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Abstract

Today, Internet of Things (IoT) is a major paradigm shift that will mark an epoch in commu-

nication technology such that every physical object can be connected to the Internet. With

the advent of 5G communications, IoT is in urgent need of optimized architectures that

can efficiently support wide ranging heterogeneous multi–objective requirements of com-

munication, hardware and security aspects. The optimization challenges are rooted in the

technology and how the information is acquired and manipulated by this technology. My re-

search in this thesis provides a description of compelling challenges faced by IoT and how to

mitigate these challenges by designing resource–aware communication protocols, resource–

constrained device hardware with low computing power and low–powered computational

security enhancements. This thesis lays the foundation for optimizing these challenging IoT

paradigms by introducing a novel Delta–Diagram based synthesizing model. The Delta–

Diagram provides a road–map linking the behavioral and structural domains of a given IoT
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paradigm to generate respective optimizer domain parameters, which can be utilized by any

optimizer framework. The fundamental part of the communication synthesizer is a math-

ematical model, developed to obtain the best possible routing paths and communication

parameters among things. The ultimate aim of the entire synthesis process is to devise

a design automation tool for IoT, which exploits the interrelations between different layer

functionalities. This thesis also proposes a novel cross–layer Grey wolf optimizer for IoT,

which outperforms some of the contemporary optimizer algorithms such as Particle Swarm,

Genetic Algorithm, Differential Evolution optimizers in solving unimodal, multi–modal and

composition benchmark problems. The purpose of this optimizer is to accurately capture

both the high heterogeneity of the IoT and the impact of the Internet as part of delta diagram

synthesis enabled network architecture. In addition, the Grey wolf optimizer for IoT plays

a crucial role in design exploration of system on chip architecture for IoT device hardware.

The results generated by the optimizer yielded the most optimum feasible solutions in the

design space exploration process of the IoT.
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Chapter 1

INTRODUCTION

Internet of Things (IoT) is an rapidly emerging concept in the today’s world. It encompasses

various objects and communication methods for exchanging data. In practice, IoT is a

generalized term that describes a vision where everything should be connected to the Internet.

IoT is a ground breaking technology for present and future since the concept opens up

seamless opportunities for new services and innovations. IoT is revolutionizing many sectors

such as logistics and transportation, manufacturing plants and agriculture by increasing their

operational efficiency, reducing the energy usage and better management of resources. As

IoT expands with unique opportunities, Cisco estimates that there will be around 50 billion

IoT devices by 2020[2]. The growth of IoT devices depicted in Fig. 1.1 since its inception in

2009 is phenomenal. As the number of connected devices increases exponentially, achieving

higher network capacity and reliability with minimal latency and energy consumption is

highly challenging. It is estimated that the IoT will cause a substantial increase in the

Internet Protocol (IP) traffic to the tune of 300% by year 2020[4].
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CHAPTER 1. INTRODUCTION

Figure 1.1: Predicted explosive growth of IoT [2]

1.1 IoT

Defining the term IoT can be cumbersome since its definitions are usually ambiguous since

it is loosely used as a buzzword in scientific research and marketing strategies.

The basic notion of IoT is to link things together which allows them to communicate with

each other thereby enabling people to share information [5]. ”Things”, in the IoT sense, can

mean a wide variety of devices depending on the context of term used. However, in general

terms legal scholars suggest regarding ”things” as an ”inextricable mixture of hardware,

software, data and service” [6]. In this thesis we follow the definition of IoT proposed by ITU-

T’s Telecommunication Standardization Sector (a United Nations agency which specializes in

Information and Communication Technology): ”A global infrastructure for the information

society, enabling advanced services by interconnecting (physical and virtual) things based on

existing and evolving inter-operable information and communication technologies”.
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1.2 Interconnection Challenge among Devices

The three main tasks of any IoT network are sensing, analyzing and transmitting. Because

of the communication capability, thousands of individual nodes form a single entity and pro-

vides collective intelligence on the topic of interest. Due to the limited transmission range,

IoT devices may have to multi- hop their sensed data possibly over long distances. There-

fore, connectivity or communication between individual devices is crucial for the successful

operation of the network. Main factors that plague the reliability of the communication are

discussed in the following sub-sections.

1.2.1 Interference: Internal and External

An inherent problem associated with the wireless networks is interference. Interference can

be internal or external. External interference is caused by other sources such as domestic

appliances, Bluetooth devices. Internal interference occurs when the nodes within the same

network transmit at the same time.

Wireless Sensor Networks (WSN) operate on an unlicensed ISM bands and therefore the

radio spectrum is shared with several other devices[7]. As Wi-Fi uses 2.4GHz frequency,

the WSN such as IoT might have to compete to utilize the frequency. Appliances such as

microwave oven, plasma lighting system, cordless phones that generate electromagnetic noise

are also known to increase the packet loss rate, this, in turn, increases the retransmission

rates and latency[7, 8]. Similarly, internal interference due to concurrent transmission also

negatively impacts the performance of the network[9]. It is also empirically shown that a

cross-channel interference also decreases the packet delivery rate[10].

1.2.2 Environmental Obstacles

Natural obstacles such as office walls, human and vehicular movements, dense vegetation

generally deteriorate the signal strength. Humidity and temperature also influences the

3
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radio waves[11, 12, 13, 14].

1.2.3 Deployment Environments

When the area to be monitored is large and in a remote location, sensors are usually randomly

deployed. The position of the sink node a data aggregation point also plays a crucial role

in the performance of the network. Imbalanced traffic load causes some of the nodes in

the network to expend more energy, risking the network to become unconnected and thus

rendering it useless[15].

If the average number of hops between the source and the sink node is less, the latency

and the energy consumption is also relatively lesser compared to the larger number of hops

between source and the sink. In addition, if the number of hops between the source and the

sink is less, the collision rate is less which in turn results in better packet delivery rate.

1.2.4 Hardware and Software Configuration

Application data rate, the amount of control messages generated by the routing protocol at

the network layer, collision avoidance technique employed at the MAC layer greatly influences

the performance of the network. Choosing the routing protocol such as Collection Tree

Protocol (CTP) that generates the fairly large amount of control packets along with high

application data rate increases the contention in the network[16].

