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Abstract 

 

    Head movements, combined with gaze, play a fundamental role in predicting a person’s 

action and intention. In non-constrained head movement settings, the process is complex, 

and performance can degrade significantly in the presence of variation in head-pose, gaze 

position, occlusion and ambient illumination. In this thesis, a framework is therefore 

proposed to fuse and combine head-pose and gaze information to obtain more robust and 

accurate gaze estimation.  

 

    Specific contributions include: the development of a newly developed graph-based model 

for pupil localization and accurate estimation of the pupil center; the proposal of a novel iris 

region descriptor feature using quadtree decomposition, that works together with pupil 

localization for gaze estimation; the proposal of kernel-based extensions and enhancements 

to a fusion mechanism known as Discriminative Multiple Canonical Correlation Analysis 

(DMCCA) for fusing features (proposed and traditional) together, to generate a refined, high 

quality feature set for classification; and the newly developed methodology of  head-pose 

features based on quadtree decompositions and geometrical moments, to better integrate roll, 

yaw, pitch and jawline into the overall estimation framework.   

     

    The experimental results of the proposed framework demonstrate robustness against 
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variations in illumination, occlusion, head-pose and is calibration free.  The proposed 

framework was validated on several datasets and scored: 4.5° using MPII, 4.4° using Cave, 

4.8° using EYEDIAP, 5.0° using ACS, 4.1° using OSLO and 4.5° using UULM  datasets 

respectively.   
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Chapter 1  

1.1 Introduction 

Eye movements is one of many ways to get information about a person’s thoughts and 

intentions [1]. Thus, the study of eye movement may help determine what people are thinking 

based on where they are looking. Eye tracking is the measurement of eye movement/activity 

and gaze (point of regard and understanding a person's interest or intent), while gaze tracking 

is the analysis of eye tracking data with respect to the head/visual scene. Researchers of this 

field often use the terms eye-tracking, gaze-tracking or eye-gaze tracking.  

 

    The integration of eye and head-pose position is used to compute the location of the gaze in 

the visual scene. Simple eye trackers report only the direction of the gaze relative to the head 

(with head-mounted systems, electrodes, scleral coils) or for a fixed position of the eyeball 

(systems which require head fixation). Such eye tracking systems are referred to as intrusive 

or invasive systems because some special contacting devices are attached to the skin or eye to 

catch the user’s gaze. The systems which do not have any physical contact with the user and 

the eye tracker apparatus are referred to as non-intrusive systems or remote systems. Eye 

movement tracking techniques are constructed by either measuring the position of the eyes in 

relation to the head-pose or by measuring the orientation of the eye in space -the point of regard 

(POR) -used to identify fixated elements in a visual scene. In some cases, gaze estimation is 

used in the field of regard (FOR), which is the total area that can be captured by both 

eyes. It should not be confused with the field of view (FOV), which is the angular cone 

perceivable by a person’s eyes at a particular time instant. When a user looks at a 2D 

screen, such as a desktop, the depth is fixed. So, the gaze direction from one eye is sufficient 

to determine a 2D gaze point. However, if we want to get a 3D gaze point, such as looking at 

a point in the real world, we need the depth, see Fig. 1.1. A 2D gaze is defined when obtaining 

(x,y) coordinate of the point of gaze on a screen. However, the depth element, (x,y,z) 

coordinate, gives more data about the other perspective (3D) such as thickness, illumination 

and orientation. 
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Figure 1.1:  Gaze direction and gaze depth [1]. 

 

    The gaze location of a user depends both on the gaze direction and on the head orientation 

[1]. The illustration in Fig 1.2, presents the relationship between user reference gaze 

directions 𝑑𝑘𝑟𝑒𝑓
, head-pose direction 𝑑𝑘 and actual gaze direction 𝑑𝑘𝑔𝑎𝑧𝑒

 which is a result of 

both head and eye rotation. The effect of head movement has to be compensated for prior to 

applying the gaze mapping algorithm.  

 

Figure 1.2: Illustration of the relation between gaze direction and head orientation (head-pose) [1]. 

 

 

    The design of robust and accurate gaze-tracking systems is one of the most important 

objectives in the eye-tracking field. The sensitivity to calibration in traditional gaze 

estimation methods face some challenges: errors in model parameters, noise in pupil center 

estimation, and head fixation errors during calibration. There is a need to attempt to 

determine if subject calibration can be eliminated and there is a need to reduce the amount 

of hardware needed to solve for head-pose and gaze estimation.  
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1.2 Background  
 

The advancement of eye gaze tracking technology has led to the development of head-pose and 

gaze estimation techniques and applications. Invasive eye tracking techniques were introduced, 

which included electro-oculography using pairs of electrodes placed around the eyes or the 

scleral search methods which involved coils embedded into a contact lens adhering to the eyes. 

The first video-based eye gaze tracking study was made on pilots operating airplane controls  

[37]. With increasing computing power in devices, real time operation of eye gaze trackers 

became possible. Rapid advancements in computing speed, digital video processing and low 

cost hardware brought eye gaze tracking equipment closer to users, with applications in 

gaming, virtual reality and web-advertisements [38,39]. As discussed earlier, gaze estimation 

is concerned with tracking the eyes (iris/pupil) along with head orientation (head-pose). 

 

    The pupil is one of the darkest areas in the eye region, characterized by its high pixel intensity 

compared to the surrounding area (eyebrows, eyelashes etc.). The pixel intensity-based 

approach can effectively locate the pupil center and requires low computational complexity. 

The intensity values of the pixels in the eye image range from 0 to 255, where 255 represents 

the highest intensity (black pixels) and 0 represents the lowest intensity (white pixels). The 

target pixel (the pupil center pixel) has a high intensity value. The pupil center pixel is 

identified by contrasting intensity between the different areas of the eye region, with the center 

of the pupil hypothesized to have the highest pixel intensity. Identifying the pupil center is a 

step towards eye gaze estimation, which plays an essential role in human-computer interaction 

(HCI). Gaze tracking has a variety of applications. For example, gaze tracking can be utilized 

to detect distracted drivers. A comprehensive survey of the earlier works can be found in [40] 

and [41]. However, it is difficult to localize the pupil center for the cases in which the pupil is 

partially covered by the upper and lower eyelids. Soelistio et al. analyzed each part of the face 

separately, including the pupil center [42]. Lu et al. located the center of gaze by mapping high-

dimensional eye image features to low-dimensional gaze position, and then used an adaptive 

linear regression (ALR) for testing [43]. Leo et al. proposed an unsupervised eye pupil 

localization technique using differential geometry and local self-similarity matching [45]. 

Pupil/iris localization is an essential step towards eye movements and gaze estimation. Eye 

movements are analyzed as cognitive indicators of visual attention and thought process of a 
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person [45]. The diversion of attention or lack of focus is accounted for in the eye movements 

or gaze.  

 

1.3 Methods of Eye Gaze Tracking 

 

Video-based eye gaze tracking systems comprised fundamentally of one or more digital 

cameras, near infra-red camera and a computer with a screen displaying a user interface where 

the user gaze is tracked. The steps commonly involved in passive video-based eye tracking 

include user calibration, capturing video frames of the face and eye regions of the users, eye 

detection and mapping with gaze coordinates on screen. The user interface for gaze tracking 

can be active or passive, single or multimodal [46,47]. In an active user interface, the user’s 

gaze can be tracked to activate a function and gaze information can be used as an input 

modality. A passive interface is a non-command interface where eye gaze data is collected to 

understand user’s interest or attention. Single modal gaze tracking interfaces use gaze as the 

only input variable whereas a multimodal interface combines gaze input along with mouse, 

keyboard, touch, or blink inputs for command.  

 

    An example of devices used in the market for eye gaze tracking is shown in Fig. 1.3. These 

devices may include a chin-rest to fix head movement  (Fig. 2.1.a), head mounted video-based 

eye gaze tracker (Fig. 2.1.b), a scleral ring used as a contact lens coil (Fig. 2.1.c ) or using 

electrodes placed around the eye to measure the skin’s potential differences (Fig. 2.1.d). 
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(a) Head-fixed set-up (using chin-rest) to provide 

accuracy in object’s eye gaze tracking 

estimation. 

 

(b) Head mounted video-based eye gaze tracker, 

suitable to graphical interactive systems. 

 

 

(c) Scleral ring used as a contact lens coil, which 

tracks gaze movements.            

 

(d) Electro-oculography relies on measurement of skin’s 

differences, using electros placed around the eye.  

Figure 1.3: Examples of devices used in the market for eye gaze tracking [46,47]. 

 
 

    The first step is to detect the eye location in the image. Based on the information obtained 

from the eye region and possibly head-pose, the direction of gaze can be estimated. The most 

important parts of the human eye are: the pupil – the aperture that lets light into the eye, the 

iris – the colored muscle group that controls the diameter of the pupil and the sclera – the 

white protective tissue that covers the remainder of the eye. Eye gaze detection and tracking 

remains a very challenging task due to several unique issues, including illumination, viewing 

angle, occlusion of the eye, head-pose etc. Two types of imaging processes are commonly 

used in eye gaze tracking: visible and infrared spectrum imaging. Infrared eye gaze tracking 

typically utilizes either bright pupil or dark pupil technique [47]. In this thesis, we focus on 

gaze estimation methods based on analysis of the image data. These methods are broadly 

grouped into feature-based and appearance-based gaze estimation. 

 

 

 

 
 

Electrodes around the eye  
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1.3.1 Feature-based Gaze Estimation 

 

Feature-based methods explore the characteristics of the human eye to identify a set of 

distinctive features of the eyes like contours (limbus and pupil contour), eye comers and 

cornea reflections. The aim of feature-based methods is to identify informative local features 

of the eye that are generally less sensitive to variations in illumination and viewpoint [48]. 

These systems have performance issues in the outdoors or under strong ambient light. In 

addition, the accuracy of gaze estimation decreases when accurate iris and pupil features are 

not available. There are two types of feature-based approaches that exist [49]: model-based 

(geometric) and interpolation-based (regression-based). 

 

1.3.1.1 Model-based approaches 

 

Model-based approaches use an explicit geometric model of the eye to estimate 3D gaze 

direction vector. Most 3D model-based (or geometric) approaches rely on metric information 

and thus require camera calibration and a global geometric model (external to the eye) of 

light sources, camera and monitor position and orientation. Most of the model-based methods 

follow a common strategy; first the optical axis of the eye is reconstructed in 3D, then the 

visual axis is reconstructed and finally, the point of gaze is estimated by intersecting the 

visual axis with the scene geometry. Reconstruction of the optical axis is done by estimation 

of the cornea and pupil center. By defining the gaze direction vector and integrating it with 

information about the objects in the scene, the point of gaze is estimated [49]. For 3D model-

based approaches, gaze directions are estimated as a vector from the eyeball center to the iris 

center [46,50,51,52]. 

 

1.3.1.2 Interpolation-based approaches 

 

Interpolation-based methods assume the mapping from image features to gaze co-ordinates 

(2D or 3D) have a particular parametric form such as a polynomial or a nonparametric form 

as in neural networks. Since the use of a simple linear mapping function in the first video-

based eye tracker [53], polynomial expressions have become one of the most popular 

mapping techniques [47,54,55]. Interpolation-based methods avoid explicitly modeling the 

geometry and physiology of the human eye but instead describe the gazed point as a generic 

function of image features. Calibration data are used to calculate the unknown coefficients 
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of the mapping function by means of a numerical fitting process, such as multiple linear 

regressions. As an alternative to parametric expressions, neural network-based eye gaze 

trackers [56,57,58] assume a nonparametric form to implement the mapping from image 

features to gaze coordinates. In these approaches, the gaze tracking is done by extracting the 

coordinates of certain facial points and sending them through a trained neural network, its 

output is the coordinates of the point where the user is looking. 

 

1.3.2  Appearance-based Gaze Estimation 

 

Appearance-based methods detect and track eyes directly based on the photometric 

appearance. Appearance-based techniques use image content to estimate gaze direction by 

mapping image data to screen coordinates [59,60]. The major appearance-based methods 

[61] are based on morphable model [62], gray scale unit images [52], appearance manifold 

[63], Gaussian interpolation [64] and cross-ratio [65]. Appearance-based methods typically 

do not require calibration of cameras and geometry data since the mapping is made directly 

on the image contents. 

 

1.4 Applications  

 

Eye gaze estimation has a wide range of applications. Examples of such applications are listed 

below. 
 
 

1.4.1 Eye tracking used in the applications of drowsiness detection 
 

Drowsiness is the transition between an alert, awake state and sleep during which one’s abilities 

to observe and analyze are substantially reduced. The authors in [23] present an algorithm for 

drivers’ drowsiness detection based on visual signs that can be extracted from the analysis of a 

high frame rate video. A study of different visual features is proposed to evaluate their 

relevance to detect drowsiness by data-mining. Then, an algorithm that merges the most 

relevant blink features (duration, percentage of eye closure, frequency of the blinks and 

amplitude-velocity ratio) using fuzzy logic is employed. 
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1.4.2 Iris recognition and enhancement for biometric applications  
 

In many images, the iris is often occluded by the eyelid and partially by the eyelashes. If these 

noises cannot be removed, this negatively impacts the performance of the iris recognition 

system. Similarly, low contrast and non-uniform brightness will also increase the difficulty of 

feature extraction and matching [24].  

 

1.4.3 Eye typing for physically disabled individuals 

 

Eye typing provides a means of communication for persons with severe disabilities, and those 

who are only capable of moving their eyes. The authors in [25] consider the features, 

functionality and methods used in the eye typing systems developed in the literature.  

 

 

 1.4.4 Cognitive and behavioral therapy 
 

The authors in [26] present a study that aims to evaluate the efficiency and flexibility of virtual 

reality as a therapeutic tool in the confines of a social phobia behavioral therapeutic program. 

The study’s goal is to use the confines of virtual exposure to objectively evaluate a specific 

parameter present in social phobia, namely eye contact avoidance, by using an eye-tracking 

system.  

 

1.4.5 Visual search/ marketing/advertising 

 

Familiarity with the distractors around an unfamiliar target facilitates visual search. Four 

experiments are examined in [27]: (a) shorter and fewer, (b) shorter, but more abundant, (c) 

equally long, but fewer, or (d) longer, but fewer when distractors are familiar. In a fifth 

experiment, a gaze-contingent moving window paradigm is used to control peripheral 

processing. Results reveal a wider span of effective processing for familiar distractors.  

 

 

1.4.6 Psychology and Neuroscience 
 

During normal vision, when subjects attempt to fix their gaze on a small stimulus feature, small 

fixational eye movements persist. The authors in [28] recorded the impulse activity of single 

neurons in primary visual cortex while the individual’s fixational eye movements moved over 

and around a stationary stimulus.  



 

9 

 

 
 

    Recent studies of eye movements in reading and other information processing tasks, such as 

music reading, typing, visual search, and scene perception, are reviewed in [29]. The major 

emphasis of their review is on reading as a specific example of cognitive processing. Basic 

topics discussed with respect to reading are (a) the characteristics of eye movements, (b) the 

perceptual span, (c) eye movement control, and (e) individual differences (including dyslexia). 

Similar topics are discussed with respect to the other tasks examined. The basic theme of their 

review is that eye movement data reflect moment-to-moment cognitive processes in the various 

tasks examined.  

    The mind can track not only the changing locations of moving object, but also can predict 

the next move of the object.  By tracking the movement of a ball for instance, gaze locations 

can be continuously recorded with a video-based eye tracker and we can make predictive 

saccades to the locations where we expect the ball to land. 

 

 

1.4.7 Human Computer Interaction (HCI) 
 

An eye tracking study was conducted in [28] to evaluate specific design features for a prototype 

web portal application. Each participant navigated across multiple web pages while conducting 

six specific tasks, such as removing a link from a portlet. Specific experimental questions 

included (1) whether eye tracking-derived parameters were related to page sequence or user 

actions preceding page visits, (2) whether users were biased to traveling vertically or 

horizontally while viewing a web page, and (3) whether specific sub-features of portlets were 

visited in any particular order.  

 

1.4.8 Gaze-Mind Connection 

 

 
Figure 1.4: The Eyes-Mind Relationship. the relationship between eyes and the brain starts in the first days of 

life [30]. 
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Sight is so crucial that a main part of the brain is dedicated to vision and seeing, see Fig. 1.4. 

Conventional medicine shows that specific eye movement patterns may relate to mental health 

conditions. Moreover, certain existing literature suggests that mental health conditions 

involving attention (such as ADHD, dyslexia and anxiety) are accompanied by increases in 

erratic eye movements [30].  

 

    Consciousness experimentation suggests that eyes and breathing patterns directly influence 

one’s mental and emotional state. It is easier to analyze and measure eye movements and 

breathing levels, rather than brain activity [30] . 

 

    Scholars in the field of psychology are developing theories and methodologies based on the 

same principle; focusing one’s eyes allows for focusing one’s mind. One of the theories is 

EMDR (Eye Movement Desensitization and Reprocessing), which is a modality for treating 

trauma. Mental and emotional states affect eye movements. They can also affect the mind, and 

even manage trauma, by doing certain practices with the eyes [30]. 

 

    The eyes and eyelids are constantly making small, subtle movements, to make sure that the 

image falling onto the retina is constantly changing (this is called Troxler’s Phenomenon). The 

eyes do this so that the object in one’s field of vision continues being registered by the brain; 

otherwise, by constantly staring at an object for long enough, it tends to disappear from one’s 

perception. In fact, the eyes can focus on multiple things every second. In today’s modern 

world, the eyes are restless more than ever with the intensive use of computer and smartphones, 

which may be contributing to shorter attention spans. By stilling the micro movement of the 

eyes, it is argued that stilling of the mind could occur [30].  

 

    Neuropsychology research shows that there is a definite relationship between eye position 

and the dominant hemisphere of the brain; so much so that changing eye position can directly 

affect one’s mood and experience of the world. The left hemisphere is activated when the eyes 

gaze to the right, and the opposite is true. It is reasonable to assume that holding a perfectly 

centered and forward gaze produces a balanced brain activity in both hemispheres. 

 



 

11 

 

   The relevance of this observation can explain the importance of activating the whole brain 

by holding a central gaze; a practice commonly used in meditation [30]. Gaze meditation 

technique involves focusing the eyes (and, in turn, the mind) through intent but relaxed gazing. 

Initially, this practice is done with open eyes on an external object. It then progresses to internal 

practice (with eyes closed), and to gazing in to space.  

 

    Gaze meditation may contribute to the following benefits [30]: improving concentration, 

memory, visualization skills, cognitive function, symptoms of some eye diseases, 

strengthening the eyes, eye clarity, insomnia, clearing mental/emotional complexes, calming 

the anxious mind and enhancing self-confidence and patience. 

 
 

1.5  Motivation and Challenges 

 
Figure 1.5: Illustrates variations of head-pose angles, illumination and gaze positions [6]. 

 

An individual’s visual gaze is important in many applications in human computer interaction 

(HCI) and human behavioral analysis [1]. An example of variations of head-pose angles, 

illumination and gaze positions is presented in Fig. 1.5. In applications where human activity 

is under observation from a fixed camera, the estimation of visual gaze provides important 

information about the interest and intent of the subject, which is commonly used as control 

devices for persons with disabilities [2,3], to analyze the individual’s attention while 

driving [4,5] or for videogame applications. Studies have shown that visual gaze is a 

field of two contributing factors [6]: the head-pose and the eye locations. The estimation of 

these two factors is often achieved using expensive, bulky or limiting hardware [7]. 

