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Master Degree Dissertation 2006, © Joseph Hanna

Master of Chemical Engineering, Ryerson University

Abstract

One of the main confronts in control engineering is the assessment of closed loop
performance. Harris ascertains a performance index where the best performance is assumed

to be attained by a minimum variance controller.

This research spotlights on the tuning of the illustrious and most frequently used PI
controller to achieve minimum variance conditions. The optimization problem is embarked
upon two different approaches. The first approach uses enumerative search optimization for
its simplicity. The second approach applies an exploited hybrid genetic algorithm that is
developed to generate vigorous and premium results. The algorithm amalgamates the
genetic operations of selection, crossover, and mutation with Newton's search inside
successively expanding and contracting parameter domains using alternating logarithmic
and linear mappings. Finally, the obtained PI parameters are tested and simulated with data
from three control loops at Falconbridge Smelter in Sudbury and compared with the

existing tuning parameters. The new parameters yield optimal results.
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Part 1

INTRODUCTION



Chapter 1

Introduction

The design and implementation of different process control strategies have been
largely pondering to the controller designer's hard work. The underlying principle
has been that systems, which are difficult to control, need strategies that are more
robust in order to achieve the optimal performance. Although there are a variety of
control strategies, proportional-integral-derivative (PID) controllers are still the
most widely used for their simplicity and technological maturity. It is nearly
impossible to monitor the performance of all PID control loops in any
manufacturing facility. However, it is more realistic to monitor most critical control
loops with some formalized assessment tools. When a poorly performing control
loop is identified, it becomes necessary to diagnose the underlying cause. For
example, the poor performance could be due to improper tuning, improper
controller structure, changing process dynamics, or an excursion due to process
disturbance. The emerging area of performance assessment provides a means of
diagnosing control loop performance using time series and digital signal processing

techniques - Huang et al. (1997). The benefits of continual loop monitoring and



performance assessment are becoming well known to the industry. Controller

monitoring can successfully find problem areas within the plant.

In most modern industrial process plants, a sophisticated and powerful Distributed
Control System (DCS) or Programmable Logic Controllers (PLC) exist. These
systems have allowed an explosive growth in the amount of process data that are

available to analyze and benchmarking of PID tuning parameters.

The focal point of this project is the solution of a stochastic regulatory control
problem. The minimum variance controller is a benchmark for this control problem.
Harris (1989) established a new benchmark for performance assessment of control
systems as the best achievable control is measured by mean square error. Astrom
(1971) had this same idea; however, it was Harris that made a simple calculation

technique using time series data.

Harris (1992) et al. commenced working on a normalized performance index to
characterize the performance of feedback control schemes against a benchmark of

minimum variance control.

In the present study, a PI tuning technique based on minimum variance control is
introduced, modeled, and tested. The tuning technique maximizes a Normalized
Performance Index (Np;) by two optimization techniques. The first technique is an
enumerative search technique for the Np; maximum. The second technique involves
the utilization of Hybrid Genetic Algorithms (GA), to ensure the achievement of a
global solution of optimal minimum variance tuning parameters. Both approaches

are modeled, tested, simulated, and compared.

The focus of most of the previously conducted research stressed on the effect of

output stochastic disturbance. In a typical industrial application, noisy measurement

is one of the main sources of output stochastic disturbance, which can be easily
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1.1

filtered through a variety of digital filters such as first order low-pass, band-pass,

band-stop and other higher order filter. A PI controller itself can act as a first order

low-pass filter.

The main objective of this project is to design a PI feedback regulatory controller
that can minimize the output variance and to reduce the effect of this stochastic

input noise. Stochastic input disturbance is selected because it is more realistic.

The optimization problem is non-linear, discontinuous, and not necessarily multi-
model. In addition, the constraints for this optimization problem are mainly implicit.
Genetic Algorithms are perfect candidates to solve such problems. Although genetic
algorithms are computationally efficient in seeking the optimum point precisely,
they cannot locate the exact global optimum reliably. Hybridization is used in order
to eliminate the weakness of GA by incorporating Newton's method to enhance its

local optimizing ability.

Literature Review

Astrom (1970), in his book "Introduction to Stochastic Control Theory", has
developed the linear stochastic control theory where he stated that "The
performance of the system depends critically on the information available at the
time the value of the control signal should be determined. For example, a delay of
the measured signal will lead directly to deterioration of the performance"”. In
addition, Astrom started the minimum variance control theory which articulates that
"For a linear time invariant system with one input and one output, the regulation
problem can be solved assuming that the disturbance acting on the system can be
described as a realization of a normal stationary stochastic process with a rational
spectral density, and the purpose of control is to minimize the variance of the

output. An optimal predictor can be thought to be consisting of two parts: one

_4-



predictor which predicts the effect of the process disturbance on the output and one
dead beat regulator which computes the control signal required to make the
predicted output equal to the desired value". This theory was the heart of minimum

variance control.

Harris (1989) further explored Astrom's work; and initiated the concept of the use of
minimum variance as a benchmark to measure controller’s performance. His work
comprehended that the theoretical best achievable control as measured by the mean
square error is the benchmark for controller efficiency. If the theoretical best
achievable control represents a significant improvement over the current
performance, alternate controller tuning or feedback control strategies can be
considered if this improved performance is acceptable. However, the best
achievable performance itself may not be adequate. In these cases, alternate
approaches such as feedforward control, reduction of dead time, and different loop
pairings must be used to achieve the reduction in variance. In order to estimate the
theoretically achievable minimum variance performance, it is necessary to predict
the integer number of the delay samples plus one ahead of the calculating time,

which is exactly what was suggested by Astrom.

The strength in Harris” work is his simple approach to calculate the best achicvable
control, which is the minimum variance control, by fitting univariant time series to
process data collected under routine control. Harris illustrated that the lower bound
on the closed loop variance could be obtained by analyzing the closed loop data.
The lower bound performance is calculated by solving a system of linear equations
(The Diophantine equation). A priori knowledge about the system time delay must

be identified.

Shinskey (1988) introduced an alternative approach, which is widely used in PID

controller tuning. He called it the absolute performance index, (API), which



assesses the performance of PID-type controller in terms of integrated absolute error

(IAE).

Astrom et al. (1990) presented a means for assessing achievable performance using
PID control. Achievable performance is characterized in terms of bandwidth and
dimensionless numbers such as normalized peak error for set point and load

disturbance and rise time.

Desborough et al. (1992) introduced the normalized performance index to
characterize the performance of feedback control schemes against a benchmark of
minimum variance control. This normalized performance index is a number
between zero and one; with zero indicating that the process is operating under
minimum variance control, i.e. its optimal bound. Spectral density analysis was
used in counter part with recursive least squares to estimate the performance index

online which enables the use of control charts to monitor changes in performance.

Harris (1993) expanded his work to include feedforward/feedback systems. He
developed a performance index to assess the performance of the whole control
scheme. The paper was concerned mainly about multi-input single-output (MISO)
systems where there is not any cross correlation among the unmeasured and

measured disturbances.

Stanfeli et al. (1993) commenced some research about monitoring and diagnosing of
process control performance. The paper introduced a hierarchical method for
monitoring and diagnosing the performance of a single cascade control loop that is
composed of a feedback and feedforward control loops. The analysis was done
based on typical operating plant data. They used the IAE (Integrated Absolute
Error), maximum deviation and decay ratio. Subsequently they designed the best
achievable performance with the existing control structure, and identified the

required steps to improve the current performance. The strength of their work was

-6-



in the methodology that they have used to achieve the above-mentioned goals in
addition to the ability to isolate whether the poor performance is due to the

feedforward loop or the feedback loop.

Harris et al. (1996) extended their previous work to include Multi-input Multi-
output (MIMO) systems. They introduced a technique for controller performance
assessment of MIMO systems. A minimum variance controller was used as a lower
bound against the current performance. The process involved the estimation of the
process interactor matrix, which is characterizing the dead-time structure of the
process. They introduced a quick non-parametric correlation test for the closeness of
the current control system performance to the theoretical lower bound. Finally, they
made a quantitative analysis that provides an estimation of the theoretical lower
bound on variance-covariance matrix of the controlled variables, and on the

quadratic performance objective of the minimum variance controller.

In the same year, Huang et al. introduced some development work in the same area
of performance assessment of MIMO systems. Afterwards, they presented a
research (1997) on a new approach in performance assessment, which is based on
filtering and correlation analysis of the process output and filtered data. They used a
whitening filter analogous to time series modeling, where the final test of adequacy
of the model consists of checking if the residuals are white. In contrast to time serics
modeling where the estimation of the model is of interest, the residual or the
innovation sequence was the main item of interest in this whitening process. By
knowing this residual white noise, the minimum variance, which is the lower bound

for performance assessment, can be estimated easily.

Horch et al. (1999) have modified Harris performance index. The minimum
variance control is based on cancellation of the model dynamics and so placing all
closed poles in the origin. This makes the minimum variance controller non

applicable in practical life because of its low tracking capability. They suggested
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that one pole can be placed using either control design guideline or additionally
available process knowledge. The lower bound for process output minimum

variance was changed and therefore reflected on performance index calculations.

Seppala et al. (2002) changed the direction of performance monitoring for
multivariable systems from estimating the control invariant component of the closed
loop output covariance to the assessment of dynamic analysis side of multivariable
process and the assessment of the dynamic interactions between loops. They
simplified the multi-output dynamic analysis problem by treating the tracking error
trends as a vector process of endogenous stochastic variables and using vector
autoregressive structure to model dynamic relationships. Once such a model has
been estimated, a host post-estimation diagnostic, such as a multi impulse response
analysis, can be used to interpret the dynamic interactions between the tracking

CITOrIS.

