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Abstract

Stochastic mathematical models are essential for an accurate description of biochemical

processes at the cellular level. The effect of random fluctuations may be significant when

some species have low molecular counts. While exact stochastic simulation methods

exist, they are typically expensive on systems arising in applications. Thus more effective

strategies are required for simulating complex stochastic models of biochemical system.

Often, the expected value of some function of the final time solution of the stochastic

model is of interest. Then, the approach employing multi-level Monte Carlo methods is

more efficient than the traditional techniques. In this thesis, we study multi-level Monte

Carlo (MLMC) schemes for a reliable and effective simulation of stochastic models of

biochemical kinetics. The advantages of these MLMC strategies are illustrated on several

biochemical models arising in applications.
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Chapter 1

Introduction

Stochastic modelling is an important research topic in Systems Biology. Mathematical

modelling and simulation of biochemical systems are more cost effective and faster than

experiments in lab. In the last decade, many modelling approaches for biochemical net-

works have been considered.The experimental data is enormous in Cellular Biology and

these data require to be analyzed, therefore, the need for accurate models of these bi-

ological processes and efficient tools for simulating and studying them. The traditional

mathematical modeling of biochemical systems uses the continuous deterministic model

of the reaction rate equations In deterministic models, concentrations of chemical species

are continuous variables and the standard theory of chemical kinetics uses the reaction

rate equations, which is a set of ordinary differential equations, to model the dynamics of

the system. The reaction-rate equations are based on the Law of Mass Action which gives

a relationship between the reaction rates and the molecular concentration. Deterministic

modelling approaches have been sucessfully used for chemically reaction systems, where

there are large molecular counts of the reacting species. However, key biological pro-

cesses may involve some species with low population numbers. In an environment when

there are small molecular numbers of certain species, the deterministic models are gen-

earally inaccurate and stochastic models are required. For instance, when there are few

regulatory molecules available in a single cell, a continuous deterministic model fails to

describe the system dynamics and the intrinsic random fluctuations [20, 39]. In stochas-

tic models, species may have an integer or a real number of molecules and the reactions
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CHAPTER 1. INTRODUCTION

are treated as discrete and random events. Stochastic models are essential for studying

the behaviour of biochemical systems with low amounts of certain species. McAdams

& Arkin [4] showed that stochasticity does play an important role in the lysis/lysogeny

decision of the bacteria λ-phage [28]. Samoilov et al.[35] demonstrated that noise can

induce bi-stability in a monostable system.

The Chemical Master Equation (CME) [12] is one of the most refined models of well-

stirred biochemical systems. The most accurate model of non-homogenous biochemical

sytems in Molecular Dynamics. Molecular Dynamics is a very complex model, as it keeps

a record of all positions and velocities of the molecules in the system. Daniel Gillespie

proposed an exact algorithm for simulating the solution of the Chemical Master Equation

[11, 12]. This exact algorithm simulates every reaction one at a time. When biochemical

systems have some fast reactions, it become computationally intensive to simulate every

reaction in the system. For improving the computational time, Gillespie [14] proposed

the tau-leaping method, where the system is advanced with a predetermined step size

τ , which leaps over many iterations. Gillespie [14] also proposed the Chemical Langevin

Equation, a continuous stochastic model and a bridge between the Chemical Master

Equation and the Reaction Rate Equation models. The continuous stochastic model

of biochemical kinetics, the Chemical Langevin Equation (CLE) is a reduction of the

Chemical Master Equation in the regime of large molecular counts. When a system has

very large population numbers for all reactants, the system dynamics may be modeled

using the RRE instead of the CLE.

Other approximate algorithms have been developed in the litereature for solving the

Chemical Master Equation and this remains an active area of research [19]. Such ap-

proximate algorithms for the CME were proposed by Rathinam et al. [31]. Cao, Gillespie

& Petzold [6], Tian & Burrage [36] and Chatterjee et al. [7]. Stability and consistency

studies of the tau-leaping method were conducted by Rathinam et al. [32], higher order

tau-leaping methods were developed by Li [26] and adaptive time-stepping tau-leaping

strategies were introduced by by Anderson [2]. Also, the tau-leaping method has been a

connection between a microscopic, stochastic and discrete model of well-stirred biochem-

ical kinetics (the Chemical Master Equation [14]) and a macroscopic, stochastic and

continuous model (the Chemical Langevin Equation [14]). Langevin equations which are

charachteristically stochastic differential equations (SDE) have received considerable at-
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CHAPTER 1. INTRODUCTION

tention for their practical applications in physics, chemistry, biology [37, 9] besides their

uses in Systems Biology [24]. An introduction to the numerical solutions of stochastic

differential equations can be found in Higham [18].

The exact algorithms and the approximate algorithms may fare well on certain models

depending on the stiffness of the biochemical system. The exact algorithm, for instance,

behaves well on non-stiff systems. But, when it comes to simulating stiffer systems,

i.e, systems with fast and slow reactions, approximate methods may be more efficient.

Another strategy to reduce the computational time and maintaining the level of accuracy

while simulating more challenging biochemical systems is to use hybrid methods. Hybrid

methods use a combination of approximate and exact models and/or methods. Among

them are the methods of Alfonsi et al. [1], Cao et al. [5], Haseltine & Rawlings [16],

Hellander & Lotstedt [17], Kiehl et al. [22], MacNamara et al. [27], Mattheyses &

Simmons [23], Puchalka & Kierzek [29], Rao & Arkin [30] , Salis & Kaznessis [33], Samant

& Vlachos [34] and Weinam et al. [38].

In this thesis, we study multi-level Monte Carlo methods (MLMC) for stochastic discrete

models of biochemical systems. We investigate the efficiency of these methods, when

approximating the mean values of some function of the state of the biochemical system.

Giles [10] proposed the MLMC methods in order to approximate E(f(X(t))), where

E(·) is the expected value, f is a polynomial and X(t) is a stochatic process of interest.

The MLMC strategies aim to estimate the expected value E(f(X(t))) at a reduced

computational time compared to existing methods, while maintaining a good accuracy

of the estimation. The method uses different levels of accuracy. A base estimator is

computed using the tau-leaping method using with a large step size. In the subsequent

levels, we calculate correction estimators which are then added to the base estimator in

order to reduce bias and to improve accuracy. The key concept behind this method is to

reduce the variance, by simulating sets of coupled trajectories in calculating correction

estimators. Each trajectory simulated on a coarser grid is coupled with a trajectory

simulated on a finer grid. The coupling of trajectories has to be carefully implemented

so that the variance of the difference of the coupled trajectories is reduced, leading to a

reduction of the computational time. The MLMC methods give good estimation of the

mean value at a fraction of the computational cost of the exact algorithm. Anderson

and Higham [3] developed multi-level Monte Carlo methods for models of biochemical

3



CHAPTER 1. INTRODUCTION

systems. However, their approach may not be the most effective on generic biochemical

systems. In this work, we study the MLMC strategies proposed by Lester et al [25]

This thesis is organized as follows. In Chapter 2, we introduce stochastic models of well-

stirred biochemical systems. The models we discuss are the Chemical Master Equation

(CME). In Chapter 3, we present the multi-level Monte Carlo methods for the CME,

and investigate improvements to their computational cost. In Chapter 4, we illustrate

the advantages of the MLMC methods over the stochastic simulation algorithm by test-

ing them on three biochemical models of practical interest. The models that we used

are Potassium Channel model, Michaelis Menten model and Cyclical Reaction model.

Finally, in Chapter 5, we present our conclusions and discuss our future work.
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Chapter 2

Background

2.1 Stochastic Models

In this section we consider a process that involves N different types of molecules or bio-

chemical species S1, ..., Sn. We are also assuming that the system is a well-stirred (or

homogeneous) system so that the molecules are spread uniformly across the spatial do-

main. These N species will take part in M different types of chemical reactions R1, .., Rn.

For instance, a molecule of type A can combine with a molecule of type B to create a

molecule of type C. We also assume that the system is in thermal equilibrium and that

the volume of the spatial domain is constant.

Suppose that initially at time t = 0, we know that the molecular amounts and our

objective is to describe how these number of molecules evolve over time. Thus the state

vector, may be represented as an N X 1 matrix. The i-th row corresponds to the number

of Si molecules at time t.

X(t) :=


X1(t)

X2(t)
...

XN(t)

 (2.1)

5



2.2. CHEMICAL MASTER EQUATION (CME) CHAPTER 2. BACKGROUND

where Xi is a non negative integer that shows how many molecules of species i are present

at time t. We also introduce a state change vector vj,

vj :=


v1j

v2j

...

vNj

 , (2.2)

The stoichiometric matrix V has vj as its j-th column where each of the vij is the change in

the number of Si molecules caused by the reactions. A chemical reaction system consists

of N chemical species X1,..,XN and M reactions R1,..,RM . The state vector is denoted

by X(t) = [X1(t), ..., X(t)], where Xi(t) is represents the amount of Si molecules at time

t. At time t = 0, initial population numbers are given.

Associated with the jth reaction is the propensity function [19], ajX(t): the probability

of this reaction Rj taking place in the infinitesimal time interval [t, t+ dt) is ajX(t)dt.