Therefore, the problem is simplified by either considering the head-pose or the eye center 

https://www.researchgate.net/publication/221515781_Gaze_beats_mouse_hands-free_selection_by_combining_gaze_and_emg?el=1_x_8&enrichId=rgreq-f0f2c767e309256d19ea486c7da02310-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkzMjIxMDtBUzoxMDY0NDk3MjQyNDgwNzVAMTQwMjM5MTAwMDM3Mg==
https://www.researchgate.net/publication/221515781_Gaze_beats_mouse_hands-free_selection_by_combining_gaze_and_emg?el=1_x_8&enrichId=rgreq-f0f2c767e309256d19ea486c7da02310-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkzMjIxMDtBUzoxMDY0NDk3MjQyNDgwNzVAMTQwMjM5MTAwMDM3Mg==
https://www.researchgate.net/publication/221515781_Gaze_beats_mouse_hands-free_selection_by_combining_gaze_and_emg?el=1_x_8&enrichId=rgreq-f0f2c767e309256d19ea486c7da02310-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkzMjIxMDtBUzoxMDY0NDk3MjQyNDgwNzVAMTQwMjM5MTAwMDM3Mg==
https://www.researchgate.net/publication/221515781_Gaze_beats_mouse_hands-free_selection_by_combining_gaze_and_emg?el=1_x_8&enrichId=rgreq-f0f2c767e309256d19ea486c7da02310-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkzMjIxMDtBUzoxMDY0NDk3MjQyNDgwNzVAMTQwMjM5MTAwMDM3Mg==
https://www.researchgate.net/publication/224567409_On_the_Roles_of_Eye_Gaze_and_Head_Dynamics_in_Predicting_Driver's_Intent_to_Change_Lanes?el=1_x_8&enrichId=rgreq-f0f2c767e309256d19ea486c7da02310-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkzMjIxMDtBUzoxMDY0NDk3MjQyNDgwNzVAMTQwMjM5MTAwMDM3Mg==
https://www.researchgate.net/publication/224567409_On_the_Roles_of_Eye_Gaze_and_Head_Dynamics_in_Predicting_Driver's_Intent_to_Change_Lanes?el=1_x_8&enrichId=rgreq-f0f2c767e309256d19ea486c7da02310-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkzMjIxMDtBUzoxMDY0NDk3MjQyNDgwNzVAMTQwMjM5MTAwMDM3Mg==
https://www.researchgate.net/publication/8220997_The_influence_of_head_contour_and_nose_angle_on_the_perception_of_eye-gaze_direction?el=1_x_8&enrichId=rgreq-f0f2c767e309256d19ea486c7da02310-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkzMjIxMDtBUzoxMDY0NDk3MjQyNDgwNzVAMTQwMjM5MTAwMDM3Mg==
https://www.researchgate.net/publication/8220997_The_influence_of_head_contour_and_nose_angle_on_the_perception_of_eye-gaze_direction?el=1_x_8&enrichId=rgreq-f0f2c767e309256d19ea486c7da02310-XXX&enrichSource=Y292ZXJQYWdlOzIyMDkzMjIxMDtBUzoxMDY0NDk3MjQyNDgwNzVAMTQwMjM5MTAwMDM3Mg==
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locations as the only feature to understand the gaze intention of a user [8,9]. There is an 

abundance of literature concerning these two distinct topics: recent surveys on head-pose and 

eye center location estimation can be found in [10] and [11]. There are two commonly 

researched fields for head-pose and gaze estimation: appearance-based and geometrical-

based methods. The appearance-based methods for eye location proposed in literature, 

[12,13,14,15], present evidence that accurate appearance-based eye center localization can 

be used for various gaze related applications. However, we are concerned with studies 

performed on the feasibility of an accurate appearance-based visual gaze estimation which 

considers both head-pose and eye location. Therefore, the goal is to build a framework 

capable of analyzing the visual gaze of an individual starting from video frames or 

images. This allows for the analysis of the movement of the individual’s head and eyes in a 

more natural manner than traditional methods, as there are no additional hardware 

requirements needed to implement the framework.  

 

    The eye location and eye center algorithms found in commercially available eye trackers 

share the problem of sensitivity to head-pose variations and require the individual to be either 

equipped with a head-mounted device or to use a high-resolution camera combined with a 

chin rest to limit head movement, as shown in Fig. 1.6.   

 

Figure 1.6: Eye gaze applications in various platforms of eye tracking setups (from left to right): head-mounted 

eye tracker, participant using a desktop with camera, PC with an eye tracker using chinrest, tablet [10,11].  

 

    Appearance-based methods that make use of standard low-resolution cameras are 

considered to be less invasive and, thus, more desirable in a large range of applications. In 

[16], an online tracking algorithm employing adaptive view-based appearance models is 

proposed. The method provides drift-free tracking by maintaining a dynamic set of 

keyframes with views of the head under various poses and registering the current frame to 

the previous frames and keyframes. 

 

    Within geometrical-based methods, studies in the literature propose to integrate a skin-
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tone edge-based detector into a Kalman-filter-based robust head-pose tracker and hidden-

Markov-model-based pose estimator [17]. Hu et al. described a coarse-to-fine head-pose 

estimation method by combining facial appearance asymmetry and 3D head model [18]. A 

generic 3D face model and an ellipsoidal head model are utilized in [19]. 

 

    A number of studies that focus on combining head-pose and eye information for gaze 

estimation are available in literature. Newman and Matsumoto [20] and Matsumoto et al. 

[21] consider a tracking scenario equipped with stereo cameras and employ 2D feature 

tracking and 3D model fitting. The work proposed in [22] describes a real-time eye gaze, and 

head-pose tracker for monitoring driver’s attention. The authors use IR (infrared) 

illumination to detect the pupils and derive the head-pose by building a feature space from 

them.  Most of these gaze estimation methods usually regress gaze directions directly from a 

single face or eye image. However, due to important variabilities in eye shapes and inner eye 

structures amongst individuals, these methods obtain limited accuracies and their output 

usually exhibit high variance as well as biases which are subject dependent. Therefore, 

increasing accuracy is usually done through calibration. 

 

    A novel multi-information head-pose and gaze estimation framework are the aim of this 

thesis and the motivations are the following:  

1) Rather than combining different features/techniques (as proposed in literature) through a 

sequential combination, we propose a framework that fuses and combines appearance-based 

and geometrical-based features for head-pose and gaze estimation. 

2) The fused multi features are constructed in parallel and not in sequence.  

3) In this thesis, the normal working range of the gaze location is extended. The short-

comings of the reported eye locators due to extreme head-pose are considered and analyzed.  

4) The head-pose and eye location information are used together in a multi information gaze 

estimation framework, which uses the eyes to adjust the gaze location whilst considering the 

head-pose.  

4) Developing an affordable, reliable and non-intrusive eye estimation framework, which 

requires minimum hardware (a single camera). 

 
 
    The formulation of human head-pose and gaze is a challenging problem in computer vision 



 

14 

 

and image processing. It is desirable because the head-pose and gaze position provide 

necessary information about communicative intent, noticeable regions in a scene based on 

focus of attention, group detection, crowd behavioral dynamics and tracking [33], and variance 

detection, leading to the joint analysis (fusion) of multimodal/multi-view information.  

 

    Although many attempts have been made to improve information fusion techniques, it is still 

a challenging field for several reasons. The majority of these reasons arise from the data to be 

fused, imperfection and diversity of the camera technologies, and the nature of the application 

environment. Data relevance, conflicting data, data correlation, data dimensionality and data 

imperfection (data provided by cameras) are all issues that may influence and pose challenges 

while processing data [34,35]. 

 

    While many of the above-mentioned problems have been identified and actively 

investigated, no existing information fusion algorithm is capable of addressing all these 

problems at once. Furthermore, constructing new features to replace existing features in 

literature is a complex process.   

 

    Although intuition indicates that fusion of multi-feature data should help in many 

information processing tasks, this is not always true. The major difficulties lay in the design of 

a fusion system that can effectively correlate the information presented in different features. 

 

    It is important for a fusion method to be able to identify the discriminatory representation 

amongst different features [36]. In addition, multi-feature data may carry redundant or even 

contradictory information.  

   Occlusions such as facial hair, bangs, eyelids occluding the iris, accessories like glasses 

and/or low resolution make the estimation computationally difficult and complex.  

 

    In summary, we address these problems by presenting the framework and implementation 

of a new technique that:  

- exploits high and low resolution images as well as multiple imaging modalities, i.e. RGB 

and depth where possible;  

- presents alternative state of the art features that results in higher classification accuracy. 
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    Although many investigations have been carried out to address these challenges, the 

performance of information fusion systems are still not satisfactory. To obtain good multi-

feature fusion performance, this thesis focuses on developing a novel framework to tackle 

the above-mentioned challenges. 

 

1.6 Objective 

Enhancing gaze estimation, in terms of accuracy and head movement tolerance, is one of the 

most cited objectives in gaze estimation technology. Appearance-based and geometry-based 

methods investigate gaze estimation models that allow for free head movement and that are 

based on mathematical and geometrical principles.  

 

    An example of typical gaze and head-pose estimation is shown in Fig. 1.7 presenting a 

system that locates the face and eye positions, then applying a modified appearance-based 

technique for face and eye detection [31]. Another example of a head-pose and gaze 

estimation is presented in [32], which shows the whole training and estimation pipeline of 

their system using multimodal convolutional neural networks for appearance-based gaze 

estimation. 

 

 
Figure 1.7: Gaze estimation system overview, presenting a 

system that locates the face and rough eye positions, then 

applying a modified appearance-based technique for face and 

eye detection [31]. 

      

    This thesis is concerned with exploring and finding new features that are more robust and 

accurate than the existing methods in literature. Figure 1.8 illustrates the general block 
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diagram of the proposed framework, which shows multiple proposed features are fused 

together for improved classification.  

 

Figure.1.8: The general block diagram of the proposed framework for robust gaze and head-pose estimation. 
It shows multiple proposed features are fused together for improved classification. 

 

    The design of robust and high-performance gaze-tracking systems is one of the most 

important objectives in the eye-tracking field. In general, a calibration procedure is needed 

to learn system parameters and to be able to estimate the gaze direction accurately. In this 

thesis, we attempt to determine if subject calibration can be eliminated. A geometric analysis 

of a gaze-tracking system is conducted to identify user calibration requirements. This thesis 

determines the minimal number hardware and user calibration points needed to solve for 

head-pose and gaze estimation.  

 

    The proposed framework is designed to enhance the accuracy of head-pose and gaze 

estimation, for its application in real life settings. Furthermore, the proposed framework 

considerably extends its operating range by overcoming the problems introduced by 

variations of head-pose, occlusion and illumination. 
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1.7 Contributions 

 
We have identified a gap in the field of unconstrained head-pose and gaze estimation in 

medium and low resolution images, which we address in this thesis. Each chapter not only 

presents its own contribution but builds on the previous. However, a high-level overview of 

the main contributions is as follows:    

- We first develop a state of the art graph-based model approach for pupil localization 

and accurate estimation of the pupil center; a crucial step towards gaze estimation.   

- We then employ the pupil localization feature along with another newly developed 

state of the art iris region descriptor feature using quadtree decomposition, both of 

which are used for gaze estimation.  

- We then fuse and combine these two features with existing head-pose estimation 

features in literature. In addition, we enhance the performance of DMCCA with the 

kernel (K-DMCCA) for the purpose of feature fusion, then employed a classifier 

to provide accurate classification. 

- We further develop the framework by replacing the existing head-pose features used 

in literature with newly developed features (to estimate roll, yaw & pitch and jawline) 

through the development of quadtree decomposition and the employment of 

geometrical moments.   

 

1.8 Thesis Organization 

 
This thesis flows from one chapter to the next to narrate the stages taken to complete the 

structure of the proposed framework.  Each chapter will present its own proposed approach, 

the reason behind the choice and the theory. While identifying its own contribution at its 

respective stage, each chapter also outlines its contribution towards the thesis as a whole. 

Each chapter is built is on the previous by extending it and preparing it for the next.   

 

    Chapter 2 introduces related work, feature extraction methods/approaches, estimation 

approaches and fusion.  

 

    Chapter 3 presents pupil localization for gaze estimation using an unsupervised graph-

based model. We have developed this state of the art feature to estimate the pupil center; an 
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important step towards gaze estimation.  

 

    Chapter 4 presents discriminative robust gaze estimation using Kernel-DMCCA fusion. 

We employ the feature produced by chapter 3, and by developing a new state of the art feature 

(iris region descriptor using quadtree) and employing other existing features in literature, we 

are able to accurately estimate the head-pose and gaze.    

 

    Chapter 5 presents robust classifications for head-pose and gaze estimation using quadtree 

decomposition and geometrical moments. This chapter investigates an alternative state of the 

art methodology to replace the existing features in literature that were used in chapter 4. This 

is achieved by extending the region descriptor feature using quadtree which was presented in 

the previous chapter and developing it further to structure state of the art features, for the 

purpose of achieving more accurate head-pose and gaze estimation. 

 

    Finally,, Chapter 6 draws conclusions. 
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Chapter 2 

 

 

2.1 Related Work 
 

A comprehensive survey of gaze and head-pose estimation in the field of computer vision and 

its applications is summarized in [45]. Recent appearance-based methods have considered gaze 

estimation in everyday scenarios, which account for different light illumination and head-pose 

[66]. They do not use the whole face but rather only use image information from one or both 

eyes. Gaze estimation methods in [67] only study 2D gaze estimation.  

    Gaze estimation has a wide range of potential applications on tablets, smart phones and 

hands-free human devices [68]. Cost-effective hardware and gaze tracking are common in 

gaming, AR/VR and online-advertisements [69]. An eye-tracker called GazeCapture is 

proposed in [70], which uses a large dataset to train a deep convolutional neural network (CNN) 

for gaze prediction.  

 

    Gaze estimation for identifying points or regions in the real-world consists of many 

parameters, such as head-pose measured by the angles of the complete facial features [71]. 

Canonical correlational analysis (CCA) and discriminative multiple CCA (DMCCA) are data 

driven frameworks for studying the correlation of two or more features [72,73], for efficiently 

combining a diverse range of free parameters.  

 

    Both appearance-based and geometric-based models have been investigated in related 

studies. Several geometrical-based methods are considered, such as deriving equations to solve 

for the 3D eyeball center, the 3D pupil center and the 3D visual axis using the tracked facial 

feature points [74].   

 

    Another geometrical-based approach was investigated in [75], where a transformation 

matrix is obtained from the head-pose and by using the location of both eyes and head 

information to estimate the gaze. Also, researchers in [76] developed a model-based gaze 

estimation by eye localization using cascade classifiers and a shape-based approach, limbus 
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ellipse fitting to identify the 2D limbus positions and point-of-gaze estimation using limbus 

back projection and gaze smoothing.  

 

    Examples of appearance-based methods and training data are as follows: using neural 

network based gaze tracking to determine the position of a user’s gaze from the appearance of 

the user's eye [77], employing an appearance manifold model using the original set of sparse 

appearance samples and using linear interpolation among a small subset of samples to 

approximate the nearest manifold point [78], mapping images to continuous output spaces 

using Bayesian learning techniques and sparse Gaussian process regression model [79], using 

single-directional flow model to handle eye image variations due to head motion [80], 

capturing the user’s head-pose and eye images with a monocular camera where samples are 

adaptively clustered according to the estimated head-pose [81] and by using a 3D rectification 

process that renders head-pose dependent eye images into a canonical viewpoint to compute 

the line-of-sight in the 3D space [82].  

 

    Gaze estimation is related to head-pose estimation and recent methods have included 

different head-pose estimations [77,79,81,83]. CNN is used for classification and a regression 

for gaze estimation with spatial encoding, accommodating various regions [77]. The method 

used in [84] aims to solve the appearance-based gaze estimation problem under free head-pose, 

while the approach in [85] presents a novel learning-based method for eye region landmark 

localization using an appearance-based method.  

 

    Adaptive Linear Regression (ALR) is another methodology that uses sparse training samples 

and L1 optimization; it is aimed at reducing training samples and improving the accuracy of 

estimation [86]. In the field of gaze estimation, the eye is the region of interest (ROI). A method 

to capture ROI is based on the maxima of the derivative and a model-fitting for the ellipse, 

which includes shape analysis for detecting the iris edges [66].  

 

    Gaze estimation depends on the angular precision of the head-pose, thus, roll, yaw and pitch 

provide 3-degrees-of-freedom to improve the accuracy. Roll is the actual rotation of the head 

in the frontal plane, yaw is the side to side movement and pitch is along the longitudinal axis 

of motion.   
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   Generally, head-pose or orientation is based on the symmetrical metrics with three reference 

planes namely frontal, transverse and sagittal planes. Quadtree decomposition analysis is 

discussed in literature, however, has not been introduced to the field of head-pose and gaze 

estimation or to localize the feature in terms of face symmetry. A full face quadtree 

decomposition may provide a boundary sketch of the image for calculating the angles such as 

roll, yaw and pitch, based on focus points. We can further analyze the symmetry and rotation 

aspects of the head-pose using these angles. Considering bilateral symmetry of humans, 

symmetry can be estimated with full facial features [87]. Potential application of gaze and 

symmetry analysis is used to detect the behavioral significance in HCI [87].  

 

    CNN-based estimation significantly addresses everyday gaze interactions such as head-pose 

alignments and person independent issues [80]. Portable devices with user experience 

application testing for enhancing features and content on the screen is becoming very 

proficient. In immersive environments such as virtual reality (VR) and augmented reality (AR) 

with digital projections gaze and eye tracking is extremely realistic. Gaze tracking has become 

common in gaming, AR/VR and online-advertisements [80] due to the advancements in digital 

signal processing speed and the affordability of cost-effective hardware.  

 

2.1.1 Engineered Features 

As will be illustrated throughout this thesis, the proposed framework consists of 

engineered/designed features. The methods in 2.1.1.1 and 2.1.1.2 are employed and explained 

below. 

 

2.1.1.1 Local Binary Patterns (LBP) 

Local Binary Patterns (LBP) is commonly used in texture analysis and face recognition 

applications for identification or classification, and it is employed in this thesis to structure 

features. The LBP technique uses labeling of pixel intensity in the surrounding neighborhood 

reducing the pixels to a 1 or a 0 [88]. By using a threshold value, the LBP is created using 

uniform or non-uniform patterns [88].  The LBP creation is done based on directional wavelet 

decomposition and creating a quadtree for identifying the directional coefficients [88], hence, 

coupling two sets of operations for operating on multi-region based sub-bands of coefficients. 

Another algorithm, where quadtree is representing an image or is used to represent an object 
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and eigen-decomposition is investigated in [89]. This algorithm is tested with objects without 

occlusions [89], their work relies on training sample accuracy and is unable to detect occlusion 

or background clutter. Thus, using recursive normalization of quadtree may help overcoming 

the object detection with reasonable occlusions.  

 

2.1.1.2 Graph model-based information fusion 

 

The graph model combines calculation with graph theory to provide a better tool for structuring 

features. The graph-based model is employed in this thesis for the purpose of pupil localization. 

With the help of multi-scale analysis, undirected graph is widely used in scene segmentation, 

video content analysis, text semantic understanding and so on. Segmentation, detection and 

tracking of human motion in video are based on the Markov field model. Graph estimation 

based on grouping/fusion is used to retrieve missing features in multi-channel information, 

classification of text, video and audio.  

 

2.1.2 Learned Features: Neural network model for multimodal information fusion 

 

The convolutional neural network model has good performance in nonlinear function fitting. 

The neural networks with deep structure are widely used in speech recognition, man-machine 

dialogue, machine translation, semantic understanding, object recognition, gesture detection 

and tracking, human body detection and gaze estimation and tracking. In this thesis, we are 

comparing the performance of our framework with methods that used Neural network models. 