Even when the transceivers of the sensor nodes in an IoT network are configured exactly,

in the same way, they may distort transmitted or received a signal due to their internal

noise[17, 18]. The low power transmits signals are more susceptible to interference and the

multi-path distortion. In addition, the remaining battery life is also known to affect the

sensitivity of the transceivers[19]. Furthermore, most of the IoT devices have an in-built

antenna with irregular radiation pattern. All these factors contribute to the degradation of

the communication quality.

4



CHAPTER 1. INTRODUCTION

1.3 Motivation

Multi-objective optimization techniques applied for communication system synthesis have

the attractive advantage of explicitly capturing the constraints and preferences of the com-

municating device that use both small scale as well as large scale networks, and provide

unique insight into trade-offs among competing requirements. The next-generation commu-

nication systems aim to build an intelligent and efficient transmission by connecting a variety

of heterogeneous networks to fulfill information exchange tasks. The motivation (MO) for

this thesis is to address various challenging aspects of communication systems such as: (a)

the development of new efficient protocols and optimization of existing communicating de-

vices (b) the hardware design improvement of low power embedded devices for network

architectures and (c) the security analysis and privacy improvement of low computing pow-

ered systems.

MO1: High-reliability Low-latency factor. As discussed in detail from the previous

sections, each day the world embraces more devices to connect everything, everywhere, and

everyone. Driven by global digitalization and the emerging IoT or IoE paradigms, the num-

ber of connected devices are increasing at an exponential rate from the current circa 10

billion to an estimated 20-fold within the next five years (refer Fig. 1.1). The abundant

exploitation of wireless sensors, gadgets, multimedia services, autonomous robots or tactile

Internet, augmented reality, and other similar applications, will require unparalleled access

rates with high reliability and low latency.

MO2: Competing Resources in 5G. The basic idea of this new type of networking

and computing paradigm is the pervasive presence of a variety of objects (things), such as

WSN, actuators, mobile devices, and RFID tags, which are able to interact with each other

and communicate with the Internet infrastructure. Designing such a scalable network that

can incorporate dynamic elements such as device-2-device communications, small cell access

points, network cloud, and the IoT which is an integral part of 5G cellular network archi-

tecture faces many challenges. These challenges are mainly caused by the limited resources
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available, especially reliable security, limited battery lifetime, computing capacity, and mem-

ory space at sensor nodes, and also by dynamic network topology especially in ad hoc sensor

networks. On the other hand, special features of WSN such as limited computing power,

storage space, battery capacity and limited area for hardware sensory circuits, in particular

bring in new requirements on time and space efficiency of the MoAs that can be applied in

such an environment.

MO3: Scalability of IoT. Many contemporary IoT designs fail to treat the trade-off prob-

lems as a MOO issue; instead they choose an objective to optimize, leaving the others as

restrictions. This leads to most of them being applied only to networks of limited magni-

tude, and in very restricted situations. As the scale of commercial systems grows, there is a

complete lack of tools to aid in the designing process and the age-old methodology of trial

and error is neither effective nor efficient.

MO4: Routing in IoT. Routing strategy is another fairly important problem in IoT de-

sign [20, 21], which may have a direct impact on multiple aspects of network performance,

including data transmission delay, throughput, security and lifetime of individual nodes as

well as the entire network. Mobile agents are often used in IoT to visit a sequence of sensors

and fuse impotent data. Optimal agent routes also often need to meet multiple objectives

such as minimizing total path delay, loss, and energy consumption as well [22]. These MOO

trade-off problems are challenging issued that need to be addressed.

MO5: IoT Hardware Optimization. To devise a design space exploration (DSE)

methodology to perform multi–objective optimization (MOO) subject to constraints with

a trade–off requirement from the very earliest stage of designing IoT having low computing

power hardware. This will enable the IoT hardware device designers to start the develop-

ment with an architecture that is already specification aware (high level optimized) from

the highest level of abstraction thus rendering more chances that final design (logic/layout)

corresponds to the given low computational constraints. A stellar synthesis system can pro-

duce several designs from a given hardware specification within reasonable amount of time.
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However, the final selection can be challenging with many choices of designs produced (near

optimal set). Therefore, an efficient exploration method is currently needed for IoT hardware

to tackle the problem from a very high abstraction level. This assures the IoT hardware de-

signer a greater chance of optimization and flexibility to control architecture based on user

requirements. More importantly, this allows the developer to explore different trade–offs

between cost, speed, power etc. or to take an existing design and produce a functionally

equivalent one that is more efficient.

1.4 Research Objectives and Goals

The research objective (RO) is to develop an adaptive framework for decomposition of IoT

communication system devices and protocols using multi-objective optimization techniques.

These techniques are primarily driven by cost-benefit analysis using power-security-execution

time and area trade-off circumstances. The results can then be used to assist communicating

network interfaces in arriving using optimal solutions that depend on communicating device

capabilities. The following research objectives are achieved.

RO1: Develop Novel Cross-layer Schemes for the IoT Network. The use of cross-

layer communication schemes to provide adaptive solutions for the IoT is motivated by the

high heterogeneity in the hardware capabilities and the communication requirements among

things. In this thesis, a novel Delta Diagram synthesis for the IoT is proposed to accurately

capture both the high heterogeneity of the IoT and the impact of the Internet as part of the

network architecture.

RO2: Develop a Novel Optimizer Framework based on Grey Wolf Optimizer

Algorithm for IoT domain. Design an effective resource management meta–heuristic

decision maker using a novel Grey Wolf Optimizer (GWO) framework is proposed to ob-

tain optimal routing paths and the communication parameters among things, by exploiting

the interrelations among different layer functionalities in the IoT. Moreover, a cross-layer
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communication protocol is utilized to implement and test this optimization framework in

practical scenarios. The results show that the proposed solution can find near-optimal solu-

tions constructively and outperforms existing layered solutions. The novel Delta-diagram is

a preliminary step towards providing efficient and reliable end-to-end communication in the

IoT which may be extended to other dimensions of IoT like security and hardware synthesis.

