertation. 

 

 

 

 

 

 

 

                      

 

 

 

 

 

 

 

 
 

 

Figure 2.5: A Positive-Edge-Triggered D-FF.  

 

 

 

Q 

Q 

Clock 

Data 

Figure 2.4: SRAM-based FIFO. 

SRAM cell circuit 

 

Tbd 

Tpw 

Tm 

Tc 

Twd 
Tpr 

Sense amplifier 

 

W

o 

r 

d 

l 

i 

n

e 

Bitline 

Data In 

Data Out 



26 

 

2.3 DAMQ Buffer Organization Research Work 

DAMQ that is a unified and dynamically-allocated buffer structure was originally presented 

by Frazier and Tamir [18]. It is a single storage array that maintains multiple FIFO queues. The 

DAMQ mechanism dynamically allocates multiple queues on a physical channel. In other 

words, the DAMQ buffers are able to efficiently adapt to network traffic by dynamically 

allocating queue space among the output-ports according to the network traffic [4]. These 

dynamic queues of DAMQ buffers lead to maximize buffer utilization. The DAMQ organization 

can be used in the VC organization of NoC.  This technique is able to solve or alleviate the other 

NoC issues such as contention, deadlock, HoL blocking or fault tolerance. Jamali and 

Khademzadeh [15] has used DAMQ buffer scheme for fault tolerance in NoC systems. There 

are some drawbacks related to initial DAMQ scheme presented by Frazier and Tamir [18]. We 

discuss these drawbacks in the following section. The first drawback of scheme is that the 

packets are stored into the queues of a multi-queue of the output channel for routing. Therefore, 

in the case of blockage of the output channel, the packets destined to that output-port become 

blocked. According to Choi and Pinkston, this type of blocking is not HOL [4], but we argue 

that it is HOL blocking as explained earlier in Section 1.4.5. In fact, packets in an output channel 

have different destinations, and they travel to different output channels in the downstream 

router. Therefore, if the head of line of these packets is blocked due to the blocking of its route 

in the next downstream router, the remaining packets will be blocked even though their routes 

are open in the next downstream router. Figure 2.6 illustrates a HOL blocking case where 

eastward output channel of router1 is blocked due to the blocking of P1. The packets P2 and P3 

are blocked despite the fact that their routes are open in the downstream router. 

 

The second problem of scheme is again related to the location of queues in output channel. In 

fact, the queue structure is tailored more for deterministic routing algorithms than for fully 

Figure 2.6: Head of Line Blocking in DAMQ Output Channel. 

 

Router1 
Downstream 

Router 

P1 P1 P1 

 

 

P2 

P3 

 

 

P3 P2 P1 

 

 

 

 

 

 

Multi-Queue of Output Channel 



27 

 

adaptive routing algorithms. In the scheme, a routing decision for a new packet is made in order 

to assign the packet to one of the output queues. This forces the packet to be routed only through 

that output. In such a flow control, the routing adaptivity cannot be established [4]. The third 

problem of initial DAMQ approach is that there is no reserved space dedicated for each output 

channel [18]. The packets destined to one specific output-port may occupy the whole buffer 

space. Therefore, the new packets destined to this output-port have no chance to get into the 

buffer [15]. The fourth problem is related to its hardware complexity caused by the linked-lists 

and dynamic queue management utilized in the scheme [4].  Despite the performance merits of 

Link-List mechanism utilized in this scheme, it suffers from a few complications and limitations 

that we will discuss in detail in Section 2.4. In fact, one of the objectives of our approach 

presented in Chapter 4 is to implement a DAMQ buffer without Link-List mechanism. 

Different buffer architectures are proposed to overcome various limitations of DAMQ used in 

NoCs. Dynamically allocated multi-queue with recruit registers (DAMQWR) and virtual channel 

dynamically allocated multi-queue (VCDAMQ) are proposed in an effort to overcome some of 

the drawbacks of DAMQ [4]. DAMQWR uses DAMQ architecture with some recruit registers to 

implement adaptive routing for on-chip communication. The main recruit registers assign the 

packets of blocked sub queues to less congested sub queues. However, in addition to hardware 

overhead, DAMQWR method has additional delays due to recruit register updates and packet 

recruit operations. The queue organization that resembles DAMQ in the VCDAMQ method can 

efficiently adapt to an unbalanced traffic load amongst the VCs by dynamically allocating queue 

space to virtual channels. In fact, the difference between the VCDAMQ and the traditional 

DAMQ lies in the fact that the sub queues of VCDAMQ are associated with router VCs while 

those of the DAMQ are associated with the router output-ports.  

 Lai et al. introduce a Link-List based DAMQ architecture with congestion awareness [20]. 

They have added congestion-avoidance logic to the arbiter for predicting congestion situation at 

the immediate neighbors. Lai et al. also proposed DAMQ architecture to remove HoL blocking 

[21]. Once a packet faces an HoL blocking, an extra VC is allocated. This method to remove 

HoL blocking and congestion is expensive and complex when compared with our approach 

presented in Chapter 4. Our approach intrinsically avoids congestion that also takes care of HoL 

blocking. Zhang et al. presented a novel multi-VC dynamically shared buffer (DAMQ-PF) for 

NoC systems [24]. Their design has a small pre-fetch buffer, which is used for each VC. This 
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buffer can store the data read from the shared buffer to provide dedicated storage for each 

output-port. This allows continuous and concurrent access of the shared buffer without any 

delay. Zhang et al. have also proposed a fair credit management method to avoid the situation 

where a single VC can occupy the shared buffer exclusively [24]. Liu and Frias proposed a new 

DAMQ buffer organization scheme with a reserved space for each of the virtual channels [31]. 

The main feature of scheme is that there is a reserved space dedicated for each virtual channel. 

As shown in Figure 2.7, two buffer slots are reserved for each virtual channel before the buffer 

accepts any incoming flit.  

 

 Different schemes have been used to implement DAMQ mechanism [13, 14, 16, 18, 24]. All 

of these schemes are either expensive in terms of hardware or inefficient due to data dependency 

(specifically when the packet becomes bigger). We describe some of important DAMQ 

mechanisms in the following sections.  

2.3.1 Virtual Channel Regulator (ViChaR) 

Nicopoulos et al. introduced a centralized shared buffer architecture called the Virtual Channel 

Regulator (ViChaR) [13]. This design avoids using the linked list mechanism but its control logic 

is expensive. In spite of the advantage of supporting a large number of adaptive VCs (as big as 

the number of slots in a channel buffer), theoretically ViChaR cannot assign a specific room to 

each VC. In some cases, this will create a deadlock or high traffic contention. ViChaR 

dynamically allocates VCs and grants new flit on a First-Come-First- Served (FCFS) basis, and 

there is no limitation for each VC. Therefore, in the case of blocking, a packet can occupy the 

entire slots of a channel buffer and prevents any new packet to pass through the router. If the 

blocking of that packet continues, all the upstream routers will be occupied by the packet, and no 

other new packet can pass through the route. This blocking can be spread through the NoC 

system and create deadlock. Technically, this problem is due to the specification of ViChaR 

structure where the VC size varies from one to maximum size of buffer of a channel. Another 

drawback of the approach is a huge NoC hardware in some configurations. In ViChaR method, 

the information of incoming buffer is saved in a table and two trackers as illustrated in Figure 2.8.  

Figure 2.7: Reserved Space for Virtual Channels [19]. 
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The VC control table module that holds the slot IDs of all the current flits becomes very large 

when the flit size is small or the packet size is big. Another drawback of approach is slower speed 

of system operation. As mentioned before, ViChaR can support a maximum number of VCs as 

the number of buffer slots (BS) in the channel buffer. This requires the arbiter in both VC 

allocation and switch allocation stages to match the BS size. Such a size of the BS may create a 

latency bottleneck in the critical path of arbiter and consequently the router, which can limit the 

NoC frequency [16]. We will evaluate and compare it with our approach in Chapter 4. 

Several features of ViChaR architecture have encouraged some researchers to employ this in 

their designs. Nicopoulos et al. has presented the design of an intelligent buffer that logically 

reorders the entries in a FIFO buffer to minimize overall leakage power consumption [32]. In this 

design the buffer slots are first classified based on their leakage characteristics. Then, the write 

module attempts to direct incoming flits to the least leaky slot. Moreover, all unused slots are 

supply-gated using sleep transistors to minimize leakage power consumption. Xu et al. presented 

another application that employs ViChaR architecture [16] where VCs are assigned based on the 

designated output-port of a packet in an effort to reduce the HoL blocking. Unlike ViChaR, this 

design uses a small number of VCs. In other words, their buffer design is similar to ViChaR 

except that each VC can store multiple packets and the number of VCs is fixed. Their buffer 

design uses a smaller arbiter and VC allocation scheme is hybrid type i.e. in-between static and 

dynamic.  

2.3.2 Self-Compacting Buffers  

An approach called “self-compacting buffers” is presented by Park et al. to implement 

DAMQ switching elements [25]. There is no reserved space dedicated for any VC, that is, the 

Figure 2.8: One big table and two trackers used in ViChaR method [9]. 
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first drawback of approach. In fact, a VC can receive as many as flits to occupy the whole of 

channel buffer. We will discuss in Section 4.5.3 that this specification of mechanism leads to 

deadlock. Data in self-compacting buffer is stored in a FIFO manner within the region for each 

VC. When an insertion of a flit requires space in the middle of the buffer, the required space will 

be created by moving down all the flits which reside below the insertion address. Similarly, 

when a reading operation conducted from the top of a region, data removed from the buffer may 

result in empty space in the middle of the buffer, then the data below the read address is shifted 

up to fill the empty space. For example, assume a scenario in self-compacting buffer as 

illustrated in Figure 2.9. Assume the order of data in each VC as well as in the buffer is from left 

to right. Figure 2.9a illustrate a condition that three packets A, B and C have been stored in 

VC0, VC1 and VC2 respectively. Assume VC1 receives a new flit, B2 as illustrated in Figure 

2.9b. B2 should be stored in right side of B1, as already mentioned that the data is stored in a 

FIFO manner self-compacting buffer. For this reason, the data in right side of B1 should be 

shifted a slot to the right. Figure 2.9c illustrates a read from the buffer. The flit, A0 is read, so all 

the data in the buffer should be shifted a slot to the left. 

 

 

 

 

 

The authors claim that their approach is efficient because the amount of hardware required to 

manage the buffers is relatively small when it offers high performance. However, this approach 

has some drawbacks. In terms of behaviour, the self-compacting mechanism looks like the fall-

through methodology already discussed in Section 2.2. Therefore, it can have some of 

drawbacks of fall-through buffer e.g. long delay and high dynamic power consumption. The first 

drawback is due the fact that when the buffer capacity is increased, its fall-through time will 

increase, leading to longer latency of the buffer [7]. In fact, the latency of self-compacting buffer 

depends on its depth rather than the number of stored items. The second drawback is high 

dynamic power consumption due to data shifts in the buffer. To solve the above drawbacks of 

self-compacting buffer, Frias and Diaz proposed a novel buffer [33]. They proposed a new cell 

that has the capability of performing all the required data moves. The novelty of their approach 

Figure 2.9: Write and Read Scenario in Self-Compacting Buffer 
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is at the transistor level rather than the gate level. In other words, to evaluate this approach, one 

has to have their specific IP cell. 

2.3.3 Mask-based 

Mask-based approach has been introduced to implement DAMQ by Evripidou et al. [14]. It is 

cheaper hardware-wise but slower in terms of performance. In fact, the credit for each VC 

follows a round robin scheme and it is synchronized with the clock to send out its packet flit. 

Therefore, Mask-based approach leads to synchronous communication that is not much useful 

for NoC routers. Evripidou et al. have also presented a new version of Link-List mechanism, 

which mimics the DAMQ organization presented by Frazier and Tamir. As compared to Mask-

based buffer, the Link-List buffer is expensive in terms of hardware but leads to higher 

communication performance [18]. In the following section, we describe the architectural detail 

of a Link-List based organization that follows the protocol of Evripidou approach. 

2.4 Link-List based DAMQ Organization 

  In this section, we present our implementation of the Link-List based DAMQ (LLD) 

mechanism. The micro-architecture of LLD input-port of an NoC router is presented here to 

illustrate the complexity and cost of LLD mechanism as compared to our proposed VC 

architectures presented in Chapters 3 and 4. 

2.4.1 LLD and Static Read and Write Mechanism 

We compare the read and write mechanism in static and dynamic queue types before 

presenting the LLD architecture in more detail. Please note a queue refers to a VC in this 

dissertation. In Figure 2.10, the VC implementation of a physical channel is illustrated through 

two queue types: static and DAMQ (dynamic). In a static queue, the buffer slots are statically 

allocated to incoming packets where in the case of a DAMQ queue, the buffer slots are 

dynamically allocated to incoming packets.  As mentioned earlier, the pointers of each queue in 

Figure 2.10a are updated circularly and sequentially for each read and write to the queue. 

However, DAMQ technique updates the contents of read and write pointers by means of a 

linked list format of saved flit addresses. The linked list information determines the order of 

VCs in the channel buffer as well as the order of slots in each VC [18]. For each channel, a table 

keeps the linked list addresses of the queues buffer. 
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The read pointer is updated according to the information stored in linked list table and points 

to the first slot in a queue. For all the queues, there is one slot state table that is used to keep 

track of free slots available for incoming packets. The write pointer is updated according to the 

slot state information and point to an unoccupied slot where incoming flit can be stored. For 

each read and write of the buffer, the linked list and the slot state tables are updated. 

2.4.2 LLD Router 

 An LLD router consists of input-port modules, an arbiter, and a crossbar switch as shown in 

Figure 1.1. The LLD router input-port consist of a central buffer, five lookup tables, and some 

other logic circuits and ports as illustrated in Figure 2.11.  
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Figure 2.10: Input-Ports with Two Queue Type 
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Figure 2.11:  LLD Based Input-Port. 
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A slot of the central buffer comprises of a packet flit, where the slot size of the buffer is equal to 

the flit size. On the activation of credit-in, the data is stored in the slot pointed by the write-

pointer. The data pointed by the read-pointer appears at the central buffer output. Five lookup 

tables are used to implement the LLD router where three of these tables are shown in Figure 2.12. 

The VC-State and Slot-State tables keep a Boolean value for each VC and Slot (empty/occupied). 

The Header-List table keeps the addresses of slots that contain the header flits of VCs. The Tail-

List table keeps the addresses of slots that point to the tail flits of VCs. The L-L table keeps the 

addresses of the next slot of each slot, or it links the addresses of slots that are associated with 

each VC in a FIFO manner. The Slot-State table has a record of the occupied slots in the central 

buffer.  

 

 

 

 

 

 

 

 

2.4.3 LLD Communication 

 We are employing an asynchronous communication among routers, destination and source 

cores. A credit based handshaking is used to establish communication between the source, 

intermediate and destination routers. A credit signal is generated when a source core sends a 

packet flit. In the case of a destination router, the credit signal causes the data to be stored in the 

input-port buffer. If the buffer is full then an acknowledge signal, VC-full is sent back to the 

source, signaling it to cease sending flits to the input-port. Following steps describe the 

communication of flits in the router’s input-port, where Figure 2.13 illustrates the timing diagram 

of the communication. 

1) Data and VC identification (VC-ID) appears at the input-port of the router at clock event 1.  

2) At clock event 3, Credit-in signal becomes high and leads the storage of data in the input-

port buffer. 

Figure 2.12: LLD Router (4-VC and 16-slot) – Lookup tables 
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3) At clock event 4, all the tables of the input-port are updated according to VC-ID and the 

request signal is set, which causes the arbiter to read the flit-data information. 

4) At the positive clock edge 5, a grant signal is issued after arbitration. This leads the data 

and its new VC-ID to exit the input-port. 

5) All the tables are updated and request signal is reset at clock event 6. 

6) A high level of grant signal causes the credit-out to be set and the grant to be reset at the 

positive clock edge 7. 

7) A high level of credit-out signal will also reset the credit-out at the positive clock edge 9.  

The pipelined communication illustrated in Figure 2.13 shows that in the case of LLD routers, 

flit-data is stored for two clock events and transferred at two clock events. The tables are updated 

at the negative clock edge, and the signals are detected and issued at the positive clock edge. 

 

 

 

 

 

 

 

 

 

 

2.4.4 Slot-State Process 

 The Slot-State table keeps a record of the occupied slots in the central buffer by maintaining a 

Boolean flag for each slot in the Slot-State table. The flowchart of Figure 2.14a illustrates the 

process of recording the states in a Slot-State table. When a flit occupies a slot in the central 

buffer, the corresponding bit for that slot is set. When a flit leaves the slot, the corresponding bit 

of the slot is reset in the Slot-State table. The decoder module that decodes the content of the Slot-

State table is shown in Figure 2.15a. The decoder generates the write-pointer signal and it is 

Figure 2.13: Timing Diagram of a Pipeline Communication inside a LLD Input-Port. 
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Figure 2.14: Updating of LLD tables 
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2.4.5 Flit Arrival and Departure Process 

We briefly describe the arrival and departure of data flits and updating of LLD tables. The 

updating mechanism of the LLD tables can be illustrated by the two processes of Figure 2.14. 

These two processes are sensitive to the negative edge of the router clock. The flit arrival and 

departure is detected by credit-in and grant signals, respectively. Assume that a VC (e.g. VC3) is 

empty and ready to accept data. Upon the arrival of a flit for VC3, three things happen 

simultaneously. First of all, the corresponding bit of VC3 is set in the VC-State table indicating 

that VC3 is occupied. Then the content of the write-pointer is stored in the Tail-List and Header-

List tables. Finally, the corresponding bit is set in the Slot-State table. The write-pointer is then 

updated that points the next free slot for the incoming flit. When another incoming flit tries to 

move into the same VC (VC3), three things occur at the negative clock edge. The content of the 

write-pointer is stored in a location of the L-L table where the Tail-List table points to it. Then 

the write-pointer content is stored in the Tail-List table. Finally, the Slot-State table is updated, 

which leads to the updating of write-pointer. 

When a flit exits from a VC (e.g. VC3), three types of events take place. If the Header and 

Tail addresses are the same (the last flit), the corresponding bit is reset in the VC-State indicating 

an empty VC3. In case the Header and Tail addresses are not same, the location of the L-L table 

is identified by the Header-List table, and it is stored as the new header address of VC3 in the 

Header-List table. Finally, the corresponding bit of the Slot-State table is reset, which causes the 

write-pointer to be updated. 

As the flit arrival and departure occurs at two different locations of the input-port buffer, there 

is no storage conflict in the Slot-State table. When the Tail and the Header addresses are same, 

the VC-State table is updated (i.e. when the departing flit is the last flit of VC). Therefore, if the 

arrival and departure are for the same VC then the Header value is already updated. It means that 

the Tail and Header addresses are not the same and there will be no table updating at the flit 

departure. If the flit arrival and departure is for two different VCs, there would be no storage 

conflict due to independency of different cells of the Header-List table.  

2.4.6 VC-block Signal 

 As illustrated earlier in Figures 2.13 and 2.14, all the tables are updated at the negative edge of 

the router clock that issues request signals and the read-pointer address. These signals are stable 

for arbitration at the positive clock edge (when request signals are checked by the arbiter 
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module). When any one of the request signals is high, the arbiter reads the information of the 

requested flit for arbitration. If the requested output of a flit is free, the arbiter issues a grant 

signal. The grant signal causes the flit to exit the router at the positive clock edge.  If the 

requested output is blocked, the arbiter issues a block signal (VC-block) that causes the VC-

Selector to select any other available VC for service as illustrated in Figure 2.16. 

 

 

 

 

2.4.7 VC-Selector Module 

  The VC-Selector module in the router input-port selects a VC for arbitration. It issues the 

request signal, VC-req and is used to generate the read-pointer address as illustrated in Figures 

2.16 and 2.15b. The VC-Selector module has a logic circuit that operates on the contents of VC-

State table and creates VC availability signal (VC-ava). In fact, the VC-block signal is reversed 

and ANDed with its corresponding bit in the VC-State as illustrated in Figure 2.16. For example, 

if the VC0 is blocked then VC-block[0] signal is high to prevent the selection of VC0. The VC-

Selector module selects a VC depending on the VC-ava signals and it consists of a logic circuit 

based on the following logic code. 

if (VC-ST[0]&& !VC-block[0])  VC-req =1; // VC0 request 

else if (VC-ST[1] && !VC-block[1])  VC-req =2; // VC1 request 

       else if (VC- ST[2] && !VC-block[2]) VC-req =4; 

              else if (VC- ST[3] && !VC-block[3]) VC-req =8; 

                     else  VC-req =0;  // no request 

 

The above code illustrates a deterministic scheduling policy that establishes a first priority for 

VC0, 2nd priority for VC1, and so on. VC-ID-local signals select a free or available VC for 

arbitration. In fact, the Header address of a VC is selected as the read-pointer as shown in Figure 

2.15b. 

 

Figure 2.16: VC-Selector Request Logic 

VC-block[0] VC-ava 

0 

1 

2 

3 

VC-State  

1 

1 

1
 

  
0 

VC-Req 

VC-ID-local 

0 
1 

2 

Fixed priority arbiter 

<< 

“00001” 

3 

4 



38 

 

2.4.8 Buffer-full Module or VC-full Module 

In the traditional DAMQ scheme, a VC can occupy the entire input-port buffer space. 

Therefore, a Buffer-full signal is enough to represent the state of an input-port buffer. The Buffer-

full signal is used to close the input-port. When the input-port buffer is full, all the cells of the 

Slot-State table are high. Therefore, the logical ANDing of the Slot-State cell values can issue the 

Buffer-full signal as shown in Figure 2.17a.  

 

 

 

 

 

 

 

 In case that the mechanism has control over the size of VCs, a credit signal (VC-full) is 

required for each VC instead Buffer-full signal. We present the scheme illustrated in Figure 2.17b 

where one slot is reserved for each VC. Assume that S0 to S15 represent the cell states of Slot-

State table, and V0 to V3 represent the cell states of VC-State table. The state of VC-full signal is 

determined according to the logic equation as follows.  VC-full[i]=((S0+…+S15)-(V0+…+V3)-

Vi) where iє{0…3}. For example, if VC0, VC1 and VC2 have at least a flit and VC3 is empty, 

their associated adder outputs, ad_0, ad_1, ad_2 and ad_3 become 1, 1, 1 and 0 respectively. 

When at least a slot of buffer is empty, the associated adder output, ad_4 becomes 1. Now the 

states of VC-full[0], VC-full[1], VC-full[2] and VC-full[3] become 1, 1, 1 and 0 that means only 

VC3 is free. 

2.5 Buffering Organization Approach 

A number of researchers have focused on the design and organization of routers buffers due 

to its tight relation with the NoC power, performance and area. Some of them have used a 

complex architecture as compared to conventional VC-based router architecture, or they are 

efficient under certain NoC configurations or data flow circumstances [19, 34, 35, 36]. Some of 

these research works are discussed in this section. 
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An NoC router architecture called CUTBUF has been presented by Zoni et al. [34].The 

approach dynamically assigns VCs to input-port depending on the actual input-port load and 

reusing each queue by packets of different types. The approach significantly reduces the number 

of physical buffers in routers, thus saving area and power without decreasing NoC performance. 

They have assumed that a VC in conventional VC protocol can be re-allocated to a new packet 

only if the tail of its last allocated packet is sent out, i.e. it is empty. However, a reserved VC in 

CUTBUF protocol is released when either the tail flit traverses the same pipeline router stage, or 

when the related packet gets blocked. In other words, to increase buffer utilization and 

preventing HOL blocking in CUTBUF communication, a VC can be re-allocated to a new 

packet under two conditions. First, the tail of its last allocated packet is sent out, i.e. it is empty. 

Secondly, the packet that is stored in the queue buffer is guaranteed to traverse the switch in a 

fixed number of cycles. In such a way, the newly allocated packet is guaranteed not to be 

blocked because the previous one is guaranteed to traverse the switch. To implement above 

mechanism, the following conditions are checked to let a new packet to allocate a no empty VC. 

Once a packet has been granted by a router and its tail flit is stored in the input buffer VC, and 

the downstream router has enough credits to store all the flits of the VC. As mentioned before, 

these conditions are required for buffer reuse i.e. assigning a no empty VC to a new packet. A 

drawback of approach can be the protocol constrain assumed for conventional VC protocol. In 

fact, they assume that a VC in conventional VC protocol can be re-allocated to a new packet 

only if it is empty. Therefore, we expect that the results of approach are created based on this 

protocol constrain. Moreover, the efficiency of NoC without aforementioned protocol constrain 

has not been investigated in the research. 

This part of conventional NoC protocol has also been investigated in an approach called 

Packet-Based Virtual Channel (PBVC) [35]. A VC in PBVC scheme is reserved when a packet 

enters the router and released when the packet leaves. A VC will hold the flits of only one 

packet at a time that subsequently removes the Head-of-Line (HoL) blocking. PBVC technique 

is more efficient in dynamically allocated multi-queue (DAMQ) schemes where an input or 

output port employs a centralized buffer whose slots are dynamically allocated to VCs. The 

experimental results show that in the case of HoL specific traffic, the average latency and 

throughput are improved for the PBVC approach as compared to conventional DAMQ-based 

NoC.    
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Yung-Chou and Yarsun have presented a new DAMQ-based buffer organization called 

DAMQ-MP that can accommodate multiple packets more than the number of virtual channels 

[19]. The approach can solve certain data transmission issues under some circumstances, such as 

heavy network congestion or short packets to improve the performance. To implement the 

DAMQ-MP, two assumptions are applied to the conventional DAMQ configurations as follows. 

First, a virtual channel only holds one packet each time for easy control and preventing HoL 

blockings. In other words, if all virtual channels contain packets whose tail flits have entered but 

not left yet, the remaining free buffer resources are wasted. The second assumption is to 

presume a long interval between the departure of tail flit belonging to the current packet and the 

header flit belonging to the next packet. By considering the above two assumptions, they have 

introduced the DAMQ-MP data flow as follows.  