Ko et al. (2004) presented a research about the utilization of the same principle to
tune a PI control loop, which is similar to the work presented here. However, their
approach assumed a pre-defined transfer function for the output stochastic
disturbance, which is almost impossible to determine in an industrial application. In
addition, they based their model on minimization of process output that is subjected
to output disturbance that is different from our case, which considers input

stochastic disturbance.

The potential of minimum variance control is clear from what is shown above. The
directions that different researchers have taken show the different possible
applications of this approach. These directions are further explored and improved to
offer means by which the mostly commonly used PI controller can be utilized to

provide minimum variance performance.



1.2

Thesis Overview

This thesis is mainly divided into three parts besides the introduction and
conclusion. The first main topic reveals the theoretical background behind this
research. The second part is the main core contribution of the research, which
details the mathematical derivations and the different approaches that were used to
outline the objective function and constraints into an explicit mathematical form.
The third part demonstrates the results that were achieved by the two different
optimization techniques, which are Hybrid Genetic Algorithms and Enumerative
search. In addition, a detailed sensitivity analysis was carried out to examine the
robustness of the calculated performance index based on changes in different

process parameters.

Chapter One describes the research objective and gives the reader some knowledge
about basic concepts and terminology that are being used through this thesis. In
addition, this chapter documents the investigations that were done by other

researchers in the same field.

Chapter Two is intended to detail minimum variance control, and discusses the

actual implementation of this controller on process models.

Chapter Three presents genetic algorithm and its different operators. It details the
coding and programming of such technique. In addition, it describes the

optimization algorithm that is being used in this research.

Chapter Four presents the mathematical modelings for the performance index as
well as the output variance that is used as objective functions in the optimization
processes. This is a core part of the research that elaborates different mathematical

and control principles such as discrete state space, optimization, and statistics.



Chapter Five is considered to be a sensitivity analysis for the solution robustness in
an industrial application. In any industrial application, the process parameters
change with time, i.e., heat exchanger fouling or control valve sticking. This chapter
examines the effect of the changes in these process parameters on the performance

index.
Chapter Six is dedicated to the PI tuning approach, which is based on output
minimization or performance index maximization. It compares three cases from an

industrial application at Falconbridge’s., Sudbury smelter.

Chapter Seven concludes the thesis by comparing the main results that have been

reached. Moreover, it includes proposals for future work.

-10-



Part 11

Theoretical Exploration and Programming

Description



Chapter 2

Minimum Variance Controller and Harris

Performance Index Calculations

2.1

Definition

The key issue in many control systems devise is to design a controller that reduces
disturbance, which is stochastic in many cases. For linear stochastic systems, the
process can be described by a pulse function and the disturbances acting on the
system are filtered white noise. Minimum variance control refers to a specific
optimal control problem for these linear stochastic systems described by input-

output relations.

The minimum variance control can be designed by fitting univariant time series to
process data collected under routine control. The lower bound on the closed loop
variance could be obtained by analyzing the closed loop data. The lower bound

performance is calculated by solving a system of linear equations [The Diophantine

-12-



Equation — Harris (1989)]. Prior knowledge about the system time delay must be

known.

The minimum variance controllers are not recommended for all control
applications. They can be used when

1. Only a rough guideline is needed and simplicity is a premium

2. Variations of control signal and actuator movements are not important

3. Very tight control of the process output is demanded without concerns for

power or energy used

Inventory control loops such as pressure, where a tight control is required and many

stochastic disturbances exist, are good applications for minimum variance control.

On the other hand, minimum variance control is not recommended when
1. There are tight limits on actuator movements and control signal variations
2. The controller is in practice restricted to being low order and of a particular
form

3. The cost involved is not simply an output variance or tracking error

Cascade control loops are good examples of where minimum variance controls
should not be used. The master controller output shall ascertain changes on the slave
loop set point, which should not be moving aggressively. In the mean time, the

slave loop should be designed mainly for tracking rather than disturbance rejection.

A limitation of minimum variance controller is that its properties are dependent on
sampling time and its implementation in control systems is not necessarily
straightforward. In addition, time delay and process model should be known prior to

the controller’s design.

-13-



2.2

Derivation of Minimum Variance Control Law

The minimum variance controller provides a control signal u(f) that minimizes the

following performance objective function:

oy = E[W(t)" ¥t +k) 2"

2.1

The notation E|; denotes an ‘expectation’ provisional upon data available up to and
including current time, . In addition, at time equal to zero all data are equal to zero.
Taking the expected value of a variable squared gives the variance of that variable.
In this case, Jyv therefore refers to the variance of the error between set-point w(t)
and the controlled output k-time steps in the future, y(¢+k). The desired controller is

thus one that minimizes this variance, hence the name Minimum Variance control.

In order to enable minimization of Eq. (2.1) with respect to u(f), which is the
controller effort, first we need to be able to relate the controlled output y to the
manipulated input u. This is made available via a process model, the simplest of

which is the CARMA (Controlled Auto-Regressive Moving Average) model:

Ay(t)= z7*Bu(r)+ C£&(t)
2.2

Equation (2.2) is an ARMAX or a CARMA model, where k is the time delay of the

process, expressed as an integer multiple of the sampling interval T and A (z), B (z)

and C (z) are polynomials in z'. That is:

- 14 -
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A(z)= 1 +a,z‘l +a,z27 +.+ aN_‘z-N‘ N, = deg(A(z))
B(z)=1+bz" +b,z7% +..... +by 2V, N, =deg(B(z))

Clz)=1+cz" +c,272 +..... +cy. 2", N =deg(C(z))

23
where &(t) is a random zero-mean sequence with finite variance ¢>. That is,
E{(@)}=0
and
EL() }: o’
24

However, the objective function involves a term in the future, namely y(t+k), which
is not available at time r. Therefore the minimization cannot be performed unless we
can replace y(t+k) with a realizable estimate. This can be achieved via the use of the

following identity:

C=EA+7'F
25a

where E and F are also polynomials in z'. This identity, which is known in
mathematics as the polynomial division identity, gives essentially the quotient and

the remainder of the division of two polynomials. In this case

25b

with deg(E) = k-1.
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Equation (2.5) assumes further significance in that it enables the separation of
current and past values from future values. As a result, Equation (2.5 b) is also
known as the ‘Separation Identity’. To see how this is accomplished, multiply E

into Equation (2.2). This gives

EAy(t)= z* EBu(t)+ CE&(t)

2.6
Using Equation (2.5a) to substitute for EA in Equation (2.6), we get
(C - z—kF)y(t) =z *EBu(r)+ CE&(t)
2.7a
Time shift Equation (2.7a) k-steps into the future by multiplying 2 to give
(C=2*F)y(t +k)= EBu(t)+ CEE( + k)
2.7b

Next, separate out terms involving future values to the right-hand-side, and terms

involving past and current values to the left-hand-side:

Cy(t +k)—CEE(t +k) = EBu(t)+ Fy(r)
2.8

Defining

y(t+k|t)=y(t+k)-EE(t+k)
2.9

-16-



Then obtain the “k-step-ahead” predictor of y(t) as

Cv*(t+k|t)= EBu(t)+ Fy(t)
2.10

Now we can use y*(t+klt), in place of y (++k) in the objective function, since it is a
function of past and current values of y and « only, as signified by the index (r+k]n).
Since only y*(s+k|r), is needed, we re-arrange Equation (2.10) into a more suitable

form, as

v (t+k| )= EBu(t)+ Fy(t)+ Hy (r +k—1]1-1)

2.11
Where H is another polynomial in 7" defined as
H=(1-C)z
2.12
Substituting y*(t+klt) for y (+k) in the objective function gives
* 2
Jw= E[w(t)"y (t+k | t)] I:
= Elwlt)~ EBult)- Fy(t)- Hy (1 +k=1]1 - 1)]2|
2.13

When minimizing Jyy W.r.t. u (), we are seeking a u () that will set
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2.3

S =—2eb[w — EBu(t)- Fy(r)-Hy (t+k—l|t—1)] 0

au(t) 0”0
2.14
where e, and b, are the initial conditions for E and B
From equation (2.14), it is clear that the required control is
)=|w(e)= Fy(t)- Hy' (t+ k1|t =1)|/ EB
2.15

Implementation of minimum Variance Control

In calculating u (f) from Equation (2.15), we require the coefficients of the F, H, E
and B polynomials. To simplify matters, we define the product EB to be G, thus
reducing the number of polynomials from 4 to 3. Using this new nomenclature, the k-

step-ahead predictor y*(t+k|r) becomes:

Y (t+k|t)=Gult)+ Fy(t)+ Hy (t +k—=1]t—1)
2.16

The control signal is calculated as:

ult)= L[w(t)—igiu(t —i)=Fy(t)-Hy (¢ +k-1]¢ —1)}

0 i=1

2.17

If we do not know the coefficients of F, H, E and B polynomials, they will have to be
estimated from process input-output data. Time-shifting Equation (2.16) k-time-steps
Y

back, gives
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y(tle—k)=y(t)- E&() = Gu(t —k)+ Fy(t—k)+ Hy'(t =1] 1 = =k1)

o

18
Or

Y(6)=Gult=k)+ Fy(e —k)+ Hy" (1= 1|1 = =k1)+ n(e).e) = ~EE(r)
2.19

Equation (2.19) thus provides the regression expression for estimating the
coefficients of G, F, and H. If estimation and control is carried out every sampling

instant, then we have a self-tuning minimum variance control strategy.

