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Abstract 

 

Information Technology uses up to 10% of the world’s electricity generation, contributing to 

CO2 emissions and high energy costs. Data centers consume up to 23% of this energy, and a 

large fraction of this energy is consumed by databases. Therefore, building an energy efficient 

(green) database engine will reduce associated energy consumption and CO2 emissions. 

To understand the factors driving database energy consumption and execution time over the 

course of their evolution, we conducted an empirical case study of energy consumption of two 

MySQL database engines, InnoDB and MyISAM, across 12 releases. Moreover, we examined 

the relation between four software metrics and energy consumption & execution time, to 

determine the software metrics affecting the greenness and performance of a database.  

Our analysis shows that database engines energy consumption and execution time increase as 

databases evolve. Moreover, the Lines of Code metric is strongly correlated with energy 

consumption and execution time. 
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Chapter 1  

1 Introduction 

1.1  Motivation   

Information Technology (IT) requires a huge amount of energy. In fact, 1500 Terawatt hours1 

(TWh) per year (or 10% of the worldwide energy generation) are consumed by IT [1]. 

Consequently, this leads to high carbon dioxide (CO2) emissions. The current global CO2 

emission of 9.1 billion tons per year is at the highest level in human history (49% higher than in 

1990) [1].  

As a result of the high demand on IT services, data centers consume a massive amount of 

energy and are responsible for using up to 350 TWh per year [1]. Generally, the energy is 

consumed by hardware; but since hardware is driven by software, software is responsible for 

consuming energy as well. Databases are considered to be the backbone in the software world; 

hence, they are responsible for a significant proportion of the overall software energy 

consumption. Therefore, we focus on understanding how to make databases more efficient 

(greener) by trying to identify the main factors that affect database energy consumption and 

execution time. 

IT, in general, and software, in particular, can participate in the development of 

sustainability2 in different ways, e.g., using energy efficiently via decreasing the used resources 

and as a result of that the CO2 emissions will be reduced as well. Moreover, IT processes can be 

made more sustainable by decreasing the energy consumption and the negative emissions of 

companies and individuals. 

There is no doubt that reducing the energy consumption and the related carbon emissions 

of IT systems contributes to and pushes the development of environmental sustainability 

forward. In addition, the reduction of energy consumption leads to a reduction of maintenance 

                                                 
1 Terawatt hour = 1012 watt hours. 
2 Sustainability research focuses on areas such as the environment, economy, community and the impact on the  

   human beings. 
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expenses and the total costs of ownership, giving a competitive advantage to manufacturers of 

such products; this important goal forces the companies to implement energy efficient products 

and energy-aware technology services. As a result, green3 hardware designs and products, as 

well as green service operations, have gained much importance in attaining environmental 

sustainability. In terms of sustainability requirements, both energy and time need to be 

considered, and this is the main reason we focus on these two factors in this dissertation. 

The software part has received less attention than the hardware part and few solutions 

(such as energy test suites) have been put forth to comprehend energy efficiencies. Green IT is 

the study and practice of efficient use of computing resources to decrease the negative impact on 

the environment; it is applicable to various high-tech domains, such as data centers, mobile 

computing and embedded systems [2][3]. 

Software systems usually evolve over time for different reasons such as, requirements 

changes, code optimization, and defect patches. As a result, conducting research for specific 

software will be more valuable if this research takes into consideration these evolutions and 

covers as many software releases as possible; therefore, that is precisely what we have done in 

this dissertation. 

1.2 Research Statement  

We aim to identify how the energy consumption and execution time of a database engine can 

change when the database evolves from one release to another, in addition to understanding how 

these changes are related to some database-associated properties such as raw data size, engine 

storage type (MyISAM/InnoDB), and database memory size. 

Furthermore, this research searches for the software metrics that can have direct effects on the 

sustainability development in a database represented by its effect on energy consumption and 

execution time.  

Defining these subjects can help to move the industry forward toward the green database 

goal particularly and green software generally. 

  

                                                 
3 Green refers to the consumption of less energy. 
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1.3 Objective  

In order to tackle the research statement, we focus on answering two research questions: 

RQ1: How does the energy consumption and execution time of a database engine 

change as the product matures (from release to release)? 

RQ2: Which software metrics affect energy consumption and execution time? 

Answering RQ1 will help us identify the factors leading to green and fast database s from 

the software evolution perspective. Answering RQ2 will help us build models that can predict 

software greenness and performance based on software metrics that can be easily extracted from 

source code (such as code size or code churn metrics). This information should be of interest to 

practitioners, since software vendors such as Apple, IBM and Microsoft are seeking more 

sustainable products with lower levels of energy consumption and lower levels of execution time 

as well [4]. It should also be of interest to theoreticians, since the information can be used to 

build universal models of software’s energy consumption and performance. 

 

1.4 Proposed Solution  

In order to answer these research questions, in this dissertation, we study energy consumption 

and execution time across 12 different releases of two database engines (MyISAM and InnoDB) 

of the MySQL database. MySQL is the most commonly used and most popular open source 

database in the world [5]. We chose MySQL as our software under study, because the MySQL 

database is a mature product (having been developed since 1995) with a large (approximately 1 

million lines of code) codebase being actively developed. This gives us enough data to study the 

product’s evolution.  

There are different types of MySQL database engines. We are focusing on MyISAM and 

InnoDB, because these are the default engines for the various MySQL versions under study. We 

are investigating the effects of software changes on energy use and execution time.  

To answer RQ1, we study the relation between energy consumption (or execution time) 

for all the MySQL versions under study. To answer RQ2, we examine the relation between 

software metrics from one side and energy consumption (or execution time) from the other side. 
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This type of work required building a framework to automate all the necessary processes such as 

database installation, upgrade from version to version, executing the workload, reading and 

collecting the measurements from the special measurement meter and recording the 

measurements for all the MySQL releases used in addition to creating a database for all the 

experimental data results. It also required building a system to extract software metrics4 from the 

code base of MySQL so that the relation between the metrics on one side and energy 

consumption (or execution time) on the other side could be established. All these requirements 

are addressed in this dissertation. 

 

1.5 Novelty and Significance  

This is the first study examining the relation between different MySQL database releases and 

their energy consumption as well as execution times. This research differs from the previous 

research that has examined the link between different application versions (not a database’s 

software) and their performance. In addition, to the best of our knowledge, this work is the first 

study to establish a link between MySQL databases’ energy consumption and their execution 

time from one side and the software metrics LOC, LOCC and TCC/MCC from another side. 

Our research focused on the database engine that is considered to be the mainstay in the 

software world, and the data we used to populate our databases (1GB and 3GB data) are 

considered to be Big Data compared to the size and properties of the machine used; therefore, 

this research is considered highly valuable to many other research areas such as Big Data and 

cloud computing studies as well. 

Moreover, this work has a significant environmental impact and may be considered very 

useful in environmental research because it shows how to identify the better performance 

applications that use less energy and have lower execution time. Consequently, this will help in 

choosing software that consumes fewer resources and accordingly has a direct reduction on 

system CO2 emissions. 

                                                 
4 Such as LOC (Line of Code), LOCC (Line of Code Change), and TCC/MCC (Traditional/Modified Cyclomatic 

Complexity). 
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From another point of view; this work can be considered an extension to the “Green 

mining research” [4] in the research on power consumption within software versions; the 

previous research used a different application (Firefox web browser), while we are focusing on 

the MySQL database. 

Furthermore, this work has industrial effects because vendors are interested in Green 

IT—for example Microsoft, Apple, Intel and IBM—and they have already started their 

investigations and research in power utilization documentation and tools [4]. 

 

1.6 Contributions  

The contributions of our research are as follows: 

 

1. We introduced a methodology to examine the energy consumption and execution time in two 

database engine types (MyISAM and InnoDB). We showed how the energy consumption and 

execution time vary between different database versions, among different raw data sizes and 

different memory sizes.  

2. We introduced a case study of energy consumption and execution time within MySQL’s 

different versions. Our results confirm the following: 

a. Energy consumption and execution time does change over the lifetime of a product. 

b. We found out that in one MySQL database engine (MyISAM), both energy 

consumption and execution time increase when the MySQL versions age. In essence, 

newer releases are slower and less green than the older ones. However, in the other 

case (InnoDB), the relation between the database aging and its greenness is not 

pronounced. 

c. Not all energy consumption is related to the hardware; there are many software issues 

that can affect the energy consumption and execution time and consequently the 

software’s performance. 

3. We presented a new procedure that was used to build a framework for automating all the 

related processes. The designed framework has the following functions: 

a. Decompress the downloaded MySQL TAR files. 
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b. Install a specific MySQL version. 

c. Upgrade from previous version to current one. 

d. Execute the 22 TPC-H queries one by one. 

e. Calculate the individual query execution time. 

f. Measure the energy consumption and system statuses per each query.  

g. Record all the measurements to build a centralized database that represents the 

datasets we used in the data analysis subsequent sections. 

4. We wrote scripts to find the metrics’ measurements for each database version under study by 

using different tools, such as the CLOC tool [6]. Then we observed the results with our 

previous workload’s energy (time) results. We found that some software metrics have a 

strong correlation with energy (time) consumption and some not. Our findings, at the 

workload level, are the following: 

a. LOC is strongly correlated with energy consumption and execution time, which 

means when the release has more code, it will consume more energy and hence be 

less green. 

b. LOCC is weakly correlated with energy consumption and execution time.  

c. TCC/MCC has a moderate to strong correlation with energy and time consumption. 

Moreover, we explained the correlation between the software metrics as follows: 

d. LOC is strongly correlated with MCC and TCC. 

e. MCC and TCC are perfectly correlated. 

f. LOCC is weakly correlated with the other metrics under study. 

In addition, we calculated two new variables  namely, change in energy and change in time  

and examined the correlation with LOCC as follows: 

g. LOCC has a moderate to strong correlation with time and energy consumption 

changes in the case of MyISAM, while this correlation is weaker in the case of 

InnoDB. 
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1.7  Organization of Chapters  

The rest of the dissertation is organized as follows. Chapter 2 introduces the background 

knowledge necessary for this research along with a general description for the ideas behind 

software metrics and their importance. Chapter 3 explains the methodology and experimental 

setup. Chapter 4 discusses the results of our experiments and threats to the validity of our study. 

Finally, Chapter 5 concludes the dissertation.  
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Chapter 2  

2 Background 

This chapter includes information about the background and work related to our research. In 

Section 2.1, we described green and sustainable computing and related information such as green 

software and green databases. In Section 2.2 and 2.3, we described the dissertation-related 

research and the latest studies concerning our work. Section 2.4 describes software metrics. 

2.1 Green and Sustainable Computing  

Green and sustainable computing deals with the research and practices that have a significant 

impact on the environment [7]. There are many concerns related to this field, such as increasing 

energy costs and the reduction of natural resources. Although the huge amounts of computer 

production and usage have a direct negative impact on the environment, there are many good 

steps toward green computing goals, such as lower energy consumption and new recycling 

programs in addition to the application of new alternatives to the use of hazardous materials in the 

manufacturing process [7][8]. 

Many researchers have been attracted to this domain because of its significance and 

direct impact on the economy, natural resources, energy consumption and, moreover, its effects 

on human lives [7]. The importance of this field began with the significant expansion in the field 

of computing in 1990. The U.S. Environmental Protection Agency launched Energy Star, which 

is a labeling program intended to support and identify energy-efficiency in, for example, 

monitors and climate control equipment [7]. Energy Star was applied to many technological 

devices such as computer monitors and heat control system devices like air conditioners. 

Consequently, this led to the spread of the main result of green computing, which is the sleep 

mode function in many of these electronic devices [8]. The sleep mode idea is to put electronic 

devices into standby mode after a certain period of time has passed with no user activity 

detected. The next step in green computing improvement began to cover many other aspects, 

such as client solutions, energy cost measurements, virtualization practices, e-Waste and many 

other solutions [8]. 
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2.1.1 Green and Sustainable Software  

There are many negative impacts on the environment as a result of using IT hardware-software 

systems due to increasing energy consumption and, consequently, rising carbon dioxide emissions 

[8]. Therefore, software is considered green and sustainable when its direct and indirect negative 

impacts on the sustainability process are at a minimal level or could have a positive impact [9]. 

This definition needs to be considered at all stages of the software lifecycle: from development, 

design, deployment, usages and ending with disposal. Moreover, software plays a significant role 

in the life cycles of many other products or services, because it can be used in product design and 

production processes or even in the utilization of other products or services [9]. All these factors 

have made the study of the relationship between software and sustainability very significant. 

2.1.2  Green and Sustainable Database  

Understanding the idea of the green database starts with a consideration of the basic components 

of the database and then examining the effects of each of these parts on the progress of the 

sustainability within the database. The database system is a general software system for 

manipulating databases. The main functionality for this system is to store information and allow 

the users to create, delete, update and read that information. It allows the concurrent use of a 

database by multiple users and provides a tool for accessing and manipulating the data in the 

database. A Database Management System (DBMS) is a group of programs that allows the users 

to create and maintain a database. It is a general-purpose software system that services the 

process of defining, creating, and manipulating the data [10]. The database system environment 

includes many interrelated components, such as 

 Software, 

 Hardware, 

 People, 

 Procedure, and 

 Data. 
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All of these combined elements contribute to the effects on the performance and efficiency 

of the database, and consequently they affect the sustainability development within the database. 

Figure 2.1 shows these significant components that make up the database structure. 

 

2.1.2.1 Sustainability in a Database’s Hardware  

The most significant part in the hardware system of a database is the database server. Therefore, 

understanding the power consumption in the server will help to give a clearer idea about how this 

important part affects the sustainability development in the whole database. 

In any hardware-software system and, in particular, in a database system, the total power 

consumption of a computer is the sum of power consumption of hardware components, such as 

CPU, memory, hard drives, etc. [11]. The power consumption of any hardware element depends 

on the settings of that hardware, such as the maximum frequency for CPU and the runtime 

utilization [12], and there are different methods for changing the hardware settings: 

 DVFS, which refers to Dynamic voltage/frequency scaling on both CPU and DRAM. 

 Changing the hard disk settings to a multi-speed option.  

Several settings of the hardware cannot be changed at runtime. Most of the modern servers 

are not energy efficient [13], because the power consumed while the server is idling may 

represent the biggest portion of the server’s total power consumption (see Figure 2.2). For 

instance, it can be more than 50% of the energy consumption of a database server [11], [14]. 

Figure 2.1: Database system environment. 
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ACPI S3 (Advanced Configuration and Power Interface) is commonly used to decrease the idle 

consumption; however, using S3 has the drawback that it could be the reason for the latency of 

the server to restart and respond [12]. 

 

Figure 2.2: Power breakdown of test machine (reproduced from [11]). 

 

The other significant hardware element that affects the power consumption is the battery. 

The processes of charging and discharging a battery are not simple. Therefore, this issue attracts 

the attention of many researchers [15]. The charge process leads to a loss of energy implicitly, and 

this loss mostly increases in many batteries over the charging cycles. In the discharge process, the 

battery cannot discharge completely, because of the inverter, which disconnects the battery supply 

when voltage is lower than a certain threshold [12]. 

 

2.1.2.1.1 Renewable Energy Integrated Database (ReinDB)  

The information in this section was adopted from the original source paper of the ReinDB design 

[12]. Carbon-intensive energy is referred to as “brown energy,” in contrast with “green” or 

renewable energy [16]. The main goal of ReinDB is to reduce the brown energy consumption on 

a database server using both green and brown energy supplies. In this design, a developed green 

supply driven execution paradigm and adaptive power management techniques to adapt to the 

green energy supply are used for this implementation. The writers consider this work to be the 

first work of attempting to integrate green energy into a database server. Figure 2.3 represents 

the ReinDB design and the algorithm used in the design of this energy-aware database. 
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2.1.2.2 Sustainability in a Database’s Software 

As discussed in the previous sections, software is considered to be one of the most important 

components in the database system environment. Therefore, in order to identify the features that 

lead to a green database, we first need to know the features that lead to green software. In the 

following section, we introduce a model (GREENSOFT model) [9] that is considered to be a 

pattern that can be used to apply and measure the sustainability requirements in any software 

system. All the related information about this model is adapted from the model’s main source 

paper [9]. 

The GREENSOFT model: This model is a theoretical reference model that consists of all 

the necessary stages in the product life cycle model for software products, sustainability metrics 

and the criteria for software and software engineering extensions to sustainably simulate 

software design and development [9]. 

Moreover, this model has procedure examples for different beneficiaries and 

recommendations for action in addition to tools that support beneficiaries in developing, 

purchasing, supplying and using a specific software in a green and sustainable manner.The main 

Figure 2.3: ReinDB runs on a solar-powered database server (reproduced from [12]). 
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purpose of this model is to help different kinds of users, such as software developers, 

administrators and software end users, in creating, maintaining and using software efficiently. 

Figure 2.4 shows this model with its main components [9]. 

The main parts in this model are as follows: 

- A Life Cycle of Software Products  

This stage is in contrast to the traditional life cycles of software provided to Life Cycle Thinking 

(LCT), which has the aim of assessing the environmental, community, human, and economic 

consistency of the product during its complete life cycle. It starts with the early steps of product 

development and ends with the product’s disposal and recycling. The results obtained from these 

assessments can then be used for a balanced improvement of the product or for comparing a 

product with its rivals. 

 

Figure 2.4: The GREENSOFT Model, a reference model for “Green and Sustainable Software”  

(reproduced from [9]). 

 

 

 



14 

 

- Sustainability Criteria and Metrics  

This is the second part of this model; it covers the general metrics and criteria for measuring the 

software quality, and it allocates a classification of criteria and metrics for evaluating a software 

product’s sustainability. Suitable standards and metrics may cover models for measuring the 

software’s fineness and procedure models for developing the software in addition to methods 

borrowed from Life Cycle Assessment. In this part, they distinguish between direct criteria and 

those that are indirect, concerning sustainability. 

- Procedure Models  

This component focuses on the procedure models that wrap the achievement and development of 

software, the maintenance of IT systems and user guidelines. For example, they provide a generic 

extension for the ambiguous software development processes that allow the systematic 

consideration of sustainability characteristics during software development. 

 

- Recommendations and Tools  

This is the last part of this model, and it represents the support provided to interested parties with 

different professional levels to apply green or sustainable methods, in general, in the 

development, purchase, administration and use of the software products. Moreover, there are 

different roles covered in this part such as software administrators and developers in addition to 

regular and specialized users. 

 

2.1.2.3 Sustainability in a Database’s Data  

The database system environment diagram (Figure 2.1) illustrates the existence of the data as one 

of the most important components in the database system. Additionally, we can consider the data 

to be the backbone in the database system; as a result, there is no doubt that these data have a 

significant impact on green computing and sustainability development. Data have become the raw 

material of production, a new source of immense economic and social value. 
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- Big Data and Green Database  

These days, the amount of data that is generated every two days is assessed to be 5 exabytes5 

[17]. This amount of data is equivalent to the amount of data been created from the beginning of 

time up until 2003 [17]. In addition, it was assessed that 2007 was the first year in which it was 

not possible to store all the data that was produced during that year [17]. As a result, Big Data 

need an appropriate database for storage and manipulation. 