Whenever the tail flit of a packet enters the input buffer via one of the VC, this packet 

releases the virtual channel by alerting a notification signal to the upstream router. Therefore, a 

new packet from the upstream router can be sent out and enters this free VC. In fact, the new 

packet does not need to wait until the tail flit of previous packet gets out of the VC. This 

approach can saves a lot of times, especially in case that the routing computation for the arriving 

packets is high (see the second assumption). The aforementioned two assumptions and above 

data flow organization leads the DAMQ-MP to be efficient in the cases of short packets, large 

buffer capacity, heavy congested traffic (including saturated network), and small number of 

virtual channels. As one may notice, the DAMQ-MP approach is in reverse conclusion to the 

PBVC approach. The DAMQ-MP approach lets a VC to accept new packet when the VC is not 

empty, but the PBVC approach prevents a VC to accept new packet when the VC is not empty. 

In fact, both approaches are efficient under different NoC schemes and traffic patterns. 

A router architecture, RoShaQ that allows sharing multiple buffer queues has been presented 

by Tran and Baas [36]. In this approach, each input-port allocates one buffer queue and shares 

all remaining queues. The router architecture maximizes buffer utilization by allowing the 

sharing multiple buffer queues among input-ports. Sharing queues, in fact, makes using buffers 

more efficient by reducing packet stall times at input-ports. The RoShaQ is able to achieve 

higher throughput when the network load is heavy. On the other side, at light traffic load, 

RoShaQ router achieves low latency by allowing packets to effectively bypass these shared 

queues and reducing zero-load packet latency. In conclusion, the proposed router achieves 
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higher performance in both cases i.e. when the traffic load becomes heavy or at low-load traffic. 

An RoShaQ NoC is deadlock-free due to the following reasons. At light load, packets normally 

bypass shared queues, so the RoShaQ acts as a wormhole router hence the network is deadlock-

free. At heavy load, if a packet cannot win the output-port, it is allowed to write only to a shared 

queue which is empty or contains packets having the same output-port. Clearly, in this case the 

RoShaQ acts as an output-buffered router which is also shown to be deadlock-free. A drawback 

of this approach is that the approach has achieved a weak contribution to NoC. In fact, the 

approach combines two switching mechanisms: VC-based and simple wormhole to improve the 

performance. When the first packet enters to an input-port, it is serviced through wormhole 

switching without involving VC pipelines. However, when the second packet enters (assume the 

first packet is still there), it is serviced through VC-based switching with involving VC 

pipelines. Therefore, the RoShaQ routers should accommodate both circuits related to wormhole 

switching and VC-based switching i.e. more hardware. Moreover, an extra circuit is needed to 

detect wormhole packets from VC-based packets. Therefore, the RoShaQ router architectures 

become more complex and consume more hardware as compared to conventional VC-based 

routers. The performance improvement of RoShaQ is due to higher hardware overhead not due 

to efficient architecture.  

To eliminate buffer cost, Michelogiannakis and Dally have proposed an Elastic Buffer (EB) 

flow control [37]. Flits advance to the next EB using a ready-valid handshake. An EB asserts its 

ready signal routed upstream to indicate that it has at least one free storage slot. Furthermore, an 

EB asserts its valid signal routed downstream to indicate that it is driving a valid flit. When 

ready and valid are asserted between two EBs at a rising clock edge, a flit has advanced. This 

timing requires at least two storage slots per EB to avoid unnecessary pipeline bubbles as 

illustrated in Figure 2.18. In other words, an EB is a FIFO with two storage locations. EB 

channels use many consecutive EBs to form a distributed FIFO. Without virtual channels, 

deadlock prevention is achieved by duplicating physical channels.  

In other words, EB is a primitive and simplified form of NoC buffering, which can be easily 

integrated in a plug-and-play manner at the inputs and outputs of the routers as well as on the 

network links to act as a buffered repeater. EB assumes only one form of handshake on each 

network channel. The handshake cannot distinguish between different flows, thus making the 

EB operation serial in nature. This feature prevents the interleaving of packets and the isolation 
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of traffic flows, while it complicates deadlock prevention. Due to this limitation, direct support 

for VCs is abandoned and replaced by multiple physical networks or implemented via complex 

and non-scalable hybrid EB/VC buffering architectures [37]. Hybrid routers operate as EB 

routers in the common case, and as VC routers when necessary. However, hybrid EB/VC 

technique removes the basic property of the EBs to act as elements that can be placed seamlessly 

anywhere in the NoC. 

  

 

 

 

 

 

 

Seitanidis et al. have extended EB architectures to support multiple virtual channels [38]. 

They called their EB architecture, ElastiStore.  The ElastiStore approach minimizes buffering 

requirements without sacrificing performance and without introducing any dependencies 

between VCs, thus ensuring deadlock-free operation. It uses just one register per VC and a 

shared buffer sized large enough to only cover the round-trip time that appears either on the 

NoC links or due to the internal pipeline of the NoC routers as illustrated in Figure 2.19.  
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Figure 2.18: Any EB architecture derived for edge-triggered flip-flops can also be implemented with latches[55]. 

Figure 2.19: Organization of the generalized ElastiStore Port. The shared buffer consists of as 

many buffer slots as required to cover the round-trip time of the flow-control signals [56]. 
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The integration of ElastiStore scheme in an NoC router is illustrated in Figure 2.20. This 

integration enables the design of efficient architectures, which offer the same performance as 

baseline VC-based routers, but at a significantly lower cost. 

 

 

 

 

 

 

 

 

 

In fact, this approach represents the DAMQ architecture with a reserved slot per each VC, 

since it has been stated in [38] that ElastiStore architecture rely on fairly complex logic to keep 

track of the location of flits within the unified buffer (see buffers illustrated in Figure 2.19). The 

ElastiStore-based NoC results are only compared with those of conventional VC-based NoC. 

For sake of fair evaluation, this approach could be also compared with a DAMQ NoC.  

2.6 Heterogeneous Router Architectures 

A number of researchers have focused on the design and organization of routers that have 

direct impact on the NoC power, performance and area [39, 40, 41]. Some of these research 

works are discussed in this section. A hybrid switching mechanism, Virtual Circuit Switching 

(VCS), is proposed by Jiang et al. [39]. The approach intermingles the Circuit Switching (CS) 

and Packet Switching (PS) to obtain low latency and power consumption in NoCs. They have 

also proposed a path allocation algorithm to determine VCS connections and CS connections in 

a mesh-connected NoC. VCs in the VCS approach are exploited to form a number of VC 

connections by storing the interconnect information in routers. Flits can directly traverse the 

routers by using only Switch Traversal (ST) stage (see Section 1.6.1). The main advantage of 

VCS approach is that it can have a similar router pipeline with circuit switching, and can have 

multiple VCS connections to share a common physical channel. In this hybrid scheme, VCS 

connections cooperate with PS connections and CS. Once flits on CS or VCS connections arrive 
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Figure 2.20: Integration of ElastiStore in NoC routers. ElastiStore modules can be integrated at the inputs and at 

the outputs of a router. In general, ElastiStores can be placed seamlessly and in a plug-and-play manner 

everywhere within the NoC [56]. 
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at routers, crossbar switches are immediately configured so that the CS or VCS flits can bypass 

directly to the ST stage. When there is no CS or VCS flit, the corresponding ports of crossbar 

switches are released to PS connections. Figure 2.21 shows VCS, CS, and PS connections of the 

VCS scheme. The VCs of routers in VCS connections are preconfigured in such a way that they 

are only connected to the particular downstream router VCs. Crossbar switches of routers are 

preconfigured during the Switch Allocator (SA) stage before VCS flits require passing through.  

 

 

 

 

 

 

 

 

 

As VCS connections are established over VCs, a physical channel can be shared by n VCS 

connections at most where n is the number of VCs. Other communications competing for the 

same physical channel must follow the packet switching, e.g. the communication from node 4 to 

8 shown in Figure 2.21. There are two drawbacks regarding of the VCS approach. Firstly the 

VCS routers have to the circuitry required for both packet and circuit switching mechanisms. 

Moreover, an extra hardware is needed to detect VCS packets from PS packets. In this way, the 

VCS router architectures are complex and required more hardware as compared to conventional 

VC-based wormhole routers. The second drawback is that despite the higher hardware of VCS, 

the approach is not efficient for varying communication application. On the other hand, it is 

efficient for deterministic communications e.g. the communication in application-specific NoCs. 
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Figure 2.21: Proposed Hybrid Scheme in A 4 × 4 Mesh with two VCs per Input-Port [47]. 
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In application-specific NoCs, the routing connections are determined and fixed, and the router 

can be preconfigured for CS or VCS connections in advance, so that the CS or VCS packets can 

pass through their specific routes to reach their destinations. However, our proposed NoC 

routers in Chapter 3 and 4 are efficient for any type of NoC communications. Moreover, they 

improve the performance while their architectures are simpler and accommodate lower hardware 

overhead. 

Another heterogeneous NoC router architecture has been introduced by Ben-Itzhak et al. 

[40]. They exploit a shared-buffer technique in order to handle the heterogeneity of NoC link 

bandwidths. Their approach reduces the number of shared-buffers required for a conflict free 

router without affecting the performance. Reducing the number of required shared-buffers also 

reduce the crossbar size and overall it will reduce the chip area and power consumption. The 

heterogeneous router architecture supports different link capacities and different number of VCs 

for each unidirectional link while keeping the router frequency fixed as illustrated in Figure 

2.22.  

 

 

 

 

The heterogeneous architecture utilizes serial-to-parallel converters in order to store incoming 

flits to different input buffer slots at each link clock cycle, and parallel-to-serial converters can 

be used in order to transmit several flits in Time-Division Multiplexing (TDM) fashion 

depending on the link frequency. In fact, the shared-buffer technique presented by Ben-Itzhak et 

al. optimizes the number of shared-buffers related to arrival and departure conflicts discussed by 

Ramanujam et al. in [41]. The drawbacks of VCS approach discussed earlier can be considered 

for the heterogeneous approach. In other words, the heterogeneous router architecture is tailored 

for a specific type of NoC communication. However, NoC has emerged as a network with 

scalable, reusable and global communication architecture to address the SoC design challenges. 

The NoC features enable it to be easily expandable and more important to provide services for a 
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Figure 2.22: Heterogeneous NoC Router Example [48]. 

 



46 

 

variety of SoC communications. The standard heterogeneous feature of the approach violates the 

scalability and reusability of NoC, and it needs more research and investigation. 

2.7 Round Robin Arbiter 

 In digital system design, arbiters are used to allocate and access shared resources. Whenever 

a resource, such as a buffer, channel or a switch-port is shared, an arbiter is required to assign 

the access to the resource at a particular time. The most common usage of arbiters is the shared-

bus arbitration of a bus-based system where multiple master modules can initiate their 

transactions. The modules must be arbitrated for access to the bus before initiating a transaction. 

In this dissertation, we investigate the arbiters used in NoC systems. Figure 2.23 illustrates a 

wormhole v-VC router where the Router Arbiter module includes a Switch Allocator module 

consisting of two sets of simpler arbiter. A simpler arbiter arbitrates among a group of requesters 

for a single resource as illustrated in form of a symbol for an n-input in the right side of Figure 

2.23. 

 The arbiter accepts n requests (r0, r1, . . ., rn−1), arbitrates among the asserted request lines, 

and selects an ri for service, and then asserts the corresponding grant line, gi. For example, 

assume the arbitration for the output-port of a crossbar switch among a set of requests from the 

VCs of some input-ports. The input-port VCs that have flits will issue request signals for having 

access to one of the desired output-port. Assume, there are 5 VCs and VCs 0, 2, and 4 assert 

their request lines, r0, r2, and r4 respectively. The arbiter will then arbitrate and select one of 

these VCs for assigning the desired output-port. Assume the grant of VC2 (i.e. g2) is asserted. 

VCs 0 and 4 lose the arbitration and must hold their requests active until they receive the grant 

signal for their output-ports. 
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2.7.1 Conventional Arbiter Design 

Arbiters can be categorized in terms of fairness (weak, strong or FIFO) arbiters [2, 42]. In a 

weak fairness arbiter, every request is eventually granted. The requests of a strong fairness 

arbiter will be granted equally often. The requests of FIFO fairness are granted in a first come 

first served basis. Moreover, arbiters in terms of priority can be grouped in two fixed and 

variable architectures. For a fixed priority arbiter, the priority of requests is established in a 

linear order. Figure 2.24 illustrates a 4-input fixed-priority arbiter where r0 has the highest and 

r3 has the least priority [2]. The architecture can be expanded to n-input arbiter where for each 

middle request, there is an arbiter cell consisting of two ANDs and an Inverter. The first and last 

arbiter cells can be simplified (see Figure 2.24). For each request input ri, there is a carry input 

ci, a grant output gi, and a carry output, ci+1 where i ϵ {0, 1... n-1}. Therefore, a low level ci 

indicates that at least one of requests from r0 to ri-1 was has been asserted. Moreover, in case 

that the request ri and carry ci are high, the grant, gi is set, and all the following grants i.e. gi+1 

to gn-1 will become reset. It is obvious that the critical path of the circuit is from the first 

request, r0 to the last grant, gn-1 due to propagation of carry from head to the tail of the arbiter. 

Fixed priority arbiters provide weak fairness arbitration because when a request is continuously 

asserted, none of its following requests will ever be served. 

 

 

 

 

 

 

 In order to have a fair iterative arbiter, we can use a variable priority arbiter as illustrated in 

Figure 2.25. An OR gate and a priority input signal, pi is added to each cell of the fixed priority 

arbiter shown in Figure 2.24. When p1 is set, its corresponding request, r1 has high priority and 

the priority decreases from that point cyclically around the circular carry chain.  
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Figure 2.24: A 4-Input Fixed Priority Arbiter Architecture. 
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 Now we can create a fair iterative arbiter by changing its priority from cycle to cycle. In an n-

input arbiter, if the grant, gi (where i ϵ {0, 1, ... n-1}) is connected to the next priority vector 

pi+1, a Round Robin (RoR) arbiter is created. Figure 2.26 illustrates a 4-input RoR arbiter. If a 

grant, g1 becomes high at the current cycle, it causes p1 to be set high on the next clock cycle. 

This leads the request, r2 to become the highest priority at the next cycle, where the request, r1 

becomes the lowest priority. For the sake of simplicity, we assume that the arbitration cycle 

takes one clock cycle in all the architectures describe in this dissertation. 

 

 

 

 

 

 

 The functionality of a round-robin arbiter can be explained as a request that is just granted 

will have the lowest priority on the next arbitration cycle [2]. The round robin arbiters are 

simple, easy to implement, and starvation free. When the input requests are large in numbers, the 

structure of round robin arbiter grows that leads to large chip area, higher power consumption, 

and critical path delay. In an NoC design, the critical path delay of arbiter usually dominates 

among the critical path delays of input-port and crossbar switch due to the architectural 

complexity of arbiter as compared to those of port and crossbar switch. Therefore, the arbiter 

circuit determines the maximum frequency (or the speed), fmax of an NoC router. The critical 
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impact of arbiter on the performance of the NoC system and the characteristic behaviour of 

round robin architectures have created a lot of interest of NoC researchers as we will discuss 

some of them in the following section. 

2.7.2 Some Well-Known RR Arbiters 

The architecture of a popular Matrix round robin arbiter is presented by Dally and Towles [2]. 

A 4-input Matrix arbiter architecture is shown in Figure 2.27. It implements a least recently 

served priority scheme where a request, ri wins arbitration. It resets the bits of row i and sets the 

bits of column i to make itself the lowest priority where i ϵ {0,..3}. The Matrix arbiter is claimed 

to be useful for small number of inputs as it is fast, economical, and performs strong fairness 

arbitration. However, no evaluation is presented. Fu and Ling evaluated and compared the RoR 

and Matrix arbiters in terms of resource, performance and power consumption for an FPGA 

platform [43]. They concluded that the Matrix arbiter consumes more resource, same power but 

can process data more quickly than the RoR arbiter.  

 

 

 

 

 

 

 

 

Zheng and Yang proposed a Parallel Round Robin Arbiter (PRRA) based on a simple binary 

search algorithm as illustrated for a 4-input PRRA in Figure 2.28 [44]. They further proposed an 

Improved PRRA (IPRRA) design where the output signals, gL and gR of PRRA are disconnected 

and directly ANDed with grant signals to generate new grant signals as shown in Figure 2.29. 

The IPRRA reduces the timing of PRRA significantly. 
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A High speed and Decentralized Round robin Arbiter (HDRA) has been presented by Lee et 

al., which is illustrated in Figure 2.30 [45]. Each circuit enclosed with dash circle represents a 

filter circuit whose main components are a D flip-flop and a multiplexer. The filter circuit filters 

out the input without request or the one with request that has already been granted at that 

arbitration cycle. The un-filtered inputs with their requests participate in the arbitration again next 

cycle by setting its corresponding D-type flip-flops to 0 that are done by enabling the ack signals 

from higher lower level. The HDRA arbiter will reset itself asynchronously by the input self_rst 

from the root. The sys_rst indicates the system reset signal and is used initially before each 

arbitration cycle for all requests. A 4-input HDRA arbiter has a simpler circuit than a higher input 

HDRA architecture because the act, rnext and self-rst are connected together. The HDRA 

architecture is used later in some other works e.g. in the router model of simulation framework 

implemented by Guderian et al. [46]. In Chapter 5, we introduce a novel RR arbiter that is 
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Figure 2.29: A 4-Input IPRRA Architecture. 
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simpler, faster and consume lower hardware overhead as compared to the aforementioned arbiters 

(i.e. RoR [2, 43], Matrix [2, 43], HDRA [45], PPRA [44] and IPRRA [44]). 
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Chapter 3 

Statically Adaptive Multi-FIFO Buffer Organization 

In this chapter, we present a new technique for efficient flow control and adaptive VC 

allocation for on-chip applications. We implement an adaptive virtual channel flow control to 

demonstrate higher buffer utilization, improved message latency and NoC throughput. In terms 

of hardware, we present an NoC architecture leading to lower size and power consumption due 

to SRAM-based buffer sharing. In terms of pipeline stages, we show that our mechanism is 

similar to the conventional static VC mechanism, so we can benefit of fastest arrival and 

departure of data. Our contribution is described as follows. The basic concept and 

communication of our approach while they are compared with a conventional VC-based 

architecture are described in Sections 3.1 and 3.2 respectively. In Section 3.3, we discuss that 

our model is similar to the conventional static model in term of functionality, but it can provide 

advanced adaptivity as described in Section 3.4. The hardware modeling of our approach is 

discussed and evaluated in Section 3.5 while the adaptivity of our approach is evaluated by 

various experimental results in Section 3.6. Finally, novel features and summary of the approach 

are listed in Sections 3.7 and 3.8.  
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3.1 Static Multi-FIFO (SMF) Buffer Architecture 

 In a typical SRAM based FIFO, two pointers point to the address of memory where the data 

is read or written [23, 47, 48]. Figure 3.1 shows a simple scheme of an SRAM-based FIFO. For 

a read operation, the Read-Pointer is incremented to point at the next slot (assume P1). 

 

 

 

 Consequently, the content of the slot (P1) appears at the output. In the case of a write event, the 

incoming data is stored at the location pointed by the Write-pointer (assume P5), and the Write-

Pointer is incremented to the next empty slot. The difference between Write-pointer and Read-

pointer determines whether the FIFO is full or empty. A buffer-full condition occurs when a 

write results in the difference of these pointers to zero. An empty condition occurs when the 

difference of two pointers become zero after a read. Both Read-pointer and Write-pointer 

increase circularly. This FIFO mechanism has enabled us to create a multi queue buffer by using 

an SRAM. In fact, by switching multiple read and write pointers to the address port of a SRAM, 

multiple FIFO buffers are created in a single SRAM. Figure 3.2 shows the architecture of a 

channel buffer (input-port) that employs our proposed Static Multi FIFO (SMF).  

 

 

 

 

 

 

 

 

 

 In order to investigate and evaluate our proposed architecture, a Conventional Virtual 

Channel (CVC) NoC router input-port architecture is considered for comparison and it is 

Figure 3.1: A Typical SRAM-Based FIFO 
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illustrated in Figure 3.3. In CVC architecture, each FIFO represents a VC, and the number of 

VCs will be equal to the number of FIFOs [1]. The number and the size of FIFOs (VCs) are 

constant in a CVC architecture. In the following sections, we present the details of CVC and 

SMF micro-architectures in an effort to illustrate both these mechanisms that are similar in terms 

of their functionality. However, the SMF architecture can easily accommodate the advanced 

adaptivity of the VCs. 

 

 

 

 

 

 

3.2 Communication in CVC and SMF Models 

 A VC-based wormhole communication in the CVC and SMF models are shown in Figures 

3.4 and 3.5 respectively. We assume parallel communication in both models i.e. the width of 

physical channel is equal to the size of the flits. Moreover, each physical channel has four VCs 

and four packets are going to share a physical channel on a flit-by-flit basis. Furthermore, an 

NoC router must be able to de-multiplex the flits of packets at their entrance and direct them to 

their respective VC buffers. For this purpose, an identification signal (VC-ID) is sent before 

latching a flit to indicate its VC at the entrance of the input-port [49, 50]. As shown in Figures 

3.4 and 3.5, the VC-ID signals can be transmitted on dedicated wires and connected to the select 

lines of the de-multiplexer. When a flit enters the input-port, it is directed to the VC location 

pointed by the VC-ID. In the case of SMF, these VC-ID signals select the Write-pointer, which 

should be connected to the write address port of an SRAM (see Figure 3.5). Therefore, a flit is 

stored in its dedicated VC area of SRAM on its arrival. 
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Consider a packet P3 has a VC-ID of 3 that switches Write-pointer VC3 as the writing address 

of SRAM as shown in Figures 3.6 and 3.7. The values of read and write pointers indicate that 

the VCs are occupied, full or empty. When a VC is full, the input-port issues an 

acknowledgment signal to the upstream router to stop any further flit transfer to it. In the case of 

no empty VC, the input channel issues a request signal to the arbiter. In case of multiple requests 

for an output channel, the request of one of the VCs can be processed by the arbiter. After 

arbitration, a grant signal (grant) is issued by the arbiter to latch the head flit of selected VC in 

the output register, O-reg in Figures 3.6 and 3.7. This leads the flit to move out of the input-port.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: 4-VC CVC Buffer (VC3 Write and VC1 Read) 
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In Figure 3.6, the Read-Pointer of VC1 will be switched to the read address of SRAM when 

VC-Sel is active. In this way, the communication process indicates that the SMF model 

resembles the CVC model in terms of arrival and departure pipeline of flits. 

3.3 Similarity of CVC and SMF during Contention 

The structure of the VC-Selector module shown in Figure 3.8 illustrates the similarity in the 

flit departure process for the SMF and CVC models, especially in the case of NoC contention 

(blockage). The VC-Selector module is generally located in the arbiter, and it may have the same 

structure for both SMF and CVC models as shown in Figure 3.8. It works and behaves like a 

fixed priority arbiter. When the read and write pointers of a VC are different, the input-port 

issues a request signal (Req) to the arbiter. The request signals of all the VCs of a channel and 

the state of the corresponding outputs of those VCs (VC-block) are connected to the inputs of the 

VC-Selector module. The VC-Selector module contains a combinational logic circuit that selects 

a VC for arbitration in the arbiter module of router. The logic associated with the Req signals 

and the VC-block signals (active when the VC is blocked) create the VC availability signal (VC-

ava). Actually, the VC-block signal is inversed and ANDed with its corresponding Req signal as 

shown in Figure 3.8. For example, if the requested output of VC0 is blocked then the VC-block0 

signal is high to prevent the selection of VC0. A VC is selected depending on the VC-ava signal 

and a VC-Sel signal is issued. The VC-Sel is connected to the select lines of the read multiplexer 

of the input-port as shown in Figure 3.7. The output of the multiplexer contains the packet flit 

under arbitration. 

 

 

 

 

 

Consider the non header flit of a packet (i.e. packet is already arbitrated), the packet 

information is already saved in the arbiter and its related VC-block contains the status of the 

associated output. In case that the flit is a header (new packet); its associated output will not be 

assigned. The circuit for finding an output is not sequential i.e. as soon as the VC-Selector 
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selects a VC, its associated VC-block will have the state of the requested output. In a situation 

where the output is blocked, the VC-Selector selects another VC. One important feature of the 

dual-ported SRAM is that its reading function can be asynchronous (i.e., its output depends on 

the present value of the read address). Two important features, i.e. asynchronous SRAM reading 

and choosing the output-port allow a free packet to be selected for arbitration before the next 

clock cycle. 

Figure 3.9 illustrates the selection function of a free VC. When the VC-block is active, there 

is either no free downstream VC (in the case of a new packet) or the associated downstream 

router VC becomes blocked. As previously mentioned, all of the circuits in the loop (VC-

selector, reading part of SRAM, routing allocator, VC allocator, and OR gate) are not sequential. 

Moreover, the iteration in the loop leads to the selection of a free VC request. As already 

mentioned, we have presented the SMF and CVC architectures in detail to show that the 

arrival/departure function of a flit is similar for both SMF and CVC models especially in the 

case of a blockage in the NoC. The above discussion illustrates that the functional performances 

of both CVC and SMF mechanisms are the same. The reading delay from SRAM is bigger for 

SMF than that of CVC input-port buffers. However, the SMF architecture can provide advanced 

adaptivity for the VCs in a channel that will lead to higher performance, lower latency, 

improved buffer utilization, less power and lower IC area overhead as discussed in the following 

sections. 
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3.4 Statically Adaptive Multi FIFO 

The SMF model includes multiple VCs that are created in an input-port by multiplexing their 

pointers. We have developed an adaptive feature for the SMF model by further multiplexing of 

pointers and controlling signals to create a Statically Adaptive Multi FIFO (SAMF) model. We 

call it statically adaptive as the VC buffers are static during a specific time of communication, 

and then they are subsequently adapted to the traffic demand. The SAMF model improves buffer 

utilization by closing redundant VCs and allocating their buffers to the active VCs. Higher VC 

buffer depth reduces contention and, subsequently improves performance. We incorporate some 

additional modules such as a Mode-Selector for each channel and a multiplexer for each VC, as 

well as employ the VC-Full (it is activated when a VC becomes full) signal to create an adaptive 

mechanism, as illustrated in Figure 3.10. The Mode-Selector module generates “adaptivity” 

signal (adapt) to cover n adaptivity modes where n is equal or less than the number of VCs per 

channel. Each adaptivity mode is defined by m×VC; where m represents the number of VCs of a 

channel and 1 ≤ m ≤ n. In the situation where m is less than n, the Mode-Selector issues the 

closing signal, VC-close to close the unused VCs. The VC-close signals are NORed with VC-full 

signal to represent the state of VCs as illustrated in Figure 3.10. In other words, when a VC is 

full or redundant within a channel (either VC-full or VC-close is set), the upstream router does 

not send flits for that VC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: nVC SAMF Architecture. 
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To discuss the details of our approach, an SAMF architecture for four VCs and an SRAM of 

16 slots (flits) is illustrated in Figure 3.11. In this example, the adaptivity modes are illustrated 

as follows. In case of a 4VC mode, each VC takes a quarter of the total SRAM slots. The 3VC 

mode activates VC0, VC1 and VC2 where VC0 has double the space than each of VC1 or VC2. 