The minimum variance controller has several interesting properties. Re-arrangement

of Equation (2.15) gives

w(t)= EBul(t)+ Fy(e)+ Hy (t+k=1]r=1)= y"(t +k | 1)
2.20

This is known as the 'control law’, and tells us that the control signal calculated from
Equation (2.15) will drive the k-step-ahead predictor y*(t+kr), to the set-point w (1).

Using the definition of Equation (2.9),

w(t)= y(t+k)= EE(t+k)= y(t+k)=wt—k)+ EE(t)
2.21

Thus, if the process model is precise, then the controlled output will track the set
point after the time delay period. The only error will be that due to a weighted sum of
process stochastic disturbance (noise). The controller offers dead-time compensation

and the response is as good as possible. Further, if there is no process noise, i.e. &(t)
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=0, then it can be noticed that the minimum variance controller is equivalent to a

deadbeat controller.

Equation (2.21) also represents the closed loop relationship, and we can see that
there are no poles or zeros. This indicates that the minimum variance controller
achieves its performance objective by canceling process dynamics. Therefore, it
cannot be applied to non-minimum phased systems. Another limitation is that the
minimum variance strategy is often observed to exert excessive control effort, which

may not be tolerated from the operational point of view.

History, derivation and explanation of Harris Performance Index

Both Astrom (1970) and Harris (1989) have proved the use of minimum variance
control as a benchmark standard against which control loop performance can be
assessed. The most distinguished work is that Harris showed how simple time series
analysis technique could be used to find an appropriate expression for the feedback
controller-invariant term from routine operating data. This contribution was
significant in the sense that a distinct and new direction and framework for the

control loop performance monitoring area was revealed.

Harris work has exposed that the best achievable performance, when measured by
the mean square error, can be estimated from a time series to closed loop process
output data alone. Harris proved that the lower bound of the output variance is the

output variance, which is produced by a minimum variance controller.
More recently, another related performance assessment statistics defined as the

normalized performance index has been proposed by Desborough and Harris

(1992).
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Harris normalized performance index (Hnpp) is a scalar between zero and one; with
zero indicating that, the process is operating under minimum variance control i.e. at

its optimal performance bound.

In a general case where the controller is not a minimum variance,

ol=0

mv

2
+0;

o
[88]
o

where o is the variance of the output
0, is the variance of the output under minimum variance condition

0"2, is the variance of the forecast output

From Equation (2.21), the variance of the output under minimum variance
conditions when the set point deviation is zero (Regulatory and not Tracking
problem) is equal to the variance in the process noise E(t), and this is the best

achievable variance.

The mean square error (Ms) of the output can be calculated as follows

M, (Y)=0] +u..
2.23

where [t is the mean deviation from the setpoint.

It is assumed that the output is unbiased therefore; the mean square error is equal to

variance of the output. Finally,
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Hnpi=1- [O':"./ M (Y)]=1- [0'3",/0'_‘2,]
2.24

As it was stated before, In a pure regulatory problem the minimum variance is the

variance that is produced by the process noise, therefore,

Hypi=1 — Var (N,) / 0}
2.25

where N, is the output noise

The performance index (P;) that is being used in this research is calculated in a
similar way to the Harris Normalized Performance Index. However, the ratio was

between the input noise variance and the output variance.

Pi=Var(Ny) /0’
2.26

The best performance can be achieved under minimum variance conditions by
maximizing this performance index. In order to scale this index between zero and
one, the following normalized performance (Np;) index is used for comparisons and

benchmarking

Npi = Var (N;) / (62 + Var (Ny)
2.27

This shall have a value of one as a maximum, which is achieved at minimum
variance conditions. It shall also have a value of zero when the output variance is too

high that the value of stochastic input disturbance variance diminishes beside it.

-22-



Chapter 3

Genetic Algorithms

31

Introduction

Genetic Algorithms (GAs) are stochastic global optimization techniques that
replicate natural evolution on the solution space of the optimization problems
[Goldberg (1989)]. Unlike most conventional optimization techniques that
sequentially evaluate a single point in the search region, GAs operatc on a
population of prospective solutions (individuals) in each iteration (generation). By
merging some individuals of the present population in accordance with predefined
regulations or operations, a new population that have better solutions or fitter
individuals, is created as the next generation. Individuals for reproduction are
elected based on their objective function values (fitness value) and the Darwinian
theory of the survival of the fittest. Supported by the Schema theory, GAs are
proven to yield better solutions along the evolving process since good characters in

the individuals of a generation are always passed to the next generation.
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An imperative stride in a GA is the encoding of variables, x; in a string structure
(known as genetic code) to symbolize a point in the solution space. Three coding
schemes, which are named binary, gray, and floating-point, are available.
Traditionally, binary coding is used, and it works best when the variables are
discrete. Since some engineering problems deal with continuous variables, a
floating-point number is more appropriate for representing a continuous variable
since it allows representation to the machine internal precision and it requires less

memory. Binary coding is used in this research.

The first step after choosing the coding scheme is to generate an initial population
of solutions in the feasible region. This is often done in a random fashion.
Therefore, GA's do not require initial estimates. Number of solutions or
chromosomes in the population (N,,,) affects both the reliability and efficiency of
the GA. A small N,,, is inadequate to investigate the solution space meticulously,
whereas a large population would prevent convergence to local minima but causes
slow convergence. Therefore, an optimal N, exists for locating the global solution
within a reasonable computational time. It was suggested that Ny, equal to (4—40)
times the number of binary bits used to represent a chromosome. Selection scheme
in the GA refers to how the individuals in a population are elected for reproduction.
In order to imitate the survival of the fittest theory, individuals having better fitness
values must have a higher chance of being selected. An effective selection scheme
should guarantee that a certain minimum number of individuals would be selected
for reproduction. Selection schemes based straightforwardly on objective function
values as fitness values may lead to premature convergence due to the presence of
“super-individuals”, which are greatly fitter than others. Two techniques, scaling
and ranking, are used by researchers to overcome this problem. Scaling maps
objective function values to some positive fitness values whereas in the ranking
technique, individuals of the population are ordered in ascending order of objective

function values. Linear and exponential ranking are commonly used. Selection of
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individuals for reproduction is based on scaled values or ranking instead of actual

objective function values.

Genetic operators used to create new individuals for the next population from those
selected individuals of the current population, serve as searching mechanisms in
GA. Crossover and mutation operators are commonly used by programmers and

researchers.

Crossover forms two new individuals by first choosing two individuals from the
mating pool, and then exchange different parts of genetic information between
them. This merging operation is only to take place with a user-defined crossover
probability (pers) S0 that some parents remain unaffected even if they are chosen for
reproduction. Three types of crossover, namely, single point, multipoint, and

uniform, are possible for binary coding.

Mutation is a unary operator that creates a new solution by a random change on an
individual. It provides a guarantee that the probability of searching any given string
will never be zero and acting as a safety net to recover good genetic objects which
may be vanished through the action of selection and crossover. Just like crossover,
mutation proceeds with a small probability pmu. In binary coding, mutation is the
flipping of the binary bits from 0 to 1 or vice versa. Non-binary mutation is usually
achieved by either disturbing parameter values or random selection of new values

within the feasible range. This is known as uniform mutation.

A GA terminates when a user-specified criterion is satisfied. Usually, it stops after
evolving for a specified number of generations (Ngen), when the best fitness value
has reached an expected target or when the fitness values in the population are

close.
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3.2

Mapping

For any optimization parameter, a mapping relates the binary-coded deviation
(Ax;2) and the mean parameter value (;i) to the parameter value (x;). Therefore, a
mapping presents a vector (x) equivalent to each binary-coded deviation vector

(Axy) in its population. Two mapping techniques are normally used to tackle this

problem — Upreti (2004).

The first mapping technique is what is called Logarithmic Mapping. The purpose of
logarithmic mapping is to improve the relative precision within the elements of x.

For any optimization parameter, the logarithmic mapping provides the value,

x; =b™ where

3.1

3.2

In Equation (3.1), b is the logarithmic base, and x; 4 and x;, are the maximum
and minimum values of the parameter, x;. In Equation (3.2), D; is the value of the
domain between the limits of Dpi, > 0 and b, and N is the number of

representative bits for any i-th element of Ax», i. e. Ax;a.

The second technique is what is called Linear Mapping. The linear mapping is
simpler, and it is specified by the following equation:

D,

{

Xi =x' + 2Nbvu _l

1

i2
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3.3

GA Optimization Algorithm

The optimization technique is composed of two consecutive steps. The first step is
applying genetic algorithms until we reach the global solution zone. Then, the
second step utilizes gradient search to locate the exact global solution. It was
proposed in Upreti (2004), where the optimization algorithm that is used here
engages Newton's search with genetic operations. This shall enable the location of
the exact global minimum in a more opportune and efficient manner. Given N,

number of optimization parameters, the presented optimization algorithm randomly
initializes a mean value x, for each optimization parameter between the limits X; i
and Xjmay, 1 =0, 1, ... ,N,_ ;. The value of any i-th parameter, x;, can be calculated

from.x;, and a binary-coded deviation Ax;, based on some mapping. The N, values

of each of x;, x; and Ax;, form vectors, x, x and Axa, respectively. In addition tox,

a population of Ax, is also randomly generated.