The main concerns about Big Data from the viewpoint of green computing are as follows [7] 

[12]: 

 Data security and data protection.  

 Data storage and saving. 

 Data manipulating, searching and analyzing. 

 Filtering the unused and unwanted data. 

 Data backup and recovery.  

A Big Data database needs to have the following characteristics [18] [10]: 

 A scalable database engine, in contrast with the classic DBMS (Database Management 

System), 

 SQL (Structured Query Language) for data description and manipulation, 

 ACID (Atomic, Consistent, Isolated, Durable) transactions to confirm data consistency and 
integrity and 

 A highly available and fault-tolerant system. 

 

The Greenpeace report “How dirty is your data?” [19] Reported that 1.2 zettabytes6 of digital 

information have been generated by Twitter, Facebook—where over 30 billion pieces of content 

are shared each month, emails, YouTube and other social media.  

Cloud computing provides solutions for many issues related to Big Data and 

sustainability. Cloud computing describes data processing operations that are stored to server 

                                                 
5  1 Exabyte = 1 billion gigabytes. 

6  1 zettabyte = 1021 bytes. 
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farms rather than being powered onsite. This method makes the software that is carried over the 

Internet to appear like the software operating on a PC and is reachable from any computer in the 

world. Accordingly, various IT analysts are expecting the demise of the PC, while others think it 

will just become another device for contacting the online world. Progressively, the engine of the 

IT sector is comprised of large-scale data servers that are pushing the cloud computing 

revolution forward. Regarding energy, cloud computing decreases the cost for users, in addition 

to reducing greenhouse gas emissions, by aggregating data and workloads on single, fast, multi-

tenant machines [20]. 

In order to store and process these zettabytes of data, the Cloud solutions rely on database 

engines for persistent storage. Therefore, it is important to understand what factors affect 

database greenness, so that the solutions using database engines become greener as well.  

2.1.2.4 Sustainability in Database Utilization  

2.1.2.4.1 Efficient Query Execution  

The traditional query optimizer of the DBMS focuses only on the time cost of a unit of work in a 

database with no concern for the power consumption. The time cost of a query plan is the total 

sum of the holding times of all system resources such as CPU, disks and communication 

channels [21]. This matter gave researchers the opportunity to redesign the query optimizer in a 

way to enable it to produce the power efficient query execution plan (QEP). In order to create a 

power-efficient QEP, the query optimizer should be able to estimate the power consumption in 

that plan. The suggested steps for this useful plan are as follows: 

 Design and construct a power model to anticipate the power consumption of QEP. 

 Start the query plan set7 that contains the power optimal query plan and the algorithm to 

produce the possible query plan set. 

 Seek through the possible query plan set to find the power-efficient query plan. 

                                                 
7 The possible query plan set is all the possible query plans for a query task [21]. 
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Since the time cost is the main concern in traditional performance driven query optimizers, 

the best QEP is a query plan that uses the least amount of time. In order to calculate the time cost 

of a query, the total times of all system resources, including CPU, disks and communication 

channels, needs to be found [21] .  

Relating to sustainability requirements, we have to consider both power and time, since 

the time optimal query plan may not be the most energy efficient one. When the query optimizer 

computes the query plan time cost, it takes into account the I/O time. The optimal query execution 

plan is a query plan with the lowest I/O operations and the power consumption of CPU is greater 

than that of the storage systems [22], therefore relating to power-efficiency, the traditional optimal 

query execution is not be considered the best query plan. The authors in [21] first expected that 

their invented query optimizer could produce a power optimal query plan, and later they proved 

the accuracy of their power model and the effectiveness of their algorithm. Figure 2.5 summarizes 

the process relating to the work of [21]. 

 

Figure 2.5: Process to obtain power-efficient query execution (reproduced from [21]). 
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2.2 Related Work  

The energy consumption and, consequently, the energy measurement, is considered a significant 

concern for many vendors. In addition, the research in this area has a direct relation with the 

industry field. Moreover, the customers and users are interested in managing the power in their 

devices. Green computing represents a step towards power-aware computing and, consequently, 

the efficient management of power consumption.  

A number of researchers have focused on energy consumption in IT. Delaluz et al. [23] 

conducted a comprehensive study of software and hardware systems to determine the benefit of 

the DRAM mode control abilities for energy savings. They addressed an essential issue in energy 

saving for mobile and computing environments by specifically concentrating on the memory 

system, which consumes around 90% of the complete energy consumed by the system when 

ignoring input/output processes [23].  

Some researchers have concentrated on the idea of benchmarking and examining power 

measurement. Asmel et al. [24] described a tool that approximates the energy consumption of 

software in order to help concerned consumers make knowledgeable decisions about the 

software they use. Gurumurthi et al. [25] introduced a complete system power simulator that 

represents the CPU, the hierarchy of memory and a low-power disk subsystem and calculates the 

power performance of both side applications and the operating system.  

Tiwari et al. [26] presented the power usage of a single CPU. They defined an 

assessment-based instruction-level power analysis method, which provides an accurate and 

practical way of measuring the power cost of software and describes an assessment-based 

instruction-level power analysis method that makes it possible to effectively analyze software 

power consumption. Mittal et al. [27] presented an energy simulation tool that allows developers 

to estimate the energy use for their mobile apps on their development workstation itself.  

There are several studies about the power consumption of devices. Bircher et al. [28] 

produced power models for the complete system depending on processor performance events. 

Greenwalt et al. [29] measured and modeled the power consumption of hard drives. The hard 

disk state model provides both the quantitative data and insight necessary to design an efficient 

power management system. Stemm et al. [30] studied two types of optimization (namely, 
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transport-level and application-level) of network interfaces to decrease their energy 

consumption. 

  Li et al. [31] performed a quantitative analysis of the costs and benefits of spinning down 

a disk drive as a power management technique. The main idea behind the power consumption 

measurement movement is to be followed by suggestions or actions taken in order to find 

solutions to any undesirable outcomes. Selby et al. [32] applied methods to analyze the 

relationship between global variable usage and the efforts required by software maintenance and 

examined the effects of optimizations upon power usage. Fei et al. [33] employed source code 

change techniques to decrease the energy overheads accompanying application/OS connections 

and modified the source code changes and compiler optimizations in order to reduce power 

usage. Feng et al. [34] introduced a framework for studying the power-performance efficiency of 

the NAS parallel benchmarks on a 32-node Beowulf cluster.  

Researchers have studied the performance of database engines, but not their energy 

consumption. For example, Shange et al. [36] investigated change in performance over multiple 

versions of a database engine (PostgreSQL) and a data processing framework (Hadoop). The 

closest to our work are [4, 37]. Gupta et al.’s [37] study focused on combining Mining Software 

Repository (MSR) [35] techniques with power performance and presented the first study from a 

software engineering perspective on energy awareness problems. The authors of [37] introduced 

a method for gathering and analyzing power data on mobile devices running Windows Phone 7. 

Their methodology describes and quantifies power consumption, detects differences in power 

consumption and predicts power consumption. The work by [37] is complementary to ours, 

because it focuses on examining the power consumption in different modules (a module is a part 

of a program) within the same software (Windows Phone 7) and finding which module consumes 

the most power. Moreover, it focused on finding the typical energy shape patterns of certain 

modules. We, on the other hand, are focusing on multiple versions of the same product 

(MySQL). Additionally, we concentrate on understanding the relation between energy 

consumption (or execution time) and the product development of MySQL. 

Hindle [4] demonstrated combining the MSR research and energy consumption by 

studying multiple versions of the Firefox web browser regarding characteristic energy 

consumption patterns of multiple modules of the web browser. He also examined the relation 
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between the LOC and LOCC software metrics and energy consumption. This work is 

complementary to ours, because we focus on a different product (database instead of web 

browser) and study the effect of multiple software metrics (LOCC, MCC and TCC in addition to 

LOC) on energy consumption and execution time.  

The works cited above demonstrate the significance and importance of the study of power 

consumed by software in various areas of IT.  

2.3 Examining Power Consumption across Versions 

The effect of software on power consumption has been overlooked [24, 26] as a result of the 

assumption that in software engineering we can use all the existing resources. This assumption 

changed [4] after the development of new technologies such as mobile and cloud computing, and 

it has become obvious that the design and implementation of software have a vital impact on 

power consumption; therefore, it is highly important that the people who work in this area be 

aware of this issue.  

Mobile computing platforms have many limitations such as the memory size, the speed of 

CPU, the battery life, disk I/O, heat, and network bandwidth. These parts consume power in 

addition to the power consumed by software services, just for their availability [4]. Cloud 

computing data and processing centers used an estimated 1.5% of the total US electricity 

consumed in 2006, for a total cost of about $4.5 billion [38]. In addition to this, the PCs in the 

US consume 2% of all electricity [38]. Suggesting solution lies in resource management, which 

leads to more resource availability by increasing battery life and decreasing power bills.  

Most of the power consumption researchers focus on CPU usage and overlook the power 

consumption caused by software evolution and change. In [4], the author introduced green 

mining, which is a research area that can be used to help the developers predict power 

consumption of software product based on the amount of software changes. Green mining has 

two paths. The first is mining software repositories in order to examine software changes. This 

path focuses on the analysis of objects found within software repositories. The second path 

combines repository analysis with dynamic analysis in order to measure and correlate power 

usage and code changes. This path is used to examine the factors and resource utilization of 
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changing software by looking at each change in a version control system and measuring its effect 

on power consumption [4].  

“Green mining influences historical information extracted from the corpus of publicly 

available software to help provide software power consumption advice” [4]. Green mining 

demonstrates how the maintenance of a software affects a system’s power usage. The main goal 

of green mining is to help software developers decrease software’s power consumption by 

approximating the influence of software changes on power use.  

 

2.4 Software Metrics 

This section discusses the general idea of software metrics and introduce their importance, types, 

and ways to select a specific metric. In the following sub-sections, we introduce software 

measurement by using different metrics such as lines of code, function point, code churn metrics, 

and structural complexity metrics. 

2.4.1  Importance of Software Measurement  

One of the main objectives of software engineering is to control the software development 

process, which, in turn, leads to control over the expenses, schedules, and product quality. 

Software measurement is an important element of good software engineering. Software metrics 

can help achieve this objective, by evaluating (quantitatively) the quality of software 

development processes as well as the quality of software products [39].  

There are two groups of software metrics: metrics that are related to the software product 

and metrics that are related to the software process. The former quantify software product—such 

as product’s source code size—while the latter quantify the process of software development—

such as the amount of human resources (measured in man-hours), spent in the design and coding 

phase [39].  

2.4.2 Why Software Size Matters  

There are two methods for measuring source code size: physical lines of source code and logical 

source statements. The former measures the size by counting the number of new line delimiters 

in the source code [40]. The latter tries to identify the boundaries of software instructions 

(independent of the source code formatting) and count the number of these instructions [40]. 
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Common abbreviations for physical lines of source code are as follows: LOC, KLOC, SLOC, 

and KSLOC, where LOC stands for lines of code, K (kilo) specifies that the scale is in 

thousands, and S stands for source [40].  

2.4.3 How to Measure Software Size  

Software size can be measured in LOC, since it is a cost driver and a normalization feature. This 

metric can be used to standardize other metrics and compare similar projects. The only important 

associated issue is how we use it.  

LOC is used to measure the physical length of the software. However, with 

nonprocedural and visual languages (for example, Visual Basic) LOC cannot be used as a 

reliable measure of software size, because code that is automatically generated by a GUI 

(graphical user interface) IDE (integrated development environment) is not considered when 

using LOC methods of measurement. Moreover, LOC fails to measure the amount of 

functionality (implemented in a given system), as well as the complexity and the technology 

involved. In addition, LOC cannot be used to compare two different projects, especially those 

written in different languages. Therefore, we may need to consider other size measurements in 

addition to LOC, as discussed in Section 2.4.5 [41]. 

There are various types of software metrics, and each one has a special convention and purpose. 

For example:  

- Function points can be used to calculate lines of code (LOC) (depending on language).  

- Lines of code can be used to calculate effort, where the associated mathematical model is  

                                                         Effort =A*LOCB +C                                                            (1) 

Procedures exist for finding A, B and C [41]. 

It is important to be aware of how to measure the size of the software in order to know 

how this size can affect the software’s performance and consequently the energy consumption by 

the software. The traditional way to measure software size is through the number of lines of code 

(LOC). This is considered a simple measurement method, but, on the other hand, the fact that it 

is very easy can be considered undesirable when used improperly. For example, if productivity is 

measured in LOC per day, the more lines are written, whether they are useful or not, the more 

productive a programmer will appear.  
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2.4.4 Measuring Lines of Code 

Counting source lines of code is an established process. There are many tools that can be used to 

count lines of code. For example, in our work we used an open source tool called “CLOC” [6]. 

The main concern with counting code is defining which rules to use so that assessments are 

valid—for example, whether to include/exclude empty lines or comments. 

The Software Engineering Institute (SEI) of Carnegie-Mellon University has distributed a 

framework to count the source code [40], which includes a code counting checklist, allowing the 

user to determine how to count the code, leading to standardized benchmarking of code counting.  

 

2.4.5 Function Point  

As mentioned in Section 2.4.2, there is one important issue with using LOC, or any other 

physical size measurement for that matter. This issue relates to efficiency measurement; 

measuring the efficiency has little to do with the problem being solved and more to do with the 

expansion of software technology itself. Clients usually look for solutions, and they do not care 

about the language or technology used to create them [41].  

Considering which strategy might be used to size a system, based on what it needs to 

do—that is, its functionality—rather than how it does it internally, is difficult. The number of 

features is independent of the language or coding style used by a given project [41]. 

 One of the ways to measure functionality is to count the inputs, outputs, interfaces and 

databases in a system. This approach is called the function point (FP) method. Function Point 

Analysis (FPA) was designed as a way to measure the amount of business functionality of a 

system. Although many other measures have developed from function points, it is possibly still 

the most commonly used Functional Size Measurement (FSM) [41]. However, it is still hard to 

compute FP since it is not dependent on the physical line of code, but rather on project 

functionality.  
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2.4.6 LOCC: Code Churn Metrics  

Code churn software metrics are used to measure the modifications made to a software product 

in a given time period, quantifying the amount of these modifications. It is defined as a weighted 

sum of lines added, modified or deleted to/from a file from one version of the file to another 

[42].  

It can be calculated using data extracted from the source code management systems that 

track the changes automatically. Then a diff tool can be used to compute number of lines added, 

deleted and changed by a programmer in a given code commit [42]. The churn measure is used 

in our work to compute the overall change in terms of the lines of code (added, deleted and 

modified) and is defined as 

         Sum of (2 * lines_modified_code + lines_added_code + lines_removed_code).            (2) 

In Eq. 2, we give twice the weight to the modified lines, in comparison with added or removed 

lines. We do it because line modification can be represented as two operations: the removal of an 

old version of the line and the addition of a new version of the line. 

Additional software evolution measures include the following [43]:  

 Churn Files: The number of files modified within a given commit.  

 Churn count: The number of modifications made to the set of files of interest.  

2.4.7  Structural Complexity  

The structural complexity metrics focus on the design and structure of the software. Design 

simplicity will lead to the idea of modularity and weak coupling. Structure simplicity will lead to 

the idea of simple control flows. The structural complexity metrics quantify these ideas [41].  

Various structural complexity metrics are available that have been defined, used and developed. 

In our work, we focus on cyclomatic complexity (CC), which measures the control stream within 

a software item. It is one of the oldest and most popular complexity metrics (proposed by 

McCabe in 1976) [44]. CC is used to measure the number of control flows (paths) within a 

software product. The greater the number of paths – the higher the complexity. McCabe’s metric 

was created to measure the ability to test and understand a software product. Essentially, the 

metric shows the smallest number of test cases needed to “cover” every executable statement. 

There are two ways to compute the cyclomatic complexity (leading to the same answer) [41]:  
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                                                         V(g) =e-n+2,                                                                     (3) 

where g represents the control graph of the module, e represents the  edges number and n the 

nodes number; or 

                                                        V(g) =bd+1,                                                                       (4) 

where bd is the count of binary decisions in the control graph [41].  

The higher the CC of a given module, the more difficult it is to test and maintain (as a result of 

the higher complexity). Conversely, it is easier to test and maintain a module with low CC. 

Therefore, CC can be used to do the following:  

 Recognize complex parts of code that need full design assessments. 

 Detect simple parts of code that do not need an assessment. 

 Estimate testing effort and maintenance effort (proportional to CC).  
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Chapter 3  

3 Methodology and Implementation of Experiments  

This chapter describes the research methodology and the implementation of the experiments, 

which aim to show the relation between the different MySQL database versions and their 

performance (and greenness) by executing the same standard workload (TPC-H) and using 

different setups such as varying database engines type (MyISAM and InnoDB), different amount 

of raw data loaded into the database (1GB or 3 GB) and the amount of memory allocated to the 

engine’s buffer (256MB or 1024MB). In the following sections, we describe all related elements 

that are required for experiment implementation, such as experiment setup and experiment 

classification, and demonstrate the experiment framework implementation and the gathering of 

the required software metrics. 

3.1 Experimental Setup  

This section aims to provide information about all the experiments’ setup requirements in 

addition to giving details about the devices and software used. 

 

3.1.1  Hardware  

The machine used in our experiments has the following characteristics:  

- CPU model name: Intel(R), Pentium(R) 4 CPU 3.00GHz  

- CPU Cache size: 2048 KB 

- RAM: 3 GB    

 

3.1.2 Operating System  

The computer uses the Ubuntu S v.14.04 operating system with Linux kernel v.3.13.0-32-generic 

x86_64. We chose the Linux platform because it is a de facto standard server platform, and it is 

better designed for capturing computer-related statistics. 
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3.1.3 The Meter (Watts up? PRO)   

The device used to measure the energy consumption, called “Watts up? PRO,” has the following 

characteristics: 120 v, 60 Hz and 15 amps, and its memory capacity is related to the number of 

parameters that is stored and the memory mode. The device can store 32,000 records in 

stop/overwrite mode and only when logging watts; and approximately 1000 records [45] when 

the device is in automatic mode with all parameters recorded. 

This model has an accuracy of ±1.5% and a resolution of 0.1 Wh [45]. All these factors 

led to the choice of this device among all the other available devices. The device allows the 

direct reading of the measurements to a computer via USB (Universal serial Bus) port. The 

device’s high accuracy and rich API (application programming interface) make it a good choice 

to address our needs (to build an automatic framework for measuring energy consumption for 

prolonged periods of time). 

3.1.4 Software under Study: MySQL Database  

3.1.4.1  MySQL Versions and the Reason for Choosing Them  

We chose the MySQL database for use in our experiments because it is the most widely used 

open-source RDBMS [5] and “it is the world’s second most widely used Relational Database 

Management System (RDBMS)” [46] after Oracle. Since we used Linux as our operating 

system, we selected precompiled Linux binaries (for x86 64-bit platform) of MySQL, taken from 

the manufacturer’s website [47]. There are 135 versions of Linux binaries versions available on 

the website [47]. These versions are available to download and install.  