The 2VC mode means that two VCs are accommodated in the SRAM (VC0 and VC1), where 

each VC contains half of the SRAM capacity. 1VC mode accommodates only one VC (VC0) in 

the SRAM. Table 3.1 shows the connections in the architecture to implement such adaptivity. 

The pointers can address the overall SRAM and their width is of four bits: a, b, c and d.  VC-Sel 

has two bit signals x and y, and VC-ID also has two bit signals p and q. Different combinations 

of above bits (i.e. a, b, c, d, x, y, p and q) are used to specify different modes. For example, in 

1VC mode all the output lines of pointers are connected to the address of the SRAM.  In the case 

of a 2VC mode, three least significant bits of the pointers are used as least significant bits of the 

address ports. The least significant bits of VC-Sel and VC-ID are used for the most significant bit 

of read and write address ports of SRAM respectively. In 4VC mode, two least significant bits 

of pointers are used as the least significant bits of address ports, and two bits of VC-Sel and VC-

ID are used for the two most significant bits of read and write address of SRAM. 

Consider 4VC mode of Figure 3.11 and Table 3.1, where read address is ‘0011’ i.e. two least 

significant bits of Read-Pointer VC0 are ‘11’ and two bits of VC-Sel are ‘00’. In 2VC mode, the  
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Figure 3.11: 4-VC SAMF Architecture with 2 Active VCs. 
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write address is ‘1100’ i.e. three least significant bits of Write-Pointer VC1 are ‘100’ and the 

least significant bit of VC-ID is ‘1’. The Mode-Selector module is designed in such a way that 

different modes are deterministically applied based on the configuration of an NoC system. 

Mode-Selector module can also be designed in a complex form where different modes are 

dynamically applied according to NoC communication. We present our dynamic and 

deterministic Mode-Selector schemes in the following sections. 

Table 3.1 Connection in SAMF Mode 

Mode Adapt VC-Sel Pointers Read add. VC-ID Write add. VC-close 

4VC 00 x,y a,b,c,d x,y,c,d p,q p,q,c,d 0000 

 

3VC 

VC0  

01 

x,y a,b,c,d y,b,c,d p,q q,b,c,d 1000 

VC1,VC2 x,y a,b,c,d x,y,c,d p,q p,q,c,d 1000 

2VC 10 x,y a,b,c,d y,b,c,d p,q q,b,c,d 1100 

1VC 11 x,y a,b,c,d a,b,c,d p,q a,b,c,d 1110 

3.4.1 Dynamic Mode Selector 

 A dynamic Mode-Selector module dynamically selects an optimum number of VCs 

according to the traffic demands in a channel and closes unused VCs. Figure 3.12 illustrates the 

process flow diagram of our dynamic Mode-Selector. The process is invoked when a packet 

enters an input-port. A variable, Pkt-N keeps a record of the number of new and varied packets. 

A new and varied packet means a packet with different source or destination ID. In such case, 

the variable VC-N is incremented by passing a varied packet through the associated channel. 

After a specific number of incoming packets that we call the Selection-Factor, the VC-N 

determines how many VCs are needed to handle the communication in an optimal fashion. The 

dynamic Mode-Selector process iteratively determines the number of channel VCs based on two 

factors: the channel traffic demand and the Selection-Factor. At the end of each iterative process 

all the variables reset. In fact, the traffic of a channel is measured in terms of the number of 

varied packets in each iteration of the process. According to this number, an appropriated 

adaptivity mode will apply. Switching from a higher mode (i.e., more VCs per channel) to a 

lower mode (i.e., less VCs per channel) is easy. It has no negative impact on communications 

and incurs little cost for an NoC system. We investigate this kind of switching in detail in the 

following sub-section. However, switching from a lower mode to a higher mode is complicated 

and slows NoC communication during mode switching. For example, assume a 4-VC input-port 

where the 1VC (VC0) is the current VC mode allowing data to be everywhere in the input-port 
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buffer. In a situation where the 4VC becomes the new mode, the easiest way to accomplish 

mode switching is when the buffer becomes empty. This delay in empting the buffer slows 

communication at mode switching time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Deterministic Mode Selector 

 As mentioned earlier, switching from a higher mode to a lower mode is simple. It has no 

negative impact on communication and incurs very little cost for an NoC system. These 

advantages have encouraged us to introduce a deterministic routing based NoC architecture. In 

deterministic routing, packets with similar routing information always pass through a specific 

route. Therefore, when an embedded application is mapped to NoC, the number of various 
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packets passing through a channel will be constant throughout the communication. Figure 3.13 

illustrates the process flow and schematic diagrams of an efficient and simple deterministic 

Mode-Selector. The process performs once for an input-port. In fact, after the number of 

incoming packets reaches a specific number (Selection-Factor), the mode is assigned based on 

the maximum number of VCs to be used. Assume that there are four VCs per input-port and the 

arbiter is designed deterministically and sequentially to assign new and varied packets to VC0, 

VC1, VC2 and VC3. In such a situation, the same packets will always enter the same VC.  

On reset, all the registers of the Mode-Selector become zero that leads to 4VC mode as the 

default mode (i.e. a maximum number of VC). At the positive edge of the clock  

the Mode-Selector process determines whether an incoming flit is the first flit of the packet. If 

the VC-ID of a new packet is different than the VC-ID of previous packets, it will be saved in a 

register, VC-N. The number of packets is recorded in a counter, Pkt-N. When the number of new  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.13: Flow Process & Schematic of Deterministic Mode-Selector.   
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packets reaches to the Selection-Factor, the Mode-Selector process decides about the mode to be 

switched depending on the value of VC-N. In each selected mode, all the redundant VCs are 

closed. For example in the 2VC mode, VC2 and VC3 virtual channels will be closed. The 

deterministic Mode-Selector module can be designed by employing a much simpler logic. The 

modes of each channel can be assigned at the setup time by the user. This design requires each 

channel to have k registers to hold the modes signals (adapt), where k is the log2 of 

the number of modes. A single-bit register is used for holding the VC-close signal, and one NOR 

gate is needed for the acknowledgement signal of each VC. We consider this as a simple scheme 

that clearly shows and evaluates the efficiency of our approach. 

3.5 CVC and SMF Router Micro-Architecture 

 The micro-architectures of routers for CVC [50] and our proposed SMF mechanisms are 

presented in Figures 3.14 and 3.15 respectively. We assume same number of VCs and channel 

buffer capacity for both the architectures. The first advantage of SMF is the hardware saving in 

terms of multiplexer (MUX) and de-multiplexer (de-MUX) blocks. The size of input and output-  
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ports of CVC MUX and de-MUX is the same as the flit size. However, the size of input and 

output ports of SMF multiplexers is equal to log2(d), where d is the of VC depth.  Figure 3.16 

shows the schematic of a 5-to-1 MUX module. Assuming two transistors for an inverter gate, 

one needs (10+6) transistors to create the MUX module despite the fact that only 10 transistors 

participate in data communication. Consequently, the number of transistors to create a 5fs-to-fs 

multiplexer will be (10×fs)+6, where fs is the flit size. 

 

 

 

 

 

 
Figure 3.16: 5-to-1 Multiplexer Schematic. 
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 Assuming the same formulation for a de-MUX, the percentage of saving transistors in SMF 

MUXs as compared to CVC can be determined by the following equation. 

R = {1- ([10× 6 - log2(d)]/[10×fs+6])}×100                   (1) 

For a flit size of 32-bits and a VC depth (d) of 4 slots, the transistor saving R  in SMF MUXs 

as determined by Eq. (1) will be almost 92%. In order to determine the power based advantage 

of SMF router model with the CVC models, we can use a comparative method as follows. One 

of the implementations of the crossbar module is based on MUXs. 

Figure 3.17 illustrates the schematic of a MUX-based crossbar switch. There is a 5fs-to-fs 

MUX for each output-port in the crossbar. If we assume five VCs per channel in a CVC router, 

the size of MUX or de-MUX of each input channel will be 5fs-to-fs. Assuming the same 

hardware elements for MUXs in the input channels and the crossbar, the total hardware elements 

of MUXs and de-MUXs of input channels are two times of those in the crossbar switch. 

Furthermore, power consumption breakdown of a router in NoC based 80-tile Teraflops 

processor is shown in Figure 3.18, where a crossbar consumes 15% of the total power of 

Teraflops processor router [51]. We can assume the same power breakdown for our CVC router. 

Therefore, the MUXs and de-MUXs of a CVC router consume two times i.e. 30% of the total 

power of router. It can be determined that an SMF router consume 27.6% (92% × 30%) less 

power as compared to a CVC router in terms of MUXs used in the router by employing all the 

above assumptions.  
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3.5.1 Adaptivity Hardware in SAMF Architecture 

The detailed architectures of SMF and SAMF models are illustrated in Figure 3.19. However, 

the SAMF architecture is a trimmed version of the architecture presented earlier in Figure 3.11, 

where the mode selection is of deterministic type as shown in Figure 3.13. Both architectures are 

configured for a maximum of four VCs, where the depth of each VC is of four slots. 

Each input of SMF MUX can be 2-bits because x, y and p, q signals can be directly connected 

to the read and write addresses of the SRAM respectively. Some extra hardware is needed in the 

SMF architecture to provide adaptivity feature as follows. VC0 takes part in all the four modes, 

which requires the pointers of four bits size. To involve VC1 in the 2VC mode, its place is 

exchanged with the VC2.  The VC1 takes part in 4VC, 3VC and 2VC modes and it has the same 

size in 3VC and 2VC modes, and therefore the size of its pointers is three bits. Virtual channels, 

VC2 and VC3 take part only in the 4VC mode, and therefore the size of their pointers is of 2-

bits. The sizes of VC-Sel and VC-ID multiplexers of SAMF are increased to four bits to support 

SRAM address for 1VC mode. Signals, c0, d0 and c2, d2 can be directly connected to the inputs 

of next multiplexers, and therefore two 2-bit wide 4-to-1 multiplexers and two 2-bit wide 2-to-1 

multiplexers are required to switch the Read and Write Pointers to implement all the four 

adaptivity modes. 
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3.5.2 Synthesis of SAMF Router 

To analyze the area and power overhead, the NoC routers for VC-free (VC free), CVC [49, 

50], SMF and SAMF architectures are implemented in structural Register Transfer Level (RTL) 

Verilog and then synthesized using the Synopsys Design Compiler for 32nm Generic Library and 

Altera FPGA (Cyclone IV). The resulting designs operate at a power supply of 0.85V and a clock 
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frequency of 100 MHz. Each router has five input-ports with 4 VCs per input-port, where each 

VC is of two-flit deep, and flit size is 128 bits. The crossbar has identical architecture for the four 

(VC-free, CVC, SMF and SAMF) routers, and also the same arbiter architecture (Arbiter 4-VC) 

performs arbitration for the three (CVC, SMF and SAMF) routers. The comparison of area and 

power overhead of four routers is shown in Table 3.2. It should be noted that all the four routers 

have equal buffer space of 8 slots per input-port. An important characteristic of high scaled 

CMOS technology like 32 nm is that the static (leakage) power supersedes the dynamic power. 

For example, the average dynamic power of ports includes almost 4% of their total powers as 

shown in Table 3.2. This characteristic indicate that the power is more or less proportional to the 

hardware overhead of a design than its functionality. In other words, the more cells consume 

more static power and the synthesis results given in Table 3.2 also confirm it. As mentioned in 

the previous section, the CVC input-port incurs an overhead due to bigger MUX and de-MUX 

blocks. This overhead leads to a bigger CVC input-port than our proposed SMF or SAMF input-

ports in terms of area and power consumption. 

Table 3.2. Synthesis Results for 32nm Technology and FPGA 

 
Component 

ASIC Design  
(32 nm Generic Library) saed32rvt_ff0p85v125c 

FPGA Design (Cyclone IV) 
EP4CE115F29I8L 

Total  Area (µm
2
) Total Power (µW) Combin. logic elements Registers (bits) 

Ports VC-free 78590 1570 (65
*
) 3295 5795 

Ports CVC 88840 1820 (80
*
) 6550 5820 

Ports SMF 80440 1595 (55
*
) 3485 5840 

Ports SAMF 82870 1715 (105
*
) 3780 5910 

Arbiter VC-free 2023 111 (43
*
) 330 60 

Arbiter 4-VC 14274 644 (202
*
) 2682 280 

Cross-bar 6499 121 (6
*
) 256 0 

Router VC-free 87112 1802 (114
*
) 3881 5855 

Router CVC 109613 2585 (288
*
) 9488 6100 

Router SMF 101213 2360 (263
*
) 6423 6120 

Router SAMF 103643 2480 (313
*
) 6718 6190 

CVC/VC-free 20% extra 30% extra 59% extra 4% extra 

SAMF/VC-free 16% extra 27% extra 42% extra 5% extra 

SMF/CVC 8% saving 9% saving 38% saving 0.3% extra 

SAMF/CVC 5% saving 4% saving 34% saving 1.5% extra 

SAMF/SMF 2% extra 4.8% extra 5% extra 1% extra 

* Dynamic Power 

As illustrated in Table 3.2, the SAMF model provides area and power savings of around 5% 

and 4% as compared to those of CVC model respectively. We assumed that a router consists of 

an arbiter, a crossbar switch and 5 input-ports with equal-size input-port buffers for all the router 
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designs including VC-free, CVC, SMF and SAMF. The synthesis results for Altera FPGA also 

confirm this trend and show the advantage of SAMF model as compared to CVC model in terms 

of combinational logic cells. The overhead related to the MUX and de-MUX blocks of CVC 

leads to smaller number of combinational logic cells for SAMF. In this way, an SAMF router 

saves 34% combinational cells at the expense of using 1.5% extra registers when compared to a 

CVC router. We have further experimented and evaluated the efficiency of our SAMF 

architecture and the results are presented in the next section. 

In order to illustrate the approximate size of CVC [1, 49] and our SAMF, the area and power 

parameters for a basic VC-free NoC router is also synthesized and evaluated. Our SAMF based 

router consumes 16% additional area and 27% additional power as compared to a VC-free router. 

However, this extra hardware area and power is less than the area and power consumption for a 

CVC router model proposed by Dally and Towels [1, 49]. From the router architecture point of 

view, arbiter of a VC-free router is much simpler and consumes less power when compared with 

an SAMF or CVC arbiter. The main reason for SAMF or CVC routers having a larger area and 

power than a VC-free router is due to the complexity of their arbiter as confirmed by our 

synthesis data presented in Table 3.2. However, to achieve higher or comparable performance for 

a VC-free NoC, injection control and intelligent NoC level measures are needed that will also 

incur additional cost we could not include in the synthesis of a VC-free NoC router. The extra 

hardware associated with our SAMF VC mechanism provides a significant performance gain as 

compared to CVC and VC-free mechanisms. As indicated earlier, our SAMF router consumes 

less area and power as compared to CVC. Moreover, when compared to VC-free router, SAMF 

extra area and power is 16% and 27% respectively as compared to 20% and 30% extra area and 

power consumed by a CVC router.   

3.6 Experimental Results 

3.6.1 Adaptivity of SAMF Mechanism 

 We have evaluated the adaptivity level of our SAMF architectural model as compared to that 

of CVC and Dynamically Allocated Multi Queues (DAMQ) [14] based models. As discussed 

earlier in Section 3.3, the CVC mechanism is similar to our SMF approach in terms of its 

functionality. Therefore the performance evaluation presented here is also acceptable for the 

SMF mechanism. We demonstrate the efficiency of SAMF mechanism by two experiments. In 
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the first experiment, we evaluate the SAMF and CVC models for two NoC applications. We 

mapped MPEG4 Decoder and AV Benchmark [52] to 3×4 and 4×4 mesh homogeneous NoCs. 

Then we investigated the effect of adaptivity modes in terms of chip area, power and 

performance of NoCs.  

 In the second experiment, three models: CVC [1, 49], SAMF and DAMQ [14] are evaluated. 

A 4×4 mesh NoC with fixed traffic and high contention is configured for better evaluation of the 

SAMF model. The DAMQ model is based on the Link-List design presented by Evripidou et al. 

[14]. We have already described our implementing architecture of Link-List DAMQ (LLD) 

design in Section 2.4. First of all, we explain the timing drawback existed during flit arrival and 

departure of LLD mechanisms. As mentioned before, the LLD design is a table-based 

mechanism where a central table that contains registers directs the data flow mechanism. The 

registers are updated at one edge of the clock cycle. This property of registers causes the table-

based mechanism such as LLD [14] or ViChaR [13] to take one clock cycle longer than a static 

mechanism such as SAMF or CVC that do not employ tables. 

To clarify this claim, we provide a brief example of the flit arriving/departing process in the 

two mentioned mechanisms. In the table-based DAMQ mechanism, the arriving/departing of a 

flit can be described as follows. (1) The flit arrives the router (e.g. at the +ve edge). (2) The 

credit of flit leads the flit to be stored in the input-port buffer and the flit information to be 

recorded in the input-port table (e.g. at the -ve edge). (3) After arbitration the flit cannot go out 

at the following clock edge because its information should be recorded in the table, so it can go 

out one clock cycle after it is recorded (e.g. at the -ve edge). (4) If we assume all the routers 

have the same timing process, the credit of the flit should reach at the same edge in the 

downstream router i.e. at the following two clock edges (e.g. at the -ve edge). For the above 

example, the arriving/departing of a flit takes two cycles (4 clock events). In our proposed 

mechanism, the arriving/departing of a flit take one cycle as follows. (1) A flit arrives at the 

SAMF router (e.g. at the +ve edge). (2) The credit of the flit leads the flit to be stored in the 

input buffer (e.g. at the -ve edge). (3) After arbitration the flit can exit the router at the following 

clock edge (e.g. at the +ve edge). (4) The credit of the flit goes out at the following clock edge 

(e.g. at the -ve edge). We consider the above timing process in our simulation results in this way 

that the arriving/departing of a flit in the DAMQ (Link-List based) takes 2 clock cycles and one 

clock cycle in the SAMF model. It should be considered that the deterministic switching mode 



71 

 

in SAMF mechanism takes a small time interval of the communication (e.g. a maximum of 16 

clock cycles to evacuate a 16-slot input-port buffer). Therefore, this tiny time is over-

compensated by a larger performance improvement of our SAMF approach. FAANOS is our in-

house SystemC based NoC simulator [53], which is used to measure the two important metrics 

of NoCs such as throughput and latency.  For hardware chip area and power, we used Synopsys 

Design Compiler with 32nm Generic Library with the same technology configurations 

employed earlier in Section 3.5.2. The resulting NoC hardware operates at 100MHz and 0.85V 

power supply. 

3.6.2 Experiment Setup 

 We setup our FAANOS simulator for an SAMF NoC and then apply the adaptivity modes of 

the SAMF architecture. The topology used for NoC is mesh and the communication of packets 

follows a deterministic XY routing algorithm. Due to the deterministic routing, the SAMF 

mechanism can utilize a deterministic Mode-Selector (see Figure 3.13) that applies the new VC 

configuration after 16 packets received by each input-port. The packet communication is in the 

form of parallel wormhole switching where the flit size is equal to the channel width. Each flit is 

of 128-bits and a packet can have ten flits. Assume that the time delays of channel links are 

negligible as compared to the time delay of a router. As mentioned earlier, we evaluate the 

adaptivity modes in two parts. In the first part of experiment, two application specific NoCs 

illustrated in Figures 3.20 and 3.21 are evaluated.  

 

 

 

 

 

 

 

 

 Figure 3.20: MPEG4 mapping core graph to a Mesh Topology and its XY routing. 
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It is assumed that the size of buffers is constant in every physical channel. In the adaptivity 

mode, the channel buffers are divided to multiple VCs statically. The number of VCs per 

channel is determined according to the number of packets that can simultaneously pass through 

the physical channel. For example, if only two different packets pass through a physical channel 

at the same time, the channel is divided into two VCs. We also evaluate the SAMF model as 

compared to a VC-free model with the same input-port buffer size. In the second part of the 

experiment, we employ a 4×4 mesh NoC topology given in Figure 3.22. All the source cores 

send packets randomly and uniformly to one destination core at a time. The source cores are 

clocked at 40ns, and the destination and router modules are clocked at 10ns. As we argued 

earlier in section 4, the SAMF model improves the buffer utilization by increasing the buffer 

depths of VCs. An increase in the VC depth reduces contention and, eventually increases 

performance. We deliberately increase the contention in the NoCs to investigate the adaptivity 

of our SAMF model properly. For this reason, one destination is chosen for all the source cores 

to create high traffic around the destination core that creates more contention. Figure 3.22 shows 

this condition for destination core #10. In XY routing if all the source cores send packets to 

destination #10 simultaneously, the north side input channel of destination will have eight flits 

request. 

 

 

Figure 3.21: AV Benchmark mapping core graph to a Mesh Topology and its XY routing. 
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3.6.3 Experimental Results and Analysis 

The routing graphs show mapping of two applications (MPEG4 Decoder and AV 

Benchmark) of a Mesh NoC as shown in Figures 3.20 and 3.21. The XY routing (arrow lines) 

specifies the number of VCs needed for each channel. For example, three arrows toward the 

north input channel of router #5 (Figure 3.20) means three packets will pass through the channel. 

Three packets require three VCs to service the three packets without any contention. In the CVC 

model, all the channels have the same number of VCs. Some channels may have some idle VCs 

and their buffers can be used by the other busy VCs in our SAMF model. For example, when a 

channel requires only one VC, all the buffer space reserved for the channel is used by that one 

VC.  

The efficiency of SAMF model can be better evaluated under two configurations of NoC. 

First of all, the NoC should be configured in such a way that high contention traffic occurs in the 

communication. Under high contention, the bigger VC buffer size leads to more data to store in 

the channel buffer. Subsequently, congestion will diminish and contention will be reduced in the 

NoC. Secondly, the NoC configuration should be in such a way that with the increase in VC 

buffer size, the performance will improve. Our simulator creates two configurations as follows. 

For the first condition, we create a configuration for the NoCs to deal with contention. In the 

case of MPEG4 decoder, 2-3 VCs can create contention in NoC, and in the AV application, only 

two VCs can create contention. These conditions have helped us to investigate the SAMF model 
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Figure 3.22: Fixed Communication for a 4×4 Mesh NoC 
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for the MPEG4 and AV benchmark NoCs as follows. The simulation results given in Figure 

3.23 shows that the average throughputs for MPEG4 and AV application NoCs are increased by 

5% and 2% respectively for SAMF as compared to those of CVC. 

 

 

 

 

 

 

 

Synopsys Design Compiler generated router hardware and power parameters are presented in 

Figure 3.24. These results are based on 32nm Generic Library for 0.85V power supply and an 

operating frequency of 100MHz. These results demonstrate that the average router power 

consumptions in MPEG4 and AV NoCs are decreased 4% for SAMF as compared to those of 

CVC. 

The average router areas for MPEG4 and AV NoCs are decreased 6% in the SAMF as 

compared to a CVC as demonstrated in Figure 3.25. Figures 3.23 to 3.25 also show that the 

SAMF model improves the average throughput by 27% as compared to VC-free model in 

exchange to the extra cost of 11% in area and 18% in power consumption in MPEG4 application  

 

 

 

 

 

 

 

 
Figure 3.23: Throughput for Different NoC Applications 
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Figure 3.24: Power of a Router for Different NoC 
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and with the same size of input-port buffer of 6. The performance results indicate a little 

improvement for SAMF model for applications such as MPEG4 decoder and AV benchmark. 

In the second experiment, the CVC, SAMF and DAMQ models are evaluated. The size of the 

input-port buffers in CVC and SAMF varies at each VC number. In other words, each input-port 

buffer in the S-slot SAMF or CVC configurations has the size of VC number multiply by S. For 

example, for 8 VCs and 2-slot SAMF configuration, the size of the input-port buffer is 16.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.25: Area of a Router for Different NoC 

applications 
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Figure 3.26: Throughput for High-Contention NoC Traffic 
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However, the size of DAMQ input-port buffer is constant and equal to 16 slots (the slot size 

is equal to the flit size) in all the recorded results. A high efficiency of the adaptivity of our 

SAMF model can be noticed under high contention traffic in the NoCs as shown in Figure 3.22. 

All the source cores send packets to one destination (sink) core (#10 in this setup). The 

simulation results for NoC throughput are shown in Figure 3.26. These results confirm that the 

throughput increases when the number and depth of VCs are increased. This is a much improved 

situation for the SAMF model. The average throughputs of SAMF are 19% higher than those of 

the CVC. This improvement can also be seen in the latency graphs shown in Figure 3.27. The 

average latencies of CVC models are 23% higher than those of the SAMF model. 