The mappings to calculate x from x, x and Ax, in its population are described in
Section 3.2. In order to produce the optimal vectorx, the genetic operations of
selection, crossover, and mutation are consecutively applied to the population of
binary-coded deviation vector Ax,. A value of objective function is associated with
each Ax; by using the x (as calculated from the mapping) to solve the mathematical
model of a problem. These objective function estimations are done before selection.
The value of each objective function is scaled up by raising it to a specified power,
n > 1, to favor the optimally better members of the population during selection. If
any constraint is violated for any Ax,, its objective function is set to zero so that the
deviating Ax; is eliminated in the following iteration of selection after participating

in crossover and mutation.
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After a certain number of genetic operations (Ngen generations) occur, the optimal

vector that was achieved is improved by Newton's search. Next, the domain of each

x; is constricted, and x is replaced by %. This is considered a complete iteration of
the algorithm. The logarithmic mapping is alternated in the following iterations with
a linear mapping. Each of the domains is reduced until it accomplishes its minimum
size, when it is stretched successively. This stretch helps in finding a better
optimum in bigger domains. When the maximum size of a domain is reached, its
consecutive contraction is resumed to let the improvement of an optimistically new

optimal vector.
The programming of the algorithm follows the following steps:

1. Initialize,

a. x, the vector of mean values of optimization parameters using,

X=X TR (xi.max = Xi.min )’ 0<R <l
i=0,l..,N_
34

where R; in equation (3.4) is the i-th pseudo-random number
obtained from a pseudo-random number generator;

b. a population of Npo, binary-coded deviation vectors Ax, using the
pseudo-random number generator; and

c. the parameter domain, Dj = (Ximax —Ximin)/2 for each optimization

parameter

8]

Set logarithmic mapping for the genetic operations of selection, crossover,

and mutation.
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Generate an optimal vector by repeating the following consecutive

operations on the population of Ax; for Ngen generations:

a. objective function (J) evaluation for each Axa,

b. selection based on the scaled objective function (J%),
c. crossover with probability p., and

d. mutation with probability py,

Improve the optimal vector (x) obtained this far using Newton’s Method

(Section 3.4)

Store the resulting optimal value of objective function (f, ), and

corresponding optimal vector (X).

Replace x by x.

Repeat Steps 3-6 once with linear mapping.

For each optimization parameter,

a. if D; is equal to either Dj min OF Dimax, set the size-variation factor for
control domain, C = C™'. (This step allows the alternation of the
successive contraction of D with its successive expansion.)

b. set D; = CD;. If D; < Di,mim set D; = Di min- If D; > Djmax, S€t D; =

Di max- (This step allows the variation of D; within its limits.)

Go to Step 2 until the iterative change in i, is negligible.
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Gradient Search Algorithm

Newton's method is an efficient algorithm for finding approximations to

optimization of a real-valued function.

The scheme of this technique can be described as: an initial value is selected to start
with a value which is logically close to the true zero of the first derivative, then
substitutes the function by its tangent which can be derived from an explicit
function by the basic principles of calculus. Then the zero of the second derivative
can be computed (which is simply done with basic algebra). This zero of the second
derivative will typically be a better approximation to the first derivative zero, and
the method can be iterated.

Suppose f: [a,b] — R is a differentiable function defined on the interval [a,b] with
values in the real numbers R. We start with an arbitrary value xo (the closer to the

zero of the first derivative the better) and then define for each natural number n:

3.5

where, f' denotes the first derivative and f" denotes the second derivative of the

function frespectively. .

We can prove that, if f' is continuous, and if the unknown zero x is isolated, then
there exists a neighborhood of x such that for all starting values xp in that

neighborhood, the sequence {x,} will converge towards x. Furthermore, if f'(x) # 0,
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then the convergence is quadratic, which intuitively means that the number of

correct digits roughly doubles in every step.

In general, the convergence is quadratic: the error is squared at each step (that is, the
number of exact digits doubles in each step). There are some cautions to be
considered when programming this method. Initially, Newton's method requires that
the derivative be calculated directly. If instead the derivative is approximated by the
slope of the line through two points on the function's graph, the secant method
results — although based on how computational effort is measured, the secant
method may be more efficient. In addition, if the initial value is too far removed
from the true zero, Newton's method can fail to converge at all to a global minimum
or maximum. Because of this, all practical implementations of Newton's method put
an upper limit on the number of iterations and perhaps on each iteration size.
Moreover, if the root being sought has multiplicity greater than one, the
convergence rate is reduced to linear (errors reduced by a constant factor at each
step) unless special steps are taken. Finally, a penalty function should be used to

avoid convergence to zero, which is another disadvantage of Newton's method

convergence.

To carry out Newton's Method along the steepest descent in Step 4 of the algorithm,
the interior penalty function - Upreti (2004) - method was used. It incorporates the

inequality constraints, into the augmented objective function given by

o

where, g is inequality constraint and r is the interior penalty function coefficient.

\I-—-

r—o
i=l

= llm{l —i

3.6
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The programming of the algorithm follows the following steps:

1. Obtain the vector, X, and corresponding il generated so far using genetic

operators. Set the counter, i = 0; and the penalty, r = 1.

2. Set the Newton's search counter, j = 0. Set x9 = %, and calculate / é" )

3. Calculate the vector of the partial derivatives of [ ;f’ , i.e. x' 9 using the
derivatives' equations in section 4.2. If (||x'|| = 0) then set x*D = x9 and go

to Step 8.

4. Calculate x9*" along the steepest descent direction as follows:

FUH) = 30 _ ‘_f_’(%
x
3.7
Calculate the corresponding /"
5. 1f 19*) > 1) then set ™ = x?, and go to Step 8.
6. If (|1 = 1710*)] <€) then set X" = x3*D go to Step 8.

1. Setj=j+ I and go to Step 3.
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3.5

8. Calculate 7{* corresponding to x*". If (I > 19 then set I,=10 & =

x9, and exit.
9. Setl=1{"and ¥ =x™" If (|1 - 1PN <€) or (r < &) then exit;

10. Reduce the penalty tor = Cr, seti=i + 1, and go to Step 2.

Model Inputs

1. The mathematical model and its parameters for the calculation of objective
function;

2. The number of optimization parameters (Ny), and constraints;

3. The minimum value (D; in) of control domain, its maximum value (Di.maxs 1

=0, 1,...Nx), and a factor (C) to vary the size of control domain;

4. A seed number to generate pseudo-random numbers;

5. The following parameters for the genetic operations of selection, crossover,

and mutation:

the number of bits (Ny;;) for each optimization parameter

a.
b. the number of cross-over sites (Nysies) for each Ax;»

c. the probability of cross-over (pc)

d. the probability of mutation (pm)

e. the power index (n) to scale objective function

f. the number of genetic generations (Nge,) every iteration
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Part I11

Mathematical Modeling
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Chapter 4

Mathematical Modeling

4.1

Normalized Performance Index Calculations

The calculations of the process model are performed in a discrete state space model.
This was chosen because state space model can be further used for MIMO systems
easily. In addition, digital control is more practicable and widely used in industrial
control systems. This choice also allows us to interpret the time delay and the

sampling time to the dimension of the system.

The following system is under study
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Figure 4.1 Closed Loop Block Diagram

where

W(t) s the change in set point (equals zero for regulatory problem).
U(t) is the control effort.

K is the process gain.

is the process time constant.

A is the system time delay.

n; is the process input disturbance.
n, is the output disturbance.

Kp is the controller proportional gain.
Ki is the controller integral gain.

The following equations describe the continuous open loop state space model for the

above-mentioned system

x'(t)= Ax(t) + B{U (¢t = A) + n,(0)]
4.1

Y(t)=Cx(t)+n,(t)
4.2
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If the sampling Time is equal to T, therefore the system can be written in the discrete

form as follows

(k+)T

x[(k +D)T] = e x(kT) + f e T T-UB{(U(L - A)+n, (kT)) L

kT

4.3

Let us introduce a new variable D where 1=kT+T-D and substitute T in terms of D,

therefore:

T
X =€V, + [eBURT +T ~ A~ D)+n, ) D
0

4.4
The time delay can be factorized into two parts as follows

A=({+1)T-m
4.5

where I+1 is the multiple integers part of the time delay plus one

It is always more than or equal to zeros and m is the fractional extra part of the
sampling time. Equation 4.4 can be expressed after eliminating A and substitute it in

terms of [ and m as follows:

m T
Ko =" x, + [ BUKT = (I +DT +T) +n,)dD + [e*” BW®KT (1 +)T)dD
0

m

4.6
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This can be simplified to be

X = Fix, +G, (U g ¥ 1)+ GU,,
4.7

where
I;-I =e-T/1
G, =K(l-e™")
G,=K(E™"' —e'")

The system can be re-written in a matrix form noticing that it shall be a variable
dimensions matrix system. The size shall depend on the time delay and the sampling

time. It can be written as follows:

[ % | [R G G, 0 T x ] [0]
U 0 0 I 0 —=|U.,| ¥
U, |=|L 4+ o 1 ofu, |+ |U+n)
l Ll Lo 1| ! \!
\Uy+n, | |O 0 0 O OjU. | [1]
4.8
The system can be further simplified to be in the following form
X =FX +GU,,
4.9
Y, =CX, +n,
4.10
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where

[ Xea ] [ X | 0]
Uis Uiia \
Xia = Ui, X, = U,, G=|{
l l d
_Uk+n,.J _UHJ 1]
[, G G, 0 =]
0 0 I 0 =
F=ll 1l o0 1 o & Uy =W, +n,)
Ll 1l o1
(0 0 0 0 0]

The closed loop system can be obtained by substituting for the control efforts in

above-mentioned equation from the PI controller equation as follows:

Upi ==K,¥, =K, [Y,dT
4.11

da,
The integral mode can be introduced as a, = JchlT and therefore, Y, = 5 T‘ ,

— Oy —

Y, % and finally

Oy =TY, + 0y
4.12

Substitute from 4.10 into 4.12 the following equation is obtained
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., =TCX, +o, +1n,