3.1.4.2 Major and Minor Database Releases  

In our final experiments, we focused on four major releases with three minor releases for each 

major one. The three minor releases per major release are selected as follows: an early release 

(when the code is still somewhat unstable), an intermediate release (when the code is beginning 

to stabilize) and the latest release (when the code is stable). Such selection of releases allows us 

to obtain a representative subset of the release and track the development of the release as it 

matures. In total, we have 12 MySQL versions under study. A list of these releases is shown in 

Appendix A.1. 
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3.1.4.3 Different MySQL Engines Storage Types  

We used two main types of MySQL storage engines in our experiments—MyISAM and InnoDB. 

MySQL v.5.5 and later versions use InnoDB by default. InnoDB offers ACID-compliant 

transaction features (atomicity, consistency, isolation and durability), which is important to 

confirm data consistency and integrity in the database, in addition to the foreign key support 

[47]. On the other hand, prior to v.5.5 MyISAM was the default storage engine for the MySQL 

[48]; it is better suited for analytic workloads and has many useful extensions (see Appendix A.5 

for comparison of MyISAM and InnoDB). 

3.1.4.4  MySQL Configuration File  

Since we used two different types of MySQL engines, MyISAM and InnoDB, we had to use 

different commands in the MySQL configuration file that match the specific engine 

requirements, such as increasing the size of the memory buffer (using innodb_buffer_pool_size 

variable) in InnoDB, in order to be able to execute queries that deal with a data size bigger than 

the available RAM (in our case of 3 GB); otherwise, the execution would be very slow, which 

we noticed in our preliminary experiments.  

When we ran the experiments for the MyISAM engine, we had to disable InnoDB’s 

functionality using the configuration file to be sure that MyISAM would be the active engine 

(since MyISAM and InnoDB are bundled in the same binaries). A copy of the MySQL 

configuration file can be found in Appendix A.2. 

3.1.4.5  Memory Setup  

Tuning the MySQL default installation is very important to improve its performance, and the key 

buffer cache is an essential element to be changed in this tuning process; this subject is illustrated 

in Appendix A.4. A key buffer is used to cache the data from the hard drive into the memory. 

Theoretically, the more memory that is allocated to the cache, the faster the data processing. We 

set the buffer cache value to either 256 MB or 1024 MB.  

Consequently, each database version is installed in the two memory configurations as 

result of the fact that each experiment is run two times (using 256MB and 1024MB); the reason 

for this is to get a clear idea of how the experiments’ results change according to the changes in 

memory configuration. 
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3.1.5 Workload / TPC-H  

“The TPC Benchmark™ H (TPC-H) is a decision support benchmark”; it is considered the 

standard benchmark in the database community [49]. This benchmark has a set of business-

oriented ad-hoc queries. The data and queries simulate business practices and requirements. This 

benchmark mimics the systems for decision support that use large volume of data, execute very 

complicated queries and answer many industry-related questions. We used TPC-H version 

2.17.0.  

The TPC-H package has two utilities, namely, DBGEN and QGEN, which generate the 

test data and queries of the TPC-H workload, respectively. We used DBGEN to generate data of 

various sizes to be loaded into the database, and we used QGEN to generate the 22 queries to 

manipulate the data. In our experiments, we used all available TPC-H queries (22 queries); these 

queries are compatible with the MySQL database engine. A listing of these queries is available at 

the TPC-H website [49]. For populating the database, we used 1 GB from the available TPC-H 

dataset in some of our experiments and 3 GB in the rest of the experiments. We used the term 

“workload” to refer to the set of all the queries used and the term “statement” to refer to a 

specific query. 

The TPC-H is an OLAP (on-line analytical processing) workload, typically having a 

relatively low volume of transactions. The workload queries are usually very complex and 

include aggregations. OLAP workloads are often used for data mining [50].The other type of 

workload is the OLTP (on-line transaction processing) workload, typically having a large 

number of short transactions (INSERT, UPDATE and DELETE) that have to be completed in 

near real time. For example, workload related to banking transactions would fit into   OLTP 

category [50].  

3.1.6  Different Sizes of Raw Data 

We created raw datasets of reference data using the DBGEN tool (provided in the TPC-H 

package), which is described in Section 3.1.5 in this dissertation. The dataset sizes are 1, 2, 3 and 

4 GB (DBGEN generated workloads in 1GB increments). Our goal was to identify the amount of 

data that would 1) fit into the memory and 2) force reads from the hard drive for each query. The 
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former would emulate an in-memory database (tailored for analytic workload), while the latter a 

large database not fitting into the memory. Empirically,8 we found that a 1GB dataset is small 

enough to fit into the memory, while a 3GB dataset is large enough to trigger reads from the hard 

drive for each query. 

3.2 Classification of Experiments  

We implemented two experiments types: introductory and final experiments. Since we are using 

different MySQL engines and did not have a clear idea at the beginning of our work regarding 

the execution time or the energy required to execute any single query, we implemented many 

introductory experiments that helped us to make the decision about the final experiments that we 

used in our final analysis.  

 

3.3 Framework of Experiments 

At the beginning, we downloaded all the required compressed TAR archive files of the binary 

MySQL versions under study [47]. We used Python programming language to design a 

framework that automates the processes required to implement the experiments. The reason for 

this automation is to reduce the threat to validity related to human errors.  

The framework automates the installation and measurement process: it decompresses the 

downloaded TAR files, installs the specific MySQL version, upgrades the database, executes the 

22 TPC-H queries one by one and, finally, measures the execution time, system state statistics 

(such as CPU and IO load) and energy consumption per each statement.  

3.3.1 Data Loading  

In our eight experiments, we loaded 1 GB and 3 GB of raw data into the database. The DBGEN 

tool generates eight files in TBL format (plain text CSV-like format with | character as a field 

separator), one file per database table [49]. We then load the data from the TBL files into the 

corresponding tables using MySQL’s LOAD utility. The relationships between these tables are 

illustrated in Figure A.1 in Appendix A.3. 

                                                 
8 We used the SYSTAT tool [51] to capture IO statistics.  
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3.3.2 Limitations of the Measurement Process  

We gather the data per statement. However, due to the limitations of the SYSTAT tool, we 

cannot capture computer state statistics if a query is executed in less than one second.  

 We also cannot measure the energy consumption of a query that is executed in less than 

10 seconds. The resolution of our energy meter is 0.1Wh; the approximate amount of time in 

which our computer consumes 0.1Wh of energy is 10 seconds. 

3.3.3 Results Files  

In our results files, we collected and saved the following data: DB engine, Version, Key buffer 

size, Workload, Run, Energy consumption, Time spent, and Hardware-related statistics (such as 

load on CPU and IO systems).  

3.4 Gathering Software Metrics  

We gathered the source code for each of the MySQL versions under study by downloading them 

from the original MySQL website [47]. Then we created scripts to calculate the software code 

metrics, namely size, churn and complexity metrics, for each MySQL version. We called CLOC 

tool [6] from our scripts to extract size metrics, lines of code (LOC), churn metric and lines of 

code changed (LOCC) and the PMCCABE tool [52] to compute modified (MCC) and traditional 

cyclomatic complexity (TCC). The details of the metrics are given in Chapter 3 in this 

dissertation. Before computing the source code metrics, we eliminated a number of source code 

files. First, we eliminated source code files of test cases, since the code from them is not included 

in the production binaries of the database engine. Second, we removed source code not written in 

C and C++, as they are excluded from the production binaries as well.  
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Chapter 4 

4 Results of Experiments 

This chapter introduces and describes the experiments’ results along with their data analysis, 

aiming to answer the underlying research questions. In Section 4.1, we provide a bird’s-eye 

overview of the experiments. We then explore the relation between the energy and time spent 

during workload execution for all experiments in Section 4.2. We discuss the results of the 

experiments, in relation to RQ1 and RQ2, in Sections 4.3 and 4.4. Finally, in Section 4.5 we 

provide answers to the research questions. 

4.1 Overview of Experiments 

We grouped the resulting data using two approaches, as follows. First, we analyzed the results 

for the conglomerate of all 22 SQL statements (queries) as one unit; we denoted this approach as 

“Per-run analysis.” Second, we examined the data from each of the 22 SQL statements (queries) 

independently, denoting this approach as “Per-statement analysis”; in the following sections, we 

explain these two approaches. Table 4.1 shows the eight different experimental setups with the 

corresponding memory buffer size; numbers in brackets represent the raw data size used in each 

experiment. Table 4.2 shows the list of the MySQL major releases used in our experiments along 

with a list of the minor MySQL releases under study. 

Let us examine the results of each experiment in detail. 

 

Table 4.1: A list of the experiments with the corresponding memory buffer size; numbers in brackets represent the 

amount of raw data used in each experiment. 

Memory buffer size MyISAM InnoDB 

256MB 
Experiment 1 (1GB) Experiment 5 (1GB) 

Experiment 2 (3GB) Experiment 6 (3GB) 

1024MB 

(1 GB) 

Experiment 3 (1GB) Experiment 7 (1GB) 

Experiment 4 (3GB) Experiment 8 (3GB) 
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Table 4.2: A list of the four major MySQL releases under study with their corresponding three minor versions used 

in the experiments. 

Major release Minor release  Major release Minor release 

 v.5.0 

 v.5.0.15  

 v.5.5 

 

 v.5.5.10 

 v.5.0.67   v.5.5.20 

 v.5.0.96   v.5.5.39 

 v.5.1 

 v.5.1.30  

 v.5.6 

 

 v.5.6.10 

 v.5.1.50   v.5.6.15 

 v.5.1.72   v.5.6.21 

 

 

We calculated the Pearson correlation coefficient9 between all the variables used in our 

experiments (such as energy consumed and time spent, energy consumed and lines of code 

changed, and time spent and modified code complexity). The Pearson correlation coefficient is 

computed as: 

 

 

                        

                         (5) 

where {x1,...,xn} is a dataset containing n values and {y1,...,yn}  another dataset containing n 

values. We used the correlation data to answer the research questions, as explained in subsequent 

sections. The mapping between a value of correlation coefficient and the strength of correlation 

is given in Table 4.3. 

                                                 
9 The Pearson correlation coefficient is a method to measure the linear relation (dependence) between any two 

variables X and Y. We chose linear regression to analyze our data; therefore, we chose the Pearson correlation over 

the Spearman correlation, because Pearson is designed to match the sign and magnitude of a linear regression slope 

[53].  
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Table 4.3: Correlation coefficients and their strength as per [53]. 

Absolute Value of 

Coefficient of Correlation 

Strength of Correlation 

1 Perfect 

0.7 - 0.9 Strong 

0.4 - 0.6 Moderate 

0.1 – 0.3 Weak 

0 Zero 

4.2 Execution Time vs. Energy Consumption 

Figure 4.1 shows the relation between energy consumption and execution time for all eight 

experiments. We can see that the strong positive linear relation between these two variables: 

coefficient of determination, R2 = 0.9992  and the slope value, represented by b in Figure 4.1, is 

positive. The Pearson correlation coefficient between these two variables is equal to 0.9996, 

which is an almost perfect correlation (see Table 4.3). We need to keep this fact in mind, because 

in the next sections we will discuss the influence of various factors on energy consumed and time 

spent. Not surprisingly, the effect will be nearly identical.  

 

Figure 4.1: Relation between time spent and energy consumed for all experiments. A data point represents the time 

and energy data gathered for a given run of an experiment. The black line depicts the trend line obtained using linear 

regression, and the dotted red lines show the 95% confidence interval of the trend line. 
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4.3 RQ1: Experiments  

In this section, we will analyze the results of our experiments to answer RQ1:  

How does the energy consumption and execution time of a database engine change as the 

product matures (from release to release)? 

For the sake of brevity, we provide examples of detailed analysis of the data from Experiment 1 

(for the MyISAM engine) and Experiment 5 (for the InnoDB engine) in Sections 4.3.1 and 4.3.2, 

respectively. The details of the remaining six experiments are given in Appendix B.1 and 

Appendix B.2. We then analyze all the experiments in Section 4.3.3. 

4.3.1 Experiment 1: Engine=MyISAM, Key Buffer Size=256M, Database Size=1GB 

In this experiment, we loaded 1 GB of raw data into the database and allowed the MyISAM 

database engine to use 256 MB of memory for its buffer. 

Figure 4.2 shows that, overall, the energy consumption and execution time increased as 

MySQL matured. By eyeballing the plots, we can see that this trend is clearly pronounced as we 

move from one previous major release to the next one. To formally confirm this observation, we 

plot a linear trend line (computed using linear regression). We map release names to real 

numbers in order to compute linear regression. The first minor release v.5.0.15 is mapped to 1, 

the second minor release v.5.0.67 is mapped to 2, etc.  The linear model explains most of the 

data variability: R2 for both energy and execution time are approximately equal to 0.83. The 

slope of the linear function (denoted by b in Figure 4.2) is positive in both cases. 

However, when we examine the data per each single release in Figure 4.2, the results are 

not following one stable trend. In the case of major release v.5.0, energy consumption and 

execution time increase with MySQL development. The slope of linear functions, fitting both 

datasets, is positive; the function explains most of the variability: R2 equals 0.74 and 0.72, 

respectively, which reflects a strong trend. 

In the next two major releases, v.5.1 and v.5.5, the energy consumption and execution 

time follow a Λ pattern: for instance, in v.5.1, the energy consumption and execution time of an 

intermediate release (v.5.1.50) is higher than that of an earlier release (v.5.1.30); energy 
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consumption and execution time of the mature release, v.5.1.72, is lower than that for the 

intermediate release v.5.1.50. However, the pattern is not very strong if we consider the 

variability of the measurements of each run. This is further confirmed by the high spread of the 

confidence interval lines (for this release) in Figure 4.2. The same explanation applied to release 

v.5.5, as shown in Figure 4.2. 

In release v.5.6, energy consumption and execution time decreased with MySQL 

development. The slope of the linear functions fitting both datasets are negative R2=0.68 and 

0.61 in the two datasets, respectively, which illustrates that strong trend line and the slope of 

linear functions, fitting both datasets, is negative, which proves the negative relation. 

  

Figure 4.2: Experiment 1: subplot A is a box plot of the energy consumed by MySQL’s versions; subplot B is a box 

plot of the execution time in MySQL’s versions. In both subplots, the black line depicts a trend line obtained using 

linear regression; the dotted red lines show the 95% confidence interval of the trend line; the dotted green line 

represents the trend per major release and the dotted blue line shows the 95% confidence interval of the trend line 

per major release. 

 

 

4.3.2 Experiment 5: Engine=InnoDB, Key Buffer Size=256M, Database Size=1GB 

In this experiment, we loaded 1 GB of raw data into the database and allowed the InnoDB 

database engine to use 256 MB of memory for its buffer. Figure 4.3 shows that, overall, the 

energy consumption and execution time do not follow one fixed pattern as MySQL matures. 

Fitting the data with a linear function (using linear regression) does not explain the data 

A B 



37 

 

variability: R2 for energy and execution time are equal to 0.14 in both datasets, accordingly. 

Figure 4.3-A suggests that the v.5.5 minor releases are the greenest and the v.5.6 minor releases 

are the least green. The data for release v.5.0 are volatile (the R2 values for energy consumption 

and time are 0.32 and 0.26, respectively):  v.5.0.15 shows results on par with the v.5.5 releases, 

but the remaining two minor releases,  v.5.0.67 and  v.5.0.96, are not as energy efficient. All 

minor releases of v.5.1 yield consistent (the R2 values for energy consumption and time are 0.68 

and 0.89, respectively). 

However, when we examine the data per major release in Figure 4.3, the results follow 

different patterns. Energy consumption and execution time for major release v.5.0 follow a Λ 

pattern: the energy consumption and execution time of intermediate release v.5.0.67 is higher 

than that of the early release v.5.0.15; the energy consumption and execution time of the mature 

release, v.5.0.96, is lower than that for intermediate release v.5.0.67. However, the pattern is not 

very strong as the variability of the data is high (R2 is equal to 0.32 and 0.26 for the energy and 

time datasets, accordingly). The slopes of linear functions fitting both datasets are positive.  

Figure 4.3 suggests that for major release v.5.1, energy consumption and execution time 

may follow a positive pattern, and the pattern is considered strong if we take into account the 

variability of the measurements for each run: R2 equals 0.68 and 0.89 in the two datasets, 

accordingly. The slopes of linear functions fitting both datasets are positive, which represents 

this positive trend. 

Energy consumption and execution time for major release v.5.5 follow a V pattern: the 

energy consumption and execution time of intermediate release v.5.20 is lower than that of the 

earlier release v.5.10; the energy consumption and execution time of the mature release, v.5.5.39, 

is higher than that of intermediate release v.5.5.20. However, positive of major release v.5.5, the 

pattern is not very strong, since the variability of the measurements per each run is high; R2 

equals 0.23 and 0.17 in both datasets, accordingly, as shown in Figure 4.3. On the other hand, the 

slopes of linear functions fitting both datasets are positive in both datasets, which reflects a 

positive trend.  

In the case of major release v.5.6, there is a clear negative trend based on the slope value 

b, which is negative in both datasets. Moreover, the variability of the data is not fixed, as the 

value of R2 is equal to 0.24 and 0.73 in the two datasets, respectively. 
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Figure 4.3: Experiment 5: subplot A is a box plot of the energy consumed in MySQL’s versions; subplot B is a box 

plot of the execution time in MySQL’s versions. Both subplots’ black lines depicts a trend line obtained using linear 

regression; the dotted red lines show the 95% confidence interval of the trend line; the dotted green line represents 

the trend per major release and the dotted blue line shows the 95% confidence interval of the trend line per major 

release. 

 

4.3.3 RQ1: Per-Run Analysis  

4.3.3.1  MyISAM 

As mentioned in Section 4.1, we performed four Experiments (#1–4) on the MyISAM engine. 

The details of the analysis for Experiment 1 are given in Section 4.3.1, and those for experiments 

2–4 are provided in Appendix B.1. The analysis of the per-run data, collected during these four 

experiments, suggests that both the energy consumption and execution time of the MyISAM 

engine increased as the engine matured. In essence, on average, the newer major releases are 

slower and less green than the older ones.  

 

 

 

 

 

A B 
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Table 4.4: MyISAM minimum energy consumption data per major release with relative percentages of difference 

between each pair of adjacent releases. Green color represents minimum energy consumed by a specific release in 

each experiment; Red color represents the maximum energy consumed by a specific release in each experiment. 

 

MyISAM 

 Minimum energy (Eq. 6) consumed by a 

minor release for a given major release 

(Wh) 

Energy consumption: relative difference (Eq. 7) 

between previous and current release (%) 

Major release v.5.0 v.5.1 v.5.5 v.5.6 v.5.1 vs. v.5.0 v.5.5 vs. v.5.1 v.5.6 vs. v.5.5 

Experiment1 23.37 26.43 28.17 33.43 13.12 6.56 18.70 

Experiment2 115.43 155.53 166.53 187.27 34.74 7.07 12.45 

Experiment3 23.23 26.40 28.07 33.17 13.63 6.31 18.17 

Experiment4 156.17 208.83 214.63 253.67 33.72 2.78 18.19 

 

 

Table 4.4 summarizes the energy consumption for the MyISAM engine. In this table, we 

show the average energy consumption of a minor release (average of three runs) that consumes 

the least amount of energy within a set of minor releases belonging to a given major release. 