 

2.1.3 Fusion Methods 

This thesis is concerned with fusing multiple features of various information and sizes. Starting 

from Canonical Correlation Analysis method to Multiple Canonical Correlation Analysis then 

employing Discriminative Multiple Canonical Correlation Analysis. Therefore, it was worth 

studying some of the available fusion methods which exist in literature. Below is a list of some 

fusion methods.  
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2.1.3.1 Multi-modal information fusion methods 

 

Multi-information analysis is becoming an increasingly important 

research topic in the field of multimedia. Various types of information channels exist in multi-

information interaction. Although, the information acquisition and storage methods of these 

channels are different, they share some common characteristics in information processing. 

Starting from single channel information, then progressing towards the processing of 

multimodal information to developing a framework of multi-modal information fusion. Some 

of the multi-information fusion methods are presented below [90]: 

 

2.1.3.2 Multiple Canonical Correlation Analysis for Information Fusion 

 

Multi-modal information fusion refers to a process which attempts to achieve more reliable and 

robust analysis performance by integrating a set of multiple data sources, extracted features, 

and intermediate decisions. Multi-feature fusion is a special case of multimodal fusion. In 

multi-feature fusion, different sets of features are extracted from the same modality data but 

using different extraction methods and it is likely to carry richer information. Therefore, the 

fusion of the multi-featured sets could lead to better estimation results. 

 

    Canonical correlation analysis (CCA) is a statistical method dealing with the mutual 

relationship between two random information vectors, and a valuable multi information 

processing method [91,92,93]. However, the effective implementation of multi-information is 

a challenging problem, when extracting complementary and discriminatory features from 

different sources. The authors in [73] addressed these challenges, by introducing 

Discriminative Multiple Canonical Correlation Analysis (DMCCA) as an information fusion  

framework. DMCCA is capable of simultaneously maximizing the within-class correlation and 

minimizing the between-class correlation, revealing the intrinsic structure and complementary 

representations from different modalities to improve the performance, leading to better 

correlation of the multimodal information.  
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    The DMCCA is formulated as the following optimization problem: 

Using canonical correlation analysis (CCA) with two vectors represented as 𝑋 = 𝑤1
𝑇. 𝑥 and 

𝑌 = 𝑤2
𝑇.𝑦, where 𝑤 = [𝑤1

𝑇,𝑤2
𝑇]𝑇are the projections or solutions of the problem formulated 

as: 

𝑎𝑟𝑔 max
𝑤1𝑤2

𝜇 =  𝑤1
𝑇𝑅𝑋𝑌𝑤2                                   (2.1) (3.4) 

𝑅𝑋𝑌 is the cross-correlation matrices given as 𝑋𝑌𝑇. 

     

Generalizing for a DMCCA, with N set of mapping features X=[𝑥1,𝑥2, 𝑥3,… . 𝑥𝑁 ], find 

solutions in the form 𝑤𝑇 = [𝑤1
𝑇,𝑤2

𝑇,𝑤3
𝑇,… ,𝑤𝑁

𝑇  ]𝑇 that satisfies: 

 

𝑎𝑟𝑔 max
𝑤1 𝑤2….𝑤𝑁

𝛽  =    
1

𝑁(𝑁 − 1)
  ∑  𝑤𝑘

𝑇𝐶𝑥𝑘𝑥𝑙  
𝑤𝑙

𝑁

𝑘,𝑙
𝑘≠𝑙

                                   (2.2) 

                          Subject to:  ∑ 𝑤𝑘
𝑇𝐶𝑥𝑘𝑥𝑙  

𝑤𝑙
𝑁
𝑘=1 = 𝑁                                                   (2.3) 

 

 

where 𝐶x𝑘x𝑘  
=  𝑥𝑘

𝑇 . 𝑥𝑘   is cross-correlation matrix,  𝐶x𝑘x𝑙  
= 𝐶𝑤 −  𝛿𝐶𝑏 , 𝛿 >  0  with 

𝐶𝑤  𝑎𝑛𝑑 𝐶𝑏  representing the correlation within and between different features, which are 

written as follows: 

           𝐶𝑏 =  −𝑥𝑖𝐴𝑥𝑢
𝑇 ,𝐶𝑤 = 𝑥𝑖𝐴𝑥𝑢

𝑇                                                            (2.4) 
 

                           𝐴= [

𝑥𝑛𝑖1
. 𝑥𝑛𝑖1

. .
. 𝑥𝑛𝑖𝑝

.  𝑥𝑛𝑖𝑝
.

. . 𝑥𝑛𝑖𝑍
. 𝑥𝑛𝑖𝑍

] 𝜖 ℝ𝑛𝑥𝑛                                 (2.5)   

 

 

Eqs. (2.2) and (2.3) are further expressed as follows: 

                             
1+𝛿

𝑁−1
(𝐶 − 𝐷)𝑤 = 𝜌𝐷𝑤                                                                   (2.6) 

where C and D are the transformational correlation matrices of multiple sets in the mapping 

space, as presented in [73], and 𝜌 is the generalized canonical correlation.  
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    The information fusion algorithm based on DMCCA is given as follows: extract information 

from multi-modal sources to form the training samples, convert the extracted information into 

the normalized form and compute the matrices C and D then compute the eigenvalues and 

eigenvectors of Eq. 2.6.  

 

    In addition to the above multi-channel information fusion models, there are many other 

models also used for multi-channel information fusion, such as multi-level support vector 

machine, decision regression tree and random forest.  

 

2.2  Datasets Description 

Several datasets are available. These datasets offer variability with respect to magnitude, head-

pose angles, occlusion, illumination and facial appearance. A brief description of these datasets 

is presented in Table 2.1.   

 

Table 2.1: Brief description of available datasets that are used for validation.  

Dataset  Description 

CAVE [94] 

 

21 gaze classes operating under 
lighting changes 
and occlusions 

MPII [79] 

 

Variable 

appearance, 

illumination, 
head -pose 

UULM [95] 

 

Wide range of gaze positions, as well as four 

degrees of freedom of head-pose displacement. 
The dataset is labeled with vertical and horizontal 

gaze offsets. 

EYEDIAP [96] 

 

Diversity of head-poses, gaze targets. Data 

collection with Kinect for RGB and depth video 

streams 

OSLO [97] Variable 

appearance, 

illumination, 
head-pose 

ACS [98] 

 

Simulation of real-life driving settings, not 

available to the public 
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2.3  Classification  

In image processing and machine learning, classification is a learning approach in which the 

computer program learns from the data input and then uses this learning to classify new 

observations. This data set may simply be bi-class or multi-class. Some examples of 

classification problems are: speech recognition, handwriting recognition, biometric 

identification, gaze classification etc. An example of some of the types of classification 

algorithms [99]: Naive Bayes Classifier (Generative Learning Model), Logistic Regression 

(Predictive Learning Model), Decision Trees, Random Forest, Neural Network, K-Nearest 

Neighbor and Support Vector Machine (SVM). In this thesis, we decided to employ the SVM 

as a classifier. The SVM is explained briefly in section 2.5.1. 

 

 

2.3.1 Support Vector Machine (SVM) 

 

In machine learning, support-vector machines are learning models with associated learning 

algorithms that analyze data used for classification and regression analysis. Given a set of 

training examples, each belonging to one or the other of two categories, an SVM training 

algorithm builds a model that assigns new examples to one category or the other, making it a 

non-probabilistic binary linear classifier. An SVM model is a representation of the examples 

as points in space, mapped so that the examples of the separate categories are divided by a clear 

gap that is as wide as possible. New examples are then mapped into that same space and 

predicted to belong to a category based on which side of the gap they fall. In addition to 

performing linear classification, SVMs can efficiently perform a non-linear classification using 

what is called the kernel trick; implicitly mapping their inputs into high-dimensional feature 

spaces. 

 

    Thus far, we have explored existing methods in literature; however, we have identified a gap 

in the research field and believe we can improve accuracy by introducing state of the art 

features, for the purpose of head-pose and gaze estimation. The proposed framework aims to 

use information from the full face (using both eyes) by fusing both appearance-based and 

geometric-based approaches.     
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Chapter 3 

 
Pupil Localization for Gaze Estimation Using Unsupervised 

Graph-Based Model 

 

Overview 

In this chapter, we propose a novel graph-based method for pupil localization, which is a step 

towards gaze estimation. The proposed method can differentiate the key points located at the 

eyelashes, eyebrows and eye white regions.  We first crop the eye region with an ellipse and 

then estimate the pupil center within the ellipse, thus reducing the computational complexity. 

We also consider the light reflections in the pupil region, which could lead to inaccuracy in 

pupil localization. We construct an undirected graph in the eye region based on the following 

key points: corner points in the eye region, the centers of light reflection regions and the 

multiple pixels with the highest intensity in the pupil region. The pupil center is initially 

estimated as the weighted center of the revised graph after vertex/edge removal.  In addition, 

we shift the initial pupil center to a revised position based on the line segments in the pupil 

region. We evaluate the proposed method on eye images from a public database. The 

experimental results demonstrate that the proposed method can achieve a more accurate result 

compared to the existing work in literature.  

 

Different from the existing methods, the proposed method is constructed as follows: we first 

crop the eye region using an ellipse and then search the pupil center in the ellipse, thus reducing 

the computation. Second, we construct an undirected graph and then estimate the pupil center 

based on the trimmed graph. Third, we revise the initial estimation of pupil localization, leading 

to a more accurate result.  

    The remainder of this chapter is organized as the following:  Section 3.1 provides a detailed 

description of the proposed method. Section 3.2 provides the performance evaluation and 

finally, section 3.3 outlines the summary.  
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3.1. The Proposed Method

 

Figure 3.1: The targeted eye region contains a 

large number of corners. 

  

 

 

 

 

 

 

 

Figure 3. 2:  Cropping the eye region with an ellipse.    

 

 
The proposed algorithm for pupil center detection is structured in five stages. In the first stage, 

we detect the eye region based on the eye image corners, as will be shown in Section 3.1.1. In 

the second stage, we fit all corners in the eye region with an ellipse, as shown in Sections 3.1.1 

and 3.1.2. In the third stage, we detect the light reflection regions in the pupil area, as shown 

in Section 3.1.3. In the fourth stage, we identify an enclosed dark region (i.e. pupil, eyelashes), 

as shown in Section 3.1.4. Stages in Sections 3.1.1-3.1.4 produce point coordinates (referred 

to as vertices) which are used in the fifth stage, as shown in Section 3.1.5, to establish a graph. 

We construct a (2n+1) × (2n+1) local patch for each vertex. Each vertex is linked to all other 

vertices via edges, establishing a complete graph. Each edge has a weight based on the average 

intensity of pixels along the edge. The graph will direct us to obtaining the location of the pupil 

center.  

3.1.1 Eye Region Detection 

A greyscale eye image with N×M pixels can be represented by:  𝐼 =

{𝐼(𝑥1,𝑦1),… , 𝐼(𝑥𝑖 , 𝑦𝑗),… , 𝐼(𝑥𝑁,𝑦𝑀)}, where I represents the set of pixels in the greyscale eye 

image. The intensity value for the pixel located at (𝑥𝑖 , 𝑦𝑗) is given by 𝐼(𝑥𝑖 ,𝑦𝑗). The corner 

detection algorithm [4] finds the corners in a grayscale image. The set of detected corner points 

is denoted by C. We observe that corner points are gathered in different areas, namely, 

eyebrows and the eye region (eyelids, pupil contour, eyelashes), as shown in Fig. 3.1. In most 

cases, it is observed that the eye region has a high number of corner points, as shown in Fig. 

3.1. As a result, we direct our attention to the corner points in that region. We adopt the method 

in [100], which is specific to fitting an ellipse, for cropping the eye region, as shown in Fig. 
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3.2. The long/short diameters for the ellipse are fixed and the ellipse is designed to fit all 

different eye sizes, as specified in [100]. The objective of the eye region cropping is to fit the 

maximal number of the corner points into the fixed ellipse. We start by taking all corner points 

detected by the corner detection algorithm [101], and then find the mean for all corner points 

to be the initial center of the ellipse. Corner points within the ellipse are referred to as inliers, 

and all other corner points outside the ellipse are referred to as outliers. At the initial stage, the 

corners located at the eyebrows are typically left outside the ellipse because the eye region 

contains much more corner points. However, some corners of interest near the eye region were 

left outside of the first ellipse. We repeat the process by taking the mean of the corners inside 

the first ellipse to get the revised ellipse center. At this stage, we have managed to fit most 

corners (near the eye region) inside the ellipse, as shown in Fig. 3.2. To optimize the previous 

process and to ensure that all eye region corners are contained within the ellipse, we revise the 

ellipse center in an iterative way. The process is illustrated in Fig. 3.3. Taking only the x-

coordinate of each outlier corner point, our algorithm will shift the ellipse location horizontally 

to include more corners within the ellipse. The proposed algorithm will ensure that the number 

of inlier-corners inside the ellipse is larger than that of the previous iteration. The proposed 

algorithm will terminate the iteration process if no further inlier points can be added into the 

ellipse. After termination, the mean of all inliers is chosen as the final ellipse center. The pupil 

localization will be conducted within the ellipse, rather than the whole image, thus reducing 

computational complexity.  

 

Figure 3.3: Blue ellipse is the initial ellipse. 

Yellow ellipses are obtained in the revised 

iterations. 

 

 

 

 
Figure 3.4: Local patch of (2n+1) × (2n+1)        

centered at each vertex. 
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3.1.2 Corners Detection 

At this stage, we have k inlier corners within the final ellipse. The set of k inlier corners is 

represented by: 

𝑆𝑐 ∈ 𝐼 | 𝑆𝑐 = {𝑃1,𝑃2,𝑃3,… ,𝑃𝑘} ,𝑃𝑖 ∈ 𝐼 , i = 1, 2, …., k.                   (3.1) 

The set of inlier corners 𝑆𝑐 will be used to construct the graph-based model, as explained in 

section 3.1.5.  

 

3.1.3 Light Reflection Detection  

 

In some cases, white regions might be found in the pupil area due to light reflections, which 

may cause an error in our pupil detection process. To combat this issue, we identify small 

reflection areas (e.g., white areas with low intensity) within the pupil. Suppose there are z 

reflection regions in the pupil area, and each center of the reflection region is denoted by 𝑃𝑖. 

The set of light reflection region’s centers is given by:  

𝑆𝑜 ∈ 𝐼 | 𝑆𝑜 = {𝑃1,𝑃2,𝑃3,… ,𝑃𝑧} ,𝑃𝑖 ∈ 𝐼 , i = 1, 2, …., z                                  (3.2) 

3.1.4 Dark Closed Region Detection 

In some cases, the contour of the pupil could be smooth, where no corners can be detected. To 

combat this issue, we identify an area of large connected components that have pixels of high 

intensity, such as the darkest closed region within the ellipse (i.e. eyelashes, eye corner, and 

pupil). We randomly select w pixels in the dark region with intensity higher than the pre-

defined threshold. The set of chosen pixels is denoted by Sd, represented as follows:  

𝑆𝑑 ∈ 𝐼 | 𝑆𝑑 = {𝑃1,𝑃2,𝑃3,… ,𝑃𝑤} ,𝑃𝑖 ∈ 𝐼 , i = 1, 2, …., w.                                 (3.3) 

3.1.5 Graph-Based Model   

Consider a graph G(Svertex, E), in which Svertex is the set of vertices represented by:  

                         𝑆𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝐼 |  𝑆𝑣𝑒𝑟𝑡𝑒𝑥 = 𝑆𝑐 ⋃ 𝑆𝑜 ⋃𝑆𝑑.                                          (3.4) 

E is the set of edges that link two vertices, represented by: 

                                              𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑓}, 𝑖 =  1, 2,… , 𝑓.                           (3.5) 
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    G is an undirected graph. Every vertex is connected to all other vertices by an edge, thus 

constructing a complete graph. The weight of an edge, denoted by W(ei), is represented by the 

sum of the intensity values for the pixels along the edge. 

 

    Each point in 𝑆𝑣𝑒𝑟𝑡𝑒𝑥  is referred to as a vertex 𝑃𝑣  (The vertices are the points in 

𝑆𝑐 ⋃ 𝑆𝑜 ⋃𝑆𝑑 ). We construct a (2n+1)×(2n+1) local patch centered at each vertex, and use the 

average neighborhood intensity for the local patch, denoted by 𝐵(𝑃𝑣), to describe the vertex 

𝑃𝑣,  as shown in Fig. 3.4 and Eq. 3.6. 

                               𝐵(𝑃𝑣) =
1

(2𝑛+1)2
∑ ∑ 𝐼(𝑃𝑣 (𝑥+𝑗,𝑦+𝑘)

 ),  𝑃𝑣 ∈ 𝑆𝑣𝑒𝑟𝑡𝑒𝑥.
𝑛
𝑘=−𝑛

𝑛
𝑗=−𝑛          (3.6) 

    We observe that in most cases, the points in Svertex are mostly located in the pupil region, 

eyelashes and eyelids. Edges are connecting each vertex with all other vertices. The weights of 

those edges (average pixel intensity along the edge), as well as the value of B(Pv) (average 

neighborhood intensity of local patch) at each vertex, are of importance and are our focus at 

this step. It is worth noting that an edge connecting two vertices and passing through the eye 

white region would have a lower weight in comparison to the edge connecting two vertices 

located in the pupil region. The undirected weighted complete graph, as in Fig. 3.5, will go 

through a sequence of modifications as follows:  

 

Figure 3.5: Graph consists of edges connecting vertices. A local patch constructed at each vertex. 

 

- Starting at an arbitrary vertex, search the entire set of vertices and remove the vertices with 

an average neighborhood intensity below the threshold value (ignoring seventy percent of the 

vertex with low average neighborhood intensity and also having at least 30 vertices in the final 

selection). The remaining set of vertices is denoted by 𝑆𝑣𝑒𝑟𝑡𝑒𝑥
′  , and each point in the set 

represented by 𝑃𝑣
′ ∈ 𝑆𝑣𝑒𝑟𝑡𝑒𝑥

′  
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- Perform a search for the edges and remove the edges with the weight below the threshold. 

The remaining set of edges is denoted by 𝐸′. 

- Remove the vertices that are isolated from the main graph. 

    

    After the graph trimming, we have a revised graph that consists of less vertices and edges, 

denoted by 𝐺(𝑆𝑣𝑒𝑟𝑡𝑒𝑥
′ ,𝐸′), where the vertices have a high average neighborhood intensity, and 

the edges have a high weight. It is observed that 𝑆𝑣𝑒𝑟𝑡𝑒𝑥
′  and 𝐸′ are mostly located in the pupil 

region. Each 𝑃′𝑣 has the coordinates of (X,Y) and the intensity of 𝐼(𝑃𝑣
′). We take the weighted 

average of the coordinates for all vertices in 𝐺(𝑆𝑣𝑒𝑟𝑡𝑒𝑥
′ ,𝐸′) to be the estimated center (X̅c, Yc)of 

the pupil center, as shown in Eq. 3.7: 

                 X̅c =
∑ {𝐼(𝑃′𝑣).𝑋𝑖 }

𝑛
𝑖=1

∑ 𝐼(𝑆𝑣𝑒𝑟𝑡𝑒𝑥
′ )𝑛

𝑖=1

          ,        Yc =
∑ {𝐼(𝑃′𝑣).𝑌𝑖 }

𝑛
𝑖=1

∑ 𝐼(𝑆𝑣𝑒𝑟𝑡𝑒𝑥
′ )𝑛

𝑖=1

                           (3.7) 

3.1.6 Pupil Center Localization Revision 

It is observed in some cases, that (X̅c, Yc) may not be close to the pupil center since part of the 

iris or pupil is covered by eyelashes. To combat this issue, the following revision procedure is 

proposed, as shown in Fig. 3.6. The revision procedure will generate a revised center, (X′̅c, Y′̅c), 

that is located closer to the real pupil center. In particular, we have search for the high pixel 

gradient along eight different directions with 45-degree difference, which results in P1 to P8. 