4.13

In addition, with substitution from 4.11 into 4.9 and substitute for the integral mode

from 4.13, the following equation is obtained

X,. =FX,-GK,Y, -GK,a,
4.14

Finally substitute for Yy from 4.10 and with some equation re-arrangement, the

following equation is obtained

X, =(F-GK,0)X, -GK,a, —GK ,n,,

4.15
The closed loop state space model can be written in the following form
X, =F X, + Gcnnk
4.16
Yk = Cch
4.17
where:
¥ = X X - X, _ F-GK,C -GK,
o 190 " of ‘ e 1
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G. = {_ GK”} & c.=[c o

It is clear that to calculate the performance index, output variance should be
calculated first. The covariance matrix for the output was calculated by solving the

following discrete Lyapunov equation:

X, =FZ,FT+G.0G
4.18

where X is the output covariance matrix and Q is the noise covariance matrix, which

is
[Variance(ni) 0 }

0 Variance(n,)

4.19
The variance of the output for performance index evaluation is calculated as follows:

o,=CXC/
4.20

The performance index that is being used in this research is calculated in a similar
way to the Harris Normalized Index (HPI). However, the ratio was between the input

stochastic noise variance and the output variance as follows

P;= Var (Ny) /0
4.21
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The best performance can be achieved under minimum variance conditions by
maximizing this performance index. In order to scale this index between zero and

one, the following normalized index is used for comparison and benchmarking

Npi = Var (Ny) /(o] + Var (N}))
4.22

This index has a value of one as a maximum, which is achieved at minimum variance

conditions. It has also a value of zero when the output variance is too high that the

value of noise variance diminishes beside it.

An enumerative search to maximize the performance index was initially used and
then the results were scaled to the Normalized Performance Index for comparison.
The technique is based on changing the values of the tuning parameters, which are
the optimization variables (K, and K;), and store them only if the following

constraints are not violated:

e The closed loop should be stable
e The closed loop should be controllable and observable
e The covariance matrix should be positive definite

¢ The covariance matrix should be symmetric

It is very clear that the above-mentioned constraints are non-linear and implicit. In
addition, the objective function itself is implicit as well. Therefore, the programming

is very challenging and the optimization process is quite complicated.
Another important factor is the time that is used to carry out this enumerative search.

The matrix sizes are based on the time delay and the sampling time. With long time

delay processes, which are good examples where minimum variance control will be
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useful, these matrix sizes shall be too large and the required time to solve this
problem is too long. This is one of the main reasons to find another optimization
search technique that is more timely efficient and can handle this degree of non-

linearity. Genetic Algorithm is a perfect candidate.

4.2 Normalized Performance Index calculations using Hybrid Genetic

Algorithms

The optimization problem shall be handled in a different way. An explicit format for

the output variance is developed in order to carry out the optimization process.

The open loop can be expressed in a discrete format as follows:

—(1+1)
z—-F

4.23
where

F _e—T/T

1 =

Gl - K(l_e-—m/f)

G2 - K(e—m/f _e~T/l‘)

In addition, the controller discrete transfer function can be expressed as

KT

C(Z)":KP'*'——'
z—1

4.24

Equation 4.24 can be rearranged to be written as follows;
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Kpz+(-K +KT)

C(z)
z—-1
4.25
The closed loop discrete transfer function (T) can be written as:
T Y(z) __G
N (z) 1+GC
4.26

By substituting equations 4.23 and 4.25 into 4.26, the following equation is
obtained:

l:z-(l+|)(GlZ +G, )J

r= XY@ _ e F
N (z) . G, z+G,) | Krz+ (K +KT)
z—-F z-1
4.27
Then by multiplying equation 4.27 by it and rearranging the equation;
7—
7o Y@ _ "G,z +G,)
N (z K,z+(-K +KT)
a z—F+[z’(’*')(G,z+Gz){ - :
z—1
4.28
Then by multiplying equation 4.28 by —Z-—-—: and rearranging the equation;
-
T= Y&)z Z4MNGﬂ+ChXZ_D
N (z) (z=F)z-1)+z"G,z+G,)(K,z+ (-K, +K.T))
4.29
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oY) _ " =2"")G2+G,)
N (@) z P=(F+D)z+F+27"(G z+G,)(K,z+ (- -K +K.T)

4.30

I
(5}

Then by multiplying equation 4.30 by 2_2 and rearranging the equation;

@ - 762+ G,)
I=(F+0z" + F? + 270G K, 2° +(G (<K, + K1)+ G,K, )i+ G, (-K, + K,T))
431

This can be rearranged as follows;

1+ ~(1edy

Gz""+(G,-G,):" -G,z
I=(F+Dz" +Fz? +G K, o™ + (G, (K, + KT)+G,K, - "? +(G, (=K, + K, 7))
4.32

By carrying out the inversion of (z) transform on the above equation, we can obtain
Y (k) in an explicit format;

Y(k)= St LYo+ fsyk—um + f4yk-u+2) +f5yk-(l+3) + g|Nik-u+n + gzNik_mz, + g3Nik—(I+3)
4.33

where
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f3 =_Gle
fs =—(Gl(—Kp +KiT)+G2Kp)
fs =—GZ(—Kp "‘KiT)

8 =G,
g,=G, -G,
g;=-G,

The output variance can be calculated assuming a simple regulatory problem where

the change in set point is equal to zero.

k=1
4.34
The performance index can be written as
i=N, -1 ;

> Wy,

I =5~ ="

by "

i=0 ’

4.35a

The only constraint in this optimization problem is locating the closed loop poles
inside the unit circle of the stability diagram. In other words the roots of the
Diophantine equation, which is the denominator of equation 4.32, should be less

than one.

This could be a problem to solve especially with high order equation. Alternative

approach was suggested that has shown great potential.
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This different approach clamps the process output at a certain high enough value
that would be only violated if the closed loop poles are positive. In other words, the
output values shall be higher than these clamps only if the loop is unstable. This
value was selected to be 10 times higher than the process gain knowing that the
input noise ranges only between 1 and -1. The output variations within these limits

are acceptable in normal industrial practice.

As the constraint is handled differently, the constrained optimization can be initially
handled as non-constrained optimization problem in the programming. Then the

augmented objective function L is formed after adding the following constraints;

-10<Y;< 10
4.35b
0.001 <K,< 10
4.35c
0.001 <K;< 10
4.35d

In order to carry out the search using Newton's method, the first derivative of the

objective function should be obtained with respect to each optimization variable.

e Objective Function First Derivative with respect to K,

oY,
aK =“GY 1+1)+(G G)Yk—(l+2)+G2Yk-(l+3)
dY, dY,
HU 9 k-1+2), k(HU
f,a fza f3 T T

4.36
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And

2
all =—2 ; (Ni,) a)}'
oK, i vy oK,
i=0

e Objective Function First Derivative with respect to K;

Y,
51?: =-GTY, k-(1+2) GZTYk-(l+3)
) 9%, _, Y ) Y _2) Y _3)
+ + +
t oK, th oK, s oK, fs oK, s oK,
And
i=N, -1
N- 2
all B 2 ; ( l,-) a};’
T AN
ok, v,y JK,
i=0

In addition, the second derivative, which is the Jacobian Matrix, is given by

2°’l, 0’l,

7o dK,  JK,0K,
ac 8212 8212
dK0K, JK;
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0’1, 0°l, o
= = because the function is invariant.
oK 0K , oK ,,8K ;

It can be easily shown that

¢ Objective Function Second Derivative with respect to K,

aZY; =—'2G| aYk-(l+l) +2(G| _Gﬂ)aYk-(lﬂ) +2G, aYk-(l+3)
oK, oK, © oK, T JK,
azYk 1 azYk 2 azYk-(l*rl) 9’ Y. (I+’) alyk-(/n)
+ L+ =2+ + L
d K’ & ok: 7 oK} /s K> +; K}
441
And
i=N -1 i=N -1
2 2
. 2 N.
azll i P (N:,-) [aY,] 5 P ( 1,) a2Y’
2 7 Y =Nl K i=N, -1 aKz
Ho Sy VO y %
i=0 i=0
442
e Objective Function Second Derivative with respect to Ki
aZY =_2GTaYk (1+2) 2G TaYL (143)
BK,. aKi JK;
2%,
k (1+|) k- (1+2) __L_(l_+2
o a o1 a +f3 ok Tz Tk
4.43

and
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i=N,-1 i=N,-1

Z (Ni,. )2 82)’,.

2
i, 2 Wy 2
K Ry ) S g

i=0 i=0

4.44

e Objective Function Second Derivative with respect to K, then K;

2 Y, dY, oY, )
d Y. =—G,Ta k-(1+2) —GZT k=(1+3) _Gl k—(1+1) +(Gl -Gz)

oK 9K, K, K, oK, oK, )¢
f 9*Y,., f Y, i f LR ny ™Y 1a) +f 9*Ye ()
‘9K, 9K, “P0K9IK, “TAKoK, “'oKdK, KK,
4.45
And
i=N -1 i=N, -1
) 2 N 2
azll B ; (N:,) 8Y, aY, ; ( :1) aZY,
T VTN T 47N
aK,.aKl, z (Yl)_; aK, aKp Z (Yl)g, aK,aKp
i=0 i=0
4.46

After calculating the non-constrained function (I;) and derivatives, the following inequality

constraints are added to maintain Y, K, and K; within the pre-specified limits,
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where, Ymin, Ymaxs Kpmins Kpmaxs Kimin, Kimax are the limits for Y, K, and K; respectively and
r is the interior penalty coefficient that will be minimized.