The hardware requirement results from the synthesis also show the advantage of SAMF 

model as illustrated in Figures 3.28 and 3.29. As mentioned before, this hardware advantage is 

due to saving in smaller multiplexers of SAMF input-ports.  The average power consumptions 

of SAMF router is 4% lower than that of a CVC router, where the average area occupied by an 

SAMF router is 5% smaller than that of a CVC router. As mentioned earlier, for 32nm 

technology the static power dominates the dynamic power and one should expect the same trend 

shown in Figures 3.28 and 3.29. As illustrated in Figures 3.26 and 3.27, with four VCs, the 

performance of CVC models is almost constant and any increase in the number of VCs does not 

affect the throughput and latency of NoC. It is due to the Mesh topology of NoC where each 

router has five input-ports and for each output-port (in XY routing) four packet requests can 

 
 

Figure 3.27: Average Latency for High-Contention NoC Traffic 
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occur simultaneously. Therefore, in the case of CVC, four VCs of a channel usually take part in 

the communication. Increasing the number of VCs (from four) will not improve performance. 

However, in the SAMF model, the buffers of these useless VCs are used for the other VCs and 

will improve the performance of NoCs. An interesting feature of the SAMF model is to extract 

higher performance when the number of VCs is less than the CVC model. For example, all the 

configurations of 3-slot SAMF NoCs are more efficient (higher throughput and lower latency)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than all the configurations of CVC based NoCs. This feature becomes more interesting when the 

power and chip area are also considered.  

Another model simulated in the second experiment is the LLD model. As we already 

discussed, the LLD model has two major drawbacks. The first drawback is the longer flits 

arrival/departure (one extra cycle) as compared to that of SAMF or CVC models. The second 

 
 

Figure 3.28: Router Power for High-Contention NoC Traffic 
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Figure 3.29: Router Area for High-Contention NoC Traffic 
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drawback of LLD mechanism is the monopoly of input-port buffer by a VC especially in high 

contention traffic. This condition may cause a deadlock in communication [15]. Therefore, we 

expect lower performance of LLD as compared to that of SAMF as one can confirm from the 

results presented in Figures 3.26 and 3.27. The LLD model latency and throughput are 23% 

higher and 17% lower than those of 16-slots SAMF respectively. This should be considered that 

the input-port buffer size (2-slot, 8-VC) and (4-slot, 4-VC) for SAMF configuration is equal to 

16. For the sake of fair comparison, the hardware requirement results for all the three models 

have the same port buffer size (i.e. 16-slot) in their routers. A LLD router is 5% larger than an 

SAMF router due to extra registers of the link-list table used to implement and to manage a LLD 

mechanism. The power consumption of LLD is mere 2% higher than that of SAMF model. The 

power overhead is due to the higher static power associated with a bigger LLD router as 

compared to SAMF model router. 

3.7 Novelty of Approach 

The approach (SAMF) presented in this chapter is a static adaptive VC organization that 

improves the buffer utilization and eventually the performance of NoC. It has following 

novelties. 

 The SAMF data flow mechanism is as simple as that of a static VC organization, so it 

can benefit of fastest arrival and departure of data.  

 The SAMF organization can easily switch to different static VC configurations 

according to the data flow traffic to provide the optimum buffer utilization 

and, subsequently higher performance.   

 The extra hardware utilized for the adaptivity of mechanism is miniature as compared to 

the hardware of organization. 

3.8 Summary 

The virtual channel (VC) flow control mechanism is critical to the performance and energy 

problem of NoC. This mechanism suffers from some drawbacks such as contention, lack of high 

buffer utilization, HoL blocking and higher cost. First of all, we introduced a low cost VC 

mechanism (SMF) that has same functionality performance as a conventional static VC 

mechanism (CVC). An SMF router consumes 8% less area and 9% less power as compared to a 

conventional router that is confirmed by our synthesis results. We took the advantage of SMF 
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architecture and introduced an adaptive model of VC (SAMF) to improve buffer utilization of an 

NoC channel. In a 4×4 mesh SAMF NoC with contention oriented traffic, 19% throughput and 

23% latency improvements are gained with a 5% decrease in the area and 4% decrease in the 

power as compared to CVC. Another interesting feature of the SAMF model is to achieve higher 

performance for a lower hardware overhead as compared to the LLD (Link-List based DAMQ) 

model.  
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Chapter  4 

Efficient Dynamic Virtual Channel Organization  

In this Chapter, we present a state of the art micro-architecture of input-ports for dynamic VC 

organization. As mentioned in Chapter 1, most of the DAMQ organizations are table based, and 

they suffer from higher hardware overhead. Our DAMQ approach presented in this chapter does 

not use table, and it utilizes a circuit based mechanism for VC-based buffer organization. The 

description of our contribution is organized as follows. An overview of our approach is 

presented in Section 4.1. The micro-architecture called Efficient Dynamic Virtual Channel 

(EDVC) is discussed in detail in Section 4.2. The buffer access in our approach is improved by 

proposing two fast read and write pointers in Section 4.3. The novelty of the approach is 

described in Section 4.4. We compare the hardware requirement and the performance of EDVC 

with those of two DAMQ based VC organizations in Section 4.5. Finally, the concluding 

remarks are made in Section 4.6.   
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4.1 Overview 

 The simplicity of our EDVC mechanism is shown in the block diagram illustrated in Figure 

4.1. A small table, Slot-State (Boolean value) is required to manage the EDVC mechanism. The 

depth of the Slot-State table is equal to the depth of input-port buffer.  

 

 

 

 

 

 

 

 

The EDVC mechanism utilizes the common features of DAMQ input-port to create a 

dynamic flow control. For example, The VC identification (VC-ID) is saved with the flit-data in 

the input-port buffer to assist in our efficient VC mechanism for issuing the request signals to 

the arbiter. VC-full and VC-block signals assist the VC organization to maintain the order of flits 

associated with each VC.  

4.1.1 Simpler Communication in EDVC 

 In this section, we explain the EDVC mechanism when there is no contention in the NoC 

communication. In such a communication, the EDVC buffer works like a static VC (a parallel 

FIFO). Assume there is no blockage, each incoming flit and its VC-ID is stored in the buffer 

location pointed by the write-pointer. The flit pointed by the read-pointer is read and based on 

its VC-ID arbitrated and sent out of the buffer. Therefore, we expect that the flit arrival/departure 

time in EDVC is the same as that of a static VC organization and consumes three steps as shown 

in Figure 4.2. We employ asynchronous communication in our EDVC organization for NoCs. 

Following functions describe the working of EDVC in detail. 

 Flit Arrival (Clk-edge #2): A Credit-in signal causes the incoming flit and its VC-ID to 

be saved in a slot pointed by the write-pointer. Meanwhile, the corresponding bit of the 

Slot-State table is set. 

Figure 4.1: EDVC Input-Port Block Diagram 
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 Request Signal (Clk-edge #2): When the read-pointer points to a slot and its Slot-State 

bit is set (the slot containing data), a Request signal is issued according to the VC-ID. 

The arbiter will read the flit information and perform arbitration. 

 Grant Signal (Clk-edge #3): If the requested output-port is open, the arbiter allocates 

the proper address for the crossbar switch and VC-ID before issuing a Grant signal to 

the input-port. 

 Flit Departure (Clk-edge #3): The Grant signal causes the flit to leave the buffer. 

Meanwhile, the corresponding bit of the Slot-State table is reset. 

 Credit Signal (Clk-edge #4): The high level of Grant at the negative clock edge causes 

the Credit-out and the Grant signals to be set and reset respectively. 

 

 

 

 

 

 

 

 

 

In Figure 4.3, the above EDVC working process is compared with the LLD working process 

illustrated in Figure 2.13, as one can notice the LLD takes additional one clock cycle. If the 

requested output-port of a VC is closed (i.e. blocked), the arbiter issues the VC-block 
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signal to close the corresponding VC. Closing a VC means that a request is not issued and no flit 

enters the buffer for the VC. We further discuss the blocking condition later in this chapter. 

4.2 EDVC Router Micro-Architecture 

 The structure of an NoC router with our EDVC input-port is shown in Figure 4.4. Our 

proposed EDVC router for a mesh NoC consists of five input-port modules, an arbiter and a 

crossbar switch as illustrated in Figure 4.4a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 4.4:  5×5 EDVC Router and Input-Port Micro-Architecture. 
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In fact, it is similar to the LLD router architecture we presented earlier in Figure 2.11. However, 

the architecture of EDVC input-port shown in Figure 4.4b is much simpler in terms of less and 

efficient hardware and buffering hardware. The EDVC input-port micro-architecture includes an 

SRAM, a Slot-State table, two counters, and some other logic circuits and ports that are shown 

in Figure 4.4b. The SRAM module served as the input-port central buffer. The slot size of the 

SRAM is equal to the flit size plus VC-ID size (see Figure 4.1). The flit-data pointed by the 

read-pointer appears at the SRAM output. When the Credit-in signal is activated, the flit-data is 

stored in the SRAM slot pointed by the write-pointer. Various modules of the EDVC input-port 

are described in detail in the following sub-sections. 

4.2.1 Slot-State Table 

 The process of the Slot-State table organization is the same as that of the LLD input-port 

illustrated earlier in the flowchart of Figure 2.14a. However, in the case of EDVC, the content of 

the Slot-State table is used to control the write-pointer and to issue the virtual channel request, 

VC-req signals to the arbiter.  

4.2.2 Blocking Circuit 

 When the requested output-port of a VC is closed, the arbiter issues the VC-block signal for 

that VC. The VC-block signal sets both D-latches as can be seen in the upper part of Figure 4.4b. 

One D-latch prevents the blocked VC to be requested while the other is involved to generate 

VC-full signal to block the incoming flit for the full/blocked VC. These two conditions keep the 

blocked packet in the buffer and maintain its order until the blocking is removed. Consider the 

example of a channel buffer in Figure 4.5 showing a packet, P1 that was blocked and now its 

output-port is open. To read P1 flits in order, its request should first be enabled. After all the flits 

of P1 are read the VC can now accept new flits. We will discuss the removal of VC blocking in 

the following section. 

 

 

 

 

 

 

Figure 4.5: Packet P1 is blocked. 

       P1   P1  P1    

    15    14   13    12    11   10      9       8     7      6      5        4        3        2       1     0 

Read-Pointer 
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4.2.3 Enabling Blocked Request and VC-full 

 Consider the channel buffer example of Figure 4.5 again. The read-pointer increments from 

right to left in the buffer and the ordering of P1 flits is also from right to the left direction. 

Therefore, to remove the blockage of P1, its flit at buffer location 3 should first be read. To 

implement this mechanism, the blockage should be removed by starting the read-pointer from 

location 0. The circuits in the top-right corner of Figure 4.4b implement this mechanism such 

that a VC-block request is freed when read-pointer becomes zero. 

 The write-pointer can be anywhere when the blockage of packet P1 is removed. However, the 

writing of any new flit of P1 cannot be placed in-between the P1 flits residing in the buffer (e.g. 

locations 4, 6 and 7). To prevent such condition from occurring, the entire buffer should be read 

once to send out all the freed flits that were blocked. A typical logic circuit shown in the top-left 

corner of Figure 4.4b implements the mechanism. When the read-pointer reaches at the end of 

the buffer and the related request is free, the blocked VC-full is freed (reset). 

4.2.4 Operation of Read and Write Pointers 

 The read-pointer works like a counter that counts the clock cycles as shown in Figure 4.6a. 

The write-pointer also works as a counter but it is controlled by the Slot-State table. It also 

counts the clock cycle when the slot of the input-port buffer is full as shown in Figure 4.6b. 

When the write-pointer points to an empty slot, it stops counting. When the data is stored in the 

slot, its corresponding bit is set and causes the write-pointer to increment at the next clock. If the 

following slot is already full, the input-port does not issue a Credit signal to upstream routers.  

 

 

 

 

 

 

 

 

 

 Figure 4.6: 4-bit Simple Read and Write Pointers 
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This will cause the upstream router to stop sending flits to the buffer. Moreover, when the slot is 

occupied, the write-pointer is incremented until it reaches an empty slot. When it reaches an 

empty slot, the write-pointer stops, and a Credit signal is simultaneously issued to the upstream 

router to resume sending flits. The VC-full signals implement the role of Credit signals. In other 

words, when the slot pointed by write-pointer is occupied, all the VC-full signals become set. 

4.2.5 EDVC Closing and Requesting Approach 

 Table 4.1 lists the conditions associated with the closing and requesting operations of a VC 

(blocking circuit). The closing and requesting operations are actuated by the VC-full and VC-req 

signals respectively. There are three conditions according to the state of VC-block. The VC-block 

is issued to input-port by the arbiter to inform about the state of associated VC in terms of 

arbitration service. In fact, if the VC cannot succeed to win a free VC of the downstream input-

port router, it becomes set. For condition 1, the VC-block is reset, so that the closing (VC-full) 

and the requesting (VC-req) operate in normal condition (see table). For condition 2, the VC-

block become set, so that the mechanism stops receiving flits and requesting to the arbiter for the 

VC. In this condition, the order of VC flits inside the port buffer is kept until the blockage is 

removed. In condition 3, the VC-block switches from one to zero i.e. the VC can succeed in the 

arbiter. In case that the read-pointer ≠0, the VC issues no request to the arbiter and receives no 

incoming flit.  The read-pointer continues incrementing becomes zero. At this point, the VC can 

only issues request to the arbiter leading its flits to exit the router without new flits enter the VC. 

The read-pointer continues incrementing until reaches to the end of port buffer. At this point, 

the closing and requesting operations of the VC return to the normal condition.    

Table 4.1. Closing and Requesting Operations of EDVC Mechanism Associated with a VC 

condition VC-block Stop-Req VC-req VC-full 

1 0 0 X: Normal 
1: read-pointer points to a flit of the VC. 

0: read-pointer points to no flit of the VC. 

X: Normal 
0: write-pointer points to empty slot. 

1: write-pointer points to occupied slot. 

2 0 to 1 1 0: No request 1: No incoming flit 

3 1 to 0 1: read-pointer ≠ 0 0: No request 1: No incoming flit 

0: read-pointer = 0 X: Normal 1: No incoming flit 

0:read-pointer = 15 X: Normal X: Normal 
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Figure 4.9: 4-bit EDVC Fast Write-Pointer 
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4.3 Improving Input-Port Buffer Access 

 The input-port mechanism presented earlier is very slow especially when the NoC is crowded 

with packets. This problem stems from the structures of the read-pointer and write-pointer that 

are implemented as simple counters. For example, the situation illustrated in Figure 4.7, shows 

the read-pointer in front of the write-pointer such that the packet P1 is read after 13 cycles after 

it was written. The same scenario occurs for the write-pointer. Figure 4.8 shows a situation 

where the write at location 15 occurs 14 cycles after a write at location 1. In fact, there is no 

write in the buffer during 14 cycles. These latencies amongst the buffer write and read events 

lead to performance deterioration. We present a faster buffer organization for fast read and 

write. 

 

 

 

 

 

 

4.3.1 Fast Buffer Write 

 Ideally, after a write takes place, the write-pointer should point to the next empty slot 

anywhere in the buffer at the next clock edge. Considering the situation shown in Figure 4.8, it 

only happens when the write-pointer points to location 15 at the next clock cycle after writing at 

location 1. Figure 4.9 illustrates our proposed circuit for a 4-bit write-pointer that facilitates a 

much faster buffer write. 

 

 

 

 

Figure 4.7: Fast Read and Write pointer 

    P4    P2   P1   P3  

    15     14     13    12     11      10      9       8      7       6        5      4       3       2         1      0 

Write-Pointer 
 

Read-Pointer 
 

Figure 4.8: Write at location 15 occurs 14 cycles after a write at location 1. 

 P3 P1 P0 P0 P1 P1 P1 P1 P1 P2 P1 P3 P1   

    15    14      13    12    11       10      9       8         7      6        5        4        3        2     1     0 

Write-Pointer 
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Figure 4.10: 4-bit EDVC Fast Read-Pointer 
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The write-pointer, WR points to the first empty slot of the channel buffer and remains there 

until a write occurs. After a buffer write, the corresponding Slot-State is set to 1. The write-

pointer then points to the next empty buffer slot at the next clock edge. 

4.3.2 Fast Buffer Read 

The ideal condition that enables a faster buffer read to take place is when the read-pointer 

points to the next occupied location of the channel buffer in one clock cycle. For example, in 

Figure 4.7, the read-pointer is currently pointing location 7 and it should point to location 11 as 

this is the next location that is occupied. When some locations of the channel buffer are 

occupied, the read-pointer should only points to those locations one by one per clock cycle. We 

propose a 4-bit fast buffer read circuit to generate a read-pointer (RD) as illustrated in Figure 

4.10.  

 

 

 

 

 

 

 

 

 

The RD only counts and produces the address of occupied locations of the channel buffer. 

For example in Figure 4.7, the read-pointer (RD) will count and produce addresses of 11, 1, 4 

and 7 for consecutive clock cycles. The output of the read-pointer circuit (RD) points to the 

initial location of Slot-State table that is set and remains there for one clock cycle. During the 

same clock cycle, the state of current flit location is determined whether it is blocked or not. 

Regardless of the flit condition, the read-pointer advances to the next occupied location at the 

next clock. Similarly, it will continue to access flit-occupied locations per clock cycle. 

Considering the buffer locations 1, 4, 7 and 11 are occupied as shown in Figure 4.7, starting 

from location 7 the read-pointer accesses the other three locations in the following three clock 

cycle one by one. It does not matter whether one or more of the flits at location 1, 4, 7 and 11 are 

blocked. The analysis shows that the read-pointer does select occupied slots with the same 
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priority. In fact, there is no priority and any flit in the buffer will be pointed by the read-pointer 

for one clock cycle one by one. It doesn’t matter whether the occupied slot flit is blocked or not, 

the read-pointer stays at each occupied slot for one clock cycle.   

4.4 Novelty of EDVC Mechanism 

 The virtual channel mechanism for wormhole routing is a common approach used in many 

NoC designs [24, 25, 50]. When the header flit of a packet enters a VC buffer, the packet 

reserves that specific VC. The reservation of a VC is maintained until the tail flit enters. At this 

point, the VC can accept a new packet if it has free space. In this way, a VC can contain two 

parts of two packets at a time. Assume that a VC has two parts of two packets simultaneously. 

The first packet can block the second packet in spite of the fact that the route of the second 

packet is open. It is commonly known as HoL (Head of Line) blocking. HoL blocking leads to a 

number of problems in NoC systems such as congestion, deadlock, and monopoly of one VC 

over the whole input-port buffer space. 

 As mentioned in Section 4.2.2, a common feature of VC-based mechanisms such as LLD is 

the closing of a VC when a packet head flit associated with the VC faces a blockage. When the 

head flit of a VC faces with a blockage, the arbiter sends a VC-block signal to the input-port to 

prevent the VC to generate request signal (see Figure 3.13). In EDVC mechanism, the VC-block 

signal also closes the blocked VC (by activating its VC-full signal). This blocking process 

travels back through the routers that are related to the blocked VC and leads the associated VCs 

to be closed too. In short and in terms of functionality when compared with LLD, the LLD 

mechanism blocks a VC when it is full, and in the case of our EDVC a VC is blocked when it is 

full or if it is blocked in the downstream router indicated by the corresponding VC-full signal 

from the relevant VC. This behavior of EDVC mechanism leads to some features such as high 

alleviation of HoL problem, lower buffer space for blocked VCs, and preventing of deadlock 

without dedicating in default any buffer space for each VC. We further discuss these features in 

the following sections. 

4.4.1 VCs for Blocked and Unblocked Packets 

 The probability of obtaining a free VC for the unblocked packets in EDVC is much higher 

when compared with LLD. For better understanding, we compared two situations. Figure 4.11a 

represents a situation for LLD, where packets P4 and P5 remain blocked until the packet P0 
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becomes unblocked. Figure 4.11b represents the EDVC situation where the blocked packet P0 

causes the VC0 stops receiving flits, so the packets P4 and P5 can occupy the buffer when one 

of the VC1, VC2 or VC3 becomes free. 

 

  

 

 

 

 

 

 

 

  

In our EDVC approach, when a packet faces a blockage, its VC will utilize a minimum space 

of the input-port buffer. Consider a situation of a blocked packet in the VC. In the case of 

traditional LLD, the upstream router continues to send new packets to the VC that will allocate 

more buffer space to accommodate these packets leading to the allocation of a large but useless 

buffer space as illustrated in Figure 4.12a. However, the new packets in our EDVC approach 

remain in the upstream router until a downstream VC becomes empty. In fact, more free space 

for other unblocked VCs is provided as shown in Figure 4.12b. Consequently, the performance 

and buffer utilization of EDVC is much higher when compared with the LLD methodology. 

 

 

 

 

 

4.4.2 Lower Congestion 

 When a packet travels in an NoC, it reserves a VC in each router of its route. The packet flow 

rate depends on various NoC conditions including scheduling and traffic patterns. For example, 

in the case of a round-robin scheduling, the packet flow shown in Figure 4.13a is more crowded 

Figure 4.12: (a) P4, P5 and P6 packets are blocked due to HOL of P0  (b) Free slots are used by the other VCs  

(b) EDVC Buffer is equally divided among all VCs (a) LLD VC0 has a large buffer space 
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(a) LLD: P0 blockage leads to HOL blocking 

(b)  EDVC: No HOL blocking 

Figure 4.11:  Packet Blocking in LLD and EDVC. 
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than in Figure 4.13b due to different traffic conditions. One of the conditions, which leads to 

congestion in a DAMQ based NoC, takes place when the packets become blocked. Packet 

blocking at each router causes the packet flow to become congested on its route. For example, 

Figure 4.13c shows the route of packet A as it passes through Router1 and Router2 and then 

becomes blocked in Router3. If packet A has a large number of flits, it can consume all the 

buffer space of the input-port in the routers on its path and creates a serious level of congestion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As described earlier that in the case of our EDVC mechanism, the VC-block signal of upstream 

router also activates the VC-full signal of the related VC. This process spreads back through the 

routers that are related to the blocked VC as illustrated in Figure 4.14a. In EDVC, each router 

acknowledges its upstream routers about the state of its VCs. The lowest possible buffer 

capacity is assigned to the blocked packets. For example, consider the packet flow scenario in 

Figure 4.14a.  Assume that the data flow is in a pipelined communication, the VC requests are 

issued in a round-robin style, and the acknowledgement is sequential among the routers. As soon 

as the flit A0 in Router3 is blocked, the Router3 informs the Router2 at the following clock 

(c) Packet flow is congested due to the blocking of packet A.  

(a) Packet flow rate is uniform/high for high level of traffic. 

(b) Packet flow rate is uniform/low for low level of traffic.  
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Figure 4.13: LLD Packet Flow Situations. 
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cycle. Due to round-robin form of VC requests, the router2 sends the 2nd flit of A after sending 

a flit of packets B and C. Therefore, the blockage of A1 is reached sooner than its arbitration. 

The flit A1 in Router2 becomes blocked, and the Router2 informs the Router1 at the following 

clock cycle. The same condition of A1 occurs for A2. In such scenario, the blocking is 

transferred back in 2 clock cycles per router. In this way, all the upstream routers cease sending 

the blocked packets during the blockage and the router buffers are assigned to other VCs holding 

free unblocked packets. As shown in Figure 4.14a, one slot of each router is assigned for packet 

A. When the blockage is removed, the flow of packets returns to normal as depicted in Figure 

4.14b resulting in high buffer utilization and overall higher NoC performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the above conditions for ViChaR. The ViChaR cannot theoretically reserve a 

specific room for each VC, and its VC size varies from one to the maximum size of the channel 

buffer [13]. Therefore, in some cases this mechanism will create a deadlock or a high traffic 

contention. ViChaR dynamically allocates VCs and grants new flit on a first come first served 

basis and there is no priority for the new packets. In the case of blocking, a packet can occupy 

all the slots of a channel buffer and thus prevents any new packet to pass through the router. If 

this blocking continues, the packet will occupy all of the upstream routers and no other new 

packet will be able to pass through the route. This blocking can spread in the entire NoC leading 

to a deadlock. 

Figure 4.14: EDVC Packet Flow Situations. 

(a) Packet A occupies minimum VC buffer space during blockage.  

(b) Uniform packet flow after the blockage of packet A is removed. 
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4.4.3 Deadlock Avoidance 

Another feature of EDVC is deadlock avoidance. We illustrate this feature by way of a 

deadlock scenario in traditional LLD mechanism. Assume that there is no reserved space 

dedicated for each VC in the LLD mechanism. The packets destined for a specific VC may 

occupy the entire input-port buffer space, and any new packet destined to this port may not be 

able to gain access of the input-port buffer [15]. Moreover, sharing channels and buffers 

increase the probability of packet blocking exponentially that will lead to more contention and 

deadlock like conditions for the NoC communication. Figure 4.15 shows a deadlock like 

situation for the LLD mechanism in a 4×4 NoC. Assume there are four flits per packet, two VCs 

per input-port, two slots per buffer, XY routing, round-robin scheduling, and packets are sent by 

the source cores S1, S2, S4 and S5 to the destination core D10. 

 When the first flits of all the source cores are injected in the NoC, packets P2 and P5 can reserve 

a complete path to their destination D10 due to the availability of two VCs in the northern input-

port of router#10 and their flits can reach D10. However, packets P1 and P4 can only reserve a 

path up to router#6. After the injection of second flits of all the sources, P1 and P4 will occupy 

all the buffer space of north and west input-ports of router#6. When the third flits of all the 

 

 

 

 

 

 

 

 

 

 

 

 

source cores are injected, a deadlock will occur. The first flits of packets P1 and P4 cannot 

advance in the NoC because the two VCs of north input-port of router#10 is already reserved by 

P2 and P5, and the third flits of packets P2 and P5 cannot advanced in the NoC because the north 

Figure 4.15: High Contention Situation in a LLD NoC 
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and west input-port buffers of router#6 are already occupied by packets P1 and P4. However, this 

problem would not occur in our EDVC mechanism. In fact, when the first flits of P1 and P4 are 

blocked in router #6, their associated input-ports cease receiving those packets. In this way, 

there will be free space for P2 and P5 to pass the router#6 and reach the destination D10. This 

section also illustrates another feature of EDVC approach that it prevents deadlock without 

dedicating in default any buffer space for each VC. 

4.4.4 Novel EDVC based VC Organization 

The novelty of our EDVC approach can be summarised as follows. 

 We have introduced a new DAMQ-based input-port architecture that improves NoC 

performance considerably by adding a little hardware. 