 

 

Figure 3.6: Shifting (X̅c, Yc) coordinate towards the pupil center. 

 

    As shown in Fig. 3.6, the circular area represents the pupil area and it is identified to be the 
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dark area (high pixel intensity), and the surrounding area is identified to be the white area (low 

pixel intensity). We construct four line-segments passing through the estimated center (X̅c, Yc) 

obtained by Eq. 3.7, and then find the center of each line segment as follows: 

Center of line segment from P1to P2:  X̅𝑐rev1
=

XP1+ XP2

2
             (3.8) 

Center of line segment from P3 to P4:  Y̅𝑐rev1
=

YP3+ YP4

2
             (3.9) 

Eq. 3.8 will shift X̅c to the midpoint of 𝑃1𝑎𝑛𝑑 𝑃2, and Eq. 3.9 will shift Y̅c to the midpoint 

between 𝑃3 and 𝑃4. Furthermore, we find the midpoints for line segment from P5  to P6 with the 

slope of 1 and line segment from P8  to P7 with the slope of -1, and then shift X̅c and Yc to  

X̅c_rev2  and Y̅c rev2 , respectively. The revised pupil center, denoted by (X′̅c ,  Y′̅c ), is then 

calculated by:  

                                            X′̅c  =
X̅𝐶rev1+ X̅𝐶rev2

2
 ,     Y′̅c =

Y̅𝐶rev1+Y̅𝐶rev2

2
                            (3.10) 

A line segment may pass through the light reflection region, which leads to the error in the 

estimation of pupil center. Therefore, we take four-line segments instead of two- line segments 

to improve the robustness and accuracy for the pupil center estimation. 

3.2 Experiment 

We have used the National Laboratory of Pattern Recognition database [94],  to evaluate the 

accuracy of the proposed method. We applied the proposed pupil localization method on 

grayscale images with various pupil positions. Among the images, some have dark eyelashes, 

dark eyebrows, glasses and some have partially occluded pupils. Our experiment was 

conducted on a desktop computer with the following configurations: 64-bit OS, Intel Core i7 

3.07 GHz CPU, and 4GB RAM. The error is expressed in Eq. 3.11. 

                                             Error =
|TP|

|AB|
=

√(XT−X′P)2+(YT−Y′P)2)

√(XA−XB)2+(YA−YB)2)
× 100%,                              (3.11) 

 
where |AB| is the length of the eye, |TP| is the distance between the ground truth and the 

estimated pupil center,  
|TP|

|AB|
 is a relative error represented in percentage, X and Y are 

coordinates, T is the pupil center ground truth, and P is the pupil center estimated by the 

proposed method. The error calculation is illustrated in Fig. 3.7. 
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Figure 3.7: Calculating the relative error based on the ground truth. 

 
Table 3.1: Performance comparison between the proposed method and existing method in [102] and 

[103].    

  

Proposed 

method 

[102] 

Circle-based eye center 

localization 

         [103] 

Pupil localization 

using differential 

geometry 
Average Error 0.4%       8.8%       12.69% 

Average Processing 

Time 
0.8 sec        0.2 sec  

    Their system had different    

    configurations than our system 

       0.33 sec 

       

The comparison of the proposed method against the method in [102] (Circle-based eye center 

localization) is presented in Fig. 3.8. The error, in Eq. 3.11, was calculated based on the difference in 

pixels between the estimated pupil center and the ground truth. the As can be seen, the error in the 

proposed method (green) is much smaller than the existing method (red) [102]. It is worth noting that 

the method in [102] localizes the pupil center from face images, while the proposed method finds the 

pupil center from eye images. 

 
Figure 3.8: Error for our method, in green, against the method in [102], in red. 
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Figure 3.9: A graph that consists of vertices and 

edges. Red vertices have higher average 

neighborhood intensity than blue vertices. Edges 

connect red vertices only. 

  

Figure 3.10: Removing the edges with a low weight 

and keeping the edges with a high weight. Edges on 

the pupil area have high pixel intensity. 

  

Figure 3.11: Small blue circle indicates the 

estimated pupil center. 

  

Figure 3.12: Occluded pupil, blue circle indicates the 

estimated pupil center. 

 

    The comparison of average error, average accuracy, and average processing time ,between 

the proposed method and the method in [102] and [103], is shown in Table 3.1. The proposed 

method achieves an average accuracy of 99.6%, which is much higher than the method in [102] 

and [103]. We employ more computation to increase the localization accuracy, thus leading to 

a larger average processing time than the method in [102] and [103].  

    We encountered some challenges in the experiment for the individuals with thick eyebrows, 

which are very close to the eye region, in which the corners at the eyebrows were included as 

inliers within the ellipse. We also encountered images with no eyelashes, in which we were not 

able to locate the corners at the eyelashes or dark regions. In some cases, as shown in Fig. 3.9, 

there are two dark regions within the ellipse, which produced a pupil center location that was 

not close to the real pupil center. The proposed method can handle such cases, by removing 

the edges connecting the vertices between the two regions, because edges have a low weight 

as a result of passing through the eye-white area. Furthermore, the pupil is a bigger region and 

its vertices have a higher weight. Taking the weighted average of vertices from both dark 

regions will result in an estimated pupil center that is close to the pupil region. Our revision 
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procedure further shifts the estimated center closer to the actual pupil center. The case with 

only one enclosed dark region is shown in Fig. 3.10. The proposed method takes the weighted 

average of all vertices to get an accurate pupil center localization. A similar example is shown 

in Fig. 3.11.  A difficult case where the pupil was partially covered by the eyelids is seen in 

Fig. 3.12. The proposed algorithm can deal with such a case successfully with an accurately 

estimated pupil center.   

 

3.3 Summary 

In this chapter, we proposed a graph-model based pupil localization method, which is a crucial 

step towards gaze estimation. The proposed method can distinguish the key points in the pupil 

region from those in the other locations. The proposed revision process further improves the 

accuracy of the pupil center estimation. The experimental results demonstrated that we were 

able to locate the pupil center with a 99.6% accuracy.  
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Chapter 4 

 
Discriminative Robust Gaze Estimation Using Kernel-DMCCA 

Fusion 
 

Overview 

In this chapter, we present an algorithm employing discriminative analysis for gaze estimation 

using kernel discriminative multiple canonical correlation analysis (K-DMCCA), which 

utilizes multiple feature vectors that account for variations of head-pose, illumination and 

occlusion. The features used by this algorithm include spatial indexing, statistical and 

geometrical elements and the feature produced in Chapter 3 (pupil localization). Gaze 

estimation is constructed by feature aggregation and transforming features into a higher 

dimensional space then fed into the RBF classifier with kernel  𝛾 and a spread factor. The 

output of fused features through K-DMCCA is robust to illumination, occlusion and is 

calibration free. The proposed algorithm is validated on MPII, CAVE and EYEDIAP datasets. 

We also used ACS dataset, a dataset collected at Alcoholic Countermeasure Systems Corp and 

are not available for the public, in validation. The two main contributions of the algorithm are 

the following: Enhancing the performance of DMCCA with the kernel and introducing 

quadtree as an iris region descriptor. Spatial indexing using quadtree is a robust method for 

detecting which quadrant the iris is situated, detecting the iris boundary and it is inclusive of 

statistical and geometrical indexing that are calibration free.  

    The remainder of this chapter is structured as follows: Section 4.2 outlines the proposed 

algorithm, Section 4.3 details the extracted features, Section 4.4 develops the implementation 

of K-DMCCA, Section 4.5 presents experimental evaluation, Section 4.6 highlights the results 

and Section 4.7 summarizes the chapter. 
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4.1 Proposed Framework 

The proposed framework is illustrated in Fig. 4.1. The features for gaze estimation include: 

Graph-based approach to estimate pupil center [104], gaze vector [105], facial landmark angles 

[71], 15D eigen values that represent the collective eye region [43] and a quadtree-based iris 

region descriptor with local and global coordinates. A gaze position/direction is assumed to be 

of a given class (identifying where the person is looking at). We propose a feature fusion 

method for gaze estimation that fuses features to give a correlation within and between classes 

using K-DMCCA. The output of fused features through K-DMCCA is robust to illumination, 

occlusion and is calibration free. We correlate the feature sets and direction by employing K-

DMCCA to study the modulation profile of the extracted feature sets, which gives 

discriminative correlations between two or more classes.  

 
Figure 4.1: The proposed framework consists of extracting difference features, applying K-DMCCA on extracted 

features to project the extracted features to a high dimensional space and to produce discriminative correlations, 

for the purpose of 2D and 3D gaze estimation. 

 

4.2  Feature Extraction 

4.2.1 Distances and Angles Feature Extraction  

The feature in [71] is concerned with the estimation of head-pose and extraction of relative 

facial feature distances, such as distance from ear-to-nose, distance between the eyes and the 

distance between the nose base and nose tip. By collecting facial landmark points, this feature 

is able to calculate the distance/angle between facial landmarks and monitor changes over time 

[71]. See Fig. 4.8 for illustration. This is referred to as 𝑋1{feature vector that contains the 

distances between facial landmarks and the angles between them}.  

Features Extraction  

Kernel- DMCCA 
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4.2.2 Eye-center to Pupil-center Vector Feature 

The eye is assumed to be an ellipse with three parameters [105]: eye radius, iris radius and 

relative position of the eye center with respect to the head-pose. The gaze direction is a vector 

that starts at the eye center and passes through the pupil center. This feature is then merged 

with the feature in section 4.2.1. This refers to 𝑋2{feature vector that contains directional 

information of (x,y) coordinates of gaze vector}.  

4.2.3 Iris Region Descriptor Extracted Using Quadtree 

Shape descriptors are vectors that define a region of interest (ROI) that is not sensitive to 

rotation or translation. We propose an iris region descriptor using quadtree decomposition that 

generates a set of points defining the iris geometrical boundary. This is referred to as 𝑋3 

{feature vector that contains (x,y) coordinates on the iris boundary}. 

4.2.3.1  Quadtree Structure  

A quadtree uses a tree-based spatial indexing data-structure in which each node has exactly 

four children [89]. This representation is constructed from a root node (representing the entire 

image) which is progressively sub-divided into 4 quadrants (represented as children of the 

root), with further sub-divisions as children of each of these quadrants, and so on.  Each node 

is a quadrant consisting of a BLACK pixel that is ‘1’ and a WHITE pixel that is ‘0’. Each node 

is labeled as north-west (NW), north-east (NE), south-west (SW) and south-east (SE). Each 

sub-quadrant has a collection of BLACK and WHITE binary pixel values. Fig. 4.2 shows a 3-

level decomposition of an image. The root nodes are {Q1, Q2, Q3, Q4}. The next level of sub-

quadrants is {SQ1, SQ2, SQ3, SQ4}, while the third level is {sq11, sq12, sq13, sq14}. The quadrants 

and sub-quadrants are also structured as {NW, NE, SW, SE} which indicates the directional 

mapping of the pixels in the image data. Homogenous quadrants (uniform BLACK or uniform 

WHITE) are not stored. Furthermore, each node stores a label/compass point. Only labeled 

nodes are stored (in the order in which the tree is traversed) and considered for encoding.  

We use this spatial indexing to build geometrical features such as a segment or an arc forming 

a circle. To represent a line segment or an arc of a circle, we count the number of 1s and 0s 

values. The merging of sub-quadrants, where the iris lies, is based on similar boundary 

information [106]. 
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Figure 4.2: Three levels of quadrant and sub-quadrants division for creating a quadtree indexing [89]. 

 

    Unlike a line segment, which can be identified by continuity of edges, we need to look at a 

circle as a polygon with a finite set of points situated over the neighboring nodes at a particular 

level. Consider a quadtree, T, of an image with depth h, each block of size 2𝑞 𝑥 2𝑞 , q is an 

integer. Each node has information about the parent node, the node itself and the direction; 

along with the data (1s and 0s) of the decomposed pixels. As the level increases so does the 

depth of the tree, hence we use the depth first algorithm for storing nodes at each level. The 

iris could be situated in a single or in multiple sub-quadrants at any given level. The narrowing 

down of possibilities (where the iris is situated) is based on the statistical aspect (by counting 

the number of 1s and 0s values) of the sub-quadrant with respect to the horizontal, vertical and 

diagonal sub-quadrants at each level. The merging of the sub-quadrants depends on the 

data/label driven determination of the iris’s geometrical shape.  

4.2.3.2  Geometrical Approximation  

To select the iris region and its occupancy in the image coordinates, we assume a polygon 

inscribed in a circle [107]. For a regular polygon of M sides, with a set of vertices C that lie on 

the curve, we need a dominant set of points: 

                                          𝐷 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑀   ,   𝐶 = {𝑥𝑖, 𝑦𝑖}𝑖=1

𝑁                                              (4.1) 

                                                 where D is a subset of C and 𝑀 ≤ 𝑁.  

To get a measure of such approximation error, we use the integral square error (ISE). Polygon 

approximations with a number of lines are compared with the angles/curves with an increased 
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number of points [107]. We use curves with an increased density of points to approximate the 

polygons with small lengths that result in minimizing ISE. The centering and shifting in the 

positions of the iris gives an assessment of correctness in terms of estimated pose. On the 

circumference of a circle, we choose points of the polygon with an angle of separation at least 

2𝜋

𝑀
, as shown in Fig. 4.3. 

 
Figure 4.3: Polygon inscribed within a circle of radius r [107]. 

 

4.2.3.3  Quadtree Complexity 

An image P is used to create a tree T with a depth h.  We employ the Warnock algorithm, which 

uses a divide-and-conquer technique to reconstruct hidden objects in an image [106,108]. The 

Warnock algorithm is used for recognizing a polygonal boundary with perimeter p, resolution 

parameter q and 𝜗 number of vertices, with a complexity of 𝛩(p+ q+ 𝜗). 

4.2.3.4  Index Extraction 

The image representation of the quadtree decomposition, with a pre-defined threshold, presents 

the background in BLACK pixel region while foreground is WHITE, indicating the iris and 

cornea part of the eye. An image cropped from CAVE dataset in Fig. 4.4.a, showing quadtree 

decomposition and how the polygonal approximation is established. Fig. 4.4.b shows spatial 

shift of iris in 4.4.a, allowing us to shift the center with an offset relative to the earlier frame. 

    The points for generating the circle are derived from the selection of percentages (statistical 

count) of 1 and 0 transition values (one-to-zero, zero-to-one) that are obtained after quadtree 

decomposition. The curvature identification of an iris is based on finding the transition blocks 

by counting the number of 0-1 and 1-0 (row and column-wise) from the decomposed set. The 

count determines the selection of neighboring blocks. We take the mean of these transition 

points count to be the center for generating the circle radius, see Fig. 4.6 for illustration. For 

generation of the circle, we must verify its boundary and create a ground truth to compare it to. 

 

         𝒓 𝒄𝒐𝒔
𝝅

𝑴
 

                                                          
𝝅

𝑴
 

 

                                                               
𝝅

𝟐
−

𝝅

𝑴
 

 

                                                                     𝒓𝟐 = 𝒙𝟐 + 𝒚𝟐 

Figure 4: Polygon inscribed within a circle of radius r. 
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To do that, we employ an edge operator [108] to create a set of edges and compare points on 

the edges with the points generated previously by the iris region descriptor. We take all the 

overlapping points of both procedures and we refer to it as the dominant set. The dominant set 

is used as a measure of performance and ground truth for the iris.  

  

(a)                              (b) 
Figure 4.4: (a) An image cropped from CAVE dataset, showing quadtree decomposition and how the polygonal 

approximation is established. (b) Spatial shift of iris in (a), allowing us to shift the center with an offset relative 

to the earlier frame 

 

 

 

4.2.3.5  Iris Ground Truth 

 

Using a standard edge detector [108], we extract the boundary of the iris. However, we have 

no way of confirming this is the iris. Hence, the dominant set is required. In Eq. 4.2, ‘A’ 

represents the number of points of the iris region descriptor while ‘B’ is the set of points 

obtained from the edge operator. Edge detection measure is given as: 

     𝑃(𝐼) =
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
                               (4.2) 
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𝑃(𝐼) normalizes in the range of [0, 1] as a measure for the dominant set. P(I) =1 implies that 

all chosen points coincide. If P(I)=0 then there are no coinciding points [108]. 

     In an image, points extracted by the edge operator are referred to as 𝜇𝑖 while points of the 

iris region descriptor are 𝐼𝑖. Maximizing the points, P, can be expressed as: 

𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐼, 𝜇) = {𝑃(𝐼𝑖, 𝜇𝑖)}       (4.3) 

Eq. 4.3 is the factor of improvement when obtaining a dominant set and after removing the 

unwanted edges.  

4.2.3.6  Edge Detection Complexity  

Grouping of boundaries is extremely challenging in terms of generalization where the detection 

of the false edges and the inflection points are specific to every image [108]. Thus, we consider 

an edge operator that provides an improved signal-to-noise ratio (SNR [108]) and localization 

of edges. We need image-dependent parameters for selecting and improving the dominant set 

performance by either increasing the edges of the polygon or by shifting the center of an iris 

that has spatially shifted. Fig. 4.6 shows the combination by overlapping the boundary 

detection points over the detected edges after the removal of outlier edges.  

 
Figure 4.5: Shows how the mean of the transition point count (horizontally and vertically) is taken to be the 

origin. To calculate the radius, we take the furthest point from the mean to a point on the transition count.  
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                         (a)                                                         (b) 
 

Figure 4.6: (a) Cyan ‘*’ represents the points generated by the iris region descriptor overlaid over the edges.  (b) 

Increased set of points to cover a greater number of edge points. 

 

To shed some light on the outcome of the iris region descriptor, we demonstrate some results 

in Fig. 4.4, which shows how the iris has shifted spatially. This allows us to shift the iris center 

with an offset relative to the earlier frame. Furthermore, Fig. 4.7 illustrates quadtree level-2 

decomposition. It clearly shows the background (BLACK) while foreground (WHITE) pixel 

regions of the image content such as skin and glasses. Using the zero-to-one transition to define 

the iris circle center and the boundary of each sub-quadrant at the region where there is no 

transition from 0-1 or 1-0, then radius and circle are established as illustrated in Fig. 4.5 and 

Fig. 4.7. To establish a circle, Fig. 4.5 shows how the mean of the transition point count 

(horizontally and vertically) is taken to be the origin. To calculate the radius, we take the 

furthest point from the mean to a point on the transition count. 

 

 
(a) 

 
                                   (b) 

Figure 4.7: (a) Quadtree level 2 decomposition, (b) Blue and pink circles are the Iris boundary for the eyes along 

with centers. 
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4.2.4.  15D Feature Extraction  

We adopt appearance-based features introduced in [43] because it presented mapping high-

dimensional eye image features to low-dimensional without losing classification accuracy. We 

define the region of interest P x Q, where P and Q are multiplies of 3 and 5, respectively. The 

region of interest is divided into sub-regions forming a 2D buffer of size 3 x 5. Each block is 

normalized, as a result, the 2D 3x5 buffer is reduced to 1D (1x15) eigen values that provide a 

gaze position in the eigen space. Unlike the approach [43] , we took the whole 15D feature 

vector without applying PCA on it.   A 15D intensity feature from the eye region pertaining to 

3 x 5 sub-regions is computed as a feature set. See Fig. 4.9 for illustration. This is referred to 

as 𝑋4 {feature vector that contains 1x15 eigen values}. 