Unimolecular : Sm
cj−→ something has propensity function ajX(t) = cjXm(t)

Dimerization : Sm + Sm
cj−→ something has aj(X(t)) = cj

1
2
Xm(t)(Xm(t)− 1)

Bimolecular : Sm + Sn
cj−→ something has aj(X(t)) = cjXm(t)Xn(t), where,m 6= n.

For the dimerization, we have 1
2
Xm(t)(Xm(t) − 1), which represents the number of

combinations possible when 2 molecules are chosen from Xm number of total molecules,

i.e (Xm)!
(2!)(Xm−2)!

.

2.2 Chemical Master Equation (CME)

In this section we derive stochastic discrete model of well-stirred biochemical kinetics,

the Chemical Master Equation. Now, we study the quantity P (x, t) defined by:

P (x, t|x0, t0)
∆
= Prob{X(t) = x, given X(t0) = x0}for t ≥ t0 (2.3)

6
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If we know the probability of being in any state, at time t, then we can find the probability

of being in state x at time t+dt, assuming that no more than one reaction can take place

over the small interval [t, t+ dt). The two situations that can occur is, either the system

was already in state x at time t and no reaction took place over the interval [t, t+ dt), or

for some 1 ≤ j ≤ M the system was in state x− vj at time t and the jth reaction took

place over the interval [t, t + dt) which later brought the system to the state x. Using

the law of total probability, we have that

P (A) =
M+1∑
j=0

P (A|Hj)P (Hj) (2.4)

where H0, H1, ..., HM , HM+1 represent disjoint (not more than one can happen) and ex-

haustive (one of them must happen) events and A is the event of interest. If H0 is the

event that the system is in x at t, let Hj for 1 ≤ j ≤ M be the event for the system is

in x-vj at time t and HM+1 be the event that the system is in any other state at time t.

Then we have

P (A|Hj) = aj(x− vj)dt, 1 ≤ j ≤M (2.5)

If P (A|H0) is the probability of no reactions taking place in the interval [t, t+ dt), then

we have

P (A|H0) = 1−
M∑
j=1

aj(x)dt (2.6)

This means 1 minus the probability of any reaction happening. We also have that

P (A|HM+1) = 0 because HM+1 contains all the states that are more than one reaction

away from x. Using the above four equations, we derive

P (x, t+ dt) =

(
(1−

M∑
j=1

aj(x)dt

)
P (x, t)

+
M∑
j=1

aj(x− vj)dtP (x− vj, t).

(2.7)
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Arranging the above equation and setting a limit dt→ 0, we get

lim
dt→ 0

P (x, t+ dt)− P (x, t)

dt
=

M∑
j=1

(aj(x− vj)P (x− vj, t)− aj(x)P (x, t). (2.8)

The above equation leads to Chemical Master Equation below:

dP (x, t)

dt
=

M∑
j=1

(aj(x− vj)P (x− vj, t)− aj(x)P (x, t)). (2.9)

The CME (2.9) is a linear ODE (ordinary differential equation) system with one ODE

for each possible state, CME is usually hard to solve because it is a linear ODE system

with one ODE for each possible state. If the number of states is large then the CME is

a very large system of ODEs, which is very challenging to solve numerically.

2.3 Derivations of Stochastic Simulation Algorithm

(Gillespie’s Algorithm)

The CME is very high-dimensional and it is computationally intensive to deal with. The

Stochastic Simulation Algorithm (SSA) [11, 12] gets around this issue by computing single

realizations of the state vector rather than computing an entire probability distribution.

The SSA is in exact agreement with the CME. We introduce the probability quantity

P0(τ |x, t) as follows: given that X(t) = x, P0(τ |x, t) is the probability that no reaction

takes place in the interval [t, t + τ). Now we consider the time interval [t, t + τ+dτ). We

also assume that the event(s) happening over the interval [ t, t + τ) are independent of

the events happening over the interval [ t+τ , t + τ+dτ). We have that probability that

no reaction takes place in [ t,t+τ+dτ) is probability that no reaction takes place in [ t,t

+ τ) and no reaction takes place in [ t+τ , t+τ+dτ). Mathematically, this translates to

independent events, i.e probability that no reaction takes place in [ t, t + τ) x probability

that no reaction takes place in [ t+τ , t + τ + dτ) = probability that no reaction takes

place in [ t, t + τ) x (1 - sum of probability that each reactions taking place over the

8
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interval [ t+τ , t + τ + dτ)). This is written as:

P0(τ + δτ |x, t) = P0(τ |x, t)

(
1−

M∑
k=1

ak(x)dτ

)
(2.10)

the above equation is re-arranged and taking the limit dτ → 0

lim
dt→ 0

P0(τ + δτ |x, t)− P0(τ |x, t)
dτ

= −P0(τ |x, t)
M∑
k=1

ak(x)dτ) (2.11)

we get

dP0(τ |x, t)
dτ

= −P0(τ |x, t)
M∑
k=1

ak(x)dτ) (2.12)

Solving this ODE with P0(τ |x, t) = 1, gives

P0(τ |x, t) = e−
∑M

k=1ak(x)τ (2.13)

Now we need to determine p(τ |x, t) defined by p(τ, j|x, t)dτ is the probability that the

next reaction (a) will be the jth reaction and (b) it will occur in the time interval

[t+τ ,t+τ+dτ) if X(t) = X. The following propositions from Wilkinson [39] will be

used in justifying the stochastic simulation algorithm SSA.

Proposition 2.3.1. If Xi∼Exp(λi) with parameter λi, i = 1,2,..,n, are independent

exponential random variables, then

X0 ≡ min
i
{Xi} ∼ Exp(λ0), where λ0 =

n∑
i=1

λi

9
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Proof. First note that for X∼Exp(λ), we have P (X > x) = Exp(−λx). Then

P (X0 > x) = P (min
i
{Xi} > x)

= P ([X1 > x]∩[X2 > x]∩...∩[Xn > x])

=
n∏
i=1

P (Xi > x)

=
n∏
i=1

e−λix

= e−x
∑n

i=1λi

= e−λ0x

So P (X0≤x) = 1-e−λ0x and hence X0∼Exp(λ0)

This lemma is for the following proposition.

Lemma 2.3.1. Suppose that X∼Exp(λ) and Y∼Exp(µ) are independent random vari-

ables. Then

P (X < Y ) = λ
λ+µ

.

Proof.

P (X < Y ) =

∫ ∞
o

P (X < Y |Y = y)f(y)dy

=

∫ ∞
o

P (X < y)f(y)dy

=

∫ ∞
o

(1− e−λy)µe−µydy

= λ
λ+µ

This next result gives the likelihood of a particular exponential random quantity of an

independent collection being the smallest.

Proposition 2.3.2. If Xi∼Exp(λi), i = 1,2,..,n, are independent exponential random

variables with parameter λi, let j be the index of the smallest number Xi. Then j is a

discrete random variable with probability mass function (pmf)

10
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πi = λi
λ0

, i = 1,2,,,n, where λ0 =
n∑
i=1

λi

Proof.

πj = P (Xj < min
i 6=j
{Xi})

= P (Xj < Y )

where Y = min
i 6=j
{Xi}, so that Y∼Exp(λ−j), where λ−j =

∑
i 6=j

λi

=
λj

λj+λ−j
(by the lemma)

=
λj
λ0

Using the independence of occurrence of events, we have that probability (a) and (b) =

probability that no reaction took place over [t,t+τ) * probability that the jth reaction

took place over [t+τ ,t+τ+dτ) assuming that dτ is so small that at most one reaction

took place over that time interval, we have

p(τ, j|x, t)dτ = P0(τ |x, t)aj(x)dτ (2.14)

and from (2.13) we have

p(τ, j|x, t) = aj(x)e

−

M∑
k=1

ak(x)τ (2.15)

If we let a0(x) =
M∑
k=1

ak(x), then the equation (2.15) can be re-written as

p(τ, j|x, t) =
aj(x)

a0(x)

(
a0(x)e−a0(x)τ

)
(2.16)

We express this joint probability density function as a product of two density functions:

11
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• Next Reaction Index j is a discrete random variable representing the index of

the next reaction.

• Time Until Next Reaction the density function of τ is the time to the next

reaction.

As the next reaction index j and time until next reaction τ are independent random

variables, we can compute then separately. The Stochastic Simulation Algorithm by

Daniel Gillespie is based on [12] a Monte Carlo approach and is as follows:

Stochastic Simulation Algorithm

1. Initiate the system at t0=0 and X(t0) = x0

2. At time t evaluate a1(x), ..., aM(x), and a0(x) ≡
M∑
j=1

aj(x)

3. Let r1 and r2 be two uniform random numbers in (0,1) and compute τ and j as

follows:

a. τ = 1
a0(x)

ln 1
r1

b. j = the smallest integer satisfying

j∑
k=1

ak(x) > r2a0(x)

4. Replace t← t+ τ and x← x+ vj.

5. Record (x, t). Return to step 2, else end simulation.

2.4 The Tau-Leaping Method

The SSA is an exact method and therefore it is computationally expensive on systems

with fast reaction. In this method, a reaction time and reaction index is computed

for each reaction that occurs in the system before adjusting state change vectors and

propensity functions. If the system is a stiff system, i.e, if there are many molecules

of certain species which participate in fast reaction then that propensity function of

12
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such reactions are large aleading to a very small step size τ to the next reaction it is

computationally expensive. The exact state of the system at time t + τ (see Kurtz [8])

is given by the following equation:

X(t+ τ) = X(t) +
M∑
j=1

νjPj(

∫ t+τ

t

aj(X(s))ds) (2.17)

In the above equation Pj(·) is a Poisson random variable, and
∫ t+τ
t

aj(X(s))ds is its

parameter.