Formally, for a given major release, the energy reading displayed in the table is computed as 

follows: 

  𝑚𝑖𝑛 (
𝑟1,1+𝑟1,2+𝑟1,3

3
,
𝑟2,1+𝑟2,2+𝑟2,3

3
,
𝑟3,1+𝑟3,2+𝑟3,3

3
), (6) 

where 𝑟𝑖,𝑗 represents energy consumption for the j-th run of the i-th minor release belonging to 

the major release of interest. The average of three runs per minor release in Eq. 6 is taken to 

minimize the measurement error; then the minimum amount of energy from the three average 

readings is chosen. Furthermore, the relative percentage of difference between each two adjacent 

releases is calculated using the following formula: 

 ((new_release_value – old_release_value) / old_release_value)  100.   (7) 

The oldest release, v.5.0, is the greenest (of all major releases), because it consumed the 

least amount of energy to execute the same reference workload. On the other hand, the newest 

release, 5.6, is the least green, because it consumed the largest amount of energy, as shown in 

Table 4.4.  
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All four experiments showed a consistent increase in energy consumption and time spent 

between any two major consecutive releases (all the difference values in Tables 4.4 and 4.5 are 

positive, representing this increase). For example, Experiment 1 shows that release v.5.1 is 

13.12% less efficient than v.5.0, release v.5.5 is 6.56% less efficient than release v.5.1 and 

release v.5.6 is 18.70% less efficient than release v.5.5—see Table 4.4 for details. The timing 

results per major release are computed using a formula that is structurally similar to that of Eq. 6, 

as shown in Eq.8:  

 

 

(8) 

where ti,j represents workload execution time for the j-th run of the i-th minor release 

belonging to the major release of interest. 

As discussed in Section 4.2, energy consumption and execution time are correlated 

almost perfectly. Therefore, the timing results (summarized in Table 4.5) are very close to the 

energy consumption results. In other words, execution time increases as the engine matures, with 

the v.5.0 release being the fastest and v.5.6 being the slowest. We conjecture that this behavior of 

the MyISAM engine can be explained by the fact that the inclusion of additional functionality to 

the MyISAM engine in each subsequent release requires additional computational resources, 

leading to an increase of time and energy consumption. 

 

Table 4.5: MyISAM minimum execution time data per major release with the relative percentage of difference 

between each pair of adjacent releases. Green color represents minimum time spent by a specific release in each 

experiment; Red color represents the maximum time spent by a specific release in each experiment. 

 

MYISAM 

 Minimum execution time (Eq. 8) taken by 

a minor release for a given major release 

(Hr) 

Execution time: relative difference (Eq. 7) between 

previous and current release (%) 

Major release v.5.0 v.5.1 v.5.5 v.5.6 v.5.1 vs. v.5.0 v.5.5 vs. v.5.1 v.5.6 vs. v.5.5 

Experiment1 0.20 0.23 0.24 0.29 13.92 6.74 18.97 

Experiment2 1.22 1.75 1.87 2.16 43.57 6.97 15.33 

Experiment3 0.20 0.23 0.24 0.29 11.13 6.87 18.14 

Experiment4 1.83 2.56 2.61 3.17 39.53 1.98 21.26 
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4.3.3.2 InnoDB  

We conducted four Experiments (#5–8) on the InnoDB engine. The analysis of Experiment 5 is 

given in Section 4.3.2; the analysis of the remaining three experiments, for the sake of brevity, is 

given in Appendix B.2.  

As discussed in Appendix B.2.2, in the cases of Experiments 7 and 8, the values of 

energy consumption and time spent for v.5.0.15 are dramatically different from the values of the 

other two minor releases of v.5.0 (namely, v.5.0.67 and v.5.0.96). We conjecture that the 

functionality of the InnoDB engine in this release behaves abnormally, leading to anomalous 

data. In Tables 4.6 and 4.7, we provide the data with and without anomalous readings. However, 

in our analysis we chose to discard the anomalous observations. 

The summary of the energy consumption (computed using Eq.6) for Experiments 5–8 is 

given in Table 4.6 along with the relative percentage of difference between each pair of adjacent 

releases, which is calculated using Eq. 7. We can see that the results for the InnoDB engine are 

less uniform (in comparison with the MyISAM engine). As in the case of MyISAM, the least 

green major release is the most recent one (namely, v.5.6), except in Experiment 8, where v.5.5 

appear to be the least green.  

By examining Tables 4.6 and 4.7, we can see some negative difference values, which 

represent a decrease in energy or time spent between any two adjacent releases. We obtained 

different results for the greenest engine: In the case of Experiments 6 and 7, the greenest version 

is the oldest one10 (v.5.0), while, in the case of the remaining Experiments, 5 and 8, the greenest 

engine is not the oldest one; in fact, the greenest engines are v.5.5 and 5.1, respectively. 

Experiments 5 and 7 cache all the data in the memory (using 1 GB raw data size); Experiments 6 

and 8 have to read the data from the hard drive (using 3 GB raw data size). This implies that the 

functionality of v.5.5 may be better suited for handling an IO-intensive workload.  

We conjecture that this difference in behavior between the MyISAM and InnoDB engines 

can be partially explained by the fact that InnoDB was designed to handle OLTP workloads. Our 

workload, as discussed in Section 3.1.5, is the OLAP workload. Since the developers have not 

                                                 
10 In Experiment 7, v.5.0 and v.5.5 yield identical results, but the timing results for v.5.0 are slightly better (as 

shown in Table 4.7). 
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focused on satisfying OLAP requirements, the performance and energy consumption results for 

the current OLAP workload are volatile. Peculiarly, before major release v.5.5, MYSAM was a 

default database engine; starting from v.5.5, InnoDB became the default one [48]. Database 

administrators interested in executing an OLAP workload should take into account this 

difference while setting up their databases. 

 

Table 4.6: InnoDB minimum energy consumption data per major release with the relative percentage of difference 

between each pair of adjacent releases; numbers in brackets represent the values with outlier release v.5.0.15 

included. Green color represents minimum energy consumed by a specific release in each experiment; Red color 

represents the maximum energy consumed by a specific release in each experiment. 

 

 

 

Table 4.7 summarizes the execution time for Experiments 5–8. The timing data are 

computed using Eq.8. The relative percentage of difference between each two adjacent releases 

is calculated using Eq. 7. Due to correlation of time and energy consumption (discussed in 

Section 4.2), the timing data mirrors the energy data: v.5.6 is the slowest in three Experiments (5, 

6 and 7), and v.5.5 is the slowest in Experiment 8. The fastest release in Experiments 6 and 7 is 

v.5.0, while v.5.5 is the fastest for Experiments 5, and v.5.1 is the fastest for Experiment 8.  

  

InnoDB 

  

 Minimum energy (Eq. 6) consumed by a 

minor release for a given major release 

(Wh)  

Energy consumption: relative difference (Eq. 7) 

between previous and current release (%) 

Major release v.5.0 v.5.1 v.5.5 v.5.6 v.5.1 vs. v.5.0 v.5.5 vs. v.5.1 v.5.6 vs. v.5.5 

Experiment5 23.00 26.40 20.93 31.77 14.78 -20.71 51.75 

Experiment6 92.30 404.50 391.77 636.20 338.24 -3.15 62.39 

Experiment7 
8.73 

(8.73) 
9.03 8.73 11.30 

3.44 

(3.44) 
-3.32 29.39 

Experiment8 
1731.13 

(101.00) 
1646.27 1783.73 1748.93 

-4.90 

(1529.97) 
8.35 -1.95 
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Table 4.7: InnoDB minimum execution time data per major release with the relative percentage of difference 

between each pair of adjacent releases; numbers in brackets represent the values with the outlier release v.5.0.15 

included. Green color represents minimum time spent by a specific release in each experiment; Red color represents 

the maximum time consumed by a specific release in each experiment. 

InnoDB 

  
Minimum execution time (Eq. 8) taken by a 

minor release for a given major release (Hr)  

Execution time: relative difference (Eq. 7) 

between previous and current release (%) 

Major release v.5.0 v.5.1 v.5.5 v.5.6 v.5.1 vs. v.5.0 v.5.5 vs. v.5.1 v.5.6 vs. v.5.5 

Experiment5 0.20 0.22 0.18 0.27 11.12 -20.12 51.53 

Experiment6 0.87 5.27 5.22 8.89 509.00 -1.01 70.21 

Experiment7 
0.075 

(0.075) 
0.079 0.076 0.097 

4.8 

(4.86) 
-4.14 28.71 

Experiment8 
25.45 

(1.00) 
24.31 26.64 26.02 

-4.48 

(2340.22) 
9.57 -2.33 

 

4.3.3.3 Examining the effects of the different experiments setups on the final outcomes: 

By comparing Tables 4.4 and 4.6 (energy consumption) and Tables 4.5 and 4.7 (execution time) 

for MyISAM’s and InnoDB’s outcomes respectively, we found that MyISAM’s results are less 

volatile than InnoDB ones (if we compare release to release or experiment to experiment within 

the same engine). This can be explained by the fact that, as discussed in Section 4.3.3.2  

MyISAM was designed to handle OLAP workloads, while InnoDB was designed for OLTP 

ones. 

Effect of Raw Data Size: From the Tables 4.4-4.7, we can see that in Experiments 1 vs. 5 and 3 

vs. 7, dealing with 1GB of raw data that can fit into computer’s memory, InnoDB engine is 

greener and faster than MyISAM engine. In the case of Experiments 2 vs. 6 and 4 vs. 8, dealing 

with 3GB of raw data that cannot fit into memory, MyISAM engine is greener and faster 

than InnoDB engine with one exception: InnoDB’s early release v.5.0 (in Experiment 6) is 

greener and faster than MyISAM’s one (in Experiment 2). 

This suggests that InnoDB may be better suited for in-memory processing than MyISAM. 

However, for larger datasets that cannot fit into memory (which is more common for analytic 

workloads), MyISAM may be a better choice 

Effect of Memory Buffer: Tables 4.4-4.7 show that in the case of in-memory processing (for 

Experiments 1 vs. 3 and 5 vs. 7, dealing with 1GB raw data) increase of the memory buffer from 
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256MB to 1024MB leads to marginal (less than 1%) improvement in greenness and performance 

for MyISAM engine. In the case of InnoDB the improvement is significant (approximately 

60%). This can be explained by the fact that MyISAM has a rudimentary memory manager, 

relying mainly on OS mechanism for file caching, while InnoDB has a more sophisticated 

memory manager (see Section 3.1.4.3 and Appendix A.4 for details).  

In the case of processing data that cannot fit into memory (experiments 2 vs. 4 and 6 vs. 8, 

dealing with 3GB of raw data) increase of the memory buffer leads to significant (> 35%) 

degradation of greenness and performance for both MyISAM and InnoDB engines. This can be 

explained by the fact that OS mechanism for file caching outperforms database engines memory 

manager. 

4.4 RQ2: Experiments 

In this section, we will focus on answering RQ2:  

Which software metrics affect energy consumption and execution time? 

In order to answer RQ2, we analyzed the relations between energy consumption and software 

metrics—namely, LOC, LOCC, TCC and MCC in all eight experiments. Details of the metrics 

are given in Chapter 3.  

First, we examined the correlation among the software metrics (see Table 4.8). We found 

that LOC is strongly correlated with MCC and TCC. This behavior has been observed in other 

software products in the past [4] [54]. MCC and TCC are perfectly correlated, by construction, 

since their formulas are similar (see Section 2.4.7 for details). LOCC is weakly correlated with 

the other variables. 
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Table 4.8: Pearson correlation coefficient values between the software metrics used by using a per-run-analysis. 

 

 

 

 

 

 

We investigated the relation between energy consumption (time spent) and each software metric 

graphically, using corresponding scatter plots, and numerically, by analyzing the trend lines 

obtained using linear regression and correlation between variables.  

In this section, we introduce two additional response variables: change in energy consumption 

and change in time spent. They are defined, respectively, as:  

(average_energy_conusmed_by_minor_release_N) – (average_energy_conusmed_by_minor_release_N-1)           (8)  

and 

   (average_time_spent_by_minor_release_N) – (average_time_spent _by_minor_release_N-1).                             (9) 

 

The variables represent the difference between energy consumed (or time spent) by a given 

release and previous release. 

Tables 4.9 and 4.11 show the Pearson correlation coefficient values between energy 

consumption (or time spent) and various software metrics in each experiment. By examining 

these tables, we see that the results are identical due to an almost perfect correlation between 

energy and time, as disused in Section 4.2. 

 

 

 

 

 

MyISAM and InnoDB 

  LOC LOCC MCC TCC 

LOC 1.00 -0.24 0.76 0.75 

LOCC -0.24 1.00 -0.23 -0.23 

MCC 0.76 -0.23 1.00 1.00 

TCC 0.75 -0.23 1.00 1.00 



46 

 

Table 4.9: Pearson correlation coefficient values between energy consumption and the software metrics used using a 

per-run analysis. The values in brackets for Experiments 7 and 8 show correlation values with outlier data points 

(see Section 4.3.3.2 for a discussion on outliers). 

 MyISAM InnoDB 

Metric Exper.1 Exper.2 Exper.3 Exper.4 Exper.5 Exper.6 Exper.7  Exper.8 

LOC 0.92 0.72 0.89 0.66 0.65 0.78 0.88 

(0.02) 

0.48 

(0.34) 

 LOCC -0.01 0.01 0.02 0.02 0.09 -0.21 0.01  

(0.01) 

0.16 

(0.16) 

TCC 0.53 0.19 0.46 0.28 0.80 0.50 0.76 

(0.26) 

0.11 

(-0.03) 

 MCC 0.55 0.20 0.48 0.30 0.81 0.52 0.75 

(0.249) 

0.11 

(-0.01) 

  

Tables 4.10 and 4.12 show the Pearson correlation values between changes in energy 

consumption and changes in time spent, respectively, along with the LOCC metric. These two 

tables are identical (similar to Tables 4.9 and 4.11) as a result of the almost perfect correlation 

between energy consumed and time spent. 

 

Table 4.10: Pearson correlation coefficient values between changes in energy consumption and LOCC. The values 

in brackets for Experiments 7 and 8 show correlation values with outlier data points (see Section 4.3.3.2 for a 

discussion on outliers). 

 MyISAM InnoDB 

Metric Exper.1 Exper.2 Exper.3 Exper.4 Exper.5 Exper.6 Exper.7 Exper.8 

LOCC 0.55 0.77 0.73 0.64 0.25 0.16 0.49 

(0.11) 

 

 0.18 

(0.04) 
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Table 4.11: Pearson correlation coefficient values between time spent and the software metrics 

used using a per-run analysis. The values in brackets for Experiments 7 and 8 show correlation 

values with outlier data points (see Section 4.3.3.2 for a discussion on outliers). 

 MyISAM InnoDB 

Metric Exper.1 Exper.2 Exper.3 Exper.4 Exper.5 Exper.6 Exper.7  Exper.8 

LOC 0.92 0.70 0.89 0.64 0.67 0.80 0.86 

(0.01) 

0.49 

(0.34) 

LOCC -0.03 0.03 0.02 0.03 0.09 -0.21 0.02 

(0.02) 

0.14 

(0.14) 

TCC 0.53 0.17 0.47 0.28 0.82 0.50 0.75 

(0.25) 

0.09 

(-0.03) 

MCC 0.55 0.19 0.48 0.29 0.83 0.52 0.75 

(0.24) 

0.09 

(-0.01) 

 

 

Table 4.12: Pearson correlation values between changes in time spent and LOCC. The values in brackets for 

Experiments 7 and 8 show correlation values with outlier data points (see Section 4.3.3.2 for a discussion on 

outliers). 

 MyISAM InnoDB 

Metric Exper.1 Exper.2 Exper.3 Exper.4 Exper.5 Exper.6 Exper.7 Exper.8 

LOCC 0.53 0.82 0.75 0.66 0.28 0.16 0.52 

(0.11) 

0.17 

(0.04) 

 

 

The rest of the section is structured as follows. We give examples of the detailed analysis of the 

data from Experiment 1 (for the MyISAM engine) and Experiment 5 (for the InnoDB engine) in 

Sections 4.4.1 and 4.4.2, respectively.11 We then analyze the results of the experiments in 

Section 4.4.3. 

                                                 
11 The details of the remaining six experiments are given in Appendix B.3. 
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4.4.1 Experiment 1: Engine=MyISAM, Key Buffer Size=256M, Database Size=1GB  

The following scatter graphs (Figures 4.4 and 4.5) represent the relation between the energy 

consumption (time spent) and the different software metrics we used. By examining the relation 

between the size of code (represented by the LOC metric for all the versions under study) and the 

energy consumed, we found a strong positive linear relation between the variables: as can be 

seen from Figure 4.4-A, R2=0.85, and slope coefficient b is positive. This is further confirmed 

by a strong (=0.92) correlation between the variables, as shown in Table 4.9. 

As can be seen from Figures 4.4-C and 4.4-D and Table 4.9, there exists a moderate 

positive linear relation between TCC (MCC) and consumed energy: R2=0.28 (R2=0.30) with a 

positive slope, and the correlation coefficient is equal to =0.53 (=0.55). As mentioned in the 

previous section, MCC and TCC are almost perfectly correlated, hence the similarity in results. 

We found no correlation between LOCC and consumed energy. As can be seen from  

Figure 4.4-B and Table 4.9, R2=0.0002 and = - 0.01.  

Even though the relation between LOCC and consumed energy is low, there exists a 

moderate positive linear relation between LOCC and the change in energy consumption. As can 

be seen from Figure 4.4-E and Table 4.10, the variability of the data is high (R2=0.3), but the 

correlation is moderate (=0.55).  

Experiment 1’s data, related to time spent (shown in Table 4.11), are identical to the 

energy consumption data in Table 4.9 as a result of the almost perfect correlation between energy 

and time (discussed in Section 4.2). Therefore, the LOC metric has a strong correlation with time 

spent, MCC and TCC have moderate correlation with time spent and no correlation is found 

between the LOCC metric and time spent. Table 4.12 shows a moderate correlation (=0.53) 

between changes in time with the LOCC metric. 
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Figure 4.4: Relation between energy consumed and various software metrics for Experiment 1. Subplot A is a 

scatterplot of LOC against energy; subplot B is a scatterplot of LOCC against energy; subplot C is a scatterplot of 

TCC against energy; subplot D is a scatterplot of MCC against energy and subplot E is a scatterplot of LOCC 

against change in energy consumption. On all subplots, the black line depicts a trend line obtained using linear 

regression, and the dotted red lines show the 95% confidence interval of the trend line. 
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Figure 4.5: Relation between time spent and various software metrics for Experiment 1. Subplot A is a scatterplot of 

LOC against time; subplot B is a scatterplot of LOCC against time; subplot C is a scatterplot of TCC against time; 

subplot D is a scatterplot of MCC against time and subplot E is a scatterplot of LOCC against change in time spent. 