RO3: Develop and demonstrate a Novel design space exploration scheme for IoT

hardware architecture synthesis. To introduce a novel design space exploration (DSE)

approach which is based on combination of the Utility Ranking (UR) method and Grey wolf

Search based framework that is rapid and accurate in IoT hardware architecture evaluation

and selection. The goal for the novel DSE is to apply on a number of standard benchmarks

which yielded superior results compared to the current existing DSE approaches [23, 24, 25]

for architecture selection. The comparison results of our devised novel approach with the

current existing approaches for different benchmarks will be shown and the speed boosts

obtained will be presented.

RO4: Designing a universal synthesizer for automating communication protocol

optimization A novel synthesizer based on Delta diagram approach is developed and can

utilized universally for plotting parameters for any layer in the communication protocol stack

and subsequently utilized for model optimization strategies for the network. This approach

leads to development of more customizable system designs since designers using our frame-

work have the flexibility to choose the most optimized communication channel to meet their

trade-off objectives.

RO5: Designing a new Modulo Addition for enhancing security of light weight

ciphers in IoT We introduce a new Modulo Addition structure that includes components

such as Input Expansion, Modulo Addition, and Output Compaction. The security of the

new structure is scalable and completely user-defined. It also substantially increases the

algebraic degree of the existing cryptographic system and thwarts the probabilistic condi-

tions ideal for hacking attacks. We develop an adaptive and extensible Addition Modulo
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for IoT based ultra lightweight ciphers which includes both stream and block ciphers, that

not only attains optimum security but also its design results in less gate–equivalents (GE’s),

less memory size, and less power dissipation compared to complete cipher upgrade. This ap-

proach is crucial in bringing online certain things with limited security architectures. These

things can be older versions of small–scale embedded devices with restricted hardware and

cannot be outright replaced but can incorporate certain security upgrades like our proposed

model.

1.5 Contributions

The fundamental contribution and novelty of this work is to develop innovative optimizer

schemes to address three main verticals of IoT domain such as communication system, device

hardware and security ciphers and provide a novel seamless solutions to cater these pressing

issues in IoT especially with the advent of 5G technologies. The research objectives are

realized by employing the following contributions.

Automated Communication Synthesizer. We design and develop a IoT communi-

cation framework that utilizes a novel Delta Diagram based model for rapid choosing of

network layer parameters to initiate a cross-layer optimization. A fundamental model is

developed that caters to the optimization parameters synthesized pertaining to energy, tim-

ing, and packet error rates of the network. In addition, the new framework utilizes a Grey

wolf optimizer to optimize Quality of Service (QoS) requirements in terms of delay, energy

consumption and reliability requirements of an IoT communication network and arrives at

near optimal solutions.

Novel DSE methods for synthesizing IoT device hardware. We design and develop

a new framework for an accelerated design space exploration of resource constrained IoT

hardware. The approach was successful in laying the foundation for exploring the design

points from the architecture design space according to the performance objective and in-
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tended functionality. This novel method determines the utility coefficients of each resource

for designing hardware of IoT. After the architectural design specification were organized

in sorted order based on the utility coefficients calculated, the procedure for applying the

optimizer algorithm becomes simpler. The research objective is to drastically reduce the

number of architectural variants to be analyzed for selection of the system architecture. The

proposed mechanism for DSE was able to resolve conflicting objectives in HLS by utilizing

a novel Grey Wolf Optimizer. A case study with IoT device based Elliptic Wave filter was

presented for further analysis.

Security Enhancement Techniques for IoT device hardware. We devise a new type

of scheme for Modulo Addition to defend against algebraic attacks involving multivariate

polynomials for lightweight ciphers. This caters to both Stream an Block type in IoT com-

munication nodes. The developed model features three components: an Expandable Input,

Modulo Addition, and a compression module called Deflate function. In addition, the new

design framework utilizes an expanding and compacting structure that can fit into various

lightweight cryptographic systems based on user–based requirements and depends on the

constrained computational power of specific IoT nodes.

1.6 Thesis Organization

An outline linking our research objectives in IoT domain to the goals realized in following

chapters is shown using the Fig. 1.2. This makes the reader gain better understanding of

the aims in this thesis. The organization of this thesis linking the chapters to IoT themed

research goals is illustrated using organization chart shown in Table. 1.1. The rubric in

Table. 1.1 organizes the chapters as follows: Chapter 1 will describe the motivation and

objective behind this thesis. Chapter 2 will outline in detail about current research em-

phasis on MOO techniques and survey the respective methods. Chapter 3 synthesizes the

network of resource deprived IoT communication systems using a novel delta diagram based
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Chapters Research Goals

1. Defines IoT and uses, Connects our research goals to current industry
trends.

2. IoT objectives achieved and potential future work.

3. Surveys contemporary Multi-objective optimizers, choose the best suited
for our IoT based research.

4. Utilize a novel approach to choose levelized parameters to initiate cross-
layer optimization of IoT network.

5. Novel optimization framework for initiating design space exploration on
resource constrained IoT Hardware.

6. Novel design for updating IoT based lightweight ciphers sans complete re-
placement.

Table 1.1: Organization Rubric relating Chapters to Research Goals of this Thesis.

parameter capture method and utilizes a novel Grey Wolf Optimizer to narrow the search

space finding near–optimal solutions constructively and compare state-of-the art methods.

The research goal described in Chapter 4 formulates High Level Synthesis tools for Design

Space Exploration of IoT specific resource constrained devices and also utilizes the novel

Grey Wolf Optimizer driven multi-objective optimization algorithm described in Chapter 2

to shortlist near–optimal solutions to get the best hardware IoT configuration. Chapter 5

outlines research based design for security enhancement of IoT based lightweight ciphers on

existing devices rather than a complete replacement of the things. In the end, Chapter 6

outlines conclusions drawn from this thesis work and potential future path.
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Figure 1.2: Thesis Work Breakdown Structure.

12



Chapter 2

REVIEW: MULTI–OBJECTIVE

OPTIMIZATIONS

In this section, we briefly discuss some important Multi–Objective Optimization (MOO)

techniques proposed in the literature that are only relevant while tackling constraints asso-

ciated with resource-aware IoT domain. It is important to note that this chapter is not a

comprehensive literature review of general MOO techniques.