• Leap Condition We assume that τ > 0 is small enough such that the propen-

sity functions aj(X(t)), for j = 1,...,M remain relatively constant over the interval

t ≤ s ≤ t+ τ , so that few reactions occur, thus aj(X(s)) ≈ aj(X(t)).

Using the leap condition and substituting it into equation(2.17), we have

X(t+ τ) ≈ X(t) +
M∑
j=1

νjPj(

∫ t+τ

t

aj(X(t))ds)

≈ X(t) +
M∑
j=1

νjPj(aj(X(t))

∫ t+τ

t

ds)

≈ X(t) +
M∑
j=1

νjPj(aj(X(t))τ).

Thus the tau-leaping method is obtained (see Gillespie [14]):

X(t+ τ) = X(t) +
M∑
j=1

νjPj(aj(X(t))τ). (2.18)

In this equation {Pj(aj(X(t))τ)}Mj=1 represent the random variables which are to be com-

puted in this method.

The probability of the jth reaction taking place over the small time interval of length dτ

is given by aj(X(t))dτ where aj(X(t)) is almost constant over the time interval [t,t+τ).

13
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Then the number of type j reactions within [t, t+τ) may be computed using Pj(aj(X(t))τ)

with parameter aj(x)τ which is a Poisson distribution with mean and variance aj(X(t))τ

The algorithm for tau-leaping is computed as SSA:

Tau-Leaping Algorithm

1. Calculate {Pj}Mj=1 from the distribution of Poisson random variables.

2. Initialize the system t0=0, x(t0) = x0

3. Then update X(t+ τ) to X(t) +
M∑
j=1

νjpj

4. Update t to t+ τ .

5. Go to 2 or stop.

2.5 Chemical Langevin Equation (CLE)

Suppose [14] that the leap time τ is chosen in such a way that the mean aj(X(t))τ

of Pj(aj(X(t))τ) is large for j = 1, ..,M , i.e, every reaction occurs many times over the

interval [t,t+τ). Then we approximate each Poisson random variable by a normal normal

random variable with the same mean and variance. According to Stirling’s approximation

[13], Pj(aj(X(t))τ)≈Zj(aj(X(t))τ, aj(X(t))τ), if aj(X(t)τ >> 1. By linear combination

theorem for normal random variables, we derive

Z(aj(X(t)τ, aj(X(t), τ) = aj(X(t)τ +
√
aj(X(t)τZj(0, 1). (2.19)

Replacing Pj(aj(X(t)τ)) in (2.18) with aj(X(t))τ +
√
aj(X(t))τZj, according to (2.19),

14
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we get Zj where Zj are independent normal (0,1) random variables.

X(t+ τ) = X(t) + τ

M∑
j=1

vjaj(X(t)) +
√
τ

M∑
j=1

vj

√
aj(X(t))Zj(0, 1). (2.20)

Equation (2.20) is known as the Chemical Langevin Equation (as CLE). We also no-

tice that the tau-leaping method uses an integer-valued Poisson random variables, while

(2.20) employs real-valued normal random variables. In the limit τ→dt (2.19) becomes

a stochastic differential equation of the form:

dX(t) =
M∑
j=1

vj[aj(X(t))dt+
√
aj(X(t))dWj(t)] (2.21)

where Wj, 1 ≤ j ≤ M, are independent Wiener processes.

Definition 2.5.1. A scalar standard [18] Wiener process over [0,T] is a random variable

W(t) that depends continuously on t ∈ [0,T] and satisfies the following three conditions:

1. W(0) = 0 (with probability 1)

2. For any 0≤s < t≤T the random variable given by the increment W(t)-W(s) is

normally distributed with mean zero and variance (t-s); equivalently, W(t)-W(s) ∼
√
t− sN(0, 1) where N(0, 1) denotes a normally distributed random variable with

zero mean and variance 1.

3. For any 0≤s < t < u < v≤T the increments W(t)-W(s) and W(v)-W(u) are

independent.

Note that equation (2.20) is the Euler-Maruyama method for applied to the stochastic

differential equations (2.20). The assumptions used to derive the CLE are:

i the propensity functions do not change significantly over the time interval [t,t+τ),

ii the value of each propensity function times the step size, i.e. aj(X(t))τ , is large.

The condition (i) and (ii) applies simultaneously when the molecular populations of each

species is large.
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2.6 Derivation of Reaction Rate Equation

We investigate the assumptions under which the Chemical Master Equation (CME) can

be reduced to the continuous deterministic model of the reaction rate equation (RRE).

If K is the countable state space of the process Xt satisfying the CME, then (see [39] for

more detail).
∂

∂t
E(Xt) =

∂

∂t

∑
x∈K

xP (x, t|x0, t0)

=
∑
x∈K

x
∂

∂t
P (x, t|x0, t0)

where K is the countable state space of the process. By applying equation (2.9) we get

∂

∂t
E(Xt) =

∑
x∈K

x
∂

∂t
P (x, t|x0, t0)

=
∑
x∈K

x

[
M∑
j=1

(aj(x− vj)P (x− vj, t|x0, t0)− aj(x)P (x, t|x0, t0)

]

=
M∑
j=1

[∑
x∈K

x(aj(x− vj)P (x− vj, t|x0, t0)−
∑
x∈K

xaj(x)P (x, t|x0, t0)

]

We can substitute x + vj for x because x + vj ∈ K and derive

∂

∂t
E(Xt) =

M∑
j=1

[∑
x∈K

(x + vj)(aj(x)P (x, t|x0, t0)−
∑
x∈K

xaj(x)P (x, t|x0, t0)

]

Simplifying this equation we obtain

∂

∂t
E(Xt) =

M∑
j=1

vjaj(x)P (x, t|x0, t0)

By the definition of expected values, the above equation can be written as

∂

∂t
E(Xt) =

M∑
j=1

[vjE(aj(Xt))].
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Substituting Y (t) = E(Xt) in the above, we get

d

dt
Y (t) =

M∑
j=1

vjE(aj(Xt)

We now investigate the types of reactions is the reaction rate equation is valid,

E(aj(Xt)) = aj(E(Xt)) = aj(Y (t))

Consider the following reactions of various orders:

1. If aj(X(t)) = mj, then E(ajX(t)) = E(mj) = mj = aj(Y (t)).

2. If aj(X(t)) = mjxi, then E(aj(X(t))) = E(mjxi) = mjE(xi) = aj(E(X(t))) =

aj(Y (t)),

3. If aj(X(t)) = mjxixk, where i 6= k, the population species Si and Sk may not

be independent, then E(aj(X(t))) = E(mjxixk) = mjE(xixk)6=mjE(xi)E(xj) =

aj(Y (t)).

Thus the average behaviour of the solution of the CME satisfies the RRE if the biochemcal

system has only reactions of order 0 and 1. The system reaches the thermodynamic limit

( Gillespie [15]) when its volume V and each species population Xi(t) approach infinity,

while the species concentration (i.e. species population/volume) remains constant, i.e., if

Xi→∞ and V→∞ then Xi

V
= constant. When there are large number of molecules, the

deterministic part of the CLE grows as the system size but the stochastic part grows as

its square root. Therefore the stochastic part is negligible compared to the deterministic

part.

So, from equation (2.21), if we ignore the stochastic part of the CLE then we get ):

d

dt
Y (t) =

M∑
j=1

vjaj(Y (t)). (2.22)

This equation is called the reaction rate equation (RRE). Therefore when the system

has very large number of molecules, it can be approximated by using the RRE model.
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In biochemical stochastic models where the molecular number of each species is greater

than 1000, we are able to reduce the stochastic model of the CME (or CLE) to that of

the deterministic reaction-rate equations.

18



Chapter 3

The Multi-Level Monte Carlo

Method

Monte Carlo methods have been extensively used in computational finance to approx-

imate the expected value of a quantity of interest, which is a function of a stochastic

process. This stochastic process may be the solution of a stochastic differential equation

(SDE). Consider a SDE of the form:

dS(t) = a(S, t)dt+ b(S, t)dW (t), 0 < t < T, (3.1)

where a(·) and b(·) are the drift and diffusion terms, respectively. If S0 is the initial data

(in our case, the initial number of molecules of a species), the goal is to compute the

expected value of f(S(T )). The function f satisfies the uniform Lipschitz condition, i.e.,

there exists a constant c > 0 and a domain D such that for any U and V in D

|f(U)− f(V )| ≤ c|U − V |. (3.2)

Then discretization of this SDE using the Euler-Maruyama method with time step h

yields

Sn+1 = Sn + a(Sn, tn)h+ b(Sn, tn)∆Wn (3.3)
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and the estimate for E[f(ST )] is the mean of f(ST/h) from N independent path simula-

tions [10]

Y =
1

N

[
N∑
i=1

f(S(i)
T/h)

]
(3.4)

The expected mean square error (MSE) is of the form [10]

MSE ≈ c1N
−1 + c2h

2 (3.5)

where c1 and c2 are constants. In this equation, the first term corresponds to the variance

in Y and the second term comes from the biasness of Euler Maruyama discretizations.

