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Abstract

The failures of the popular Black-Scholes-Merton (BSM) model led to an

interest in new, robust models which could more accurately model the behav-

ior of historical prices. We consider one such model, the regime switching

time-changed Levy process, which builds upon the BSM model by incorporat-

ing jumps through a random clock, as well as randomly varying parameters

according to a continuous-time Markov chain. We develop the characteristic

function as well as two methods for pricing European call options. Finally,

we estimate the parameters of the model by incorporating historic energy data

and option quotes using a variety of methods.
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Introduction

The famous Black-Scholes-Merton (BSM) model assumes that the market

consists of a risky asset such as a stock, and a riskless asset such as a bond

or bank account. It can be seen as the continuous limit of the binomial

tree model. Furthermore, the model implies that the market is complete

and assumes that the market admits no arbitrage opportunities. A market

is complete if every payoff is attainable and every derivative asset can be

perfectly hedged. A market admits arbitrage if it is possible to make money

without taking on any risk. Under the BSM model, the rate of return on

the riskless asset is assumed to be constant and hence is called the risk-free

interest rate. The underlying risky assets are distributed under a Gaussian

probability distribution with constant volatility. Hence, the price movements

are continuous. This assumption is not supported by the empirical evidence.

In particular for energy markets such as oil and electricity futures, more

complex movements are observed, such as mean reversion, sudden oscilla-

tions and price jumps. The failures of the BSM model can be seen through

the implied volatility skew. Given the pricing formula and a set of historical

option prices, one can solve for the implied volatility, which would then cor-
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rectly price each contract. The limits of the BMS model become apparent

when volatilities are compared at different maturity times and strike prices

- such volatilies vary substantially, implying that diffusion models are not

robust enough to capture the movements of the market [5].

While there is overwhelming evidence from the historical data that the

volatility should depend on time, there is no consensus as to how this volatil-

ity should be modelled [20]. Examples include local volatility models where

the volatility term varies deterministically in time and stochastic volatility

models where the volatility term is itself a stochastic process. Another ap-

proach is to consider time driven by a non-negative stochastic process called

a subordinator, leading to the class of Levy time changed processes.

In option pricing theory, it is a consequence of the model that the mar-

ket does not admit arbitrage opportunities. This means that the discounted

asset prices are martingales under some probability measure Q, called the

risk-neutral measure. By introducing stochastic volatility or jumps, this

measure Q loses uniqueness and the existence of infinitely many risk-neutral

measures is referred to as market incompleteness, meaning it is not possible

to perfectly hedge every derivative asset.

Many financial time series including commodity futures seem to exhibit

dramatic breaks in their behaviour, for example in the events of political

changes or financial crises. Different intervals sharing similar characteristic
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can be grouped together under a single regime. One class of models that

describe such behaviour are regime switching Levy models. Under such a

model, the process switches randomly between different Levy processes ac-

cording to an unobservable Markov chain. We modify the regime switching

model by introducing a random clock, which introduces random jumps in the

model. The regime switching time-changed Levy process is a pure jump pro-

cess which captures two key features of the market: the existence of regimes

and price jumps.

We make a few more assumptions on the market and on the assets. For

the market, we assume that it is possible to buy and sell any real number of

the risky or riskless assets. This includes fractional amounts of a single share,

and negative values which correspond to shorting. The transactions happen

instantaneously and at zero cost. Finally, the principle of no arbitrage holds.

For the assets, we assume that the risk-free interest rate is constant and

doesn’t change between regimes and that the risky asset pays no dividends.

The objectives of the thesis are to model regime switching Levy pro-

cesses, price European call options, and estimate the parameters using op-

tion quotes and historical prices of comodities under a variety of methods.

Although time-changed Levy processes and switching models have been stud-

ied separately, an integrated model has not been considered in connection to

pricing and parameter estimation. Consequently, Monte Carlo simulation

and Fourier Cosine pricing methods have not been implemented so far.
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In Chapter 1 we introduce the relevant background terminology that will

be used throughout the thesis. In Chapter 2 we define the regime switching

time-changed Levy process, derive its characteristic function under Gamma

and Inverse Gaussian subordinators and give two pricing methods: Monte

Carlo and Fourier Cosine method. We compare prices under the regime

switching model to those given by the Black-Scholes equation and show that

the prices agree when the switching model is reduced to the BSM model.

For Monte Carlo, we develop an algorithm for simulating trajectories of the

regime switching Levy process, as well as for pricing European call options

by simulating many regime switching processes simultaneously. In Chapter

3 we use calibration and various estimation methods to estimate values of

the parameters using option quotes and historical prices of oil and electricity

commodities. Relevant code and rejection methods for simulating random

variables are given in the Appendix.
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Chapter 1

Background Material

We give several definitions and theorems related to Levy processes and regime

switching processes. We begin with an overview of stochastic processes and

build up to include time-changed Levy processes, characteristic functions and

continuous-time Markov chains.

Definition 1.0.1. (Stochastic Process) [18][27].

A stochastic process is a collection of random variables X = {Xt}t∈I

defined on a common filtered probability space (Ω,F , {Ft}t∈I ,P) and indexed

by some totally ordered set I, usually denoting some interval of time. If I is

countable, then X is called a discrete-time process, and if I is uncountable

then X is a continuous-time process. We will usually take I = [0, T ] for some

maturity time T ∈ R+ ∪ {∞}. The probability space consists of:

(1) The nonempty set Ω of all possible paths ω.
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(2) The σ-algebra F , which denotes the set of all events. Formally F

consists of the empty set φ and the entire set Ω as well as a set of

subsets of Ω such that F is closed under complements and countable

unions. The pair consisting of a set with its σ-algebra (Ω,F) is called

a measurable space and the elements of F are called measurable sets.

(3) The probability measure P : F → [0, 1].

(4) A filtration {Ft}t∈I , a non-decreasing sequence of σ-algebras, such that

F0 = {φ,Ω} and Fs ⊆ Ft ⊆ F for s ≤ t. (1.1)

A measurable space is complete if all subsets of a set of measure zero are

also in the σ-algebra. The filtered probability space (Ω,F , {Ft}t∈I ,P) is P-

complete if Ft contains all subsets of sets of measure zero under P for each

t ∈ I, and {Ft}t∈I is right continuous i.e.

Ft =
⋂
s>t

Fs.

A Borel set is a set in a topological space that can be formed by complements

and countable unions of open sets defined by the topology. The collection of

all Borel sets forms the Borel σ-algebra - the smallest σ-algebra containing

all open sets. If we consider R with the standard topology, the Borel σ-

algebra B(R) is the smallest σ-algebra containing all the open intervals and

the pair (R,B(R)) form a measurable space. A function between measurable

spaces is called a measurable function if the preimage of a measurable set is
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measureable. In particular, continuous functions between Borel σ-algebras

are measurable because the preimage of every open set under a continuous

function is open.

A random variable:

Xt : (Ω,F)→ (R,B(R))

is an Ft-measurable function if for each set B ⊆ B(R),

X−1
t (B) = {ω ∈ Ω : Xt(ω) ∈ B} ∈ Ft.

Intuitively, Ft represents the information available at time t, and the filtration

{Ft}t∈I represents the information flow evolving over time. Mathematically,

Ft = {σ(Xs), s ∈ [0, t]}

where the σ-algebra generated by the random variables Xs is defined as:

σ(Xs) = {X−1
s (B)|B ∈ B(R)}.

A process X is cadlag if it is right continuous with left limits. X is

adapted (or non-anticipating) to the filtration {Ft}t∈I if Xt is Ft-measurable

for each t ∈ I. The image of E ⊂ R of Xt is called the state space [15].

Finally, the conditional expectation of a random variable Xt given an event

A ∈ F , is defined as:

E[Xt|A] =
E[1AXt]

P(A)
,

where 1A is the indicator function on a set A.
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Definition 1.0.2. (Stopping Time) [8][24].

A random time is a positive random variable τ : Ω→ R+ which represents

the time at which an event takes place, for example a change of parameters.

Given an information flow {Ft}t≥0, if we can determine at time t, given the

information Ft whether an event has occured, the random time τ is called a

stopping time.

Formally, a stopping time with respect to a filtration {Ft}t≥0 is a random

variable τ such that,

{
ω ∈ Ω : τ(ω) ≤ t

}
∈ Ft, ∀t ≥ 0.

If τ1 and τ2 are stopping times, then τ1 ∧ τ2 ≡ inf{τ1, τ2} is also a stopping

time. Given a stopping time τ and an adapted process {Xt}t≥0, we can define

a new process Xt∧τ , the process X stopped at τ as:

Xt∧τ =


Xt, if t < τ

Xτ , if t ≥ τ

Given an adapted process {Xt}t≥0, the hitting time τA of an open set A ⊂ E

is defined as the first time that X hits A:

τA = inf{t ≥ 0 : Xt ∈ A}

The set of hitting times is a subset of the set of stopping times.

Definition 1.0.3. (Martingales) [23][24].
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A cadlag process {Xt}t≥0 on a filtered probability space (Ω,F , {Ft}t∈I ,P)

is called a martingale if the best prediction of the future value of a process

is its current value:

E[Xt|Fs] = Xs for t > s and E[|Xt|] <∞.

A local martingale is a process {Xt}t≥0 for which there exists a sequence

of bounded stopping times {τn}n∈N increasing to infinity for which {Xt∧τn}t≥0

is a martingale for each n.

A semimartingale {Yt}t≥0 is a process which can be decomposed as:

Yt = Mt + At

where M = {Mt}t≥0 is a local martingale and A = {At}t≥0 is a cadlag

adapted process with locally bounded variation. A process {At}t≥0 is said

to be of bounded variation if its total variation V (A) is finite. The total

variation is given by:

V (A) = sup
P∈P

nP−1∑
i=0

|Ati+1
− Ati | <∞.

where

P =
{
P = {t0, ..., tnP

} where P is a partition over [0, T ]
}
.

Definition 1.0.4. (Continuous-Time Markov Chain) [2][19][28].

A Markov process is a stochastic process with the additional Markov prop-

erty; the future value is independent of the past given the present value. A
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(R,B(R))-valued stochastic process {Xt}t∈I adapted to the filtration {Ft}t∈I

has the Markov property if for each B ∈ B(R):

P(Xt ∈ B|Fs) = P(Xs ∈ B|Xs) when s < t.

A Markov process with a finite countable state space is called a Markov

chain. Additionally, if I = N, the Markov process is called a discrete-time

Markov chain. The Markov chain is said to be in regime i at time t if Xt = i

for each i in the state space. Each discrete-time Markov chain has an associ-

ated one-step transition matrix P = Pij, i, j ∈ E where Pij is the probability

of moving from regime i to regime j at time t = 0.

If I = [0,∞) and the state space is finite countable, the Markov process

is called a continuous-time Markov chain. In the continuous case, there is a

transition matrix P (t) = Pij(t) for every t ≥ 0. As in the discrete case, the

distribution of the future Xt, given the present Xt, does not depend upon

the present time t, but only on the present state Xt = i ∈ E:

Pij(t) = P(Xt = j|X0 = i)

In order to satisfy the Markov property, the amount of time spent between

transitions must not depend on how much time has already elapsed. This is

the property of memorylessness. A random variable M is memoryless if :

P(M > t+ h|M > t) = P(M > h) ∀t, h > 0

The only continuous probability distribution with this property is the expo-

nential distribution.
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The random times at which the continuous-time Markov chain X does

transition between regimes are called switching times. The random time

interval between switching times during which X does not transition is called

a holding-time (or interarrival time), which is an exponentially distributed

random variable. The holding time is equal to the duration of remaining in

a single regime.

Given a continuous-time Markov chain, we can define its embedded dis-

crete Markov chain, which is the discrete-time process which keeps track

of the jumps of the continuous-time Markov chain. The embedded Markov

chain then has its own one-step transition matrix P = Pij. For each continuous-

time Markov chain, there is an associated infinitesimal generator matrix Q,

with the same dimensions as P defined element-wise:

Q = qij ≡ lim
t→0+

Pij(t)− δij
t

= P ′ij(0), (1.2)

where δij are the elements of the identity matrix, P ′ij(0) = λiPij for i 6= j is

the transition rate from regime i to regime j when the process is in regime

i, and P ′ii(0) = −
∑

i 6=j qij. The parameter λi is called the holding-time rate.

The elements qij of the infinitesimal generator Q can now be used to

define the infinitesimal transition probabilities:

P(Xt+h = j|Xt = i) = qijh+ o(h), i 6= j

P(Xt+h = i|Xt = i) = 1 + qiih+ o(h) otherwise,

for some arbitrarily small time increment h > 0. The term o(h) denotes any

function f(h) with the property that limh→0 f(h)/h = 0.
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Definition 1.0.5. (Brownian Motion) [10].