 

4.3 Implementation 

 
4.3.1 Extending DMCCA to K-DMCCA 

 

Multi-feature processing of the dataset involves extracting features and fusing them to perform 

correlation analysis. DMCCA in [73] is capable of simultaneously maximizing the within-class 

correlation and minimizing the between-class correlation, revealing the intrinsic structure and 

complementary representations from different modalities to improve the performance. The 

integration of statistical and geometrical features aims at unifying and evaluating the 

associations between variables for improving the accuracy of gaze prediction [72].  Due to the 

success of DMCCA [73] and multiple features used in our framework, we extend the method 

in [73] and employ a kernel to project the features to a high dimensional space for better 

separation and identification, especially on nonlinear distributions.  

 

    Using canonical correlation analysis (CCA) with two vectors represented as 

 𝑋 = 𝑤1
𝑇.𝑥  and 𝑌 = 𝑤2

𝑇.𝑦, where 𝑤 = [𝑤1
𝑇,𝑤2

𝑇]𝑇are the projections or solutions of the 

problem formulated as: 

𝑎𝑟𝑔 max
𝑤1𝑤2

𝜇 =  𝑤1
𝑇𝑅𝑋𝑌𝑤2                          (4.4) (3.4) 

𝑅𝑋𝑌 is the cross-correlation matrices given as 𝑋𝑌𝑇. 
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Generalizing for a kernel DMCCA, with N set of mapping features 𝑋̃=[𝑥̃1, 𝑥̃2, 𝑥̃3,… . 𝑥̃𝑁], 

where 𝑥̃𝑁 = ∅(𝑥𝑁)𝑇∅(𝑥𝑁) is the kernelization of 𝑥𝑁, finding solutions in the form 𝑤̃𝑇 = 

[𝑤̃1
𝑇, 𝑤̃2

𝑇, 𝑤̃3
𝑇,… , 𝑤̃𝑁

𝑇  ]𝑇 that satisfies: 

𝑎𝑟𝑔 max
𝑤̃1 𝑤̃2….𝑤̃𝑁

𝛽  =    
1

𝑁(𝑁 − 1)
  ∑  𝑤̃𝑘

𝑇𝐶𝑥̃𝑘𝑥̃𝑙  
̃ 𝑤̃𝑙

𝑁

𝑘,𝑙
𝑘≠𝑙

                               (4.5) 

                          Subject to:  ∑ 𝑤̃𝑘
𝑇𝐶𝑥̃𝑘𝑥̃𝑙  

̃ 𝑤̃𝑙
𝑁
𝑘=1 = 𝑁                                                  (4.6) 

 

where 𝐶𝑥̃𝑘𝑥̃𝑘  
̃ = 𝑥̃𝑘

𝑇. 𝑥̃𝑘  is cross-correlation matrix,𝐶𝑥̃𝑘𝑥̃𝑙  
̃ = 𝐶̃𝑤 −  𝛿𝐶̃𝑏  , 𝛿 >  0 with 𝐶̃𝑤  𝑎𝑛𝑑 𝐶̃𝑏 

representing the correlation within and between different features, which are written as follows: 

                           𝐶̃𝑏 = −𝑥̃𝑖𝐴̃𝑥̃𝑢
𝑇 , 𝐶̃𝑤 = 𝑥̃𝑖𝐴̃𝑥̃𝑢

𝑇                                          (4.7) 
 

                           𝐴̃= [

𝑥̃𝑛𝑖1
. 𝑥̃𝑛𝑖1

. .

. 𝑥̃𝑛𝑖𝑝
.  𝑥̃𝑛𝑖𝑝

.

. . 𝑥̃𝑛𝑖𝑍
. 𝑥̃𝑛𝑖𝑍

] 𝜖 ℝ𝑛𝑥𝑛                                (4.8)   

 

 

Eqs. (4.5) and (4.6) are further expressed as follows: 

                             
1+𝛿

𝑁−1
(𝐶̃ − 𝐷̃)𝑤̃ = 𝜌𝐷̃ 𝑤̃                                                                  (4.9) 

 

where 𝐶̃ and 𝐷̃ are the transformational correlation matrices of multiple sets in the mapping 

space, as presented in [73], and 𝜌 is the generalized canonical correlation. Then Eq. 4.9 can be 

solved as the generalized eigenvalue (GEV) problem. 

 

    With the projected matrix of 𝑤̃𝑇 = [𝑤̃1
𝑇, 𝑤̃2

𝑇, 𝑤̃3
𝑇,… , 𝑤̃𝑁

𝑇  ]𝑇from Eq. 4.9,  the projection 

of training dataset in K-DMCCA space is calculated as follows: 

              𝑋Train = 

[
 
 
 
 
 𝑋̃1 TrainProjection

=  𝑤̃1
𝑇.   𝑥̃1 Train

 𝑋̃2 TrainProjection
=  𝑤̃2

𝑇.   𝑥̃2 Train

…
 𝑋̃𝑁 TrainProjection

=   𝑤̃𝑁
𝑇.   𝑥̃𝑁 Train]

 
 
 
 

                                     (4.10)  
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4.3.2  Classification  

The output of K-DMCCA is fed into an RBF classifier with the 3-𝜎 rule (three sigma [70]) as 

a correlation analysis index. The classification is performed by considering the distance 

between 𝑋𝑇𝑟𝑎𝑖𝑛 to  𝑌𝑇𝑒𝑠𝑡 with 𝑋𝑇𝑟𝑎𝑖𝑛 being the projection of training dataset in K-DMCCA 

space, while 𝑌𝑇𝑒𝑠𝑡  is the projection of the testing dataset in K-DMCCA space. The pseudo code 

of K-DMCCA and classification is outlined as follows: 

 

1. Extract all features and produce (x,y) tuple coordinates, or (x,y,z) for 3D, 

corresponding to each feature.  

2. Employ K-DMCCA as explained in section A to calculate 𝑋𝑇𝑟𝑎𝑖𝑛 . 

3. For testing, we calculate: 

𝑌𝑇𝑒𝑠𝑡   =  

[
 
 
 
 
𝑌1 TestProjection

=  𝑤̃1
𝑇.𝑦1 Test

𝑌2 TestProjection
=  𝑤̃2

𝑇. 𝑦2 Test

𝑌𝑁 TestProjection
=  𝑤̃𝑁

𝑇. 𝑦𝑁 Test
 ]
 
 
 
 

                                                        (4.11)         

4. Compare the distance between training data and testing data in K-DMCCA space with 

Eq. 4.12. 

         𝐾(𝑋𝑇𝑟𝑎𝑖𝑛 ,𝑌𝑇𝑒𝑠𝑡 ) =  𝑒

−𝛾‖𝑌𝑇𝑒𝑠𝑡 −𝑋𝑁𝑇𝑟𝑎𝑖𝑛𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
‖2

2𝛿2                                            (4.12) 
   

  where 𝛾  is the spread factor of the RBF. 

 

5. The outcome of K-DMCCA transformation and classification produces a space in the 

range of [0,1].  

6. Compute the 3-𝜎, which is the probability of 0.68, 0.95 and 0.997.  

7. Calculate accuracy of estimation based on the discriminative statistics produced by step 

6. 

 

    The RBF provides a measure of similarity between the training and testing feature vectors. 

Eq. 4.12 is the norm of the vectors that brings the points closer or further using the spread 

factor, it is a bell-curve that changes based on 𝛾 value (spread factor [109]).  

 



 

48 

 

4.4 Evaluation 
 
To evaluate the proposed algorithm, we conducted experiments on three public datasets: Cave 

(5880 images) [94], MPIIGaze (3000 images of left and right eyes) [79] and EYEDIAP 2D and 

3D (15 frames for each VGA video per participant) [96]. We also used ACS dataset (10 

subjects; not available to the public) [98]. The datasets consisted of variations of illumination, 

occlusion and head-pose. We compared the proposed full-face method with recent existing 

methods [77], [79], [84] and [85].  

 

    We adopted the method in [71] and were able to monitor the head-pose change over time. 

Fig. 4.8 shows the detection of facial landmarks, the distances and the angles between them. 

We also adopted the method used in [105], which gave us a clear indication of the gaze 

direction. We integrated the method [105] into [71], which allowed us to track the head-pose 

coordinates along with the gaze vector, see Fig. 4.8.  

 

    We show the implementation of the method used in [43] to extract the 15D feature vector, 

see Fig. 4.9.  The implementation of quadtree decomposition on different datasets is illustrated 

in Fig. 4.10 and Fig. 4.11. Moreover, we have investigated samples with different illuminations 

as shown in Fig. 4.10, head-pose as shown in Fig. 4.11a, occlusion as shown in Fig. 4.11.b, 

blurring as shown in Fig. 4.11.c and full face as in Fig. 4.11.d. 

 

 

 

Figure 4.8: Samples are taken from EYEDIAP and CAVE datasets. We detected facial landmarks and captured 

the distances and angles between them. We further detected the eye center, the pupil center and the relative 

position of the pupil center with respect to the head-pose. Lastly, we employed quadtree region descriptor to detect 

the iris boundary.  
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(a) 

 

(b) 

Figure 4.9: Sample from CAVE dataset. (a) The image is divided into a 3x5 sub-regions. (b) Each region is 

normalized resulting in a 15D feature vector.  

 

    The above sets of features provide a richer feature set, enabling higher precision in gaze 

estimation. We fused all feature sets from section 4.2 using K-DMCCA with discriminative 

correlation criteria based on the 3-𝜎 rule. The training and testing datasets were compared using 

the RBF function, which gave us correlations between any two sets of samples.  

 

 
Figure 4.10: Samples were taken from MPII dataset, showing quadtree region descriptor stages to arrive at iris 

boundary estimation. 

 

 

a) 

 
b) 
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c) 

 
d) 

Figure 4.11: Samples are taken from MPII dataset showing quadtree region descriptor and presenting cases of: 

(a) Head-pose, (b) Occlusion, (c) Blurry image and (d) Full face frame.  

 

4.4.1 EYEDIAP 3D Dataset  

 
The EYEDIAP 3D dataset is based on the RGBD format. The extraction of 3D coordinates, 

namely (x,y,z),was based on the procedure presented in [110]: 

1) Kinect RGB VGA video with a resolution of 640 x 480 was encoded using MPEG-4 of 

a front view. 

2) Kinect depth video with a resolution of 640 x 480 was encoded using Zlib and was 

further processed using Python script.  

3) Parameters were calibrated for the RGB camera and extrinsic camera (camera 3D pose 

with respect to the world coordinate system). 

4) Depth camera parameters were calibrated similar to the RGB camera. They also 

included mapping parameters from depth map values to actual depth measurements. 

 

    Depth was encoded as a disparity values map, which was encoded in the RGB image. With 

capture device Kinect, 11 bits ranging [0, 211 – 1] for a given disparity value was encoded, such 

that 8 least significant bits (LSB) were assigned to the B channel of the RGB image, while the 

remaining 3 most significant bits (MSB) were taken as a byte, shifted left by 5 bits and then 

assigned to the G channel. The disparity map value was recovered by converting each color 

channel, in the corresponding RGB image, from an 8-bit to 16-bit unsigned integer [111].  

 

𝑑𝑖𝑠𝑝_𝑢𝑛𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 =  𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 + 𝛽(𝑢, 𝑣)  ∗  𝑒−( 𝛼0−𝛼1)∗𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 
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    𝛽 (u,v) are image coordinates that indicated the spatial distortion pattern for each pixel value 

at position (u,v), and (𝛼0 − 𝛼1) signifying the decay of distortion effect. Finally,, the relation 

between the obtained disparity value and depth ‘𝑧𝑑’ contained two parts: a scaled inverse and 

a distortion correction as modeled by Eq.4.13: 

                                                𝑧𝑑 = 
1

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 𝑢𝑛𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑  .  𝑘1  + 𝑘0
                                    (4.13) 

where 𝑘0 and 𝑘1 are part of the depth camera intrinsic parameters known as k coefficients. The 

depth camera coordinates (𝑥𝑐,𝑦𝑐, 𝑧𝑐) were obtained based on the following formulas: 

𝑥𝑐  =  
𝑥𝑑 − 𝑐𝑥𝑑

𝑓𝑥𝑑

 . 𝑧𝑑  

𝑦𝑐  =  
𝑦𝑑 − 𝑐𝑦𝑑

𝑓𝑦𝑑

 . 𝑧𝑑 

                                                                   𝑧𝑐 = 𝑦𝑑                                                                     (4.14) 
 

where 𝑓𝑥𝑑
 and 𝑓𝑦𝑑

 are focal lengths of the camera in (x,y) and (y,d) positions.  

 

    From depth camera to RGB camera, a point 𝑃𝑑= [𝑥 𝑦 𝑧]𝑇 in depth camera coordinate was 

transformed to RGB coordinate as 𝑃𝑟𝑔𝑏 = 𝑅𝑑 .𝑃𝑑  +  𝑇𝑑.  The data preparation involved 

separating 4400 frames from each video. We decided to implement the region descriptor 

feature only in the 3D gaze estimation, since it was proven to be invariant to illumination, 

occlusion and rotation. The 3D frames were cropped to fit the region descriptor algorithm. The 

workflow is shown below: 

- Spatial indexing of the front view frames using region descriptor. 

- Estimate boundary for the point cloud based on circle points using region descriptor. 

- Extract (x,y,z) from the point cloud. 

- Apply discrimination K-DMCCA with depth info. 

    We applied quadtree decomposition on the front view of the camera, then detected iris 

boundary using region descriptor statistics and tracked position change. These frames are 

transformed from (x,y) to (x,y,z) coordinates. See Fig. 4.12. 
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Figure 4.12: Quadtree decomposition of the front view of the camera. Detecting iris boundary of both eyes using 

quadtree decomposed statistics and tracking position change.  

 

4.5 Results and Discussion 

It was worth analyzing the effect of using one feature or two features versus all features 

combined. A comprehensive analysis was performed and outlined in section 4.5.1. To 

measure the accuracy of the proposed framework, we used the mean angular error which is 

defined as the angular distance between the proposed framework's estimate of the gaze and 

the true gaze. 

 

4.5.1 One Feature vs. all Features 

 
Figure 4.13: Using the average error of each dataset, we show the comparison of employing one feature vs. all 

features, on all datasets.   

 

Applying the gaze vector feature only and estimating the gaze on all datasets, we were able 

to get an average angular error of 7.6º across all datasets as shown on the left of Fig. 4.13. 
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Using two features (15D and quadtree region descriptor) to estimate the gaze, improved the 

results noticeably as shown in the middle of Fig. 4.13. Finally, combining all features together 

achieved a much better result with an average angular error of 5.1˚ on all datasets as shown on 

the right of the same figure. The angular error was illustrated in Fig. 4.13. Particularly, we use 

MPII dataset for illustration as shown in Fig. 4.14. Using K-DMCCA,  the results on the testing 

samples are almost the same as those on the training data, indicating that the feature extracted, 

and the fusion and recognition methods are representative across the datasets.   

 

    Multiple features fusion significantly improved the performance of the proposed algorithm. 

In feature fusion, sufficient information exists by combining all features, as a result, it can be 

expected that features fusion can achieve greater performance. However, the processing time 

and the computational demands of such a system are higher than one-feature systems.  

 

 
Figure 4.14: Using MPII dataset for illustration, we compare testing vs. training datasets using K-DMCCA.  

 

4.5.2  Validating the results on EYEDIAP 3D  

The EYEDIAP training dataset consisted of videos of 4000+ frames for each training sample 

(clip). We have extracted (x,y,z) coordinates for each video. Only the iris region descriptor 

feature was implemented in the 3D gaze estimation to demonstrate that it is invariant to 

illumination, occlusion and rotation.  

The values for predicted gaze estimation were very close for many samples. We employed 
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an extra parameter to show the numerical precision by transforming the computed values using 

a spread factor. The spread factor changes the distance of the vectors based on a predefined 

threshold value [109]. The distance values vary the degree of similarity based on the spread 

factor (𝛾) used. If the 𝛾 ≈ 1, then they belong to a particular class, while 𝛾 ≈ 0, then there is no 

considerable difference and we cannot specify which class it belongs to. The plot in Fig. 4.15.a 

shows spready factor of  𝛾 = 0, which indicated no significant distance between the testing 

samples, therefore, it was very difficult for the proposed algorithm to select which gaze 

label/class the testing sample belongs to. Furthermore, in Fig. 4.15.b, we introduced a spread 

factor 𝛾 = 0.999, which created a distance between testing samples, as a result, the proposed 

algorithm was able to distinguish which gaze label/class the testing sample belongs to.  
 

 

(a) 

 

(b) 

Figure 4.15: (a) Surface plot with spread factor 𝛾 = 0, (b) Surface plot with spread factor 𝛾 = 0.99 , showing 

several levels representing the variations. 
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    We have compared our results with the methods in [77], [79] [84] and [85]. Table 4.1 

illustrates the performance and accuracy of our method in comparison to other methods. Our 

method achieved high accuracy, which was measured using Eq. 4.15. The mean angular error 

is the difference between the estimated feature vector and the ground truth feature vector.  

 

       Mean Angular Error = Cos-1[estimated gaze - ground truth]       (4.15) 

 

Table 4.1: Shows the experimental results validated over MPII, EYEDIAP, Cave and ACS (not available to the 

public) datasets. The accuracy of the predicted gaze direction was indicated in mean angular error.  

 MPII  EYEDIAP CAVE ACS 

     Proposed  4.6° 5.9° 4.8° 5.1° 

     Method in [77] 4.8° 6° N/A N/A 

     Method in [79] 5.9° 10.5° N/A N/A 

     Method in [85] 4.6° 7.5° 6.2° N/A 

     Method in [84]                      5.99° using their own dataset  

 
    It is worth noting that none linear features call for a none-linear classifier.  In our case, features 

such as QD coordinates, distances and angles , gaze vector, etc … , are all features that do not bear a 

linear relation with one another. Hence using a kernel was essential (Since the DMCCA takes linear 

features). To validate this, we ran the same experiment as in section 4.4, but without using the kernel. 

Only DMCCA and a classifier were employed. See figure 4.16 illustration. By using the DMCCA only, 

the graph on the left clearly shows that the testing samples are not close to those of the training 

samples, because our classification threshold is none-linear due to the fact that we have none 

linearly features. 

 

  

Figure 4.16: Illustration of training vs. testing using DMCCA (on the left) and using KDMCCA (on the right) on 

CAVE dataset. The graph on the left (using DMCCA) clearly shows that the testing samples are not close to 

those of the training samples. 
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4.6 Summary 

 
In this chapter, in addition to employing the feature produced in chapter 3, we have introduced 

a new iris region descriptor using quadtree decomposition. The proposed algorithm is 

composed of appearance-based and geometric-based features. The feature extraction process 

starts with facial landmarks and zooms-in to the eye region along with the region descriptor 

spatial indexing and the statistical 15D of the eye region. Each feature acted as a mask/label 

for each sample. Based on the recent success of DMCCA, we proposed a kernel-DMCCA 

feature fusion approach and employed a classifier for optimal gaze estimation. The 

discriminative algorithm transforms the features using kernel to a high dimensional space, 

which established a better correlation between the training and testing datasets. Furthermore, 

the number of parameters to be estimated in the new feature space becomes independent of the 

dimension of the feature space. The output of fused features through K-DMCCA is robust to 

illumination and occlusion, and is calibration free. The proposed framework achieved an 

accurate gaze estimation of 4.8º using Cave, 4.6° using MPII, 5.1º using ACS and 5.9° using 

EYEDIAP datasets respectively.  
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Chapter 5 

 
Robust Classification for Head-pose and Gaze Estimation Using 

Quadtree Decomposition and Geometrical Moments 

 
Overview  

 
This chapter investigates newly developed features to replace the existing features in 

literature that were used in chapter 4. This is achieved by extending the region descriptor 

feature using quadtree and developing it further to structure new features, for the purpose of 

achieving more accurate head-pose and gaze estimation. 