In the multi-level Monte Carlo method developed by Giles [10] the time steps for the

discretizations are given by hl = M−lT , l = 0, 1,..., L, for integer M≥2. This is a

geometric sequence of time steps with hL being the smallest time step. In a multi grid

method, the stepsize is half the previous stepsize in the previous grid. On a fine grid,

the accuracy is much better but the computational cost is high. On a coarse grid the

accuracy is lower but the computational cost is low. In this Chapter, we describe the

multi-level Monte Carlo (MLMC) method applied to the stochastic discrete model of

well-stirred biochemical systems, the CME and how does it work in order to compute

the expected values efficiently.

3.1 MLMC General Idea

The stochastic process X(t) governed by the CME satisfies the following equation (see

Kurtz [8])

X(t+ τ) = X(t) +
M∑
j=1

νjPj(

∫ t+τ

t

aj(X(s))ds).

If pj
1, pj

2, .., pj
m are independent Poisson processes then

Pj
1(

∫ τ

0

aj(X(s))ds) + Pj
2(

∫ 2τ

τ

aj(X(s))ds) + ...+ Pj
m(

∫ t

(m−1)τ

aj(X(s))ds)
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= Yj

(∫ τ

0

aj(X(s))ds+

∫ 2τ

τ

aj(X(s))ds+

∫ t

(m−1)τ

aj(X(s))ds

)
= Yj(

∫ t

0

aj(X(s))ds)

where Yj are unit rate Poisson processes and (m − 1)τ ≤ t≤ mτ . For the state vector

X(t) which obeys the CME satisfies the the random time change representation [8])

X(t) = X(0) +
R∑
j=1

Yj

(∫ t

0

aj(X(s)ds)

)
vj, (3.6)

where vj and aj are the state change vector and the propensity corresponding to reaction

Rj, respectively and {Yj}Mj=1 are independent unit-rate Poisson processes. We demon-

strate the use of the equation (3.6) in the biochemical reaction system S1

c1


c2
S2. For

example in the reaction, S1
c1−→ S2, S1 molecules are converted to S2 molecules at a rate

of c1X1, X1 being the number of molecules of type S1. If the system satisfies the mass

action kinetics, the stochastic process X(t) =

(
X1(t), X2(t)

)T
can be represented as

X(t) = X(0) + Y1

(∫ t

0

c1X1(s)ds

)
(−1, 1)T + Y2

(∫ t

0

c2X2(s)ds

)
(1, −1)T (3.7)

where (−1, 1)T and (1, −1)T are the state change vectors form the chemical reactions

above. To solidify our notation, consider a network S1
c1−→, S2

c2−→ S1, 2S2
c3−→ S3 and

2S2
c3−→S3. Here c1, c2 and c3 are rate constants. Then, the state vector of this biochemical

system obeys;

X(t) = X(0) + Y1

(∫ t

0

c1X1(s)ds

)
(−1, 1, 0)T + Y2

(∫ t

0

c2X2(s)ds

)
(1, −1, 0)T

+Y3

(∫ t

0

1

2
c3X2(s)(X2(s)− 1)ds

)
(0, −2, 1)T

where v1 = [−1, 1, 0]T , v2 = [1,−1, 0]T , v3 = [0,−2, 1]T are the state change vectors.
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3.2 The MLMC Method for Stochastic Biochemical

Kinetics

In this section, we will present the multi-level Monte Carlo method to estimate the mean

of f(X(t)) where f is a function of interest, e.g., f(x) = x and X(t) is the stochastic pro-

cess representing the state vector of a well-stirred biochemical system. In order to reduce

the computational costs, the multi-level Monte Carlo strategy couples the trajectories to

accurately approximate the expected value of a random variable for rather than the en-

tire distribution. By coupling trajectories on consecutive levels, the method reduces the

variance of the mean estimate. By levels, we are referring to computing estimates using

finer step sizes in higher consecutive levels. From our sample distribution, the MLMC

method finds the moments of the distribution such as mean if f(x) = x and variance, if

f(x) = x2 in case the mean was computed in advance.

The multi-level Monte Carlo method generates many levels and each level corresponds

to an estimate. The summation of the estimates from all the levels is employed to our

approximate the desired mean, expected value of f(X(t)). For instance, on level 0, the

tau-leaping method is used to generate a larger number of sample paths (n0). Then the

point estimate for Xi is

Q0 := E[Zτ0 ] ≈
1

n0

n0∑
r=1

Z(r)
τ0

(T ), (3.8)

where Z
(r)
τ is the number of molecules of the species of interest at time T in path r

generated using the tau-leaping method with time step τ . If τ is large, the estimates

calculated are cheap, but inaccurate.

In the next level (level 1), we introduce a correction term to the estimator which will

reduce the bias. In order to improve the accuracy of the estimator, we calculate two

sets of n1 sample paths. The first set of sample paths is computed using the tau (τ0)

from the previous level. The second set of trajectories is calculated by using the step size

τ1 = τ0/K, where K≥2 integer. Then the correction term is the difference between the
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estimates calculated using two sample n1 paths

Q1 := E[Zτ1 − Zτ0 ] ≈
1

n1

n1∑
r=1

[Z(r)
τ1

(T )− Z(r)
τ0

(T )]. (3.9)

Adding this correction term to the estimator calculated on the base level (level 0) reduces

the bias of the resulting estimator. We can note that

Q0 +Q1 = E[Zτ0 ] + E[Zτ1 − Zτ0 ] = E[Zτ1 ].

So adding the two estimators gives a bias equivalent to that of the tau-leaping method

with τ = τ1. This process is repeated for the subsequent levels. Summing up the

estimates obtained from all the levels leads to a more accurate estimator, equivalent in

accuracy to an approximation by the tau-leaping method with the stepsize of the finest

mesh. The way to develop efficiency of the multi-level method is to generate two sets of

sample paths {
Zτ1(T )(r), Zτ0(T )(r) : r = 1, ..., n1

}
(3.10)

so that the variance in their difference is minimized. If the variance in their difference

is denoted by Vl, then the estimator variance is given as
Vl
nl

. A lower variance implies

that fewer sample paths are needed to achieve the same accuracy of the estimation. On

the second level, this process is repeated to generate a second correction term. In this

level, two sets of n2 sample paths are generated. One set has τ = τ1 and the second has

τ = τ1
K

= τ2, such that τ2 < τ1. The correction term is the estimator of their difference

Q2 := E[Zτ2 − Zτ1 ] ≈
1

n2

n2∑
r=1

[Z(r)
τ2

(T )− Z(r)
τ1

(T )]. (3.11)

Adding the correction term generated from level 2 to level 1 and level 0, we derive

Q0 +Q1 +Q2 = E[Zτ0 ] + E[Zτ1 − Zτ0 ] + E[Zτ2 − Zτ0 ] = E[Zτ2 ]

by the linearity property of expected values. Thus the summation of the three estimators

gave a bias equivalent to the tau leaping method with τ = τ2. Continuing this procedure
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gives the following telescopic sum

E[Zτl ] = E[Zτ0 ] +
L∑
l=1

E[Zτl − Zτl−1
] =

L∑
l=0

Ql (3.12)

When the correction terms are added to subsequent levels, the bias of the estimator is

reduced until a desired accuracy is achieved. Finally and optionally, we can generate two

sample of nL+1 sample paths, one set using the expected values obtained by SSA and the

other using tau-leaping with τ = τL, we can compute the final correction term

QL+1 = E[Xi − Zτl ]≈
1

nL+1

nL+1∑
r=1

[Xi
(r)(T )− Z(r)

τL
(T )] (3.13)

and the above estimation can be added to the telescopic sum in order to get an unbiased

estimator below

Qb = E[Xi] = E[Zτ0 ] +
L∑
l=1

E[Zτl − Zτl−1
] + E[Xi − ZτL ] =

L∑
l=0

Ql +Q∗L+1 (3.14)

The above equation will give us an unbiased estimation of the quantity of interest, in

our case the mean E(X(T )). It is important to note that the total CPU time taken to

generate the estimates from all the levels is less than the total CPU time required to

estimate Xi using the exact stochastic simulation algorithm for an insignificant loss in

accuracy of the estimation.

To use the multi-level Monte Carlo method, we need to consider the following:

• the choice of the number of levels in the algorithm as it will affect the total com-

putational time,

• the value of the estimator variance of each level,
Vl
nl

will ensure accuracy and also

affect the total computational time.
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The key idea in this method is to reduce the overall estimator variance Vl by making the

variance from each levels sufficiently small so that fewer trajectories are needed on each

level to obtain an estimation of the desired accuracy reducing the computational time.