One of the most import examples of a stochastic process is Brownian mo-

tion ( also called the Weiner process), denoted B = {Bt}t≥0. The process has

independent and stationary increments, i.e. given 0 ≤ s < t the increment

Bt − Bs is independent of Fs, and Bt+s − Bt ∼ Bs respectively. The incre-

ments Bt − Bs are normally distributed random variables with mean 0 and

variance t − s. The process is called Standard Brownian motion if B0 = 0.

Given the set of partitions:

P =
{
P = {t0, ..., tnP

} where P is a a partition over [0, T ]
}
,

Brownian motion has infinite total variation:

V (B) = sup
P∈P

nP−1∑
i=0

|Bti+1
−Bti | =∞,

and finite quadratic variation at each time t ∈ (0, T ] :

< B >t= lim
‖P‖→0
P∈P

nP−1∑
i=0

|Bti+1
−Bti |2 = t <∞.

Here the norm of a partition ‖P‖ is defined as ‖P‖ = max{(ti − ti−1) :

i = 1, .., nP}. Brownian motion is known to not be differentiable anywhere,

however, it is almost surely everywhere continuous.

Definition 1.0.6. (Poisson Process and Random Measures) [26].

A counting process is a non-decreasing pure jump stochastic process with

a state space consisting of non-negative integers. The Poisson process is
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the simplest example of a counting process. If {τi}i≥1 is a sequence of

identical, independent exponential random variables with parameter λ and

Tn =
∑n

i=1 τi, then the process {Nt}t≥0 defined by:

Nt =
∑
n≥1

1t≥Tn

is called a Poisson process with intensity λ. The process at time t counts

the number of random times {Tn, n ≥ 1} occurring in the interval [0, t]. For

any path ω, the sample path ω 7→ Nt(ω) is piece-wise constant, increases by

jumps of unit size, and the conditional expectation of future states depends

only on the present state (this is the Markov property). For any t > 0, the

random variable Nt follows a Poisson distribution with parameter λt:

P(Nt = n) = e−λt
(λt)n

n!
∀n ∈ N,

and has expectation E[Nt] = λt. The increments Nt − Ns are Poisson dis-

tributed with parameter λ(t − s) for 0 ≤ s < t, and are independent of

Fs. With each Poisson process we can define an associated Poisson random

measure M , such that for a given realization ω and A ⊂ R+ [8],

M(ω,A) = ‖i ≥ 1| Ti(ω) ∈ A‖

For any set A, M(ω,A) follows the Poisson distribution with intensity

λ‖A‖ where ‖A‖ is the Lebesgue measure of A. M is called a random measure

because it depends on the random path ω. For each path ω, the Poisson

process is related to its random measure by:

Nt(ω) =

∫
s∈[0,t]

M(ω, ds).
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Given Poisson Process with intensity λ, we can define a “Compensated”

Poisson process {Ñt}t≥0 as:

Ñt = Nt − λt

The term λt is called the compensator, and is the quantity subtracted from

Nt in order to recover the martingale property. The Compensated Poisson

Process is no longer integer valued and can be negative, and so the compen-

sated random measure:

M̃(ω,A) = M(ω,A)− λ‖A‖

is now a signed measure, meaning it can take on negative values.

Definition 1.0.7. (Compound Poisson Processes).

A process Y = {Yt}t≥0 is called a Compound Poisson process with pa-

rameter λ is defined as:

Yt =
Nt∑
j=1

Dj

where {Nt}t≥0 is a Poisson process with intensity λ, and {Dj, j ≥ 1} is a

set of identically distributed random variables, all independent of each other

and of Nt for each t. We note that if Dj is the constant unit function the

Compound Poisson process reverts to an ordinary Poisson process.

For each Compound Poisson process, we can associate a random measure

on R×[0,∞) describing the jumps of Y . For any measurable set A×[t1, t2] ⊂

R× [0,∞), define:

JY (A× [t1, t2]) = #{t ∈ [t1, t2] such that ∆Yt 6= 0, ∆Yt ∈ A}, (1.3)
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where ∆Yt = Yt − lims→t− Ys. Intuitively, JY counts the number of jump

times between t1 and t2 whose jump sizes are in A. Jumps of zero size are

not allowed, and negative sizes values correspond to descending jumps. If

E[Dj] = κ < ∞ for each j, then E[Yt] = λtκ. Just like in the ordinary

Poisson process, the Compound Poisson process has a compensated version

{Ỹt}t≥0 which is a martingale. It it defined as:

Ỹt =
Nt∑
j=1

Dj − λtκ.

Definition 1.0.8. (Levy Processes) [22][23].

A cadlag, adapted, real-valued stochastic process X = {Xt}t≥0 is called

a Levy Process if:

(1) X0 = 0 almost surely.

(2) ∀t1, t2, ..., tn such that 0 ≤ t1 < t2 < ... < tn < ∞, the increments

Xt2 −Xt1 , Xt3 −Xt2 , ..., Xtn −Xtn−1 are independent.

(3) The increments are stationary, i.e ∀ t ≥ 0, h > 0, Xt+h −Xt is equal in

distribution to Xh, meaning the distribution of the increments depends

only on the length of elapsed time h.

(4) X is stochastically continuous (continuous in probability): ∀ε > 0 and

t ≥ 0,

lim
h→0

P({ω ∈ Ω : |Xt+h(ω)−Xt(ω)| > ε}) = 0
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Every Levy process has the Markov property. Important examples of Levy

processes include Brownian motion and Compound Poisson processes.

Definition 1.0.9. (Levy Triplet and Levy-Ito Decomposition) [8].

Every Levy Process X =
{
Xt

}
t≥0

is completely determined by three

parameters called the Levy Triplet (µ, σ2, ν), where µ ∈ R is the drift, σ > 0

is the volatility and ν is the Levy measure:

ν : B(R)→ R+.

Given any Borel set B ∈ B(R), ν(B) is the expected number of jumps whose

size belongs to B, per unit time.

Formally:

ν(B) = E
[
#
{
t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ B

}]
,

where ∆Xt is the jump size. If ν(R) <∞, the process has a finite number of

jumps on every compact interval. If ν(R) =∞, the process jumps an infinite

number of times on every compact interval and we say that the process has

infinite activity. The measure ν also satisfies the following condition:

ν({0}) = 0 and

∫
R\{0}

min{1, |x|2}ν(dx) <∞, (1.4)

Every Levy Process X with an associated Levy Triplet (µ, σ2, ν) can be

written as a sum of the processes X1, X2, X3, X4 such that X converges to
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X1 +X2 +X3 + limε→0X
4 almost surely. The four processes are defined:

X1
t = µt

X2
t = σBt

X3
t =

∫
|x|≥1

∫
s∈[0,t]

xJX(ds× dx)

X4
t =

∫
ε≤|x|<1

∫
s∈[0,t]

x{JX(ds× dx)− ν(dx)ds}.

This decomposition shows that X is a combination of a deterministic

component, Brownian motion and a pure jump process. For the pure jump

process, we differentiate between “large” jumps and “small” jumps. X3 is a

compound Poisson process whose jump sizes are greater or equal to 1:

X3
t =

|∆Xs|≥1∑
0≤s≤t

∆Xs,

while X4 is a Compensated Compound Poisson process with jump sizes be-

tween ε > 0 and 1:

X4
t =

ε≤|∆Xs|<1∑
0≤s≤t

∆Xs. (1.5)

JX is the Poisson random measure defined by equation (1.3). Equation (1.4)

requires that there are finite number of jumps of size greater or equal to 1,

while allowing an infinite number of jumps smaller than 1 providing that the

sum of the squared values of the jumps converges to a finite value.

Since jumps can only be of nonzero size, this requires X4 to be dependent

on ε which cannot be taken to zero directly. The threshold separating the

“large” jumps from the “small” jumps is taken to be |∆X| = 1, however this

is arbitrary, and any jump size greater than zero can be used.
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From the Levy-Ito Decomposition, we can see that if ν = 0, the process

is almost surely continuous. If instead σ = 0 and
∫
|x|1 |x|ν(dx) < ∞, then

almost all paths have finite total variation. If σ2 6= 0 or
∫
|x|1 |x|ν(dx) = ∞

(or both) then almost all paths have infinite total variation. Finally, if X

has the triplet (0, 0, ν), then X is a pure jump process.

There are many ways of constructing martingales from Levy processes.

Given any Levy process X with E[|X0|] <∞, the process {X̃t}t≥0 defined as

X̃t = Xt −E[Xt],

is a martingale. X is also a martingale if and only if∫
|x|≥1

|x|ν(dx) <∞ and µ+

∫
|x|≥1

xν(dx) = 0.

The exponential of a Levy process Y = {Yt}t≥0 defined as Yt = expXt is

martingale if and only if: ∫
|x|≥1

exp(x)ν(dx) <∞

and

µ+
σ2

2
+

∫
R
(exp(x)− 1− x1|x|≤1ν(dx) = 0.

Finally the process {Mt}t≥0 defined by

Mt =
exp(ζXt)

E[exp(ζXt)]

is a martingale for ζ ∈ R providing that E[exp(ζXt)] <∞.

Definition 1.0.10. (Time-Changed Levy Processes) [22][4][6].
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An almost surely increasing Levy process L = {Lt}t≥0 is called a Sub-

ordinator. Its Levy triplet (µ, 0, ν) must satisfy ν((−∞, 0)) = 0 as well as

equation (1.4). It can be modelled as a nondecreasing semi-martingale:

Lt = µt+

∫
x>0

∫
s∈[0,t]

xJL(dx× ds).

Financially, t is called the calendar time or operational time while the

subordinator L is called the business time. If {Xt}t≥0 is any Levy process,

we define the time-changed Levy process as {Yt}t≥0:

Yt ≡ XLt .

The process
{
Xt

}
t≥0

is then called the base process. If X =
{
Xt

}
t≥0

is

a Levy process with a Levy triplet (µX , σX , νX) and L = {Lt}t≥0 is a subor-

dinator with Levy triplet (b, 0, ρ), then the time-changed process
{
Yt
}
t≥0

is

again a Levy process with Levy triplet (µY , σY , νY ) where:

µY = µXb+

∫ ∞
0

ρ(ds)

∫
|x|≤1

xpXs (dx)

σY = bσX

νY (B) = bνX(B) +

∫ ∞
0

pXs (B)ρ(ds), ∀B ∈ B(R), (1.6)

where pXs (B), is the probability of B under the probability measure of

Xs. While equation 1.0.10 is useful for computing Levy triplets of new Levy

processes, it is difficult to find closed form formulas in most cases.

Every local martingale M = {Ms}s≥0 can be written as time-changed

Brownian motion {B<M>s}s≥0, where < M >s is the quadtratic variation of
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M. If the process {Xt}t≥0 defined as:

Xt = µt+ σBt,

is subordinated by a pure jump process {Lt}t≥0, the resulting process {XLt}t≥0

defined as:

XLt = µLt + σBLt , (1.7)

is a pure jump process, and is distributed as:

XLt |Lt ∼ N(µLt, σ
2Lt) ∼ µLt + σ

√
LtN(0, 1),

where N(0, 1) is a random variable with standard normal distribution.

We will focus on two particular subordinators: Gamma processes and

Inverse Gaussian processes. When the subordinator {Lt}t≥0 is a Gamma

process, the increments Lt+∆t − Lt have Gamma distribution with param-

eters α∆t and β. In particular, if α = β = 1/γ for some γ > 0, the the

process (1.7) is called a variance gamma process with parameters µ, σ, γ.

When the subordinator {Lt}t≥0 is an Inverse Gaussian process, the incre-

ments Lt+∆t − Lt have Inverse Gaussian distribution with parameters α∆t

and β. In particular, if α = 1 and β = δ
√
a2 − b for a > 0,−a < b < a and

δ > 0; then the process

Yt = bδ2Lt + δBLt ,

is a Normal Inverse Gaussian process with parameters a, b, δ. While the vari-

ance gamma and Normal Inverse Gaussian processes have been thoroughly

studied, we will focus on the more general Gamma and Inverse Gaussian

processes.
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Definition 1.0.11. (Characteristic function) [4][27].

Given a Levy Process X =
{
Xt

}
t≥0

with Levy triplet (µ, σ, ν), the charac-

teristic function is given by the Levy- Khinchine formula:

ψXt(u) = E[exp(iuXt)] = exp(−tφX(u))

where the characteristic exponent (or Levy symbol) is defined as follows:

φX(u) = −iµu+
1

2
σ2u2 +

∫
R

(
1− eiuξ + iuξ1|ξ|<1

)
ν(dξ) (1.8)

where u ∈ C. The characteristic exponent is completely determined by the

Levy triplet of X. In particular, ν(dξ) is called the Levy density and is known

in closed form in the case of Gamma and Inverse Gaussian processes. The

Levy density of a Gamma process with parameters α and β is given by:

ν(dξ) =
α

ξ
exp(−βξ)1ξ>0dξ.