 

    The proposed framework employs multiclass analysis for head-pose and gaze estimation 

using an integrated spatial indexing, statistical and geometrical moments. The proposed 

framework is calibration free (user independent and requires no adjustment) and accounts for 

variations of head-pose, illumination and occlusion. We extract the following feature sets: 

shape of the eyes, tip of the nose, jawline, head angles (three degrees of freedom; roll, yaw 

and pitch) and 2nd and 3rd order moments. The feature sets are structured using geometrical 

moments then fused together. The main contribution is the development of a new framework 

by introducing a newly developed jawline feature along with spatial indexing technique using 

quadtree decomposition and geometrical moments. The outcome is exhibited using binary 

and one-vs-one multi-class SVM, which produces high quality discrimination between true 

and predicted results with loss function.  

 

    The remainder of this chapter is structured as follows: Section 5.1 outlines the proposed 

framework, section 5.2 details the extracted features, section 5.3 develops the implementation 

and experiment, section 5.4 presents the evaluation and results, section 5.5 summarizes the 

chapter.  
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5.1 Proposed Framework 

 

 
Figure 5.1: Shows the workflow of extracting features and classification of the testing set based on SVM. 

 

 

The proposed framework is illustrated in Fig. 5.1, which highlights the approach towards head-

pose and gaze estimation using independent training and testing sets. We extract features from 

the binary pattern obtained after quadtree decomposition, which defines the geometrical 

features of the shape of the eye, face boundary, jawline and nose tip. Using these primary 

features, we compute the symmetry metrics in terms of roll, yaw and pitch, as discussed in 

section 5.2 The geometrical moments masked onto the quadtree decomposition (QD) binary 

patterns identify the object’s centroid and the orientation along major and minor axes of the 

eyes. The training sets of samples are used for creating the SVM model. With this model, 

prediction of the testing set is carried out by either a binary or multi-class classifier.  

5.2 FEATURE EXTRACTION 

5.2.1 Quadtree Decomposition (QD) and Geometrical Moments 

 

5.2.1.1 Principle 

 

Feature1

• Eyes

• Jawline

Feature 2

• Geometrical 
parameters

• Higher order 
moments

Feature 3

• Roll

• Pitch

• Yaw
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In chapter 4.2.3, the QD algorithm was outlined as an iris region descriptor. Below, we will 

develop this principle further to describe an ROI. The narrowing down of possibilities to 

localize the ROI is based on the statistical aspect (by counting the number of 1s and 0s values) 

of the sub-quadrant, and by traversing the horizontal, vertical and diagonal sub-quadrants at 

each level. The sewing (merging) of the sub-quadrants depends on the data/label driven 

determination of the ROI’s geometrical shape. Fig. 5.2 illustrates level 3 of quadrant and sub-

quadrant divisions for creating QD indexing. 

 

Figure 5.2: Level 3 of quadrant and sub-quadrant divisions for creating QD indexing. QD representation, where 

the dark circles are the root and the sub-quadrants, are the leaf nodes. 

 

5.2.1.2 Tessellation  

We use QD as a ROI descriptor in an affine plane with tiling of image features. We can identify 

the symmetry of the face by comparing the Euclidean space to the 2D image space. QD creates 

non-overlapped tiles with defining lines of boundaries forming a “tessellation”.  

    Consider a Euclidean plane ℝ2 , with a point represented as (x, y), subtending an angle 𝜣 

that ranges between 0 and 𝜋. Let the origin be ‘O’. X and Y are sets of points on the x and y 

axes. Cartesian product V= X x Y {(i , j )|, X ∈ 𝑥, 𝑌 ∈ 𝑦}, is a quadratic lattice formed by a set 

of points  (𝑑𝑥,𝑑𝑦) on the x  and y axes, which forms a graph G [112,113]. A collection of cells 

describing the ROI is identified iteratively. We then capture the area by a set of points (x, y) 

and the neighboring pairs of points.  

    𝐶𝑒𝑙𝑙(𝑖, 𝑗) = 𝑥𝑖  𝑦𝑗, forms a base cell, adjacent to one another, such that (i-1,j) ,(i+1,j), (i,j-

1) and (i,j+1) are the four adjacent nodes that relate to the tree [112,113].   
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    The quadtree technique recursively decomposes the original image into tessellated segments 

such that if they are recombined into groups, then the original image can be reconstructed. The 

hierarchical decomposition enables addressing for rapid access to any geographical part of the 

image. It retains explicitly in the data structure a hierarchical description of image patterns, 

elements, and their relationships. Also its data structure distinguishes the object from 

background and thereby can focus on the interesting tessellated subsets of the data. 

 

    The detention of several tessellation schemes for different planar topologies is presented 

below using the concept of shape polynomials and tessellation matrices. The shape polynomial 

represents the geometry of the planar region while the tessellation matrix reveals the spatial 

adjacency of the regions. 

 

Definition 1:  A tile 𝜏𝑘 , is a group of base cells that are of similar shape as the larger form. 

 

Definition 2:  Notations of tiles is based on the shape polynomial.  

 
                                        (a)                                        (b)                           (c) 
Figure 5.3: (a) Showing two adjacent tiles (b) Tile with polynomial shape 𝑆(𝐿𝑘), (c) Tile with polynomial  𝑆(𝑃𝑘). 

 

(i)  𝑆(𝐼𝑘 ) = ∑ 𝑥𝑖𝑘−1
𝑖=0    . e.g: I2 , as shown in Fig. 5.3.a. 

(ii)  𝑆(𝐿𝑘) =  ∑ 𝑥𝑖𝑚−1
𝑖=0 + ∑ 𝑦𝑗𝑠

𝑗=0  , m+s=k , for k >2, as shown in Fig. 5.3.b. 

(iii)  𝑆(𝑃𝑘) =  ∑ 𝑥𝑖 .𝑠
𝑖=1 ∑ 𝑦𝑗𝑛−1

𝑗=𝑚 + ∑ 𝑦𝑗𝑚−1
𝑗=0  

S(n-m)+m=k , for k>2, as shown in Fig. 5.3.c. 

 

Definition 3: Shape polynomial of a tile is given as: 

 

 

 

 

 

 

 

 

 
 

     

 

 

 

 

for k>2 
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                                   𝑆(𝜏𝑘) = ∑ 𝛾𝑖𝑗𝑥
𝑖𝑦𝑗

𝑖,𝑗∈ℝ2                                                         (5.1)  

                               The area of such a tile is equal to 𝑆(𝜏𝑘) 

 

                                𝛾𝑖𝑗 = { 
1     𝐼𝑓𝑓 ∀(𝑥, 𝑦)𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑎 𝑐𝑒𝑙𝑙 (𝑖, 𝑗)  ∈  𝜏𝑘

 0   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                       
             (5.2) 

 

Definition 4: A tile  𝜏𝑘 is rotated by an angle Ψ around a 𝜎 −axis. Using an operator 𝛹𝜎 , the 

new formation or shape of the tile is  𝛹𝜎. 𝑆(𝜏𝑘). 

 

    The tile orientation in the Cartesian coordinates allows certain sets of permissible operators.  

Definition 5: Common transformations are reflections and rotations of the tiles. 

 
Figure 5.4: (a) Tile 𝑆(𝑃5),  (b)  𝑆(𝑃5)  reflected around y-axis,  (c)  𝑆(𝑃5)  is rotated around z-axis. 

 

On a given tile, say 𝑃5 , we can have a set of permissible operators, such as 𝜋𝑥 ,𝜋𝑦 ,𝜋𝑧, 𝜆𝑥 , 𝜆𝑦 

, 𝜆𝑧. The reflection operator  𝜋𝑧 is in the z axis, while  𝜆𝑧 is the rotation around the z axis. The 

change in orientation of the tile is seen in Fig. 5.4.  

Definition 6: Given a region R=⋃ 𝑅𝑖
𝑛
𝑖=1 , then we have a spatial distribution of polynomial Si, 

which allows alternative orientations.  

 

Definition 7: Two regions are “homothetic” if they are collinear and have an affinity or are 

transformed in the affine plane. Consider two regions, 𝑅𝑖  𝑎𝑛𝑑 𝑅𝑗, with shape distributions of 

𝑆𝑖 𝑎𝑛𝑑 𝑆𝑗; both are said to be homothetic if a sequence of permissible orientations makes them 

similar within the plane [112,113].  

 
    With reference to QD, a cell represents a point, edge and segment, as an attribute in each 

sub-quadrant. Collectively, such features in a cell or sub-quadrant form boundaries to describe 

 

 

                                                                                   

 

 

 

 

 

 

         (a)                   (b)                      (c)  
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the object in the global space [68,112,113,114,115,116]. The next section will illustrate how 

features are constructed using the principle of tessellation.  

 

5.2.1.3 Tessellation of features  

An image of size 256 x 256, with level 3 decomposition results in Fig. 5.5.a. For identifying 

the features in the form of tessellation tiles, we use the one count (defined in section 4.2.3.1). 

Choosing the denser tiles results in Fig. 5.5.b. The proposed algorithm spatially identifies the 

eye region and nose based on the one count and its neighborhood, as seen in Fig. 5.5.c.  

 

    Tessellation of a polygon is used in the grouping of facial features. The regular square tile 

and its neighbor form the basis of the eyes and nose.  Each tile at every level results in a square 

tile of size 2
N

L⁄  x 2
N

L⁄  , where L is the particular level of decomposition. Furthermore, 

translational and rotational symmetry can be easily identified using the zeros and ones count, 

as discussed in section 5.2.1.4.1. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.5: (a) QD image with a predefined threshold, (b) tiles selected by the algorithm based on one-count of 

QD, (c) tiles of nose and eyes facial features. 

 

    The tessellation of features through QD is presented in Fig. 5.5. The image is decomposed, 

as shown in Fig, 5.5.a, then showing the selected tiles by the algorithm based on ones-count of 

QD, as shown in Fig. 5.5.b and Fig. 5.5.c. 
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Figure 5.6: Lateral view QD from ACS dataset. Red dot is the glass frame. 

 

    The occluded image in Fig. 5.6, exhibits the one count as denser around the edges of the 

glass frame. However, in this complex case with glass frames, the proposed algorithm does not 

consider the choice of tiles with the maximum one count at the frame. Instead, it scans and 

compares the one count at the glass frame region with the one count at the eye region. Only the 

eye region, which exhibits the less dense one count will be chosen as the ROI.  

 

 
(a) 

           
                                    (b)                                                             (c)                                      (d) 

Figure 5.7: Image from CAVE dataset. (a) Presenting selected tiles from the one count after QD; (b) Two sub-

quadrants identifying the right and left eyes; (c) Presenting the sub-quadrants of the nose and (d) Presenting the 

sub-quadrants of the face boundary. 

 

    Samples from the CAVE dataset with removal of non-dense one count of the QD are shown 

in Fig. 5.7.  The sub-quadrants of the facial feature’s tiles, as shown in Fig. 5.7.a and 5.7.b, are 

considered for the facial feature extraction of the eyes, nose and jawline (face boundary). The 
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jawline is passing through multiple sub-quadrants and the choice of selecting multiple sub-

quadrants is mandatory for the face boundary, since it extends to more than two sub-quadrants.  

 

5.2.1.4 Geometrical Moments 

Moments characterize distances, such as length, area and width based on the reference points 

in a given ROI [113].  

 

    Consider pixels in an affine plane represented as Cartesian coordinates, moment of order 

(p,q) in the continuous domain of image function f(x,y) is given in the equation below: 

 

                        𝑚𝑝𝑞  =      ∫ ∫ 𝑥𝑝𝑦𝑞∞

−∞
𝑓(𝑥,𝑦)𝑑𝑥𝑑𝑦 

∞

−∞
     

 

            

                           (5.3) 

    In the discrete image of size M x N, g(x,y) the moments are given as shown below: 

 

                        𝑀𝑝𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞 𝑔(𝑥,𝑦)𝑁−1
𝑦=0

𝑀−1
𝑥=0  

 

                            (5.4)          

 p,q are the order of the moments.  
 

    The set of moments {𝑀0𝑞} 𝑎𝑛𝑑 {𝑀0𝑝}  are the projections on x and y axis, respectively. The 

one-dimensional projection is given as: 

                          𝑚𝑝 =      ∫ 𝑥𝑝𝑣(𝑥)𝑑𝑥 
∞ 

−∞ 
                                                (5.5) 

 𝑣(𝑥) is the vertical image projection, with a statistical distribution of the image data.  

For example, we can consider second order moments  𝜇20: 

𝜇20 = ∫ ∫ 𝑥2𝑓(𝑥,𝑦)𝑑𝑥

∞

−∞

∞

−∞

 

𝜇20 represents the variance of the image data [10]. 

 

Properties of the moments: 

1. The zeroth order moment  𝑀00  gives the total mass of the distribution of the image data. 

2. 1st order moments { 𝑀01 ,𝑀10} are called center of mass (COM), which are parallel to 

the x and y axis, respectively. COM is used to locate central moments that are given by 

(x, y) coordinates: 𝑥̃ =
𝑀10

𝑀00
  and  𝑦̃ =

𝑀01

𝑀00
 . 
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If the central moment coincides with the origin, then the central moments 𝑥̃ = 0 and 

𝑦̃ = 0 are represented as 𝜇10  and  𝜇01. 

 

3. 2nd order moments are called moment of inertia, represented as { 𝑀20 ,𝑀11,𝑀02}. They 

provide the principle axes and the orientation of the object 𝜑:  

                                 𝜑 =
1

2
 tan−1 2 𝜇11

𝜇20−𝜇02
                                          (5.6) 

where 𝜑  is the angle of the principal axis with respect to the x axis. The orientation 

axis mainly depends on  𝜇11 ,𝜇20 , 𝜇02  

 

The ROI of the eye is presumed to be an ellipse, with the major axis (Alpha) and minor 

axis (Beta) values estimated based on the second order moments: 

                       (Alpha, Beta) =√
𝜇20+𝜇02  

2
± √4 ∗ 𝜇11

2 + [𝜇20 − 𝜇02]2             (5.7)                           

 

Radii of gyration (RoG) indicates the concentration of mass without change about the 

axis.  

                                       𝑅𝑜𝐺𝑥 = √
𝑀20

𝑀00
      𝑅𝑜𝐺𝑦 = √

𝑀02

𝑀00
                                    (5.8)                                    

 

Around the center (𝑥̃ , 𝑦̃ ), 𝑅𝑜𝐺 = √
𝜇20+𝜇02

𝜇00
. 

 

4. The 3rd order moment identifies the skewness is given below: 

                                 𝑆𝑘𝑥 =
𝜇30

𝜇20
3/2      𝑆𝑘𝑦 =

𝜇03

𝜇02

3
2

                                                       (5.9) 

 

    The skewness provides the degree of deviation around the x and y axis, respectively. The 

skewness coefficient sign provides the degree of skew on each side of the axis. For instance, 

the case Skx and Sky are zero indicates symmetry. If both are positive, the distribution is skewed 

left of the y axis and below the x axis [32].  

 

5.2.1.5 Moments transformation   

Geometric transformations, scaling, translation, rotation and reflection  can be detected in 

binary images by using moments [113]. 
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Scale:  

Transformed moments scaled by (δ,ε), of image 𝑓(𝑥, 𝑦), is given as: 

 

𝑀𝑝𝑞
́ = 𝛿𝑝+1𝜀𝑞+1𝑀𝑝𝑞          δ = ε 

 

𝑀𝑝𝑞
́ = 𝛿𝑝+𝑞+2𝑀𝑝𝑞               δ≠ 𝜀 

 

 

       (5.10) 

 

Translation: 

 

𝑀𝑝𝑞
́ =  ∑∑(

𝑝
𝑟
)

𝑞

𝑠=0

(
𝑞
𝑠
)

𝑝

𝑟=0

𝛿𝑝−𝑟𝜀𝑞−𝑠𝑀𝑟𝑠 

 

 

 

    (5.11) 

Rotation:  

𝑀𝑝𝑞
́ =  ∑ ∑ (

𝑝
𝑟
)𝑞

𝑠=0 (
𝑞
𝑠
)𝑝

𝑟=0 (−1)𝑞−𝑠  (𝑐𝑜𝑠𝜃)𝑝−𝑟+𝑠(𝑠𝑖𝑛𝜃)𝑞+𝑟−𝑠.𝑀𝑝+𝑞−𝑟−𝑠,𝑟+𝑠              (5.12)        

                                                  

Reflection:  

𝑀𝑝𝑞
́ = (−1)𝑝𝑥 𝑀𝑝𝑞                (5.13) 

 

Based on the materials presented in sections 5.2.1.1-5.2.1.4, we are now able to extract features 

as follows: 

5.2.2 Eye Region and Nose tip Feature Extraction  

Eyes and nose are selected by the one-count of the tiles. For example, if the image size is 512 x 

512, we have a tile of size 
29

23
 that is 64 x 64 bits. The quadtree data structure is stored in the 

form of an array, whose size is 26 which is represented in the form of 16 x 4. As a general rule, 

for higher dimension images, the eye region is selected based on four neighboring tiles, while 

the nose is selected based on two neighboring tiles. Lower resolution images require more 

neighboring tiles.   

Once the tiles are picked, the moments are calculated. We extract the shape of the eye based on 

the 1st and 2nd order moments. For the detection of the center of the nose, we calculate the 1st 
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through 3rd order moments, with the addition that we are interested in the center of the tiles 

along with the statistical aspects. 

5.2.3 Head-pose: Distances and Angles Feature Extraction  

Facial landmarks analysis detects eyes, nose and jawline. All facial landmarks have a frame of 

reference, which accounts for any changes of orientation. Peng et al. [117] proposed a 

technique for eye detection with two directional gradients relying on light reflectance as a 

distinctive feature. Similar considerations are adopted for the jaw and boundary/edges of the 

face. Using a medial axis, the face pixels are projected along the nose [118].  

 

    We adopt Lucas-Kanade algorithm [119], which is used for measuring displacements within 

a small neighborhood of successive frames of images. This method minimizes the sum of 

square error between the image and the given template. With a tracking window size 10 x10, 

they track three points namely nose, right and left eyes [118].  

 

    As a measure of symmetry, we take the equations for these three reference points, namely, 

the centers of right and left eyes and the center of the nose, to calculate the movement in images 

along the longitudinal axis as follows: 

 

                            𝑟𝑜𝑙𝑙 = arctan (
𝑃𝑡𝐸 𝐿𝑒𝑓𝑡𝑦−𝑃𝑡𝐸 𝑅𝑖𝑔ℎ𝑡𝑦

𝑃𝑡𝐸 𝐿𝑒𝑓𝑡𝑥−𝑃𝑡𝐸 𝑅𝑖𝑔ℎ𝑡𝑥

)                                            (5.14) 

 

                            𝑦𝑎𝑤 = 𝑃𝑡𝑁𝑜𝑠𝑒𝑥́
− 𝑃𝑡𝑁𝑜𝑠𝑒𝑥

                                                         (5.15) 

 

                                      𝑝𝑖𝑡𝑐ℎ = 𝑃𝑡𝑁𝑜𝑠𝑒𝑦
− 𝑃𝑡𝑁𝑜𝑠𝑒𝑦́

                                                          (5.16)                                                   
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where (𝑃𝑡𝐸 𝑅𝑖𝑔ℎ𝑡𝑥 ,𝑃𝑡𝐸 𝑅𝑖𝑔ℎ𝑡𝑦) is the center of right eye and  (𝑃𝑡𝐸 𝐿𝑒𝑓𝑡𝑥 ,𝑃𝑡𝐸 𝐿𝑒𝑓𝑡𝑦) is center of 

the left eye. ( 𝑃𝑡𝑁𝑜𝑠𝑒𝑥
,𝑃𝑡𝑁𝑜𝑠𝑒𝑦

) is the COM (center of mass) of the nose while 

(𝑃𝑡𝑁𝑜𝑠𝑒𝑥́
 ,𝑃𝑡𝑁𝑜𝑠𝑒𝑦́

) is the projection point on the longitudinal axis. 