An important point to make is, that the error of a Monte Carlo is

errorl ∼
σl√
Nl

. (3.15)

where σl
2 is the variance and N` is the number of Monte Carlo trajectories. We can

see from the relation between error and variance that, if the variance is reduced, then

fewer trajectories are required for the corresponding level to obtain a similar error in the

estimation

Coupling in MLMC

The algorithm below explains how the coupling is done in order to reduce the variance

[3].

Fix an integer M ≥ 2 . Fix hl > 0 and set hl−1 = M ∗ hl. Set Zl(0) = Zl−1(0) = x0,

t0 = 0, n = 0. repeat the following steps until tn≥T :

1. For j = 1, ..., M,

(a) Set

• mk,1 = min(ak(Zl), ak(Zl−1))

• mk,2 = ak(Zl)−mk,1

• mk,3 = ak(Zl−1)−mk,1

(b) For each k, let

• pk,1 = Poisson(mk,1 ∗ hl)

• pk,2 = Poisson(mk,2 ∗ hl)

• pk,3 = Poisson(mk,3 ∗ hl)
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• Pk = pk,1 + pk,2

• Qk = pk,1 + pk,3

• Gk = Gk + Pk ∗ vk

• Fk = Fk + Qk ∗ vk

(c) it Set

• Zl = Zl +Gk

• Zl−1 = Zl−1 + Fk

2. Set tn+1 = tn + hl−1.

3. Set n = n+ 1

Some of the observations we make are:

1. We do not need to update ak(Zl−1) during the workings of the inner loop of j =

1,...,M.

2. At most one of m2,m3 will be nonzero during each step with both being zero

whenever ak(Zl) = ak(Zl−1). Therefore at most two Poisson random variables are

required per reaction channel at each step and not three.

3. While two paths are being generated, max{m2,m3} should be small for each step.

Hence the work in computing Poisson random numbers will fall on pk,1
1, which is

the same amount of work as would be needed for the generation of a single path of

tau-leaping. Note that pk,1 is a common Poisson random number for the coupled

trajectories. Since pk,1 is larger than pk,2 and pk,3, the coupling is strong, and

therefore the variance of the estimation is reduced.

If each sample path on level ` takes cl time to generate the estimator using nl sample

paths, then we minimise the total computational time according to the method proposed

1The cost of generating a Poisson random variable generally decreases with the size of the mean.
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in [25]

min
nl

L∑
l=0

nlcl such that
L∑
l=0

Vl
nl
< ε2 (3.16)

Here ε2 controls the estimator variance. Consider a λ∈R and the Lagrange function,

L(cl, nl, Vl, λ) =

{
L∑
l=0

nlcl + λ
L∑
l=0

Vl
nl

}
.

We wish to find λ such that ∂L
∂nl

= 0. Calculating the derivative with respect to nl gives

∂

∂nl
L(cm, nm, Vm, λ) =

∂

∂nl

{
L∑

m=0

nmcm + λ
L∑

m=0

Vm
nm

}
= 0,

for ` = 0, 1,...,L We know that

∂nm
∂nl

= δlm =

{
1 if m = l,

0 if m6=l

Thus we get

∂

∂nl
L(cm, nm, Vm, λ) =

∂

∂nl

{
L∑

m=0

nmcm + λ
L∑

m=0

Vm
nm

}
=

L∑
m=0

cmδlm + λ
L∑

m=0

Vmδlm
(−nm2)

= 0

leading to

cl − λ
Vl
nl2

= 0.

Therefore the number of trajectories on level `, n` minimizing the quantity in (3.16) is

nl =

√
λ
Vl
cl
. (3.17)

Recall that
L∑

m=0

Vm
nm
≤ ε2, (3.18)
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Substituting nl from (3.17) into (3.18), we get

L∑
m=0

Vm
nm

=
L∑

m=0

√
Vmcm

1√
λ
≤ ε2

Thus
√
λ ≥ 1

ε2

L∑
m=0

√
Vmcm (3.19)

To get the optimal nl from (3.17) with λ satisfying (3.19). We choose

nl =
1

ε2

{
L∑

m=0

√
Vmcm

}√
Vl
cl
. (3.20)

We can use the values nl for the number of trajectories at level l. When the values of Vl

and cl are available it is also possible to estimate cl ans cl≈Kl

τ0
, whereas the variances Vl

may not be known but we can estimate them from simulating few sample paths.

In order to calculate the total computational cost, we let cl and Vl be the cost and

variance of a sample path Zl - Zl−1, then the total computational cost of the multi-level

estimator is
∑L

l=0 nlcl. We can choose according to (3.20), then the total computational

cost is

c = ε−2

(
L∑
l=0

√
Vlcl

)2

. (3.21)

3.2.1 An MLMC Method Using Scaling

Another MLMC method for stochastic discrete biochemical system was developed by An-

derson and Higham [3]. This method uses a different strategy for calculating the number

of trajectories needed for each levels, based on the largest molecular amount. Consider

V , to be the largest initial molecular amount of a species. The species population will

vary over the period of time during simulation, the best guess we have is the largest

initial species number. This approach scales the molecular number of species Si by pa-
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rameter αi ≥ 0 by setting Xi
v(t) = V −αiXi(t) so that Xi

v = O(1) = V −αiXi such that

O(1) = V −αiXi(0) for each species Si. Here Xi
v(t) is the abundance of for each species

Si. We have to carefully pick αi such that Xi
v = O(1). We want αi to be large enough

but not so large that Xi
v converges to zero as V→∞. If we take logarithms on both

sides, then we can rewrite the above equation as

αi = logV (Xi(t))

The general form of such a scaled model is

XV (t) = XV (0) +
∑
k

Yk

(
V γ

∫ t

0

V ckak(X
V (s))ds

)
ζV ,

where Yk is a Poisson process, γ and ck are scalars, |ζV | = O(V −ck), and both Xv and

ak(X
V ) are of order one since Xi

V = O(1). Here ak
V is a propensity function and depends

on V . It is also natural to have V̄ = V γ
∑
k

V ck [3] as the order of magnitude for the

number of computations required to generate a single realisation using exact algorithm.

The parameter γ is interpreted as being related to the time scale model. If γ > 0, then

the shortest time scale (time taken by chemical reactions) in the problem is much smaller

than 1 and if γ < 0 it is much larger. The optimum is to have γ≤0 in order to avoid the

error bounds grow rapidly.

Similarly for each reaction rates ci, each of these reaction rates are scaled according to

cj = O(1)V βj and if we take logarithm on both sides then we can rewrite as

βj = logV (cj)

The scaling factor for the reaction as a whole is γ, calculated as

γ = max
i,j:vij 6=0

{βj + vjα− αi}

Here vij is the (i,j) entry of the stoichiometric matrix and vj is reaction Rj and α is
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a vector containing all the αi [21]. We also need a parameter ρ which is computed as

follows:

ρ = min
i,j:vij 6=0

{αi}

so that |ζkV | ≈ V −ρk . we have that ρ≥0 and by the choice of γ we have ck− ρk≤0 for all

k. Aso, we point that γ is chosen such that ck=0 for at least one k. It is explicitly noted

that the classical scaling holds if and only if ck≡ρk≡1 and γ = 0 [3]. Then, the required

number of trajectories for the base estimator, n0, is calculated as

n0 = V −ρV γε−2,

where ε is the desired accuracy of the estimator for E(f(X(t))). The number of trajec-

tories required to calculate correction estimators at level l, nl is calculated as

nl = V −ρV γ(L− l0)hlε
−2

where ` ∈ {0,1,...,L}, the step size τl = TM−` and L is chosen by taking L = O(|ln(ε−1)|).
Recall that we can estimate the expected value at the finest level may be computed as

E[Zτl ] = E[Zτ0 ] +
L∑
l=1

E[Zτl − Zτl−1
] =

L∑
l=0

Ql.

We can estimate the above quantities using n0 and {nl}1≤`≤L within an error of O(ε) by

evaluating the right side of the above equation. As discussed earlier the implementation

of the MLMC can be done with any desired accuracy but with more levels comes higher

computational cost for obtaining a higher accuracy. Our experiment with this approach

showed that it is not the most efficient when applied to a wide class of models. However,

it could be said that there could be other models that we have not tested but might be

compatible with this approach.
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Chapter 4

Numerical Results

In this section, we test the MLMC method described in Chapter 3 on three models of

practical interest. We do so by simulating expected values using 10,000 trajectories with

SSA and the MLMC method with a certain tolerance, ε.

Our test show that a significant amount of computational time is saved using the MLMC

strategy with a lower tolerance compared to the SSA. which is an exact method, but

comes at a higher computational cost.

We plotted the expected values for the molecular amounts of various species, obtained

using the exact method of Gillespie [12] (SSA) and with the MLMC method as functions

of time and found good agreement in the results of the two methods. For each model we

also got the probability distribution of the molecular amount of each species, obtained

using 10,000 SSA trajectories.