The Levy density of an Inverse Gaussian process with parameters α and β

is given by:

ν(dξ) =
α√
2πξ3

exp(β2ξ/2)1ξ>0dξ.

If Yt = XLt is a Time-Changed process, where X and L are independent

Levy processes, we can use the tower rule to find a closed for solution to its

characteristic function:

ψYt(u) = E[exp(iuXLt)]

= E[E[exp(iuXLt)|Lt]] (tower rule)

= E[exp(−LtφX(u))]

= LLt(φX(u)),
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where LLt is the Laplace Transform of the probability density function of

the process L at time t, evaluated at the characteristic exponent of X. The

characteristic exponent of L can then be recovered by:

φL(u) = t−1 logLLt(φX(u)). (1.9)

The Laplace Transform of the density function of any random variable Mt,

evaluated at s ∈ C, is defined as LMt(s) ≡ E[exp(−sMt)].

Definition 1.0.12. (Switching Levy Process) [5].

Assume the filtered probability space (Ω,F , {Ft}t∈I ,P). Consider a col-

lection of independent Levy processes Xj = {Xt}jt≥0, for j = 1, ..., N , where

each process Xj has Levy triplet (µj, (σ2)j, νj), as well as a continuous-time

Markov chain s = {st}t≥0 with state space E = {1, 2, ..., N}, and infinites-

imal generator matrix Q. We can then define a new process Z = {Zt}t≥0

where:

Zt = Xst
t .

The process Z switches between the different Levy processes according to the

continuous Markov chain s, which is governed by the transition rates in Q.

The Switching Levy process is in general not Levy because the increments

are no longer stationary. The process s is generally not observable, and must

be inferred from empirical data.

In the next section, we introduce the regime switching time-changed
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model where the Levy processes are now subordinated by pure jump pro-

cesses.
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Chapter 2

Pricing Methods

In this chapter we define our model - the regime switching time-changed Levy

process and give two pricing methods to find the fair value of European call

options, namely pricing by Monte Carlo simulation, and Fourier-Cosine pric-

ing. We define the characteristic function for our model, which will be used

when computing the price using the Fourier-Cosine method and also find the

conditions under which our model, conditional on each regime, is a martin-

gale.
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2.1 The Regime Switching Time-Changed Levy

Process

Let V = V (T,K) be the price of a European call option under the risk

neutral measure Q. The original Black-Scholes partial differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

is derived from the Feymann-Kac formula which relates partial differential

equations with stochastic processes. This equation can in turn be solved to

obtain the Black-Scholes formula. The Black Scholes PDE is derived from

the stochastic process {St}t≥0 where:

St = S0 exp(Xt) where Xt = µt+ σBt. (2.1)

The process {St}t≥0 represents the price movements while {Xt}t≥0 repre-

sents the logarithmic prices. St is the asset price at time t, µ is the constant

mean return, also called the drift and σ is the volatility. Under this model,

price movements are assumed to follow geometric Brownian motion, and

therefore follow continuous trajectories. Moreover, the parameters of the

process (2.1) are assumed to remain constant with respect to time. We sac-

rifice both properties in the interest of introducing a more realistic model.

This is done by introducing price discontinuities in the form of randomly

changing regimes, as well as through time-changed Levy processes.

We fix a maturity time T <∞ and define a continuous-time Markov chain

{st}0≤t≤T driving the changes between regimes. We assume our model will
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jump between two states, and therefore fix the state space of the continuous-

time Markov chain to be E = {1, 2}. The switching times are defined as the

random variables τ1, τ2, .. ∈ (0, T ] such that:

lim
t→τ−k

st 6= sτk for k = 1, 2, ....

With each state j ∈ E there is an associated parameter λj > 0 which

controls the jump rate between states. For ease of notation and because we

are working with two states, we are denoting λj to be the parameter which

controls the jump time from state j to state (j mod (2) + 1), meaning λ1

controls the jump rate from state 1 to state 2 and λ2 controls the jump rate

from state 2 back to state 1.

The infinitesimal generator matrix of the continuous-time Markov chain

is given by:

Q =

−1/λ1 1/λ2

1/λ1 −1/λ2

 . (2.2)

We also assume a constant risk-free interest rate which remains the same

between the two states i.e. r1 = r2 = r ∈ R+.

Consider a collection of independent geometric Brownian motion pro-

cesses Xj = {Xj
t }0≤t≤T for j ∈ E, where the j’th process is given by

Xj
t = µjt+ σjBt,

where µj ∈ R and σj > 0, as well as a collection of independent subordinators

Lj = {Ljt}0≤t≤T for j ∈ E where each subordinator Lj is also independent

of each process X i, for i, j ∈ E. We consider two different subordinators:
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Gamma processes and Inverse Gaussian processes. Each is characterized by

two parameters αj, βj > 0 which change between states. Each process Lj is a

pure jump process and each process Xj has almost surely continuous paths,

therefore the time-changed Levy process, where each random variable Xj
t is

indexed by the random variable Ljt , is jump process. This can be seen by

computing the new Levy measure from equation(1.0.10).

We define the collection of time-changed Levy processes Y j = {Y j
t }0≤t≤T

where

Y j
t = Xj

Lj
t

= µjLjt + σjBLj
t
. (2.3)

The economic interpretation for evaluating Brownian motion at random

times is that the relevant trading times are random [6].

We now define the regime switching time-changed Levy process Z =

{Zt}0≤t≤T as:

Zt ≡ Y st
t where Y st

t = µstLstt + σstBL
st
t
. (2.4)

The regime switching time-changed Levy process Z is assumed to be the

log-price process of the underlying asset and the stochastic process of the

asset price itself {St}0≤t≤T is defined as:

St = S0 exp(Zt). (2.5)

2.2 Simulating a Single Trajectory

One popular method for pricing options is by randomly sampling payoffs at

maturity and then computing the sample mean or confidence interval. The
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class of computational algorithms that rely on random sampling are called

Monte Carlo simulation. This method has the advantage of being able to

price many different types of financial derivatives which rely on complicated

models, (which usually don’t have closed form solutions such as in the case

of the Black Scholes equation) as well as when the derivative is both path

dependent and independent. It is in general very difficult to derive partial

differential equations from regime switching models, so Monte Carlo simula-

tions are a popular method for pricing derivatives. Monte Carlo simulations

also have the benefit of being able to handle multivariate models (for example

if we wanted to simulate a regime process with a larger number of regimes, or

with multiple stocks) with low additional computational cost. By contrast,

numerical solutions to partial differential equations become computationally

expensive in higher dimensional spaces.

Monte Carlo simulation relies on the Law of Large numbers. The strong

version states that, given a sample of independent and identically distributed

copiesX1, X2, ..., Xn of a random variableX, the sample mean X̄n = 1
n

∑n
k=1 Xk

converges to E[X] almost surely [11]. Equivalently:

P( lim
n→∞

X̄n = E[X]) = 1.

We begin by giving a method for simulating the values of the log-price

process Z given by equation (2.4) on an partitioned time interval t ∈ [0, T ]

where T <∞ is the maturity time. The switching time-changed Levy process

is more revealing if written in differential form:

dZt ≡ dY st
t where dY st

t = µstdLstt + σstdBL
st
t
. (2.6)
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Equation 2.6 is equivalent to (2.4) because conditional on each regime, the

continuous-time Markov chain {st}0≤t≤T is constant.

The simulation is done in two main steps: simulating the continuous-time

Markov chain, and simulating the regime switching process. The continuous-

time Markov chain spends exponentially distributed random time between

transitions. To find the switching times τ1, τ2, ... we simulate exponentially

distributed random variables ∆τ1,∆τ2, ... and the k′th switching time is given

by:

τk =
k∑
i=1

∆τi

The parameters of the exponential random variables alternate between λ1

and λ2, which causes the continuous-time Markov chain to remain in one

regime longer than the other, on average. The number of switching times

cannot be predicted and varies randomly with each simulation.

The differential equation (2.6) can be approximated numerically through

finite differences using the Euler Method, in a way similar to the method used

in numerical solutions of ordinary differential equations. Conditional on each

regime j ∈ E, the increment of the process Z during the time interval ∆t is

given by:

∆Zj
t = µj∆Ljt + σj

√
∆LjtN.

Here we used the fact that conditional on ∆Ljt , the increment ∆BLj
t

is Brow-

nian motion with variance
√

∆Ljt [3]:

∆BLj
t
|Ljt ∼

√
∆LjtN
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where N is a normally distributed random variable with mean 0 and variance

1. The random variable ∆Ljt is a Gamma (or an Inverse Gaussian) distributed

random variable with parameters αj∆t and βj. The value of Zt at time t is

a summation of the increments:

Zt =
t∑
i=0

∆Zi.

Computations for simulating a single trajectory of the switching Levy

process on a partitioned interval are summarized in the following algorithm,

where the subordinator is a Gamma process. The algorithm is almost iden-

tical when the subordinator is an Inverse Gaussian process.

1. Initialize:

the log-price process Z0 = 0

regime state j = 1

index k = 1

first stopping time τk ∼ exp(λj)

2. Recursively define the continuous-time Markov chain:

(a) while τk < T,

switch regime j = j mod 2 + 1

k = k + 1

simulate random variable e ∼ exp(λj)

define τk = τk−1 + e,

(b) otherwise stop.
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3. Define τ = [τ1, ..., τk−1, T ] as the set of stopping times. (Note τk was

removed because τk > T )

4. Initialize a partition of the domain into N subintervals of width ∆t =

T/N : t = [0, t1, .., tn, ..., tN−1, T ] where tn = n∆t

5. Define T to be the sorted union of τ and t in ascending order. Let Tn

denote the n′th element of T

6. To simulate the trajectory of the log-returns: Reinitialize regime state

j = 1

7. for 1 ≤ n ≤ size(T ) (for each element in T )

(a) initialize ∆Z = 0

(b) simulate a gamma random variable ∆L ∼ Gamma(αj(Tn−Tn−1), βj)

(c) simulate standard normal variable N ∼ N(0, 1)

(d) ∆Z = ∆Z + µj∆L+ σj
√

∆LN

i. if T is an element of the partitioned time interval (if Tn ∈ t)

Zn = Zn−1 + ∆Z

∆Z = 0

ii. if T is a switching time (if Tn ∈ τ)

switch regimes j = j mod 2 + 1
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Figure 2.1: Parameters: T = 1, µ1 = 0.01, µ2 = −0.1, σ1 = 1, σ2 = 5, α1 = α2 =

0.1, β1 = 0.1, β2 = 10, λ1 = 0.2, λ2 = 0.5.

(a) λ1 = λ2 = 0.25 (b) λ1 = 10, λ2 = 0.25

Figure 2.2: Same parameters as Figure 2.1 except for the holding-time rates λ1

and λ2.

Figures 2.1 and 2.2 show a single realization of a switching time-changed
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Levy process (top) as well as the underlying continuous-time Markov chain

(bottom), with time domain [0, 1] partitioned into 1000 intervals. Figure

(3.2b) is a time-changed Levy process, meaning no regime change has oc-

cured. If we have λ1 → ∞ the process will remain in regime 1 indefinitely

and therefore it reduces to a time-changed process. The average length of a

regime is directly proportional to the holding rate parameter.

2.3 Pricing European Options under Monte

Carlo Simulation

For all option pricing methods, we assume that the present value of an option

is equal to the discounted expectation of its payoff at maturity time, i.e. we

will work under an equivalent martingale measure (EMM) Q. A measure Q

is an EMM if:

1. Q and the real world probability measure P are equivalent i.e. they

share the same null sets;

2. the discounted price process is a martingale under Q.

There are several criteria to change the probability to a risk-netural setting.

See for example [12] for a change based on an Esscher transform or [8] for a

minimum entropy criterion. In this thesis we will not address this problem;

we simply change the drift leaving the remaining parameters constant, as

explained in section 2.5. At time t, the value of a European option is given
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by [8]:

V (t) = e−r(T−t)EQ[H(ST )|Ft] for 0 ≤ t ≤ T.

HereH is the payoff function, which for European vanilla options is a function

of the asset price at maturity given by:

H(ST ) = max{γ(ST −K), 0}

where K > 0 is the strike price, and γ = +1 for call options or γ = −1 for

put options.

If the payoff of the option is path independent and the underlying model

of the log-return process is an ordinary Levy process, the payoff at time T can

be simulated in one step because of the property of stationary increments.

When the log-return process is a switching Levy process, the increments are

independent only conditionally on each regime.