2.1 Strategies for IoT Optimization

Optimization covers almost all aspects of human life and work. In practice, the resources are

limited, hence optimization is significant. Most research activities in IoT engineering involve

a certain amount of modeling, data analysis, computer simulations and mathematical opti-

mization. This branch of applied science aims for finding the particular values of associated

variables, which results in either the minimum or the maximum values of a single objective

function or multiple objective functions [26]. A typical optimization process is composed of

three components [27]: the model, the optimizer/algorithm and the evaluator/simulator, as
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shown in Figure. 2.1. The representation of the physical problem is carried out by using

mathematical formulations to establish a mathematical model.

There is no single algorithm that is suitable for all problems arising in IoT domain and an

efficient optimizer or algorithm must be designed to ensure that an optimal solution set is

obtained. In general, optimization algorithms can be classified as:

1. Finitely terminating algorithms, such as the family of simplex algorithms and their

extensions, as well as the family of combinatorial algorithms;

2. Convergent iterative methods that

• Evaluate Hessians (or approximate Hessians, using finite differences), such as

Newtons method and sequential quadratic programming;

• Evaluate gradients or approximate gradients using finite differences (or even sub-

gradients), such as quasi-Newton methods, conjugate gradient methods, interior

Figure 2.1: A typical schema for Optimization Process
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point methods, gradient descent (alternatively, ”steepest descent” or ”steepest

ascent”) methods, sub-gradient methods, bundle method of descent, ellipsoid

method, reduced gradient method, and simultaneous perturbation based stochas-

tic approximation methods; and

• Evaluate only function values, such as interpolation methods and pattern search

methods.

3. Heuristics/Meta-heuristics that can provide approximate solutions to some optimiza-

tion problems particularly in resource starved IoT.

Recently, bio-mimetic heuristics/meta-heuristics based strategies have been widely used to

solve MoA for designing WSN in the IoT [28], since they are capable of obtaining near-

optimal solutions to optimization problems characterized by non-differential nonlinear ob-

jective functions, which are particularly hard to deal with using classical gradient- or Hessian-

based algorithms.

2.2 Multi–Objective Optimization

Multi-objective optimization (MOO) is a process of simultaneously optimizing multiple con-

flicting goals or objectives. The difference with single-objective optimization is that MOO

results in several/many equally efficient solutions, known as Pareto optimal solutions, instead

of one single solution. A MOO problem consists of a set of objective functions that can be

either maximized or minimized. A set of constraints limits the set of possible outcomes,

known as the solution space.
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Without loss of generality, a multi-objective minimization problem having n variables

and m(m > 1) objectives can be formulated as:

minimize
x

F(x) = (f1(x), f2(x), . . . , fm(x)) (2.1)

subject to gj(x) ≥ 0, j = 1, 2, . . . ,mje

hk(x) ≥ 0, k = 1, 2, . . . ,mek

where we have x ∈ Rn with Rn being the decision space, (gj(x), hk(x)) are inequality

constraint functions and F(x) ∈ Rm with Rm representing the objective space.

2.3 Parto-Optimality

The improvement of one of the objectives in Eq. 2.1 may result in the degradation of other

objectives, thus it is important to achieve a Pareto-optimality, which represents the con-

ditions when none of the objective functions can be reduced without increasing at least

one of the other objective functions [29]. For the minimization of m objectives F(x) =

(f1(x), f2(x), . . . , fm(x)), we have the following definitions.

• Non-dominated solutions : A solution a is said to dominate a solution b if and only if

[30]:

1. fi(a) ≤ fi(b)∀ i ∈ {1, 2, ,m},

2. fi(a) < fi(b)∃ i ∈ {1, 2, ,m}.

Solutions that dominate the others but do not dominate themselves are termed non-

dominated solutions.

• Local optimality in the Pareto sense: A solution a is said to be locally optimal in

the Pareto sense, if there exists a real E > 0 such that there is no other solution b
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(a) PF of unconstrained MoP (b) PF of constrained MoP

Figure 2.2: E=Solutions of the objective functions in PF,  =Feasible solutions and
K=Infeasible solutions where m = 2.

dominating the solution a with b ∈ Rn ∩ B(a, E), where B(a, E) shows a bowl having

a center a and a radius E .

• Global optimality in the Pareto sense: A solution a is globally optimal in the Pareto

sense, if there does not exist any vector b that dominates the vector a. The main

difference between global and local optimality lies in the fact that for global optimality

we no longer have a restriction imposed on the decision space Rn.

• Pareto-optimality : A feasible solution is said to be Pareto-optimal, when it is not

dominated by any other solutions in the feasible space. Pareto sense, which is also

often referred to as the efficient set, is the collection of all Pareto-optimal solutions

and their corresponding images in the objective space are termed the PF.

We observe from Figure. 2.2a that the Pareto-optimal solutions of the objective functions

in the PF (marked as asterisk) provide better values than any other solution in Rm. The

ideal solution marked by a square indicates the joint minimum of the objective values f1

and f2 and it is often difficult to reach. The remaining solutions marked as solid circles are
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all dominated by at least one solution of the PF. In contrast to the unconstrained scenario

of Figure. 2.2a, in Figure. 2.2b, the curve illustrates the PF of a constrained MoP. The

solid circles in the feasible region represent the feasible solutions, while the remaining points

outside the feasible region (e.g. the points marked by triangles) are infeasible [31].

2.4 MOA application for IoT

A variety of algorithms have been developed for solving MoPs in communication networks

and hardware systems related to IoT devices. Multi-objective procedures can be broadly

classified into two categories – scalarization and evolutionary methods [32]. Scalarization

methods apply in mathematically well defined problems with explicit formulations of objec-

tives and constraints, whereas evolutionary strategies mainly apply in black-box problems,

where objectives and/or constraints are evaluated for each value of the optimization variable

set. Examples of such evolutionary algorithms are Genetic Algorithms and Swarm Intelli-

gence Algorithms. Some state-of-the art examples of Swarm Intelligence Algorithms include

Particle Swarm Optimization (PSO), Grey Wolf Optimizer, Whale Optimizer and Artificial

Bee Colony (ABC) algorithms [3, 33, 34, 35].

2.4.1 Scalarization Methods

We briefly describe the most prevalent algorithms in this category: Weighted Sum and E-

Constraint Methods, and other scalarizing approaches are not relevant to our discussion in

this thesis.