4.1 Potassium Channel (Model 1)

Consider the system the Potassium Channel system studied in [28],

S1
c1−→ S2

S2
c2−→ S1
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S2
c3−→ S3

S3
c4−→ S2

S3
c5−→ S4

S4
c6−→ S3

S4
c7−→ S5

S5
c8−→ S4

S5
c9−→ S3

S3
c10−→ S5

The propensity functions corresponding to the reactions above are:

a1(x) = c1x1;

a2(x) = c2x2;

a3(x) = c3x2;

a4(x) = c4x3;

a5(x) = c5x3;

a6(x) = c6x4;

a7(x) = c7x4;

a8(x) = c8x5;

a9(x) = c9x5;

a10(x) = c10x3;

Here xi’s correspond to the molecular population number of species Si. The stoichiomet-

ric matrix for this biochemical network is:

V =



−1 1 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0

0 0 1 −1 −1 1 0 0 1 −1

0 0 0 0 1 −1 −1 1 0 0

0 0 0 0 0 0 1 −1 −1 1


This model has the following reaction rate, parameters and initial conditions:

X(1) = 100; X(2) = 50; X(3) = 100; X(4) = 50; X(5) = 100, c(1) = c(2) = c(3) = c(4)

= c(5) = 0.1. The interval of integration is [0,20]
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SSA MLMC(ε1=0.5) MLMC(ε2=1) MLMC(ε3=1.5) MLMC(ε4=2)
X1 81.1214 81.1122 80.8897 81.36 81.0312
X2 80.2564 80.0417 79.1176 78.5467 81.1562
X3 79.7566 79.7396 80.3015 80.44 80.2812
X4 79.3184 79.3871 79.6838 78.0024 78.9688
X5 79.5472 79.7194 80.0074 78.4133 78.5624

CPUtime 412s 490s 73s 36s 12s

Table 4.1: Comparison of expected values obtained through SSA and MLMC (using
different ε-values) for the Potassium Channel Model and the computational times of
these algorithms

Levels n` MLMC(ε1=0.5) MLMC(ε2=1) MLMC(ε3=1.5) MLMC(ε4=2)
n0 695 136 75 32
n1 570 108 60 23

Table 4.2: Comparison of trajectories obtained through simulation of the MLMC (using
different ε-values) for the Potassium Channel Model

We present in table 4.1 the estimates of the expected values of the Xi molecules obtained

from simulating the Potassium Channel model using both the SSA and the MLMC

methods. The SSA is an exact method whereas MLMC is an approximate method. We

have discussed earlier that while being an exact thus accurate method, SSA simulation

comes at a high cost for models with some fast reactions. However, the MLMC strategy

provides significant computational time savings without significant loss in accuracy of

estimating the mean values. We see that the the expected values obtained from both

methods are very close to each other, with a difference of approximately 1, 2 or 3 at most

number molecules for some species. For example, consider species 5, the SSA simulation

gives us 79.5472 whereas MLMC simulation gives 78.5624 (by using tolerance ε4=2). The

relative error of MLMC compared to SSA ones is |79.5472−78.5624|
|79.8148| ∗ 100% ≈ 1.2%. This

shows a very good accuracy of our simulation. We also see from Table 4.1 that, the

MLMC scheme is approximately 20 (412/20) times faster than the SSA. Figures 4.6-

4.10 show the expected values for the molecular amounts of the species X1, X2, ..., X5

respectively as functions of times estimated from 10000 trajectories utilizing the SSA

and the MLMC strategy with a given tolerance. Figure 4.11 gives a loglog plot of the

norm-2 of the absolute error of the MLMC compared to the ’exact’ solution of the SSA,
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as a function of the tolerance ε set for the estimator. The slope in the loglog plot is

almost 1.
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Figure 4.1: Potassium Reaction Model; probability distribution of species S1 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
1 is 412 seconds.
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Figure 4.2: Potassium Reaction Model; probability distribution of species S2 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
2 is 412 seconds.
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Figure 4.3: Potassium Reaction Model; probability distribution of species S3 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
3 is 412 seconds.
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Figure 4.4: Potassium Reaction Model; probability distribution of species S4 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
4 is 412 seconds.
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Figure 4.5: Potassium Reaction Model; probability distribution of species S5 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
5 is 412 seconds.
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Figure 4.6: Potassium Channel Model: Means of number of molecules of species S1, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1, 1.5 and 2. The time of integration used in T
= 20. The accuracy of the MLMC method is excellent for ε=1.5 and below. At the final
time, i.e, tfinal = 20, we see that there is no difference of molecules between the results
of the SSA and the MLMC with ε=2 and resulting in a relative error of 0.1%.
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Figure 4.7: Potassium Channel Model: Means of number of molecules of species S2, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1, 1.5 and 2. The time of integration used in T
= 20. The accuracy of the MLMC method is excellent for all ε values. At the final time,
i.e, tfinal = 20, we see that there is a difference of 1 molecule between the results of the
SSA and the MLMC with ε=2 and resulting in relative error of approximately 1.1%.
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Comparative Plotting of Expected Values of SSA and MLMC for Potassium Channel Model
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Figure 4.8: Potassium Channel Model: Means of number of molecules of species S3, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1, 1.5 and 2. The time of integration used in T
= 20. The accuracy of the MLMC method is excellent for all ε values. At the final time,
i.e, tfinal = 20, we see that there is a difference of approximately 1 molecule between
the results of the SSA and the MLMC with all ε values and resulting in relative error of
approximately 0.6%.
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Comparative Plotting of Expected Values of SSA and MLMC for Potassium Channel Model
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Figure 4.9: Potassium Channel Model: Means of number of molecules of species S4, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1, 1.5 and 2. The time of integration used in T
= 20. The accuracy of the MLMC method is excellent for all ε values. At the final time,
i.e, tfinal = 20, we see that there is a difference of at most 1 molecule between the results
of the SSA and the MLMC with ε=1.5 and resulting in relative error of approximately
1.4%.

43



4.1. POTASSIUM CHANNEL (MODEL 1) CHAPTER 4. NUMERICAL RESULTS

,

0 2 4 6 8 10 12 14 16 18 20

Time

75

80

85

90

95

100

M
ol

ec
ul

ar
 N

um
be

r

Comparative Plotting of Expected Values of SSA and MLMC for Potassium Channel Model
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Figure 4.10: Potassium Channel Model: Means of number of molecules of species S5, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1, 1.5 and 2. The time of integration used in T
= 20. The accuracy of the MLMC method is excellent for all ε values. At the final time,
i.e, tfinal = 20, we see that there is a difference of at most 1 molecule between the results
of the SSA and the MLMC with ε=1.5 and resulting in relative error of approximately
1.4%.
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Figure 4.11: Potassium Channel Model: the loglog plot of the absolute error of the
MLMC with various values of ε compared to the SSA, as a function of the tolerance ε.
The values of tolerance ε considered are ε1=0.5,ε2=0.75, ε3=1, ε4=1.25, ε5=1.5 and ε6=2
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SSA MLMC(ε1=0.5) MLMC(ε2=1) MLMC(ε3=1.5) MLMC(ε4=2)
X1 72.5692 73.79 73.64 72.6984 72.25
X2 46.8809 46.09 46.622 45.4049 44.9583
X3 73.1191 73.9 73.3780 74.5951 75.0417

CPUtime 94.4 seconds 13 seconds 4.3 seconds 3.1 seconds 2.3 seconds

Table 4.3: Comparison of expected values obtained through SSA and MLMC (using
different ε-values) for the Michaelis Menten Model and the computational times of these
algorithms

4.2 Michaelis Menten System (Model 2)

The second model used for testing is the Michaelis-Menten system [19]. The focus species

are subject to three reactions:

S1 + S2

c1


c2
S3

S3
c3−→ S2 + S4.

The propensity functions corresponding to these reactions are:

a1(x) = c1x1x2;

a2(x) = c2x3;

a3(x) = c3x3;

while the stoichiometric matrix is:

V =


−1 1 0

−1 1 1

1 −1 −1

 .
The reaction rate parameters and the initial conditions are listed below:

nA (Avogadro’s number) = 6.023e23; Vol = 1e-15 liters;

X(1) = round(5e-7); X(2) = 2e-7; X(3) = 0; X(4)=0;

c(1) = 1e6
nAvol.