We devise an algorithm which computes the payoff of a European Call

option by simulating N independent realizations of the process Z simultane-

ously and then calculating the payoff according to:

C(T ) = exp(−rT )
1

N

N∑
n=1

{(S0 exp(Zn,1)−K), 0}

where Zn,1 is the n′th element of the N -by-1 array Z:,1 is at maturity T, and

the expected value is approximated by the sample mean. The simulation of all

N values at each step simultaneously allows for a much smaller computation

time than simulating a single process at a time.

The switching times are now contained in a (N -by-k) matrix τ where τm,n

is the n′th switching time of the m′th simulation. The number of columns
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of τ changes randomly with each simulation. The n′th column of τ (denoted

as τ:,n) is generated by simulating an (N -by-1) array of exponential random

variables (all with the same parameter) and adding it component-wise to the

(n− 1)′th column of τ :

τ:,n = τ:n−1 + [e1, ..., eN ]T where ei ∼ exp(λj), 1 ≤ i ≤ N,

and j ∈ {1, 2}. The λj parameter alternates between λ1 and λ2 after each

step. The process of appending columns to τ continues until each element of

the final column is greater or equal to T.

Then, for each pair of indices m,n such that τm,n > T we redefine that

element to equal T, because the stochastic process {Zt}0≤t≤T is defined only

up to T.

This is not the most efficient method as we have to simulate more random

variables than is actually needed. This is because each of the processes re-

quire a different amount of steps to arrive at maturity. However, because we

need to keep the number of steps the same for all paths, we add 0 instead of

exponential random variables for all paths that finish early, and this amounts

to replacing any elements greater than T by T . Because of this caveat, we

also extend the domain of the parameters in the case of the subordinator

to allow for the first parameter to equal 0. For example: if ∆t = 0 and

α, β > 0, then ∆Lt ∼ Gamma(α · 0, β) ≡ 0. The same holds for the Inverse

Gaussian process. Nevertheless, as seen in Table (2.1), simulating through

vectorization is much more efficient than simulating one process at a time.
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Table 2.1: Comparison of European call payoffs under vectorizatrion vs. simulating

one trajectory at a time, with parameters T = 1, λ1 = 1, λ2 = 0.5

Number of Simulations Computational time under Computational time under

vectorization (sec.) one by one simulation (sec.)

N=10 0.001915 0.012886

N=104 0.085080 8.238712

N=106 9.617767 879.354925

We note that computational time is very sensitive to the size of the ma-

trix τ . In particular, if λ1, λ2 � T , the matrix τ has around T/(λ1 + λ2)

columns on average.

Computing the switching Levy process is more straightforward; instead

of simulating a value at each point in a partition, we simulate the increments

in each regime. At each step, ∆t holds the duration at which each process

remains in a single regime. ∆L is an array of random variables depending

on the subordinator with each element having a different first parameter.

Computations for the payoff of a European call option are summarized

in the following algorithm, where the subordinator is a Gamma process. A

similar algorithm holds when the subordinator is an Inverse Gaussian process.

1. Initialize:

(a) regime state j = 1

(b) index k = 2
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(c) first stopping time (N -by-1 matrix) given by τ:,k = [e1, ..., eN ]T

where en ∼ exp(λj) for n = 1, ..., N

2. Recursively define the continuous-time Markov Chain:

(a) while there exists at least one indice n such that τn,k < T,

• redefine k = k + 1

• switch regime j = j mod 2 + 1

• define the k′th column (N -by-1) array given by τ:,k = τ:,k−1 +

[e1, ..., eN ]T where each en ∼ exp(λj) for n = 1, ..., N

(b) otherwise stop.

(c) Define (N -by-1) array τ:,1 = [0, ..., 0]T and redefine the (N -by-1)

array τ:,k = [T, ..., T ]T

(d) Define the (N -by-k) matrix τ = [τ:,1, ..., τ:,k−1, τ:,k]

(e) For each pair of indices m,n such that τm,n > T , redefine τm,n = T

3. To simulate the switching process:

(a) Reinitialize initial regime state j = 1

(b) Initialize (N -by-1 array) Z:,1 = [0, ..., 0]T

4. For 2 ≤ k ≤ length(τ1,:)

(a) define ∆t:,1 = τ:,k − τ:,k−1

(b) simulate (N -by-1) gamma random variable ∆L:,1 ∼ Gamma(αj∆t:,1, β
j)

(c) simulate (N -by-1) array of standard normal variables N:,1
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(d) ∆Z:,1 = µj∆L:,1 + σj
√

∆L:,1N:,1

(multiplication of column arrays is done component-wise)

(e) Z:,1 = Z:,1 + ∆Z:,1

5. Expected Call Option Payoff

C= exp(−rT ) 1
N

∑N
n=1((S0 exp(Zn,1)−K)+.

(a) Inverse Gaussian subordinator,

µ1 = 0.3204, µ2 = 0.6450

(b) Gamma subordinator,

µ1 = −0.2316, µ2 = 0.0541

Figure 2.3: European call payoff as a function of T and K under two different

subordinators with risk neutral drift (see section 2.5). The other parameters are

identical for each figure: σ1 = 0.03, σ2 = 0.7, α1 = α2 = 0.1, β1 = 1, β2 = 1.2, λ1 =

0.4, λ2 = 1.

Figures (2.3a) and (2.3b) demonstrate the behaviour of the payoff of a

European call option under the regime switching time-changed Levy process

model under Inverse Gaussian and Gamma subordinators. Both payoff mod-

els are monotone in T and K. Moreover as T increases, the expected payoff

increases. For K >> S0 the probability that ST ≥ K is very small, therefore
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the payoff is close to 0.

We can also estimate the price using confidence intervals. The confidence

interval is useful because it provides a range of values that are likely to contain

the population mean. At the γ = 95% confidence level, the endpoints of the

confidence interval are given by:

x̄± zγ
s√
N
,

where x̄ is the sample mean, s is the standard deviation of the sample, N is

the sample size and z0.95 = 1.96 is the z-score at the 95% confidence level.

(a) Gamma subordinator (b) Inverse Gaussian subordinator

Figure 2.4: Comparison of long term behaviour of the 95% confidence interval

under different subordinators with identical parameters, including β1 = 0.1, β2 =

0.01.

The confidence interval decreases as the number of simulations approaches

infinity, however in the case of the Inverse Gaussian subordinator, the inter-

val is larger at each simulation because Inverse Gaussian random variables

have a larger variance than Gamma random variables (see section 3.10) when
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β < 1. Figures (2.4a) and (2.4b) show the behaviour of the payoff as different

parameters are varied. At N = 104, the confidence interval when the subor-

dinator is Inverse Gaussian is: [18.7353, 19.1168]. When the subordinator is

a Gamma process, the confidence level is: [ 17.8768, 17.9136].

(a) Payoff as a function of the initial

prices when K = 1.
(b) Payoff as a function of σ1 and σ2

Figure 2.5: Behaviour of the payoffs when the parameters of the subordinator are

varied.
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(a) Payoff as a function of parameters

α1, α2

(b) Payoff as a function of parameters

β1, β2

Figure 2.6: Behaviour of the payoffs when the parameters of the subordinator are

varied.

(a) Payoff as a function of parameters

α2, β2

(b) Payoff as a function of parameters

λ1, λ2

Figure 2.7: Behaviour of the payoffs when varying different parameters.

In (almost) each case, parameters between states were held constant un-
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less they were being varied: µ1 = µ2 = 0.01, α1 = α2 = β1 = β2 = 0.1, σ1 =

σ2 = 0.01, λ1 = λ2 = 0.25, r = 0.04, T = 1, S0 = 20 and K = 1. Setting

the parameters λ1 = λ2 implies the process spends an equal amount of time

in each regime, on average. The only exception made is in Figure (2.7a),

where λ1 = 0.001 and λ2 = 10 so that the process would spend a majority of

the time in the second regime; this makes the process an approximation to

a time-changed Levy process. When plotting Figure (2.7b), the domain had

to be relatively small as the payoff varied greatly with changes in λ1, λ2.

The payoff of the European call option is monotone with respect to every

parameter. In Figure (2.5b), the payoff increases as σ1 and σ2 increase. For

changes in β1, β2, the payoff approaches an asymptote because Gamma and

Inverse Gaussian random variables both have mean α/β, which approaches

infinity for β → 0+. In Figure (2.7b), it is shown that the payoff decreases

when λ1 → 0+, because the process then spends more time in regime 2 on

average, and we let µ2 = −µ1 < 0.

By comparing the payoff at different maturities Table (2.2), we demon-

strate that the regime switching time-changed Levy process has more vari-

ability compared to the payoff under Black Scholes under identical param-

eters. This variability can be adjusted at will because the switching model

has two additional types of parameters comparing to Black Scholes, namely

the parameters characterizing the subordintor: α and β. The difference in

the payoff between subordinators can be seen by the fact that, even though

the expected value is the same in both cases, namely α/β, the variance (and
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Table 2.2: Comparison of various European call payoffs under different strike prices

and maturities. We compare Black Scholes to the switching model under Gamma

and Inverse Gaussian subordinators. We set r = 0.04, σ1 = σ2, α1 = α2, β1 =

β2, µ1 = µ2 where µ1 is the Black Scholes risk neutral drift.

(T,K) Gamma Inverse Gaussian Black Scholes

subordinator subordinator model

(1, 1) 18.3364 18.2022 19.0368

(2, 1) 18.5638 19.6440 19.0768

(1, 2) 17.0453 16.0378 18.0784

(2, 2) 17.5120 16.7613 18.1537

other moments) differs. In the case of a Gamma subordinator, the variance

is equal to α/β2, and in the case of an Inverse Gaussian subordinator, the

variance is equal to α/β3.

2.4 Characteristic function of the Regime Switch-

ing time-changed Levy Model process

For any regime switching Levy process M = {Mt}t≥0 which switches be-

tween n Levy processes X1, ..., Xn according to the continuous-time Markov

chain {st}t≥0 with generator matrix Q, the characteristic function is given

by Choudarski [5]:

E
(x,Π) exp(iuMt) = exp(iux) · [1T · exp(t ·Φ(u)) ·Π], (2.7)
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where Π is the initial regime distribution - an n × 1 array where the j’th

element is the probability that Z will begin in state j, i.e. s0 = j. The term

x ≡ logS0 is the initial log-price of the underlying asset, 1 = [1, 1, ..., 1]T is

a n× 1 vector and Φ(u) is an n× n matrix with elements:

[Φ(u)]i,j =


q(i, i) + φXi(u), if j = i

q(j, i), otherwise.

Here q(i, j) is the i, j’th element of the infinitesimal generator matrix Q

and φXi(u) is the characteristic exponent of the i’th base process X i. The

exponential term refers to the exponential of a matrix. If Φ is a n×n matrix:

eΦ =
∞∑
k=1

Φk

k!
.

We attempted to simplify the exponential by using singular value decom-

position however, this resulted in eigenvalues and eigenvectors that did not

simplify the computations. Instead, the method used to numerically com-

pute the exponential is the scaling and squaring algorithm [14]. The method

is based on the following approximation:

eΦ = (e2−sΦ)2s ≈ rm(2−sΦ)2s ,

where rm(x) is the [m/m] Pade approximant of ex and the nonnegative in-

tegers m and s are chosen in such a way as to achieve minimum error at

minimal cost. A table of errors as a function of s and m is given in [1]. The

[k/m] Pade approximant for the exponential function is given by

rkm(x) = pkm(x)/qkm(x),
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where

pkm(x) =
k∑
j=0

(k +m− j)!k!

(k +m)!(k − j)!
xj

j!
, qkm(x) =

m∑
j=0

(k +m− j)!m!

(k +m)!(m− j)!
(−x)j

j!
.

We develop the characteristic function for the regime switching time-

change Levy process where conditional on each regime, the Levy process is

Brownian motion with a subordinator.

Given the process Z defined in equation (2.4) along with a continuous-

time Markov chain with the infinitesimal generator matrix Q defined as equa-

tion (2.2), the characteristic function is given by equation (2.7) where:

[Φ(u)]i,j =


q(i, i) + t−1 logLLi

t
(φXi(u)), if j = i

q(j, i), otherwise.

Here the term t−1 logLLi
t
(φXi(u)) is the characteristic exponent of the i’th

time-changed Levy process Li = {Lit}t≥0.

We will now find the characteristic function for switching time-changed

Levy processes under different subordinators. The set of regimes is again

E = {1, 2} and we assume that the process will always start out in state 1

with probability 1, and hence the initial probability distribution is given by

Π = [1, 0]T . Working conditionally on each regime j ∈ E, the characteristic

exponent of the j’th base process {Xj
t }t∈[0,T ] where Xj

t = µjdt + σjBt with

j’th Levy triplet (µj, (σj)2, 0) is derived from equation (1.8):

φXj(u) = −iµju+ (σj)2u2/2.