A. Weighted Sum Method

The weighted sum method assigns a non-negative weight to each objective and normally the

weights sum up to one. The mathematical definition is shown in Equation 2.2. The different

objectives do not have to be scaled because the weights merely serve to find solutions on

18



CHAPTER 2. REVIEW: MULTI–OBJECTIVE OPTIMIZATIONS

the Pareto front. By changing the set of weights, a different point on the Pareto front can

be obtained. However, there are three difficulties with the weighted sum method [36]: (i)

there is no satisfactory (a priori) selection method to determine the weights that guarantee

the final solution to be acceptable, (ii) it cannot find solutions on non-convex regions of

the Pareto front, and (iii) varying the weights may not result in an evenly distributed and

accurate/complete representation of the Pareto front.

minimize
x

F(x) =
M∑
m=1

wmfm(x) (2.2)

subject to gj(x) ≥ 0, j = 1, 2, . . . , J

hk(x) ≥ 0, k = 1, 2, . . . , K

B. Econstraint Method

The Econstraint Method optimizes one objective, while the other objectives are used as con-

straints. It overcomes the limitations of the Weighted Sum Method. Consequently, compared

with the weighted sum method (Equation 2.2) there is only one objective function (Fµ(x))

and additional constraints (fm(x) ≤ Em) that require the other objectives do not exceed the

user-defined values. The new equation is shown in Equation 2.3.

minimize
x

Fµ(x), (2.3)

subject to Fm(x) ≤ Em, m = 1, 2, . . . ,M and m 6= µ

gj(x) ≥ 0, j = 1, 2, . . . , J

hk(x) ≥ 0, k = 1, 2, . . . , K

Although the Econstraint method has various advantages over the weighted sum method such

as its ability to produce non-extreme efficient solutions, one of the biggest drawback is select-

ing the value of E . Since the best values are not known beforehand, increasing the E value

with small steps would result in a lot of redundant runs. Increasing with larger steps would
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result in it missing the pareto optimal solution while optimizing resource-aware IoT systems.

2.4.2 Knapsack Problem

The classical Knapsack Problem (KP) is a variation of the Econstraint method where is

objective function is a dual viz., we maximize it instead of minimization. We can set

N := {1, . . . , n} of items and a knapsack of limited capacity. To each item we associate

a positive profit pj and a positive weight wj. The problem calls for selecting the set of items

with maximum overall profit among those whose total weight does not exceed the knapsack

capacity c > 0. KP has the following Integer Linear Programming (ILP) formulation:

maximize
x

F(x) =
∑
j∈N

pjxj (2.4)

subject to
∑
j∈N

wjxj ≤ c (2.5)

xj ∈ {0, 1}, j ∈ N (2.6)

where each binary variable xj, j ∈ N , is equal to 1 if and only if item j is selected. In general,

we cannot take all items because the total weight of the chosen items cannot exceed the

knapsack capacity c. In the sequel, without loss of generality, we assume that
∑

j∈N wj > c

and wj ≤ c for every j ∈ N . The k-item Knapsack Problem (kKP), is a KP in which an

upper bound of k is imposed on the number of items that can be selected in a solution. The

problem can be formulated as (2.4)-(2.6) with the additional constraint

∑
j∈N

xj ≤ k, (2.7)
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with 1 ≤ k ≤ n. KP has widely been discussed in the literature and we refer to [37] for a

comprehensive illustration of the problem. The KP and its multidimensional version (MKP)

are basic problems in combinatorial optimization. We utilize this approach in [38] whose

objective was to obtain or approximate the set of efficient Pareto solutions for high level

synthesis of IoT hardware.

2.5 Genetic Algorithms

A genetic algorithm (GA) applied to a MOO begins with an initial set of solutions, rep-

resented by chromosomes. In each generation, new solutions are generated using genetic

operators such as recombination, crossover and mutation. For each individual in the pop-

ulation (in each generation), a fitness value F(x) is calculated representing the goodness

of the solution. The algorithm stops when an end condition is satisfied. Crossover takes

two individuals and uses random point(s) to cut the chromosome in two segments, a ’head’

and ’tail’ segment [39, 40, 41]. The tail segments are swapped over to produce two new

chromosomes.

GA suffers from innumerable disadvantages such as no guarantee in finding global minima,

impractical time taken for convergence, producing incomprehensible engineering solutions,

etc. Consequently the GA method is discarded for dealing with critically resource depraved

IoT optimization approaches.

2.6 Swarm Intelligence Algorithms

The various MoAs discussed so far in the previous sections are subject to many disad-

vantages. The salient drawbacks include impractical time to reach termination condition,

egregious time delay to reach near–optimal solutions, complex aspects such as calculating

the fitness function which requires inherent tweaks and adjustments at every iteration, in-

comprehensible solutions produced leading to multiple re-runs, etc. These drawbacks are
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in in direct contradiction to optimizing resource-aware and time critical IoT domain. Thus

Swarm Intelligence Algorithms seem to be an obvious fit due to their features such as scal-

ability, system robustness, adaptability and flexibility.

Swarm intelligence (SI), an integral part in the field of artificial intelligence, is gradually

gaining prominence, as more and more high complexity problems require solutions which

may be sub-optimal but yet achievable within a reasonable period of time. Mostly inspired

by biological systems, swarm intelligence adopts the collective behavior of an organized group

of animals, as they strive to survive. Our primary emphasis is on most popular in literature

and state–of–the–art algorithms: PSO and GWO. In essence, we focus on the algorithms

inspired by birds and wolves.

2.6.1 Particle Swarm Optimization

PSO is a stochastic optimization algorithm which was derived from the flight patterns of a

flock of birds in search for food, overcame majority of the problems that were faced by the

algorithms discovered before it.

Two main parameters of the PSO algorithm is finding the most optimal position and the

most optimal velocity of the swarm as the birds strive to achieve their personal best position

and velocity for themselves as well as the best position and velocity depending upon the

group.