 The EDVC mechanism employs logic circuits instead of tables to manage shared VC slots and 

to determine the next free write-slot and available read-slot. It saves one clock cycle for each 

flit arrival/departure from input-port. 

 Our EDVC approach is much simpler as compared to table-based DAMQ mechanisms such as 

LLD [14, 18] or ViChaR [13]. The main component of EDVC is the pointer circuits of Figures 

4.9 and 4.10, which has a scalable structure to optimize its design and timing performance. 

 There is no configuration constraints in our EDVC approach as compared to other DAMQ 

mechanisms, and it can work in any configuration. For example, the LLD based approaches 

require a reserved space for each VC, and the ViChaR buffer grows bigger with the increasing 

number of flits per packet. 

 The EDVC approach employs a simple congestion avoidance mechanism. 

4.5 Experimental Results 

In this section, we compare the hardware requirement and performance of our EDVC 

mechanism with traditional Link-list based LLD and ViChaR mechanisms. Three types of EDVC 

organizations, Fast-Read, Fast-Write, and Fast-Read/Write are evaluated. The Fast-Read 

architecture employs a simple write-pointer and fast read-pointer shown in Figures 4.6b and 4.10 

respectively. The read-pointer of Fast-Write architecture is a simple counter (see Figure 4.6a); 

while its write-pointer employs a fast write mechanism, as shown in Figure 4.9. The Fast-

Read/Write architecture utilizes the fast write-pointer and fast read-pointer illustrated in Figures 

4.9 and 4.10 respectively. 
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4.5.1 Hardware Requirements and Parameters of Input-Ports 

The hardware requirements and characteristics of EDVC Fast-Write, Fast-Read/Write, LLD 

and ViChaR input-port architectures are determined by employing Synopsys Design Compiler 

for generic 90nm technology and Mentor Graphics ModelSim for Stratix-III FPGA. We have 

coded the micro-architectures using Verilog and simulation is performed by employing the 

ModelSim to measure various hardware metrics. The Synopsys design compiler is used to 

measure the power consumption and area of NoCs. We measure the hardware metrics of the 

input-ports of EDVC, LLD and ViChaR routers. All the ports use a dual-ported SRAM for data 

buffering. We apply the same setup constrains to all the input-ports. The setup for the input-port 

ASIC power and area employs CMOS technology parameters of Synopsys Generic 90nm 

Library, global operating voltage of 1.2V and time period of 5nsec (200MHz). The width of slot 

buffer is equal to the flit size of 16 bits. 

The characteristics of input-port micro-architecture are listed based on their buffer sizes in 

Table 4.2. The details of the other modules including arbiter and crossbar are also listed at the 

end of table. The EDVC Fast-Write input buffer has the optimum area and timing characteristics 

among all the input-ports. On average, the EDVC Fast-Write consumes 15% less IC area, 58% 

less power consumption, 64% less critical path delay, 4% less combinational logic elements and 

15% less registers as compared to LLD. For FPGA implementation results, the table also 

provided the amount of SRAM based registers in the brackets.  EDVC Fast-Write uses a simple 

read-pointer (Figure 4.6a) versus a fast read-pointer (Figure 4.10) employed in EDVC Fast-

Read/Write approach. The simple read-pointer increments per clock cycle regardless of the flit 

existence in the input-port buffer that leads to 9% higher power consumption of Fast-Write 

versus Fast-Write. In spite of optimum hardware characteristics, the EDVC Fast-Write and Fast-

Read has lower performance than EDVC Fast-Read/Write that is also investigated in this section. 

The LLD and ViChaR architectures are table based designs where a register-based control table 

directs the mechanisms. Registers and/or latches are updated on one edge (or level) of clock 

causing the table-based mechanisms like LLD and ViChaR to take one clock cycle longer than 

our EDVC approach that uses dedicated logic circuits.  
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Table 4.2. Hardware Specification of EDVC, LLD & ViChaR Input-Ports 

 
Type of input-port 

ASIC design  
(90 nm Generic Library) 

FPGA design  
(Altera Stratix III) 

Total Cell Area 
(µm

2
) 

Power 
(µW) 

Critical path delay 
(ns) 

Comb. 
Logic elements 

Registers (bits) 
fmax 

(MHz) 

LLD 4-slots 5809 218 1.57 95 112(64
b
) 352 

ViChaR 4-slots 6646 319 1.56 75 132(64
b
) 300 

EDVC Fast-Read/Write 

4-slots 
4991 

106 
(60

a
)
 1.11 83 107(64

b
) 384 

EDVC Fast-Write  

4-slots 
4674 108 0.57 78 97(64

b
) 1082 

LLD 8-slots 10328 370 1.54 180 204(128
b
) 286 

ViChaR 8-slots 21274 1236 2.26 306 392 (128
b
) 197 

EDVC Fast-Read/Write 
8-slots 

9524 
150 
(88

a
) 

1.62 206 186(128
b
) 244 

EDVC Fast-Write 8-slots 8687 162 0.47 174 174(128
b
) 851 

LLD 16-slots 19813 688 2.02 332 388(256
b
) 271 

ViChaR 16-slots 48463 2968 2.76 548 896 (256
b
) 175 

EDVC Fast-Read/Write 
16-slots 

19448 
240 

(147
a
) 

2.22 441 340(256
b
) 171 

EDVC Fast-Write  
16-slots 

17016 263 0.92 324 327(256
b
) 726 

LLD 32-slots 39174 1306 3.23 670 764(512
b
) 218 

ViChaR 32-slot 109849 6989 2.86 1183 2040 (512
b
) 125 

EDVC Fast-Read/Write 
32-slots 

40716 
413 

(262
a
) 

4.64 964 646(512
b
) 118 

EDVC Fast-Write  
32-slots 

34295 457 0.94 727 632(512
b
) 597 

Arbiter 4-VC 28380 1904 4.17 1116 240 127 

Cross-bar 2502 611 - 160 - - 

a
 Power consumption at 100 MHz,  

b 
SRAM registers 

 

 

The ViChaR architecture is expensive in terms of hardware cost among all the other 

architectures. The higher cost of ViChaR is due to large control table (even bigger than that of 

LLD). The following equations show the Size of LLD and ViChaR Control Tables (SCT). 

SCTLLD = SB.ln(SB)+ SB+VC + 2.VC.ln(SB)                 (1) 

SCTViChaR = SB.ln(SB).FP + SB + 2.SB.ln(FP)               (2) 

     Where   

 SB is the number of slots per port buffer. 

 FP is the number of flits per packet. 

 VC is the number of virtual channels. 
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Assuming a configuration for the experiments where VC=4, SB=16, and FP=16, the SCTViChaR 

is almost 10 times of the SCTLLD (VC = SB in ViChaR). The only advantage of ViChaR is its 

lower critical path delay for 32-slot buffer. This is due to the lower dependency among the cells 

of its control table. In other words, the address location of each stored flit in the input-port buffer 

is recorded in the control table, and there is no link among these addresses. However, a large 

control table of ViChaR can lead to a lower fmax (maximum frequency) than all the other input-

ports. 

For larger 32, 16 and 8-slot input-buffers, EDVC Fast-Read/Write has lower fmax for FPGA 

implementation and higher critical path for ASIC design as compared to LLD. It is due to the fast 

read-pointer module that grows bigger with the size of the input-port buffer. The critical path of 

EDVC Fast-Read/Write includes the fast read-pointer having a large number of Multiplexers. 

When the size of input-port buffer increases, the multiplexing stages of fast read-pointer grows 

that will in-turn increase the critical path delay for EDVC Fast-Read/Write and Fast-Read. There 

are different ways to optimize the critical path of EDVC Fast-Read/Write. First of all, the critical 

path delay of an input-port can be ignored when the arbiter critical path delay is larger than that 

of the input-port. For example, the critical path of a 4-VC arbiter in our implementation is longer 

than 4, 8 and 16-slot EDVC Fast-Read/Write input-ports (as listed in Table 4.2).  An optimal 

design of fast read-pointer will also lead to lower critical path delay for EDVC Fast-Read/Write 

input-port. We will present optimal architectures for fast read-pointer and write-pointer in the 

following chapter. Another timing advantage of EDVC approach should also be kept in mind that 

it takes one less clock cycle for flit arrival/departure than LLD approach. 

The EDVC Fast-Read/Write based input-port shows a significant saving in the power 

consumption and register usage as compared to ViChaR and LLD input-ports. As one can 

observe from Table 4.2, EDVC Fast-Read/Write, on average consumes 61% less power and 10% 

less buffer as compared to LLD. The switching associated with the control table (Registers) is 

larger causing a higher power consumption of LLD and ViChaR as compared to our EDVC Fast-

Read/Write. We expect that as the input-port buffer depth is increased, the Fast-Read/Write 

input-port hardware area becomes lower than those of LLD input-port. However, the Fast-

Read/Write hardware area increases more than the LLD area of input-port for 32-slot buffer. This 

increase is due to the impact of the Fast-Read/Write-pointers logic illustrated in Figures 4.9 and 

4.10. 
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4.5.2 EDVC Performance Evaluation 

1) Application Specific and Hotspot Traffic Patterns 

In the first experiment, we simulated and tested EDVC mechanism for two different traffic 

patterns including Application-Specific and Hotspot traffic patterns [53, 54]. For Application-

Specific traffic, two NoC applications presented in Section 3.6.2: MPEG4 Decoder and Audio-

Video (AV) benchmarks are tested for 3×4 and 4×4 mesh topology NoCs as given in Figures 

3.20 and 3.21 respectively. For Hotspot traffic, one destination is chosen for all the source cores 

during a time period. By evaluating the results of these three traffic patterns, we demonstrate the 

efficiency of our EDVC approach in terms of throughput and latency of the NoCs. 

The NoC topology selected is either 3×4 or 4×4 mesh, and packet communication follows the 

XY routing as shown in Figures 3.20b and 3.21b. The communication of packets is based on 

wormhole switching where the channel width is equal to the flit size (16 bits). Each packet is 

made of sixteen flits. Each input-port utilizes 2 VCs and 8 slots per input-port buffer in the 

Application-Specific traffic. In the case of Hotspot traffic, each input-port has 4 VCs and the 

buffer depth is varied from 4 to 32 slots. The link delay between two routers is negligible as 

compared to the delay of a router and it is ignored. All the source/destination cores and routers 

operate at the same clock rate. In the case of Hotspot traffic pattern, all the source cores send their 

packets to one destination (e.g. destination core#10 of Figure 4.15). 

We measured throughput and latency where throughput is measured by the rate of packets 

received to the maximum number of packets being injected at a specific time. The average 

latency is measured by the average time delays (per clock cycle) associated with the departure 

and arrival of a specific number of packets in the NoC. We apply different packet injection rate to 

measure the performance in the Application-Specific traffic. Packet injection rate is changed per 

time unit. The time unit is determined based on the maximum bandwidth of the source cores. For 

example, Source Core#8 in the MPEG4-decoder has a maximum bandwidth of 1580 flits. 

Therefore, the time unit will be 1580 clock cycles (assuming one flit per clock injection by each 

source core). The same measurement is performed for the AV application i.e. Core#14 has a 

maximum bandwidth of 192078 flits for a time unit of 192078 clock cycles. 

The results of Figures 4.16- 4.19 provide throughput and latency for MPEG4-decoder and 

AV-benchmark applications. The throughput and latency of Fast-Read/Write is almost 100% and 
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50% better than those of LLD mechanism. This improvement is due to the fact that there is a little 

contention in the data flow, where the only determining factor is the speed of routers. As 

mentioned earlier, the passage of a flit through a LLD router takes 4 clock-events where it takes 

two clock-events for an EDVC router as illustrated in Figure 4.3. Flit arrival/departure in EDVC 

router is one cycle (two clock events/edges) as compared to two cycles for LLD routers. 

Moreover, the contention is low because the destination of each source is fixed, and most of the 

source cores send a few flits per time unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EDVC Fast-Read/Write has lower latency than that of LLD for all the injection rates as shown 

in Figures 4.16 and 4.18. However, it is higher for the EDVC Fast-Read or Fast-Write. For 

MPEG4, seven source cores send data to one destination core#5 causing high contention. The 

 

 
Figure 4.17: Average Latency for AV Benchmark Traffic 

 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

0 1 2 3 4 5 6 7 8 

A
ve

ra
ge

 L
at

e
n

cy
 (

 K
cy

cl
e

) 

Inject Rate (Time Unit) 

LLD EDVC Fast-Read/Write 

EDVC Fast-Write EDVC Fast-Read 

 
Figure 4.16: Average Latency for MPEG4 Decoder Traffic 
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higher contention results in higher latency for EDVC Fast-Read and Fast-Write as compared to 

LLD. For AV benchmark, the NoC communication is less congested (e.g. a maximum of 4 cores 

send packet to destination core #10). Due to which, the latency is lower in EDVC Fast-Write for 

all the injection rates and for higher injection rates as compared to the latencies for EDVC Fast-

Read. A slower write to an input-port buffer of EDVC Fast-Read router affects all the 

downstream input-ports that may intend to send packets to that router. However, a slower read 

from an input-port buffer of an EDVC Fast-Write router will only affect one input-port that is 

itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of Hotspot traffic, we compared our EDVC approach with LLD as well as ViChaR 

approaches. The performance of EDVC mechanism is better than LLD and ViChaR approaches 

as shown in Figures 4.20 and 4.21. In fact, all the EDVC mechanisms including Fast-Read, Write 

 
Figure 4.18: Average Throughput for MPEG4 Decoder Traffic 
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Figure 4.19: Average Throughput for AV Benchmark Traffic 
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and Read/Write has higher throughput and lower latency than those of LLD and ViChaR. This is 

due to the fact that one destination is chosen for all the source cores and traffic becomes 

congested creating large number of packet blockages. The average throughput and latency of the 

Fast-Read/Write approach is 100% higher and 48% lower (respectively) than those of LLD and 

ViChaR. The high contention causes the performance of EDVC Fast-Read and EDVC Fast-Write 

becomes lower than EDVC Fast-Read/Write. The simple write-pointer and read-pointer are very 

slow when the input-port buffer is crowded (Figure 4.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.21: Average Throughput for Hotspot Traffic 
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Figure 4.20: Average Latency for Hotspot Traffic 
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Figure 4.23: Average Throughput for Tornado Traffic. 
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Figure 4.22: Average Latency for Tornado Traffic. 
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Figure 4.24: Average Latency for Complement Traffic. 
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The performance results also indicate a faster EDVC Fast-Write as compared to Fast-Read. 

This is due to a slower write to the input-port buffer for an EDVC Fast-Read router that affects to 

all the downstream input-ports. However, a slower read from an input-port of EDVC Fast-Write 

router will only affect one input-port that is itself. The throughput and latency improvements for 

Fast-Write are 4% and 10% better than the Fast-Read mechanism. In spite of higher VC numbers 

of ViChaR (VC number is equal the slot numbers), the ViChaR and LLD have the same 

performance as both ViChaR and LLD use control tables for their dynamic VC mechanism i.e. 

both have the same flit arrival/departure delays. Moreover, in the mesh topology, there are a 

maximum of 4 requests for an output-port at each clock cycle and four VCs are adequate for the 

NoC communication. 

2) Performance Analysis for 8×8 NoC Topology 

In the 2nd experiment, we explore and compare our EDVC approach for a larger 8 × 8 mesh 

topology and for some other commonly used traffic patterns such as Tornado and Complement 

[16, 55]. Tornado and Complement traffic benchmarks create high contention traffic uniformly in 

an NoC. For an  m×m mesh topology, source address (Sx, Sy) where 0 ≤ x, y  ≤ m-1, and a 

destination address (Dx, Dy) is determined by the following equations for Tornado and 

Complement traffic: 

For Tornado:  Dx = Sx+(m/2)-1, Dy = Sy+(m/2)-1     (3) 

For Complement: Dx = m-Sx-1, Dy = m-Sy-1        (4) 

 
 

Figure 4.25:  Average Throughput for Complement Traffic. 
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In XY routing and Tornado traffic, all the routers are uniformly crowded, where in the case of  

Complement traffic the side routers are more crowded than the middle. A packet consists of 16 

flits, and each input-port includes one central 8-slot buffer. There are 4 VCs per each input-port 

except for ViChaR that has 8 VCs to prevent deadlock in ViChaR communication. The LLD 

mechanism reserves at least a slot per VC to prevent deadlock in its communication. The 

performance metrics are measured per flit injection rates as illustrated in Figures 4.22- 4.25. The 

results show higher performance for EDVC Fast-Read/Write in high injection rates. For example, 

the average latencies of Fast-Read/Write at 0.3, 0.5 and 1 injection rates are 46% less than those 

of LLD for Complement traffic. The average throughput of EDVC Fast-Read/Write is higher 

than those of LLD in both patterns i.e. 29% and 50% higher in Tornado, and Complement traffics 

respectively. 

For higher injection rates, the NoCs become populated with higher rate of contention. As 

previously discussed, EDVC improves NoC performance in high contention. EDVC mechanism 

reduces the probability of monopolizing an input-port by a growing VC. Another feature of 

EDVC is the prevention of congestion by propagation of VC-full signal from the remote routers 

along the routing path. The LLD and ViChaR show similar performance and their similarities are 

also due to the same flit arrival/departure delays. 

We expect two times better throughput and lower latency for EDVC Fast-Read/Write at low 

injection rates (assuming no contention) as compared to LLD or ViChaR due to two times faster 

clock for EDVC Fast-Read/Write NoC. However, the movement of flits is a bit slower in Fast-

Read/Write mechanism than that of LLD or ViChaR mechanisms. The slow flit movement is due 

to the hardware/technique used for handling blocked VC that is discussed and presented in 

Section 4.2.3. A blocked VC becomes free to be read when the read pointer points to the first 

location of the input-port buffer, and it becomes free to be written when the read pointer points to 

the last location of input-port buffer. The slower movement of flit for EDVC Fast-Read/Write 

leads to a bit higher latency, however, the throughput is higher as compared to LLD or ViChaR 

for lower injection rates as illustrated in the results given in Figures 4.23 and 4.25. A bit higher 

latency of EDVC Fast-Read/Write is shown in Figures 4.22 and 4.24 for injection rates of 0.1 and 

0.2. However, for the same injection rates of 0.1 and 0.2, EDVC Fast-Read/Write throughput is 

32% and 28% higher when compared with LLD/ViChaR for Tornado and Complement traffic 
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patterns respectively. In the following chapter, we improve the EDVC architecture to illustrate 

higher performance in low injection rate too. 

The EDVC Fast-Read and Fast-Write have the lowest performance and their weakness is due 

to slower read and write scenario due to simpler/cheaper counter implementations for read/write 

pointers, discussed earlier in Section 4.3. The slow read and write happens repeatedly for 

Tornado and Complement Traffic patterns, and eventually leads to the lowest performance of 

EDVC Fast-Read and Fast-Write. However, the number of slow read and write do not happen 

often for AV and MPEG4 benchmark experiments that leads to better performance of Fast-Read 

and Fast-Write mechanisms. In the case of Hotspot traffic, the contention is high and only one 

destination receives all the data. Therefore, all the flits have to wait around that destination core 

to be served. A slower flit movement speed in the NoC under such condition does not improve 

the performance. In other words, the very slow receiving of flits by a destination causes the slow 

movement of flits that leads to a low performance of EDVC Fast-Read and Fast-Write 

mechanisms. However, the two times faster clock cycle of Fast-Read and Fast-Write mechanism 

causes a bit higher performance than LLD mechanism as indicted by the results shown in Figures 

4.20 and 4.21. 

4.6 Concluding Remarks 

The micro-architecture of conventional DAMQ input-port for NoC routers consists of complex 

and large number of control modules that lead to higher pipeline stages and latency in the NoC. 

To remedy the drawback of DAMQ based NoC routers we have introduced a few DAMQ input-

port architectures having simple yet novel mechanisms requiring lower hardware resources. The 

micro-architecture of EDVC input-ports are presented and compared with two conventional 

(table-based) DAMQ input-port designs. The advantage of our EDVC mechanisms are 

investigated and highlighted. The evaluation results presented support the efficiency of our 

EDVC mechanism in terms of both performance and hardware overhead. An EDVC input-port 

consumes on average, 10% less registers for FPGA design and 61% less power for ASIC design. 

It also has 10% higher fmax (maximum frequency) as compared to the LLD input-port 

implementation for small buffer sizes (e.g. 4 slots). Moreover, the EDVC mechanism improves 

the latency and throughput by 48-50% and 100% respectively as compared to LLD approaches 

in the case of Application-Specific traffic in the NoC system. EDVC mechanism also shows 
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better performance for various traffic patterns when compared with LLD and ViChaR 

techniques. 
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Chapter  5 

Rapid and Efficient Router Architecture 

 In this chapter, we present our latest NoC router architecture. The chapter is organized into 

the following sections. The EDVC input-port architecture presented in the last chapter is further 

improved in terms of structure and mechanism in Section 5.1. In Section 5.2, we propose a new 

Round Robin (RR) arbiter architecture. The architecture of switch allocators utilized in NoC 

routers is discussed in detail in Section 5.3. A novel router architecture is presented in Section 

5.4 by accommodating the new input-port and RR arbiter described in Sections 5.1 and 5.2. The 

experimental results for various NoC metrics related to performance and hardware overhead are 

discussed in Section 5.5. The main features of the approach are listed in Section 5.6.  

5.1 Rapid Dynamic Queue Based Input-Port Structure 

The EDVC mechanism described in Chapter 4 has some minor drawbacks. First of all, the 

fast read-pointer and write-pointer modules presented in Figures 4.9 and 4.10 grow large with 

the size of the input-port buffer [55]. For example, if the size of the input-port buffer increases n 

times, the first multiplexing stages of read-pointer and write-pointer will grow exponentially i.e. 
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n
2
 times that will in-turn increase the hardware overhead and the critical path delay, which has 

direct effect on the speed of EDVC router. The second drawback of EDVC design is its higher 

latency at lower flit injection rates. To solve these drawbacks, we propose an improved 

architecture for EDVC called Rapid Dynamic Queue (RDQ), which is more efficient for various 

NoC configurations and most of the known NoC traffic situations. Figure 5.1 illustrates the 

micro-architecture of our RDQ input-port. We compare the EDVC and RDQ input-port micro-

architectures given in Figures 4.4b and 5.1 respectively. Three modules of EDVC input-port 

including the read-pointer, the write-pointer and the blocking logic illustrated in the upper parts 

of two architectures are improved. The RDQ input-port buffer is illustrated in two parts as 

compared to one central buffer in EDVC. We present the details of improved input-port modules 

of RDQ including rapid read/write pointers and blocking circuits. 

 

 

 

 

 

 

 

 

 

 

 

5.1.1 Rapid Read and Write Pointers 

As mentioned in Chapter 4, Section 4.3.2 that when some locations of the channel buffer are 

occupied, the read-pointer should only points to those locations. This kind of pointing follows a 
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Figure 5.1:  RDQ Input-Port Micro-Architecture. 
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Round Robin (RR) priority scheme. In other words, a slot that is just read should have the 

lowest priority for the next cycle [56]. In this way, each asserted bit of Slot-State table is pointed 

per clock-cycle in an ascending and circular order. Figure 5.2 shows the timing diagram of a 2-

bit EDVC fast read-pointer (see Figure 4.10) for some scenarios of Slot-State content. During 

the time 1-6 cycles a fixed entry, ‘1111’ is applied that is pointed circularly and bit by bit per 

clock cycle.  At the 6
th

 cycle, the content of Slot-State table is changed to ‘1101’ that means the 

second slot of input buffer becomes empty. At 7
th

 cycle, the content of Slot-State table becomes 

‘1001’ and will be unchanged till 12
th

. During cycles 7
th

 and 12
th

 cycles, the first and last slots of 

the input buffer are read per clock cycle. 

 

 

 

 

 

We present the micro-architecture of a novel rapid read-pointer that follows RR scheme, and 

it is illustrated in Figure 5.3. Assume Sx represents the state of an xth bit of the Slot-State table 

where xϵ {0, 1…15}, and Mx represents the xth multiplexer of 16 multiplexers shown in Figure 

5.3. The multiplexer, Mx generates the xth address if the Sx is asserted (the xth slot is occupied). 

 

 

 

 

 

 

 

 

 Otherwise, it generates the address of first asserted bit after Sx. Therefore, by further 

multiplexing of these multiplexers (i.e. M0 to M15), we can generate the address of first asserted 

bit after the current pointed address of read-pointer. For example, when read-pointer=1, the 

output of multiplexer M2 is selected. M2 generates an address of 2 if S2 is asserted; otherwise, it 

generates the index of first asserted bit after S2 in a circular order. The OR logic, or-g is used to 

Figure 5.2: Timing diagram of a 2-bit EDVC fast read-pointer for some Slot-State entries. 
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prevent an infinite looping among M0-M15 multiplexers, so that when all the slots of input 

buffer are empty, the read pointer points to the address zero.  

 We also propose the rapid write-pointer (4-bit) architecture, which is shown in Figure 5.4. If 

the Sx is de-asserted (i.e. slot is empty), the x address is generated by Mx. Otherwise, it 

generates the index of the first de-asserted bit after Sx in a circular order. Therefore, by further 

multiplexing with M0-M15 multiplexers, we can choose the address of first de-asserted bit from 

the current pointed address of the write-pointer. For example, when write-pointer =1, the output 

of multiplexer M1 is selected. Then M1 generates a value 1 in cases where S1 is de-asserted, 

otherwise, it generates the index of first de-asserted bit after S1. The AND logic, and-g is used 

to prevent of infinite looping among the M0-M15 multiplexers when all the slots of input buffer 

are full. Figure 5.5 illustrates the timing diagram of a rapid 2-bit RDQ write-pointer for some 

Slot-State entries.  

 

 

 

 

 

 

 

 

Our novel rapid write-pointer points to an empty slot buffer and will stay there until the slot 

is written (or occupied). Then it points to the first empty slot in ascending and circular order. 

The hardware of rapid read-pointer and write-pointer modules, which are illustrated in Figures 

5.3 and 5.4, grow linearly with the size of the input-port buffer. For example, if the size of input-

port buffer increases with n, the size of first multiplexing stages of Figures 5.3 and 5.4 will also 
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grow with n.  This characteristics of RDQ pointers leads to a rapid NoC router and we will 

verify it further in the experimental results section. 