On all subplots, the black line depicts a trend line obtained using linear regression, and the dotted red lines show the 

95% confidence interval of the trend line. 
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4.4.2 Experiment 5: Engine=InnoDB, Key Buffer Size=256M, Database Size=1GB  

By investigating the scatter graphs in Figures 4.6 and 4.7 and examining the relation between the 

LOC metric and the energy consumption (time spent), we found a moderate linear relation 

between the variables: as can be seen from Figure 4.6-A, R2=0.42, and slope coefficient b is 

positive. This is further confirmed by the moderate (=0.65) correlation between the variables, as 

shown in Table 4.9. 

As shown in Figures 4.6-C and 4.6-D, and Table 4.9, there exists a moderate to strong 

positive linear relation between TCC (MCC) and consumed energy: R2= 0.64 (R2=0.66) with a 

positive slope, and the correlation coefficient is equal to 0.80 (=0.81). As mentioned in the 

previous section, MCC and TCC are almost perfectly correlated, hence the similarity in results. 

We found no correlation between LOCC and consumed energy. As can be seen from 

Figure 4.6-B and Table 4.9, R2=0.0087, and the correlation coefficient is equal to 0.09. The low 

relation between LOCC and consumed energy is identical to the relation between LOCC and the 

change in energy consumption. Figure 4.6-E and Table 4.10 show that the variability of the data 

is high (R2=0.06), and the correlation is weak (=0.25).  

The time-spent-related data of Experiment 5 (shown in Table 4.11) are identical to Table 

4.9’s energy consumption data due to the almost perfect correlation between energy and time 

(discussed in Section 4.2). Thus, the LOC metric has a moderate correlation with time spent 

(=0.67), MCC and TCC have strong correlation with time spent ( > 0.82) and no correlation is 

found between the LOCC metric and time spent (=0.09). Table 4.12 shows a weak correlation 

(=0.28) between changes in time with the LOCC metric. 
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Figure 4.6: Relation between energy consumed and various software metrics for Experiment 5. Subplot A is a 

scatterplot of LOC against energy; subplot B is a scatterplot of LOCC against energy; subplot C is a scatterplot of 

TCC against energy; subplot D is a scatterplot of MCC against energy and subplot E is a scatterplot of LOCC 

against change in energy consumption. On all subplots, the black line depicts a trend line obtained using linear 

regression, and the dotted red lines show the 95% confidence interval of the trend line. 
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Figure 4.7: Relation between time spent and various software metrics for Experiment 5. Subplot A is a scatterplot of 

LOC against time; subplot B is a scatterplot of LOCC against time; subplot C is a scatterplot of TCC against time; 

subplot D is a scatterplot of MCC against time and subplot E is a scatterplot of LOCC against change in time spent. 

On all subplots, the black line depicts a trend line obtained using linear regression, and the dotted red lines show the 

95% confidence interval of the trend line. 
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4.4.3 RQ2: Per-Run Analysis 

As shown in Tables 4.9 and 4.11, there exists a moderate to strong positive correlation between 

consumed energy (or time spent) and codebase size, measured in LOC, for both database 

engines: MyISAM and InnoDB.  In the case of MyISAM, there is no correlation between LOCC 

and consumed energy (or time spent); while in case of InnoDB there is none to weak correlation. 

Tables 4.10 and 4.12 show that the change in energy consumption (or change in time 

spent) between releases is correlated with the code churn, measured by LOCC; the correlation 

for the MyISAM engine is moderate to strong, while the correlation for InnoDB engine is weak.  

The correlation between energy consumed (or time spent) and code complexity metrics (MCC 

and TCC) is weak to strong, suggesting that it cannot be used as a consistent predictor of 

consumed energy. However, an examination of Table 4.8 suggests that the relation between LOC 

and complexity metrics (MCC and TCC) is strong, suggesting that complexity grows 

proportionally to codebase size (as has been shown in the past [54]). 

4.5 Discussion 

4.5.1 RQ1 

The answer to RQ1: “How does the energy consumption and execution time of a database engine 

change as the product matures (from release to release)?” is as follows.  

In the case of MyISAM, the overall energy consumption increases as the product matures, 

suggesting that the additional functionality added with every new release consumes additional 

resources.  

In the case of InnoDB, the earliest major release is the greenest in 50% (2 out of 4) of the 

experiments, while the latest major release is the brownest in 75% (3 out of 4) of the 

experiments. In the case of the remaining experiments, the greenest and the brownest titles are 

claimed by intermediate releases.  

As discussed in Section 4.3.2, we conjecture that the difference between the engines can 

be explained by the fact that MyISAM was designed to handle mainly OLAP workloads, while 

InnoDB is OLTP oriented, hence the variability.  

The results of execution time (performance) are similar to energy consumption results 

(due to the almost perfect correlation between energy consumed and time spent, see Section 4.2): 
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in MyISAM case, the overall execution time increases as the product matures, i.e., newer 

releases are slower than the older ones. InnoDB execution time findings are identical to energy 

consumptions findings as well.  

This is different from the results of the experiments on the Firefox web-browser [4], 

where energy consumption decreased as the product matured. This suggests that, depending on 

the product and its domain, the results may vary.  

This difference can potentially be explained by the fact that the two products’ (Firefox and 

MySQL) application domain, construction methods, and coding styles are different.  

4.5.2 RQ2 

The answer to RQ2: “Which software metrics affect energy consumption and execution time?” is 

as follows. Consumed energy is governed mainly by the size of the code base. The code size 

LOC metric serves as a strong predictor of energy consumption for both database engines. The 

code churn (LOCC) and complexity (MCC and TCC) metrics results are weaker.  

The results for execution time (performance) are similar (due to the almost perfect 

correlation between energy consumed and time spent, see Section 4.2): The time is governed 

mainly by LOC; LOCC, MCC and TCC have a lesser effect on performance. These results 

suggest that the amount of consumed energy and time spent are governed by the sheer volume of 

code to execute rather than the amount of changes introduced or code complexity.12 If we treat 

high energy consumption as a defect [55], our results differ from the results seen for functional 

defects, where LOCC acts as a better predictor of defects than does LOC [56, 57]. This result is 

also different from the findings of Hindle [4], who found that, in the case of the Firefox web 

browser, LOC is not correlated with power consumption. 

4.5.3 Per-statement Analysis 

We provide details of the per-statement analysis in Appendix B.5. In essence, as the level of 

granularity becomes finer (when we move from workload level to statement level), the amount 

                                                 
12 Peculiarly, even though the complexity metrics MCC and TCC are strongly correlated with the size metric LOC, 

the LOC acts as a better predictor of time spent and energy consumed, suggesting that code volume is more 

important than its complexity. 
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of variability increases. Our analysis shows that some statements become greener as releases 

mature—and some not. However, from a practical perspective, one needs to look at the workload 

holistically, because a database engine user would execute workload as a whole, as 

recommended by TPC, rather than a particular statement.  

 

4.6 Threats to Validity 

In this section, we discuss three groups of threats to the validity of our study: construct, internal 

and external validity.  

4.6.1 Construct Validity 

Construct validity is a sort of statistical validity that guarantees that the genuine experimentation 

and data gathering follow the hypothesis of interest. It is related to whether we measure what we 

intend to measure. 

The construct threats in our study are represented by the following: 

- Threat #1: The use of different releases—since MySQL is a mature product, there are 

hundreds of available versions classified as major and minor releases. The threat here is 

related to how to select the correct set of versions from all those available. 

- Threat #2: The limitation in MySQL behavior (response) if using a single configuration, 

one engine type, single dataset size and single key buffer size. 

- Threat #3: The consistency in the workload used, which affects the results accuracy. 

- Threat #4: The experiment results accuracy and availability. 

- Threat #5: The choice and calculation of the most appropriate software metrics that may 

have a potential effect on the database greenness/execution time.  

Starting from our main two research questions and in order to eliminate the threats associated 

with this validity we did the following. 

 

In order to address Threat #1, we chose a subset of three minor releases from all the 

available major MySQL releases (v.5.0, v.5.1, v.5.5 and v.5.6). These minor releases represent 

the oldest, intermediate and newest versions within each major release. Choosing these versions 

helped to gain a broad and clear idea about MySQL’s conduct. 
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In order to address Threat #2 we did the following: 

1- We chose two different database storage engines types (MyISAM and InnoDB) in 

order to get a more general idea about the database engine’s behavior. 

2- We chose different key buffer sizes (256MB and 1024MB), which helped in 

examining the various situations for each database engine. 

3- We chose different raw data sizes (1 GB and 3 GB), which helped to gain a clear idea 

about the different responses of the database engine when the raw data was less than 

the available memory (all data can be cashed in the case of 1 GB) or exceeded the 

available memory (in the case of 3 GB). 

 

To address Threat #3, we ran the same standard TPC-H workload to be sure that we had a 

consistent execution in all experiments and accurate results. 

 

To address Threat #4, we did the following: 

1- We ensured that all the required measurements were calculated, such as energy 

consumption and execution time, in addition to all essential system statuses, which 

were derived by the implementation of the eight experiments.  

2- We ran each experiment three times in order to have various readings for the 

measurements and avoid measurements errors, which helped to ensure the correctness 

of the data results. 

 

In order to address Threat #5, we examined popular software metrics for all the releases under 

study; the metrics were calculated using standard tools widely used by researchers and 

practitioners. 

4.6.2 Internal Validity  

Internal validity refers to how well our experiments are conducted, since incorrect 

implementation may affect the output. In order to mitigate this threat, we automated the process 

of data gathering and analysis, reducing the risk of human error. We created Python scripts for 
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gathering code metrics from the source code of the database engine. We also created a Python 

script that profiled workload execution: the script automatically downloads database engines, 

installs them, creates database objects, generates raw data and loads it into the database, executes 

workload queries and measures execution time and energy consumption. The results of the 

experiments as well as the source code metrics were stored in a SQLite13 database. We then 

automatically generated the figures and correlation tables using R scripts (which accessed data 

from the SQLite database). An external reviewer reviewed all the scripts, ensuring their 

correctness. 

 

4.6.3 External Validity  

This type of validity refers to the extent to which the results of our study can be disseminated to 

the outside world and be used more generally, rather than being limited only to the scope of our 

study.  

We studied two database engines. The generalization to other database engines or other 

software products is, obviously, not possible. However, the software under study represents a 

critical case [58] of a relational database management system. Our experimental framework can 

be applied to other projects with well-designed and controlled experiments. 

  

                                                 
13 “SQLite is an in-process library that implements a self-contained, server less, zero-configuration, transactional 

SQL database engine” [59]. 
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Chapter 5 

5 Conclusion and Future Work  

The increasing usage of IT systems leads to an increase in energy consumption and, 

consequently, an increase of CO2 emissions. Therefore, the creation of green IT systems will 

lead to a reduction in energy consumption and CO2 emissions. Most of the existing research 

focuses on building energy-efficient hardware parts, while software has received little attention 

in this matter. Software controls hardware and, if not properly designed, can lead to significant 

power consumption. 

 

Database systems are used widely in the IT field, contributing significantly to energy 

consumption. Therefore, it is important to understand how to build a green database. Software 

systems, including databases, evolve over time. Therefore, understanding how the energy 

consumption changes as database engine evolves is also important. 

 

To reach these objectives, we answered two research questions: 

RQ1: How does the energy consumption and execution time of a database engine    

            change as the product matures (from release to release)? 

RQ2: Which software metrics affect energy consumption and execution time? 

 

To answer these questions, we performed a case study, measuring the energy 

consumption and execution time of two database engines—namely, MySQL MyISAM and 

MySQL InnoDB—across 12 releases on a reference analytic workload, called TPC-H, developed 

by the Transaction Processing Performance Council.  

To automate the measurement process, we developed a framework for 1) measuring the 

energy consumption and execution time of a database workload and 2) extracting the software 

metrics under study for each specific MySQL release. Our answers to the research questions are 

as follows. 
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RQ1. Our study shows that the MySQL MyISAM engine becomes less green and less efficient 

as the product matures, leading to increased energy consumption and higher CO2 emissions. In 

the case of MySQL InnoDB, the earliest major release is the greenest in 50% (2 out of 4) of our 

experiments, while the latest major release is the brownest in 75% (3 out of 4) of our 

experiments. The greenest and the brownest titles are claimed by intermediate releases in the 

remaining experiments. Our findings differ from the previous work [4] studying a web browser, 

where greenness increases as the product matured. This suggests that the evolution of greenness 

is product-specific. 

 

RQ2. Consumed energy and performance are governed mainly by the size of the code base. The 

code size LOC metric serves as a strong predictor of energy consumption and performance for 

both database engines. The smaller the code base, the greener and more efficient the database 

engine is. The code churn (LOCC) and complexity (MCC and TCC) metrics results have a lesser 

effect on energy consumption and performance. These results differ from previous work [4], 

where LOC was not a strong predictor of power consumption. 

 

Our findings are of value to both practitioners and theoreticians. Database administrators 

can use our findings to select a green and fast release of the MySQL database engine. Developers 

of MySQL database engines can assess the greenness and performance of their product with the 

help of software metrics. The findings are also of interest to researchers, as they lay a foundation 

for models predicting the greenness and performance of databases, which, in turn, will aid in 

developing green software. 

 

In the future, we plan to expand our work by studying other relational, NoSQL, and 

NewSQL database engines as well as study other enterprise products, such as middleware 

servers. 
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Appendices 

Appendix A 

A.1 List of MySQL Versions under Study 

1 v.5.0.15 

2 v.5.0.67 

3 v.5.0.96 

4 v.5.1.30 

5 v.5.1.50 

6 v.5.1.72 

7 v.5.5.10 

8 v.5.5.20 

9 v.5.5.39 

10 v.5.6.10 

11 v.5.6.15 

12 v.5.6.21 

 

A.2 MySQL Configuration File 

The listing below represents configuration file for MySQL engine [47]. 

 

# 

# The MySQL database server configuration file. 

# 

# You can copy this to one of: 

# - "/etc/mysql/my.cnf" to set global options, 

# - "~/.my.cnf" to set user-specific options. 

#  

# One can use all long options that the program supports. 

# Run program with --help to get a list of available options and with 

# --print-defaults to see which it would actually understand and use. 

# 

# For explanations see 

# http://dev.mysql.com/doc/mysql/en/server-system-variables.html 

 

# This will be passed to all mysql clients 

# It has been reported that passwords should be enclosed with ticks/quotes 



62 

 

# escpecially if they contain "#" chars... 

# Remember to edit /etc/mysql/debian.cnf when changing the socket location. 

[client] 

port            = 3306 

#socket         = /var/run/mysqld/mysqld.sock 

socket          = /tmp/mysql.thesock 

# Here is entries for some specific programs 

# The following values assume you have at least 32M ram 

 

# This was formally known as [safe_mysqld]. Both versions are currently parsed. 

[mysqld_safe] 

#socket         = /var/run/mysqld/mysqld.sock 

socket          = /tmp/mysql.thesock 

nice            = 0 

 

[mysqld] 

# 

# * Basic Settings 

# 

user            = mysql 

pid-file        = /var/run/mysqld/mysqld.pid 

#socket         = /var/run/mysqld/mysqld.sock 

socket          =/tmp/mysql.thesock 

port            = 3306 

basedir         = /home/avm/mysql 

datadir         = /home/avm/data 

tmpdir          = /tmp 

#lc-messages-dir        = /usr/share/mysql 

skip-external-locking 

# 

# Instead of skip-networking the default is now to listen only on 

# localhost which is more compatible and is not less secure. 

bind-address            = 127.0.0.1 

# 

# * Fine Tuning 

# 

max_allowed_packet      = 16M 

thread_stack            = 192K 

thread_cache_size       = 8 

# This replaces the startup script and checks MyISAM tables if needed 

# the first time they are touched 

myisam-recover         = BACKUP 

# 
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# * Query Cache Configuration 

# 

query_cache_limit       = 0  #disable query_cashe; original value = 1M 

query_cache_size        = 0  #disable query_cashe; original value = 16M 

 

 

# Error log - should be very few entries. 

# 

log_error = /var/log/mysql/error.log 

expire_logs_days        = 10 

max_binlog_size         = 100M 

 

[mysqldump] 

quick 

quote-names 

max_allowed_packet      = 16M 

[mysql] 

#no-auto-rehash # faster start of mysql but no tab completition 

# [isamchk] 

# key_buffer              = 16M 

 

# 

# The values below are uncommented only if running experiments for InnoDB 

# 

# InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. 

# Read the manual for more InnoDB related options. There are many! 

# 

# * Security Features 

# 

# Read the manual, too, if you want chroot! 

# chroot = /var/lib/mysql/ 

# 

# For generating SSL certificates I recommend the OpenSSL GUI "tinyca". 

# 

# ssl-ca=/etc/mysql/cacert.pem 

# ssl-cert=/etc/mysql/server-cert.pem 

# ssl-key=/etc/mysql/server-key.pem 

#loose-innodb-trx=0  

#loose-innodb-locks=0  

#loose-innodb-lock-waits=0  

#loose-innodb-cmp=0  

#loose-innodb-cmp-per-index=0 

#loose-innodb-cmp-per-index-reset=0 
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#loose-innodb-cmp-reset=0  

#loose-innodb-cmpmem=0  

#loose-innodb-cmpmem-reset=0  

#loose-innodb-buffer-page=0  

#loose-innodb-buffer-page-lru=0  

#loose-innodb-buffer-pool-stats=0  

#loose-innodb-metrics=0  

#loose-innodb-ft-default-stopword=0  

#loose-innodb-ft-inserted=0  

#loose-innodb-ft-deleted=0  

#loose-innodb-ft-being-deleted=0  

#loose-innodb-ft-config=0  

#loose-innodb-ft-index-cache=0  

#loose-innodb-ft-index-table=0  

#loose-innodb-sys-tables=0  

#loose-innodb-sys-tablestats=0  

#loose-innodb-sys-indexes=0  

#loose-innodb-sys-columns=0  

#loose-innodb-sys-fields=0  

#loose-innodb-sys-foreign=0  

#loose-innodb-sys-foreign-cols=0 

#innodb_buffer_pool_size=50MB 

 

  



65 

 

A.3 Schema of TPC-H Tables 

 

 

Figure A.1: The TPC-H Schema; SF refers to the scale factor of the generated benchmark data (reproduced from 

[49]). 
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A.4 MySQL key Buffer and The Database Performance  

The key buffer or the key cache is representing the requested memory amount; the value for this 

key can be set by using the key_buffer_size variable. The engine assigns as much memory as 

needed, up to the value of key_buffer_size. Index block is defined as a connecting unit of access 

to the MyISAM index files for MyISAM tables. These blocks are buffered (stored in the key 

cache) and are used usually by all related and became available to all processes that use MySQL 

[60].  