The PSO algorithm is similar to GAs because of how randomly ordered the search space

is, initially. However, the biggest advantage this algorithm has over GA is that the PSO

algorithm has fewer parameters that are needed to be adjusted after every iteration. The

change in position and velocity is given by the following equations:

xi (t+ 1) = xi + Vi (t+ 1) (2.8)
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Here x denotes the position of the bird in the current time frame, which depends on the

position of the bird in the previous time frame and the current velocity of the bird. Note: In

the PSO described below ( Algorithm. 1), the initialization step updates the position of the

primary particles with velocity factor and hence the step of update function is mentioned

after velocity adaptation step. Therefore, for this research work we adopt this variation of

PSO. The current velocity or the updated velocity of the bird is found using the following

equation:

Vi (t+ 1) = ωVi (t) + c1r1

(
xlbi − xi (t)

)
+ c2r2

(
xgbi − xi (t)

)
(2.9)

The parameters in the Eq. 2.8 can be summarized as follows:

• ω is the inertia weight

• c1 and c2 are the cognitive and the social learning factors respectively.

• r1 and r2 are random numbers in the range [0,1].

• xlbi is the position of the local best particle with respect to the minimization problem,

and

• xgbi is the position of the global best particle.

The entire optimization algorithm aims at achieving xgbi viz., all the particles try to converge

at the best position of one particle, thus reaching a termination point. The pseudo code for

PSO described above is outline in Alg. 1. In the process of Systems of Chip (SoC) devel-

opment, the problem of an exponentially exploding design space can be a major challenge.

PSO algorithm can be employed to realize the most optimum resource configuration [42].

In search of the global best solution, the PSO algorithm divides a swarm into multiple sub-

swarms and thus, the objectives could only be handled by one sub-swarm. As a result of

this, a bigger swarm size is needed to solve the multi-objective optimization problem. Thus

in each iteration, the computation time rises [43].
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ALGORITHM 1: (PSO) Pseudo Code

Input: Initialize a population of particles with random values positions and velocities
from D dimensions in the search space.

1 while Termination condition not reached do
2 foreach every particle i do

3 Evaluate the fitness F(
−→
X i)

4 if F(
−→
X i) < F(

−→
P i) then

5
−→
P i ←

−→
X i

6 end
7

8 if F(
−→
X i) < F(

−→
P g) then

9
−→
P g ←

−→
X i

10 end
11

12 Adapt velocity of the particle using Equation 2.8
13 Update the position of the particle using Equation 2.9

14 end

15 end

16 return
−→
X gb

i

2.6.2 Grey Wolf Optimizer (GWO)

Grey wolf optimizer (GWO) [3] is one of recent meta-heuristics swarm intelligence meth-

ods. It has proved its efficiency for solving capacitated and non-capacitated optimization

problems. It has been widely tailored for a wide variety of optimization problems due to its

impressive characteristics over other swarm intelligence methods: it has very few parame-

ters, and no derivation information is required in the initial search. Also it is simple, easy to

use, flexible and scalable. It has a special capability to strike the right balance between the

exploration and exploitation during the search process which can adapt quickly to different

search space terrains and avoid premature convergence. The GWO has recently gained a

very big research interest with tremendous audiences from several domains in a very short

time [44].

Grey wolfs (Canis lupus) are apex predators belonging to the Canidae family[45], which

24



CHAPTER 2. REVIEW: MULTI–OBJECTIVE OPTIMIZATIONS

Figure 2.3: Social hierarchy of Grey Wolves.

implies that they are at top of the food chain. The crux of this algorithm is to simulate

the Grey wolf behavior which tend to live in a pack. They have a stringent social dominant

hierarchy described as follows: The top level comprises the leaders, called alpha. The alpha

is the commander of the pack and is responsible for making the decisions. The persistence of

the wolf pack is based on alpha’s decision. The beta forms the second level which constitute

the subordinate wolves. The purpose of a beta is to help the alpha in making important

decisions or other activities. The penultimate level consists of subordinate wolves, called

delta. The members in this category consist of scouts, sentinels, elders, hunters and caretak-

ers. Scouts are liable for observing the boundaries of region and warn the rest of the pack

in case of imminent danger. The sentinels are mandated to protect and guarantee the safety

of the pack. Elders are the expertise wolves who used to be alpha or beta. Hunters help the

alphas and betas when hunting prey and providing food for the pack and the caretakers are

responsible for caring for the weak, ill, or wounded wolves in the pack. The bottom level in

the pecking order is omega. The omega wolves have to comply with all the other dominant

wolves. In some cases the omega even substitutes as a babysitter in the pack.

The key attribute of Grey wolves is in its ability to memorize the positions of prey and to en-

circle them. The alpha leads the hunting pack. Consequently, to model the social hierarchy
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Figure 2.4: The design search space positioning for GWO-DSE [3]

of wolves (shown in Figure. 2.3) mathematically in GWO, the fittest solution is considered

to be the alpha (α). The beta (β) and delta (δ) is similar to the second and the third optimal

solutions, respectively. The rest of the candidate solutions are assumed to be omega (ω).

The alpha, beta and delta guide the entire hunting (optimization) process to form three best

solutions which in turn assists the ωwolves to update their positions.

A. Notations for GWO

Consequently, the prey location will be the optimal solution and the wolves represent the

possible solutions in search space. The wolves with least proximity to the prey are the α

wolves and they represent the best solutions among the available solutions. Next to best

solutions are the β solutions while δ wolves form the third best solutions. Let Xα, Xβ and Xδ

denote their locations in the search space respectively. The ωwolves update their position in

the search space based on their relative positions from α, β, and δ wolves. Figure. 2.4 shows

the positioning of the wolves and prey and the parameters involved in the equations used

for updating the positions of the wolves in the search space. The following set of steps must

be applied for hunting a prey:

• Initialization
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• Prey encircling

• Hunting

• Attack

• Search again

B. Initialization of GWO

The magnitude of the wolf pack is assumed as Wn. The locations for Wn candidate solutions

are generated randomly during the phase of initialization as described by Eqs. (2.10) and

(2.11) where each candidate wolf is
−→
Xi:

−→
Xi = [frand(Wn) · (ub− lb) + lb]

where frand(x) ∼ U([1, x]), (2.10)

where frand is a uniformly distributed random variable between 0 and x, ub and lb represent

upper and lower bounds. If the candidate solutions generated by Eq. (2.10) is beyond the

specified range of [lb, ub], the GWO framework must reevaluate the search space using

Eq. (2.11), thereby ensuring the initial solution lies within the requisite boundaries.