Then the derivatives of the augmented objective function are expressed as follows,

( L - } o, L
(Ymin - Y:)z (Y: - Ymax )2 'aKI’ (Kp - I<p,,,,,,)T (KI' - Kl’nu\ )2

0’1, _9’I,
dK, oK,
limr i=l (Ymin - Yl )3 (Yl - Ymax )3 aK/’
r—0 _ 2 N 2

L (KP - Kpmin )3 (KI’ - Kf'nm )2

Similarly;
o, _o _
9K, 9K,

4.48

1

1

i i S S K2/ _
P A A A S TR R B R A
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2’1, 9°I, _,

Finally;

oK}

2

dY,
- max)3 . aK!

]l

0’1,

limr
r—0

1 -1 r’Y, 2
min —Yi)z (Y‘_-Ymax)2 .aKiz (Kl _Kim,,. )3 (Ki_Ki,w )2_
4.51
_ 9,
0K, 0K, OKJK,
2 2 [8Y,. J ar ) |
3 + 7 | . +
i (Ymin_Yi) (Yl_Ymax) aK' aKI’
i=1 Lo, -l 2°%,
Voo =¥)" (¥, -V, )" ) 9KOK,
4.52

The objective function and its derivatives are programmed into the Hybrid Genetic

Algorithms code. The value of the function and the derivatives were checked numerically

and were confirmed to be correct. Finally, the results are collected and explained in the next

two chapters.
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Part IV

RESULTS AND DISCUSSION
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Chapter 5

Effect of Process Parameters on the

Performance Index

5.1

Introduction

We begin by examining the effect of change in process parameters on the
normalized performance index. The following system was taken as an example for

this purpose:

5.1

It is a first order plus time delay system, which is commonly used in research. In
addition, it is the most widely used in industry. It has a process gain of five, a time
constant of ten seconds, and a time delay of five seconds. This system shall be

referred as the standard system in the following text.
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The system was simulated than optimized using enumerative approach. The
following parameters were achieved. The best normalized performance index was
0.78 and it was achieved at a controller proportional gain value of 0.4 and an

integral value of 0.01. A sampling time of 1 second was used.
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It is obvious from Figure 5.1 and Figures 5.3 that the best performance index has a
tendency to be achieved at a lower integral gain value. The reasoning behind this
phenomenon is that a lower integral gain means higher integral time. When a
control loop has a low integral time, it moves quickly to mitigate the existing error.
This shall increase the variance of the output. Slower loops are better for minimum
variance control as the high integral time acts as a first order low-pass digital filter
for the stochastic disturbance. In Figure 5.2, it is clear that the maximum

performance index does not exist at any of the proportional gain constraint limits.
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5.2

One of the main objectives of this research is to determine the sensitivity of the
solution. The process parameters are not always constant. For example, a heat
exchanger gain and time constant shall be changed if any fouling occurs. In
addition, a change in a flow rate shall change the time delay. Therefore, a sensitivity
analysis is carried out in order to determine the stability of the minimum variance
solution. Each control loop shall have an upper bound at which a higher variance

shall not be tolerated.

Effect of Change in Time Constant

The process gain and the time delay were kept constant and the time constant is
changed among a range of its possible values for a stable closed loop system until
we reached a value where the performance index does not change significantly. The

result is shown in Figure 5.4.
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Figure 5.4 Effect of Change in Time Constant “seconds” on the Normalized

Performance Index for the Standard System using Enumerative Scarch

The system was tested in the range of 50% to 150% of the original time constant.
The result is very interesting, as it is normally known that the increase in time
constant will move the process towards instability. However, these tuning
parameters are more robust with higher time constant. There arc two reasons behind
this behavior. The first reason is related to the process as the slower the process is,
the more robust to absorb stochastic disturbance. In other words, the system does
not react quick enough to be affected. The second reason is related to the controller,

as by using such high integral time, the controller movement is so limited that it

mainly reacts on the proportional part.
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5.3

Another point that could be noticed from Figure 5.4 is the slope, which is steeper
when the time constant is low and less steep when the time constant is high. In other
words, the performance index is more sensitive to reduction in time constant than

the increase.

Effect of Change in Process Gain

The process time constant and the time delay were kept constant and the process gain
is changed among a range of its possible values for a stable closed loop system until
we reached a value where the performance index does not change significantly. The

result is shown in Figure 5.5.
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Figure 5.5 Effect of Change in Process Gain on the Normalized Performance Index

for the Standard System using Enumerative Search

The system was tested in the range of 50% to 150% of the original process gain as
shown in Figure 5.5. The results are excepted, as it is normally known that the
increase in process gain will move the process towards instability. These tuning
parameters are less robust with higher process gain. There is one reason behind this
behavior. This reason is related to the process, as the lower the process gain, the less

magnification of the stochastic noise or disturbance. In other words, the system does

not amplify the noise with lower process gain.

In addition, it is clear that for the above-mentioned closed loop system that the

performance index is very sensitive to process gain. It is noticeable that around the
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value of the process gain of 5, which is the original gain of the system, the

performance index can be a good measurement for process gain change and as the

gain increases, the performance index decreases.

Effect of Change in Time Delay

The process time constant and the gain were kept constant and the process time delay
is changed among a range of its possible values for a stable closed loop system. It was
noticed that the performance index does not change significantly. The result is shown

in Figure 5.6.
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Figure 5.6 Effect of Change in Process Time Delay on the Normalized Performance

Index for the Standard System using Enumerative Search

The system was tested in the range of 0% to 200% of the original process time delay.
The results are excepted, as it is normally known that the increase in process time
delay will move the process towards instability. There is one reason behind this
behavior. This reason is related to the controller, as the minimum variance controller
is very robust against time delay. In fact, it is recommended with loops that have high
time delay. That is why the change in time delay has a less significant effect on the
normalized performance index. Moreover, vice versa; normalized performance index
cannot be used as an indication for time delay changes. In addition, it should be
noticed that the relation is almost linear. However, this behavior was not noticed

when the test was expanded to a higher time delay range as per Figure 5.7.
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Chapter 6

Proportional - Integral Controller (PI)

Tuning by Performance Index

Maximization

6.1

Introduction

Three different models are used for experimental testing. The three models came
from three control loops that are located at the Falconbridge - Sudbury smelter. The
process parameters were estimated prior to the optimization by performing a step
test on each control loop. Then, identification and tuning softwarc “ExperTunc®”
was used to identify the process parameters and find the best tuning values. The
rules that were used by ExperTune® to estimate the initial tuning parameters were
different but they are most commonly used in industry. The main algorithms were

Lambda A Tuning and IAE tuning [Shinskey (19838)].
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Subsequently, the process data, which were estimated by ExperTune®, were used in

two different optimization algorithms as described in Chapter 4. The optimization

variables, which are the proportional gain and the integral gain, in addition to the

objective function, which is the Normalized Performance Index, were calculated.

The resultant values of the proportional and integral gain were compared against the

existing tuning parameters that are used at Falconbridge using the following

Simulink model. The new values have shown superior results in almost all cases.
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Figure 6.1 Schematic showing the Simulink model that is used to compare

performances
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6.2

The Simulink model is simply a model that subjects two different controllers for the
same process model into two types of changes. The first change is stochastic
process input disturbance, which is applied to both loops under comparison
simultaneously. The second change is a change in the set point with a magnitude of
one, which is also applied to both loops simultancously. Although the minimum
variance controller is not the best choice as a tracking controller but this test is

important as it measures the controller robustness in a typical industrial application.

The running variance ratio was compared between both controllers. The ratio has
the variance of the optimal controller in the numerator and the existing controller in
the denominator. Therefore, if the ratio is more than one, the existing controller is
better than the optimal controller. Moreover, if the ratio is less than one, the optimal

controller is better than the existing controller.

Optimization using Enumerative Search

Roaster Air Blower Flow Loop

This is an essential control loop to control the draft in the roaster. The air is
measured downstream the air blower and manipulates the dampers on the blower air
inlet. This loop is a perfect candidate for minimum variance control application with
input disturbance. The air temperature and wind speed arc different types of
stochastic input disturbance. Table 6.1 Table 6.4 shows the process parameters and

the existing tuning parameters of this control loop.
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Description Roaster
Air Blower Flow
Process Gain 1
Time Constant (s) 3.5
Time Delay (s) 8.5
Sampling Time (s) 1
FL - PB 2000
FL - Gain 0.05
FL - Integral Time (minutes/repeat) 0.21
FL - Integral Gain (repeats/second) 0.079

Table 6.1 Roaster Air Blower Control Loop Summary

where

FL Falconbridge Loop

PB Proportional band which is the unit that is used for gain in the
smelter Foxboro control system

Integral Time This is the unit that describes the integral action in the

smelter Foxboro control system in minutes per repeat

The search for this system was done using enumerative search and the following
results in Table 6.2 were obtained. The change in the value of the normalized
performance index is sketched with changes in the value of the proportional gain as
per Figure 6.2 and Figure 6.3. The same was done with respect to integral gain as

per Figure 6.2 and Figure 6.4.
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Normalized Performance Index 0.99
MV - Gain 0.4

MV - PB 250

MYV - Integral Gain (repeats/second) 0.05
MYV — Integral Time (minutes/repeat) 0.33

Table 6.2 Roaster Air Blower Enumerative Search Optimal Results

It should be mentioned that the value of 0.05 for the integral gain was uscd as the
lower bound in the search algorithm. In other words, the result can be better by
lowering this limit. The reason is mentioned before as higher performance index
value normally obtained at low integral gain values. However, there is a practical
limit should be followed in the selection of this value; otherwise the controller will

loose its tracking properties.
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Figure 6.4 Change in objective function with different integral gains for the roaster

air blower flow control loop using Enumerative Search

-72-



12} -

Yasie

08

adl |

Figure 6.5 Running Variance Ratio (Y — Axis) between the optimal controller
variance using Enumerative Search and the existing controller variance with time
(X - Axis) for the roaster air blower flow control loop - Set point change

at time 5000

It is clear from Figure 6.5 that the enumerative search has yiclded better results than

the existing controller.