The key_buffer_size variable represents the buffer size that MySQL MyISAM14 uses to 

keep indexes in memory. The cache keeps index blocks in memory in order to avoid reading 

from the hard disk repeatedly. The key_buffer_size is considered as one of the most significant 

variables to tune MySQL database, in order to increase database performance [61] [60]. The 

value of this variable can be increased to get better index management for concurrent reads and 

writes. If the main purpose of a system is to run MySQL with MyISAM storage engine, in this 

case, the recommend value for this variable is 25% of the total memory available on the 

machine. When this value is excessively large, there is possibility that the system will become 

slow. This happens because MySQL depends on the operating system to carry out file system 

caching for data reads, therefore some space needs to be left for the file system caching.  

It is very important to tune the MySQL default installation to improve its performance 

and the key buffer cache is an essential variable in this tuning process. Increasing the 

key_buffer_size can also result in a highly reduced number of major page faults [61]. When data 

from table index block needs to be accessed, a check is implemented by the server to see whether 

it exists in the key cache. If it is available, the server accesses data in the key cache instead of the 

disk. Therefore, the server reads and writes from or into the cache instead of reading from or 

writing to disk. If it is not available, the server reads the data from disk and caches it as well for 

future use. If the cache is full then the newly read data replaces some old data in the cache [61].  

                                                 
14 InnoDB engine, uses innodb_buffer_pool_size variable instead of key_buffer_size, to control the size of its cache. 
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A.5:  MyISAM and InnoDB Comparison 

MySQL database has two major types of table storage engines, InnoDB and MyISAM. The 

following list summarizes the differences of features and performance between these two engines 

(reproduced from [47] and [48]): 

1. MyISAM is simple while InnoDB is more complex. 

2. MyISAM is the old engine while InnoDB is newer. 

3. InnoDB is an ACID compliant and therefore fully transactional with ROLLBACK and 

COMMIT while MyISAM is not. 

4. MyISAM implements table-level lock while InnoDB implements row-level lock for 

insert and update processes. 

5. InnoDB has transactions while MyISAM does not. 

6. InnoDB has foreign keys and relationship constraints while MyISAM does not. 

7. MyISAM is considered loose in data integrity while InnoDB is stricter. 

8. MyISAM is poor at recovering data integrity at system crashes while InnoDB has better 

crash recovery. 

9. MyISAM has no ordering in storage of data while InnoDB stored Row data in pages in 

primary key order.  

10. MyISAM has full-text search index while InnoDB has not. 
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Appendix B  

B.1 MyISAM Experiments 2-4 for Per-run Analysis (RQ1)  

B.1.1 Experiment 2: Engine = MyISAM, Key buffer size = 256M, Database Size = 3GB  

In this experiment, we loaded 3GB of raw data into the database and allowed the database engine 

to use 256MB of memory for its buffer. Figure B.1 shows that, overall, energy consumption and 

execution time increased as MySQL matured. This is especially pronounced as we move from 

one major release to the next one (e.g., from v.5.0 to v.5.1 or from v.5.1 to v.5.5). Fitting the data 

with a linear function (using linear regression) explains most of the data variability: R2 for 

energy and execution time are equal to 0.87 and 0.84, accordingly. The slopes of the linear 

functions (denoted by b in Figure B.1) are positive.  

However, when we examined the data per major release on Figure B.1, the results are less 

univocal. In the case of major release v.5.0, energy consumption and execution time increased 

with “aging” of MySQL. The slopes of linear functions fitting both datasets are positive; the 

functions explain most of the variability: R2 = 0.82 and 0.84, accordingly. The remaining three 

major releases v.5.1, v.5.5, and v.5.6 do not exhibit a pronounced trend. Linear fit cannot 

adequately describe the trends (R2 in all cases is less than 0.1, i.e., very low).  

Eyeballing of the Figure B.1 suggests that for major release v.5.1 energy consumption 

and execution time may follow V pattern: energy consumption and execution time of an 

intermediate release v.5.1.50 is lower than of an early release v.5.1.30; energy consumption and 

execution time of the mature release v.5.1.72 is higher than for intermediate release v.5.1.50. 

However, the pattern is not very strong if we take into account the variability of the 

measurements per each run. This is further confirmed by the high spread of the confidence 

interval lines on Figure B.1. 

Energy consumption and execution time for major release v.5.5 may follow Λ pattern (an 

inverse of the V pattern): energy consumption and execution time of an intermediate release 

v.5.5.20 is higher than of an early release v.5.5.10; energy consumption and execution time of 

the mature release v.5.5.39 is lower than for intermediate release v.5.5.20 However, as in the 

case of the major release v.5.1, the pattern is not very strong, since the variability of the 

measurements per each run is high. In case of major release v.5.6, there may exist a slight 
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positive trend (based on the slope value). Moreover, the variability of the data is high (R2 equal 

0.05 and 0.04) in both cases accordingly, suggesting that the trend is stable rather than positive.  

  

Figure B.1: Experiment 2; subplot A is box plot of energy consumed against MySQL’s versions; subplot B is box 

plot of execution time against MySQL’s versions. On both subplots black line depicts a trend line obtained using 

linear regression; dotted red lines show 95% confidence interval of the trend line; dotted green line represents trend 

per major release and dotted blue line show 95% confidence interval of trend line per major release. 

 

B.1.2 Experiment 3: Engine = MyISAM, Key buffer size =1024M, Database Size= 1GB  

In this experiment, we loaded 1GB of raw data into the database and allowed the database engine 

to use 1024MB of memory for its buffer. Figure B.2 shows that, overall, energy consumption 

and execution time grow as MySQL matured. This is especially pronounced as we move from 

one major release to the next one (e.g., from v.5.0 to v.5.1 or from v.5.1 to v.5.5). Fitting the data 

with a linear function (using linear regression) explains most of the data variability: R2 for 

energy and execution time are equal to 0.86 and 0.85, accordingly. The slopes of the linear 

functions (denoted by b in Figure B.2) are positive in the two cases.  

However, when we examine the data per major release on Figure B.2, the results are non-

stable and not following the same pattern. Energy consumption and execution time for major 

release v.5.0 may follow Λ pattern: energy consumption and execution time of an intermediate 

release v.5.0.67 is higher than of an early release v.5.0.15; energy consumption and execution 

time of the mature release v.5.0.96 is lower than for intermediate release v.5.0.67. However, the 

pattern is not very strong as the variability of the data is high; R2 = 0.45 and 0.18 in the two 

datasets accordingly.  

B A 
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The slopes of linear functions fitting both datasets are positive. The data for the two 

major releases v.5.1 and v.5.5 exhibit a stable trend (the trend line is almost horizontal15). Note 

that data variability makes it difficult to deduce the trend direction (all R2 ≤ 0.14 for both energy 

consumption and execution time). 

On the other hand, the slopes of linear functions fitting both datasets are negative in first 

dataset (energy), and negative in v.5.1 while it’s positive in v.5.5 in time dataset which represent 

non-stable slope. In case of major release v.5.6, there is a clear negative trend, based on the slope 

value which is equal -3.33 and -3.05 in both datasets, accordingly. Additionally, by looking to 

this major release versions in Figure B.2 we can easily recognize this negative trend. Moreover, 

the variability of the data is low as the value of R2 equals 0.77 and 0.83 in both dataset 

accordingly, suggesting that the trend is stable within this release.  

 

  

                                                 
15 The slope coefficient b values for v.5.1 and v.5.5 are approximately 10 times smaller than for v.5.0. 
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Figure B.2: Experiment 3; subplot A is box plot of energy consumed against MySQL’s versions; subplot B is box 

plot of execution time against MySQL’s versions .On both subplots black line depicts a trend line obtained using 

linear regression; dotted red lines show 95% confidence interval of the trend line; dotted green line represents trend 

per major release and dotted blue line show 95% confidence interval of trend line per major release. 

 

B.1.3 Experiment 4: Engine = MyISAM, Key buffer size =1024M, Database Size= 3GB  

In this experiment, we loaded 3GB of raw data into the database and allowed the database engine 

to use 1024MB of memory for its buffer. Figure B.3 shows that, overall, energy consumption 

and execution time grow as MySQL matured (as confirmed by the slopes). This is especially 

pronounced as we move from one major release to the next one. Fitting the data with a linear 

function (using linear regression) explains some of the data variability: R2 for energy and 

execution time = 0.60 and 0.56, accordingly. However, the R2 values are lower than in the case 

of Experiments 2 and 3. This can be explained by the fact that the variability in measurements 

for runs a given release is higher for Experiment 4, in comparison with Experiments 2 and 3 

(reflected by the “size” of each single box in Figure B.3). We conjecture that this can be 

explained as follows. Unlike 1GB dataset, 3GB of data cannot fit into memory, leading to non-

deterministic reads from the hard drive, hence the increase of variability.  

However, when we examine the data per major release on Figure B.3, the results are 

following different patterns. Energy consumption and execution time for major release v.5.0 

follow a clear positive pattern. However, the pattern is not very strong as the variability of the 

data is high, R2 equals 0.33 and 0.30 in the two datasets accordingly. The slopes of linear 

B A 



72 

 

functions fitting both datasets are positive. The remaining three major releases v.5.1, v.5.5, and 

v.5.6 do not exhibit a pronounced trend. Linear functions show slight negative or positive trends. 

However, due to variability in the data, the R2 values are extremely low (R2 ≤ 0.004) making it 

impossible to draw a conclusion on the trend direction (as further confirmed by the wide 

confidence intervals of the linear models shown in Figure B.3).  

  

Figure B.3: Experiment 4; subplot A is box plot of energy consumed against MySQL’s versions; subplot B is box 

plot of execution time against MySQL’s versions .On both subplots black line depicts a trend line obtained using 

linear regression; dotted red lines show 95% confidence interval of the trend line; dotted green line represents trend 

per major release and dotted blue line show 95% confidence interval of trend line per major release. 

 

B.2 InnoDB Experiments 6-8 for Per-run Analysis (RQ1) 

B.2.1 Experiment 6: Engine = InnoDB, Key buffer size = 256M, Database size = 3GB  

In this experiment, we loaded 3 GB of raw data into the database and allowed the database 

engine to use 256MB of memory for its buffer. Figure B.4 shows that, as with previous 

experiments, energy consumption increased and performance decreased, as the engine matured. 

However, the variability is higher and the trend is less pronounced (R2=0.68 for energy 

consumption and R2=0.70 for execution time). 

The energy consumption and execution time are not following the same pattern in all 

releases. In release v.5.0 the trend shows increase in both energy and time spent when versions 

improved, if we take in consideration the R2 values which are more than 0.75 in the two datasets 

in addition to the positive slope values which confirm this positive relation. Releases v.5.1 and 

B A 
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v.5.5 follow Λ pattern: energy consumption and execution time of an intermediate release is 

higher than of an early release; energy consumption and execution time of the mature release is 

lower than for intermediate release in the two cases. However, the pattern is not very strong as 

the variability of the data is very high, R2 is very small value in the two datasets for the two 

releases v.5.1 and v.5.5. In release v.5.6 the trend follows obvious positive relation and the R2 is 

more than 0.94 in both datasets with positive slope values that confirm energy consumption and 

time spent are increasing when the versions developed. 

  

Figure B.4: Experiment 6; subplot A is box plot of energy consumed against MySQL’s versions; subplot B is box 

plot of execution time against MySQL’s versions .On both subplots black line depicts a trend line obtained using 

linear regression; dotted red lines show 95% confidence interval of the trend line; dotted green line represents trend 

per major release and dotted blue line show 95% confidence interval of trend line per major release. 
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B.2.2 Experiment 7: Engine = InnoDB, Key buffer size = 1024M, Database size= 1GB  

In this experiment, we loaded 1GB of raw data into the database and allowed the database engine 

to use 1024MB of memory for its buffer. Figure B.5 shows that, overall, energy consumption 

and execution time following a clear negative pattern as MySQL mature. Fitting the data with a 

linear function (using linear regression) does not explain any of the data variability: R2 for 

energy and execution time are more than to 0.08 in both datasets. The slopes of the linear 

functions (denoted by b in Figure B.5) are negative in the two cases; which represents a negative 

trend in general. However, when we examine the data per major release on Figure B.5, the 

results are following different patterns.  

Energy consumption and execution time for major release v.5.0 follow negative pattern: 

energy consumption and execution time are decrease when version mature. Nevertheless, the 

pattern is considered strong as the R2 values are 0.77 and 0.78 in both datasets accordingly. The 

slopes of linear functions fitting both datasets are negative which reflects this negative trend. 

The remaining three major releases v.5.1, v.5.5, and v.5.6 do not exhibit a fixed trend. Linear 

function gives various description for the trends; R2 has variable values in both datasets which 

represents not fixed pattern.  

Examining Figure B.5 suggests that for major release v.5.1 energy consumption and 

execution time may follow positive pattern and the pattern is considered strong if we take into 

account the variability of the measurements per each run; R2 equals 0.88 and 0.91 in the two 

datasets accordingly. The slopes of linear functions fitting both datasets are positive which 

reflects this positive trend. 

Energy consumption and execution time for major release v.5.5 Follow V pattern: energy 

consumption and execution time of an intermediate release v.5.5.20 is lower than of an early 

release v.5.5.10; energy consumption and execution time of the mature release v.5.5.39 is higher 

than for intermediate release v.5.5.20.  Since variability of the measurements per each run is 

high; R2 equals 0.38 and 0.62 in two datasets accordingly. On the other hand, the slopes of linear 

functions fitting both datasets are positive in both cases which reflects a positive trend.  

In case of major release v.5.6, there is a clear negative trend based on the slope value 

which is negative in both datasets. Additionally, by looking to this major release’s versions in 
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Figure B.5 we can easily recognize this negative trend. Moreover, the variability of the data is 

not fixed as the values of R2 are equal 0.21 and 0.09 in both datasets accordingly.  

In the case of Experiments 7 and 8, as can be seen from Figures B.5 and B.7, the values 

of energy consumption and time spent in the case of v.5.0.15 are dramatically different from the 

values of other versions in a given release. We conjecture that functionality of InnoDB engine in 

this release behaves abnormally, leading to anomalous data. If we remove these anomalous 

readings, as can be seen in Figures B.6 and B.8, the results become consistent with the results of 

previous experiments. 

 
 

Figure B.5: Experiment 7; subplot A is box plot of energy consumed against MySQL’s versions; subplot B is box 

plot of execution time against MySQL’s versions .On both subplots black line depicts a trend line obtained using 

linear regression; dotted red lines show 95% confidence interval of the trend line; dotted green line represents trend 

per major release and dotted blue line show 95% confidence interval of trend line per major release. 

 

 

Figure B.6 shows the energy consumption and time spent in release v.5.0 (Experiment 7) 

after removing the outlier release (v.5.0.15). The trend in both cases is negative, as confirmed by 

slope values in Figure B.6 (A and B). The trend is considered strong, as R2 > 0.97 for both 

datasets. 
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Figure B.6: Experiment 7 without outlier version; subplot A is box plot of energy consumed against MySQL’s 

versions; subplot B is box plot of execution time against MySQL’s versions .On both subplots black line depicts a 

trend line obtained using linear regression; dotted red lines show 95% confidence interval of the trend line; dotted 

green line represents trend per major release and dotted blue line show 95% confidence interval of trend line per 

major release. 

 

B.2.3 Experiment 8: Engine = InnoDB, Key buffer size =1024M, Database size= 3GB  

In this experiment, we loaded 3 GB of raw data into the database and allowed the database 

engine to use 1024MB of memory for its buffer. Figure B.7 shows that generally the energy 

consumption and execution time are not following the same pattern in all release, the R2 values 

are more than 0.35 in the two datasets and the slope is positive in both cases. 

In release v.5.0 the trend shows increase in both energy consumption and execution time 

when versions improved, if we take in consideration the R2 values which are more than 0.75 in 

the two datasets in addition to the positive slope values as well, confirming this positive relation.  

In releases v.5.1, v.5.5, and v.5.6, the pattern may follow V shape: energy consumption 

and execution time of an intermediate release is lower than of an early release; energy 

consumption and execution time of the mature release is higher than for intermediate release in 

all the three releases. However, the pattern is not very strong as the variability of the data is very 

high, R2 has very small values in the two datasets for the three releases. The slope values for 

v.5.5 and v.5.6 are negative which confirm a negative relation while in version v.5.1 it’s positive, 

showing that there may be a positive relation.  

A B 
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Figure B.7: Experiment 8; subplot A is box plot of energy consumed against MySQL’s versions; subplot B is box 

plot of execution time against MySQL’s versions .On both subplots black line depicts a trend line obtained using 

linear regression; dotted red lines show 95% confidence interval of the trend line; dotted green line represents trend 

per major release and dotted blue line show 95% confidence interval of trend line per major release. 

 

 

As we discussed in Experiment 7, regarding the outlier release (v.5.0.15), Figure B.8 

shows the energy consumption and time spent in release v.5.0 after removing the outlier release 

.The trend in the two datasets is negative by eyeballing Figure B.8 (A and B), in addition to the 

slope value is negative in energy dataset while it’s positive in time dataset, showing not stable 

trend. The trend is considered weak as R2 value is less than or equals to 0.02 in the two datasets. 
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Figure B.8: Experiment 8 without the outlier version; subplot A is box plot of energy consumed against MySQL’s 

versions; subplot B is box plot of execution time against MySQL’s versions .On both subplots black line depicts a 

trend line obtained using linear regression; dotted red lines show 95% confidence interval of the trend line; dotted 

green line represents trend per major release and dotted blue line show 95% confidence interval of trend line per 

major release. 

 

B.3 MyISAM Experiments 2-4 Per-run Analysis (RQ2) 

B.3.1 Experiment 2: Engine = MyISAM, Key buffer size = 256M, Database size = 3GB   

The following scatter graphs (Figures B.9 and B.10) represent the relation between the energy 

consumption (or time spent) and the different software metrics we used. By examining the 

relation between the size of code (represented by LOC metric for all the versions under study) 

and the energy consumed, we found a positive linear relation between the variables: as can be 

seen from Figure B.9-A, R2=0.51, and slope coefficient b is positive.  This is further confirmed 

by a strong (=0.72) correlation between the variables, as shown in Table 4.9. 

As can be seen from Figures B.9-C and B.9-D, and Table 4.9, there exists a weak linear 

relation between TCC (MCC) and consumed energy: R2=0.04 in both cases with a positive 

slope, and the correlation coefficient is equal to =0.19 (=0.20). As mentioned in the previous 

section, MCC and TCC are almost perfectly correlated, hence the similarity in results. 

 

We found no correlation between LOCC and consumed energy. As can be seen from Figure B.9-

B and Table 4.9, R2=4.30 e-05 and =0.01.  

A B 
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Even though the relation between LOCC and consumed energy is low, there exists a 

strong positive linear relation between LOCC and the change in energy consumption. As can be 

seen from Figure B.9-E and Table 4.10, the variability of the data is high (R2=0.60), but the 

correlation is moderate (=0.77).  