The associated Laplace transform LLj
t
(s) of the density function of the ran-

dom variable Ljt is derived from the characteristic function via a change of
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variables when the characteristic function is known in closed form. When

the subordinator Lj is an Inverse Gaussian process with shape parameter αj

and rate parameter βj, we have:

LLj
t
(s) = exp(αjt

√
2s+ (βj)2 − βj).

Therefore the characteristic function of the j’th time-changed process Y j =

{Xj
Lt
}t≥0 under Inverse Gaussian subordinator is:

ψY j
t
(u) ≡ E[exp(iuXLj

t
)] = exp(αjt

√
2(−iµju+ (σj)2u2/2) + (βj)2 − βj)

(2.8)

(a) The real part of ψYt(u) (b) The imaginary part of ψYt(u)

Figure 2.8: The Characteristic function ψYt(u) with parameters α = 0.1, β =

0.1, µ = 0.01, σ = 0.01, t = 1/250 where the subordinator L has increments with

Inverse Gaussian distribution.

We now give the characteristic function of Z = {Zt}t≥0 where Zt = Y st
t

and the subordinator is an Inverse Gaussian process:
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Corollary 0.1. The characteristic function of Zt under an Inverse Gaussian

subordinator is given by:

ψZt(u) = E[exp(iuZt)] = exp(iux) · [1T · exp(t ·Φ(u)) ·Π], (2.9)

where

[Φ(u)]i,j =


−1/λj + αj(

√
2(−iµju+ (σj)2u2/2) + (βj)2 − βj), if j = i

1/λj, otherwise.

(a) The real part of ψZt(u) (b) The imaginary part of ψZt(u)

Figure 2.9: The Characteristic function ψZt(u) with parameters α1 = 0.1 =

α2, β1 = 0.1, β2 = 0.01, µ1 = 0.01, µ2 = −0.01, σ1 = 0.01, σ2 = 0.05, t = 1/250

where conditionally on each regime, the subordinator L has increments with In-

verse Gaussian distribution.

When the subordinator Lj is a Gamma process with shape parameter αj

and rate parameter βj, we have:

LLj
t
(s) =

(
1 +

s

βj

)−αjt
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Then the characteristic function of the j’th time-changed process Y j = Xj
L

is:

ψY j
t
(u) ≡ E[exp(iuXLj

t
)] =

(
1 +
−iµju+ (σj)2u2/2

βj

)−αjt

. (2.10)

(a) The real part of ψYt(u) (b) The imaginary part of ψYt(u)

Figure 2.10: The characteristic function ψYt(u) with parameters α = 0.1, β =

0.1, µ = 0.01, σ = 0.01, t = 1/250 where the subordinator L has increments with

Gamma distribution.

We now give the characteristic function of Z = {Zt}t≥0 where Zt = XLt

and the subordinator is an Inverse Gaussian process:

Corollary 0.2. The characteristic function of {Zt}t≥0 under a Gamma sub-

ordinator is given by equation (2.9) where:

[Φ(u)]i,j =


−1/λj − αj log(1 + (−iµju+ (σju)2/2)/βj), if j = i

1/λj, otherwise.
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(a) The real part of ψZt(u) (b) The imaginary part of ψZt(u)

Figure 2.11: The characteristic function ψZt(u) with identical parameters as 2.11,

but now conditionally on each regime, the subordinator L has increments with

Gamma distribution. Note the thicker tails.

2.5 Pricing under a Risk Neutral Measure

Consider a Market model consisting of one riskless asset B = {Bt}t≥0 where

Bt = exp(rt) for some r ≥ 0, and exponential Levy processes Sj = {Sjt }t≥0

where Sjt = S0 exp(Y j
t ). The discounted price processes S̃j = {Sjt }t≥0 are

defined as

S̃jt = exp(−rt)Sjt where j = 1, 2.

It is convenient to work under a risk neutral measure, also called an equivalent

martingale measure (EMM) Q when pricing contingent claims on a stock, as

discounted prices are Q-martingales. If the risky asset is modelled under

an underlying Levy process with jumps, then the market is incomplete, and

there are infinitely many EMMs. This in turn implies that the parameters,
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under which the underlying process is a martingale under Q, are not unique.

From [23] we have that under an EMM Q, the discounted price process

S̃j is a martingale under Q if and only if the following equation is satisfied:

φY j(−i) = r, (2.11)

where φY j(u) is the characteristic exponent of the Levy process Y j. The

process Y j is time-changed Brownian motion 2.3; when the subordinator is

the Gamma process with parameters αj, βj, the characteristic function of the

process is given by equation (2.10) and hence in each state j ∈ E we solve:

ψjGamma(−i) = t−1 log

[(
1 +

iµju− (σj)2u2

2

βj

)−αjt]∣∣∣∣∣
u=−i

⇐⇒ r = −αj log(1 +
−µj + (σj)2/2

βj
)

µj = −βj(exp(− r

αj
)− 1) +

(σj)2

2
. (2.12)

Holding all the other parameters constant, the drift verifies equation (2.11).

The value of µj is such that the j’th discounted price process when the

subordinator is a Gamma process is a martingale.

When the process Y j is a time-changed process subordinated by an In-

verse Gaussian process with parameters αj, βj, the characteristic function is

given by equation (2.8) and therefore for each state j ∈ E we solve for µj:

ψjIG(−i) = t−1 log
[

exp(−αjt
(√

2(−iµju+
(σj)2u2

2
) + (βj)2 − βj

)
)
]∣∣
u=−i

⇐⇒ r = −αj
(√

2(µj − (σj)2

2
) + (βj)2 − βj

)
µj =

1

2
[(βj − r

αj
)2 + (βj)2] +

(σj)2

2
. (2.13)
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Holding all the other parameters constant, the drift verifies equation (2.11).

The value of µj is such that the j’th discounted price process when the sub-

ordinator is an Inverse Gaussian process is a martingale.

We can reduce the regime switching Levy process (2.4) to the Black Sc-

holes model (2.1) by defining the subordinator Lt = t and setting the param-

eters µ, σ, α, β equal across all regimes:

µ1 = µ2, σ1 = σ2, α1 = α2, β1 = β2.

Setting the drift such that the discounted Black Scholes price process is a

martingale:

µ1 = r − 1

2
(σ1)2,

we find that the expected European call payoff is close to the payoff given

by the famous Black Scholes formula:

Table 2.3: European call option payoff comparison between the Black Scholes

formula and Monte Carlo simulation of the reduced switching Levy process at

different parameters

Parameters Reduced Switching Levy Model Black Scholes formula

(T,K, r, σ) (# simulations N = 106)

(1,1,0.04,0.5) 19.0463 19.0392

(3,1,0.1,1) 19.2955 19.3139

(2,30,0.5,0.001) 8.963608 8.96361
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2.6 Fourier-Cosine Method

An alternative method of finding the fair price of options is via a Fourier-

Cosine Series expansion. The derivation of the following method is given by

[9]. For many stochastic processes, the probability density function is not

known, however, the characteristic function might be known explicitly, as

in the case of Levy processes where the characteristic function is computed

using the Levy-Khintchine formula (1.0.11).

The risk-neutral valuation for European options is as follows:

v(x, t0) = e−r∆tEQ[v(y, T )|x] = e−r∆t
∫
R
v(y, T )f(y|x)dy, (2.14)

where v(x, t0) is the payoff of the option as a function of the log-asset price

x := ln(St0/K) and initial time t0 and v(y, T ) is the payoff at maturity time T

and log-asset price y := ln(ST/K). S0 and ST are the prices of the underlying

asset at t0 and T respectively. ∆t = T − t0 is the interval between the initial

time and maturity time, K is the strike price and r is the risk-neutral interest

rate. EQ is the expectation value operator with respect to some risk-neutral

probability measure Q and f(y|x) is the probability density function of y

given x. There are different ways of computing the integral in (2.14) such as

using an Inverse Fast Fourier Transform method, or by approximating the

expected value using Monte Carlo simulation. In this section, the solution

to (2.14) is given by truncating the integral appropriately and replacing the

unknown density function f with the characteristic function ψ which was

derived for regime switching time-changed Levy processes under Gamma and

Inverse Gaussian subordinators in the previous section.
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The domain of integration can be truncated to a finite interval for the

purposes of numerical integration, because in order for the integral in (2.14)

to be finite, the integrand must converge to 0 at ±∞. Fourier-Cosine expan-

sions have been shown to give an optimal approximation of functions with

finite support, while the usual Fourier series expansion is optimal when the

function is periodic[17]. By choosing an interval [a, b] ⊂ R appropriately, the

density function f can be approximated by a function f
′

which is equal to

f on [a, b] and 0 otherwise. We denote approximations to f and later Ak, ψ

and v by f
′
, A

′

k, ψ
′

and v
′

respectively.

Every density function f has an associated characteristic function ψ which

is the Fourier Transform, and similarly for f
′
:

ψ(u) =

∫
R
eiuxf(x)dx and ψ

′
(u) =

∫ b

a

eiuxf
′
(x)dx,

Given the function f
′
(y|x) compactly supported on [a, b], its Fourier-cosine

expansion is given by:

f
′
(y|x) =

∞∑
k=0

A
′

k(x) · cos
(
kπ
y − a
b− a

)
, (2.15)

where the first term of the summation is weighted by one-half. The coeffi-

cients of f are denoted by Ak and the coefficients of f1 are denoted by A
′

k.

The terms A
′

k(x) are given by:

A
′

k(x) =
2

b− a

∫ b

a

f1(y|x) · cos
(
kπ
y − a
b− a

)
dy. (2.16)

The coefficients A
′

k written above can be rewritten in terms of the character-

istic function:

A
′

k(x) =
2

b− a
Re
{
ψ
′
( kπ

b− a
;x
)
· exp

(
− ikπ

a

b− a

)}
.
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If the interval of support [a, b] is chosen so that the integral on [a, b] approx-

imates an infinite integral appropriately, we can then approximate ψ1 with

ψ which is known, and Ak with A
′

k:

A
′

k(x) ≈ Ak(x) =
2

b− a
Re
{
ψ
( kπ

b− a
;x
)
· exp

(
− ikπ

a

b− a

)}
.

The payoff can be approximated as:

v(x, t0) ≈ v1(x, t0) = e−r∆t
∫ b

a

v(y, T )
∞∑
k=0

Ak(x) cos
(
kπ
y − a
b− a

)
dy. (2.17)

If we define Vk to be the Fourier coefficients of v(y, T ):

Vk :=
2

b− a

∫ b

a

v(y, T ) cos
(
kπ
y − a
b− a

)
dy (2.18)

we can rewrite

v1(x, t0) =
1

2
(b− a)e−r∆t

∞∑
k=0

Ak(x)Vk.

Our pricing formula is now in terms of Ak and Vk, which are the Fourier

coefficients of v(y, T ) and f(y|x) respectively. Putting everything in and

truncating the infinite series to N terms, we get the generic payoff formula:

v(x, t0) ≈ e−r∆t
N−1∑
k=0

Re
{
ψ
( kπ

b− a
;x
)
e−ikπ a

b−a

}
Vk. (2.19)

The payoff of an option v can be computed from of the characteristic function

instead of the density function. The characteristic function is computed in

section 2.4 for Inverse Gaussian and Gamma subordinators. Fourier-cosine

series of entire functions converges exponentially, so N need not be very large

for good approximations [9].
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The terms Vk defined in equation (2.18) depend on the option payoff

formula. For European call and put options the expression for Vk can be

obtained analytically. The payoff for European Vanilla options as a function

of the log-asset price is:

v(y, T ) ≡
[
η ·K(ey − 1)

]+
with η =


1 for a call option

−1 for a put option.

For the call option:

V Call
k =

2

b− a

∫ b

0

K(ey − 1) cos
(
kπ
y − a
b− a

)
dy,

and the solution is found by using integration by parts:

Vk =
2

b− a
K(χk(0, b)− ψk(0, b)) (2.20)

where:

χk(c, d) =
1

1 +
(
kπ
b−a

)2

[
cos
(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
sin
(
kπ
d− a
b− a

)
ed − kπ

b− a
sin
(
kπ
c− a
b− a

)
ec
]
.

and

ψk(c, d) ≡


[

sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

)]
b−a
kπ

k 6= 0

d− c k = 0.

For the European put option, the Fourier coefficients are found to be:

V Put
k =

2

b− a
K(−χk(a, 0) + ψk(a, 0)) (2.21)
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In pricing European call options, it was found that the payoff was not ac-

curate and extremely sensitive to the values of b. It was also found that for

large values of b, V Call
k diverged to ±∞, while V Put

k converged quickly and

varied little with changes in a. We therefore rely on the put-call parity which

allows for the computation of the European call option using the put option:

vCall(x, t0) = vPut(x, t0) + S0 exp(−qT )−K exp(−rT ),

where q is the number of dividends. We always take q = 0. It was found that

the payoff under the call-put parity varied very little for large a and b, so it

was arbitrarily chosen for a = 0 and b = 10.