−→
Xi = [

−→
Xi · (u+ `)] + ub · u+ lb · `

where u =
−→
Xi > ub, ` =

−→
Xi < lb (2.11)

The GWO framework records fitness values fitF using a fitness function similar to Eq. 2.1

depending on the context of the problem being solved for each and every candidate solu-

tion
−→
Xi. The three most optimal candidate solutions are shortlisted as

−→
Xα,

−→
Xβ and

−→
Xδ

respectively.
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C. Prey Encircling

The pack encircles a prey by repositioning individual agents according to the prey location,

as follows: A prey is encircled by the wolf pack by changing the position of individual agents

in accordance to the prey location defined by Eq. (2.12).

−→
X (t + 1) =

−→
Xp(t) +

−→
A ·

−→
D (2.12)

where t is the iteration,
−→
Xp is the prey position,

−→
X is the Grey wolf position and

−→
D is given

by,
−→
D =|

−→
C ·
−→
Xp(t)−

−→
X (t) | (2.13)

where
−→
A and

−→
C are coefficient vectors calculated as follows:

−→
A = 2a · −→r1 − a (2.14)

−→
C = 2−→r2 (2.15)

where a linearly diminishes over the course of iterations controlling exploration and exploita-

tion, and −→r1 and −→r2 are random vectors over the range of [0, 1]. The value of a is the same

for all wolves. The Eqs. (2.14) and (2.15) imply that a wolf can update its position in the

design search space around the prey at any random location.

D. Hunting

The entire wolf pack participates in the activity of hunting based on information relayed by

the α, β and δ wolves, which are expected to record the prey location as specified below,

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(2.16)
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where
−→
X1,
−→
X2 and

−→
X3 are defined as follows:

−→
X1 =|

−→
Xα −

−→
A1 ·
−→
Dα | (2.17)

−→
X2 =|

−→
Xβ −

−→
A2 ·
−→
Dβ | (2.18)

−→
X3 =|

−→
Xδ −

−→
A3 ·
−→
Dδ | (2.19)

where
−→
Xα,
−→
Xβ and

−→
Xδ are the first three best solutions for the given iteration t,

−→
A1,
−→
A2 and

−→
A3 are defined as in Eq. (2.14), and

−→
Dα,
−→
Dβ and

−→
Dδ are assigned using the following:

−→
Dα =|

−→
C1 ·
−→
Xα −

−→
X | (2.20)

−→
Dβ =|

−→
C2 ·
−→
Xβ −

−→
X | (2.21)

−→
Dδ =|

−→
C3 ·
−→
Xδ −

−→
X | (2.22)

where
−→
C1,
−→
C2 and

−→
C3 are specified in Eq. (2.15).

The Eqs. (2.20, 2.21, 2.22) are interpreted by the fact that α, β, and δ wolves know the best

position of the prey and the remaining wolves adapt their positions with respect to position

of these wolves.

Attacking Stage

The agents surround the prey, which is achieved by decrementing the exploration rate a.

The parameter a is linearly updated for every iteration to range from 2 to 0 using Eq. (2.23).

a = 2− t ·

(
2

IterMAX

)
(2.23)

where t specifies the iteration count and IterMAX specifies the maximum number of iterations

allowed for the GWO. The exploration and exploitation are guaranteed by the adaptive

nature of a value[3], thus allowing GWO to ensure simple transition between exploration

and exploitation cycles. Therefore half of the iterations are reserved for exploration while

29



CHAPTER 2. REVIEW: MULTI–OBJECTIVE OPTIMIZATIONS

the later half is dedicated to exploitation. The interpretation of this stage is analogous to

wolves moving or switching their position to any random position sandwiched between their

current position and the position of the prey.

E. Search Again

In order to search for the prey, the wolves begin to diverge their paths from each other.

This behavior is modeled in GWO by initializing large values for parameter a to allow for

exploration of the design search space. The motive is to ensure that the wolves diverge as

far as possible from each other to ensure better exploration of the design search space and

subsequently converge later to attack, when they spot a better prey. Any wolf can find a

better prey (optimal solution). As they get closer to the prey, they will transform into new

alphas and the remaining wolves shall be split into beta, delta, and omega depending on

the proximity to the prey. The parameter a assigns random weights to prey and specifies

the impact of the prey in characterizing the separation of wolves as shown in Eqs. (2.12

and (2.13). This concept helps GWO to exhibit necessary random behavior, which favors

exploration and evading local optima. Therefore it can be concluded that the parameter

a provides random values throughout the process of exploring design search space which

accentuates exploration not only at the beginning of the optimization process but also until

its completion.

2.6.3 Advantages of GWO

GWO has several advantages over the existing meta-heuristic algorithms such as PSO, ABC,

GA, DE [46]: (1) It is simple to implement, (2) It can maintain the information about the

search space and keeps the best solution obtained, (3) It has fewer parameters for fine tuning,

and (4) It is a derivative–free algorithm. Due to these comparatively beneficial properties, the

performance of GWO far outpaces existing population-based meta-heuristic techniques and

it is the hallmark of our optimization procedure for IoT research in this thesis. Consequently
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we choose GWO algorithm as a optimizer algorithm to build our IoT specific GWO-DSE

and GWO-Cross-layer frameworks described in following Chapters. 3 and 4 respectively.
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Chapter 3

IoT Network Architecture Cross-layer

Optimization

I In this chapter, we propose a novel cross-layer optimization framework and communica-

tion module for the IoT using optimizing parameter road map provided by delta diagrams

illustrated in [38], 3.3 and 3.4. Our proposed framework captures the high device and service

heterogeneities of the IoT. In particular, it exploits the interrelations among the device spec-

ifications, physical layer, link layer and network layer, to find the optimal routing paths and

their corresponding communication parameters, which jointly optimize the point-to-point

delay and energy consumption for given QoS requirements. In addition, the impact of the

Internet on the achieved QoS is also taken into account. The results show that the proposed

solution outperforms existing layered solutions and the joint-objective cross-layer solution

can balance between different design objectives.
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Figure 3.1: Open Systems Interconnection reference model magnifying Network, Data Link
and Physical layers