Experiment 2’s data, related to time spent (shown in Table 4.11), are identical to the 

energy consumption data in Table 4.9 as a result of the almost perfect correlation between energy 

and time (discussed in Section 4.2). Therefore, the LOC metric has a strong correlation with time 

spent, MCC and TCC have weak correlation with time spent and no correlation is found between 

the LOCC metric and time spent. Table 4.12 shows a strong correlation (=0.82) between 

changes in time with the LOCC metric. 
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Figure B.9:  Relation between energy consumed and various software metrics for Experiment 2. Subplot A is a 

scatterplot of LOC against energy; subplot B is a scatterplot of LOCC against energy; subplot C is a scatterplot of 

TCC against energy; Subplot D is a scatterplot of MCC against energy; Subplot E is a scatterplot of LOCC against 

change in energy consumption. On all subplots: black line depicts a trend line obtained using linear regression; 

dotted red lines show 95% confidence interval of the trend line.  
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Figure B.10:  Relation between time spent and various software metrics for Experiment 2. Subplot A is a scatterplot 

of LOC against time; subplot B is a scatterplot of LOCC against time; subplot C is a scatterplot of TCC against time; 

Subplot D is a scatterplot of MCC against time; Subplot E is a scatterplot of LOCC against change in time 

consumption. On all subplots: black line depicts a trend line obtained using linear regression; dotted red lines show 

95% confidence interval of the trend line.  
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B.3.2 Experiment 3: Engine = MyISAM, Key buffer size =1024M, Database size= 1GB  

The following scatter plots (Figures B.11 and B.12) represent the relation between the energy 

consumption (time spent) and the different software metrics we used. By examining the relation 

between the size of code (represented by the LOC metric for all the versions under study) and the 

energy consumed, we found a strong positive linear relation between the variables: as can be 

seen from Figure B.11-A, R2=0.80, and slope coefficient b is positive. This is further confirmed 

by a strong (=0.89) correlation between the variables, as shown in Table 4.9. 

As can be seen from Figures B.11-C and B.11-D and Table 4.9, there exists a moderate 

positive linear relation between TCC (MCC) and consumed energy: =0.46 (=0.48); even 

though linear model cannot properly explain data variability, since R2=0.22 (R2=0.23). As 

mentioned in the previous section, MCC and TCC are almost perfectly correlated, hence the 

similarity in results. We found no correlation between LOCC and consumed energy. As can be 

seen from Figure B.11-B and Table 4.9, R2=0.0003 and =0.02.  

Even though the relation between LOCC and consumed energy is low, there exists a 

moderate positive linear relation between LOCC and the change in energy consumption. As can 

be seen from Figure B.11-E and Table 4.10, the variability of the data is high (R2=0.53), but the 

correlation is strong (=0.73).  

Experiment 3’s data, related to time spent (shown in Table 4.11), are identical to the 

energy consumption data in Table 4.9 as a result of the almost perfect correlation between energy 

and time (discussed in Section 4.2). Therefore, the LOC metric has a strong correlation with time 

spent, MCC and TCC have moderate correlation with time spent and no correlation is found 

between the LOCC metric and time spent. Table 4.12 shows a strong correlation (=0.75) 

between changes in time with the LOCC metric. 
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Figure B.11:  Relation between energy consumed and various software metrics for Experiment 3. Subplot A is a 

scatterplot of LOC against energy; subplot B is a scatterplot of LOCC against energy; subplot C is a scatterplot of 

TCC against energy; Subplot D is a scatterplot of MCC against energy; Subplot E is a scatterplot of LOCC against 

change in energy consumption. On all subplots: black line depicts a trend line obtained using linear regression; 

dotted red lines show 95% confidence interval of the trend line. 
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Figure B.12:  Relation between time spent and various software metrics for Experiment 3. Subplot A is a scatterplot 

of LOC against time; subplot B is a scatterplot of LOCC against time; subplot C is a scatterplot of TCC against time; 

Subplot D is a scatterplot of MCC against time; Subplot E is a scatterplot of LOCC against change in time spent. On 

all subplots: black line depicts a trend line obtained using linear regression; dotted red lines show 95% confidence 

interval of the trend line. 
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B.3.3 Experiment 4: Engine = MyISAM, Key buffer size =1024M, Database size= 3GB  

The following scatter graphs (Figures B.13 and B.14) represent the relation between the energy 

consumption (time spent) and the different software metrics we used. By examining the relation 

between the size of code (represented by the LOC metric for all the versions under study) and the 

energy consumed, we found a moderate positive linear relation between the variables: as can be 

seen from Figure B.13-A, R2= 0.43, and slope coefficient b is positive. This is further confirmed 

by a moderate (=0.66) correlation between the variables, as shown in Table 4.9. 

As can be seen from Figures B.13-C and B.13-D and Table 4.9, there exists a weak 

positive linear relation between TCC (MCC) and consumed energy: R2 is less than 0.09 in both 

cases with a positive slope, and the correlation coefficient is equal to =0.28 (=0.30). As 

mentioned in the previous section, MCC and TCC are almost perfectly correlated, hence the 

similarity in results. 

We found no correlation between LOCC and consumed energy. As can be seen from  

Figure B.13-B and Table 4.9, R2 has a very small positive value and =0.02.  

Even though the relation between LOCC and consumed energy is low, there exists a positive 

linear relation between LOCC and the change in energy consumption. As can be seen from 

Figure B.13-E and Table 4.10, the variability of the data is high (R2=0.41), but the correlation is 

moderate (=0.64).  

Experiment 4’s data, related to time spent (shown in Table 4.11), are identical to the 

energy consumption data in Table 4.9 as a result of the almost perfect correlation between energy 

and time (discussed in Section 4.2). Therefore, the LOC metric has a moderate correlation with 

time spent, MCC and TCC have weak correlation with time spent and no correlation is found 

between the LOCC metric and time spent. Table 4.12 shows a moderate correlation (=0.66) 

between changes in time with the LOCC metric. 
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Figure B.13:  Relation between energy consumed and various software metrics for Experiment 4. Subplot A is a 

scatterplot of LOC against energy; subplot B is a scatterplot of LOCC against energy; subplot C is a scatterplot of 

TCC against energy; Subplot D is a scatterplot of MCC against energy; Subplot E is a scatterplot of LOCC against 

change in energy consumption. On all subplots: black line depicts a trend line obtained using linear regression; 

dotted red lines show 95% confidence interval of the trend line.  
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Figure B.14:  Relation between time spent and various software metrics for Experiment 4. Subplot A is a scatterplot 

of LOC against time; subplot B is a scatterplot of LOCC against time; subplot C is a scatterplot of TCC against time; 

Subplot D is a scatterplot of MCC against time; Subplot E is a scatterplot of LOCC against change in time spent. On 

all subplots: black line depicts a trend line obtained using linear regression; dotted red lines show 95% confidence 

interval of the trend line.  
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B.4 InnoDB Experiments 6-8 Per-run Analysis (RQ2) 

B.4.1 Experiment 6: Engine = InnoDB, Key buffer size =256M, Database size= 3GB  

The following scatter graphs (Figures B.15 and B.16) represent the relation between the energy 

consumption (time spent) and the different software metrics we used. By examining the relation 

between the size of code (represented by the LOC metric for all the versions under study) and the 

energy consumed, we found a positive linear relation between the variables: as can be seen from 

Figure B.15-A, R2=0.61, and slope coefficient b is positive. This is further confirmed by a strong 

(=0.78) correlation between the variables, as shown in Table 4.9. 

As can be seen from Figures B.15-C and B.15-D, and Table 4.9, there exists a moderate 

positive linear relation between TCC (MCC) and consumed energy: R2=0.25 (R2=0.27) with a 

positive slope, and the correlation coefficient is equal to = 0.50 (=0.52). As mentioned in the 

previous section, MCC and TCC are almost perfectly correlated, hence the similarity in results. 

We found no correlation between LOCC and consumed energy. As can be seen from  

Figure B.15-B and Table 4.9, R2 has extremely small value with negative slop and =-0.21.  

In addition to the low relation between LOCC and consumed energy, there exists a weak 

positive linear relation between LOCC and the change in energy consumption. As can be seen 

from Figure B.15-E and Table 4.10, the variability of the data is high (R2=0.02), and the 

correlation is weak (=0.16).  

Experiment 6’s data, related to time spent (shown in Table 4.11), are identical to the 

energy consumption data in Table 4.9 as a result of the almost perfect correlation between energy 

and time (discussed in Section 4.2). Therefore, the LOC metric has a strong correlation with time 

spent, MCC and TCC have moderate correlation with time spent and no correlation is found 

between the LOCC metric and time spent. Table 4.12 shows a weak correlation (=0.16) 

between changes in time with the LOCC metric. 
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Figure B.15:  Relation between energy consumed and various software metrics for Experiment 6. Subplot A is a 

scatterplot of LOC against energy; subplot B is a scatterplot of LOCC against energy; subplot C is a scatterplot of 

TCC against energy; Subplot D is a scatterplot of MCC against energy; Subplot E is a scatterplot of LOCC against 

change in energy consumption. On all subplots: black line depicts a trend line obtained using linear regression; 

dotted red lines show 95% confidence interval of the trend line.  
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Figure B.16:  Relation between time spent and various software metrics for Experiment 6. Subplot A is a scatterplot 

of LOC against time; subplot B is a scatterplot of LOCC against time; subplot C is a scatterplot of TCC against time; 

Subplot D is a scatterplot of MCC against time; Subplot E is a scatterplot of LOCC against change in time spent. On 

all subplots: black line depicts a trend line obtained using linear regression; dotted red lines show 95% confidence 

interval of the trend line.  
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B.4.2 Experiment 7: Engine = InnoDB, Key buffer size =1024M, Database size= 1GB  

The following scatter graphs (Figures B.17 and B.18) represent the relation between the energy 

consumption (time spent) and the different software metrics we used. As discussed in Section 

B.2.2, we remove data for the outlier release (v.5.0.15) from our analysis. By examining the 

relation between the size of code (represented by the LOC metric for all the versions under 

study) and the energy consumed, we found a strong positive linear relation between the 

variables: as can be seen from Figure B.17-A, R2 has a very small value, and slope coefficient b 

is positive. This is further confirmed by a strong (=0.88) correlation between the variables, as 

shown in Table 4.9. 

As can be seen from Figures B.17-C and B.17-D, and Table 4.9, there exists a strong 

positive linear relation between TCC (MCC) and consumed energy: =0.76 (=0.75), even 

though variability of the data is high, R2=0.07 (R2= 0.06). As mentioned in the previous section, 

MCC and TCC are almost perfectly correlated, hence the similarity in results. 

We found no correlation between LOCC and consumed energy. As can be seen from  

Figure B.17-B and Table 4.9, R2 has a very small value and = 0.01.  

 

Even though the relation between LOCC and consumed energy is low, there exists a 

moderate positive linear relation between LOCC and the change in energy consumption. As can 

be seen from Figure B.17-E and Table 4.10, the variability of the data is high (R2=0.01), but the 

correlation is moderate (=0.49).  

Experiment 7’s data, related to time spent (shown in Table 4.11), are identical to the 

energy consumption data in Table 4.9 as a result of the almost perfect correlation between energy 

and time (discussed in Section 4.2). Therefore, the LOC metric has a strong correlation with time 

spent, MCC and TCC have strong correlation with time spent and no correlation is found 

between the LOCC metric and time spent. Table 4.12 shows a moderate correlation (=0.52) 

between changes in time with the LOCC metric. 
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Figure B.17:   Relation between Energy consumed and various software metrics for Experiment 7. Subplot A is a 

plot of LOC against energy; subplot B is a plot of LOCC against energy; subplot C is a plot of TCC against energy; 

Subplot D is a plot of MCC against energy; Subplot E is a scatterplot of LOCC against change in energy 

consumption. On all subplots: black line depicts a trend line obtained using linear regression; dotted red lines show 

95% confidence interval of the trend line.  
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Figure B.18:   Relation between time spent and various software metrics for Experiment 7. Subplot A is a plot of 

LOC against time; subplot B is a plot of LOCC against time; subplot C is a plot of TCC against time; Subplot D is a 

plot of MCC against time; Subplot E is a scatterplot of LOCC against change in time spent. On all subplots: black 

line depicts a trend line obtained using linear regression; dotted red lines show 95% confidence interval of the trend 

line.  
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B.4.3 Experiment 8: Engine = InnoDB, Key buffer size =1024M, Database size= 3GB  

 

The following scatter graphs (Figures B.19 and B.20) represent the relation between the energy 

consumption (time spent) and the different software metrics we used. By examining the relation 

between the size of code (represented by the LOC metric for all the versions under study) and the 

energy consumed, based on Table 4.9, we found a moderate positive linear relation between the 

variables: =0.48, even though the model variability is high (as can be seen from Figure B.19-A, 

R2=0.01).  

As can be seen from Figures B.19-C and B.19-D, and Table 4.9, there exists a weak 

(borderline to none) positive linear relation between TCC (MCC) and consumed energy: 

R2=0.03 in both cases with a positive slope, and the correlation coefficient is equal to = 0.11 in 

both cases. As mentioned in the previous section, MCC and TCC are almost perfectly correlated, 

hence the similarity in results. 

We found weak correlation between LOCC and consumed energy. As can be seen from  

Figure B.19-B and Table 4.9, R2=0.03 and = 0.16. In addition to the low relation between 

LOCC and consumed energy, there exists a weak positive linear relation between LOCC and the 

change in energy consumption. As can be seen from Figure B.19-E and Table 4.10, the 

variability of the data is high (R2= 0.03), and the correlation is weak (=0.18).  

Experiment 8’s data, related to time spent (shown in Table 4.11), are identical to the 

energy consumption data in Table 4.9 as a result of almost perfect correlation between energy 

and time (discussed in Section 4.2). Therefore, the LOC metric has a moderate correlation with 

time spent, MCC and TCC have weak correlation with time spent, and weak correlation is found 

between the LOCC metric and time spent. Table 4.12 shows a weak correlation (=0.17) 

between changes in time with the LOCC metric. 
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Figure B.19: Relation between energy consumed and various software metrics for Experiment 8. Subplot A is a 

scatterplot of LOC against energy; subplot B is a scatterplot of LOCC against energy; subplot C is a scatterplot of 

TCC against energy; Subplot D is a scatterplot of MCC against energy; Subplot E is a scatterplot of LOCC against 

change in energy consumption. On all subplots: black line depicts a trend line obtained using linear regression; 

dotted red lines show 95% confidence interval of the trend line.  
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Figure B.20: Relation between time spent and various software metrics for Experiment 8. Subplot A is a scatterplot 

of LOC against time; subplot B is a scatterplot of LOCC against time; subplot C is a scatterplot of TCC against time; 

Subplot D is a scatterplot of MCC against time; Subplot E is a scatterplot of LOCC against change in time spent. On 

all subplots: black line depicts a trend line obtained using linear regression; dotted red lines show 95% confidence 

interval of the trend line.  
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B.5 Per-statement Analysis (RQ1)  

In addition to the overall analysis of the workload (discussed in Chapter 5), we investigated 

behavior of each of the 22 queries in the workload individually. For the sake of brevity, we 

discuss here only energy consumption. Given that the time spent and energy consumed are 

correlated, as per Section 4.2, our energy-related findings will apply to the execution time as 

well. 

We also know that MCC and TCC are perfectly correlated (see Table 4.8); therefore, we 

used MCC in this section as an example of the complexity metric, and our finding for MCC will 

apply to TCC as well.  The following sections show the relation between the energy consumption 

and the improvement in the MySQL versions from release to release, for each single query per 

each experiment. We focused on the analysis of three queries consuming the least amount of 

energy, denoted by Bottom-3, and three queries consuming the largest amount of energy, 

denoted by Top-3.  

The Bottom-3 and Top-3 queries for both database engines under study (MyISAM and 

InnoDB) are shown in Tables B.1, B.3, B.5, and B.7. As we can see in Table B.1, MyISAM 

Bottom-3 set for all experiments and releases contains six distinct queries (Queries # 11, 16, 17, 

19, 20, and 22) and MyISAM Top-3 set – five distinct queries (Queries # 5, 9, 14, 18, and 21) as 

shown in Table B.3; InnoDB Bottom-3 set contains ten distinct queries (Queries # 2, 4, 6, 11, 16, 

7, 19, 18, 20, 22,) as shown in Table B.5; and InnoDB Top-3 set – eight distinct queries (Queries 

# 1, 3, 5, 9, 10, 14, 18, 21) as shown in Table B.7. These findings suggest that the sets of most 

problematic and least problematic queries (from the energy consumption perspective) are fairly 

robust and are independent of the database engine’s type and setup.  

Energy consumption of queries, frequently appearing in Bottom-3 and Top-3 sets, are 

given in Tables B.2, B.4, B.6, and B.8; and Figures B.21 and B.22. Some statements become 

greener as releases mature, and some not. However, greener values are observed more frequently 

on older releases of the engines.  
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Table B.1: MyISAM; Bottom-3 energy consuming queries per each release and experiment. 

 

 

Table B.2: MyISAM; Energy consumption of frequently occurring Bottom-3 queries (in Wh) for each experiment 

and release; Green color represents minimum value; Red color represents maximum value. 
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Table B.3: MyISAM; Top-3 energy consuming queries per each release and experiment. 

 
 

 

Table B.4: MyISAM; Energy consumption of frequently occurring Top-3 queries (in Wh) for each experiment and 

release; Green color represents minimum value; Red color represents maximum value. 

 

 

 

 

 

 

 



100 

 

  

Experiment Greener/Faster Query Least green /Slower Query 

 
Experiment 1 

 

  

Experiment 2 

 

  

Experiment 3 
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Experiment 4 

 

  

Figure B.21:  MyISAM experiments; subplot A is box plot of energy consumed against MySQL’s versions for 

greener query; subplot B is box plot of energy consumed against MySQL’s versions for least green query per each 

experiment. On both subplots black line depicts a trend line obtained using linear regression; dotted red lines show 

95% confidence interval of the trend line; dotted green line represents trend per major release and dotted blue line 

show 95% confidence interval of trend line per major release. 

 

 

 

Table B.5: InnoDB: Bottom-3 energy consuming queries per each release and experiment. 
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Table B.6: InnoDB; Energy consumption of frequently occurring Bottom-3 queries (in Wh) for each experiment and 

release; Green color represents minimum value; Red color represents maximum value.  

 

 

 

 

Table B.7: InnoDB; Top-3 energy consuming queries per each release and experiment. 
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Table B.8:  InnoDB; Energy consumption of frequently occurring Top-3 queries (in Wh) for each experiment and 

release; Green color represents minimum value; Red color represents maximum value. 
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Experiment Greener/Faster Query Least green /Slower Query 

Experiment 5 

 

  

Experiment  6 

 

 

 

 

 

Experiment 7 
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Experiment 8 

  

 Figure B.22: InnoDB experiments; subplot A is box plot of energy consumed against MySQL’s versions for greener 

query; subplot B is box plot of energy consumed against MySQL’s versions for least green query per each 

experiment. On both subplots black line depicts a trend line obtained using linear regression; dotted red lines show 

95% confidence interval of the trend line; dotted green line represents trend per major release and dotted blue line 

show 95% confidence interval of trend line per major release. 