2.7 Pricing European Call Options under the

Fourier-Cosine Method

We now give an algorithm for pricing European call options using Fourier-

Cosine Pricing (2.19) :

1. Initialize appropriate boundary points a, b such that the truncated in-

tegral will appropriately approximate the integral over R, constant

risk-neutral interest rate r, initial stock price S0, strike price K, with

x := S0/K time increment ∆t = T , number of steps N

2. Initialize N × 1 array of payoffs vPut and vCall

3. for k = 0 to N − 1
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(a) Define the k′th element of vPut to be:

vPut(k) = e−rTReal
{
ψZ∆t

(kπ/(b−a);x) exp(−ikπ(a/(b−a))
}
V Put
k ;

where ψZ∆t
depends on the choice of the subordinator, equation

(2.9) for Inverse Gaussian processes or equation (2.10) for Gamma

processes respectively. V Put
k is defined in (2.21)

(b) vCall(k) = vPut(k) + S0 −Ke−rT (put-call parity)

4. vCallfinal = 1
2
v(1) +

∑N−1
k=1 v(k) (Summation)

We compare the European call payoff and running time under Monte

Carlo simulation and Fourier-Cosine pricing in table 2.4 : It was found that

Table 2.4: Comparison of European Call option Payoffs using Monte Carlo Simu-

lation and Fourier-Cosine Pricing, as well as their computational times.

(T,K) Monte Carlo Running Time (sec.) Fourier-Cosine Running time (sec.)

(1, 1) 18.9554 9.31 19.0401 0.0234

(2, 1) 19.9612 17.54 20.3456 0.1433

(1, 2) 17.9942 10.01 18.2164 0.1339

(2, 2) 19.0166 11.40 18.5523 0.193

the difference between pricing European call options using Monte Carlo and

Fourier-Cosine pricing remained constant for different strike prices. The error

however grows linearly for increasing maturity times.
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(a) Error as a function of K (b) Error as a function of T

Figure 2.12: The difference between Fourier-Cosine Pricing and Monte Carlo, as

a function of the strike price K and time to maturity K.
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Chapter 3

Parameter Estimation and

Calibration

In this chapter we estimate the value of the parameters using historical data.

We use 4 different techniques: calibration using option data, method of mo-

ments, minimum distance estimation and maximum likelihood method. The

data used was option and historical data of energy commodities - namely oil

and electricity - because energy prices often exhibit sudden, drastic changes

which make them suitable candidates for study under regime switching mod-

els.

We use two approaches of fitting the parameters of the underlying model

to financial historical data: calibration and estimation. In calibration, the

parameters are estimated by minimizing the error between option payoffs

obtained numerically and option quotes. The option quotes are taken at a
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variety of strike prices and times to maturity from Bloomberg. In parame-

ter estimation, we use a variety of techniques based on historic asset prices:

method of moments, minimum distance method and maximum likelihood

estimation.

For the estimation methods we use daily historical NYMEX West Texas

Intermediate (WTI) crude oil futures (11-16-2012 to 06-05-2018) and IESO

Ontario Zone 24H electricity average spot prices (06-06-2008 to 06-05-2018).

For calibration, the parameters are estimated using European call option

quotes of WTI crude oil. For convenience we assume that there are 250

trading days in a year with each trading day corresponding to ∆t = 1/250

of unit time. The codes for numerical computation of the methods are found

in the appendix.

Figure 3.1 plots the historic futures and average spot prices, as well as the

log-returns. For historic electricity spot prices, the price sometimes moves

below zero, implying a surplus of electricity produced during low demand.

Because electricity produced by power suppliers must be consumed immedi-

ately, the supplier pays wholesale customers to buy the surplus energy [25].

All negative prices were modified to CAD $0.01 for estimation purposes.

We also compare the empirical density function of the log-returns of each

commodity to the normal distribution under the same mean and variance

parameters as the historical log-return process. The density kernel method

is summarized in 3.4.

Table 3.1 summarizes common moments for each commodity, as well as
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(a) WTI futures (b) Average electricity spot price

(c) Log-returns of WTI futures (d) Log-returns for Electricity spot price

Figure 3.1: Price Process and Log-returns for two different commodities

Source: Blooomberg Terminal, April 2018

for the log-return prices of each commodity.

The kurtosis for both log-returns is much larger than that of the normal

distribution, implying heavier tails and high risk assets. The variance of

the log-returns of electricity spot prices is several orders of magnitude larger

than the variance of oil futures and this difference can be seen qualitatively

by comparing the difference of the range of the log-return processes.
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(a) oil log-returns (b) electricity log-returns

Figure 3.2: Empirical density functions vs. normal distrubtions

Table 3.1: Standard statistics of commodities

Commodity Mean Variance Skewness Kurtosis

WTI crude oil futures 65.777 202.11 0.1750 1.4890

WTI crude oil log-return -1.8577e-4 1.5707e-4 -0.1314 6.3383

Electricity spot price 28.011 380.45 3.2243 27.368

Electricity spot price log-return -01.2039e-3 1.4581 -0.1377 23.947

Source: Bloomberg Terminal, April 2018

In our model 2.4, the regime switching time-changed Levy process can

be in one of two states, therefore the parameters to be estimated are the

holding-rate parameters λj and the four parameters of each time-changed

Levy process θj = (µj, σj, αj, βj) for j = 1, 2. The locations of the regime

changes are estimated by inspecting changes in the statistics of different

regions of the historical log-return price processes. The random holding

times are assumed to have exponential distribution. If X is an exponentially
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distributed random variable with parameter λ, the expected value is given

by E[X] = λ.

We assume that the duration of the j′th observed historic regime is the

most probable value i.e. it is equal to the expectation value λj. For each

commodity, the j′th holding-rate parameter is given by:

λj =
total number of days in regime j

number of occurrences of regime j
, (3.1)

where it is assumed that there are 250 trading days every year.

By inspecting the log-return process data of oil futures (3.1c), we define

the process to be in regime 1 between 11-16-2012 and 11-16-2014 as well as

between 02-06-2017 and 06-05-2018; otherwise, we assume that the process

is in regime 2.

In the case of the log-returns of electricity spot prices; we define the

process be in regime 2 whenever the absolute value of the log-returns exceeds

3 and in regime 1 otherwise.

We also include the variance of the log-returns within each regime; the

different orders of magnitude between regimes justifies the use of a switching

model.

By having defined the location of the regime changes and therefore es-

timated the values of λ1, λ2, the historic log-returns are separated into two

sets of data, one containing all the data points for each regime. Each of these

two new processes is assumed to follow a time-changed Levy process and we

are left with estimating θj = (µj, σj, αj, βj) in each regime.
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Commodity λ̂1 λ̂2 Variance (regime 1) Variance (regime 2)

Oil 0.900 3.80 2.6669e-05 2.1891e-04

Electricity 0.2618 0.0081 0.3624 37.3146

Table 3.2: Holding-rate parameters estimation for each commodity as well as the

variance in each regime

The two states follow different parameters and are assumed to be uncor-

related. Define Θj ⊂ R4 to be the set of all feasible parameters for θj. We

assume that the two sets of parameters belong in different parameter spaces

i.e. Θ1 6= Θ2. The two parameters of the subordinator and the diffusion

coefficient are required to be positive, therefore we add the following natural

constraints: σj, αj, βj > 0.

3.1 Calibration

In calibration we are given a set of option quotes with maturity times at a

future date and therefore we need to estimate the future regimes using our

estimated holding-rate parameters. We assume that the sequence and dura-

tion of future regimes follow the most probable path, therefore in the case of

oil prices, the estimated holding-rate parameters imply that the continuous-

time Markov chain remains in regime 1 for 0.9 · 250 = 225 trading days and

then switches to regime 2 for 3.8 · 250 = 950 trading days. Table 3.2 gives

the estimated holding-time rates for each commodity.

To estimate the parameters θj = (µj, σj, αj, βj) for j = 1, 2, within each
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regime we minimize the root mean square error between the numeric option

payoffs and European call option quotes. The numeric option payoff is simu-

lated using Monte Carlo simulation (section 2.3), because the Fourier Cosine

method exhibits significant error when the option is out of the money. We

define the j’th objective function to be the root mean square error between

the numeric payoffs Calljnumeric(θ;T,K) - primarily a function of the param-

eters, and n option quotes Calljhistorical(T,K), taken over a range of strike

prices K and maturity times T which reside in regime j:

J j(θ) =

√
1

n

∑
T,K

(Calljnumeric(θ;T,K)− Calljhistorical(T,K))2, j ∈ {1, 2}.

(3.2)

For each j, we define θ̂j = (µ̂j, σ̂j, α̂j, β̂j) to be the estimate for the true

parameter θj = (µj, σj, αj, βj):

θ̂j = arg min
θ∈Θj

J j(θ). (3.3)

We compute equation (3.3) numerically using the gradient method [30].

The gradient descent algorithm approximates θ̂ using the following algorithm:

1. Initialize the iterative step t = 0, the step size η > 0 and a starting

point θ0.

Define some stopping criteria.

2. Repeat until stopping criteria is reached:

(a) Redefine θt+1 = θt − η∇J(θt)
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(b) Iterate t = t+ 1.

Here ∇J is the gradient of the cost function, η > 0 is the step size chosen

accordingly. The fmincon function in MATLAB uses a variant of the gra-

dient method. The particular variant we use is the Trust Region Reflective

algorithm: instead of directly minimizing the cost function J(θ), the algo-

rithm minimizes the first two terms of the Taylor series of J in a spherical

neighborhood N called the trust region:

min
s∈N

q(s) where q(s) =
1

2
sT∇2Js+ sT∇J and N = {‖Ds‖ ≤ r} (3.4)

where ∇2J is the Hessian matrix of J, D is a diagonal matrix, ‖ · ‖ is the

2-norm and r is some positive scalar. The trial step s which minimizes (3.4)

can be solved in a variety of ways such as a variant of Newton’s method [16].

The modified algorithm is then given by:

1. Define D, r, initial θ and s.

2. Repear until stopping criteria is reached:

Find the trial step s such that s minimizes (3.4)

(a) If J(θ + s) < J(θ), define θ = θ + s

(b) Else : Decrease r (This corresponds to shrinking the neighborhood

N)

and repeat the process

We apply the above algorithm once for each regime. The final set of es-

timated parameters gives the best fit of the regime switching time-changed
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Levy process to the option quotes - on average.

Table 3.3: Parameter Calibration using Root Mean Square Error

Commodity (subordinator) µ̂ σ̂ α̂ β̂

Oil log-return Regime 1 (Gamma) -0.03387 0.0030 2.640710 1.007e-8

Oil log-return Regime 2 (Gamma) -0.01445 1.116184 2.56567e-5 10.32441

Oil log-return 1 (Inverse Gaussian) -0.04976 0.130011 0.24788 92.6926

Oil log-return 2 (Inverse Gaussian) -0.04950 0.515891 8.531e-4 8.43091

The stopping criteria is taken to be step tolerance, taken to be equal to 1e-

10. The step tolerance is a lower bound on the size of the step (θt−θt−1). The

solver stops if the stopping criteria is reached, or if the maximum number

of iterations (fixed to 1000 steps) is exceeded. One payoff of the Monte

Carlo Simulation is computed using 1e6 simulations of the switch process

and different initial starting points were found to give similar estimation of

the parameters. Table 3.3 gives the estimated calibration in the case when

the subordinator is a Gamma process and an Inverse Gaussian process. As

expected, σ̂2 > σ̂1 in the case of both subordinators.

3.2 Method of Moments

The method of moments is a method used to estimate the parameters (again,

possibly vector valued) θ from the historic log-return prices x = (x1, ..., xn)

by solving a system of equations [31]. Suppose each element of the sample is a
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realization of some unknown random variable X with unknown distribution

f(x; θ). Furthermore assume that the first d moments µ1, . . . , µd can be

written as functions of the parameters:

µ1 = E[X] = g1(θ)

...
...

µd = E[Xd] = gd(θ)

The idea is to find the j sample moments for each j = 1, . . . , d defined as:

µ̂j =
1

n

n∑
i=1

xji (3.5)

and then to solve the following system of equations:

µ̂1 =
1

n

n∑
i=1

xi = g1(θ̂)

...
...

µ̂d =
1

n

n∑
i=1

xdi = gd(θ̂)

for the vector valued estimator θ̂. The method of moments is based on the

law of large numbers, namely that the sample moments converge to the mo-

ments of the distribution with probability 1 as the number of observations

increase.

The moments can be computed from the derivatives of characteristic func-

tion, which are known for time-changed Levy processes:

E[Xn] = i−n
dn

dun
ψ(u)

∣∣∣
u=0

(3.6)
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This results in a system of nonlinear equations, which needs to be solved

numerically.