; c(2) = 1e-4; c(3) = 1e-1;

The simulation is performed on the time interval [0,20]. We simulated 10,000 trajectories

using the SSA and the MLMC method with tolerances ε = 0.5, 1, 1.5 and 2.
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Table 4.3 shows the estimates of the expected values of the molecular amounts of various

species obtained from simulating Michaelis Menten model using both the SSA and the

MLMC methods with tolerance values ε1=0.5, ε2=1, ε3=1.5 and ε4=2. The values Xi

correspond to estimated expected values of the population number for species Si. We

see that approximations of the expected values obtained from the MLMC methods with

the tolerances tried are very close to those obtained with the SSA (an exact algorithm),

with a difference of approximately 1 or 2 at most number molecules for some species. For

example, consider species S1, the SSA simulation gives an estimation of the E(X(20))

of 72.5692 whereas MLMC (ε4=2) simulation gives 72.25. The relative error of MLMC

compared to SSA is |72.5692−72.25|
|72.5692| ∗100% ≈ 0.4%. This shows a very good accuracy of our

simulation. We also see from Table 4.3 that the speed up of MLMC method (ε1=0.5)

is approximately 7.3 (94.4/13) times faster than SSA. The speed up of MLMC method

(ε2=1) is approximately 22 times faster than SSA. Similarly, the speed up of MLMC

method (ε3=1.5) is approximately 30.4 (94.4/3.1) times faster than SSA and finally the

speed up of MLMC method (ε3=2) is approximately 41 (94.4/2.3). In Figures 4.12 -

4.14, we present the probability distribution of the molecular amounts of the species S1,

S2 and S3, respectively, computed using the SSA, at T=20. We compare the SSA and

the the MLMC method with the ε=0.5, 1 and 1.5 in Figures 4.15 - 4.17 for species S1,

S2 and S3 respectively. Each plot shows the estimation of the mean number of the Si

molecules as a function of time, computed the SSA and by the MLMC method with the

sequence of tolerances. Figure 4.18 gives a loglog plot of the norm 2 error i.e.,

error(T ) = ‖XSSA(T )−XMLMC(T )‖2,

for the MLMC compared to the SSA for the Michaelis Menten system. Here error is a

function of the tolerance ε. The slope of the linear fit is 0.2.

47



4.2. MICHAELIS MENTEN
SYSTEM (MODEL 2) CHAPTER 4. NUMERICAL RESULTS

,

30 40 50 60 70 80 90 100 110 120

Number of S1 Molecules

0

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

ba
bi

lit
y 

D
is

tri
bu

tio
n

SSA for Michaelis Menten Model for Species 1

Simulated SSA for Species 1

Figure 4.12: Michaelis Menten Model; probability distribution of species S1 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
1 is 94.4 seconds.
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Figure 4.13: Michaelis Menten Model; probability distribution of species S2 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
2 is 94.4 seconds.
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Figure 4.14: Michaelis Menten Model; probability distribution of species S3 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
3 is 94.4 seconds.
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Figure 4.15: Michaelis Menten Model: Means of number of molecules of species S1, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1 and 1.5. The time of integration used in T =
20. The accuracy of the MLMC method is excellent for all ε values. At the final time, i.e,
tfinal = 20, we see that there is a difference of at most 1 molecule between the results of
the SSA and the MLMC with ε=1 and resulting in relative error of approximately 1.3%.
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Figure 4.16: Michaelis Menten Model: Means of number of molecules of species S2, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1 and 1.5. The time of integration used in T =
20. The accuracy of the MLMC method is excellent for all ε values. At the final time,
i.e, tfinal = 20, we see that there is a difference of at most 1 molecule between the results
of the SSA and the MLMC with ε=1.5 and resulting in relative error of approximately
3.1%.
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Figure 4.17: Michaelis Menten Model: Means of number of molecules of species S3, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1 and 1.5. The time of integration used in T =
20. The accuracy of the MLMC method is excellent for all ε values. At the final time, i.e,
tfinal = 20, we see that there is a difference of at most 2 molecule between the results of
the SSA and the MLMC with ε=1 and resulting in relative error of approximately 0.3%.
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Figure 4.18: Michaelis Menten Model: the loglog plot of the absolute error of the MLMC
with various values of ε compared to the SSA, as a function of the tolerance ε. The values
of tolerance ε1=0.5,ε2=0.75, ε3=1, ε4=1.25, ε4=1.5 and ε4=2

.
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4.3 Cyclical Reaction System (Model 3)

Finally, we study the Cyclical Reaction System from [28]. This system consists of three

reactions involving three reacting species. The reaction channels are:

S1
c1−→ S2

S2
c2−→ S3

S3
c3−→ S1

and have propensities:

a1(x) = c1x1;

a2(x) = c2x2;

a3(x) = c3x3.

This reaction system has the following stochiometric matrix:

V =


−1 0 1

1 −1 0

0 1 −1.


1. We simulate the Cyclical Reaction system with the following initial conditions and

reaction rate parameters X(1) = 100; X(2) = 80; X(3) = 100, c(1) = 0.1; c(2) =

0.1; c(3) = 0.1, on the time interval [0,20].

2. As with the previous model, we simulate the SSA using 10,000 trajectories and

the MLMC strategy with a sequence of tolerances, which in this case is ε=0.5,1,

1.5 and 2. The probability distributions of the molecular amounts computed over

10,000 trajectories of the SSA, at T=20,included in figures 4.20-4.22.

3. The estimates of the average number of molecules of each species Si as functions of

time, computed using the SSA and the MLMC with different tolerance levels, are

shown in figures 4.23-4.25.

Table 4.4 presents the average number of molecules of each species at final time T=20,

computed over 10,000 trajectories of the stochastic simulation algorithm and by the
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SSA MLMC(ε1=0.5) MLMC(ε2=1) MLMC(ε3=1.5) MLMC(ε4=2)
X1 93.8182 90.3133 92.5638 93.9167 94.5832
X2 93.4114 94.4423 94.0787 93.5877 96.3388
X3 92.7707 95.2444 93.3845 92.4956 89.0780

CPUtime 69 seconds 19 seconds 4 seconds 2.8 seconds 2 seconds

Table 4.4: Comparison of expected values obtained through SSA and MLMC (using
different ε-values) for the Cyclical Reaction Model and the computational times of these
algorithms

MLMC method with the following sequence of tolerances ε1=0.5, ε2=1, ε3=1.5 and ε4=2.

Also, Table 4.4 gives the computational time required by each method. We see that

the the expected values obtained from all methods are very close to each other with a

difference of approximately 1, 2 or 3 at most number molecules for some species. For

instance, for species S2, the SSA simulation estimates an average of 93.4112 whereas

MLMC with ε = 0.5 simulation predicts an average of 94.4423 S2 molecules. The relative

error of the MLMC compared to SSA is |93.4114−94.4423|
|93.4114| ∗100% ≈ 1.1%. This shows a very

good accuracy of our simulation. We also see from Table 4.4 above, the computing time

of the MLMC scheme is approximately 35 (69/2) times faster than SSA. Figures 4.19-

4.21 show the expected values for the molecular amounts of the species X1, X2, ..., X5

respectively as functions of times estimated from 10,000 trajectories utilizing the SSA

and the MLMC strategy with a given tolerance. Figure 4.25 gives a loglog plot of the

norm-2 of the total error of the MLMC method compared to the SSA, as a function of

the tolerance ε. The slope in the loglog plot is almost 2.
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Figure 4.19: Cyclical Reaction Model; probability distribution of species S1 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
1 is 69 seconds.
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Figure 4.20: Cyclical Reaction Model; probability distribution of species S2 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
2 is 69 seconds.
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Figure 4.21: Cyclical Reaction Model; probability distribution of species S3 at time
T=20, using 10,000 trajectories of the SSA. The total time taken to simulate for Species
3 is 69 seconds.
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Figure 4.22: Cyclical Reaction Model: Means of number of molecules of species S1, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1, 1.5 and 2. The time of integration used in T =
20. The accuracy of the MLMC method is excellent for all ε values. At the final time, i.e,
tfinal = 20, we see that there is a difference of at most 2 molecule between the results of
the SSA and the MLMC with ε=2 and resulting in relative error of approximately 0.7%.
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Figure 4.23: Cyclical Reaction Model: Means of number of molecules of species S2, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1, 1.5 and 2. The time of integration used in T
= 20. The accuracy of the MLMC method is excellent for all ε values. At the final time,
i.e, tfinal = 20, we see that there is a difference of at most 1 molecule between the results
of the SSA and the MLMC with ε=0.5 and resulting in relative error of approximately
1.1%.
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Figure 4.24: Cyclical Reaction Model: Means of number of molecules of species S3, as a
function of time, estimated using 10,000 trajectories of the SSA and the MLMC method
with values of the tolerance ε being 0.5, 1, 1.5 and 2. The time of integration used in T
= 20. The accuracy of the MLMC method is excellent for all ε values. At the final time,
i.e, tfinal = 20, we see that there is a difference of at most 2 molecule between the results
of the SSA and the MLMC with ε = 0.5 and resulting in relative error of approximately
2.6%.
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Figure 4.25: Cyclical Reaction Model: the loglog plot of the absolute error of the MLMC
with various values of ε compared to the SSA, as a function of the tolerance ε. The values
of tolerance ε1=0.5,ε2=0.75, ε3=1, ε4=1.25, ε4=1.5 and ε4=2

.
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Chapter 5

Conclusion

This thesis discusses numerical strategies for simulating stochastic discrete models of

well-stirred biochemical kinetics, namely the Chemical Master Equation. The focus is

on efficient and accurate methods for approximating the expected value of a function of

interest (f) of the stochastic process modeling the evolution of the biochemical network,

X(t). The recently developed multi-level Monte Carlo (MLMC) of Giles is more efficient

that the existing stochastic simulation algorithm of Gillespie, for evaluating the expected

values E(f(X(t))).