5.1.2 RDQ Closing and Requesting Approach (Blocking Circuit) 

 In the EDVC type mechanism (presented in Chapter 4), the asserted VC-block signal causes 

the VC to stop requesting (stop-req signal is asserted) the arbiter and halts to receive of a new 

flit (VC-full signal is asserted). We improve the blocking circuit, which uses stop-req and VC-

full signals by involving one more condition i.e. VC-req to assert both the stop-req and VC-full 

signals as illustrated in the upper part of Figure 5.1. In this way, we have prevented a condition 

in data flow when a reserved VC with no data flit becomes closed. In other words, an empty VC 

cannot make a request, and in case it is reserved by a packet and the packet is blocked (or its 

VC-block is asserted), its stop-req and VC-full signals cannot be asserted. In summary, an empty 

VC in any condition cannot be closed for incoming flits. The reason of involving VC-req 

condition is further discussed in this section. 

The usage of VC-req in the blocking circuit has a direct impact on the performance of RDQ-

based NoC router during the low NoC traffic. One AND gate per VC is needed for introducing 

the VC-req condition in the blocking circuit. The blocking signals, stop-req and VC-full are reset 

based on the condition of read-pointer. At each event, when the read-pointer returns to point to 

the least-significant occupied slot, the stop-req signal is reset. This event occurs when the 

current read address becomes equal or greater than the next read address. It is to be noted that 

the output and input of read-pointer registers represent the current and the next addresses 

respectively. The VC-full signal is de-asserted when the read-pointer returns to point to the 

least-significant occupied slot and the stop-req signal is asserted. 

 Table 5.1 lists the conditions associated with the VC closing and requesting operations. The 

closing and requesting operations are actuated by the VC-full and VC-req signals respectively. 

There are three conditions according to the state of VC-block. As mentioned earlier, the VC-

block becomes set when the VC cannot succeed to win a free VC of the downstream input-port 

router. We call this VC as a downstream VC in this dissertation. In the first condition, the VC-

block is reset, so that the closing (VC-full) and requesting (VC-req) operate in normal condition 

(see table). The normal condition is when there is no packet blockage in the communication. In 

the 2
nd 

condition, the VC-block becomes set. In case, the read-pointer does not point to a flit of 

the VC, the VC is open to incoming flits. As soon as the read-pointer points to a flit of the VC, 
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the VC-req switches from 0 to 1 and returns to 0. In other words, the mechanism stops receiving 

flits for that VC as well as requesting the arbiter. In this condition, the order of VC flits inside 

the port buffer is kept until the blockage exists. In 3
rd

 condition, the VC-block switches from one 

to zero i.e. the VC can succeed in the arbiter. In case, the read-pointer points to a slot that is not 

the least significant occupied slot of buffer, the VC issues no request to the arbiter and receives 

no incoming flit.  The read-pointer continues pointing to the occupied slots until its registers’ 

output becomes greater than its registers’ input as illustrated in Figure 5.3. It means that the 

read-pointer points to the least significant occupied slot of buffer. At this point, the VC can only 

issues request to the arbiter leading its flits to exit the router without any new flit enters the VC. 

The read-pointer continues pointing to the occupied slots until it points to the least significant 

occupied slot of buffer again. At this point, the closing and requesting operations of the VC 

return to the normal condition.  

Table 5.1. Closing and Requesting Operations of RDQ Mechanism Associated with a VC 

condition VC-block Stop-Req VC-req VC-full 

1 0 0 x: Normal 

1: read-pointer points to a flit of the VC. 
0: read-pointer does not point to a flit of the VC. 

x: Normal 

1: Input-port buffer is full. 
0: Input-port buffer is not full. 

2 1 0 0: read-pointer points to no flit of the VC. x: Normal 

1: Input-port buffer is full. 

0: Input-port buffer is not full. 

1 0 to1 then returns 0: 

 read-pointer points to a flit of the VC. 

1: stop incoming flit for the VC 

3 1 to 0 1: read-pointer registers’ output < input  0: stop request 1: stop incoming flit for the VC 

0: read-pointer registers’ output > input x: Normal 1: stop incoming flit for the VC 

0: read-pointer registers’ output > input x: Normal x: Normal 

 

5.1.3 Back Pressure for Low NoC Traffic 

A specific situation can arise in our RDQ mechanism when a packet blockage condition 

travels back to the up-stream routers that are related to the blocked packet. This situation assists 

the VC organization in maintaining the order of flits associated with the blocked packet. This also 

leads to chain-blocking and the creation of back-pressure in the NoC. The implementation of this 

situation has a direct affect on the performance of RDQ especially at low injection rates. The 

EDVC approach cannot handle this situation effectively [55] and when there is no credit for an 

output, the input VC associated with that output becomes blocked despite having some flit in the 

VCs related to blocked packet. Consequently, when there is no flits in all the upstream VCs 

related to blocked packet, the blockage spread back in the NoC.Even for low injection rate traffic, 

the blockage reaches to the source that will stop injecting any new flit. Moreover, the blockage 
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removal at the upstream routers will also take more times as compared to downstream routers. In 

other words, a small blockage delay leads to a huge delay at the source core.  

Consider the scenario of low flit injection rate shown in Figure 5.6, where the latency of the 

three mechanisms: EDVC, LLD and RDQ are illustrated. Assume that the flit injection rate is low 

e.g. 1/6 flit per clock cycle. The flits are injected by the source cores at 6 clock cycle intervals. 

Moreover, assume that flit arrival/departure delay of RDQ and EDVC routers are one clock 

cycle, and that of LLD router is 2 clock cycles.  
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Figure 5.6: Low Flit Injection Traffic Scenario in EDVC, LLD and RDQ 
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Assume at time zero, three flits A1, A2 and A3 are being injected with 1/6 injection rate, and 

these flits pass through three routers, router3, router2 and router1 reserving VC0, VC1 and VC2 

of those routers respectively. Figure 5.6a demonstrates the EDVC mechanism such that the flit 

A1 is blocked in VC0 of router1 at the 3
rd

 cycle (three cycles need to pass three routers). Then 

three cycles are needed for the blockage signal to go back and reach the source core located 

before router3. In the EDVC mechanism, the empty and reserved VCs can be blocked. 

Therefore, the second flit, A2 cannot be injected, and this condition will remain till the blockage 

is removed at the 18
th

 cycle as illustrated in Figure 5.6b. After 18
th

 cycle, 7 clock cycles are 

needed to send out three flits A1, A2 and A3. In other words, three cycles are needed for 

removing the blockage in router1, router2 and router3, and four cycles are required for A3 to 

pass through the three routers (including one clock to wait for the flit A2). We assumed that the 

flits, A2 and A3 are injected (after 6 and 12 cycles delay) by the source core as soon as their 

outputs are free.  

In the case of RDQ based VC-buffer organization, a VC can be blocked when at least one flit 

is saved in it as illustrated in Figure 5.6c. Flits A1, A2 and A3 are saved in router1, router2 and 

router3 by the 18
th

 cycle. Then 5 clock cycles are needed to send out three flits from router1. In 

fact, it needs two cycles to remove the blockages and 3 cycles for passing the flit A3 through 

three routers. In the case of conventional LLD, three flits are saved in the VC0 of router1 by 18
th

 

cycle as shown in Figure 5.6d. There is no back-pressure, and we assume that VC0 capacity for 

router1 is more than three flits. Then 6 clock cycles need to send out the three flits from router1. 

The packet flow cases of Figures 5.6a to 5.6d illustrate that the RDQ has a delay of 23 cycles, 

which is faster than the EDVC (25 cycles delay) and LLD (24 cycles delay) mechanism. 

5.2 Index-based Round Robin Arbiter (IRR) 

In this section, we present a new arbiter, Index-based Round Robin (IRR) arbiter that 

employs a least recently served priority scheme and achieve strong fairness arbitration. The 

proposed arbiter has smaller arbitration delay, lower chip area and it also consumes less power 

as compared to the arbiters described earlier in Section 2.6.2. Before describing the IRR arbiter 

architecture, we introduce an inseparable and critical output in the arbiter design. 



115 

 

5.2.1 Grant Index 

All the arbiters have output signal, grant whose width is the same as that of input width. 

However, in practical designs, the index of grant signals, g_id is also generated that is used to 

address the granted request in some other components, such as control tables, multiplexers and 

memories used in NoC routers. When a crossbar switch is made of multiplexers, the g_id can be 

connected to the selection port of multiplexer to switch the granted input to the requested output-

port (see Figure 2.23). The width of g_id is the log2 of the width of grant. We used the g_id as 

the first output of our proposed arbiter design and due to lower width of g_id, our arbiter design 

is smaller and faster as compared to other arbiters. Due to the critical use of g_id in NoC design, 

we consider all the arbiters covered in this chapter to generate both grant and g_id as outputs. 

5.2.2 Fixed and Variable Priority Arbiter 

Our fixed priority arbiter is simpler and economical and its details are illustrated in Figure 

5.7. The priority of requests is linear and in the ascending order where r0 has the highest priority. 

The index of first asserted request is switched to the output as the index of grant, g_id. Then the 

g_id is decoded to create the grant signals.  

 

 

  

  

 

 

 

The last request, rn-1 has a simplified circuit where instead of being multiplexed like other 

requests, it is ANDed by gn-1. If the g_id output of the fixed priority arbiter of Figure 5.7 is 

connected to the last multiplexer, each request behaves as it has the highest priority through 

ascending order of the loop. For example, for four requests (r0, r1, r2 and r3) the output of 

multiplexer, M1 generates an index where r1 has the highest priority then r2, r3, and r0. 

Therefore, by further multiplexing these outputs, we can choose an input as the highest priority 

request as shown in Figure 5.8. For example, when P=1, the output of multiplexer M1 is selected 

and the request, r1 has the highest priority. In the case of no request asserted i.e. r0 is asserted, 

g_id issues the same value (i.e. zero). In order to separate these two conditions, ORing of 

Figure 5.7: n-input fixed priority arbiter, where m =log2 (n). 
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requests, any_r is ANDed with the g0 so that when all the requests are zero, all the grants also 

become zero. 

 

 

 

 

 

 

 

 

5.2.3 IRR Arbiter Micro-Architecture 

If the next index of granted request is employed for the next priority selection, the current 

granted request receives the least priority, and its next request receives the highest priority 

among all the requests. To accomplish it, the g_id array is stored in a register whose output is 

incremented and connected to the selection port of multiplexer, MP as shown in Figure 5.9. In 

this way, the arbiter follows the least recently served priority scheme or a round robin scheme. 

Figure 5.9 illustrates our proposed IRR arbiter that takes one clock cycle for arbitration. To keep 

the priority unchanged, the priority register output, next_g is fed back into SF multiplexer to 

cater for no request. It guarantees strong fairness arbitration in our design discussed below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: n-Input IRR Arbiter, where m =log2 (n) 
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5.2.4 Functional Behaviour of IRR Arbiter 

We present the functionality and behaviour of our round robin arbiter illustrated by its 

timing diagram in Figure 5.10. During time 1-6, a fixed input request, ‘1111’ is applied and 

granted bit by bit per clock cycle. At time 6, the request is changed to ‘0000’, i.e. no request is 

asserted. For no request situation, the priority of last granted request is recorded and applied 

when a new request is asserted. For example, at time 6, the priority of second bit of the request 

is recorded and applied at time 8. Consequently, the forth bit of request is granted at time 8. We 

tested our arbiter along with some past arbiters (RoR, Matrix, PRRA, IPRRA, and HDRA) for 

the same testbench and request scenario, and timing results are shown in Figures 5.10 and 5.11. 

When no request is asserted, the RoR, Matrix and our IRR arbiters record the current priority 

shown in Figure 5.10. However, the PRRA, IPRRA and HDRA arbiters couldn’t record the 

priority and show different waveforms shown in Figure 5.11. For a no request condition, the 

highest priority is given to the least significant bit of the request for PRRA, IPRRA and HDRA 

waveforms. This arbitration behavior of PRRA, IPRRA and HDRA is due lack of any circuit to 

handle the no request condition. Keeping the last priority during no request condition has a 

direct impact on the fairness of an arbiter. The first advantage of our IRR arbiter is to perform a 

stronger fairness arbitration.  

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.10: Timing diagram for some input request scenarios of strong fairness round robin arbiters. 
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5.2.5 IRR Hardware Analysis 

We also perform a hardware overhead analysis to compare the expected speed and hardware 

overhead of the aforementioned round robin arbiters with our proposed IRR arbiter. We don’t 

apply any algorithm to optimize the circuits as an Electronic Design Automation software does. 

The main figures of merit of an arbiter circuit are speed, area and power consumption. The usual 

measure for speed of an arbiter circuit is the delay time or maximum clock frequency (fmax). The 

clock frequency of an arbiter depends on the longest delay (critical path) between two registers 

clocked at the same time. The circuits of 4-input arbiters, which have been discussed in Chapter 

2 (Figures 2.26, 2.27, 2.28, 2.29 and 2.30) and Figure 5.9, are decomposed at the gate level. The 

electrical parameters of the logic gates are derived from Synopsys 90nm Digital Standard Cell 

Library as listed in Table 5.2. We calculated the sum of the areas and powers of all the cells of 

each arbiter to estimate their power and area that are listed in Table 5.3. The power includes 

both static and dynamic powers. For speed estimation, the critical path delay between two 

registers of each circuit is calculated. We have also provided the critical path of each circuit 

through the number in parentheses for the last column of Table 5.3. The increment is done by a 

half adder (XOR2x1). As discussed earlier, RoR and Matrix arbiters have strong fairness, and 

the HDRA, PRRA and IPRRA are weak in fairness.  

Table 5.2. Electrical Parameters Gates from Synopsys Library 

Gate name Propagation Delay (ps)  Static Power (nW)  Dy. Power (nW/MHz ) Area (um2)  

INVX1  38 88 12 6.5 

AND2X1  85 298 19 7.4 

AND3X1  119 297 34 8.3 

NAND2X1  51 336 15 5.5 

OR2X1  85 226 23 7.4 

OR3X1  114 250 39 9.2 

OR4X1  137 261 56 10.1 

NOR2X1  64 170 15 6.5 

MUX21X1  107 815 43 11.1 

MUX41X1  168 827 58 23.0 

DEC24X1  119 1238 66 29.5 

XOR2X1  133 454 26 13.8 

DFFARX1  217 620 100 32.2 
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Therefore, we introduce a weak fairness version of IRR named IRR_WF for comparison with 

the HDRA, PRRA and IPRRA arbiters. The only difference between IRR and IRR_WF is the 

SF multiplexer shown in Figure 5.9 that affects the critical path delay. We expected a faster 

IRR_WF arbiter than IRR. Table 5.3 list the characteristics of all the arbiters. IRR has the 

optimum performance and hardware overhead among all the listed arbiters. In terms of speed, 

the IRR can run 15% to 50% faster than the other arbiters. Moreover, the IRR saves the chip 

area from 10% to 47% and power from 1% to 44%. We also evaluated our IRR arbiter with the 

other arbiters in terms of area, power and timing by using the EDA tool in the experimental 

section of this chapter. 

Table 5.3. Characteristics of 4-input Arbiters based on Table 5.2 

Type of  4-input arbiters Area (um
2
)  Power (uW)  Critical path Delay (ps)  

IRR 294 296(282
d
) 625 (217+133+168+107) 

RoR 328 298(289
d
) 1242(217+5*(85+85)+137+38) 

Matrix 556 479(465
d
) 747 (217 +2*38 +3*85+114+85) 

IRR_WF 280 274(262
d
) 518 (217+133+168) 

HDRA 431 360(348
d
) 609 (217 +64+51+85+85+107) 

PRRA 510 493(479
d
) 861(217+2*38+3*85+85+2*114) 

IPRRA 528 488(473
d
) 747 (217+2*38 +3*85+85+114) 

IRR/RoR 10% Saving 1% Saving 50% Faster 

IRR/Matrix 47% Saving 38% Saving 16% Faster 

IRR_WF/HDRA 35% Saving 24 % Saving 15% Faster 

IRR_WF/PRRA 45% Saving 44% Saving 40% Faster 

IRR_WF/IPRRA 47% Saving 44% Saving 31% Faster 

d 
dynamic power 

5.3 Switch Allocator 

While an arbiter arbitrates among multiples requesters for a single resource (e.g. output-

port), an allocator arbitrates among a group of requesters for a group of resources. Each 

requester may request one or more of the resources, but each resource is assigned to only one 

requester [22, 56]. An allocator structure is utilized in the Switch Allocator (SA) module of the 

arbitration module in NoC router, which will be described in this chapter. The allocators can be 

designed in a unit form such that the requesters are interconnected in order to maximize the 

matching among the requesters and the resources. The allocators in the form of unit design are 
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difficult to be parallelized or pipelined, and they are too slow for applications in which latency is 

important [22]. Latency-sensitive applications typically employ fast and fair matching designs 

such as separable allocators. A separable allocator has significantly less logic complexity by 

separating the requesters in some groups. Moreover, the critical path delay of a separable 

allocator can be improved by choosing a fair and fast arbitration among each group. For these 

reasons, separable allocators are usually utilized and investigated in most of the NoC research 

projects. In a separable allocator, two sets of arbiters can perform arbitration: one across the 

inputs and one across the outputs as illustrated in Figure 5.12. In an input-first separable 

allocator, arbitration is first performed to select a single request at each input-port. Then, the 

outputs of these input arbiters become the inputs to a set of output arbiters to select a single 

request for each output-port [22].  

 

 

 

 

 

 

 

 

In order to ensure fairness, avoid traffic starvation, and to perform arbitration in a single 

iteration, a RR scheme can be utilized for any given arbiter which is shown in Figure 5.12. 

5.3.1 NoC Switch Allocator Function 

Figure 5.13 shows an input-first separable SA (switch allocator) micro-architecture 

implemented in our design. The first set of modules, input-arbiters perform arbitration among 

the VCs of each input-port of the router. Therefore, the size of each input-arbiter is v×v, where v 

is the number of VCs in each input-port (v=4 in the architecture of Figure 5.13). The number of 

input-arbiters, n is the same as the number of input-ports in a router (n= 5 in the architecture of 

Figure 5.13). The decoder modules generate the requested outputs of the winner VCs of input-

ports as illustrated in the lower part of Figure 5.13. Each bit of decoder output is corresponding 

to an output-port, and each active bit of decoder output shows the requested output by the 

winner VC of relevant input. Assume that the v0 becomes winner in the in_3 arbiter, whereas it 

Figure 5.12:  An Input-First Separable Allocator. 
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requests the second output-port. Therefore, the second bit of the c_3 output i.e. out1 becomes 

asserted, and the remaining bits are de-asserted. The second set of arbiters, output-arbiters 

performs arbitration among the winner input-ports for the output-ports. Therefore, the size of 

each output-arbiter is n×n. The number of output-arbiters is m, where m is the number of 

output-ports in the router (n=m=5 in the architecture of Figure 5.13). Assume the inputs, In0, 

In2, In3 and In4 make request for out_1. When In3 wins, bit g_out1_in3 of out_1 arbiter is 

asserted, and rest of the bits are de-asserted. It should be considered that the winner VC of In3 

(assume v0) is already determined in In_3. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2 VC Arbitration  

In the previous section, we have discussed that the input-port VC arbitrations are usually 

implemented in SA stage by means of input-arbiter modules as illustrated in Figure 5.13. 

However, in our NoC arbiter design they are implemented in input-port by means of VC-

Selector modules due to two reasons. Firstly, a central buffer stores all the VC flits of an input-

port. Secondly, the arbitration is done in one clock event. In fact, when a grant signal is issued 

to an input-port, the read-pointer should have been already pointing to winner VC flit, or the 

Figure 5.13:  A 5×5 RR-Based Separable SA Micro-Architecture 
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winner flit should be loaded at the output-port of the buffer. The input-port micro-architectures 

of Figure 2.11 and 5.1 illustrate this scheme in such a way that the VC-Selector selects a VC for 

requesting to the arbiter, and simultaneously the flit of the VC is loaded at the buffer output. 

Moreover, the output of VC-Selector is used in the input-port mechanism. The VC_req signals in 

the LLD input-port of Figure 2.11 are used to generate read-pointer, and for RDQ input-port of 

Figure 5.1 these signals are used in the blocking mechanism. One may think that the VC-

Selector modules can be accommodated in the switch allocator, and the VC_req signals can be 

fed back to the input-port. The problem of this design is that the input-port and arbiter become 

dependent on each other in terms of hardware and their speed. In fact, part of the critical paths of 

input-ports is shared with the arbiter. To prevent of such sharing, we implement the input-port 

VC arbitration as part of the input-port, and remove the input-arbiter modules from SA as 

illustrated in Figure 5.14. 

 

  

 

 

 

 

 

 

5.3.3 Post Switch Allocator Circuits 

The micro-architecture of the Selection module is presented in Figure 5.15 that generates the 

credit and selection address of crossbar multiplexers (see Figure 1.5) related to an output-port of 

the router. When g_in3_out1 is asserted, the circuit generates the number 3 at the Sel output that 

leads the input-port 3 to be connected to output-port 1 in the crossbar switch (see Figure 1.5).  

 

 

 

 

 

 Figure 5.15:  Output-Port 1 of Selection Module  
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Moreover, a credit signal, cr_out is issued to the Switch Traversal (ST) module. The ST 

module issues a credit, credit-out signal to the 1
st
 output-port to store the flit in the associated 

downstream VC at the following clock events. Figure 5.16 shows the Grant module that 

generates the grant signal associated with the 3
rd

 input-port of the router. The asserted 

g_in3_out1 allows the flit of VC0 to transmit across the crossbar switch.  

 

 

 

5.3.4 FIFO Arbitration and VC Selector 

We discussed the selection of a VC from the input-port VCs in LLD and ViChaR in Chapter 

2. It is implemented in the VC-Selector module by employing a fixed priority arbiter as 

illustrated in Figure 2.16. The fixed priority arbiter is substituted with a Round Robin (RR) 

arbiter to ensure fairness and avoid traffic starvation as shown in Figure 5.17.  

 

 

 

 

 

However, selection of a VC from the input-port VCs in RDQ mechanism happens in the data 

flow mechanism as discussed in Section 4.1.1. It is based on the location of read-pointer and the 

state of data in the input-port as indicated in Figure 5.18. In fact, the RDQ-based VC-Selector is 

part of input-port mechanism, and it cannot be substituted with a RR arbiter.  
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Figure 5.17: RR-based VC-Selector Utilized in LLD and ViChaR.  
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The VC-req is updated according to the location of the flit data in the input-port buffer. This 

feature of RDQ VC-Selector requires the arbitration among the input-port VCs to follow a FIFO 

fairness priority [42]. In FIFO fairness priority, the requesters are granted in a FIFO order of 

their requests.  

Consider a scenario of data flow in an input-port as illustrated in Figure 5.19. There are 4 

VCs containing data flits. In LLD and ViChaR mechanisms, all the four VCs issue requests to 

VC-Selector. The VCs are sequentially selected due to RR priority employed in VC-Selector. 

For example, in Figure 5.19 VC0, VC1, VC2, VC3, VC0, VC1, VC2 and VC3 and their 

associated flits, H0, B1, B2, H3, B0, T1, B2 and B3 can become winner in the VC-Selector 

sequentially. On the other hand, the VCs in RDQ mechanism are selected according to the 

location of read-pointer and the position of data flits in the input-port buffer. Assume that the 

read-pointer is located at the rightmost side of buffer in Figure 5.19 and counts toward the left 

side of buffer, and a flit in the right side is stored sooner than a flit in left of the buffer. The VCs, 

i.e. VC0, VC0, VC0, VC1, VC0, VC3, VC2 and VC2 and their associated flits, H0, B0, B0, B1, 

T0, H3, B2 and B2 become winner in VC-Selector sequentially. The order of VC selection in 

this scenario follows the order of stored flits, which is a FIFO order. The write-pointer also 

counts from right to left. In this way, as read-pointer and write-pointer always count in a 

direction, the VC-Selector in RDQ router follows a FIFO fairness priority scheme. However, in 

the case of a blockage, the flits associated with a blocked VC remain in the buffer until the 

blockage is removed. When the blockage is removed, as the order of stored flits is not in a FIFO 

order, the flits of blocked VCs may be serviced late according to the location of read-pointer. 

The fairness of VC arbitration in a RDQ router is as strong as those of LLD and ViChaR routers, 

and the arbitration avoids traffic starvation. 

  

 

 

 

 

5.3.5 RDQ Router Arbitration 

 In conventional DAMQ architectures (such as LLD), when the requested output of a VC is 

blocked (i.e. no output credit), the arbiter issues a block signal that causes the input-port to select 

Figure 5.19: VC0, VC1, VC2 and VC3 Arbitration. RR for LLD and ViChaR and FIFO Priority in RDQ Routers.   
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any other available VC for service. No output credit means the corresponding VC-full of the 

downstream router is set. However, the RDQ arbiter will issue the block signal under two 

conditions i.e. either on losing switch arbitration to some other input-port or no output credit. 

This behavior of RDQ approach requires some extra hardware in the arbiter of the router as 

compared to LLD. The LLD arbiter updates a table at each clock cycle. The table consists of an 

array of registers where each bit represents the blocking state of a VC of the input-ports. Figure 

5.20a illustrates the LLD blocking circuit of one-bit register associated with VC1 of input-port 

3. If there is no output credit at each clock cycle, the VC-block signal is asserted, otherwise it is 

de-asserted. In our RDQ approach, the blocking circuit consumes extra hardware (an OR gate 

per VC) as shown in Figure 5.20b. When the requested output is closed or the input VC loses 

arbitration to other input-ports, the VC-block is asserted; otherwise, it is de-asserted. 

 

 

 

 

 

 

 

 

 

 

 

5.4 RDQ Based Router Architecture 

In this section, we present the micro-architecture of RDQ router. First of all, we investigate 

the effect of RDQ port and IRR arbiter presented in this chapter on the efficiency of NoC 

systems. As already discussed, one of the important contributions of our approaches is to 

provide a simpler NoC router architecture. This architectural simplicity of our approach also 

leads to higher speed (higher clock rates) of NoC circuitry that will be discussed in the following 

sub-sections, while presenting our RDQ router architecture. 