When the subordinator Lt has Inverse Gaussian distribution with α, β,

the resulting increments of length ∆t have characteristic function:

ψL∆t
(u) = exp(−α∆t(

√
2(−iµu+ (σu)2/2) + β2)− β)), (3.7)

where again µ ∈ R and σ, α, β > 0 and ∆t = 1/250. Computing the first

four moments results in a system of nonlinear equations:

0 = −µ̂1 + (αµ∆t)/β

0 = −µ̂2 + (α∆t(µ2 + β2σ2 + αβµ2∆t))/β3

0 = −µ̂3 + (αµ∆t(3µ2 + 3β2σ2 + 3αβµ2∆t+ α2β2µ2∆t2 + 3αβ3σ2∆t))/β5

0 = −µ̂4 + (α∆t(15µ4 + 3β4σ4 + 18β2µ2σ2 + 15αβµ4∆t+

6α2β2µ4∆t2 + α3β3µ4∆t3 + 3αβ5σ4∆t+ 6α2β4µ2σ2∆t2 + 18αβ3µ2σ2∆t))/β7.

The system of equations is solved separately for each regime, therefore for

two commodities there are a total of 4 systems of equations. The solution

must at minimum satisfy the natural constraints: σ, α, β > 0. We used the

function fsolve, which solves a system of equations numerically using the

trust region alogrithm, similarly to the function fmincon. The results are

summarized in Table 3.5.

For convenience, we re-parametrize the Gamma subordinator. When the

subordinator Lt is Gamma distributed with new parameters ρ, β where ρ =

α/β > 0 , the resulting increments of length ∆t have characteristic function:
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ψL∆t
(u) = (1 +

iµu+ (σu)2/2

β
)−ρβ∆t, (3.8)

where again µ ∈ R and σ, α, β > 0 and ∆t = 1/250. Notice that ρ is the

expected value of the Gamma random variable (see 3.10). Computing the

first four moments results in a system of nonlinear equations:

0 = −µ̂1 + µρ∆t

0 = −µ̂2 + ρσ2∆t+ (µ2ρ∆t(βρ∆t+ 1))/β

0 = −µ̂3 + (µρ∆t(βρ∆t+ 1)(3βσ2 + 2µ2 + βµ2ρ∆t))/β2

0 = −µ̂4 + (ρ∆t(βρ∆t+ 1)(6µ4 + 3β2σ4 + 12βµ2σ2 + 5βµ4ρ∆t+

β2µ4ρ2∆t2 + 6β2µ2ρσ2∆t))/β3.

Again we solve 4 systems of equations and the results are summarized in

Table 3.4.

Table 3.4: Parameter Estimation using Method of Moments under Gamma Sub-

ordinator

Commodity µ̂ σ̂ α̂ β̂

Oil log-return Regime 1 0.0874 0.4979 2.3103 2.5059

Oil log-return Regime 2 0.0728 7.5945 3.125e-4 3.4075

Electricity log-return 1 0.1277 3.2767 1.0792 1.1205

Electricity log-return 2 -0.0328 13.3053 6.3567 1.1376

The method had trouble finding a global minimum in the case where

the empirical moments were calculated using electricity log-return prices.
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Table 3.5: Parameter Estimation using Method of Moments under Inverse Gaus-

sian Subordinator

Commodity µ̂ σ̂ α̂ β̂

Oil log-return Regime 1 0.1624 0.7213 0.3238 1.6971

Oil log-return Regime 2 -0.0354 1.3402 0.0400 1.9584

Electricity log-return 1 0.1111 3.1233 28.4386 3.4862

Electricity log-return 2 -3.7405 19.5346 0.0132 0.3539

Changing the initial starting points resulted in varying results. Solving the

system of equations using different algorithms and stopping criteria did not

solve the problem. For the results in Table (3.4) and Table (3.5), we used

as initial starting points the results from the minimum distance method (see

Table (3.7) and Table (3.6)). In each case, the σ in regime 2 is much larger

than that of regime 1.

3.3 Minimum distance estimation

Another approach to estimate the parameters θj = (µj, σj, αj, βj) of regime

j is by minimizing the difference between the theoretical and empirical char-

acteristic functions. While the Maximum Likelihood function can be un-

bounded, its Fourier Transform is necessarily bounded and therefore min-

imum distance estimation can work in cases where Maximum Likelihood

method doesn’t. Consider the sample x1, ...xn of a random variable X with

unknown cumulative distribution F (x; θ) depending on the parameters θ.
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The characteristic function of X is defined as:

ψ(u; θ) = E[exp(iuX)] =

∫ ∞
−∞

exp(iux)dF (x; θ) (3.9)

and the empirical characteristic function associated with the sample is defined

as [32]:

ψn(u) =
1

n

n∑
k=1

exp(iuxk) =

∫ ∞
−∞

exp(iux)dFn(x), (3.10)

where Fn(x) is the empirical cumulative distribution function:

Fn(x) =
1

n

n∑
j=1

1xj≤x. (3.11)

Define F to be the class of distribution functions. Define a non-negative

distance function d : F ×F → R such that:

d[ψ(u; θ), ψn(u)] =

(∫ ∞
−∞
|ψ(u; θ)− ψn(u)|pw(x)dx

)1/p

, (3.12)

where w : R→ (0,∞) is a weight function [7]. We take w(x) = (1/
√

2π) exp(−x2/2)

and p = 2. Then θ̂ is the minimum distance estimate of θ if

d[ψ(u; θ̂), ψN(u)] = inf
θ∈Θ
{d[ψ(u; θ), ψN(u)]}. (3.13)

Again, we apply the algorithm to each regime separately. The empirical

characteristic function is given by (3.10) and the analytic function (equation

3.9) is given by (3.8) when the subordinator is a Gamma process and (3.7)

when the subordinator is an Inverse Gaussian process.

The integral is computed numerically using a global adaptive quadrature

algorithm, where the interval of integration is subdivided and the integration
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takes place on each subdivided interval. Intervals are further subdivided if

the algorithm determines that the integral was not computed to sufficient

accuracy.

Table 3.6: Parameter Estimation using Minimum Distance Method under Gamma

subordinator

Commodity µ̂ σ̂ α̂ β̂

Oil log-return Regime 1 -0.2018 0.02975 0.421 10.039

Oil log-return Regime 2 0.19952 2.1951 0.00128 13.346

Electricity log-return 1 -0.494 0.00198 32.4815 0.0019

Electricity log-return 2 -0.1205 2.24089 0.0012 16.2528

Table 3.7: Parameter Estimation using Minimum Distance Method under Inverse

Gaussian subordinator

Commodity µ̂ σ̂ α̂ β̂

Oil log-return Regime 1 0.01736 0.11675 31.648 8.0554

Oil log-return Regime 2 -0.4956 2.0078 2.2260 10.141

Electricity log-return 1 0.00813 02.0139 67.456 0.00154

Electricity log-return 2 5.7435 4.48714 76.004 6.871e-4

3.4 Maximum Likelihood Estimation

Given a random sample x = (x1, ..., xn) of a random variable X with an

associated density function f(x; θ) of the data x under the real world and
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unknown parameters θ, maximum likelihood estimation (MLE) is a method

used to estimate the vector valued parameter θ of the model by maximizing

the likelihood function [29] :

L(θ;x) =
n∏
k=1

f(xk; θ); θ ∈ Θ, (3.14)

with respect to θ. The value of θ is constrained to Θ ⊂ R4, the space of

all feasible values of the parameters. The maximum likelihood function L is

primarily a function of the unknown parameters θ. The maximum likelihood

estimator is given by:

θ̂ = arg max
θ∈Θ
L(θ;x). (3.15)

Finding the maximum (3.15) involves taking the derivative with respect to

θ, or using numerical methods such as the gradient descent method.

To find the likelihood function L we require a sample and some density

function. We derive the sample of daily log-returns by simulating n = 106

time-changed Levy process up to time T = 1/250. We approximate the

density function by an empirical density function.

We use the kernel smoothing technique to approximate an empirical prob-

ability density function given the historical data [13]. A kernel smoothing

function K has the following properties:

K(−x) = K(x), K(x) ≥ 0, and

∫
R
K(x)dx = 1, (3.16)

and has an associated scaled version Kh, given by:

Kh(x) =
1

h
K
(x
h

)
, where h > 0. (3.17)
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Assuming the log-return of the historical data x1, x2, ...xn are independent

and identically distributed, the kernel density estimate of the probability

distribution is given by:

f̂(x) =
1

n

n∑
j=1

Kh(x− xj) =
1

nh

n∑
j=1

K
(x− xj

h

)
. (3.18)

There are many possible choices for the Kernel K including the uniform,

triangle and parabolic kernels; we have decided to use the Gaussian kernel:

K(x− xi) =
1√
2π

exp
((x− xi)2

2

)
(3.19)

The value of h, is chosen to equal Silverman’s value h = 1.06σn−1/5 where

σ is the standard deviation of the data [21].

In each of the four cases, the values of σ were found to be higher in the

Table 3.8: Parameter Estimation using Maximum Likelihood Method under

Gamma subordinator

Commodity µ̂ σ̂ α̂ β̂

Oil log-return Regime 1 0.0023 0.0431 42.928 11.9960

Oil log-return Regime 2 -0.372 0.52851 17.3008 88.556

Electricity log-return 1 5.844e-3 1.5002 93.271 2.1903

Electricity log-return 2 -0.0148 7.543 90.5900 0.01770

second regime, hence justifying the use of a regime switching model. In nearly

every method, the value of |µ| was found to be very small, which is expected

as the long term deterministic contribution to the process is expected to be

near zero.
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Table 3.9: Parameter Estimation using Maximum Likelihood Method under In-

verse Gaussian subordinator

Commodity µ̂ σ̂ α̂ β̂

Oil log-return Regime 1 -0.4883 0.5058 0.64603 63.709

Oil log-return Regime 2 0.1201 2.9707 0.00014 9.993

Electricity log-return 1 -0.1781 0.25873 0.91878 20.0860

Electricity log-return 2 -0.0191 4.9752 5.512e-5 11.016

In choosing constraints, we set the lower bound of σ, α, β to be some

small number ε = 10−6. We set the upper bound of σ to 5 as the diffusion

is expected to be smaller than 1 and for α, β, we set the upper bound to

be 100, as the expected value of both Inverse Gaussian and Gamma random

variables depends on the ratio α/β rather than any particular value for α and

β. The drift µ is expected to be small, so in most cases, it was constrained

to the set [−1, 1].
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Conclusion

The goal of this thesis was to develop a new model by combining the regime

switching Levy process, and the time-changed Levy process. We found the

characteristic equation under Gamma and Inverse Gaussian subordinators,

priced European call options under two pricing methods and estimated the

parameters. Future work may include: using machine learning to rigorously

estimate the location of the regimes based on characteristics of the historic

data, as well as generate the most likely sequence of regimes into the future.

The density function in the maximum likelihood method can be computed

numerically in other ways, for example using the Inverse Fast Fourier Trans-

form method. Finally, the number of regimes can be extended, multivariate

processes can be explored, and pricing can be done on more exotic options.
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Appendix A: Simulating

Random Variables

Gamma Random Variables

We simulate Gamma Random random variables using Berman’s Gamma

Generator [27]. Given the shape parameter α > 0 and rate parameter β > 0,

the probability density function of the Gamma distribution is given as:

fgamma(x) =
βα

Γ(α)
xα−1e−βx. (3.20)

Sometimes the gamma distribution is parametrized with the shape pa-

rameter k > 0 and scale parameter θ > 0, which are related by k = α and

θ = 1/β.

If X ∼ Gamma(α, β) then X/c ∼ Gamma(α, βc), therefore all that is

needed is to generate Gamma(α, 1) random variables. If α = 1 the gamma

distribution reduces to the exponential distribution with parameter β. We

use Berman’s Gamma Generator when 0 < α ≤ 1:

1. 1 Simulate two independent random variables u1 ∼ U(0, 1) and u2 ∼
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U(0, 1)

2. Set x1 = u
1/α
1 and x2 = u

1/(1−α)
2

3. If x1 + x2 ≤ 1 move on to step 4, otherwise go back to step 1.

4. Simulate two independent random variables v1 ∼ U(0, 1) and v2 ∼

U(0, 1)

5. Return the number g = − log(v1v2), which is a Gamma(α, 1).

If α > 1 we use Best’s rejection method [8] to generate Gamma(α, 1):

1. Define c = α− 1 and d = 3α− 3/4.

2. Simulate two independent, identically distributed standard uniform

random variables u, v.