 

B.5.1 Per statement analysis – observations 

We provide additional observations related to RQ1 below. 

- MyISAM experiments showed that the older releases are greener than the new one in 

most of the cases as we can see in Table B.2 and B.4. The minimum values for average 

energy consumption are associated with release v.5.0 (except Query 18 in Table B.4), 

while the maximum values of average energy consumption are associated with the mature 

releases v.5.5 and v.5.6 in all cases. These findings are similar to our “per run” results, 

given in Chapter 5. 

- All InnoDB experiments (except Query 5 in Table B.8) showed that the greenest release 

is the oldest one (v.5.0); while the least green ones are, in most cases, the mature releases 

v.5.5 and v.5.6 (only queries 14 and 21 gave different results in Experiment 5 and 7, 

Table B.8) as we can see in Tables B.6 and B.8.  

- As discussed in Section 4.2, the energy consumption and execution time are perfectly 

correlated. Therefore, for per statement analysis, we can say that the older releases are 

using less energy and time, hence they are greener and faster than the mature releases. 
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B.6 Per-statement Analysis (RQ2) 

B.6.1 MyISAM Experiments 

Tables B.9 to B.12, show the correlation between the energy consumption and software metrics 

for each individual query in all the four MyISAM experiments. The NA values in these tables 

appear when the correlation coefficient values cannot be computed. This happens due to 

limitation of the Pearson correlation formula: when all the energy consumption values are 

identical, the standard deviation of the energy consumption (used in the denominator Pearson 

correlation formula) is 0, leading to division by 0. This happened for fast queries with energy 

readings of less than 0.1 Wh, which our measuring device cannot capture; we exclude these 

queries from our analysis.  

In the following sections we analyze these results per each experiment. 

B.6.1.1 Experiment 1: Engine = MyISAM, Key Buffer Size = 256M, Database Size = 1GB 

As we can see in Table B.9, energy consumption of all the queries, except queries #16 and 18, 

exhibit moderate to strong positive correlation with LOC (Pearson correlation coefficient, , 

ranges between 0.54 and 0.93). Queries #16 and 18, on the other hand, exhibit moderate to 

strong negative correlation ( ranges between -0.93 and -0.45). These findings are confirmed by 

linear regression analysis (samples of the analysis are given in Figure B.23). Energy 

consumption is weakly correlated (or has no correlation) with LOCC (as per Table B.9); 

  ranges between -0.24 and 0.21.  

Correlation between energy consumption and MCC/TCC ranges between weak and 

strong. Energy consumption has strong to moderated positive correlation for 14 queries out of 22 

(Queries# 1, 3, 5-8, 10, 12 - 15, 17, 20, and 21) and   ranging between 0.42 and 0.76; strong 

negative correlation for Queries #16 and 18 with  ranging between -0.77 and -0.75 (similar to 

the LOC case); and none to weak correlation for Queries # 2 and 9 with  ranging between -0.03 

and 0.20. 
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Table B.9: Shows the correlation between the energy consumption and software metrics per each query for 

MyISAM Experiment 1. 
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Figure B.23: MyISAM Experiment1; Subplot A is a scatterplot of query with max LOC against energy; subplot B is 

a scatterplot of query with min LOC against energy; Subplot C a scatterplot of max LOCC against energy; Subplot 

D is a scatterplot of min LOCC against energy; Subplot E is a scatterplot of query with max MCC against energy; 

subplot F is a scatterplot of query with min MCC against energy. On all subplots: black line depicts a trend line 

obtained using linear regression; dotted red lines show 95% confidence interval of the trend line. 
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B.6.1.2 Experiment 2: Engine = MyISAM, Key buffer size = 256M, Database size = 3GB   

 As shown in Table B.10, energy consumption for 16 queries (Queries #1-7, 10, 12, 14, 15, 17, 

and 19-22), exhibit moderate to strong positive correlation with LOC:    ranges between 0.44 

and 0.93. The rest of the queries (Queries # 8, 9, 11, 13, and 18), on the other hand, exhibit weak 

correlation with   ranges between -0.30 and 0.36. Query #16 showed strong negative correlation 

with  = - 0.88 .This findings are confirmed by linear regression analysis (samples of the 

analysis are given in Figure B.24). Energy consumption is weakly correlated (or has no 

correlation) with LOCC (as per Table B.10);  ranges between and -0.30 and 0.14.  

Correlation between energy consumption and MCC/TCC ranges between weak to strong. 

Energy consumption has strong to moderate positive correlation for 7 queries (Queries # 4, 5, 12, 

15, 19, 20 and 21) with  ranging between 0.41 and 0.74; strong negative correlation for Queries 

# 16 and 18 with   ranging between -0.78 and -0.74 (similar to Experiment 1 findings), and 

none to weak correlation for queries (Queries # 1, 2, 3, 6 - 11, 13, 14, 17, and 22) with  ranging 

between -0.29 and 0.39. 

Table B.10: Shows the correlation between the energy consumption and software metrics per each query for 

MyISAM Experiments 2. 
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Figure B.24: MyISAM Experiment2; Subplot A is a scatterplot of query with max LOC against energy; subplot B is 

a scatterplot of query with min LOC against energy; Subplot C a scatterplot of max LOCC against energy; Subplot 

D is a scatterplot of min LOCC against energy; Subplot E is a scatterplot of query with max MCC against energy; 

subplot F is a scatterplot of query with min MCC against energy. On all subplots: black line depicts a trend line 

obtained using linear regression; dotted red lines show 95% confidence interval of the trend line. 
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B.6.1.3 Experiment 3: Engine = MyISAM, Key buffer size =1024M, Database size= 1GB  

As we can see in Table B.11 , energy consumption of all the queries, except Queries # 2, 4, 8, 16 

and 18, exhibit moderate to strong positive correlation with LOC (  ranges between and 0.43 

and 0.93). Queries #16 and 18, on the other hand, exhibit moderate to strong negative correlation 

with  ranging between -0.93 and -0.50. Queries # 2, 4, and 8, exhibit weak correlation with 

ranges between 0.12 and 0.18 (samples of the analysis are given in Figure B.25). Energy 

consumption is weakly correlated (or has no correlation) with LOCC;   ranges between - 0.20 

and 0.34. 

Correlation between energy consumption and MCC/TCC ranges between weak and 

strong. Energy consumption has strong to moderate positive correlation for (Queries # 1, 5, 10, 

12, 13, 20, and 21) and  ranges between 0.44 and 0.76; strong negative correlation for Queries 

#16 and 18 with  ranging between -0.87 and -0.75 (similar to the LOC case and Experiments 1 

and 2 findings). Queries 2, 3, 4, 6, 7, 8, 9, 14, 15, and 17 exhibit non to weak correlation with  

ranging between 0.01 and 0.39. 

 

Table B.11: Shows the correlation between the energy consumption and software metrics per each query for 

MyISAM Experiment 3. 
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Figure B.25: MyISAM Experiment3; Subplot A is a scatterplot of query with max LOC against energy; subplot B is 

a scatterplot of query with min LOC against energy; Subplot C a scatterplot of max LOCC against energy; Subplot 

D is a scatterplot of min LOCC against energy; Subplot E is a scatterplot of query with max MCC against energy; 

subplot F is a scatterplot of query with min MCC against energy. On all subplots: black line depicts a trend line 

obtained using linear regression; dotted red lines show 95% confidence interval of the trend line. 
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B.6.1.4 Experiment 4: Engine = MyISAM, Key buffer size =1024M, Database size= 3GB  

 As we can see in Table B.12, energy consumption of all the queries, except queries # 9, 11, 13, 

14, 16, 18 and 22, exhibit moderate to strong positive correlation with LOC,  ranges between 

0.43 and 0.93. Queries # 9, 11, 13, 14, 18 and 22 exhibit none to weak correlation with  ranges 

between -0.14 and 0.39. Query #16 exhibit strong negative correlation with  = - 0.89 (samples 

of the analysis are given in Figure B.26). 

Energy consumption exhibits none or weak correlation with LOCC ( ranges between - 0.31 and 

0.16). The only exception is Query #18, exhibiting moderate negative correlation with  = - 0.42. 

 Correlation between energy consumption and MCC/TCC ranges between weak and 

strong. Energy consumption has strong to moderate positive correlation for queries # 3, 5, 6, 7, 

10, 12, 13, 15, 17, 19, 20, and 21, with  ranging between 0.40 and 0.74. Queries # 1, 2, 4, 8, 9, 

11 and 22 exhibit none to weak correlation;  ranging between -0.19 and 0.39. Queries # 16 and 

18 exhibit moderate to strong negative correlation;  ranging between - 0.79 and - 0.56. 

 

Table B.12: Shows the correlation between the energy consumption and software metrics per each query for 

MyISAM Experiment 4. 
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Figure B.26: MyISAM Experiment3; Subplot A is a scatterplot of query with max LOC against energy; subplot B is 

a scatterplot of query with min LOC against energy; Subplot C a scatterplot of max LOCC against energy; Subplot 

D is a scatterplot of min LOCC against energy; Subplot E is a scatterplot of query with max MCC against energy; 

subplot F is a scatterplot of query with min MCC against energy. On all subplots: black line depicts a trend line 

obtained using linear regression; dotted red lines show 95% confidence interval of the trend line. 
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B.6.2 RQ2: Per-statement Analysis for MyISAM 

At the per-statement level, for MyISAM engine, energy consumption of most queries increases 

with the growth of the code base (measured using LOC); the correlation between these two 

variables is moderate to strong. However, 1 to 2 queries in each experiment exhibit strong 

negative correlation (Table B.13).  

LOCC has weak to no correlation in most of the cases; 1 query showed moderate 

negative correlation in Experiment 4 only. The MCC and TCC both showed weak to strong 

positive correlation in most cases; 2 queries showed moderate to strong negative correlation in 

the four experiments (Table B.13). 

Our discovery of strong negative correlation between software metrics and energy 

consumption of a small number of queries differs from of our per-run findings (discussed in 

Chapter 5). We conjecture that this variability can be explained by the fact that the engine 

executes a small fraction of it’s codebase for each particular query; our metrics, on the other 

hand, were collected for all of the database engine’s code. Therefore, by construction, we cannot 

draw strong conclusions from this analysis. 

Since energy consumption and execution time are perfectly related, these findings apply 

to the correlation between software metrics and execution time as well. 

 

Table B.13: MyISAM; Statistics on negative correlation of software metrics and energy consumption. 

MyISAM: number of queries  having  strong to 

moderate  negative correlation per each experiment 

  LOC LOCC MCC TCC 

Experiment 1 2 0 2 2 

Experiment 2 1 0 2 2 

Experiment 3 2 0 2 2 

Experiment 4 1 1 2 2 
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B.6.3 InnoDB Experiments  

Tables B.14 to B.17 show the correlation between the energy consumption and software metrics 

under study for each individual query for all the four InnoDB experiments. In the following 

sections, we analyze the results of each experiment. 

 

B.6.3.1 Experiment 5: Engine= InnoDB, Key buffer size =256M, Database size= 1GB 

As we can see in Table B.14, energy consumption has weak to strong positive correlation with 

LOC,   ranges between -0.63 and 0.93. Queries # 1, 2, 8, 10, 12, 13, 18, and 20 exhibit 

moderate to strong positive correlation ( ranges between 0.42 and 0.93). Queries # 3, 5, 6, 7, 9, 

11, 14, 15, 16, 17, and 21 exhibit weak to no correlation with   ranges between - 0.25 and 0.39.  

Query #4 exhibit moderate negative correlation with  = - 0.63. These findings are confirmed by 

linear regression analysis (samples of the analysis are given in Figure B.27). 

Energy consumption is weakly correlated (or has no correlation) with LOCC (as per Table B.14); 

  ranges between - 0.18 and 0.22.  

Correlation between energy consumption and MCC/TCC ranges between weak and 

strong. Energy consumption has strong to moderate positive correlation for queries # 2, 3, 8, 10, 

13, 18, and 20,  ranging between 0.41 and 0.78. Queries # 1, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 

and 21 exhibit weak to no correlation,  ranging between -0.29 and 0.32. 

 

 Table B.14: Shows the correlation between the energy consumption and software metrics per each query for 

 InnoDB Experiment 5. 
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Figure B.27: InnoDB Experiment5; Subplot A is a scatterplot of query with max LOC against energy; subplot B is a 

scatterplot of query with min LOC against energy; Subplot C a scatterplot of max LOCC against energy; Subplot D 

is a scatterplot of min LOCC against energy; Subplot E is a scatterplot of query with max MCC against energy; 

subplot F is a scatterplot of query with min MCC against energy. On all subplots: black line depicts a trend line 

obtained using linear regression; dotted red lines show 95% confidence interval of the trend line 
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B.6.3.2 Experiment 6: Engine= InnoDB, Key buffer size =256M, Database size= 3GB  

As we can see in Table B.15, energy consumption exhibit no to strong correlation with LOC. 

Queries # 1, 4, 8, 10, 11, 13, and 15, has moderate to strong positive correlation with  ranges 

between 0.49 and 0.93. Queries # 2, 3, 6, 7, 9, 12, 14, and 16-22, have weak to no correlation:  

ranges between -0.21 and 0.36; Query #5 exhibit moderate negative correlation with = - 0.40. 

(Samples of the analysis are given in Figure B.28). 

Energy consumption exhibit weak correlation with LOCC (except queries # 6 and 7) as 

shown in Table B.15;  ranges between - 0.35 and 0.27. Queries #6 and 7 exhibit moderate 

negative correlation with  ranges between - 0.43 and - 0.42. 

Correlation between energy consumption and MCC/TCC ranges between weak and 

strong. Energy consumption has strong to moderated positive correlation for queries # 10, 11, 

and 13,  ranging between 0.42 and 0.76. Queries #1 - 9, 12, and 14 - 22 exhibit weak to no 

correlation with  ranging between -0.19 and 0.31. 

 

Table B.15: Shows the correlation between the energy consumption and software metrics per each query for InnoDB 

Experiment 6. 
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Figure B.28: InnoDB Experiment 6; Subplot A is a scatterplot of query with max LOC against energy; subplot B is a 

scatterplot of query with min LOC against energy; Subplot C a scatterplot of max LOCC against energy; Subplot D 

is a scatterplot of min LOCC against energy; Subplot E is a scatterplot of query with max MCC against energy; 

subplot F is a scatterplot of query with min MCC against energy. On all subplots: black line depicts a trend line 

obtained using linear regression; dotted red lines show 95% confidence interval of the trend line 
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B.6.3.3 Experiment 7: Engine=InnoDB, Key buffer size=1024M, Database size= 1GB  

 As we can see in Table B.16, energy consumption exhibit strong to moderate correlation with 

LOC. Queries #1, 6, 8, 12, 15, and 20 exhibit strong to moderate positive correlation, ( ranges 

between 0.64 and 0.93. Queries #2, 3, 5, 7, 9, 10, 14, 16, 18, and 21 exhibit weak to no 

correlation,  ranges between and - 0.29 and 0.21. Query #13 exhibit moderate negative 

correlation with = - 0.63. (Samples of the analysis are given in Figure B.29). 

 Energy consumption is weakly correlated (or has no correlation) with LOCC (as per 

Table B.16);  ranges between - 0.30 and 0.18. Correlation between energy consumption and 

MCC/TCC ranges between weak and strong. Energy consumption has strong positive correlation 

for queries #6, 15, and 20, with  ranging between 0.75 and 0.76. Queries #1-3, 5, 7-10, 12-14, 

16, 18, and 21, exhibit moderate to no correlation with  ranging between - 0.38 and 0.40. Query 

#14 exhibit moderate negative correlation with    = - 0.40 in TCC correlation. 

 

Table B.16: Shows the correlation between the energy consumption and software metrics per each query for InnoDB 

Experiment 7. 
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Figure B.29: InnoDB Experiment 7; Subplot A is a scatterplot of query with max LOC against energy; subplot B is a 

scatterplot of query with min LOC against energy; Subplot C a scatterplot of max LOCC against energy; Subplot D 

is a scatterplot of min LOCC against energy; Subplot E is a scatterplot of query with max MCC against energy; 

subplot F is a scatterplot of query with min MCC against energy. On all subplots: black line depicts a trend line 

obtained using linear regression; dotted red lines show 95% confidence interval of the trend line 
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B.6.3.4 Experiment 8: Engine=InnoDB, Key buffer size=1024M, Database size= 3GB  

As we can see in Table B.17, Queries # 1, 4, 5, 8, 10, 11, 13, 15, and 17, exhibit moderate to 

strong correlation between LOC and energy consumed with  ranges between 0.42 and 0.93.  

Queries # 2, 3, 6, 7, 9, 12, 14, 16, and 19 – 22, exhibit weak to no correlation,  ranges between -

0.09 and 0.25; Query #18 exhibit moderate negative correlation with  = - 0.52. Samples of the 

analysis are given in Figure B.30. Energy consumption exhibits none or weak correlation with 

LOCC (as per Table B.17); ranges between -0.30 and 0.33.  

Correlation between energy consumption and MCC/TCC ranges between weak and 

strong. Energy consumption has strong to moderate positive correlation for Queries #10 and 13 

with   ranging between 0.74 and 0.76. The remaining queries, except Query #18, have none or 

weak correlation, with   ranging between -0.36 and 0.34. Query #18 exhibit moderate negative 

correlation with    between -0.66 and -0.65.  

 

Table B.17: Shows the correlation between the energy consumption and software metrics per each query for InnoDB 

Experiment 8. 
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Figure B.30: InnoDB Experiment 7; Subplot A is a scatterplot of query with max LOC against energy; subplot B is a 

scatterplot of query with min LOC against energy; Subplot C a scatterplot of max LOCC against energy; Subplot D 

is a scatterplot of min LOCC against energy; Subplot E is a scatterplot of query with max MCC against energy; 

subplot F is a scatterplot of query with min MCC against energy. On all subplots: black line depicts a trend line 

obtained using linear regression; dotted red lines show 95% confidence interval of the trend line 
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B.6.4 RQ2: Per-statement Analysis for InnoDB 

We showed that energy consumption of the majority of queries in InnoDB experiments has a 

moderate to strong correlation with LOC. However, 1 query showed moderate negative 

correlation in all four experiments (Table B.18). 

  LOCC has weak to no correlation with energy consumption; only Experiment 6 showed 

that 2 queries exhibit moderate negative correlation. MCC and TCC both showed moderate to 

strong correlation with energy consumption; only Experiment 7 and 8 showed that 1 to 2 queries 

exhibit moderate negative correlation (Table B.18). 

Since energy consumption and execution time are perfectly related, the findings also apply to the 

correlation between software metrics and execution time. 

 

Table B.18: InnoDB; Statistics on negative correlation of software metrics and energy consumption. 

InnoDB: number of queries  having  moderate 

negative correlation per each experiment 

  LOC LOCC MCC TCC 

Experiment 5 1 0 0 0 

Experiment 6 1 2 0 0 

Experiment 7 1 0 0 1 

Experiment 8 1 0 1 1 
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