
A FAST DESIGN SPACE EXPLORATION BASED

ON PRIORITY FACTOR FOR A MULTI

PARAMETRIC OPTIMIZED HIGH LEVEL

SYNTHESIS DESIGN FLOW

By

Anirban Sengupta

 Bachelor of Technology

 Electronics and Communication Engineering

West Bengal University of Technology

 Kolkata, India, 2008

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

©Anirban Sengupta 2010

iii

Author's Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or

individuals for the purpose of scholarly research.

* Signature

 Anirban Sengupta

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

* Signature

 Anirban Sengupta

iv

ABSTRACT

Title of Thesis:

A FAST DESIGN SPACE EXPLORATION BASED ON PRIORITY FACTOR FOR A

MULTI PARAMETRIC OPTIMIZED HIGH LEVEL SYNTHESIS DESIGN FLOW

Thesis Submitted By:

 Anirban Sengupta, Master of Applied Science, 2010

Optimization Problems Research and Application Laboratory (OPR-AL)

Electrical and Computer Engineering Department, Ryerson University

Thesis Directed By:

Dr. Reza Sedaghat

Electrical and Computer Engineering Department, Ryerson University

 This thesis introduces a novel approach to rapid Design Space Exploration (DSE) and presents

a formalized High Level Synthesis (HLS) design flow with multi parametric optimization

objective using the same design space exploration approach. The proposed approach resolves

issues related to DSE such as the precision of evaluation, time exhausted during evaluation and

also automation of the exploration process. During DSE a conflicting situation always exists for

the designer to concurrently maximize the accuracy of the exploration process and minimize the

time spent during DSE analysis. This technique is capable of drastically reducing the number of

architectural variants to be analyzed for accurate selection of the optimal design point in a short

time. The DSE results for many benchmarks are presented along with a comparison to an

existing DSE approach that uses the hierarchal structure method for architecture evaluation.

Results indicated significant improvement in speedup compared to the current existing approach.

v

Acknowledgement

I would like to thank my supervisor, Dr. Reza Sedaghat for his thoughtful guidance and OPR-AL

members for their endless support.

I am highly indebted to my parents for their great guidance and sacrifice all throughout my life.

Further I highly owe them for being a constant source of love and motivation throughout my life,

particularly in times of hardships and difficulty.

Moreover I am highly obliged to my grandparents for continuously supporting me and inspiring

me to always do better than before.

I am also very thankful to my friends, who helped me in tough times and provided me with

encouraging words to accomplish my goals.

vi

Table of Contents

Abstract -- iv

Acknowledgement -- v

Table of Contents --- vi

List of Tables -- ix

List of Figures --- x

Nomenclature --xi

Chapter 1 Introduction --- 1

1.1 Overview --- 1

1.2 Related works -- 4

1.3 Summary of Contribution -- 5

1.4 Organization of Thesis --6

Chapter 2 Background Information --- 8

 2.1 Theoretical Background on High Level Synthesis ---------------------------------- 8

 2.2 Theoretical Background on Design Space Exploration -----------------------------10

 2.3 Overview on the Abstraction Level of Optimization ------------------------------- 11

 2.4 Reasons for studying High Level Synthesis --12

Chapter 3 Proposed Frameworks behind Design Space Exploration in High Level

 Synthesis --13

 3.1 Mathematical Derivation for Area Model ---13

 3.2 Mathematical Derivation for Execution Time Model ----------------------------- 15

vii

 3.3 Mathematical Derivation for Power Consumption Model ------------------------- 18

Chapter 4 High Level Synthesis Design Flow with Multi Parametric Optimization

 Objective ---21

 4.1 Proposed High Level Synthesis Design Flow using the Priority Factor

 Method for Design Space Exploration --21

 4.2 Design Flow Initiation -- 22

 4.3 Problem Description ---23

Chapter 5 Exploration of the Architectural Design Space for Power Consumption ----25

 5.1 Creation of Random Architecture Design Space for Power consumption -------- 25

 5.2 Calculation of Priority Factor (PF) for each available resource to determine

 the Priority Order (PO) ---26

 5.3 Arrangement of Architectural Design Space in increasing order using

 Algorithm-- 27

 5.4 Determination of Border Variant for Area using Binary Search ------------------- 28

Chapter 6 Exploration of the Architectural Design Space for Execution Time ---------- 32

 6.1 Creation of Random Architecture Design Space for Execution time -------------- 32

 6.2 Calculation of Priority Factor (PF) for each available resource to determine

 the Priority Order (PO) --33

 6.3 Arrangement of Architectural Design Space in decreasing order using

 Algorithm--34

 6.4 Determination of Border Variant for Execution Time using Binary Search -------35

Chapter 7 Pareto optimal set of architecture -- 37

viii

 7.1 Determination of Pareto optimal set for the design variants ------------------------- 37

 7.2 Verification and Selection of the optimal design variant -----------------------------38

Chapter 8 Implementation of the Proposed High Level Synthesis Design Flow ------------40

 8.1 Scheduling and Binding of operations --40

 8.2 Scheduling and Binding of operations with Data Registers ---------------------------42

 8.3 Determination of Multiplexing Scheme --43

 8.4 Determination of Block Diagram of the Data Path unit of the system ---------------45

 8.5 Determination of Timing specification and Development of the Control Unit -----45

 8.6 Development of the whole system at the RT-Level in Synthesis tool --------------- 47

Chapter 9 Results, Analysis and Implementation --49

 9.1 Simulation Results --49

 9.2 Comparative study of the Proposed Multi parametric optimized Design Space

 Exploration methodology with the current existing approach -------------------------50

 9.3 Experimental Results of the Proposed Exploration process for High Level

 Synthesis Benchmarks ---52

Chapter 10 Conclusion and Future work -- 55

Publications ---58

References ---61

Appendix --65

ix

List of Tables

Table 1 Variants obtained after pruning of design space for power consumption ---30

Table 2 Variants obtained after pruning of the design space for execution time -----35

Table 3 Multiplexing scheme for Adder/subtractor resource (R1) ----------------------44

Table 4 Multiplexing scheme for Multiplier resource (R2) -------------------------------44

Table 5A Timing specification for the data path circuit (Part 5A) ------------------------47

Table 5B Timing specification for the data path circuit (Part 5B) ------------------------47

Table 6 The results of the proposed DSE approach for the Benchmarks ------------- 53

Table 7 Comparative study of the proposed DSE approach with one of the current

 Approaches -- 54

Table 8 Comparative study of the proposed DSE approach with one of the current

 approaches for 5
th

 order WDF benchmark --54

Table 9 Experimental results of comparison between the proposed hybridized Design

 Space Exploration approach with the current approach for large

 Benchmarks --54

x

List of Figures

Figure 1 The proposed high level design flow for multi-parametric optimization

 requirement -- 22

Figure 2 Design space with all possible combinations of resources ---------------------- 26

Figure 3 Flow chart model of the proposed algorithm ------------------------------------- 29

Figure 4 The arranged design space for Power Consumption parameter ------------- 30

Figure 5 The arranged design space in decreasing order for Time of Execution

 Parameter -- 34

Figure 6 The sequencing and binding graph for the best variant obtained ------------ 42

Figure 7 The Sequencing and Binding graph with data registers ------------------------43

Figure 8 Cycle time diagram for the best variant --43

 Figure 9 Block diagram of the data circuit --46

Figure 10 Schematic view of the system (Xilinx ISE) ---48

Figure 11 Simulation result for the benchmark application -------------------------------- 50

Figure 12 Final routing of the chip (Cadence encounter SoC) ------------------------------50

Figure 13 Representation of the speedup the scale of log to the base 10

 (log 10 speedup) compared to the exhaustive variant analysis ----------------52

Figure 14 Comparison of the number of architectural variants analyzed between

 the current existing approach and the proposed approach -------------------- 52

Figure 15 Representation of the speedup attained by the proposed DSE compared

 to a current approach that uses hierarchical structure --------------------------53

xi

Nomenclature

A
Total Area of the resources

Ri
The resources available for system designing

Rclk

The clock oscillator used as a resource providing the necessary clock

frequency to the system

NRi The number of resource Ri

KRi The area occupied per unit resource ‘Ri’

n Functional resources

L Latency of execution

Tc Cycle time of execution

N Number of data elements to be processed

TRi Number of clock cycles needed by resource ‘Ri’

Tp Time period of the clock

pc
Power consumed per area unit resource at a particular frequency

H (z) The transfer function of the filter in the frequency domain

p Position where the variant is located in the design space

i An index

P optimal The constraint for Power Consumption

T optimal The constraint for Execution Time

vRi Number of variants of resource ‘Ri’

P Total power consumption

Texe Total execution time

M Each Performance Parameter

1

Chapter 1

Introduction

 1.1 Overview

The design and development of systems with heterogeneous performance optimization

objective requires extensive analysis and assessment of the design space, not only due to the

assorted nature of the parameters, but also due to the diversity in architecture for implementation.

Given the specifications and the system requirements, the aim of designers is to reduce the large

and complex design space into a set of feasible design solutions meeting performance objectives

and functionality.

As the design complexity factor increases in leaps and bounds by the addition of more

silicon per unit area, the design method for modular systems with multi-parametric optimization

objectives must be formalized. Simultaneously optimizing multiple performance parameters with

conflicting objectives, such as hardware area (or power consumed) and time of execution is

becoming more complex and significant for successful design of these systems. Designs

decisions at the Electronic System Level (ESL) have more impact on the design quality than the

2

decisions made at low level i.e. logic level. For superior design quality the assessment and

selection should be comprehensive and accurate [1] [6].

For most modular systems and systems based on strict operational constraints, the

selection of the optimal architecture is the most important step in the development process.

Design space architecture can have innumerable design options for selection and implementation

based on the parameters of optimization. Hence, selection of the optimal architecture from the

design space, which satisfies all the performance objectives, is crucial for the present generation

of System-on-Chip (SoC) designs [1]. Furthermore, the striking increase in demand for portable

embedded computing devices has led to new System-on-Chip (SoC) architectures intended for

embedded systems. To be economically sensible these SoC architectures should nurture a broad

suite of different applications, leading to the recent focus on parameterized SoC. The embedded

computing devices, on the other hand, have varying design objectives such as execution time and

hardware area. Hence these parameterized SoC architectures must be configured in such a way

so that the system concurrently satisfies the varied performance objectives for a class of

applications. As a result, multi objective design space exploration approaches have emerged for

resolving this heterogeneous problem [31]. As it is always possible to implement different

functions of a system on different hardware components, the architecture design space has

become more complex to analyze [2].

In the case of high level synthesis, performing design space exploration to choose the

best candidate architecture by concurrently satisfying many operating constraints is generally

considered to be the most important stage in the whole design flow. Since the design space is

3

huge, there needs to be an efficient way to explore the best candidate architecture for the system

design based on the target application. The method for exploration of the best candidate micro-

architecture should not only be less in terms of complexity factor and time, but should also

explore the variant in an efficient way meeting all the specifications provided. The process of

high level synthesis design is very complicated and descriptive and is usually performed by

system architects. Depending on the application, the process of defining the problem, performing

design space exploration and the other steps required for its successful accomplishment are very

time consuming. The modern high level synthesis design flow should be multi-parametric

optimized in terms of area occupied, execution time and power consumption. Furthermore,

recent advancements in areas of communications and multimedia have led to the growth of a

wide array of applications requiring huge data processing at minimal power expense. Such data

hungry applications demand satisfactory performance with power efficient hardware solutions.