 

 5.4.1 Rapid NoC Circuit Design 

NoC architectures have been commonly presented in Globally Asynchronous Locally 

Asynchronous (GALS) design style [23], and we have also followed the GALS style in our 

router designs for 2D mesh NoC. In NoC GALS designs, the routers are locally synchronous 
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(thus they are easier to be designed), but the NoC architectures are globally asynchronous, i.e. 

there can be varied clock rates for routers. In other words, the routers are independent in terms 

of clock design, and the faster clock rates of routers leads to the faster speed of NoC. NoC 

architecture includes a network of switches (routers) that are interconnected by data links as 

illustrated in Figure 1.1a. The structures of data links can be either simple wires or complex 

communication mechanisms like FIFOs. The data links in our design are considered as wires, 

and we assume that they do not affect the speed or performance of NoC. Regarding the NoC 

routers, we already described their structures in Chapter 1 and mentioned that the NoC routers 

investigated in this thesis consist of some input-ports, an arbiter and a crossbar switch as 

illustrated in Figure 5.21 and Figure 5.22. The NoC router illustrated in Figure 5.21 utilizes the 

LLD input-port and HDRA arbiter related to the past approaches. The router is called LLD-

HDRA. The two proposed components i.e. the RDQ input-port and IRR arbiter are utilized in 

our NoC router that is called RDQ-IRR and illustrated in Figure 5.22. Except the Routing 

Computation (RC), Virtual channel Allocation (VA), and Switch Traversal (ST) modules, the 

other components of the routers shown in Figures 5.21 and 5.22 have been discussed in detail in 

the earlier sections of this chapter. In the following sections, we discuss the structures of RC and 

VA router components that determine the speed of router and consequently the NoC. 

5.4.2 Fast Router Circuits 

The digital circuits of a router can be divided into synchronous and asynchronous 

components. In asynchronous components, the state of the components can change at any time 

in response to their changing inputs. Therefore, the speeds of these circuits are almost 

proportional to the ASIC technology of silicon. For example, an asynchronous circuit created 

with 15nm IBM technology will run faster than that of 32nm IBM technology. The state of 

synchronous components changes only in response to their clock signals. Therefore, the speeds 

of these circuits are determined based on their maximum possible clock rates (fmax). The fmax is 

determined by critical path, i.e. the slowest logic path in the circuit. In an NoC router consisting 

of some pipelined components, the synchronous components determine the speed of the router. 

The synchronous components of a NoC router are those that utilize synchronous data buffers 

(e.g. registers or RAM). The crossbar switch component has an asynchronous architecture in our 

design, and it does not affect the speed of router.  
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Figure 5.21: A LLD-HDRA Router Micro-Architecture. 
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Figure 5.22: A RDQ-IRR Router Micro-Architecture. 
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However, two components i.e. input-port and arbiter utilize synchronous buffers to temporarily 

store data flits or information and affect the speed of a router. These two components are 

investigated in terms of their pipelined stages as part of our research. 

5.4.3 Pipelined RDQ-based Routers 

 The RDQ port model that is an updated and faster version of the EDVC port behaves like a 

static model as discussed in Chapter 4 for the EDVC router. Therefore, the RDQ-based router 

pipeline consumes two clock events in a squeezed scheme if the arbitration takes one clock 

event (step), as illustrated in Figure 5.23a. We have also explained that the LLD and ViChaR 

port models are table based where their associated router pipeline consumes four clock events in 

a squeezed design if the arbitration takes one clock event (step), as shown in Figure 5.23b. In 

this way, the pipeline stages in LLD and ViChaR routers take two clock events longer than that 

of RDQ router, where arbitration is assumed to take one clock event.  

  

 

 

 

 

 

 

 

 

 

 The arbitration stages in our implementation follow the timing diagram of Figure 1.13. Each 

head flit of a packet must proceed through the stages of Routing Computation (RC), Virtual 

channel Allocation (VA), Switch Allocation (SA), and Switch Traversal (ST). To better 

illustrate the pipelined stages of our arbiter, the micro-architectures of the aforementioned stages 

are described in the following section. 
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5.4.4 Pipeline Stages Micro-Architectures 

 The structure of RC can be a simple multiplexer as shown in Figure 5.24, because a simple 

XY routing algorithm is considered for communication in our 2D mesh NoC design. The figure 

illustrates that the ID of destination, Flit_info (which is already stored in the header flit of a 

packet) is compared with the ID of the current router. Then, the requested output-port is 

generated at the RC output according to XY routing algorithm. 

 

 

 

 

 

The structure of VA can be a fixed-priority arbiter as given in Figure 5.25. The first free VC of 

the downstream router input-port is selected in an ascending order. The fixed-priority arbiters 

are simple and have been discussed in detail in Section 2.6.1. The SA module includes the 

Decoder, Output-arbiter, Selection and Grant modules that have been presented in Section 5.3.  

 

 

 

 

 

 

 

 

 

 The structures of arbiter sub-modules of routers as given in Figures 5.21 and 5.22 such as RC 

(see Figure 5.24), VA (see Figure 5.25), Decoder (see downside of Figure 5.13), output-arbiter 

(see Figures 2.26, 2.27, 2.28, 2.29, 2.30 and 5.9), Selection (see Figure 5.15) and Grant (see 
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Figure 5.16) illustrate that the circuit routes from the inputs of RA to the outputs of Selection, 

Grant or VA modules are not sequential. In other words, the outputs of Selection, Grant or VA 

modules are not relative to clock cycle. Therefore, the RC, VA and SA stages can determine the 

winner VC and winner input-port of each output-port in a single iteration.  In this way, the data 

flit related to winner VCs can get out of the router at the following clock event, and the VCs can 

make new requests. There is no intermediate register among the paths from the inputs of RC to 

the outputs  of SA, and the registers related to the output-arbiters only keep the state of SA for 

the following clock event (Figure 5.9 and 5.14). Among the longest path that passes through the 

RC (Figure 5.24), VA (Figure 5.25) and SA (Figure 5.14, 5.15 and 5.16), there is no 

intermediate registers. In this way, all the arbitration stages are performed in one clock event.  

 At the end of SA stage, if the output-arbiter output associated with a VC is active, the 

following actions are performed according to the kind of flits.  

 If the request is from a header flit, the associated RC and VA outputs are reserved, and 

the associated downstream router VC, grant, and crossbar address are issued.  

 If the request is from a body flit, the associated downstream router VC, grant, and 

crossbar address are issued. 

 If the request is from a tail flit, the reservations are removed, and the associated 

downstream router VC, grant, and crossbar address are issued.  

 The credit, credit_out signals associated with grants are issued at ST stage to store the data in 

the downstream input-port at the following clock event. In fact, the signals, cr_out generated in 

Selection module of Figure 5.15 are repeated in the ST module at the following clock event. In 

the following sections, we experiment the above features and advantages of our approaches, 

especially their effects on the performance of NoC system are investigated. 

5.4.5 Communication in RDQ-IRR router 

 In this section, RDQ-IRR data flow mechanism is presented when there is no contention in 

the NoC communication and the buffer is empty. We employ asynchronous communication 

among the routers. The following steps describe the working of RDQ-IRR as illustrated in 

Figure 5.22 according to the timing diagram given in Figure 5.26. 
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Flit Arrival State (e.g. Clock edge #1 of Figure 5.26) 

1) A Credit-in signal causes the incoming flit (e.g. flit F1) and its VC-ID to be saved in a 

slot pointed by the write-pointer. Meanwhile, the corresponding bit of the Slot-State 

table is set. 

2) When the read-pointer points to a slot and its Slot-State bit is set (occupied slot), a 

request signal is issued by the VC-Selector module according to the VC-ID. The read-

pointer also causes the flit to appear at the output of central buffer that leads the flit 

information (flit-info signals) to be read by the arbiter.  

3) The RC module of the arbiter will read the flit information and determine its requested 

output-port. 

4) The VA module reads the RC output and state of VCs in the downstream router, and 

determines if a free VC of the downstream router input-port is available. 

5) If the VC is available, then the SA module (Decoder and Output-Arbiter modules) reads 

the RC output and VC-req signals and performs arbitration among the winner VCs for 

the output-ports. (see Sections 5.3.1and 5.3.2) 

6) The Selection module reads the SA output and determines the associated address for the 

crossbar switch module.  

7) The Grant module reads the SA output and sets the grant signals for the winner VCs. 

8) The VC-block module generates the VC-block signals under two conditions.  

 Losing switch arbitration to some other input-ports. It happens when VC-req is set, 

but its associated grant is reset.   

 

Figure 5.26: Three Steps of RDQ-IRR VC Flow Control. 
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 No output credit (see Section 5.3.5). It is determined by RC, VA and Downstream-

VC-state outputs as illustrated in the VC-block module of Figure 5.22.  

9) The ST module reads the Cr-out signals and keeps record of them to issue credit-out 

signals after two clock events. 

Flit Departure State (e.g. Clock edge #2 of Figure 5.26) 

 All the signals produced in steps 2 to 8 are issued to their associated modules as described 

below. 

10) A grant signal causes the associated flit (e.g. flit F1) to exit the input-port and the 

corresponding bit of the Slot-State table is reset. 

11) The Sel signals cause the crossbar module to switch the input-ports to their associated 

output-ports. 

12) The VC-ID-out signals carry the VC-ID of the flit. 

13) In case of no output credit or arbitration loss, the VC-block signals cause the associated 

VC to become blocked (there is no grant signal). 

Credit and Next Flit Arrival State (e.g. Clock edge #3 of Figure 5.26) 

14) The credit-out signals are issued by the ST module and cause the transferred flits (e.g. 

flit F1) to be stored in the downstream router input-ports’ buffers. 

15)  Steps 1 to 9 are repeated for the next incoming flits (e.g. flit F2, F3, etc.).  

5.5 RDQ and IRR based NoC Experimental Results 

 Our novel RDQ and IRR organizations and structures presented in this dissertation are 

modelled and experimented in three parts here. First of all, we evaluate the IRR arbiter as 

compared to some previous arbiter designs in terms of its speed and hardware overhead. The 

second part of our experiment is related with RDQ based input-port organization. RDQ input-

port is investigated and evaluated as compared to some previous input-port designs in terms of 

performance and hardware requirements. Finally, the overall effects of employing IRR and RDQ 

input-port are investigated on the performance, hardware and speed of NoC systems.  

5.5.1 IRR Arbiter Evaluation 

IRR arbiter is evaluated and compared with other arbiters. To analyze the speed, area and 

power overhead, all the arbiters are implemented in System Verilog and synthesized using the 
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Synopsys Design Compiler for 90nm Synopsys Generic Library and Altera FPGAs (Stratix V). 

The resulting designs operate at 400 MHz and 1.2 Volt. Different structures of each arbiter are 

synthesized, and their results for total chip area, critical path delay, and power (dynamic as well 

as static) consumption are listed in Tables 5.4 and 5.5. The Synopsys Design Compiler executes 

various algorithms iteratively to find an optimum architecture. There is always a trade off among 

the power, area and critical path characteristics of a design. This trade off behaviour has dictated 

us to consider the arbiter structure that has smaller power, area and critical path delay as an 

efficient design. The critical path is the limiting factor preventing us from decreasing the clock 

period. For a fair comparison, we group the arbiters into strong and weak fairness arbiters and 

present their results in Tables 5.4 and 5.5. Table 5.4 lists the IRR, RoR and Matrix arbiter 

characteristics. We listed two synthesised versions of IRR at 16 and 32-input configurations 

indicating the IRR having efficient area, power and timing characteristics than RoR and Matrix 

arbiters. 

Table 5.4. Hardware Characteristics of Strong Fairness Round Robin Arbiters 

 

Input 

 

Design 

ASIC design (90 nm Generic Library) FPGA design (Stratix V) 

Total Cell Area (µm
2
) Power (µW)

a 
Critical path(ns) Comb. Element Reg. (bits) 

 

4 

RoR 299 76 0.99 13 4 

IRR 295 53 0.54 9 2 

Matrix 431 80 0.56 16 6 

 

8 

RoR 1066 204 0.90 25 8 

IRR 705 105 0.66 37 3 

Matrix 1838 313 0.73 58 28 

 

 

16 

RoR 1846 251 1.46 56 16 

IRR 

 

1390 155 1.24 95 4 

2140
b 

182
b 

0.71
b 

Matrix 7817 1242 0.73 238 120 

 

 

32 

RoR 3175 384 2.39 109 32  

IRR 

 

2859 219 1.23 205 5 

4224
b 

351
b 

0.89
b 

Matrix 31498 4663 0.92 958 496 

IRR/RoR 19% saving 44% saving 43% shorter 28% extra 73% saving 

IRR/Matrix 70% saving 75% saving 7% shorter 48% saving 90% saving 

a 
Frequency for power estimation= 400 MHz. 

b 
The second version of IRR for comparison with the Matrix arbiter. 
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It consumes on average 19% and 70% less chip area, 44% and 74% less power (static and 

dynamic), and 43% and 7% shorter critical path delay as compared to RoR and Matrix arbiters 

respectively. The results of 4-input arbiters follow the analytical results of Table 5.3. We 

consider IRR_WF for comparison with the HDRA, PRRA and IPRRA arbiters. Table 5.5 shows 

the analysis results indicating that IRR_WF is more efficient as compared to PRRA and IPRRA 

arbiters for all the input configurations.  

Table 5.5. Hardware Characteristics of Weak Fairness Round Robin Arbiters 

In 

put 

 

Design 

ASIC design (90 nm Generic Library) FPGA design (Stratix V) 

Total Cell Area (µm
2
) Power (µW)

a 
Critical path delay (ns) Comb. element Registers (bits) 

 

 

4 

 

IRR_WF 278 45 0.48 9 2 

HDRA 352 117 0.6 11 4 

PRRA 344 85 0.79 9 4 

IPRRA 373 74 0.69 9 4 

 

 

8 

IRR_WF 667 100 0.61 37 3 

HDRA 754 172 0.72 28 8 

PRRA 777 158 1.02 24  8  

IPRRA 848 153 0.87 28  8 

 

 

16 

IRR_WF  1478 179 0.77 95 4 

HDRA 1588 249 0.85 62 16 

PRRA 1683 262 1.25 56 16 

IPRRA 1809 267 1.05 73 16 

 

 

32 

IRR_WF  2801 211 1.11 205 5 

3831
b 

315
b 

0.93
b 

HDRA 3204 398 0.94 125 32 

PRRA 3466 442 1.48 126  32  

IPRRA 3719 454 1.27 159  32  

IRR_WF/HDRA 

at 4, 8 and 16-inp. 

Saving 

13% 

Saving 

44% 

Shorter 

15% 

Extra 

12% 

Saving 

63% 

IRR_WF/PRRA 16% 46% 34% 33% 73% 

IRR_WF/IPRRA 22% 45% 24% 23% 73% 

a 
Frequency for power estimation= 400 MHz. 

b 
IRR_WF for comparison with the HDRA arbiter. 

It saves on average 16% and 22% less chip area, 46% and 45% less power, and 34% and 24% 

shorter critical path delay as compared to PRRA and IPRRA arbiters. The IRR_WF is also more 
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efficient as compared to HDRA arbiter for various input arbiter structures. It saves 13% less 

chip area, 44% less power, and 15% shorter critical path delay on average. Overall, IRR and 

IRR_WF arbiters consume the least amount of power among all the arbiters due to its usage of 

fewer registers. The fewer number of registers wed in IRR also leads to simpler design and chip 

layout due to a simple clock tree organization. To illustrate the clock tree advantage, we 

measured the maximum frequency, fmax of IRR_WF and HDRA for (32-input configuration) on 

FPGA implementation. The IRR_WF arbiter can operate at 15% higher frequency as compared 

to HDRA when implemented on an FPGA. 

5.5.2 RDQ based Input-Port Implementation and Results 

Hardware characteristic of RDQ based router input-port is compared with three DAMQ based 

input-port and VC organization mechanisms commonly known as LLD [14], ViChaR [13] and 

EDVC [55]. We have implemented the input-port micro-architectures using SystemVerilog. The 

hardware parameters are determined by employing Synopsys Design Compiler for generic 32nm 

NAND technologies. Also, some parameters are derived from Quartus-II for Stratix-V FPGA. 

The setup constrains as well as CMOS technology parameters of global operating voltage of 

0.85V and time period of 2.5ns (400MHz) is applied for input-port design of all the four 

mechanisms including LLD, ViChaR, EDVC and RDQ. The width of slot buffer is set to the flit 

size i.e. 16-bits. The resulting characteristics of input-port micro-architecture are listed in Table 

5.6 for different buffer size in terms of slots. The RDQ input-port has the optimum chip area, 

power and timing characteristics among all the other input-ports. On average, the RDQ input-

port consumes 13% less IC area, 21% less power and has 49% less critical path delay for an 

ASIC design. It also has 10% less registers for an FPGA design as compared to LLD based 

input-port. In terms of FPGA combinational elements, the RDQ employs on average 24% fewer 

elements as compared to ViChaR and EDVC [13, 55]. An interesting point can be concluded 

from the results presented in table.  

Basically, 49% less critical path delay will allow an RDQ input-port to operate two times 

faster than the LLD port. The critical path delay of EDVC and RDQ includes the read-pointer 

logic. When the size of input-port buffer increases, the multiplexing stages of EDVC fast read-

pointer grows exponentially and the increase in the critical path delay of EDVC is also more 

than RDQ input-port. RDQ approach also consumes one clock cycle less than LLD and ViChaR 

approaches for flit arrival and departure.  
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Table 5.6. Input-Port Characteristics for DAMQ Approaches 

 

Type of input-port 

ASIC design  FPGA design  

Area (µm
2
) Power (µW)

a 
Delay (ns) Combinational elements Registers (bits) 

LLD 4-slot 1883 48 0.83 95 112(64
b
) 

ViChaR 4-slot 1917 48 1.07 75 132(64
b
) 

EDVC 4-slot 1515 35 0.45 86 108(64
b
) 

RDQ 4-slot 1469 34 0.27 84 108 (64
b
) 

LLD 8-slot 3305 90 1.26 180 204(128
b
) 

ViChaR 8-slot 6139 151 1.62 306 392 (128
b
) 

EDVC 8-slot 3132 72 0.69 206 186(128
b
) 

RDQ  8-slot 2913 65 0.55 188 186 (128
b
) 

LLD 16-slot 6147 154 1.16 332 388(256
b
) 

ViChaR 16-slot 24265 558 2.29 548 896 (256
b
) 

EDVC 16-slot 6551 146 1.06 441 340(256
b
) 

RDQ 16-slot 5518 126 0.94 380 340(256
b
) 

LLD 32-slot 11968 289 2.06 689 769 (512
b
) 

ViChaR 32-slot 109361 2296 2.42 1183 2040 (512
b
) 

EDVC 32-slot 14040 311 1.52 964 646(512
b
) 

RDQ 32-slot 11141 260 0.94 793 646 (512
b
) 

a 
Frequency for power estimation= 400 MHz. 

b 
SRAM registers. 

An important characteristic of high scaled CMOS technology like 32/28 nm is that the static 

(leakage) power supersedes the dynamic power at 400 MHz frequency. For example, the 

average dynamic power of input-ports includes almost 10% of their total power. This 

characteristic indicate that the power is more or less proportional to the hardware overhead of a 

design than its functionality. In other words, the more cells consume more static power and the 

synthesis results given in Table 5.6 also confirm it. The ViChaR architecture is expensive in 

terms of hardware cost among all the past architectures (i.e. LLD, ViChaR and EDVC). An extra 

OR gate per VC in the arbiter (mentioned in Section 5.3.5) is ignored in our comparison due to 

its tiny hardware usage as compared to the overall input-port hardware.  

5.5.3 RDQ based NoC Performance 

We compare the performance of three DAMQ based VC organization mechanisms (i.e. LLD, 

ViChaR and EDVC) with the RDQ mechanism. Simulation is performed by employing 
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ModelSim to measure various NoC performance metrics. We explore and compare our RDQ 

approach for 8×8 mesh topologies and for some commonly used traffic patterns such as 

Uniform-random, Tornado and Complement [16, 55]. Tornado and Complement traffic 

benchmarks create high contention traffic uniformly in the NoC as described in Section 4.5.2. 

We have measured the performance metrics of throughput and latency. Throughput is measured 

by the rate of packets received to the maximum number of packets being injected at a specific 

time. The average latency is measured by the average time delays associated with the departure 

and arrival of a specific number (e.g. 2048) of packets in the NoC. The link delay between two 

routers is negligible as compared to the delay of a router and it is ignored. The communication 

of packets is based on wormhole switching where the channel width is equal to the flit size (16 

bits). A packet consists of 16 flits, and each input-port includes one central 8-slot buffer. There 

are four VCs per input-port except for ViChaR that has 8 VCs (We have already explained that 

the number of VCs in ViChaR is equal to the number of input-port buffer slots). The throughput 

and latency are measured for flit injection rates per time unit (20 ns) and presented in Figures 

5.27 and 5.28. For example, flit injection rate 8 means each node (source core) injects 8 flits per 

20ns. The flit arrival/departure for RDQ and EDVC routers is one cycle as compared to two 

cycles for LLD and ViChaR routers. 

In spite of higher VC numbers of ViChaR (VC number is equal to the number of slots), the 

ViChaR has the lower performance as compared to LLD especially at high injection rate. This is 

because the ViChaR mechanism does not employ any reserved slot for each VC. When the 

traffic is populated, the probability of monopolizing an input-port by a growing VC is increased. 

Consequently, the performance of ViChaR decreases as compared to that of LLD. 

The performance of EDVC is lower than LLD but higher than ViChaR at high injection rates 

for Complement and Tornado traffics. This is different as compared to the results in Chapter 4 

(Figures 4.22 to 4.25). The only difference between two experiments is the VC-Selectors utilized 

by LLD and ViChaR mechanisms. The LLD and ViChaR VC-Selectors follow a fixed priority 

scheme in the experiments of Chapter 4 and a RR priority scheme is used in the experiment here 

(see Figure 5.21). The performance metrics of LLD mechanism are improved by the RR based 

VC selection and become better than EDVC. For example, the LLD has 63%, 48% and 70% 

lower average latency as compared to EDVC at high injection rates for Tornado, Complement 

and Uniform-random traffic patterns respectively.  
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(c) Latency (Uniform-random Traffic) 
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(a) Latency (Tornado Traffic) 
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(b) Latency (Complement Traffic) 
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Figure 5.27: Latency for Tornado, Complement and Uniform Random Traffic in 8x8 Mesh Topology. 
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(b) Throughput (Complement Traffic) 
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(a)Througput (Tornado Traffic) 
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Figure 5.28: Throughput for Tornado, Complement and Uniform Random Traffic for 8x8 Mesh Topology. 
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The results of Figures 5.27 and 5.28 indicate the highest performance for RDQ for all the traffic 

patterns. For example, the average latencies of RDQ are 51%, 68% and 57% less than those of 

LLD for Tornado, Complement and Uniform-random traffics respectively. The average 

throughput of RDQ is higher than those of LLD. It is 53%, 56% and 55% higher in Tornado, 

Complement and Uniform-random traffic patterns respectively. For higher injection rates, more 

flits are injected, and the NoCs become populated producing higher contention. There is back-

pressure associated with the blocked packets in the RDQ communications. The back-pressure at 

high contention shows some performance improvements [55]. First of all, the probability of a 

monopoly of an input-port buffer by a growing VC is reduced. Secondly, the free packets 

receive more buffer free space to pass through the NoC. The EDVC has lower performance as 

compared to the RDQ. This is due to the fact that the RDQ mechanism has been improved as 

discussed in Section 5.1.3. The average latencies of RDQ are 82%, 84% and 87% less than those 

of EDVC for Tornado, Complement and Uniform random traffic patterns respectively. 

5.5.4 NoC Evaluation Result 

One way to increase the speed of NoC circuits is by using superior technology. However, it 

can be also achieved by improving the architectural components of NoC system by utilizing 

simpler and smaller circuits. This may lead to even more impressive improvement in other 

metrics of NoC systems as we are investigating in the following experimental sections. 

We structure eight types of NoCs based on the conventional and novel approaches discussed 

in this dissertation. The hardware structure and performance of these NoCs are evaluated and 

compared to illustrate the efficiency of our proposed approaches. As discussed earlier, the NoC 

architectures follows GALS scheme and the links between routers are assumed to have no effect 

on the performance and hardware requirements of the NoCs. Therefore, the architectures of 

router are the main factors in the speeds (clock rate) and the hardware overhead. The 

architectures of seven NoCs are presented as follows. The first NoC is called RDQ-IRR and 

includes the RDQ input-port and IRR arbiter in its router architectures. The second NoC is 

called EDVC-IRR and its structure is based on the EDVC input-port and IRR arbiter 

architectures. The third, fourth and fifth NoCs utilize LLD input-port and one of the RoR, 

Matrix or HDRA arbiters in their structures, and we call them LLD-RoR, LLD-Matrix and LLD-

HDRA according to the arbiters utilized in routers.  The remainder of the NoCs utilize ViChaR 

input-port and one of the RoR, Matrix or HDRA arbiters, and we call them ViChaR-RoR, 
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ViChaR-Matrix and ViChaR-HDRA based on their utilized arbiters. The crossbar switch 

module has an identical structure due to the same input-port buffer width (16 bits) and the same 

NoC topology i.e. 2D mesh.    

5.5.5 RDQ-IRR based NoC Hardware Requirements     

All the above mentioned eight NoCs are evaluated based on three hardware characteristics 

including power consumption, chip area, and speed (maximum frequency) that are measured 

with Synopsys Design Compiler. ASIC technology libraries such as 15nm NanGate are 

employed to illustrate our evaluation [57]. As discussed earlier, the routers mainly represent the 

hardware characteristics of the NoC systems in our implementation. Therefore, the hardware 

parameters related to experimental results are associated with the routers. The setup constrains 

as well as CMOS technology parameters such as global operating voltage of 0.8V and time 

period of 1 ns (1 GHz) is applied to all the components evaluated. The width of the slot buffer is 

equal to the flit size of 16-bits. 