3. Define w = u(1− u), y =
√
d/w(u− 1/2) and x = c+ y.

4. If x < 0, go to step 2.

5. Define z = 64 logw3v3

6. If log z > 2(c log (x/c)− y), got to step 2.

7. Return x, which is a Gamma(α, 1) distributed random variable

Inverse Gaussian Random Variables

We use the rejection method of Michael, Schucaney and Haas to generate

Inverse Gaussian random variables [27]. Given the parameters α > 0 and
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β > 0, the probability density function of the Inverse Gaussian distribution

is given by:

fIG(x) =
α

2π
exp(αβ)x−3/2 exp(−1

2
(α2x−1 + β2x)), x > 0 (3.21)

A random variable with the above density function can be simulated in the

following way:

1. Simulate a standard normal variable z and let v = z2.

2. Set x = α/β + v/(2β2)−
√

4αβv + v2/(2β2).

3. Generate a standard uniform random variable u.

4. If u ≤ α/(α+xβ), then x is an Inverse Gaussian random variable with

parameters α, β, else, α2/(β2x) is the Inverse Gaussian random variable

with parameters α, β.

Inverse Gaussian random variables can also be parametrized by the mean

and shape parameters µ > 0, λ > 0 respectively: as µ = α/β and λ = α2.

The following table summarizes important moments for the Gamma and

Inverse Gaussian distribution under the particular parametrization which is

used throughout the thesis [27].
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Common Moments Gamma Inverse Gaussian

Moments distribution distribution

Mean α/β α/β

Variance α/β2 α/β3

Skewness 2(α)−1/2 3(αβ)−1/2

Kurtosis 3 + 6(α)−1 3 + 15(αβ)−1

Table 3.10: Important moments of the Inverse Gaussian and Gamma distributions.
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Appendix B: MATLAB Code

Simulating a Single Trajectory Regime Switch-

ing Time-Changed Levy Process

function Switching_Levy_Trajectory(T,N)

%Plots the trajectory of regime switching process Z

%T=Maturity time (in years)

%N=number of increments

%EX: Switching_Levy_2(1,250)

%Inverse Gaussian Subordinator

%drift coefficient

mu1=0.01; mu2=-0.1; mu=[mu1,mu2];

%diffusion coefficient

sigma1=1; sigma2=5; sigma=[sigma1,sigma2];
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%parameter for exponential distribution i.e. holding times

lambda1=0.5; lambda2=0.25; lambda=[lambda1, lambda2];

%s_0=1 Continuous-time Markov chain begins in regime 1 with probability 1

state=1;

%Set up a single switching time:

Tau=exprnd(lambda(state));

%temp_state is only used to generate switching times

temp_state=state;

%these arrays are only used to plot continuous-time Markov chain

markov_t=[]; markov_st=[];

%initialize regime switching process

Z=zeros(N,1);

%[0,dt,2dt,3dt,..., Ndt ] where dt=T/N

time_vector=(0:N-1) * (T/N);

%generate stopping times

while Tau(end)<T
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Tau=[Tau, Tau(end)+exprnd(lambda(temp_state))];

temp_state=mod(temp_state,2)+1;

end

for t=2:N

%DELTA=[t-1,stopping times which occur between t-1 and t, t]

DELTA=[time_vector(t-1), Tau(Tau>=time_vector(t-1) &&...

Tau<time_vector(t)),time_vector(t)];

dZ=0;

%dZ is the Z increment betweem t-1 and t

for i=2:length(DELTA)

L=Lt(DELTA(i)-DELTA(i-1),state);

dZ=dZ+mu(state)*L+sigma(state)*...

sqrt(L)*randn;

if i !=length(DELTA)

state=mod(state,2)+1; %change states

end

end
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%Z=sum dZ

Z(t)=Z(t-1)+dZ;

end

end

% % % % % % % % % %

function L=Lt(dt,state) %Subordinator increments

a1=0.1; b1=0.1;

a2=0.1; b2=0.01;

a=[a1,a2];

b=[b1,b2];

dist=makedist(’InverseGaussian’,a(state)*dt,b(state));

L=random(dist);

end
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Monte Carlo Simulation for European Call Op-

tions by simulating N Processes Simultaneously

function Expected_Price=MatrixLevy(T,K,N)

%T=maturity, K=strike price, N=#of independent processes

global alpha, global beta, global string, global state

string=’Gamma’;

%All other necessary variables are sored in file Variables.m

run Variables

%generate a column of the first stopping time

ExpMatrix=zeros(N,1);

state=1;

while sum(ExpMatrix(:,end)<T)>0 %while there exist some final elements<T

%add columns until all elements are >=T

ExpMatrix=[ExpMatrix,ExpMatrix(:,end)+exprnd(lambda(state),N,1)];

state=mod(state,2)+1;

end
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%Replace all the elements > T by T

ExpMatrix(ExpMatrix>T)=T;

state=1;

Z_end=zeros(N,1);

% Final value of Z_end is a N by 1 column vector of price values at Maturity

for t=2:length(ExpMatrix(1,:))

L=Lt(ExpMatrix(:,t)-ExpMatrix(:,t-1),N);

dZ=Mu(state)*L+Sigma(state)*sqrt(L).*randn(N,1);

Z_end=Z_end+dZ;

end

Price=S0*exp(Z_end);

EU_CALL=exp(-r*T)*max(Price-K*ones(N,1),0);

Expected_Price=mean(EU_CALL);

end

% % % % % % % % % %

%creates distribution for subordinator

function L=Lt(dt,N) %subordinator

global alpha,global beta,global state
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%alpha,beta are stored in Variables.m

%RVsimualtionMatrix generates Gamma and Inverse Gaussian random variables

%given by the rejection method in the apprendix

L=RVsimulationMatrix(alpha(state)*dt,beta(state),N);

end

Fourier-Cosine Pricing

function Price=COS_Pricing(T,K)

global dt, global string, global alpha, global beta, global Mu,

global Sigma, global lambda

N=2^10;

string=’Gamma’;

run Variables %All other variables are stored in this file

x=log(S0/K);

dt=(T-t0);

a=-5; b=5;
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v3=zeros(N,1);

k=0:N-1;

Psi=zeros(N,1);

V_k=zeros(N,1);

for n=1:N

%calls Characteristic, given below

Psi(n)=Characteristic(k(n)*pi/(b-a),x);

V_k(n)=V(a,b,k(n),K,’Put’);

end

Re=real(Psi.*exp(-1i.*k*pi*a/(b-a))’);

%Put-Call Parity

v3=exp(-r*dt).*Re.*V_k+S0-K*exp(-r*T);

Price=v3(1)*1/2 + sum(v3(2:end));

end

% % % % % % % % % %

function Char=Characteristic(u,x)

%Characteristic function of Switching time-changed process
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%u is the variable, x is initial price/strike price

global dt,global lambda,global Mu,global Sigma,

global alpha, global beta,global string

%infinitesimal generator matrix

Q=[-lambda(1),lambda(2);lambda(1),-lambda(2)];

if strcmp(string,’Gamma’)

PHI=[-alpha(1)*log(1+(-1i*Mu(1).*u+(Sigma(1).*u)^2/2)/beta(1)),0;...

0,-alpha(2)*log(1+(-1i*Mu(2).*u+(Sigma(2).*u)^2/2)/beta(2))];

elseif strcmp(string,’InverseGaussian’)

PHI=[-alpha(1)*(sqrt(2*(-1i*Mu(1).*u+(Sigma(1).*u)^2/2)+beta(1)^2)...

-beta(1)),0;0,-alpha(2)*(sqrt(2*(-1i*Mu(2).*u+...

(Sigma(2).*u)^2/2)+beta(2)^2)-beta(2))];

end

%matrix exponential expm

Char=exp(1i*u*x)*([1,1]*expm(dt*(Q+PHI))*[1,0]’);

end
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% % % % % % % % % %

function Chi=Chi(a,b,c,d,k)

w=k*pi/(b-a);

Chi=(1/(1+w^2)) * (cos(w*(d-a))*exp(d) - cos(w*(c-a))*exp(c) + ...

w*sin(w*(d-a))*exp(d) - w*sin(w*(c-a))*exp(c));

end

% % % % % % % % % %

function Psi=Psi(a,b,c,d,k)

if k==0

Psi=d-c;

else

w=k*pi/(b-a);

Psi=(w^-1) * (sin(w*(d-a))-sin(w*(c-a)));

end

end

% % % % % % % % % %

function Vk=V(a,b,k,K,option) %Vk coefficients for Call and Put
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if strcmp(option,’Call’)

Vk=(2/(b-a))*K*(Chi(a,b,0,b,k)-Psi(a,b,0,b,k));

elseif strcmp(option,’Put’)

Vk=(2/(b-a))*K*(-Chi(a,b,a,0,k)+Psi(a,b,a,0,k));

end

end

Minimum Distance Estimation Function

function Distance=Distance_minimizing_Estimation_function(theta)

%theta=[mu,sigma,alpha,beta]

global data,global string

string=’InverseGaussian’;

p=2;

%data=log-returns of historical data

Integrand_function=@(u)abs(Analytic_characteristic_function(u,...

theta,string)-Empirical_characteristic_function(u,...

data)).^p.*(1/sqrt(2*pi)).*exp(-u.^2/2);

%global adaptive quadrature with default tolearance

Distance=integral(Integrand_function,-1e6,1e6)^(1/p);
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end

% % % % % % % % % %

function ECF=Empirical_characteristic_function(u,data)

%u is an array of arguments

ECF=0;

for j=1:length(u)

ECF(j)=sum(exp(1i*u(j)*data));

end

ECF=ECF/length(data);

end

% % % % % % % % % %

function CHAR=Analytic_characteristic_function(u,theta,string)

dt=1/250;

if strcmp(string,’Gamma’)

Mu=theta(1);

Sigma=theta(2);

rho=theta(3);

beta=theta(4);
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CHAR=(1+(1i*u*Mu-(u*Sigma).^2/2)./-beta).^(-rho*dt/beta);

elseif strcmp(string,’InverseGaussian’)

Mu=theta(1);

Sigma=theta(2);

alpha=theta(3);

beta=theta(4);

CHAR=exp(-alpha.*dt.*(sqrt(2*(1i.*u.*Mu-(u.*Sigma).^2/2)+beta^2)-beta));

end

end

Maximum Likelihood Estimation

function MLE=MLE_function(x)

%data is log-returns of historical data

global string, global data

string=’Gamma’;

N=1e6;

dt=1/250;
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Mu=x(1);

Sigma=x(2);

alpha=x(3);

beta=x(4);

%LevyMLE defined below

dY=Mu*LevyMLE(dt*ones(N,1),N,x)+...

Sigma*sqrt(LevyMLE(dt*ones(N,1),N,x)).*randn(N,1);

[f_MLE,xi] = ksdensity(dY);

MLE=1;

for k=1:length(data)

%interpolation

MLE=MLE*interp1(xi,f_MLE,data(k));

end

MLE=-MLE; %Because we will want to MAXIMIZE using fmincon

end

% % % % % % % % % %

function L=LevyMLE(dt,N,x)

Mu=x(1);

Sigma=x(2);

alpha=x(3);
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beta=x(4);

L=RVsimulationMatrix(alpha*dt,beta,N);

end

Simulating Gamma and Inverse Gaussian Ran-

dom Variables

function arrayX=RVsimulationMatrix(alpha,beta,N)

global subordinator

Array=zeros(N,1);

for n=1:N

if strcmp(subordinator,’Gamma’) %To simulate Gamma R.V

if alpha(n)==0

X=0;

elseif alpha(n)<=1 && alpha(n)>0 %Berman Gamma Generator

x=rand()^(1/alpha(n));y=rand()^(1/(1-alpha(n)));

while x+y>1

x=rand()^(1/alpha(n));y=rand()^(1/(1-alpha(n)));
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end

X=-x*log(rand()*rand())/beta;

elseif alpha(n)>1

b=alpha(n)-1; c=3*alpha(n)-3/4;

U=rand();V=rand();

W=U*(1-U);

Y=sqrt(c/W)*(U-1/2);

x=b+Y;

Z=64*W^3 * V^3;

i=0;

while 1==1

i=i+1;

U=rand();V=rand();

W=U*(1-U);

Y=sqrt(c/W)*(U-1/2);

x=b+Y;

if x>0

Z=64*W^3 * V^3;

if log(Z)<=2*(b*log(x/b)-Y)

X=x/beta;
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break

end

end

end

end

elseif strcmp(subordinator,’InverseGaussian’)

%Simulate Inverse Gaussian R.V

if alpha(n)==0

X=0;

else

y=randn()^2;

x=(alpha(n)/beta)+y/(2*beta^2)-sqrt(4*alpha(n)*beta*y+y^2)/(2*beta^2);

if rand()<=alpha(n)/(alpha(n)+x*beta)

X=x;

else

X=alpha(n)^2/(beta^2*x);

end

end

end

Array(n)=X;
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end

arrayX=Array;

end
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