Hardware solutions should satisfy multiple contradictory performance parameters such as power

consumption and time of execution. Since the selection process for the best design architecture is

quite complex, an efficient approach to explore the design space for selecting the best design

option is needed.

A novel approach for finding the best design architecture with multi-parametric

optimization objective, useful for accelerating design space exploration in high level synthesis, is

presented in this thesis. Until now, no published works have explicitly concentrated on

formalizing the design steps of a multi-parametric optimized high level design flow useful for the

current generation of high data processing applications and complex SoC design. This work

introduces a new formalized high level synthesis design flow to radically reduce the number of

4

architectural variants to be analyzed for finding the pareto-optimized design point. The

introduction of the proposed approach for multi-parameter optimization and design space

exploration in high level synthesis design flow allows total automation of the proposed high level

design for the current high level synthesis tools.

1.2 Related Works

An engineering problem can generally be described as a phenomenon of analyzing and

managing the tradeoffs between contradictory design objectives. The problem of obtaining a

comprehensive Pareto optimal set has been addressed by many researchers. In [1] the researchers

proposed an approach for synthesis of heterogeneous embedded systems by using Pareto Front

Arithmetic (PFA) to explore the giant search spaces. Their method utilized the hierarchical

problem structure for exploring the set of Pareto optimal solutions. The problem was also

addressed in [3] by suggesting order of efficiency, which assists in deciding preferences amongst

the different Pareto optimal points. Work in [4] suggested the identification of a few superior

design points from the Pareto set is enough for an excellent design process. In [5] evolutionary

algorithms such as the Genetic Algorithm (GA) had been suggested to yield better results for the

design space exploration process. The use of GA had also been suggested as a framework for

DSE of data paths in high level synthesis in [6]. Another approach was introduced by researchers

in [2] which were based on Pareto optimal analysis. According to their work, the design space

was arranged in the form of an Architecture Configuration Graph (ACG) for architecture variant

analysis and optimization of performance parameters. Their results proved quite promising for

architectural synthesis of digital systems. Furthermore in [7] and [8], authors described another

approach for DSE in high level systems based on binary encoding of the chromosomes. Work

5

shown in [9] for DSE suggests that authors used an evolutionary algorithm for successful

evaluation of the design for an application specific SoC. The work shown in [10] discusses the

optimization of area, delay and power in behavioral synthesis, but does not focus on the high

level design flow with multi parametric optimization objective. Authors in [11] introduce a tool

called SystemCoDesigner that offers rapid design space exploration with rapid prototyping of

behavioral systemC models. In [11] an automated integration was done by integrating behavioral

synthesis into the proposed design flow. Additionally, authors in [12] describe current state of

the art high-level synthesis techniques for dynamically reconfigurable system. The proposed

method avoids constructing hierarchical structures such as in [2] for architecture evaluation and

thereby minimizes time overhead. Further evolutionary algorithms such as GA used in [5] [7]

[8], although efficient, are very slow in finding the global optimum solution. Moreover it does

not always guarantee the selection of global optimum and might eventually end up in finding the

local minima. The method proposed in this thesis is capable of evaluation the design space for

finding the optimal design solution accurately and rapidly. It can thereby assist the designer in

finding the best architecture for the design with increased acceleration.

 1.3 Summary of Contribution

This thesis contributes to the following areas:

• Introduces a mathematical structure for Design Space Exploration of the performance

parameter hardware area.

• Presents a mathematical framework for Design Space Exploration of the performance

parameter power consumption.

6

• Presents a mathematical framework for Design Space Exploration of the performance

parameter Execution time.

• Proposes a new algorithm for arranging the architecture design space in

increasing/decreasing order.

• Presents a novel approach for finding the best design architecture with multi-parametric

optimization objectives, which is useful for accelerating design space exploration in high

level synthesis.

• Explicitly concentrates on formalizing the design steps of a multi-parametric optimized

high level design flow useful for the current generation of high data processing

applications and complex SoC design.

• Lays the platform for complete automation of the proposed Design Space Exploration for

the current Exploration tools as well as automation of the complete HLS designing.

• Develops the complete system of the application at the Register Transfer Level (RTL).

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides some background

information related to Design Space Exploration (DSE) and High Level Synthesis (HLS).

Chapter 3 describes the proposed frameworks behind Design Space Exploration in High Level

Synthesis. Chapter 4 elaborates the High Level Synthesis design flow for Multi Parametric

Optimization objective. The exploration process of Architectural Design Space for Power

Consumption parameter is described in Chapter 5 while in Chapter 6, the exploration process of

Architectural Design Space for execution time parameter is discussed. Chapter 7 provides the

detailed insight into the determination of Pareto optimal set of architecture and the selection

7

methodology for the optimal design variant of architecture. The development of the whole

system based on the proposed design flow and the implementation of the same is described in

Chapter 8. The results of the proposed DSE approach for various well known High Level

Synthesis benchmarks and the speedup obtained when compared to the current existing DSE

approach are both provided in Chapter 9. Chapter 10 is dedicated to the conclusion and the

future scope of work in this area. The list of publications related to this field of research study

and the total list of citations are also provided.

8

Chapter 2

Background Information

2.1 Theoretical Background on High Level Synthesis

Interdependent tasks such as scheduling, allocation and module selection are important

ingredients of the high level synthesis design process. High level synthesis is a methodology of

transforming an algorithmic behavioral description into an actual Register Transfer Level (RTL)

structure. Therefore high level synthesis methodology contains a sequence of tasks to convert the

abstract behavioral description of the algorithm into its respective structural block at RT level.

The design at the RT level comprises of functional units such as ALU, storage elements,

registers, busses and interconnections. The algorithmic description specifies the inputs and

outputs of the behavior of the algorithm in terms of operations to be preformed and data flow

[13]. A description of the algorithm is usually represented in the form of an acyclic directed

graph known as a sequencing graph [14]. These graphs specify the input/output relation of the

algorithm and the data dependency present in the data flow. The graph is defined in terms of its

vertices and edges, where the vertices signify the operations and the edges indicate the data

dependency present in the function. High level synthesis is therefore a conversion from the

9

abstract behavioral description to its respective hardware description in the form of memory

elements, storage units, multiplexers/demultiplexers and the necessary interconnections. The

transformed algorithm at the RT level is comprised of a control unit and the data path unit [15].

High level synthesis offers many advantages, such as productivity gains and efficient design

space exploration. Performing DSE at a higher level of abstraction provides more dividend than

at lower levels of abstraction, i.e. transistor level or logic level. Traditional high level synthesis

design methodology is much simpler than modern design techniques. In general, the initial step

of synthesis is to compile the behavioral specification into an internal representation. The next

step is to apply high level transformation techniques with the aim of optimizing the behavior as

per the desired performance. In order to realize the structure, the final step is to perform

scheduling to determine the time at which each operation is executed and the allocation, which is

synthesizing the necessary hardware to perform the operations.

Scheduling can be of two different classes: time constrained scheduling and resource

constrained scheduling. Time constrained scheduling refers to finding the minimum cost

schedule that satisfies the given set of constraints with the given maximum number of control

steps. Resource constraint scheduling, on the other hand, refers to finding the fastest possible

schedule that satisfies the given set of constraints with the given maximum number of resources.

Resource constraints are generally specified by the area occupied by the functional units like

adders/subtractors, multipliers, dividers and ALUs. Although the data path of the system consists

of registers and interconnections, they are not considered to be included as resource constrained

because they are difficult to specify. High level synthesis can be broadly divided into the

following steps: input description, internal representation, design space exploration, allocation,

10

scheduling and binding. Therefore the final structure at the RT level consists of data path and the

control path. Traditional high level synthesis design flow falls short for the modern generation of

complex VLSI and SoC designs, because the conventional design flow just takes into account the

optimization of two parameters, namely area and latency. But the new generation of system

designs requires multi parametric optimization strategies in HLS while simultaneously utilizing

rapid and efficient DSE approaches for finding the best suitable architecture.

2.1 Theoretical Background on Design Space Exploration

For the present generation of VLSI designs with multi objective nature, the cost of

simultaneously solving the problem of scheduling, allocation and module selection by exhaustive

search is strictly prohibitive. Multi objective VLSI designs are used in low end Application

Specific Integrated Circuits (ASICs) with low power dissipation and acceptable performance, as

well as in high end ASICs with high performance requirements and satisfactory power

expenditure. Hence, efficient design space exploration techniques are needed to make efficient

use of time, due to time to market pressure [6]. Design space exploration is a procedure for

analyzing the various design architectures in the design space to obtain the optimum architecture

for the behavioral description according to the predefined user specifications. Design space

exploration has always been a challenge for researchers due to the heterogeneity of the objectives

and parameters involved. Typical design space exploration is a multi objective search problem,

where the optimization parameters are generally hardware area, execution time and power

consumption. Although several recent works have focused on the optimization of reliability as a

performance metric, it is still in its nascent stage of development. The current trend towards

design space exploration has been the reduction of the design space into a set of Pareto optimal

11

points by Pareto optimal analysis. Sometimes even the Pareto optimal set can be very large for

analysis and selection of the design for system implementation [4]. In order to assist the decision

maker in exploring the design space better, an accurate approach efficient in terms of time is

very significant for high level synthesis design of hardware systems.

2.3 Overview on the Abstraction Level of Optimization

Today's electronic systems are designed starting from specifications given at a very high

level of abstraction. This is because many EDA tools accept a design expressed in a high-level

language as input and can automatically produce the corresponding transistor-level

implementation with very limited human intervention. All hardware systems can be classified

into various levels of abstraction such as System level, Architecture level, Register Transfer

Level (RTL), Layout level and Transistor level. This abstraction level provides an insight into

the hierarchy that a system can be classified into. Optimization performed at the higher levels of

abstraction provides more flexibility and productivity than performing at the lower levels of

abstraction. In order to make the search for the optimal solution as effective as possible, the

design decision taken at a very early stage (architecture level) of the development process

obviously provides more benefit in terms of the development time and also accuracy in system

development. Therefore, the focus for researchers has shifted towards optimization of multi

parameters due to time to market pressure.

12

2.4 Reasons for Studying High Level Synthesis

In recent years there has been a trend towards automating synthesis at higher levels of the

design hierarchy. Logic synthesis has gained acceptance in industry and there has been

substantial interest shown in Register Transfer Level (RTL) synthesis. The reasons are the

following [30]:

Reduced design time and high acceleration: If more of the design process is automated, a

company can complete a design faster, and thus have a better chance of hitting the market

window for that design. Additionally, since much of the cost of the chip is in design

development, automating more of that process can lower the cost significantly.

Decreased error probability: If the synthesis process can be verified to be correct, then there is

a greater guarantee that the final design will correspond to the initial specification. This means

fewer errors and less debugging time for new chips.