 

    Roll angle is based on the current location of the eye. Estimation of this angle is 

accomplished by the line passing through the eyes, parallel to the frontal plane. Yaw and pitch 

angles are based on the points of reference on the longitudinal axis and COM of the nose. These 

two parameters (yaw and pitch) are analyzed as displacements, and not angles, which are easier 

to calculate, even when encountering changes in frontal pose [118]. 

 

5.2.4 Frame of reference   

The frame of reference is illustrated in Fig. 5.8. We employ the QD analysis to localize the 

feature set based on facial symmetry.  With full facial features constructed from the image in 

sagittal and frontal planes, we provide a measure of displacement and rotation around the 

longitudinal axis. Head-pose (head orientation) is based on the symmetrical metrics with these 

reference frames.                        

 

Figure 5.8: Presenting two anatomical planes commonly used for symmetry measures. 

 

    Anatomical planes are commonly defined using MRI and other imaging techniques. For 

calculations of yaw and pitch, the longitudinal axis is the frame of reference. For an image of 

 

 

                           Sagittal plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              Frontal plane         Longitudinal axis 



 

69 

 

size 256 x 256,  after QD, this axis lies on the following coordinates (128,0) , (128,128) and 

(128,256).  

 

5.2.5 Classification 

5.2.5.1 Binary SVM 

SVM is a classifier that provides an optimal boundary solution based on the feature set or raw 

data. This will be employed in MPII and CAVE. We have used binary SVM with Gaussian 

kernel (Gk-SVM) function indicating a non-linearly separable class of data. With training and 

testing feature sets, the transformation from non-linearly-separable to linearly-separable form is 

accomplished by “kernelization” and is represented as shown in Eq. 5.17 [120]: 

                    ϕ(x).ϕ(x ́ ) =  𝑒−𝛾‖𝑥−𝑥́‖2
 , ∀ 𝒙, 𝒙́  ∈  ℝ𝒅                          (5.17) 

    To find the margin separating the feature space, we use a quadratic problem formulation [120] 

as follows: 

min
𝑤,𝑏,𝜁𝑖

1

2
 ‖𝑤‖2 + 𝐶 ∑𝜁𝑖

𝑛

𝑖=1

 

                              St: (𝑦𝑖(𝑤.𝜙(𝑥𝑖) + 𝑏 ) ≥ 1 − 𝜁𝑖 

                      𝜁𝑖  ≥ 0    ∀𝑖    

 

 

 

 

         (5.18) 

 

where constant C > 0 is a tuning parameter, 𝜁𝑖 is slack variable, and w is the projection.  

    In a binary SVM, with a feature set X=[x1, x2…xn]  ∈  ℝ𝑑𝑥𝑛 , corresponding to two sets of 

labels  𝑦𝑖 = ±1, the mapping of the input feature is constructed by the function 𝛟, as seen in Eq. 

5.17.  The mathematical notation in Eq. 5.18 signifies the inverse margin among two classes 

and contains parameter b, to be adjusted based on the value of slack variable 𝜁𝑖 [120]. Once we 

solve Eqs. 17 and 18, the decision making for the testing dataset is as follows:  

                           𝑦 = 𝑠𝑔𝑛(∑𝑦𝑖 ϕ(x).ϕ(x ́ )𝜆𝑖  + b )                                                      (5.19) 

Where ‘b’ can be estimated by a set of support vectors ranging from 0 to C of a given  𝜆𝑖 (𝜆𝑖 

refers to a class). 
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5.2.5.2 Multi-class SVM  

For any data structure of over 2 classes, one-vs-one multi-class SVM is commonly used. The 

multi-class SVM will be employed on EYEDIAP.  

i. One-vs-One [120]:  

The number of classifiers is N(N-1)/2, each class is trained as a positive and a negative one ( 

±1). 

             min
𝑤𝑖𝑗,𝑏𝑖𝑗,𝜁𝑖𝑗

1

2
 𝑤𝑖𝑗

𝑇𝑤𝑖𝑗 + 𝐶 ∑𝜁𝑖𝑗
𝑗
𝑤𝑖𝑗

𝑇

𝑙

𝑗=1

 

            St:  (𝑤𝑖𝑗
𝑇.𝜙(𝑥𝑝) + 𝑏𝑖𝑗 ) ≥ 1 − 𝜁𝑖𝑗  

𝑝
 if 𝑦𝑝 = 𝑖 

            𝑤𝑖𝑗
𝑇.𝜙(𝑥𝑝) + 𝑏𝑖𝑗  ≤  −1 + 𝜁𝑖𝑗  

𝑝  𝑖𝑓𝑦𝑝 ≠ 𝑖           𝑎𝑛𝑑         𝜁𝑗
𝑖

≥ 0,1,2,…𝑝  

 

 

 

        (5.20) 

where w is the projection, b can be estimated by a set of support vectors, slack variable 𝜁𝑖 and 

𝜙 is the mapping function. The value belonging to a particular feature set (which belongs to the 

ith or jth class) is illustrated in Eq. 5.20. 

    The training set selects only the positive classes from the data set. For the testing phase, each 

classifier is calculated using the decision function. The classifier selects the highest value, 

resulting in the most accurate head-pose and gaze estimation.  

 

5.3 Implementing the Experiment 

We conducted experiments on three public datasets: Cave (5880 images) [94], MPIIGaze (3000 

images of left and right eyes) [79] and EYEDIAP (15 frames for each VGA video per 

participant) [96]. We also conduced the experiment on ACS dataset (10 subjects; not available 

to the public) [98]. The datasets consisted of different samples with variations of illumination, 

occlusion and head-pose. We structured 50% of the dataset for training and 50% for testing. 

We compared the proposed framework with recent existing methods [77], [79], [84], [39] and 
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[85]. Using a full-face image, QD starts at 256 x 256 size with a minimum block size of 32 x 

32, indicating a level 3 decomposition.  

 

    The localization of the eye shape (the ROI in this case) is typically an ellipse characterized 

by major and minor axes. We employed 𝑀20 ,𝑀02 𝑎𝑛𝑑 𝑀11, as given by Eq. 5.6, where the 

orientation/tilt of the ROI is given by angle φ.  The second order moments are also called the 

“principal axis” method. The tilt of the ROI can be determined by angle φ, For example, if  

𝑀20 − 𝑀02 = 0 𝑎𝑛𝑑  𝑀11 = 0 , 𝑡ℎ𝑒𝑛 φ =0; if both are positive then 0<φ <45. 

 

    Moments are used to get the dimensions of principal axis that are also independent of 

direction [121]. When the direction is used for identification, there is a higher precision in 

pattern recognition. Higher moments are used for discriminatory purposes [121]. Hence, we 

have considered RoG and skewness for differentiating rotational invariance and statistical 

measure of deviation around the axis of symmetry [113], as presented in Eqs. 5.8 and 5.9. 

 

5.3.1 Experiments on Datasets 

5.3.1.1  MPII 

The dataset is labeled as RIGHT (‘r’) or LEFT (‘l’), for gaze direction and head-pose 

estimation. Fig. 5.9 below presents samples selected from MPII, illustrating the detection of 

eyes and nose using second order moments. 

 
Figure 5.9: (a) QD of a sample selected from MPII, (b) Localization of eyes and nose (COM), (c) QD of another 

sample with a different head orientation, (d) Eyes and nose identified using second order moments. 

 

 
                                               (a)                                                                (b) 

 

 

 

                                 (c 

 

 

 
                                          (c)                                                              (d ) 
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5.3.1.2 CAVE 

The image acquired from the dataset consisted of 3 parameters: head-pose, vertical and 

horizontal displacement, see Table 5.1. Fig. 5.10 presents a sample taken from CAVE 

illustrating the detection of eyes, nose and jawline. 

 

Table 5.1:  List of image acquisition, labeled in 3 variables. 

Head-pose Horizontal offsets Vertical offsets 

0 P 0°, ±5°, ±10°, ±15° 0°, ±5°, ±10°, ±15° 

± 15P 0°, ±5°, ±10°, 15° 0°, ±5°, ±10°, 15° 

30 P 0° 0° 

 

 
(a)                                       (b) 

Figure 5.10: (a) QD of selected tiles of an image, (b) Identifying eyes, nose and jawline. 

 

 

5.3.1.3 EYEDIAP   

This dataset captured images in RGB and depth camera [82,96]. We selected frames that spread 

over 100s to capture variations of head-pose and gaze direction. Figure 5.11 presents two 

consecutive frames from EYEDIAP, illustrating the detection of eyes, nose and face boundary.   

 

Using geometrical moments, we were able to deduce the roundness and eccentricity of ROI as 

shown below:  

Roundness 𝜅 =
𝑃2

2𝜋𝐴
 , where P denotes the perimeter and A denotes the area.  

                             Eccentricity 𝜀 =
√𝐴𝑙𝑝ℎ𝑎2−𝐵𝑒𝑡𝑎2

𝐴𝑙𝑝ℎ𝑎
 = 

[𝜇20−𝜇02]2−4[𝜇11]2

[𝜇20+𝜇02]2
                             (5.21)  

 

 
                                                   (a)                                                             (b) 

 

 

            
 

. 
 

. 

 

. 
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            Figure 5.11: QD of a frame showing (a) Localization of ROI (eyes, nose and face boundary). 

                                                                       (b) Localization of ROI in two consecutive frames. 

                               . 

 

5.4  EVALUATION AND RESULTS 

To evaluate the robustness of the proposed framework, we analyzed the effect of employing one 

feature, two features versus all features combined. A comprehensive analysis was performed 

and outlined in this section. 

    We have considered the following feature sets: eye region, nose COM, jawline, distance and 

angles between facial landmarks (distance between the eyes center, distance from the center of 

each eye to the nose COM, distance from the points on the jawline to the points on the 

symmetry axis), roll, pitch, yaw, 2nd and 3rd order moments. Each dataset was structured by 

50% for training and 50% for testing. 

 

5.4.1 Evaluation on MPII 

Using a binary classifier (two classes), with 50% hold out, we create a model to train and cross-

validate SVM by mapping the prediction data using a kernel function. Based on the trained 

classification SVM model, the model is developed and the prediction process (estimation) is 

completed using predicted class labels. The SVM model returns a matrix of scores indicating 

the likelihood that a label belongs to a particular class.  
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    The predictor returns a score, for the input feature set, as a row vector that transforms the 

input linearly with a coefficient factor based on the model [109,120]. The classification has 

positive and negative set of classes based on the input feature values.  

 

    Classification has an associated loss function that determines the inaccuracy of the prediction 

[109,120]. For a binary feature set 𝑦𝑗, the classes are +1 and -1, 𝑚𝑗 = 𝑦𝑗𝑓(𝑋𝑗), where X is the 

predictor and 𝑚𝑗  is the loss value.  

 

5.4.1.1 Employing one feature: eye shape 

We adopt the k-fold cross-validation [122] which is a procedure used to estimate the skill (in 

terms of a loss value) of the model on new data (testing set), where k refers to the number of 

groups that a given dataset is split into (true vs. predicted). As seen in Table 5.2 (selection of a 

handful of samples for illustration purpose), the loss value is presented by a score for true vs. 

predicted labels of the eye region (negative score corresponds to l ‘left’ whereas positive 

corresponds to r ‘right’). The algorithm, using one feature only, failed in two cases to predict 

the correct gaze label. The algorithm, using one feature only, failed in two cases to predict the 

correct gaze label.  

Table 5.2: True vs. predicted label with a score value for eyes. 

True     Predicted 

'r' 'r' 

'l' 'l' 

'l' 'l' 

'r' 'r' 

'l' 'l' 

'r' 'r' 

'l' 'l' 

'l' 'r' 

'r' 'r' 

'l' 'l' 

'l' 'l' 

'l' 'l' 

'l' 'l' 

'l' 'l' 

'r' 'r' 

'l' 'l' 

'r' 'l' 

'l' 'l' 
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    To visualize the gaze-class association, we used the t-distributed Stochastic Neighbor 

Embedding (t-SNE) for two gaze direction classes, namely, ‘right’ and ‘left’. The t-SNE is a 

machine learning algorithm for visualization, It uses Euclidean distance to embed high-

dimensional data points into low-dimensional data points [123], in such a way that similar 

objects are modeled by nearby points and dissimilar objects are modeled by distant points with 

high probability. Fig. 5.12 shows the classification in t-SNE 2D embedding with a loss value 

with a range of 0.3889 and 0.5556. A loss value of 0.3889 presents a better separation of gaze-

class. The t-SNE is a machine learning algorithm for visualization.    

 
Figure 5.12: (a) t-SNE 2D embedding of right and left gaze direction points with a loss value of 0.3889  

                      (b) t-SNE 2D embedding of right and left gaze direction points with a loss value of 0.5556.  

 

5.4.1.2 Employing Two Features: axis values and moments 

By applying two features, as seen in Table 5.3, the loss value is presented by a score for true vs. 

predicted labels of the axis values and moments. Employing two features improved the results, 

 

              

        

 

              

       

 

 

 

(a)  

 

(b) 
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however, we are still getting errors. Refer to Section 5.4.1.4 for results of employing all features 

combined. The algorithm, using these feature, failed in one case to predict the correct gaze label.  

 

Table 5.3: True vs. predicted for axis values and moments. 

True label Predicted 

'l' 'l' 

'l' 'l' 

'r' 'r' 

'l' 'l' 

'l' 'l' 

'r' 'r' 

'l' 'l' 

'r' 'r' 

'l' 'l' 

'l' 'l' 

'r' 'r' 

'r' 'l' 

'r' 'r' 

'l' 'l' 

'l' 'l' 

'r' 'r' 

'l' 'l' 

'l' 'l' 

 

 

5.4.1.3 Employing Head-pose Features: roll, yaw and pitch 

 

By applying head-pose features, as seen in Table 5.4, the loss value is presented by a score for 

true vs. predicted labels of roll, yaw and pitch. Refer to Section 5.4.1.4 for results of employing 

all features combined. The algorithm, using these features, failed in two cases to predict the 

correct gaze label. 

 

Table 5.4: True vs predicted for roll, yaw and pitch. 

True label Predicted 

'l' 'l' 

'l' 'l' 

'l' 'l' 

'r' 'r' 

'l' 'r' 

'l' 'l' 

'l' 'l' 

'l' 'l' 
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'r' 'r' 

'l' 'l' 

'r' 'l' 

'r' 'r' 

'l' 'l' 

'l' 'l' 

'l' 'l' 

'r' 'r' 

'l' 'l' 

'r' 'r' 

 

5.4.1.4 Employing All Features  

Combining all features (eye region, nose COM, jawline, roll, yaw & pitch, along with symmetry 

axis, 2nd and 3rd order moments.), the t-SNE embedding is illustrated in Fig. 5.13, and the score 

comparison is presented in Fig. 5.14. Combining multiple features significantly improved the 

performance of the proposed framework, and the score values for true vs. predicted labels match 

with no false prediction returned by the algorithm. In feature fusion, sufficient information 

exists by combining all features, as a result, it can be expected that features fusion can achieve 

greater performance. However, the processing time and the computational demands of such a 

system are higher than one-feature system.  

 
 

Figure 5.13: t-SNE 2D embedding of right and left gaze points after fusing all features. 
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Figure 5.14: Score comparison of training vs. testing of random samples from MPII dataset, using all feature sets. 

Each sample on the x axis corresponds to a specific gaze class.  

 

5.4.2 Evaluation on CAVE 

 
Using a fit multiclass error-correcting output code (fitecoc), we created a model using the 

predictors with a posterior probability value assigned by the learner. Using all features sets,   

Table 5.5 presents two classes; illustrating how the class with the highest posterior probability 

corresponds to the gaze-class. As seen in Table 5.5 (selection of a handful of samples for 

illustration purpose, using two gaze labels only), the predictor  (using all features) returned a 

matching result (the highest probability matching the corresponding gaze label) in every case 

predicting the correct gaze label. 

    We employed the one-vs-one classifier and the predict ensemble response resubstitution 

(resubpredict), to get N x K posterior probabilities for all N input feature set, where K is the 

number of classes [120]. 

 

Table 5.5: Predictors with a posterior probability assigned by the learner, using all feature sets.  

True Label Predicted Label Posterior probability 

'N15P'                                '15P' 

'15P' '15P' 0 1 

'15P' '15P' 0 1 

'N15P' 'N15P' 1 2.37E-11 

'N15P' 'N15P' 1 2.24E-11 

'15P' 'N15P' 0 1 

'N15P' 'N15P' 1 2.37E-11 

'N15P' 'N15P' 1 2.24E-11 

'15P' '15P' 0 1 

'N15P' 'N15P' 1 2.24E-11 

'15P' '15P' 0 1 

https://www.mathworks.com/help/stats/fitcecoc.html#bufm0tv
https://www.mathworks.com/help/stats/fitcecoc.html#bufm0tv
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‘N15P’ 'N15P' 1 2.24E-11 

'15P' '15P' 0 1 

'N15P' 'N15P' 1 2.24E-11 

'N15P' ‘N15P’ 1 2.24E-11 

'N15P'  'N15P'  1 2.24E-11 

'N15P' 'N15P' 1 2.37E-11 

'N15P' 'N15P' 1 2.24E-11 

'N15P' 'N15P' 1 2.24E-11 

 

    The t-SNE embeddings is illustrated in Fig. 5.15 for 4 different classes: class 1: N15P (-15P), 

class 2: 0P, class 3: 15P and class 4: 30P. Furthermore, Table 5.6 presents the true vs predicted 

for these classes and the corresponding posterior probabilities, using all feature sets, where the 

highest posterior probability refers to the corresponding gaze-class.  Finally, to simplify the 

illustration, Fig. 5.16 presents the posterior probability of training vs. testing, for two classes 

(15P and 30P), using all feature sets. As can be seen in Fig. 5.16, the results of posterior 

probability of training set are very close to the testing set.   

 
Figure 5.15: t-SNE 2D embeddings for all 4 classes. 
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Figure 5.16: Posterior probability of training vs. testing on CAVE dataset, for two classes 15P and 30P, using all 

feature sets.   

 

    The following consecutive sequence of observations were recorded: 7 positive and 21 

negative, 7 positive and 9 negative, 7 positive and 1 negative observation etc., were fit to the 

posterior probability.  A total of  
K(K−1)

2
  learners with outcomes having as low as one 

observation to maximum number of input observations. As seen in Table 5.6 (selection of a 

handful of samples for illustration purpose, using four classes), the predictor  (using all features) 

returned a matching result (the highest probability matching the corresponding gaze label) in 

every case predicting the correct gaze label. 

 

Table 5.6: True vs predicted and corresponding posterior probabilities, for four classes, using all feature sets. The 

highest posterior probability refers to the corresponding gaze-class. 