Although, the SSA is an exact algorithm, it often requires a high computational cost,

especially when some reactions in the system are fast therefore taking smaller time-

steps because the step size in SSA in inversely proportional to the sum of propensity

functions. The multi-level Monte Carlo method provides a more cost-effective way to

estimate E(f(Xi(t))) than the Stochastic Simulation Algorithm, by choosing a sequence

of levels from coarser grids to finer grids. Trajectories on coarser grids are cheaper to

simulate but inaccurate, while trajectories on finer grid are expensive to simulate, but

accurate. In the MLMC tau-leaping method, we observed that we can pick a fix step

size and calculate the expected value of our functional using different levels with the first

level being the base estimator and subsequent levels being the bias correction estimators.

These correction estimators are added to the base estimator to reduce bias resulting in

higher order of accuracy. The accuracy of the estimator obtained from this addition is
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that of the most accurate levels added.

The MLMC method reduces the variance of the estimator by coupling the sets of tra-

jectories simulated at each level. If the variance of the estimator is reduced then fewer

trajectories are needed to obtain a similar accuracy of the estimator, thus reducing its

computational cost. Our approximation may be as close as possible to the exact al-

gorithm by choosing more levels but higher number of levels also comes at a higher

computational cost. So, there is a trade-off between the efficiency of the estimator and

the achieved accuracy. We investigated improvements for the number of trajectories on

each level taken by the MLMC strategy for a certain accuracy. This improved MLMC

strategy has accuracy comparable to that of the SSA, but at a small fraction of the

SSA’s computational time. In addition, we investigated the effect of choosing a certain

tolerance, on the accuracy achieved by the MLMC technique compared to the accuracy

of the exact SSA.

We investigated the behaviour of the MLMC strategies compared to the SSA on several

models of biochemical networks arising in applications and we discussed the advantages

of the MLMC approach.

Future Work

In our future work, we shall design adaptive time-stepping strategies method for MLMC

techniques for stochastic biochemical networks. Such adaptive schemes are particularly

important for the cost of moderately stiff to stiff biochemical systems. For stiff problems,

a fixed-stepsize scheme significantly increased the computational time of the algorithm,

for a given level of accuracy compared to a variable stepsize scheme.

.
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Appendix 1

Probability Distributions

• The random variable X has a uniform distribution over the range [a,b], X ∼ U(a,b),

if it has a probability density function of the form

fX(x) =

{
1
b−a if a ≤ x ≤ b,

0 otherwise.

• The random variable X has an exponential distribution with parameter λ, X ∼
Exp(λ), if it has a probability density function of the form

fX(x) =

{
λe−x if x ≥ 0,

0 otherwise.

• The random variable X has a Poisson distribution with parameter λ, X ∼ P(λ), if

it has a probability mass function of the form

P (X = k) = λk

k!
e−k

if k = 0, 1, 2, ...

• The random variable X has a binomial distribution with parameters n and p, X ∼
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B(n,p), if it has a probability mass function of the form

P (X = k) =

(
n

p

)
pk(1− p)n−k

if k = 0, 1, 2, ..., n
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Poisson Process

• A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents

the total number of events that occur by time t.

• The counting process {N(t), t ≥ 0} is said to be a Poisson process having rate

λ > 0, if:

1. N(0) = 0,

2. the process has independent increments,

3. the number of events in any interval of length t has a Poisson distribution

with mean λt, i.e., for all s, t ≥ 0 the following is true

P{N(t+ s)−N(s) = n} = e−λt (λt)n

n!
,

for n = 0,1,...
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APPENDIX 2. POISSON PROCESS
2.1. LINEAR COMBINATION OF INDEPENDENT POISSON RANDOM

VARIABLES

2.1 Linear combination of independent Poisson ran-

dom variables

If X1 and X2 are independent Poisson random variables such that X1∼P1(λ1) and

X2∼P2(λ2) then X1 + X2∼P (λ1 + λ2), that is X1 + X2 is a Poisson distribution of

parameters λ1 + λ2.

69



Appendix 3

Convergence in Probability

Let Ω be a set, then a σ − algebra F on ω has the following properties:

1. φ ∈ F

2. F ∈ F

3. If A1, A2, .. ∈ F then A := ∪∞i=1Ai ∈ F

Here (Ω, F ) is a measurable space. A probability measure P is a mapping P : F →[0,1]

with the following properties:

1. P (φ) = 0 and P (Ω) = 1

2. If the sequence of sets {Ai}∞i=1 ∈ F and are disjoint, then P (∪∞i=1Ai) =
∞∑
i=1

P (Ai).

The triplet (Ω, F, P ) is a probability space.

Let (Ω, F, P ) be a probability space. The sequence of random variables (Yn) converges

in limit (convergence in probability) to Y , i.e, Yn → Y if,

P (ω : |Yn(ω)− Y (ω)| > ε)→ 0

as n→∞ and ∀ ε > 0
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[1] Aurélien Alfonsi, Eric Cances, Gabriel Turinici, Barbara Di Ventura, and Wilhelm

Huisinga. Adaptive simulation of hybrid stochastic and deterministic models for

biochemical systems. In ESAIM: proceedings, volume 14, pages 1–13. EDP Sciences,

2005.

[2] David F Anderson. Incorporating postleap checks in tau-leaping. The Journal of

chemical physics, 128(5):054103, 2008.

[3] David F Anderson and Desmond J Higham. Multilevel monte carlo for continuous

time markov chains, with applications in biochemical kinetics. Multiscale Modeling

& Simulation, 10(1):146–179, 2012.

[4] Adam Arkin, John Ross, and Harley H McAdams. Stochastic kinetic analysis of de-

velopmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics,

149(4):1633–1648, 1998.

[5] Yang Cao, Daniel T Gillespie, and Linda R Petzold. The slow-scale stochastic

simulation algorithm. The Journal of chemical physics, 122(1):014116, 2005.

[6] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Efficient step size selection for

the tau-leaping simulation method. The Journal of chemical physics, 124(4):044109,

2006.

[7] Abhijit Chatterjee, Dionisios G Vlachos, and Markos A Katsoulakis. Binomial dis-

tribution based τ -leap accelerated stochastic simulation. The Journal of chemical

physics, 122(2):024112, 2005.

71



REFERENCES REFERENCES

[8] Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and

convergence, volume 282. John Wiley & Sons, 2009.

[9] C Gardiner. Stochastic methods: a handbook for the natural and social sciences 4th

ed.(2009).

[10] Michael B Giles. Multilevel monte carlo path simulation. Operations Research,

56(3):607–617, 2008.

[11] Daniel T Gillespie. A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. Journal of computational physics,

22(4):403–434, 1976.

[12] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The

journal of physical chemistry, 81(25):2340–2361, 1977.

[13] Daniel T Gillespie. The chemical langevin equation. The Journal of Chemical

Physics, 113(1):297–306, 2000.

[14] Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically

reacting systems. The Journal of Chemical Physics, 115(4):1716–1733, 2001.

[15] Daniel T Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys.

Chem., 58:35–55, 2007.

[16] Eric L Haseltine and James B Rawlings. Approximate simulation of coupled fast

and slow reactions for stochastic chemical kinetics. The Journal of chemical physics,

117(15):6959–6969, 2002.

[17] Andreas Hellander and Per Lötstedt. Hybrid method for the chemical master equa-

tion. Journal of Computational Physics, 227(1):100–122, 2007.

[18] Desmond J Higham. An algorithmic introduction to numerical simulation of stochas-

tic differential equations. SIAM review, 43(3):525–546, 2001.

[19] Desmond J Higham. Modeling and simulating chemical reactions. SIAM review,

50(2):347–368, 2008.

72



REFERENCES REFERENCES

[20] Silvana Ilie, Wayne H Enright, and Kenneth R Jackson. Numerical solution of

stochastic models of biochemical kinetics. Canadian Applied Mathematics Quarterly,

17(3):523–554, 2009.

[21] Hye-Won Kang, Thomas G Kurtz, et al. Separation of time-scales and model reduc-

tion for stochastic reaction networks. The Annals of Applied Probability, 23(2):529–

583, 2013.

[22] Thomas R Kiehl, Robert M Mattheyses, and Melvin K Simmons. Hybrid simulation

of cellular behavior. Bioinformatics, 20(3):316–322, 2004.

[23] Thomas R Kiehl, Robert M Mattheyses, and Melvin K Simmons. Hybrid simulation

of cellular behavior. Bioinformatics, 20(3):316–322, 2004.

[24] Hiroaki Kitano. Computational systems biology. Nature, 420(6912):206, 2002.

[25] Christopher Lester, Ruth E Baker, Michael B Giles, and Christian A Yates. Ex-

tending the multi-level method for the simulation of stochastic biological systems.

Bulletin of mathematical biology, 78(8):1640–1677, 2016.

[26] Tiejun Li. Analysis of explicit tau-leaping schemes for simulating chemically reacting

systems. Multiscale Modeling & Simulation, 6(2):417–436, 2007.

[27] Shev MacNamara, Alberto M Bersani, Kevin Burrage, and Roger B Sidje. Stochas-

tic chemical kinetics and the total quasi-steady-state assumption: application to

the stochastic simulation algorithm and chemical master equation. The Journal of

chemical physics, 129(9):09B605, 2008.
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