The ability to search the design space: A good synthesis system can produce several designs

from the same specification in a reasonable amount of time. This allows the developer to explore

different tradeoffs between cost, speed, power etc., or to take an existing design and produce a

functionally equivalent one that is faster or less expensive. Even if the design is ultimately

produced manually, automatically synthesized designs can suggest tradeoffs to the designer.

Documenting the design process: An automated system can keep track of what design

decisions were made and what the consequences of those decisions were.

Easy availability of IC technology: As more design expertise is moved into the synthesis

system, it becomes easier for non-expert designers to manufacture a chip that meets a given set

of specifications and operating constraints.

13

Chapter 3

Proposed Framework behind Design Space

Exploration in High Level Synthesis

3.1 Mathematical Derivation for Area Model

Let the area of the resources be given as ‘A’. Ri denotes the resources available for system

designing; where 1<i<n.

Rclk refers to the clock oscillator used as a resource providing the necessary clock frequency

to the system. The total area can be represented as the sum of all the resources used for designing

the system. Hence total area is given in equation (1):

∑=)(RiAA (1)

Area can be expressed as the sum of the resources i.e. adder/subtractor, multiplier, divider etc

and also the clock frequency oscillator. Therefore for a system with ‘n’ functional resources

equation (1) can also be represented as shown in equation (2):

)()...(2211 clkRnRnRRRR RAKNKNKNA +⋅++⋅+⋅= (2)

14

Where NRi represents the number of resource Ri and ‘KRi’ represents the area occupied per

unit resource ‘Ri’ (1<=i<=n); Applying partial derivatives to equation (2) with respect to NR1,

NR2….NRn yields equation (3), equation (4) and equation (5) respectively as shown below:

1

1

11

1

)()...((
R

R

clkRnRnRR

R

K
N

RAKNKN

N

A
=

∂

+⋅++⋅∂
=

∂

∂ ∑ (3)

2

2

22

2

)()...((
R

R

clkRnRnRR

R

K
N

RAKNKN

N

A
=

∂

+⋅+⋅∂
=

∂

∂ ∑ (4)

Rn

Rn

K
N

A
=

∂

∂ (5)

According to the theory of approximation by differentials [17] the change in the total area can

be approximated by equation (6):

)(...2

2

1

1

clkRn

Rn

R

R

R

R

RAN
N

A
N

N

A
N

N

A
dA ∆+∆

∂

∂
++∆⋅

∂

∂
+∆⋅

∂

∂
= (6)

where symbol ‘∆’ is called the delta operator.

Substituting equation (3), (4) and (5) into equation (6) yields equation (7) shown below:

)(....2211 clkRnRnRRRR RAKNKNKNdA ∆+⋅∆++⋅∆+⋅∆= (7)

)(11 RR KNdA ⋅∆= +)(22 RR KN ⋅∆ + … +
RnRn KN ⋅∆ +)(clkRA∆ (8)

The equation above indicates the rate of change of area with respect to resource R1, R2 ….Rn.

Here the clock oscillator has been considered a resource, which contributes to the area occupied

by the hardware resources.

The change
of area

contributed
by resource

R1

The change
of area

contributed
by resource

R2

The change
of area

contributed
by resource

Rn

The change
of area

contributed
by resource

clock

15

The term Priority Factor (PF) will be used often when exploring the design space in the

proposed approach. The PF is a determining factor for determining the influence of a particular

resource on the variation of the optimization parameters such as area, time of execution and

power consumption. This PF will be used later to organize the architecture design space

consisting of variants in increasing or decreasing order of magnitude The PF for the resource R1,

R2 …..Rn is given as:

1

11)1(
R

RR

N

KN
RPF

⋅∆
= (9)

2

22)2(
R

RR

N

KN
RPF

⋅∆
= (10)

Rn

RnRn

N

KN
RnPF

⋅∆
=)((11)

RclkN

RclkA
RclkPF

)(
)(

∆
= (12)

The factor defined above determines how the variation in area is affected by the change of

number of that certain resource. Hence, the PF is the rate of change of area with respect to the

change in number of resources.

3.2 Mathematical Derivation for Execution Time Model

For a system with ‘n’ functional resources the time of execution can be represented by the

following formula:

])1([cexe TNLT ⋅−+= (13)

where ‘L’ represents latency of execution, ‘Tc’ represents the cycle time of execution , ‘N’

denotes the number of data elements to be processed.

16

Since the number of data elements to be processed is large for real life applications, ‘L’ can

be ignored and cycle time (Tc) becomes a primary factor. The maximum cycle time under

maximum resource constraint can be given as equation (14):

pRnRnRRRRc TTNTNTNT ⋅⋅++⋅+⋅=)....(2211
 (14)

NRi represents the number of resource of Ri and ‘TRi’ represents the number of clock cycles

needed by resource ‘Ri’ (1<=i<=n) to finish each operation and ‘Tp’ is the time period of the

clock. From the theory of approximation of differentials, the change in the total cycle time can be

approximated as in equation (15).

p

pRn

Rn

c
R

R

c
R

R

c
c

T

Tc
TN

N

T
N

N

T
N

N

T
dT

∂

∂
⋅∆+∆

∂

∂
++∆⋅

∂

∂
+∆⋅

∂

∂
=)...(2

2

1

1

 (15)

Applying partial derivatives to equation (14) with respect to NR1, NR2…..NRn and Tp will

produce the following set of equations:

pR

R

pRnRnRRRR

R

c
TT

N

TTNTNTN

N

T
1

1

2211

1

)...(
=

∂

⋅⋅++⋅+⋅∂
=

∂

∂ (16)

pR

R

pRnRnRRRR

R

c
TT

N

TTNTNTN

N

T
2

2

2211

2

)...(
=

∂

⋅⋅++⋅+⋅∂
=

∂

∂ (17)

pRn

Rn

pRnRnRRRR

Rn

c
TT

N

TTNTNTN

N

T
=

∂

⋅⋅++⋅+⋅∂
=

∂

∂)...(2211 (18)

p

pRnRnRRR

p

c

T

TTNNTN

T

T

∂

⋅⋅+++⋅∂
=

∂

∂)...(211 (19)

RnRnRRRR TNTNTN ⋅++⋅+⋅= ⋅ ...2211

 (20)

Now substituting equations (16), (17), (18) and (20) in equation (15). The substitution yields

the following equation (21):

pRnRnpRRpRRc TTNTTNTTNdT ⋅∆++⋅⋅∆+⋅⋅∆=2211

17

)...(2211 RnRnRRRRp NTNTNTT ⋅++⋅+⋅⋅∆+ (21)

Equation (21) represents the change in total cycle time with the change in the number of

resources and the clock period (clock frequency).

pRR TTN ⋅⋅∆ 11
= The change of ‘Tc’ caused by the change in the number of resource R1; Similarly,

pRnRn TTN ⋅⋅∆ =The change of ‘Tc’ caused by the change in the number of resource Rn.

 Finally,)...(2211 RnRnRRRRp NTNTNTT ⋅++⋅+⋅⋅∆ = The change of ‘Tc’ caused by the change in clock

period (clock frequency) and the change in the number of all resources available.

The priority factor (PF) can be defined for the ‘time of execution’ parameter. The (PF) for the

resource R1, R2 …..Rn is given as:

max

1

11)()1(p

R

RR T
N

TN
RPF ⋅

⋅∆
= (22)

max

2

22)()2(p

R

RR T
N

TN
RPF ⋅

⋅∆
= (23)

max)()(p

Rn

RnRn
T

N

TN
RnPF ⋅

⋅∆
= (24)

)(
..

)(2211

p

Rclk

RnRnRRRR T
N

TNTNTN
RclkPF ∆⋅

⋅++⋅+⋅
= (25)

The factors defined above indicate the rate of change of cycle time (Tc) with the change in

number of resources at minimum clock frequency. For example, equation (22) indicates the rate

of change of cycle time with a change in the number of that particular resource (e.g. change in

number of adders/subtractors from one to three adders/subtractors) at minimum clock frequency.

Minimum clock frequency is considered because the clock period is the maximum at this

frequency. Hence, the change in the number of a specific resource at maximum clock period

influences the change in the cycle time the most, compared to the change in cycle time at other

18

clock periods. The PF yields a real number, which suggests the extent to which the change in

number of that particular resource contributes to the change in cycle time.

3.3 Mathematical Derivation for Power Consumption Model

Therefore for a system with ‘n’ functional resources, the total power consumption (P) of the

resources in a system can be represented by the following equation (26):

∑
=

⋅⋅=
n

i

cRiRi pKNP
1

)((26)

cRnRnRRRR pKNKNKNP)...(2211 ⋅++⋅+⋅= (27)

 ‘NRi’ represents the number of resource of resource Ri as mentioned before. ‘KRi’ represents

the area occupied per unit resource Ri and ‘pc’ denotes the power consumed per area unit

resource at a particular frequency of operation.

Using the theory of approximation of differentials the change in power consumption can be

formulated as shown in equation (28):

c

cRn

Rn

R

R

R

R P

P
pN

N

P
N

N

P
N

N

P
dP

∂

∂
⋅∆+∆

∂

∂
++∆⋅

∂

∂
+∆⋅

∂

∂
=)...(2

2

1

1

 (28)

Applying partial derivative to equation (27) produces the following equations:

1

2211

1

])...[(

R

cRnRnRRRR

R N

pKNKNKN

N

P

∂

⋅⋅++⋅+⋅∂
=

∂

∂

cR pK ⋅= 1
 (29)

2

2211

2

])...[(

R

cRnRnRRRR

R N

pKNKNKN

N

P

∂

⋅⋅++⋅+⋅∂
=

∂

∂

cR pK ⋅= 2
 (30)

Rn

cRnRnRRRR

Rn N

pKNKNKN

N

P

∂

⋅⋅++⋅+⋅∂
=

∂

∂])...[(2211

19

cRn pK ⋅= (31)

c

cRnRnRRRR

c p

pKNKNKN

p

P

∂

⋅⋅++⋅+⋅∂
=

∂

∂])...[(2211 (32)

RnRnRRRR KNKNKN ⋅++⋅+⋅= ⋅ ...2211

 (33)

Substituting equations (29), (30), (31) and (33) in equation (28) yields equation (34) below:

)....(2211 cRnRncRRcRR pKNpKNpKNdP ⋅∆++⋅⋅∆+⋅⋅∆=

)...(2211 RnRnRRRRc NKNKNKp ⋅++⋅+⋅⋅∆+ (34)

Equation (34) represents the change in total power consumption with the change in the

number of all resources and the clock period (or clock frequency).

cRR pKN ⋅⋅∆ 11
= The change of ‘P’ contributed by the change in the number of resource R1;

Similarly,
cRnRn pKN ⋅⋅∆ = The change of ‘P’ contributed by the change in the number of resource

Rn;

Finally,)...(2211 RnRnRRRRc NKNKNKp ⋅++⋅+⋅⋅∆ = The change of ‘P’ contributed by the change in

clock period (or clock frequency) and the change in the number of all the resources available.

max

1

11)()1(c

R

RR p
N

KN
RPF ⋅

⋅∆
= (35)

max

2

22)()2(c

R

RR p
N

KN
RPF ⋅

⋅∆
= (36)

max)()(c

Rn

RnRn p
N

KN
RnPF ⋅

⋅∆
= (37)

)(
..