When the lower bound for the integral gain was lowered to 0.001, the performance
index increased slightly as per Table 6.3. Although it has shown greater results as

per Figure 6.6 from the minimum variance point of view, it is not superior enough

to jeopardize the other tracking properties.
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Normalized PI 0.99
MYV - Gain 0.3
MYV - PB 333.33
MYV - Integral Gain (repeats/second) 0.001
MYV — Integral Time (minutes/repeat) 16.67

Table 6.3 Roaster Air Blower Enumerative Search Optimal Results with lower

integral gain bound
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Figure 6.6 Running Variance Ratio (Y — Axis) between the optimal controller
variance using Enumerative Search and the existing controller variance with time
(X - Axis) for the roaster air blower flow control loop with a lower bound of the

integral gain equal to 0.001- Set point change at time 5000
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Montcalm Repulper Feed Flow Rate

This control loop is one of the loops that are subject to many different kinds of
disturbance. The slurry flows from an eight-leg header, called the octopus, into two
repulpers, two disc filters, and one return line that is cquipped with a pressure
control valve. Every line is equipped with a set of valves with different gains and
actuators. Opening and closing the other valves disturbs the flow in the header. This

normally happens with a random effect.

Another challenge in this loop is to minimize the flow variance, which may disturb
the level in the small repulper if not tightly controlled. Overflow of the repulper can
lead to an expensive cleaning job and low level can damage the repulper discharge
valve. Table 6.4 shows the process parameters and the existing tuning parameters of

this control loop.

Description Montcalm Repulper
Feed Flow Rate
Process Gain 12.9
Time Constant (s) 24.75
Time Delay (s) 28
Sampling Time (s) 1
FL - PB 400
FL - Gain 0.25
FL - Integral Time (minutes/repeat) 0.625
FL - Integral Gain (repeats/second) 0.0267

Table 6.4 Montcalm Repulper Feed Flow Rate Control Loop Summary
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The search for this system was done using enumerative search first and the
following results in Table 6.5 were obtained. The change in the value of the
normalized performance index is sketched with changes in the value of the

proportional gain as per Figure 6.7 and Figure 6.8. The same was done with respect

to integral gain as per Figure 6.7 and Figure 6.9.

Normalized Performance Index 0.51
MYV - Gain 0.07
MV - PB 1428.57
MYV - Integral Gain (repeats/second) 0.001
IMV — Integral Time (minutes/repeat) 16.67

Table 6.5 Montcalm Repulper Feed Flow Rate Enumerative Search Optimal Results
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Montcalm Repulper flow rate control loop using Enumerative Search
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Figure 6.9 Change in objective function with different integral gains for Montcalm

Repulper feed flow rate control loop using Enumerative Search

It should be noticed in Figure 6.7 and Figure 6.9 that this system is hard to tune on
minimum variance basis. On the other hand, the enumerative search may not be
successful enough to tackle this problem. It has shown only one integral gain value,

which is the lower bound. This data can be only verified if another search algorithm

is used.

However, when the loop compared against the existing tuning parameters, it has
shown better performance as per Figure 6.10a and Figure 6.10b. Moreover, the
existing tuning parameters have led to unstable behavior and the ratio between the

variance of the optimal parameters and the existing parameters is almost zero.
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Further investigation has shown that the existing loop is currently in manual mode
because of the existing controller behavior. This means that the existing controller
cannot control the process. The used tuning rules were not good enough to tune this

loop.
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Figure 6.10a Running Variance Ratio (Y — Axis) between the optimal controller
variance using Enumerative Search and the existing controller variance with time
(X - Axis) for Montcalm Repulper feed flow rate control loop - Set point change at
time 5000
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Figure 6.10 -b Running Variance Logarithmic Ratio (Y — Axis) between the
optimal controller variance using Enumerative Search and the existing controller
variance with time (X - Axis) for Montcalm Repulper feed flow rate control loop -

Set point change at time 5000

Roaster Feed Flow Rate

This control loop is one of the most important control loops in the smelter as it
determines the smelter hourly production. The flow is measured using a corilois
mass flow meter and it adjusts the reciprocating pump speed. Plugging and different
foreign material in the feed can definitely disturb this loop in a random behavior.

The challenge in this loop is to minimize the flow variance, which will disturb the
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roaster operation if not tightly controlled. Table 6.7 shows the process parameters

and the existing tuning parameters of this control loop.

Roaster
Description Feed Flow Rate

Process Gain 0.67
Time Constant (s) 7
Time Delay (s) 11
Sampling Time (s) 1

FL - PB 380

FL - Gain 0.26

FL - Integral Time (minutes/repeat) 0.23

FL - Integral Gain (repeats/second) 0.072

Table 6.6 Roaster Feed Flow Rate Control Loop Summary

The search for this system was done using enumerative search and the following
results in Table 6.7 were obtained. The change in the value of the normalized
performance index is sketched with changes in the value of the proportional gain as
per Figure 6.11 and Figure 6.12. The same was done with respect to integral gain as

per Figure 6.11 and Figure 6.13.

Normalized Performance Index 0.99
MYV - Gain 64.31

MV -PB 1.55

MYV - Integral Gain (repeats/second) 0.078
MYV — Integral Time (minutes/repeat) 0.21

Table 6.7 Roaster Feed Flow Rate Enumerative Search Optimal Results



rmalized Performance Index - -

lr)tégrélr gain o

Figure 6.11 3-D Diagram showing the change in objective function with different
optimization variables for the roaster feed flow rate control loop using Enumerative

Search
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roaster feed flow rate control loop using Enumerative Search
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Figure 6.13 Change in objective function with different integral gains for the roaster

feed flow rate control loop using Enumerative Search

The enumerative search does not seem to be successful enough to tackle this
problem. The reason is the location of local minimum values. The optimum point is
located among other good values and the results can be refined with smaller step

size. When a smaller step size was used, the program calculation time took

approximately 64 hours.
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6.3

Optimization using Hybrid Genetic Algorithms

Roaster Air Blower Flow Loop

The same optimization was done using hybrid genetic algorithms, which has proven

itself quick and reliable in finding the optimal parameters.

Normalized Performance Index 0.89
MV - Gain 0.069

MV - PB 1459.51

MYV - Integral Gain (repeats/second) 0.0014
MYV - Integral Time (minutes/repeat) 11.81

Table 6.8 Roaster Air Blower GA Search Optimal Results

Although the normalized performance index value shown above in Table 6.8 is
lower than the one that was obtained by the enumerative search, but in fact it

yielded better performance when it was compared with the enumerative search

controller as shown in Figure 6.14.
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Figure 6.14 Running Variance Ratio (Y — Axis) between the hybrid GA optimal
controller variance and the enumerative search optimal controller variance with time
(X - Axis) for the roaster air blower flow control loop - Set point change

at time 5000

The reason for this behavior is related to the bounds that were added during the
optimization process. The output was clamped between 1 and -1 to confirm
stability. On the other hand, the stability for the enumerative search was checked by
the location of the closed loop poles, which gave it more freedom to move in the
search space. This is the reason to explain why the GA has yielded lower dynamic

variance output when both methods were compared against each other.

Another sensitivity analysis was done to check the robustness of the solution. The
stochastic input disturbance random generator seed was changed and the results did
not change significantly. These results in Table 6.9 have shown the real strength of

the normalized performance index as a ratio instead of the output variance on its

own.
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Random Seed Seed 1 Seed 2 Seed 3
Normalized Performance Index 0.889 0.891 0.886
MYV - Gain 0.0685 0.0675 0.0680
MV - PB 1459.51 1482.12 1469.72
MV - Integral Gain (repeats/second) 0.0014 0.0014 0.0011
MV — Integral Time (minutes/repeat) 11.8 11.8 16.7

Table 6.9 Roaster Air Blower GA Sensitivity Analysis for Random Seeds

Another comparison was performed to demonstrate another powerful characteristic
of hybrid GA, which is the optimization time. From Table 6.10, it is clear that

hybrid genetic algorithm takes significantly shorter time compared with

enumerative search.

Loop Enumerative Search Hybrid Optimization
Roaster Blower 23 min 139s
Roaster Feed 2.1h 46.3 s
Repulper Feed 64 h 43.2s

Table 6.10 Time comparison between Enumerative Search and Hybrid GA

Montcalm Repulper Feed Flow Rate

The same optimization was done using genetic algorithms, which again has proven

itself quick and reliable in finding the optimal parameters. The results are shown in

Table 6.11.
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Normalized Performance Index 0.97
MYV - Gain 0.26
MV -PB 380.23
MYV - Integral Gain (repeats/second) 0.0015
MYV — Integral Time (minutes/repeat) 10.82

Table 6.11 Montcalm Repulper feed flow rate GA Search Optimal Results

It is clear from Figure 6.15 that the yiclded performance index is close to the

maximum and much better than the enumerative search optimization
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Figure 6.15 Running Variance Ratio (Y — Axis) between the optimal hybrid GA
controller variance and the optimal enumerative search controller variance with time
(X - Axis) for Montcalm Repluper Feed flow control loop - Set point change
at time 5000

Roaster Feed Flow Rate

The same optimization was done using genetic algorithms, which again has proven
itself quick and reliable in finding the optimal parameters. The results are shown in
Table 6.12.
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Normalized PI 0.22
MYV - Gain 0.043
MV -PB 2346.7
MYV - Integral Gain (repeats/second) 0.0015
MYV — Integral Time (minutes/repeat) 11.47

Table 6.12 Roaster feed flow rate GA Search Optimal Results

The enumerative search failed to achieve a practical lower value that is why the
comparison this time is done between the existing controller and the optimal
controller that was designed by hybrid GA. The results are shown in Figure 6.16.