True Predicted Posterior probability 

class 1 ‘-15P’      class 2 ‘0’          class 3 ‘15P’        class 4 ‘30P’ 

'15P' '15P' 0.031 0.064 0.905 2.22E-14 

'15P' '15P' 0.025 0.050 0.925 2.22E-14 

'15P' '15P' 0.031 0.064 0.905 2.22E-14 

'0P' '0P' 0.021 0.955 0.023 2.22E-14 

'0P' '0P' 0.021 0.955 0.023 2.22E-14 

'15P' '15P' 0.031 0.064 0.905 2.22E-14 

'N15P' 'N15P' 0.931 0.050 0.0184 2.22E-14 

'0P' '0P' 0.021 0.955 0.0233 2.22E-14 

'N15P' 'N15P' 0.931 0.050 0.0185 2.22E-14 

'0P' '0P' 0.021 0.955 0.023 2.22E-14 

'0P' '0P' 0.021 0.955 0.023 2.22E-14 

0
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'0P' '0P' 0.021 0.955 0.023 2.22E-14 

'0P' '0P' 0.021 0.955 0.023 2.22E-14 

'0P' '0P' 0.021 0.955 0.0233 2.22E-14 

'15P' '15P' 0.031 0.064 0.905 2.22E-14 

'15P' '15P' 0.031 0.064 0.905 2.22E-14 

'N15P' 'N15P' 0.931 0.050 0.0185 2.22E-14 

 

5.4.3 Evaluation on EYEDIAP 

The dataset exhibits two classes (FC4=left, and FC1=right), see Fig. 5.17. The illustration of 

how the class with the highest posterior probability corresponds to the gaze direction label is 

presented in Table 5.7, while Fig. 5.18 presents the posterior probability of training vs. testing, 

for two classes FC1 and FC4, using all feature sets. For visual illustration, the t-SNE 2D 

embeddings for 2 different classes is presented in Fig. 5.17. As seen in Table 5.7 (selection 

of a handful of samples for illustration purpose), the predictor  (using all features) 

returned a matching result (the highest probability matching the corresponding gaze 

label) in every case predicting the correct gaze label. 

 

 

Figure 5.17: t-SNE 2D embeddings for 2 different classes. 
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Table 5.7: True vs predicted for two classes. 

True Predicted Posterior probability 

Class 'FC1'                                   Class 'FC4'   

‘FC1’ 'FC1' 0.99312 0.0068813 

‘FC1’ 'FC1’ 0.99321 0.0067917 

‘FC4’ 'FC4' 6.011e-07 1 

‘FC1’ 'FC1' 0.99321 0.0067917 

‘FC1’ 'FC1’ 0.99321 0.0067917 

 

 

 
Figure. 5.18: Posterior probability of training vs. testing on EYEDIAP dataset,  

for two classes FC1 and FC4, using all feature sets. 

 

 

5.4.4 Evaluation on ACS  

      
             Figure 5.19: Score comparison of training vs. testing of random samples from ACS dataset, using all 

feature sets. Each sample on the x-axis corresponds to a specific gaze class.  

 

0.99

0.992

0.994

0.996

0.998

1

100 1500 2500 3000 3500

P

o

s

t

e

r

i

o

r

Number of samples

Posterior probability of two classes

Training set Testing set



 

83 

 

We used ACS dataset (not available to the public) to validate the proposed framework. Fig. 

5.19 illustrated the results of score comparison between training vs. testing, using all feature 

sets.  Using multiple features significantly improved the performance of the proposed 

framework.  

 

    A comparison of the proposed framework (using all features) with the methods in [77], [79] 

[84], [85] and [124] was conducted. Table 5.8 illustrates the performance and accuracy of our 

method in comparison to other methods. Our method achieved the highest accuracy, which was 

measured using Eq. 22.  

 

Mean Angular Error = Cos-1[predicted gaze - ground truth]          (5.22) 
 
Table 5.8: Shows the experimental results validated over MPII, EYEDIAP, Cave and ACS datasets. The     

accuracy of the predicted gaze and head-pose estimation was indicated in mean angular error. 

 MPII  EYEDIAP CAVE ACS 

Proposed framework 4.5° 4.8° 4.4° 5.0° 

Method in [77] 4.8° 6° N/A N/A 

Method in [79] 5.9° 10.5° N/A N/A 

Method in [85] 4.6° 7.5° 6.2° N/A 

Method in [124] 4.6° 5.9° 4.8° 5.1° 

Method in [84]                            5.99° using their own dataset  

 

 

5.5 Evaluation on OSLO and UULM  

Earlier in the thesis, we validated the proposed framework on MPII, EYEDIAP, CAVE and 

ACS datasets. We now further evaluate the robustness of the proposed framework by 

conducting new experiments on two additional datasets: OSLO (3500 male and female face 

with three gaze directions: left, center and right) [97] and UULM (4000 samples presenting 

diversity of head-pose and gaze targets) [95]. These datasets offer a wide variety with respect 

to magnitude, head-pose angles, illumination and facial appearance. We present an extensive 

comparison with several state-of-the-art head-pose and gaze estimation algorithms on these 

datasets. The illustration of the experimental results is presented in Fig. 5.20 (showing results 

from OSLO) and Fig. 5.21 (showing results from UULM). 
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Figure 5.20: Showing samples from OSLO, 

illustrating QD and selected tiles of the image, 

identifying the eye region, iris, jaw line (face border) 

and nose tip. 

Figure 5.21: Showing samples from UULM, 

illustrating QD and selected tiles of the image, 

identifying the eye region, iris, jaw line (face border) 

and nose tip. 

 

5.5.1 Cross Validation Using Features from the proposed framework in 

Chapter 4  

 
We applied the framework used in Chapter 4 on MPII, EYEDIAP, CAVE, ACS, OSLO and 

UULM, which is composed of appearance-based and geometric-based features. The feature 

extraction process starts with facial landmarks and then narrows focus towards the eye region, 

along with the region descriptor spatial indexing and the statistical 15D of the eye region. Each 

feature acts as a mask/label for each sample image. We then employed the kernel-DMCCA to 

improve the features fusion approach for effective head-pose and gaze estimation.  
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5.5.2 Cross Validation by Employing Features Using the Proposed Framework 

(QD and Geometrical Moments) in this chapter 

 

We also applied the proposed framework from this chapter on MPII, EYEDIAP, CAVE, ACS, 

OSLO and UULM.  The framework is based on QD, calculating geometrical moments that define 

the shape and geometry of the facial landmarks to construct the feature sets: eye region, nose 

COM, jawline, distance and angles between facial landmarks (distance between the eyes center, 

distance from the center of each eye to the nose COM, distance from the points on the jawline to 

the points on the symmetry axis), roll/pitch/yaw, 2nd and 3rd order moments. The extracted features 

were fused and the training set is constructed using a multiclass one-vs-one SVM model.  

 

5.6  RESULTS AND DISCUSSION 
 

We fused all feature sets presented by the framework in Chapter 4, namely, pupil center, facial 

landmarks distances and angles, 15D and iris region descriptor. The fusion process is performed 

by employing K-DMCCA with discriminative correlation criteria based on the 3-𝜎 rule. The 

training and testing samples were compared using the RBF function, which gives correlations 

between any two sets of samples. The comparison on OSLO is presented in Fig. 5.22 while Fig. 

5.33 presents the comparison on UULM.   

 

    One-vs-one SVM multi classification was employed by combining all features presented by the 

proposed framework in Chapter 5: eye region, nose COM, jawline, roll, yaw and pitch, along with 

symmetry axis, 2nd and 3rd order moments.  Using a fit multiclass error-correcting output code 

(fitecoc), we created an SVM model using the predictors with a posterior probability value 

assigned by the learner. The posterior probability comparison between training vs. testing is 

presented in Fig. 5.24 for OSLO and Fig.5.25 for UULM. 

 

https://www.mathworks.com/help/stats/fitcecoc.html#bufm0tv
https://www.mathworks.com/help/stats/fitcecoc.html#bufm0tv
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Figure 5.22: Comparison of training vs. testing sets from OSLO, using all features from Chapter 4. 

 

 
         Figure 5.23: Comparison of training vs. testing sets on UULM, using all features from Chapter 4. 

 

 
Figure 5.24: Comparison of training vs. testing sets from OSLO, using all features presented by 

the proposed framework in this chapter. 
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Figure 5.25: Comparison between training vs. testing sets from UULM, using all features presented by 

the proposed framework in this chapter. 

 

Using all datasets, we measured the mean angular error to measure the accuracy of the 

algorithm from Chapter 4, see Fig. 5.26.  

 

 
Figure 5.26: Calculating the mean angular error on MPII, EYEDIAP, CAVE, ACS, OSLO and UULM datasets, 

using all features presented in Chapter 4.  

 

0

0.2

0.4

0.6

0.8

1

100 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900

P
o

st
er

io
r 

P
ro

b
ab

ili
ty

Testing Samples

Training vs. Testing on UULM Dataset
Using All Features Generated By QD & Geometrical Moments 

Training Data Testing Data

4.6
4.3 4.6 4.8

5.1 5.9

0

1

2

3

4

5

6

A
n

gu
la

r 
Er

ro
r

Mean Angular Error On Several Datasets Using All Featues 
Presented By The Proposed Framework in Chapter 4

UULM

OSLO

MPII

CAVE

ACS

EYEDIAP



 

88 

 

 
Figure 5.27: Calculating the mean angular error on MPII, EYEDIAP, CAVE, ACS, OSLO and UULM datasets, 

using all features presented by the proposed framework in this chapter. 

 

    Furthermore, we measured the mean angular error to assess accuracy when applying the 

proposed framework from Chapter 5 on all datasets, see Fig. 5.27 for illustration. We compared 

the proposed framework against state-of-the-art methods in the literature, the results are 

recorded in Table 5.9.  

 

Table 5.9: Comparing the proposed framework with recent state of the art methods.  
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Citation  Dataset  Error 

[125] appearance-based features, using CNN, 2017 

[85] eye region feature localization, then iterative model-fitting (only eye), 2018 

[Proposed, Chapter 4] 

[Proposed, in this Chapter] 

CAVE 

CAVE 

CAVE 

CAVE 

6.7˚ 

6.2˚ 

4.8˚ 

4.2˚ 

[126] appearance-based gaze estimation using deep features and random forest regression, 2016 Own 

dataset 

5.0-

7.0˚ 

[127] geometrical based, deep learning, 2017 Own 

dataset 

4.3˚ 
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    It is worth noting that most of the recent methods in Table 5.9 are based on a convolutional 

neural network (CNN) model [132, 128, 129] with minimal computational requirements. 

However, the complexity of CNN lies in the multi-layered structure for which the convergence 

is an essential condition as a performance metric. In addition, some of these methods only used 

one eye (our method used the full face, both eyes). It would not be wise to say that CNN is less 

accurate than the proposed framework. CNN does have an inherent advantage, which is 

[128] appearance based, using CNN, 2015 

[79] Gaussian process regression model combined with a probabilistic filter, 2006 

[85] eye region feature localization, then iterative model-fitting (only eye), 2018 

[129] appearance based on full face, using CNN, 2017 

[130] facial landmark,head pose tracking, face alignment and appearance extraction, feature fusion, 2016 

[131] appearance based using generative eye region model, match using nearest-neighbor approach, 2016 

[132] training models of synthetic images, using refiner neural network,  2017 

[133] deep regression Bayesian, Probabilistic deep learning, 2018 

[Proposed, Chapter 4] 

[Proposed, in this Chapter] 

MPII 

MPII 

MPII 

MPII 

MPII 

MPII 

MPII 

MPII 

MPII 

MPII 

6˚ 

5.9˚ 

4.6˚ 

4.8˚ 

9.96˚ 

9.58˚ 

7.8˚ 

7.1˚ 

4.6˚ 

4.3˚ 

[134] facial traits extracted from sensory data, from which distance vectors related to gaze derived, 2015 

[135] estimating the gaze direction using Canonical Correlation Analysis (CCA), a gaze vector is 

calculated based on gathered eye properties, 2011 

[136] iris model rotates under the eye hole permitting the synthesis of new gaze directions, using multi-

Texture Active Appearance Model, 2013 

[137] 3D Morphable Model (3DMM) of faces is used to obtain a dense 3D reconstruction of the face, then 

obtain gaze vector. 2014 

[Proposed, Chapter 4] 

[Proposed, in this Chapter]  

UULM 

UULM 

 

UULM 

UULM 

UULM 

UULM 

7.5˚ 

5.6˚ 

 

7.0˚ 

9.7˚ 

4.6˚  

4.5˚ 

[79] Gaussian process regression model combined with a probabilistic filter, 2006 

[85] eye region feature localization, then iterative model-fitting (only eye), 2018 

[129] appearance based on full face, using CNN, 2017 

[Proposed, Chapter 4] 

[Proposed, Chapter 5]  

EYEDIAP 

EYEDIAP 

EEYDIAP 

EYEDIAP 

EYEDIAP 

10.5˚ 

7.5˚ 

6.0 ˚ 

5.9˚ 

4.5˚ 

[84] initial appearance-based estimation under fixed head pose, then each subsequent stage is solved by either 

learning-based method or geometric-based calculation, 2015 

Own 

dataset 

5.99˚ 

[Proposed, Chapter 4] 

[Proposed, in this Chapter] 

OSLO 

OSLO 

4.3˚ 

4.1˚ 

[Proposed, Chapter 4] 

[Proposed, in this Chapter] 

ACS 

ACS 

5.1˚ 

4.6˚ 
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learning hierarchical features, i.e what features are useful and how to compute them, and then 

use those features to compute the final result. Having said that, we have highlighted how the 

proposed framework fuses features together using the KDMCCA. The KDMCCA analysis the 

correlation within one feature set and in between feature sets. The proposed framework can 

work on large datasets or small datasets, however, CNN required much larger datasets to 

achieve higher accuracy. At the same time, for real-time processing, CNN will be more 

adequate to use (in comparison with the proposed framework).  

 

    It is also worth to highlight, that although some methods achieved the same accuracy as the 

proposed framework, our proposed framework differs by the newly developed features and the 

methodology the features were constructed.  

 

    The method in [130] adopted a feature fusion approach by using facial landmark, head pose 

tracking, face alignment and appearance extraction. The method in [135] also adopted feature 

fusion and estimated the gaze direction using Canonical Correlation Analysis (CCA); a gaze 

vector is calculated based on gathered eye properties. It is worth noting that the Kernel-

DMCCA method we adopted and improved differs from CCA in the following: 1) the 

correlation among the samples in multiple channels is taken as the metric of the similarity 

between the samples; 2) unlike CCA and Multiple CCA, both the within-class similarity and 

the between-class dissimilarity is considered by K-DMCCA. Experimental results showed that 

we achieved more accurate results by using K-DMCCA 

 

    We studied key challenges including wide range of gaze classes, illumination conditions, 

and facial appearance variation. Experimental results showed that image resolution, 

illumination, pupil center localization, the use of both eyes affect the head-pose and gaze 

estimation performance. We validated the proposed framework on six different datasets, the 

accuracy of the proposed framework differs based on the condition of each dataset. ACS dataset 

was collected for simulation of real-life driving settings. The wide range of ambient conditions 

surrounding the samples along with the unconstrained head movement made it more difficult 

for the proposed algorithm. As a result, experimental results were the least accurate when 

validated on ACS, an average error of 4.6˚ was recorded. Moreover, although UULM dataset 

had consistent good resolution, but also had a wide range of gaze positions, as well as four 

degrees of freedom of head-pose displacement. As a result, the proposed framework achieved 

an average error of 4.5˚. Furthermore, MPII and EYEDIAP datasets were collected without 
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assumptions regarding user, environment, or camera; these two datasets resembled real life 

scenarios. Many samples from MPII and EYEDIAP had occlusions such as facial hair, bangs, 

eyelids occluding the iris, accessories like glasses and low-resolution images, which made the 

gaze estimation computationally complex. However, EYEDIAP and MPII did not have many 

gaze glasses. As a result, the proposed framework achieved an average error of 4.5˚ on 

EYEPIAP and 4.3˚ on MPII. The proposed framework achieved the best result on CAVE and 

OSLO datasets, because although these datasets had a wide range of gaze classes, but they were 

collected under controlled lab settings. The resolution, ambient environment and illumination 

were all consistent throughout the datasets. In addition, CAVE dataset was collected while all 

users had their chin rested on a chinrest, as a result, the proposed algorithm achieved the best 

result; an average error of 4.2˚ on CAVE and 4.1˚ on OSLO. 

     

5.7 Summary   

This chapter investigated new features to replace features used in chapter 4, for the purpose of 

arriving at more accurate gaze and head-pose estimation. We validated the proposed framework 

from Chapter 4 and this chapter against recent head-pose and gaze estimation methods in 

literature. We chose datasets which offered variability with respect to magnitude, head-pose 

angles, occlusion, illumination and facial appearance. The proposed framework from Chapter 

4 and this chapter outperform other methods with respect to accuracy in this extensive cross-

validation comparison. 
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Chapter 6 
 

6.1 Conclusion  
 

Multi-modal information fusion refers to a process which attempts to achieve more reliable and 

robust analysis performance by integrating a set of multiple data sources, extracted features, 

and intermediate decisions. Multi-feature fusion (for the purpose of gaze and head-pose 

estimation) is a special case of multimodal fusion. In multi-feature fusion for head-pose and 

gaze estimation, different sets of features are extracted from the same modality data but using 

different extraction methods, and it is likely to carry richer information where each feature acts 

as a mask/label for each sample. Therefore, we adopted the fusion process of multi-features 

because it was our intuition that this would lead to more accurate estimation results.  

 

    After a comprehensive background study in Chapter 2, we proposed a novel unsupervised 

pupil localization graph-based method in Chapter 3: an important step towards gaze estimation. 

We then employed an unsupervised pupil localization graph-based method with a newly 

developed iris region descriptor based on quadtree and merged them with existing features 

from the literature in Chapter 4. We then introduced a discriminative robust head-pose and 

gaze estimation method using Kernel-DMCCA (the extension of DMCCA) fusion.  

 

The following observations are worth noting:   

1. The introduction of quadtree as an iris region descriptor was a robust method for detecting 

the iris boundary, and it is inclusive of statistical and geometrical indexing that are 

calibration free. The iris region descriptor was then extended as a general region descriptor 

to define the facial landmark features: the whole eye region (not only the iris region), face 

boundary by defining the jawline, nose tip, mouth region and the distances and angles 

between facial landmarks. These features were employed in a new framework for head-pose 

and gaze estimation, which produced accurate results as illustrated earlier.   

 

2. Enhancing the performance of DMCCA with kernel to transform the features into a higher 

dimensional space, which established a better correlation between the training and testing 
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samples. Extracting multiple features increased the size of the features set, hence, Kernel 

transformation was essential to select the most important for classification.  

 

3. Chapter 5 investigated a new alternative methodology to replace the existing features in 

literature that were used in Chapter 4. This was achieved by extending the iris region 

descriptor feature using quadtree (which was presented in Chapter 4), and developing it 

further to structure new features for the purpose of achieving more accurate head-pose 

and gaze estimation. 

 
    In Chapter 5, we decided to use kernel-SVM in classification which locates a separating 

hyperplane in the feature space and classify points in that space. It does not need to represent 

the space explicitly, simply by defining a kernel function, where the kernel function plays 

the role of the dot product in the feature space. 

 

    A significant part of the future work will be dedicated to comparing K-DMCCA (currently 

using a gaussian kernel) along with a classifier vs. Kernel SVM (currently using a gaussian 

kernel). The proposed framework employed gaussian kernel, and there is a need to employ 

different kernel functions and compare each with the results obtained by the proposed 

framework.  
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