)(2211
c

R

RnRnRRRR p
N

TNTNTN
RclkPF

clk

∆⋅
⋅++⋅+⋅

= (38)

The PF defined from equations (35) to (37) indicates the rate of change in the total power

consumption with the change in number of resources at maximum clock frequency. For example,

20

equation (35) indicates the rate of change of total power consumption of system with the change

in the number of that particular resource (e.g. change in number of adders from one to three) at

maximum clock frequency. The PF helps in arranging the architectural variants of the design

space in increasing or decreasing order of magnitude depending on the parameter of

optimization. This facilitates the selection of the optimal design point that satisfies all operating

constraints and optimization requirements specified.

In the above equations, the maximum clock frequency was considered because the total

power consumption is at the maximum at this frequency. Hence, the change in the number of a

specific resource at maximum clock frequency will influence the change in the total power

consumption (P) the most, compared to the change at other clock frequencies. The PF yields a

real number, which suggests the extent to which the change in number of that particular resource

contributes to the change in total power consumption for the system.

The PF is arranged in such a way that the resource with the minimum PF is chosen first,

gradually increasing and then ending at the resource with the highest priority factor. The above

rule applies for all three parameters described in this chapter.

21

Chapter 4

High Level Synthesis Design Flow with Multi

Parametric Optimization Objective

4.1 Proposed High Level Synthesis Design Flow using the Priority Factor

Method for Design Space Exploration

The priority factor is used to organize the design space in increasing order (or decreasing)

based on a proposed algorithm. The next section focuses entirely on design flow starting with the

real specification and formulation, and eventually obtaining the register transfer level structure,

by performing design space exploration. Three parameters are optimized during the

demonstration of design flow for high level synthesis: power consumption, time of execution and

hardware area of the resources. Fig. 1 shows the entire design flow for high level synthesis using

22

the proposed methodology for DSE. The details of the design flow are discussed in the next

chapters.

4.2 Design Flow Initiation

This stage marks the beginning of the high level synthesis design flow starting with the

technical specifications. The application should be properly defined with its associated data

structure. This phase of the design stage is critical for the designer because the operational

User

specifications

and constraints

Technical

specification

Problem

formulation

Create random

design Space in

vectors for

Power

1) Calculate Priority

Factor (PF) for each

available resource

2) Arrange the obtained

PF in increasing order of

magnitude

Arrange the vector design

space in increasing order

according to the priority

order determined

Get the border design

vector for power

Data path and data
registers

Multiplexing scheme

System block diagram
of the data path

Centralized control
unit

Determination of
timing specifications

Schematic description

Simulation and
implementation

 FPGA AND ASIC

Create random design

space in vectors for

Execution time

1) Calculate PF for each

available resource

2) Arrange the obtained

PF in increasing order of

magnitude

Arrange the vector

design space in
decreasing according to

priority order

determined

Get the border design

vector for Execution

time

1) Determine the pareto-

optimal set

2) Get the Best design

vectors Area

Sequencing graph

and binding graph

Scheduling

algorithm

RT

LEVEL

Using our

approach

for DSE

Using our

approach

for DSE

Figure1. The proposed high level design flow for multi-parametric optimization requirement

23

constraints must be clearly defined along with the parameters to be optimized. These

specifications act as the input information for the high level synthesis tools. For the

demonstration of design flow the following real specifications are assumed.

1) Maximum power consumption: 8 watts (W)

2) Maximum resources available for the system design:

a) 3 Adder/subtractor units.

b) 4 Multiplier units

c) 2 clock frequency oscillators: 50 MHz and 200 MHz

3) Maximum time of execution: 140 µs (For 1000 sets of data)

4) Hardware area of resources: minimum while satisfying the above constraints.

The following specifications are also assumed as an example for each resource available for

system design.

a) No of clock cycles needed for multiplier to finish each operation: 4 cc

b) No of clock cycles needed by the Adder/subtractor: 2 cc

c) Area occupied by each adder/subtractor: 20 a.u. on the chip. (e.g. 20 CLB on an FPGA)

d) Area occupied by each multiplier: 100 a.u. on the chip. (e.g. 100 CLB on an FPGA)

e) Area occupied by the 50MHz clock oscillator: 4 area units (a.u.)

f) Area occupied by the 200 MHz clock oscillator: 10 area units (a.u.)

g) Power consumed at 50 MHz: 10mW/area unit.

h) Power consumed at 200 MHz: 40mW/area unit.

4.3 Problem Description

During the problem formulation stage for high level synthesis, the mathematical model of the

application is used to define the behavior of the algorithm. The model suggests the input/ output

24

relation of the system and the data dependency present in the function. In this work, a transfer

function of an IIR Butterworth filter is used to demonstrate the high level synthesis design flow.

The choice of IIR Butterworth filter is arbitrary and any other filter can also be used for

demonstration. In this work, the selected filter has just been used as an example benchmark

application. The conversion of the analog filter to its digital counterpart is not shown in the thesis

because there are well known methods to obtain it, such as Bilinear Transformation, impulse

invariant [18] etc. The transfer function of a second order IIR digital Butterworth filter function

can be given as [18]:

zz

zzz

zX

zY
zH

26

133

)(

)(
)(

3

23

+

+++
== (39)

2

321

)3/1(1

)6/1()2/1()2/1(6/1

)(

)(
−

−−−

+

+++
=

Z

ZZZ

zX

zY (40)

)2(33.0

)3(167.0)2(5.0)1(5.0)(167.0)(

−−

−+−+−+=

ny

nxnxnxnxny (41)

Where H (z) denotes the transfer function of the filter in the frequency domain and x(n), x(n-1),

x(n-2), x(n-3) represent the input variables for the filter in time domain. y(n) and y(n-2) represent

the present output of the filter and the previous output of the filter in the time domain. ‘z’

represents the unit delay operator. For simplicity in explanation, constants 0.167, 0.5 and 0.33

are denoted with ‘A’, ‘B’ and ‘C’ respectively.

25

Chapter 5

 Exploration of the Architectural Design Space for

Power Consumption

5.1 Creation of Random Architecture Design Space for Power consumption

The architecture design space for hardware area is represented in the form of vectors

consisting of the resources available for the system. The random organization of the design space

is used as a method to represent the different combinations of the resources that comprise the

total design space. This initial arrangement can be made in any order and is simply used for

visualizing the total architectural variants available in the system. The design space can change

based on the available resources of a system. The total design space is first created according to

the specifications mentioned for total available resources for the system design (see Chapter 4).

The variable Vn = (NR1, NR2, NR3) is used to represent the architecture design space. The

variables NR1, NR2 and NR3 indicate the number of adders/subtractors, multipliers and clock

frequencies. According to the specification in Chapter 4, 1<=NR1<=3, 1<=NR2<=4 and

26

1<=NR3<=2. The design space in Fig.2 shows the different combinations of available resources

viz. adder/subtractor, multiplier and clock during system design.

 5.2 Calculation of Priority Factor (PF) for each available resource to

determine the Priority Order (PO)

For resource adder/subtractor (R1):

max

1

11)()1(c

R

RR p
N

KN
RPF ⋅

⋅∆
= = 33.53340

3

20)13(
=⋅

⋅−

For resource multiplier (R2):

max

2

22)()2(c

R

RR p
N

KN
RPF ⋅

⋅∆
= = 300040

4

100)14(
=⋅

⋅−

For resource clock oscillator (Rclk):

)()(2211

c

Rclk

RRRR p
N

TNTN
RclkPF ∆

⋅+⋅
=

= 6900
2

)1040()1004203(
=

−⋅⋅+⋅

The above factors are a true measure of the change in power consumption with the change in

number of a specific resource. For example, according to the above analysis the change in clock

frequency from 50 MHz to 200 MHz affects the change in power the most, while the change in

V1 = (1,1,1)

V2 = (1,2,1)

V3= (1,3,1)

V4= (1,4,1)

V5= (1,1,2)

V6= (1,2,2)

V7= (1,3,2)

V8= (1,4,2)

V9= (2,1,1)

V10= (2,2,1)

V11 = (2,3,1)

V12 = (2,4,1)

V13= (2,1,2)

V14= (2,2,2)

V15= (2,3,2)

V16= (2,4,2)

V17= (3,1,1)

V18= (3,2,1)

V19= (3,3,1)

V20= (3,4,1)

V21= (3,1,2)

V22 = (3,2,2)

V23= (3,3,2)

V24= (3,4,2)

Figure2. Design space with all possible combinations of resources

27

number of adder/subtractor affects the change in power consumption the least. Similarly, the

change in number of multipliers influences the change in power consumption more than the

adder/subtractor, but less than the clock. According to the priority factors calculated, the priority

order (PO) can be arranged so that the resource with the lowest priority factor is assigned the

highest priority order while the resource with the highest priority factor is assigned the lowest

priority order. The priority order of the resources increases with the decrease in priority factor of

the resources. Therefore the following PO of the resources for arranging the design variants in

increasing order can be attained: PO (R1) > PO (R2) > PO (Rclk)

Based on the above priority the variants from the design space are chosen so that the design

space for power consumption can be organized in increasing orders of magnitude. The next

section shows how to arrange the elements in increasing order using the proposed algorithm. The

arrangement of the design variants in increasing order helps to prune the design space for

obtaining the border variant for power consumption.

5.3 Arrangement of Architectural Design Space in increasing order using

Algorithm

Since the design space is large for the present generation of complex multi objective

VLSI designs, analyzing the design space exhaustively to find the architecture that best meets the

user specified objectives is strictly prohibited. Due to increased complexity in VLSI and SoC

designs, the major problem has been the examination of the design variants in the large design

space for selecting the optimal design option, which is acceptable in terms of all the user

constraints and predefined specifications [6]. Hence, obtaining a superior quality design for the

28

user specified specification requires a structured methodology for exploring the large design

spaces. Design space exploration when performed at the higher level of abstraction is more

beneficial than performing it at the lower level of abstraction such as the logic or the transistor

level. The job of design space exploration is a battle between optimizing the following two

contradictory conditions: selecting the optimum design option and efficiently searching the space

in a short time. Hence, there is always a tradeoff not only between the contradictory parameters

of optimization during high level synthesis design, but also between the above mentioned

conditions during design space exploration in high level synthesis. To proficiently analyze the

complex design spaces, a fast but efficient means of arriving at the best result is needed.

Analyzing the design to obtain the best architecture according to the requirements specified,

requires an efficient design space exploration technique. This section presents an algorithm for

arranging the random design space in an organized increasing order for the power consumption

parameter. The algorithm is based on priority order sequencing. The elements are placed in such

a way, so that the element on the top has the least power consumption and the element on the

bottom has the highest power consumption. A flow chart model of this algorithm is shown in

Fig.3 which describes the steps involved in organizing the elements. The arranged design space

for power consumption is shown in Fig.4.

5.4 Determination of Border Variant for Power Consumption using Binary

Search

After the elements are arranged in increasing order, the design space is pruned to obtain

the border variant for power consumption. Binary search is applied to the design space shown in

Fig.4.