These results reassured again that GA yields better results than enumerative scarch.
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Figure 6.16 Running Variance Ratio (Y — Axis) between the optimal hybrid GA
controller variance and the existing controller variance with time (X - Axis) for

Roaster Feed flow control loop - Set point change at time 5000

Table 6.13 summarizes the results obtained with the three loops.



Roaster Air Montcalm Feed Roaster Feed
Parameter
Blower Flow Rate Flow Rate
Gain 1 129 0.67
Time Constant (s) 3.5 24.75 7
Time Delay (s) 8.5 28 I
Sampling Time (s) 1 1 1
Integral Gain - FL 0.05 0.25 0.263
Proportional Gain - FL. 0.079 0.027 0.072
Integral Gain - Enumerative
0.05 0.001 No Solution
search
Proportional Gain -
. 0.4 0.07 No Solution
Enumerative search
% Actual Improvement -
26.8% 100 % 0%
Enumerative search
Integral Gain - Hybrid GA 0.0014 0.0015 0.001
Proportional Gain - Hybrid GA 0.068 0.04 0.21
% Actual Improvement -
35.7% 109.1% 21%
Hybrid GA

Table 6.13 Results Summary

The percentage increase in the performance improvement was calculated from the
ratio of the two loops variances in the Simluink model over a time span of 5000

seconds. The following Equation is used

% Actual Improvement = (Var (FL) — Var (Opt)) X 100 / Var (FL)

where Var (FL) Variance of Falconbridge loop
Var (Opt) Variance of the optimized loop (either Enumerative pr Hybrid
GA)
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The performance improvement for Montcalm loop is considered 100%, as the
existing loop is unstable. The benchmarking for the GA optimization method is

based on comparison with the enumerative search method.

Table 6.13 summarizes all results. It has shown the weakness of the enumerative
search when it is compared with Hybrid Genetic Algorithms, as GA was able to find
a feasible solution in all cases. In addition, the Hybrid GA has always yielded better

solution than the existing tuning methods or the enumerative search.
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Chapter 7

Conclusion and Future Work

7.1

Conclusion

This research focused on the tuning of the proportional - integral (PI) controller in
order to achieve a closed loop performance that is as close as possible to minimum
variance controller. The work was directed towards minimum variance control to

mitigate the effect of input stochastic disturbance.

The criterion of minimum variance tuning, as it was established by Harris, was
based on minimizing the ratio between the variance in the stochastic input noise and
the variance of the output. In order to scale this index between zero and one, the

following normalized index was introduced for comparison and benchmarking.

Npi = Var (Nj) /(o; + Var (N;))
7.1
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An objective function, which is the performance index, was formulated. The closed
loop output was mathematically driven into an explicit format, which is considered an
immense contribution in research. Afterwards, the maximum performance index was
calculated by two different methods, which were enumerative search and hybrid
Genetic Algorithms. The constraints for this optimization problem were non-lincar
and implicit. Therefore, an alternative approach was used to put them in an explicit
format for the Hybrid Genetic Algorithm optimization; and to clamp the process
output at a certain high enough value that will be only violated if the closed loops

poles are positive.

Three different models were used for experimental testing. The three models came
from three control loops that are located at Falconbridge - Sudbury smeclter.
Subsequently, the process data were used in the two different optimization
algorithms. The optimum values of the proportional and integral gains were
compared against the existing tuning parameters at Falconbridge using Simulink

model. The optimized values have shown superior results in almost all cases.

Hybrid genetic algorithms demonstrated very promising distinctiveness. It provided
a global solution that had better minimum variance characteristics than the
enumerative search technique, IAE and Lambda tuning. In addition, it was very
quick in locating the optimum values. While the improvement in the performance
index was 28.6%, 100% and 0% using enumerative scarch, thc improvement was

higher using Hybrid Genetic Algorithms (35.7%, 109.1% and 21%).

Finally, by analyzing the normalized performance index sensitivity, the following
results were noticed. Process gain changes affected the normalized performance index
considerably. Time constant changes affected the normalized performance index

considerably. Time delay changes did not affect the normalized performance to a

great extend
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7.2 Recommendations for Future Work

l. The first recommendation for future work can be based on Horch (1999)
work. They have modified Harris performance index. The minimum variance
control is based on cancellation of the model dynamics and so placing all closed
poles in the origin. This makes the minimum variance controller non applicable in
practical life because of its low tracking capability. They suggested the placement
of one pole using either control design guideline or additionally available process

knowledge.

The above-mentioned approach can be as promising as it can help the controller
servo capability. Hybrid genetic algorithms can be used to tackle this problem after

implying an extra constraint, which is the location of the new pole.

2. The second recommendation can be the utilization of the great potential of
Hybrid Genetic Algorithms for Multi-input and Multi-output (MIMO) problems.
Huang (1997) approach can be fostered and expanded by using Hybrid Genetic

Algorithms optimization.

3. Finally, the explicit function for the closed loop output can be used
extensively for other methods in the controller design. The objective function and
the relevant derivatives are in an explicit formula that can be used in any single or

multi-object optimization processes.
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Appendix

A-1 Basic Concepts and Definition

PID 1t is the most common control method in process control. 1Cis a continuous
feedback loop that maintains the process sinuous normally by taking corrective
action whenever there is any deviation from the desired value ("setpoint™ of the
process variable (rate of flow. temperature. voltage. cte.). An "error” occurs when
an operator manually changes the setpoint or when an event (valve opened. closed,
ete.) or a disturbance changes the load. thus causing a change in the process
variable.

The PID controller receives signals from sensors and computes corrective action to
the actuators from a computation based on the error (proportional), the sum of all

previous crrors (integral) and the rate of change of the error (derivative).

P Proportional Gain
I Reset rate repeats / seconds

D Derivative time. seconds

Controller Tuning  There are several methods for tuning a PID loop. The choice
of method will depend largely on whether the loop can be taken "offline™ for tuning,
and the response time of the system. If the system can be taken offline. the best
tuning method often involves subjecting the system to a step change i input,
measuring the output as a function of time. and using this response to determine the

control parameters.
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If the system must remain online, one tuning method is to first set the I and D values
to zero. Increase the P until the output of the loop oscillates. Then increase I until
oscillation stops. Finally, increase D until the loop is acceptably quick to reach its
setpoint. The best PID loop tuning usually overshoots slightly to reach the set point

more quickly, however some systems cannot accept overshoot.

Effects of changes "increase" in parameters
Parameter | Rise Time | Overshoot | Settling S.S. Error
Time
P Decrease Increase Small Decrease
Change
I Decrease Increase Increase Eliminate
D Small Decrease Decrease Small
Change Change

Table Al1.1 Controller Tuning Rules

Process Model Transfer Function It is a mathematical representation of the
relation between the input and output of a linear time-invariant system. The transfer
function is commonly used in the analysis of single-input single-output (SISO)
relationship. It is mainly used in linear, time-invariant system theory, signal

processing, communication theory, and control theory.

In its simplest form for continuous-time signals, the function is often written as

1.1

where H(s) is the symbol for the transfer function, Y(s) is the output function, and

X(s) is the input function. In discrete-time systems, the function is similarly written

as H(z) = Y(z) / X(z).



Process White Noise It is a random signal with a flat power spectral
density. In other words, the signal's power spectral density has equal power in any

band, at any centre frequency, having a given bandwidth.

An infinite-bandwidth white noise signal is purely a theoretical construct. By having
power at all frequencies, the total power of such a signal is infinite. In practice, a

signal can be "white" with a flat spectrum over a defined frequency band.

Process Optimization It is the problem of determining the inputs of a
function that minimizes or maximizes its value. Sometimes constraints are imposed
on the values that the inputs can take; this problem is known as constrained

optimization.

Genetic Algorithms A genetic algorithm (GA) is a method used to find
approximate solutions to difficult-to-solve optimization problems through
application of the principles of evolutionary biology to computer science. Genetic
algorithms use biologically-derived techniques such as inheritance, mutation,
natural selection, and recombination (or crossover). Genetic algorithms are a

particular class of evolutionary algorithms.

Genetic Operator It is a process used in genetic algorithms to maintain genetic
diversity. Genetic variation is a necessity for the process of evolution. Genetic
operators used in genetic algorithms are analogous to those which occur in the

natural world: survival of the fittest, or selection; ascxual or sexual reproduction

(crossover, or recombination); and mutation.

Jacobian matrix The Jacobian matrix is the matrix of all first-order partial
derivatives of a vector-valued function. Its importance lies in the fact that it

represents the best linear approximation to a differentiable function near a given
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point. In this sense, the Jacobian is akin to a derivative of a multivariate function. It
is widely used in optimization as it refers to a local minimum or maximum when its

determinant is equal to zero.

Newton's Method It is a well-known algorithm for finding roots of equations in
one or more dimensions. It can be used to find local maxima and local minima of
functions by noticing that if a real number x* is a stationary point of a function f(x),
then x* is a root of the derivative fI(x), and therefore one can apply Newton's

method to f(x).
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