The hardware characteristics of various modules of the NoC router are evaluated, and the 

results are presented in Tables 5.7 and 5.8. Table 5.7 results are sorted according to the VC and 

slot numbers utilized in each input-port. For example, the input-port (port_LLD_HDRA_4v_4s) 

presents the hardware characteristics of a LLD-HDRA input-port utilizing 4 VCs and having 

four slots in its buffer. The LLD-HDRA input-port is based on LLD mechanism and utilizing 

HDRA arbiter in its VC-Selector (see Figure 5.21). As we mentioned earlier in Section 5.3.4, the 

EDVC and RDQ input-ports do not utilize separate VC-Selector. LLD and ViChaR input-ports 

that utilize Matrix arbiter consume more chip area but have less critical path delay. The trend 

among the (router hardware) characteristics shown in Table 5.7 follows the trend given in Tables 

5.4, 5.5 and 5.6. The RDQ based input-ports shows the optimum hardware characteristics as 

compared to the other input-ports with the same number of VCs and buffer slots. An important 

difference between the LLD and ViChaR input-ports listed in Table 5.6 and Table 5.7 is the 

(utilization of fixed priority arbiter based) VC-Selectors in the input-ports of Table 5.6. The 

fixed priority arbiter is smaller than the RR arbiter, and we expect that the RDQ input-ports of 

Table 5.7 will be more effective and efficient.  

The main differences among the architectures of arbiters are the RR arbiters utilized in their 

SA modules, some extra OR gates used in RDQ and EDVC VC-block modules and the number 

of utilized VCs.  
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Table 5.7. Input-port Hardware Characteristics 

VC 

number 

Slot 

number 

Input-port model ASIC design 15 nm NanGate Library 

Area (µm
2
) Power

(a)
(uW)

 
Critical path (ps) 

 

 

 

 

 

 

 

4 

 

 

 

 

4 

 

port_LLD_RoR_4v_4s 376 172 111 

port_LLD_Matrix_4v_4s 382 173 97 

port_LLD_HDRA_4v_4s 377 183 109 

port_ViChaR_RoR_4s 391 202 135 

port_ViChaR_Matrix_4s 397 206 116 

port_ViChaR_HDRA_4s 392 220 130 

port_EDVC_4v_4s 290 64 70 

port_RDQ_4v_4s 281 59 56 

8 port_LLD_RoR_4v_8s 632 252 123 

port_LLD_Matrix_4v_8s 638 254 112 

port_LLD_HDRA_4v_8s 633 264 121 

port_EDVC_4v_8s 596 96 88 

port_RDQ_4v_8s 566 91 73 

16 port_LLD_RoR_4v_16s 1197 435 147 

port_LLD_Matrix_4v_16s 1202 435 133 

port_LLD_HDRA_4v_16s 1198 453 140 

port_EDVC_4v_16s 1281 175 132 

port_RDQ_4v_16s 1144 159 100 

32 port_LLD_RoR_4v_32s 2409 851 195 

port_LLD_Matrix_4v_32s 2415 847 195 

port_LLD_HDRA_4v_32s 2410 863 195 

port_EDVC_4v_32s 2714 359 168 

port_RDQ_4v_32s 2388 324 117 

8 8 port_LLD_RoR_8v_8s 881 392 172 

port_LLD_Matrix_8v_8s 937 437 142 

port_LLD_HDRA_8v_8s 887 421 174 

port_ViChaR_RoR_8s 1194 741 195 

port_ViChaR_Matrix_8s 1237 777 162 

port_ViChaR_HDRA_8s 1198 771 190 

port_EDVC_8v_8s 623 102 89 

port_RDQ_8v_8s 592 95 73 

16 port_LLD_RoR_8v_16s 1424 555 179 

port_LLD_Matrix_8v_16s 1469 595 149 

port_LLD_HDRA_8v_16s 1430 586 173 

port_ViChaR_RoR_16s
(b) 

4578 3016 302 

port_ViChaR_Matrix_16s
(b)

 4814 3217 232 

port_ViChaR_HDRA_16s
(b)

 4589 3054 265 

port_EDVC_8v_16s 1333 185 132 

port_RDQ_8v_16s 1197 167 100 

32 port_LLD_RoR_8v_32s 2667 983 202 

port_LLD_Matrix_8v_32s 2700 1021 202 

port_LLD_HDRA_8v_32s 2673 1024 202 

port_ViChaR_RoR_32s
(b)

 19004 13258 454 

port_ViChaR_Matrix_32s
(b)

 19888 14062 327 

port_ViChaR_HDRA_32s
(b)

 19024 13291 343 

port_EDVC_8v_32s 2820 377 169 

port_RDQ_8v_32s 2488 339 120 

(a) Frequency for power estimation= 1GHz; the static power is around 10% of total power. 

(b) The number of VCs of ViChaR input-port is equal to the number of slots of input-port. 
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For example, the arbiter, IRR_8v utilizes 8 VC, an IRR arbiter in its SA module, and 5 OR gates 

in VC-block modules as illustrated in Figure 5.22. Therefore, we expect that the trend among the 

arbiter characteristics given in Table 5.8 follows the trend among the RR arbiter characteristics 

of Tables 5.4 depending on the number of VCs. The arbiters, IRR_WF_4v and IRR_WF_8v 

consume the optimum power and chip area as compared to other arbiters. An important point is 

related to the same critical path delays of 4-VC and 8-VC arbiters as shown in Table 5.8 results. 

This is due to the same RR arbiters (5-input) used in both 4-VC and 8-VC arbiters. In Section 

5.3.2, we described that the size of RR output-arbiters (used in SA) is equal to the number of 

input-ports of the router. The crossbar module does not have any critical path delay as it does 

not utilize any register in its structure (see Figure 1.5). 

Table 5.8. Arbiter Hardware Characteristics 

VC 

Number 

Router Arbiter Model ASIC design 15 nm NanGate Library 

Area (µm
2
) Power

(a)
 (uW)

 
Critical path (ps) 

4 Matrix_4v 773 436 36 

RoR_4v 701 377 58 

HDRA_4v 710 432 56 

IRR_4v 712 366 42 

IRR_WF_4v 701 359 40 

8 Matrix_8v 2092 877 36 

RoR_8v 2020 817 58 

HDRA_8v 2029 874 56 

IRR_8v 2031 806 42 

IRR_WF_8v 2020 798 40 

4 or 8 crossbar 104 35 0 

(a) Frequency for power estimation= 1GHz; the static power is around 10% of total power. 

  

 One can observe that the critical path delays of the arbiters shown in Table 5.8 are less than 

those of the corresponding input-ports of Table 5.7 despite their higher area and power 

characteristics. For example, the critical path of arbiter Matrix_4v is almost half of the 

port_LLD_Matrix_4v_4s critical path. This is due to two features of our arbiters. First of all, the 

SA module is separable, while reduces the SA logic complexity as described in Section 5.3. 

Secondly, the input-arbiters of SA are accommodated in the input-port as discussed in Section 

5.3.2. Therefore, considering the critical path delays of input-ports, arbiters and crossbar switch 

modules, the critical path delays of input-ports determine the maximum operating frequency, 
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fmax of the routers as listed in Table 5.9. The power and area characteristics of each router given 

in Table 5.9 is calculated by the summation of 5 input-ports, an arbiter, and a crossbar switch 

characteristics listed in Tables 5.7 and 5.8. Table 5.9 also lists the advantage rate of RDQ-IRR 

router as compared to the other routers. One can see that the RDQ-IRR routers have at least 17% 

less chip area, 45% less power consumption, and 73% faster frequency as compared to the LLD 

and ViChaR routers for 4-VC and 4-slot implementations. For the 8-VC and 8-slot buffer 

implementations, they have at least 22% less chip area, 53% less power consumption, and 95% 

faster frequency as compared to the LLD and ViChaR routers. We ignore the other VC and slot 

configurations of routers for the hardware implementation results listed in the table. 

 

Table 5.9. Router Characteristics and Advantage Rate 

VC 

Number 

Slot 

Number 

NoC Router 

model 

ASIC design 15 nm NanGate Library RDQ-IRR Advantage Rate 

Area  

(µm
2
) 

Power
 (a)

 

(uW)
 

Critical path  

(ps) 

Area 

 (saving) 

Power 

( saving) 

Frequency 

(faster) 

 

 

 

 

4 

 

 

 

 

4 

LLD-RoR 2684 1272 111 17% 45% 98% 

LLD-Matrix 2787 1336 97 20% 48% 73% 

LLD-HDRA 2699 1382 109 18% 50% 95% 

ViChaR-RoR 2759 1422 135 19% 51% 141% 

ViChaR-Matrix 2862 1501 116 22% 54% 107% 

ViChaR-HDRA 2774 1567 130 20% 56% 132% 

EDVC-IRR 2266 721 70 2% 3% 25% 

RDQ-IRR 2221 696 56 N/A N/A N/A 

 

 

 

 

8 

 

 

 

 

8 

LLD-RoR 6528 2812 172 22% 53% 136% 

LLD-Matrix 6881 3097 142 26% 58% 95% 

LLD-HDRA 6568 3014 174 22% 56% 138% 

ViChaR-RoR 8093 4557 195 37% 71% 167% 

ViChaR-Matrix 8381 4797 162 39% 73% 122% 

ViChaR-HDRA 8123 4764 190 37% 72% 160% 

EDVC-IRR 5250 1351 89 3% 3% 22% 

RDQ-IRR 5095 1316 73 N/A N/A N/A 

(a) Frequency for power estimation= 1 GHz; the static power is around 10% of total power. 

 

5.5.6 Performance Evaluation of RDQ-IRR NoC     

The main metrics of NoC performance are latency and throughput, which are measured for 

our NoC evaluation by employing the ModelSim platform described in Section 5.5.3. The other 

setup configurations such as the NoC topology, packet communication, packet structure also 

follows the experimental setup employed in Section 5.5.3.    

 We explore and compare various NoCs mentioned earlier such as RDQ-IRR, EDVC-IRR, 

LLD-RoR, LLD-Matrix, LLD-HDRA, ViChaR-RoR, ViChaR-Matrix and ViChaR-HDRA for 
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8×8 NoC mesh topologies and for some commonly used traffic patterns such as Uniform-

random, Tornado and Complement. In this experiment, the performance metrics of each NoC 

depends on its functional behaviour of the data flow mechanism and the timing characteristics 

associated with the router. In other words, the speed of NoC depends on the latency and 

throughput metrics. The critical path delays associated with the router of each NoC must be 

considered in the evaluation of NoC performance. Therefore, we test these NoCs under different 

clock rates according to the critical path delays associated with their routers. In this experiment, 

the performances parameters of aforementioned NoCs are evaluated and the results are shown in 

Figures 5.29 and 5.30. The clock rate has linear relation with the performance metrics. For 

example, if n packets passes through an NoC system during t times at the f clock rate, then at 

p×f clock rate, p×n packets passes through the NoC system during t times.  

As mentioned earlier, the experimental setup adjustments of the NoCs are the same as 

described in Section 5.5.3, except that the clock rates of the NoCs are different. Our experiments 

(not shown in this chapter) indicate that the LLD-RoR, LLD-Matrix and LLD-HDRA behave 

similar to each other in terms of functionality at the same frequency. This is because the RoR 

arbiter functionally behaves similar to the Matrix arbiter, and it is very close to the HDRA 

arbiter that has discussed in Section 5.2.4. Therefore, the LLD-Matrix with faster clock rate 

supersedes the LLD-RoR and LLD-HDRA NoCs in terms of performance. The same conclusion 

can be drawn for the ViChaR-MatrixNoC. Therefore, five fast NoCs that include LLD-Matrix, 

ViChaR-Matrix, EDVC-IRR and RDQ-IRR are selected for evaluation and comparison (see 

Table 5.9). The LLD-Matrix, ViChaR-Matrix, EDVC-IRR, and RDQ-IRR run at 514, 451, 820 

and 1000 MHz clock respectively with 8-VC configuration. These clock rates are corresponding 

to the critical path delays listed in Table 5.9.  

One can expect that the RDQ-IRR results presented in Figures 5.29 and 5.30 shows better 

performance than those of RDQ illustrated in Figures 5.27 and 5.28. This is due to two reasons. 

The same advantage discussed for RDQ in Section 5.5.3 is expected for the RDQ-IRR NoC in 

this section. Moreover, the RDQ-IRR NoC frequency employed for the results presented in this 

section is higher than those of the other approaches. However, the LLD-Matrix performance in 

Figures 5.29 and 5.30 become worse than the LLD performance shown in Figures 5.27 and 5.28. 

This is due to the lower frequency of LLD-Matrix as compared to EDVC-IRR and RDQ-IRR 

approaches.  
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(c) Latency (Uniform-random Traffic) 
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(a) Latency (Tornado Traffic) 
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(b) Latency (Complement Traffic) 

0 

2 

4 

6 

8 

10 

12 

1 2 3 4 5 6 7 8 

A
ve

ra
ge

 L
at

e
n

cy
 (

 2
.5

 u
s)

 

Inject Rate (Time Unit) 

LLD-Matrix  ViChaR-Matrix 

EDVC-IRR RDQ-IRR 

Figure 5.29: latency for Tornado, Complement and Uniform Random Traffic patterns in 8x8 Mesh Topology. 
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(b) Throughput (Complement Traffic) 
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(a)Througput (Tornado Traffic) 
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Figure 5.30: Throughput for Tornado, Complement and Uniform Random Traffic patterns in 8x8 Mesh Topology. 
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The average RDQ-IRR latencies are 85%, 86% and 89% less than those of LLD-Matrix for 

Tornado, Complement and Uniform-random traffic patterns respectively. The average 

throughputs of RDQ-IRR are 74%, 76% and 75% higher than those of LLD-Matrix for Tornado, 

Complement and Uniform-random traffic patterns respectively. The above results also support 

our conclusions regarding to the results of Sections 5.5.3 and 5.5.6. In other words, the average 

throughput of RDQ NoC is 55% higher than those of LLD NoC presented in Section 5.5.3, but 

the average throughput of RDQ-IRR is 75% higher than that of LLD-Matrix NoC presented in 

Section 5.5.6 for all traffic patterns. Also, the average latency of RDQ is 59% less than that of 

LLD in Section 5.5.3 when the average latency of RDQ-IRR is 87% less than that of LLD-

Matrix in Section 5.5.6 for all traffic patterns. 

5.6 RDQ-IRR Router based NoC Features 

The main features and advantages of our RDQ-IRR based NoC can be divided into three 

parts. Firstly, the RDQ input-port provides the following advantage and feature as compared to 

some previous approaches. 

 The RDQ improves our EDVC approach [55] in terms of functionality and lower 

hardware overhead. 

 The RDQ approach improves NoC performance considerably by adding a little 

hardware. 

 The RDQ mechanism employs logic circuits such as rapid read-pointer, write-pointer 

and other blocking circuits instead of tables to manage shared VC slots. 

 Our RDQ approach is simpler as compared to table-based mechanisms such as LLD 

[14, 18] and ViChaR [13]. The main components of the RDQ structure is the 

read/write pointer circuits, which are scalable that optimize the NoC design and 

timing performance. The RDQ is faster than table-based DAMQ approaches in terms 

of arrival/departure time delay. It saves one clock cycle for each flit arrival/departure 

from input-port. 

 There are no configuration constraints in the RDQ approach as compared to other 

DAMQ mechanisms. 

 The RDQ employs a simpler congestion avoidance mechanism. 
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 The RDQ approach avoids deadlock without reserving in default any buffer space for 

each VC 

Secondly, our IRR arbiter can be utilized for buffering and arbitration in NoC routers to 

ensure fairness and avoid traffic starvation. It has the following novel features. 

 The IRR arbiter has the same functionality as conventional RR arbiters. 

 The IRR approach is fast and it requires less hardware as compared to other arbiters. 

 The IRR arbiter provides faster arbitration, whereas the arbitration components has 

dominant role in determining the speed of routers and consequently NoC systems. 

 The micro-architecture of IRR arbiter scales logarithmically (log2) with the number 

of input-ports as compared to a conventional round robin arbiter that scales with the 

number of input-ports. 

 The IRR architecture has the capability to present both strong and weak fairness 

arbitrations. 

 The IRR arbiters consume less power due to fewer numbers of buffers employed. 

Finally, we have proposed an efficient and fast DAMQ router architecture called RDQ-IRR 

whose main features are given below. 

 The arbitration among the VCs of RDQ-IRR routers follows a FIFO type operation. 

 The arbitration in the switch allocation module of RDQ-IRR routers ensures strong 

fairness and avoids traffic starvation.  

 The RDQ-IRR router arbiter architecture benefits from easy separation or pipeline, 

and it is much fast that made it suitable for the NoC applications where lower latency 

is critical.   

 The flit arrival/departure in RDQ-IRR routers is faster than that of other table-based 

DAMQ routers. In addition to saving one clock cycle for each flit arrival/departure 

from the input-port, the critical path delays of RDQ-IRR router components are lower 

as compared to the other DAMQ routers.   

 In addition to a higher performance RDQ-IRR mechanism, the RDQ-IRR routers are 

simpler and faster as well as consume lower power consumption and chip area.  
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5.7 Summary and Concluding Remarks 

We have presented our latest NoC router architecture, which is based on new approach called 

Rapid Dynamic Queue (RDQ). We also presented an efficient and fast arbiter, Index-Based 

Round Robin (IRR). The effects of a new RDQ input-port and the IRR arbiter have been 

investigated on the efficiency of NoC systems. The experimental work has been presented, and 

the results of NoCs utilizing the RDQ and IRR mechanisms have been evaluated and compared 

with the NoCs utilizing some previous buffering and arbitration techniques. The RDQ-IRR 

based NoCs have on average 74%, 76% and 75% higher throughputs and 85%, 86% and 89% 

less latencies than those of LLD based NoCs for Tornado, Complement and Uniform-random 

traffics respectively. 
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Chapter  6 

Conclusions 

NoCs are on-chip communication infrastructures introduced to be utilized in SoC systems. 

They typically employ packet switching mechanism and VC organization to improve the 

performance with minimal extra hardware. The VC organizations of NoCs have some 

drawbacks including complex logic, lower buffer utilization, configuration limitations and HoL 

blocking. The arbitration is another important component used in NoC router that has some 

critical drawbacks such as lower speed, weak fairness, traffic starvation, and pipelining problem.  

In this thesis, we have presented approaches to improve the overall efficiency of NoC rouers and 

systems.  

Some important past research works related to DAMQ based VC organizations and round-

robin arbiter architectures are reviewed in Chapter 2.  In Chapter 3, we presented an adaptive 

and efficient VC organization based on Statically Adaptive Multi FIFO (SAMF) [58]. We have 

explored SAMF architecture and its novel features in detail. Then the experimental work based 

on SystemC based NoC simulations and Verilog modeling are presented. The SAMF modeling 

results are compared with some conventional VC (CVC) organizations. A SAMF based 4×4 
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mesh NoC shows an improvement of 19% for throughput and 23% for latency and it also 

requires 5% less chip area and 4% less power consumption as compared to CVC NoC for 

applications with contention traffics. 

Efficient Dynamic Virtual Channel (EDVC) organization and its novel features are discussed 

in Chapter 4 [54, 59]. A 4-slot EDVC input-port consumes on average 10% less registers, 61% 

less power, and it operates at 10% higher frequency as compared to the LLD (Link-List based 

DAMQ) input-port for its ASIC design and implementation. EDVC based NoC simulation 

shows that EDVC mechanism has 48-50% lower latency and 100% higher throughput as 

compared to LLD approaches for Application-Specific traffic. 

A novel and efficient router architecture has been presented and evaluated in Chapter 5. The 

router utilizes two new components including an RDQ input-port and IRR (Index-Based Round 

Robin) arbiter. The architecture of RDQ input-port is an improved version of EDVC based 

input-port [60]. The micro-architecture of RDQ input-port is evaluated and compared with some 

conventional table-based input-ports (LLD and ViChaR) as well as the EDVC input-port 

designs. The evaluation results confirm that our RDQ mechanism is efficient in terms of both 

performance and hardware overhead. An RDQ input-port consumes on average 13% less chip 

area, 21% less power consumption, and 49% less critical path delay as compared to the LLD 

input-port implementation. Moreover, the RDQ mechanism improves the throughput by 55%, 

59% and 55% as compared to LLD approaches for Tornado, Complement and Uniform-random 

traffics respectively. A strong fairness index based round robin (IRR) arbiter design is also 

presented [61]. Our IRR arbiter design provides strong fairness arbitration, which is not 

guaranteed by some of the earlier designs including HDRA, PRRA and IPRRA. The index based 

arbitration is simple, fast and requires little hardware overhead. The ASIC level modeling results 

for 90nm technology show that our IRR arbiter requires 70% less chip area, 74% lower power, 

and around 43% timing improvement when compared with RoR and Matrix arbiters.  

The micro-architectures of routers that utilize our proposed VC organization and arbitration 

modules i.e. the RDQ input-port and IRR arbiter have been explored. The NoC routers we have 

designed and implemented are independent in terms of clock rate, and the faster clock rates of 

routers leads to faster NoCs. We have presented the micro-architectures of our proposed EDVC 

and RDQ routers in Chapters 4 and 5 and compared them with conventional routers. Among the 

router modules, the crossbar switch component has an asynchronous architecture. Therefore, it 
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does not affect the speed of router. However, the input-ports and arbiter affects the speed of 

router due to synchronous buffers. The micro-architectures of arbiter sub-components have been 

presented, and it is confirmed that the arbitration stages (RC, VA and SA) can be performed in 

one clock event. 

Our state of the art RDQ-IRR router presented in Chapter 5 consumes at least 17% less chip 

area, 45% less power consumption, and operate at 73% higher frequency as compared to LLD 

and ViChaR based routers for a 4-VC and 4-slot implementation. Similarly, for 8-VC and 8-slot 

implementations, the RDQ-IRR routers have at least 22% less chip area, 53% less power 

consumption, and operates at 95% higher frequency when compared with the LLD and ViChaR 

based routers. The performance of RDQ-IRR router based NoC has also been modeled and 

simulated. The average throughput of RDQ-IRR router is 74%, 76% and 75% higher than those 

of LLD-Matrix (LLD input-port with Matrix arbiter) router for Tornado, Complement and 

Uniform-random traffic patterns respectively. The average RDQ-IRR latencies are 85%, 86% 

and 89% lower than those of LLD-Matrix router for Tornado, Complement and Uniform-

random traffic.  

6.1 Future Work  

 Alleviate the latency related to blocking mechanism in RDQ approach. When a blocked 

VC in RDQ approach becomes freed, the read pointer should point to the first location of 

buffer maximum two times. This leads to higher latency in NoC. We are going to 

improve the RDQ mechanism to point one time to the first location of buffer.  

 Experiment with the RDQ-IRR NoC approach with different benchmark applications in 

terms of size and traffic congestion.  

 Evaluate the efficiency of RDQ-IRR in terms of hardware and performance by using 

workloads and traces from existing NoC based SoC architectures. 

 Extend the RDQ-IRR router for other NoC topologies including application specific 

NoCs 
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Glossary 

2D     Two-dimensional 

Altera     An American manufacturer of Programmable Logic Devices 

Arbiter     A component in electronic circuitry that allocates shared resources 

ASIC           Application-Specific Integrated Circuit 

AV      Audio-Video Benchmark 

Crossbar Switch     A switch connecting multiple inputs to multiple outputs in a matrix manner 

CVC      Conventional virtual channel method  

Complement     Traffic benchmarks create high contention traffic uniformly in the NoC  

CQ      Circular queue  

DAMQ      Dynamically Allocated Multi-Queue 

EDA       Electronic Design Automation software 

EDVC        Efficient Dynamic Virtual Channel (our second presented approach) 

FAANOS    A Flexible And Accurate NoC Simulator coded in SystemC in our Lab 

FCFS       First Come First Serve  

FIFO       First-in First-out  

fmax         Maximum clock frequency where a system can be clocked 

FPGA     Field programmable gate array 

GALS      Globally Asynchronous Locally Asynchronous 

HoL        Head of Line blocking problem 

HDRA      High speed and Decentralized Round robin Arbiter presented in [45] 

Hotspot        One destination is chosen for all the source cores during a time period  

IP       (Intellectual Property core), a reusable design unit owned by one party 

IPRRA      Improved Parallel Round Robin Arbiter presented in [44] 

IRR        Index-Based Round Robin 

IRR_WF      Weak Fairness version of IRR 

Link-List       A linear data structure where each element refers to the next element. 

LLD        Linked-List based DAMQ 

Matrix        A Round Robin arbiter presented by Dally and Towles [2] 

MPEG     Moving Picture Experts Group (kind of video format) (MPEG4 decoder) 
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MPSoC      Multi-Processor Systems-on-Chip 

MUX              MultiPlexer Component 

NoC       Network on Chip  

PRRA      Parallel Round Robin Arbiter presented in [44] 

Queue     A type of data structure where stores data in a first come first serve manner 

RC        Routing Computation (arbiter sub-component) 

RDQ       Rapid Dynamic Queue 

RR       Round Robin  

RoR        A Round Robin arbiter presented by Dally and Towles [2] 

RTL                         Register Transfer Level 

SMF       Statically Multi FIFO 

SMAF      Statically Adaptive Multi FIFO 

SoC       System on Chip 

SA            Switch Allocation (arbiter sub-component)  

ST           Switch Traversal (arbiter sub-component) 

Synopsys DC.         A logic-synthesis tool presented by Synopsys Inc. 

Table-based     Using a table-based approach to determine shared resource 

Tornado         Traffic benchmark that creates high contention traffic uniformly in the NoC 

Uniform-Random Traffic benchmark that creates a random traffic uniformly in the NoC 

ViChaR       A table based dynamic multi-queue architecture presented in [13] 

VA            Virtual channel Allocation  (arbiter sub-component) 

VC       Virtual Channel 

Wormhole      Wormhole routing is a system of simple flow control in NoC 

XY      Routing algorithm: first route horizontally then route vertically 

+ve      Positive 

-ve      Negative 

  