29

Binary search is preferred to the other search techniques because it is extremely fast. It uses

the principle of ‘divide and conquer’ to rule out half of the elements in each comparison. Hence,

the border variant can be determined very soon. Furthermore, since binary search works well for

large size sorted elements, binary search can find the border variant in the large sorted design

space with a complexity of log N (see chapter 9 for more explanations). The binary search

algorithm yields the design variants shown in Table 1. The obtained variants are further analyzed

for power consumption according to equation (26). ‘P optimal’ is the value of power consumed

that is specified as a constraint at the beginning of the design flow. ‘P
i
’ is the value of power

consumption for the variant#i. When the value of P
i
is less than the value of specified P optimal,

Initial number of all resources to be 1

(NR1 ,…, NRn = 1)

Let position p=1 and Assign (NR1… NRn)

to position ‘p’

Let i=the resource whose PO is

maximum

NRi== NRi max?

Increase NRi by 1 Reset NRi to 1

Assign

(NR1,,…,NRn) to position

(p+1)

Increase p by 1 p=p+1

p==p(final)?

No Yes

Let i= next resource with next

higher priority order

No

Done

Yes

p(final)= Final position according to

maximum design option available

Figure3. Flow chart model of the proposed algorithm

NRi =Number of a particular

resource

Where ‘i’ is an index

p = position where the variant

is located in the design

space

30

then the southern portion (down) of the design space with respect to the calculated value of P
i
, is

searched. On the contrary, if the value of the P
i
is more than the value of specified P optimal, then

the northern portion (up) of the design space with respect to the calculated value of P
i
 is

searched. After four comparisons it is evident that variant 21 (‘V21’) is the last variant which

satisfies the P optimal.

Table 1. Variants obtained after pruning the design space for power consumption

Variants Power Consumption in watts (W)
Decision based on the

Poptimal

V20

[(3*20)+(4*100)]*10mw = 4.6 W

P
20

 < Poptimal,

search down in the space

V22

[(3*20)+(2*100)]*40mw = 10.4 W

P
18

 > Poptimal,

search up in the space

V21

[(3*20)+(1*100)]*40mw = 6.4 W

P
7

 < Poptimal,

search down in the space

V6

[(1*20)+(2*100)]*40mw = 8.8 W Stop

V1 = (1,1,1) p=1

V9 = (2,1,1)

V17= (3,1,1)

V2 = (1,2,1)

V10= (2,2,1)

V18= (3,2,1)

V3 = (1,3,1)

V11= (2,3,1)

V19= (3,3,1)

V4 = (1,4,1) p=10

V12= (2,4,1)

V20= (3,4,1)

V5 = (1,1,2)

V13= (2,1,2)

V21= (3,1,2)

V6 = (1,2,2)

V14= (2,2,2)

V22= (3,2,2)

V7 = (1,3,2)

V15= (2,3,2) p=20

V23= (3,3,2)

V8 = (1,4,2)

V16= (2,4,2)

V24= (3,4,2) p=24

Arrangement of Power in increasing order from the top to the bottom

element using the proposed algorithm

Minimum power consumption

Maximum power consumption

Border Variant

Satisfying set for power

consumption

Non- satisfying set for power

consumption

Fig.4. The arranged design space for power consumption

31

This variant is referred to as the border variant for power. The significance of this border

variant lies in the fact that all variants to the top of the border variant satisfy the condition of P

optimal, while any variant to the bottom fails to meet the constraint.

32

Chapter 6

Exploration of the Architectural Design Space for

Execution Time

6.1 Creation of Random Architecture Design Space for Execution time

The architecture design space for execution time is also represented in the form of vectors

consisting of the resources available for the system. The random organization of the design space

is used as a way to represent the different combinations of the resources that comprise the total

design space. This initial arrangement can be made in any order and is simply used for

visualizing the total architectural variants available in the system. The design space can change

based on the available resources of a system. The total design space is first created according to

the specifications mentioned for total available resources for the system design (see chapter 4).

The variable Vn = (NR1, NR2, NR3) is used to represent the architecture design space. The

33

variables NR1, NR2 and NR3 indicate the number of adders/subtractors, multipliers and clock

frequencies. According to the specification in Chapter 4, 1<=NR1<=3, 1<=NR2<=4 and

1<=NR3<=2. The design space in Fig.2 shows the different combinations of available resources

viz. adder/subtractor, multiplier and clock during system design.

6.2 Calculation of Priority Factor (PF) for each available resource for

Execution Time parameter to determine the Priority Order (PO)

For resource adder/subtractor (R1):

max

1

11)()1(p

R

RR T
N

TN
RPF ⋅

⋅∆
= = 026.0)02.0(

3

2)13(
=⋅

⋅−

For resource multiplier (R2):

max

2

22)()2(p

R

RR T
N

TN
RPF ⋅

⋅∆
= = 06.0)02.0(

4

4)14(
=⋅

⋅−

For resource clock oscillator (Rclk):

)()(2211
p

Rclk

RRRR
clk T

N

TNTN
RPF ∆⋅

⋅+⋅
=

 = 165.0
2

)005.002.0()4423(
=

−⋅⋅+⋅

The factors determined above measure the change in time of execution with a corresponding

change in the number of a specific resource. For instance, according to the above analysis the

change in number of adder/subtractor affects the change in time of execution the least, while the

change in clock frequency from 50 MHz to 200 MHz affects the change in time of execution the

most. Similarly, the change in multiplier influences the change in execution time lesser than the

change in clock frequencies. As explained before in Chapter 5, the following priority order (PO)

34

for arranging the design variants in increasing order can be organized according to the above

priority factors calculated:

PO(R1) > PO(R2) > PO(Rclk)

6.3 Arrange of Architectural Design Space in decreasing order using the

Proposed Algorithm

This approach is based on the multi-parametric optimization requirement for efficient DSE.

The arrangement of the design space in decreasing order with the proposed algorithm in Chapter

5 enables the designer to rapidly determine the border variant for execution time. But before the

Satisfying set for time

of execution

Arrangement of time of execution in decreasing order from

the top to the bottom element using the proposed algorithm

Border Variant

V1 = (1,1,1) p=1

V9 = (2,1,1)

V17=(3,1,1)
V2 =(1,2,1)

V10=(2,2,1)

V18=(3,2,1) p=6
V3 = (1,3,1)

V11=(2,3,1)

V19=(3,3,1)
V4 = (1,4,1)

V12=(2,4,1)

V20=(3,4,1) p=12

V5 = (1,1,2)

V13=(2,1,2)

V21=(3,1,2)

V6 = (1,2,2)

V14 =(2,2,2)
V22=(3,2,2) p=18

V7 = (1,3,2)

V15=(2,3,2)
V23=(3,3,2)

V8 = (1,4,2)

V16=(2,4,2)
V24=(3,4,2) p= 24

Minimum time of

execution

 Maximum time of

execution

Non-satisfying set

for time of

execution

Figure5. The arranged design vector space in decreasing order for time of execution

35

border variant for execution time can be determined, setting pairs of the performance parameters

contradictory to each other must be done by a designer. Setting the performance parameters

contradictory to each other facilitates in the reduction of the large design space into a small size,

which can be easily evaluated for exploration. After the design space is arranged in decreasing

orders of magnitude, then selecting the border variant becomes very easy. The organized design

space for time of execution in decreasing order based on the proposed algorithm using the

priority factor method is shown in Fig.5.

6.4 Determination of Border Variant for Execution Time using Binary Search

The arrangement of the design space in decreasing order allows the design space to be

pruned for finding the border variant of time of execution. As discussed in Chapter 5, binary

search algorithm is beneficial compared to the other search techniques when it comes to the

question of searching a large size sorted list like a large design space. This is because it is

Table 2. Variants obtained after pruning of the design space for execution time

Variants
Execution time (in

µs)

Decision based on
the T optimal

V20
T exe

 20
= 12 +(1000-

1)*8 *0.02 = 160.08
µs

T exe
20

> T optimal
search down in the

space

V22
T exe

22
= 16 +(1000-

1)*12 *0.005 =
60.02 µs

T exe
22

< T optimal,

search up in the
space

V21
T exe

21
= 22 +(1000-

1)*20 *0.005 =
100.01 µs

T exe
21

< T optimal
search up in the

space

V5
T exe

5
= 22 +(1000-

1)*20 *0.005 =
100.01 µs

stop

.

36

extremely fast and works well for large size sorted lists of elements. Since the design space for

real applications is always large, binary search finds the border variant at a complexity of log N

(see chapter 9 for more explanation) in the sorted design space. The binary search algorithm is

applied to the design space shown in Fig5 and the variants are analyzed according to equation

(13) to determine the best variants (Table 2). Analysis reveals that variant number ‘V5’ is the

border variant for the ‘time of execution’ parameter. Hence all the design variants to the south of

the design space must satisfy the constraint imposed by the user.

37

Chapter 7

Pareto optimal set of architecture

7.1 Determination of Pareto optimal set for the design variants

Once the border variants for the parameters of optimization have been successfully

derived, the next phase of the high level synthesis flow is to find the Pareto optimal set of

architecture. This set contains all those architectural variants that equally satisfy the constraints

imposed by the user. Hence the process of analyzing the initial large design space is reduced to

analyzing only the architectural variants in the Pareto-optimal set. After investigation it is found

that just three architectural variants from the each satisfying set of optimization parameters,

power consumption and time of execution, simultaneously satisfy both power consumed and

execution time. The variants are V5, V13 and V21 (see fig4 and Fig5). The priority factor for

area is determined using equations (9)-(12) to arrange the variants of the Pareto optimal set in

increasing order, similarly to the way it was determined for power and execution time. After

38

calculation of the PF the priority order is determined. The obtained priority order is: PO (Rclk) >

PO (R1) > PO (R2). Using the algorithm described in chapter 5, the variants V5, V13, V21 of the

Pareto set are arranged in increasing orders of magnitude. Since the design specification in

chapter 4 demanded minimum area overhead with simultaneous satisfaction of the constraints

imposed by user, hence the aim is to find the variant with minimum area overhead. After the

arrangement of the variants of Pareto optimal set the variant number ‘V5’ is found to be the only

variant among twenty four variants that concurrently optimizes hardware area, power

consumption and time of execution while meeting all the specifications provided.

7.2 Verification of the optimal design variant

Performing the analysis for the verification of the optimality of the design variant

obtained through the proposed method, is a very important step in the development process.

Verifying the optimality of the best design variant obtained ensures that the variant found strictly

obeys all the operating constraints provided for power consumption, execution time and

hardware area. Further verification plays an important role in the development process because it

can easily detect any mistakes made during any design space exploration process. For example,

the results of the design space exploration suggested that variant ‘x’, is the optimal variant which

satisfies the entire optimization requirement specified. But that optimal variant ‘x’ obtained

might have resulted due to the mistake done by the designer during manually evaluating the

design variants during the design space exploration. Hence verification of the design variant later

surely detects the erroneous step performed by the designer earlier. The proposed DSE approach

is highly compatible for automation and therefore does not require the manual effort for

evaluating the design variants for selecting the best option. Nevertheless, the addition of the

39

verification stage provides the extra confidence in the early decisions made regarding the

selection of best design architecture (variant).

The verification of the best variant obtained in Chapter 7 (Section 7.1), is verified as

explained above for all the three optimization parameters. Investigations indicate that the variant

obtained is in compliance with all the operating constraints and optimization requisites provided

in the design specification.

40

Chapter 8

 Implementation of the Proposed High Level Synthesis

Design Flow

8.1 Scheduling and Binding of operations

Representation of the resources in temporal and spatial domain is performed with the aid of a

sequencing and binding graph. These structures represent a class of acyclic graphs generally

represented using vertices and edges. The vertices indicate the resources used for the system

design and the edges denote the dependency of data flow among those used resources. The flow

of data elements through different operators in the data path can be visualized with the help of

sequencing graphs [11]. Sequencing graphs are used to specify the nature of operation i.e. at

which time what resources are subjected to which operation. This graphical representation of the

application (algorithm) distinctly underlines the operations in discrete time steps while

maintaining the precedence constraints specified in the algorithmic description.

A scheduling problem can be classified into three different categories. Time constrained

scheduling must find the cheapest possible schedule that satisfies the constraint with the given

41

maximum number of time steps. Resource constrained scheduling is used to determine the fastest

schedule satisfying the constraints imposed with the given maximum number of resources.

Finally, feasible constrained scheduling, whose objective is to schedule an output if it exists, by

simultaneously satisfying the constraints for the resource and time. Most of the practical

formulations of the scheduling problem are NP-complete in nature [29]. The scheduling problem

in general is three fold. It is a combination of timing, dependency and resource constraints.

Scheduling is a process that states the time slot for every operation while fixing the timing

length (latency) in such a manner so that the synthesized hardware structure meets the timing

restriction specified [6]. A classical example of time constraint scheduling where the scheduler

must achieve the goal with a minimum number of functional units possible to realize the

behavior is shown here. The scheduling of operations is performed based on the As Soon As

Possible (ASAP) algorithm [16] [17]. Though many algorithms are used for scheduling

operations such as the As Late as Possible (ALAP), List scheduling, Force Directed scheduling,

ASAP, etc., ASAP scheduling algorithm was selected because in the proposed work, the

operations should be done as soon as the resources become free. As the processed data is ready,

the prepared data from the previous stage is used for the next operation. The sequencing and

binding graph for the sample benchmark used in this work is shown in Fig.6.

The concept of binding graph is used in further design stages to realize the function used as a

benchmark application for demonstration of the optimized high level synthesis design flow.

42

8.2 Scheduling and Binding of operations with Data Registers

In terms of architectural synthesis and optimization a circuit is generally specified by the

following three dimensions. First, a sequencing graph, second, a set of functional resources

described in the form of area and latency, and finally, the operating constraints. The function of

registers is to perform data storage and the wires interconnect the different discrete components

[11]. In the sequencing graph of the design, Register P has been added in time slot T2 because

the results of the adder/subtractor at time slot T1 are not used until time slot T3. The sequencing

graph with data registers is shown in Fig.7 (see next page). The latency for the function is

calculated as 11 clock cycles. Fig.8 shows the cycle time calculation for the best architectural

variant obtained.

 C

+

Latency = 22 c.c.

T0

T1 (4c.c.)

T2 (4.c.c.)

T3 (4c.c.)

T4 (4c.c.)

R2

R1

X

X

-

y(n-2) A x(n) B x(n-1) x(n-2) x(n-3)

X

+ X

+ X T5 (4c.c.)

 T6 (4c.c.)

y (n)

Figure6. The sequencing and binding graph for the best variant obtained

43

8.3 Determination of Multiplexing Scheme.

The binding of the resources performed in Fig.7, enables a methodology to be formalized

that incorporates the multiplexers and demultiplexers into the data path circuit of the system. The

multiplexing scheme is one of the most important stages in high level synthesis design flow.

Multiplexing scheme is a procedure for representing each system resource with respective inputs,

outputs, operations and the necessary interconnections. This scheme highlights the actual usage

 C

+

Latency = 22 c.c.

T0

T1 (4c.c.)

T2 (4.c.c.)

T3 (4c.c.)

T4 (4c.c.)

R2

R1

X

X

-

y(n-2) A x(n) B x(n-1) x(n-2) x(n-3)

X

+ X

+ X T5 (4c.c.)

 T6 (4c.c.)

y(n)

 Reg P

Figure7. Sequencing graph with data registers

Ax(n)1

Bx(n-1)1
 Num1

Bx(n-2)1

 Num2

Ax(n-3)1
 Num3

Cy(n-2)1

4

8

12

16

20

Num4

Ax(n)2

Bx(n-1)2

24

28

Cycle Time

Latency = 22 cc, cycle time = 20 cc

Resources

M1

A1

Den1= Ax(n)2+Bx(n-1)2

Den2 =Ax(n)2+Bx(n-1)2+ Bx(n-2)2

Den3 =Ax(n)2+Bx(n-1)2+ Bx(n-2)2+ Ax(n-3)2
Den4 =Ax(n)2+Bx(n-1)2+ Bx(n-2)2+ Ax(n-3)2- Cy(n-2)2

Num1= Ax(n)1+Bx(n-1)1

Num2 =Ax(n)1+Bx(n-1)1+ Bx(n-2)1

Num3 =Ax(n)1+Bx(n-1)1+ Bx(n-2)1+ Ax(n-3)1
Num4 =Ax(n)1+Bx(n-1)1+ Bx(n-2)1+ Ax(n-3)1- Cy(n-2)1

Den1

Bx(n-2)2

 Den2

Ax(n-3)2

32

36

Second process

 40

 Den3

Cy(n-2)2

 Den4

Ax(n)3

Cycle Time

Third process

First process

Figure8. Cycle time diagram for the best variant

44

of resources by the operands at different times while strictly adhering to the data dependency

present. The illustration acts as an important guide for the designer to develop system block

diagrams before developing the control unit structure for the data path. This scheme prevents any

errors in the final hardware structure that could have eventually resulted in catastrophic

consequences later during functioning. The control unit is responsible for the coordination of the

data path of the system. Multiplexers and demultiplexers can be easily constructed and assigned

to their respective inputs and outputs based on the multiplexing scheme, keeping in mind the

dependency of the data. In this work, two functional resources viz. one adder/subtractor and one

multiplier, perform different functions for the circuit. A multiplexing scheme for each of the

above mentioned resources was developed as shown in Tables 3 and 4 respectively.

Table 3.Multiplexing scheme for Adder/subtractor resource (R1)

Time

Operation Input 1 Input 2 Output

0 ------ ------- ------- -------

1 ------ ------- ------- -------

2 ------ R2out RegP -------

3 + R2out R1out R1in

4 + R2out R1out R1in

5 + R2out R1out R1in

6 - ------ ------ RegY

7 ------ ------ ------ ------

Table 4. Multiplexing scheme for Multiplier resource (R2)

Time

Operation Input 1 Input 2 Output

0 ------ RegA Regx(n) -------

1 * Regx(n-1) RegB RegP

2 * Regx(n-2) RegB R1in

3 * RegA Regx(n-3) R1in

4 * RegC Regy(n-2) R1in

5 * ------ ------ R1in

6 ------ ------ ------ ------

7 ------ ------ ------ ------

45

8.4 Determination of Block Diagram of the Data Path unit of the system

After the multiplexing scheme has been successfully performed, the next phase of the

design flow is the development of the system block diagram. The system block diagram consists

of two divisions, data path and the control path. The data path is responsible for the flow of data

through the buses and wires after the operations have been performed by the components present

in the data path circuit. Thus, the data path provides the sequence of operations to be performed

on the arriving data, based on the intended functionality. The data path consists of registers for

storage of data, memory elements such as latches for sinking of data in the next stage, as well as

multiplexers and demultiplexers for preparation of data at run time by change of configuration.

Last but not least, the data path unit also consists of functional resources which perform the

operations on the incoming data. The block diagram for the benchmark application consists of

two resources (an adder/subtractor and a multiplier) for executing their respective assigned

operations. Another component of the system block diagram is the control unit or the controller.

A centralized control unit controls the entire data path and provides the necessary timing and

synchronization required by data traversing through the data path structure. The control unit acts

as a finite state machine that changes its state according to the requirement of activating and

deactivating the various elements of the data path at different instances of time. Based on the

multiplexing scheme, the block diagram of the data path circuit was constructed to demonstrate

design flow for the benchmark application as shown in Fig. 9.

8.5 Determination of Timing specification and Development of Control Unit

The next design stage is the development of the control unit structure, which is accountable

for any mis-coordination in timing among the various elements of the data path. The function of

46

the controller is to activate and deactivate the different elements of the data path based on the

timing specification determined for the objective function. This major unit prepares the data path

units for the incoming data by changing the configuration to perform the next assigned function.

For synchronous functioning of all data elements in the system the controller must respond to the

requirement exactly at the right moment. Failure to activate or deactivate any functional block in

the data path will result in fatal consequences in the system output. The determination of the

timing specification from the control unit helps to create an error free structure of the controller.

VHDL [18] was used here as the hardware description language for designing the control unit.

MUX

LATCH

ADD

/SUB

(A1)

LATCH

DEM-
UX

LATCH

Latch strobe R1

Output strobe R1

Selector R1

De-selector R1
Enable R1

MUX

MUX

LATCH

MUL

(R2)

LATCH

DEM-
UX

LATCH

RegA

Latch strobe R2

Output strobe R2

De-selector R2 Enable R2

Reg x(n-1)

MUX

Reg P

 RegA

Reg x(n-2)

Reg x(n)

RegB

RegB

Reg x(n-3)

Reg yn(n-2)

 RegC

Selector R2

Reg Y

y(n)

R2out

 RegP

R2out
R2out

R2out

 R1out

 R1out

 R1out

R1in

R1in

R1in

 RegY

D strobe RegP RegP

 R1in
 R1in

 R1in

 R1in
 R1in

Figure9. Block diagram of the data circuit

47

The timing specifications data shown in Table 5A and Table 5B are developed with clock cycles

placed in the Y-axis and the control signals placed in the X-axis. At every count the transition of

the different control signals can be clearly observed. This facilitates in the description of the

control structure in a hardware description language.

8.6 Development of the whole system at the RT-Level in Synthesis tool

After all the above steps have been completed successfully, the schematic structure of the

device is ready for development in any of the synthesis tools available. All the components in the

data path were described and implemented in VHDL before verification. Then the schematic

Table 5B.

Timing specification for the data path circuit

 17

0 0 18

 19

 0 1 0 1 20

1 1 21

 1 0 0 10 01 1 0 100 011 22

0 0 23

 24

 25

 0 1 0 1 26

1 1 27

 1 0 0 11 10 1 0 100 28

0 0 29

 30

 31

 0 1 0 1 32

1 33

 1 1 0 11 34

 35

0 1 36

 0 1 37

Table 5A.

Timing specification for the data path circuit

Adder (R1) Multiplier (R2) Strobes

L
atch

 stro
b

e

en
ab

le

ad
d

_
su

b

O
u

tp
u
t stro

b
e

S
electo

r

D
eselecto

r

L
atch

 stro
b

e

en
ab

le

O
u

tp
u
t stro

b
e

selecto
r

D
eselecto

r

S
to

b
es_

reg
iste

r

D
stro

b
e_

reg
P

S
tro

b
e_

reg
Y

C
lo

ck
 C

y
cles

0 0 0 0 00 0 0 0 0 000 000 0 0 0 0

 000 1 1

 1 2

 1 001 000 3

 0 4

 5

 6

 1 7

 0 1 8

 1 9

 00 1 0 010 001 10

 0 11

 12

 13

 0 1 14

1 1 15

 1 0 01 00 1 0 011 010 16

48

structure of the whole device was designed and implemented in Xilinx Integrated Software

Environment (ISE) version 9.2i [19]. The schematic structure of the whole device as designed in

Xilinx ISE 9.2i is shown in Fig. 10.

Figure10. Schematic view of the system (Xilinx ISE 9.2i)

49

Chapter 9

Results, Analysis and Implementation

 9.1 Simulation Results

Using the proposed DSE method, the next step is to verify the device, designed through

the proposed high level synthesis design flow, for its accurate functionality. The design was

checked for a wide array of input vectors and results indicated that the design was successfully

implemented in the Spartan 3E FPGA [20] [21]. Investigations suggested that the device was

working perfectly. The successful result of the simulation shown in Fig.11 (see next page)

suggested that the designed system was producing the expected output. After its successful

implementation the design was imported in Synopsys tool [22] for flattening of the circuit. After

flattening, the steps needed for floorplanning, power planning, placement and routing were

executed in Cadence Encounter SoC [23]. Fig.12 shows the routing of the chip.

50

9.2 Comparative study of the Proposed Multi parametric optimized Design

Space Exploration methodology with the current existing approach

For determination of the optimal architecture, design space exploration requires elaborate

analysis and evaluation of the architectural variants (design points). Before selecting the optimal

architecture, the border variant of architecture for both the performance (execution time and area/

Figure11. Simulation result for the benchmark application

Figure12. Final routing of the chip (Cadence encounter SoC)

51

power) parameters needs to be found separately. Binary search conducted on the arranged design

space (increasing or decreasing) leads to the border variant by taking into account the operating

constraints for that parameter (such as constraint for execution time or constraint for area/power.)

The proposed DSE approach uses binary search after the arrangement of the design space using

the priority factor method. The search of the optimal architecture requires only
∏

=

n

i

Riv
1

2log

.Where

‘n’ = number of type of resources and ‘vRi’ is the number of variants of resource ‘Ri’. On the

contrary, the exhaustive search checks for
∏

=

n

i

Riv
1 architectural variants during optimal

architecture selection while satisfying all operating constraints. In this design space exploration

approach and in the design flow three performance parameters have been used for optimization.

The execution time and power are the parametric constraints and area is the optimization

parameter. Hence, the searching has to be repeated for both the parameters to determine the

border variant.

 Therefore the total number of architecture evaluations using exhaustive search is given as:

 ∏
=

n

i

RivM
1

* .

And total number of architecture evaluations using the proposed method is given as:

 ∏
=

n

i

RivM
1

2log* .

Here, ‘M’ denotes each performance parameter. In this case the value of ‘M’ is two because

there are two performance parametric constraints.

52

9.3 Experimental Results of the Proposed Exploration process for High Level

Synthesis Benchmarks

The proposed approach was applied on various benchmarks to check the acceleration

obtained through this DSE method. Results indicated massive acceleration in the speedup

compared to the exhaustive approach. The results of proposed design space exploration

framework for the benchmarks are illustrated in Table 6. Fig.13 illustrates the speedup results

when using the proposed approach for DSE compared to the exhaustive variant analysis. Table 7

and Table 8 shows the comparative study of the proposed approach with the approach in [2] that

utilizes hierarchical structure for evaluation of design space, for many realistic HLS benchmarks.

Fig.14 shows the comparison of the number of architectural variants analyzed between the

current existing approach and the proposed approach, while Fig.15 represents the speedup

attained by the proposed method compared to the hierarchy tree structure approach using ACG

[2]. Investigations of the results reveal that the proposed approach is capable of drastically

improving the acceleration time for finding the optimal architecture compared to the current

approach shown in [2].

Comparison of number of architectural variants analyzed for

benchmarks using existing approch and proposed approach

0

50

100

150

200

250

300

350

400

450

Edge Detector

1

Edge Detector

2

2D Image

Combiner

3D Image

Combiner

Benchmarks

N
u

m
b

e
r

o
f

a
rc

h
it

e
c

tu
ra

l
v

a
ri

a
n

ts

DSE using Architecture
Configuration Graph which exploits
the hierachical structure

Proposed DSE approch using
Priority Factor (PF) method

Figure14. Comparison of the number of

architectural variants analyzed between the current

existing approach and the proposed approach

speedup of the proposed approach compared to exhaustive

search (Exhaustive analysis)

0

10

20

30

40

50

Edge Detector 1 Edge Detector 2 2D Image

Combiner

3D Image

Combiner

Benchmarks

s
p

e
e
d

u
p

 i
n

 s
c
a
le

 o
f

lo
g

 t
o

th

e
 b

a
s
e
 1

0

speedup

Figure13. Representation of the speedup the scale
of log to the base 10 (log 10 speedup) compared to

the exhaustive variant analysis

53

For example, in the case of edge detector 1, when the types of resources are less than the

other benchmark applications, then the proposed approach provides a percentage speedup up to

30% compared to the existing approach described in [2]. Further for large well known high level

synthesis benchmarks such as Discrete Wavelet Transformation (DWT) [25], Differential

Equation Solver (HAL) [24], Elliptic Wave Filter (EWF) [24], Auto Regressive Filter [26][27]

and MPEG Motion Vector [28], the speedup results compared to the current approach [2] is over

30 %. Hence based on the experiments performed on the benchmarks it can be concluded that the

proposed approach for DSE is able to provide increased acceleration when compared to existing

DSE approaches.

speedup of the proposed approach compared to an curent

existing approach that uses hierarchical structure using

Architecture Configuration Graph

0

5

10

15

20

25

30

35

Edge Detector 1 Edge Detector 2 2D Image Combiner 3D Image Combiner

Benchmarks

P
e
rc

e
n
ta

g
e
 s

p
e
e
d
u
p

Figure15. Representation of the speedup attained by the proposed DSE
compared to a current approach that uses hierarchical structure

Table 6. The results of the proposed DSE approach for the Benchmarks

Benchmark
Type of

resources

Number of

variants of

each

resource

Total

possible

architecture

for

exhausted

search

Evaluated

architectures

using the

proposed

DSE

strategy

Speedup

obtained
Log10(speedup)

Edge Detector 1 7 8 4.2x10
6

42 9.9 x10
4
 4.995635

Edge Detector 2 14 8 8.8 x10
12

 84 1.05 x10
11

 11.02119

2D Image

Combiner
32 16 6.81 x10

38

256
2.66 x10

36
 36.42488

3D Image

Combiner
32 32 2.92 x10

48

320
9.13 x10

45
 45.96047

54

Table 8. Comparative study of the proposed DSE approach with one of the current approaches [2] for 5
th
 order

WDF benchmark

Benchmark Type of

resources

Number of

variants of each

resource

Total

possible

architecture

for

exhausted

search

Architecture

evaluation

using

Hierarchical

arrangement-

ACG [2]

(Number of

total

architecture)

Proposed

Priority

Factor

method

(Number of

architecture)

Speed up

of the

proposed

approach

compared

to the

existing

approach

5
th

 order Wave

Digital Filter (WDF)
2

Adder Multiplier
416 24 16 33.33 %

26 8

Table 7. Comparative study of the proposed DSE approach with one of the current approaches [2]

Benchmark

Architecture evaluation using

Hierarchical arrangement of the ACG

(Number of total architecture)

Proposed Priority Factor

method (Number of

architecture)

Speed up of the

proposed approach

compared to the

existing approach (%)

Edge Detector 1
60 42

30

Edge Detector 2
116 84

27.58621

2D Image Combiner
324 256

20.98765

3D Image Combiner
388 320

17.52577

Table 9. Experimental results of comparison between the proposed DSE approach with the current approach [2] for

large benchmarks

Benchmarks

Total possible

architecture in

the design

space for

exhaustive

search

Architecture evaluation

using Hierarchical

arrangement of the

ACG with binary

search [2] (Number of

variants analyzed)

Architecture evaluation

using Proposed Priority

Factor method

(Number of

architecture)

Percentage

speed up

compared

to current

DSE

approach

[2]

Speedup

using

proposed

approach

compared

to the

exhaustive

search

Discrete Wavelet

Transformation

(DWT) [25]

432 26 18 30.76 % 95.88 %

Differential Equation

Solver (HAL) [24]
180 26 14 46.15 % 92.22%

Elliptic Wave Filter

(EWF) [24]
156 20 14 30 % 91.02 %

Auto Regressive Filter

(EWF) [26][27]
288 24 16 33 % 94.44 %

MPEG Motion Vector

(MMV) [28]
756 28 20 28.57 % 97.35 %

55

Chapter 10

Conclusion and Future Work

 The thesis has presented a new framework for rapid and accurate design space exploration.

The approach was successful in laying the foundation for exploring the design points from the

architecture design space according to the performance objective and intended functionality. The

presented method determines the priority factor of each resource for system designing. After the

architectural design points were organized in increasing and decreasing order based on the

priority factor calculated, the procedure for applying the search algorithm became very simple.

As a result the proposed approach was able to drastically reduce the number of architectural

variants to be analyzed for selection of the system architecture. The proposed mechanism for

DSE was able to resolve conflicting objectives in DSE, by concurrently maximizing the accuracy

needed in the evaluation of the design point as well as minimizing the time expended in design

space assessment. This approach is applicable to all system architectures based on modules with

known performance requirements and system specifications. The priority factor functions for the

DSE framework were first deduced mathematically and then used in the proposed high level

56

synthesis design flow to highlight its success in finding the best architecture.. Formalizing the

design methodology for multi parametric HLS is useful for many industrial projects and modern

automated high level synthesis tools. Based on the experiments performed on the benchmarks, it

can be concluded that the proposed approach for DSE is able to provide increased acceleration

compared to the current existing approaches for DSE in HLS.

Due to the enormous growth of the design complexity, the gap between the electronic system

level and the register transfer level must be filled. A complete design methodology is described

in this thesis, which allows automation of the high level synthesis design flow. This design flow

can provide the foundation for a fully automated high level synthesis tool that performs not just

design space exploration but also synthesis. This is the first work known to the author that

elaborates the design steps and exclusively concentrates on the design flow methodology useful

for multi parametric optimization requirement using a fast DSE method. Compared to the

traditional high level design flow, the modern high level flow must be more efficient, and multi

parameter optimized. The design flow should have formalized steps to be followed for designing

the system without making errors. The design approach for high level synthesis considering

multi parametric optimization shown here in this thesis contributes significantly for designing

Application Specific Integrated Circuits (ASIC) and Application Specific Processors (ASP) used

in system-on-chip design. Any computing core developed through this method could be

efficiently used in real time systems where the time of execution is the major decisive factor for

successful functioning of the system.

New standards in the area of communications, signal processing and multimedia have led to a

wide array of applications demanding high performance at minimal power consumption. The

modern generations of massive power hungry portable devices like Mp3 and Mp4 players are

57

required to provide high performance at low power. High performance output means performing

more operations per clock cycle, i.e. more power usage. However, this demand is in total

contradiction to the current trend of portable devices which should operate on low power.

Although parameters like execution time and power are contradictory, both are equally vital for

system design. In such cases, this high level design flow for multi parametric optimization

requisite will work wonders for the designer. While describing the design flow all these factors

were taken into account when designing the system. Investigations revealed that the designed

system met all the specified stringent operational constraints for execution time, hardware area,

power dissipation. The results were in accordance with the technical specifications provided.

Thus the flow successfully bridged the gap from the ESL to the RTL.

Scope of Future Work

There is much potential in the area of design space exploration and high level synthesis to

improve the search time for finding the optimal design architecture, and thereby accelerate the

speedup of the exploration process. The developed design space exploration approach for high

level synthesis can be improved further by decreasing the number of architectural variants to be

analyzed during the exploration process. Reducing the analysis of the architectural variants

directly reduces the search time and hence will help in fast marketing of the product. Another

aspect of high level synthesis, which also has significant potential for improvement, is the

optimization of many other parameters such as reliability, temperature etc., which stills lies in

the nascent stage of development.

58

Refereed Publications

Refereed Journals

1. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “ A High Level Synthesis design flow

with a novel approach for Efficient Design Space Exploration in case of multi parametric

optimization objective”, Microelectronics Reliability, Elsevier, In press, Corrected Proof,

2009, doi:10.1016/j.microrel.2009.11.015, Available online December 22, 2009.

2. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “A High Level Synthesis Design

Flow from ESL to RTL with multi-parametric optimization objective”, IETE Journal of

Research, 2009, Submission no: IETE JR_523_09 (under review)

3. Zhipeng Zeng, Reza Sedaghat, Anirban Sengupta, “A multi parametric optimized High

level synthesis Design Flow for multi objective VLSI and SoC designs”, Integration VLSI

journal, Elsevier, 2009, Submission no: VLSI-D-09-00120 (under review)

Refereed Conferences

4. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Hardware Efficient Design of speed

optimized Power stringent Application Specific Processor”, IEEE 21
st
 International

Conference on Microelectronics (ICM), Published in the 21
st
 Conference Proceedings,

59

2009, Pages: 167-170, IEEE Catalogue no: 978-1-4244-5815-8/09, Presented on

December 22, 2009, Morocco.

5. Zhipeng Zeng, Reza Sedaghat, Anirban Sengupta, “A Novel Framework of Optimizing

Modular Computing Architecture for multi objective VLSI designs”, IEEE 21
st

International Conference on Microelectronics (ICM), Published in the 21
st
 Conference

Proceedings, 2009, Pages: 322-325, IEEE Catalogue no: 978-1-4244-5815-8/09, Presented

on December 21, 2009, Morocco.

6. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Rapid Design Space Exploration for

multi parametric optimization of VLSI designs”, 43
rd

 IEEE International Symposium on

Circuits and Systems (ISCAS), 2010, Accepted for publication in the 43
rd

 Proceedings of

the Conference, Paris, France, Article # 2016, To be presented on June 2, 2010 in Paris.

7. Anirban Sengupta, Reza Sedaghat, “Fast Design Space Exploration for Multi Parametric

Optimized VLSI and SoC Designs”, 15th Asia and South Pacific Design Automation

Conference (ASP-DAC), 2010, Accepted for Poster Presentation in the Conference, Poster

ID: 26, Taiwan. To be presented on January 19, 2010 at Taipei, Taiwan.

 (http://www.asp-dac.itri.org.tw/aspdac2010/student_forum/index.html).

8. Zhipeng Zeng, Reza Sedaghat, Anirban Sengupta, “A Framework for Fast Design Space

Exploration using Fuzzy search for VLSI Computing Architectures”, 43
rd

 IEEE

International Symposium on Circuits and Systems (ISCAS), 2010, Accepted for

60

publication in the 43
rd

 Proceedings of the Conference, Paris, France, Article # 2019. To be

presented on June 2, 2010 in Paris.

9. Summit Sehgal, Reza Sedaghat, Anirban Sengupta, Zhipeng Zeng, “Multi Parametric

Optimized Architectural Synthesis of an Application Specific Processor”, IEEE 14
th

International CSI Computer Conference (CSICC), Published in the 14th Conference

Proceedings, 2009, Pages: 89-94, IEEE Catalogue no: 978-1-4244-4262-1/09. (Also

available on IEEE Xplore)

10. Summit Sehgal, Reza Sedaghat, Anirban Sengupta, “FAULT MONITORING

TRANSFORMER RELIABILITY ASIC DESIGN BASED ON RINGING EFFECT

SIGNATURE ANALYZER” , IEEE 23
rd

Canadian Conference on Electrical and

Computer Engineering (CCECE), 2010. (under review)

61

References

[1]Christian Haubelt, Jurgen Teich,“Accelerating Design Space Exploration Using Pareto-Front

Arithmetic’s”, In Proceedings of Asia and South Pacific Design Automation Conference (ASP-

DAC’03), Japan, 2003.

 [2]Kirischian, L., Geurkov, V., Kirischian, V. and Terterian, I. (2006)‘Multi-

parametric optimisation of the modular computer architecture’, Int. J.Technology, Policy and

Management, Vol. 6, No. 3, pp.327–346.

 [3]I. Das. A preference ordering among various Pareto optimal alternatives. Structural and

Multidisciplinary Optimization, 18(1):30–35, Aug. 1999.

[4]Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti, Fuzzy Decision Making in

Embedded System Design,” Proceedings of 4
th

 International Conference on

Hardware/Software Codesign and System synthesis, 2006, October 2006, Pages: 223-228

[5]J. C. Gallagher, S. Vigraham, and G. Kramer,“A family of compact genetic algorithms for

intrinsic evolvable hardware,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 1–126, Apr. 2004.

62

[6] Vyas Krishnan and Srinivas Katkoori, “A Genetic Algorithm for the Design Space

Exploration of Datapaths During High-Level Synthesis, IEEE Transactions on Evolutionary

Computation, vol. 10, no. 3, June 2006.

[7]E. Torbey and J. Knight, “High-level synthesis of digital circuits using genetic algorithms,” in

Proc. Int. Conf. Evol. Comput., May 1998, pp.224–229.

[8]E. Torbey and J. Knight, “Performing scheduling and storage optimization simultaneously

using genetic algorithms,” in Proc. IEEE Midwest Symp. Circuits Systems, 1998, pp. 284–287.

[9]Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti,

“Effcient design space exploration for application specific systems-on-a-chip” Journal of

Systems Architecture 53 (2007) pages: 733–750.

[10] Williams, A. C., Brown, A. D. and Zwolinski, M, "Simultaneous Optimisation of Dynamic

Power, Area and Delay in Behavioural Synthesis", IEE Proceedings Computers and Digital

Techniques, 2000, Volume: 147, Issue: 6, On page(s): 383-390.

[11]De Micheli,G.(1994) Synthesis and Optimization of Digital Systems, McGraw-Hill Inc., 580

p.

[12] McFarland, Parker, A.C, Camposano, R. “Tutorial on high-level synthesis” Proceedings of

the 25th ACM/IEEE Design Automation Conference, 1988, Atlantic City, New Jersey, United

States, Pages: 330 – 336.

[13]Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo Maurizio Palesi, Davide Patti,

“Effcient design space exploration for application specific systems-on-a-chip” Journal of

Systems Architecture 53, Science Direct, Elsevier, 2007, Pages: 733-750

[14]Ron Larson, Robert P.Hostetler, Bruce H.Edwards, “Calculas with Analytic Geometry”,

Houghton Mifflin Company, Eighth Edition, 2006, Pages: 918-919

63

[15]S Salivahanan, A Vallavaraj and C Gnanapriya, “Digital Signal Processing”, Tata McGraw-

Hill Publishing Company Limited, 2006, pp. 439- 444.

 [16]Pierre G. Paulin and John P. Knight, “Scheduling and Binding Algorithms for High-Level

Synthesis, 26
th

 conference on Design Automation, 1988, Pages: 1-6

[17]Saraju P. Mohanty, Nagarajan Ranganathan, Elias Kougianos and Priyadarsan Patra, “Low-

Power High-Level Synthesis for Nanoscale CMOS Circuits” Chapter- High-Level Synthesis

Fundamentals, Springer US, 2008

[18]Brown,S. and Vranesic, Z. (2005) Fundamentals of Digital Logic with VHDL Design,

 2nd ed., New York, NY: McGraw-Hill, 940 p.

[19]ISE 9.2i Quick Start Tutorial, Xilinx ISE 9.2i , Software Manuals and Help,

http://www.xilinx.com/support/sw_manuals/xilinx92/download/

[20] http://www.xilinx.com/publications/xcellonline/xcell_54/

 xc_ssinterface54.htm

[21] http://www.xilinx.com/publications/xcellonline/xcell_54/xc_pdf/

 xc_ssinterface54.pdf

[22]http://www.synopsys.com/Tools/SLD/AlgorithmicSynthesis/Pages/default.aspx]

[23] http://www.cadence.com/support/university/Pages/default.aspx

[24] http://www.cbl.ncsu.edu/benchmarks/.

[25] Jain, R., Panda, P.R.: An efficient pipelined VLSI architecture for lifting-based 2d-discrete

wavelet transform. In: Proceedings of the International Symposium on Circuits and Systems

(ISCAS), pp. 1377– 1380 (2007)

[26]Antola, A., Ferrandi, F., Piuri, V., Sami, M.: Semiconcurrent error detection in data paths.

IEEE Transactions on Computers 50(5), 449– 465 (2001)

64

[27] Antola, A., Piuri, V., Sami, M.: A low-redundancy approach to semi-concurrent error

detection in datapaths. In: Proceedings of the Design Automation and Test in Europe, pp. 266–

272 (1998)

[28]Express: High-Level Synthesis Benchmarks. http://express.ece.ucsb.edu/benchmark/

[29] Cheng-Tsung Hwang, Jiahn-Humg Lee, and Yu-Chin Hsu, “A Formal Approach to the

Scheduling Problem in High Level Synthesis”, IEEE Transactions on computer-aided design,

vol. 10, no. 4, april 1991.

[30] McFarland, M.C. Parker, A.C. Camposano, R. "The high-level synthesis of digital

systems",Proceedings of the IEEE, Feb 1990,Volume: 78, Issue: 2, page(s): 301-318

[31] Maurizio Palesi, Tony Givargis, “Multi-Objective Design Space Exploration Using Genetic

Algorithms”, Proceedings of the tenth international symposium on Hardware/software

codesign”, Estes Park, Colorado, 2002, Pages: 67 – 72.

65

APPENDIX

1. The Control Unit Simulation Results

66

2. The RTL Schematic Generated in Xilinx Integrated Software

Environment (v9.2i)

67

3. The Routing information for Spartan 3E FPGA generated in Xilinx

Integrated Software Environment (v9.2i)