3.1 Problem Statement

Cross-layer communication schemes[47, 48] are contemplated to provide adaptive solutions

for the IoT as they are most suitable for high heterogeneity in device hardware capabili-

ties and the communication requirements among things. In this chapter, a novel cross-layer

framework for the IoT is proposed based on GWO to accurately capture both the high het-

erogeneity of the IoT and the impact of the Internet as part of the network architecture. The

fundamental part of this framework is developed to obtain the optimal routing paths and the

communication parameters among things, by exploiting the interrelations among different

layer functionalities in the IoT. The parameter paths for optimizing the layers is provided by

a novel approach in form of delta diagram defined in Figures 3.2, 3.3 and 3.4. Moreover, a

cross-layer communication protocol called intel -LEACH[49] is devised to implement and test

this optimization framework under practical scenarios. The results show that the proposed
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solution can achieve a global communication optimum and outperforms existing layered so-

lutions and highly flexible in nature, so that the concept can be adopted to synthesize any

given communication protocol. This novel cross-layer framework is a primary step towards

providing efficient and reliable point-to-point communication in the IoT.

One of the major hindrances in the IoT is is due to a very high heterogeneity exhibited by

both the hardware capabilities and the communication requirements among different types

of things. From the hardware perspective, things can have very different computation, mem-

ory, power or communication capabilities. For instance, a cellular phone or a tablet has

much better communication and computation capabilities than a single-purpose electronic

product such as a heart rate monitor watch.

Consequently, things can have very different Quality of Service (QoS) requirements in terms

of delay, energy consumption or reliability. For example, minimizing the energy for commu-

nication/computation purposes is a major constraint for the batter-powered devices without

efficient energy harvesting techniques. On the contrary, this energy constraint is not critical

for the devices with power supply connection.

These two traits pose a conflict in designing a unifying framework which can take care of

diversity of capabilities and functionalities of things. As a result, the heterogeneity traits

of the network motivate the use of adaptive cross-layer communication schemes for the IoT.

Several cross-layer protocols exist for Wireless Sensor Networks (WSNs)[50, 51], Wireless

Mesh Networks (WMNs)[52] or Ad Hoc Networks (AHNs)[53]. However, they cannot be

applied to the IoT due to following: First, the heterogeneity of the iot incurs that things

have largely diverse hardware capabilities, different QoS requirements and individual goals.

On the contrary, in WSNs, nodes usually have very similar hardware specifications, common

communication requirements and a shared goal. Second, the Internet is involved in the IoT

network architecture, from which it inherits a centralized and hierarchical architecture. In

comparison, in WSNs, WMNs and AHNs, highly flat network architectures are considered,

in which nodes communicate in a multi-hop fashion and also the Internet is not involved.
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Figure 3.2: Delta chart synthesizer for Physical Layer

Figure 3.3: Delta chart synthesizer for Network Layer
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3.2 Contribution

The contributions of this chapter are summarized as follows: We provide an in-depth review

of the state of the art in IoT-related initiatives and standardization efforts, to better motivate

the need of a unified cross-layer solution. We identify the interrelations among the device

capabilities, physical layer, link layer and network layer, and explain how these are captured

in our solution. We define a cross-layer optimization framework with a single weighted joint-

objective function according to the service-dependent QoS requirements. A delta diagram

as defined in Figures 3.2, 3.3 and 3.4 for physical, network and data link layers respectively

for charting optimization path will greatly influence the choice of adaptive parameters used

in our cross-layer framework.

A custom cross-layer protocol is utilized[49] to implement the cross-layer optimization

framework in practical scenarios. We provide extensive simulation results which show that

our proposed solution outperforms existing layered protocols. The proposed delta diagram

(Figures 3.2, 3.3 and 3.4) based approach for synthesizing a communication system is the

first unified optimization solution for point-to-point efficient and reliable communications in

the IoT. The remainder of this chapter is organized as follows.

• discuss related work in terms of on-going standardization efforts for the IoT.

• describe the reference network architecture for the IoT that we consider throughout

this chapter.

• introduce a delta diagram based synthesizer which abets in choosing the parameters

for optimization as per system requirements.

• describe our design approach and develop the GWO-Cross-layer optimization frame-

work which captures the existing relations among the different layers of the protocol

stack described in Figure 3.1.
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• describe the GWO-Cross-layer protocol operation needed to implement our optimiza-

tion framework in practical scenarios.

• evaluate the performance of the proposed solution by means of simulation.
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Figure 3.4: Delta chart synthesizer for data link Layer
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3.3 IoT Standards

A few IoT deployment and standardization attempts by Research organizations still date are

listed as follows.

• IETF Low power Wireless Personal Area Networks (6LoWPAN) Stan-

dard[54]: defines a set of protocols to integrate low-complexity devices which operate

under the IEEE 802.15.4 Standard into IPv6 networks. However, several challenges

appear due to, among others, the mismatch between the minimum packet size for IPv6

networks and that of IEEE 802.15.4, or the difficulty to manage routing tables for the

expected number of nodes involved in the IoT. Mechanisms to guarantee point-to-point

reliability are not provided, either. QoS requirement such as point-to-point delay or

reliability.

• ETSI Machine to Machine (M2M) Technical Committee[55]: concentrates

mainly on ad hoc networks among things in which Internet is not part of the system.

For the time being, no specifications are provided for things addressing, location, and

QoS. Furthermore, different devices use different network protocols to communicate

within the same M2M network [15]. This dramatically increases the burden on the

gateway, which needs to adapt every transmission among various devices.

• IEEE 802.15.4 Standard[56]: provides the specifications for the physical layer (fre-

quency spectrum allocation, modulation, data rates, and power control) and the link

layer (MAC and error control) for Low-Rate Wireless Personal Area Networks (LR-

WPANs). However, it does not specify the implementation of higher-layer functional-

ities (e.g., routing, point-to-point reliability) or how the communication among things

over the Internet is realized.

Contemporarily there are many independent solutions for the different layer functionalities

in the protocol stack(Figure 3.1). Some of the related work can be outlined as follows,
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• Link layer: the authors in [57] present a broad overview of the MAC protocols con-

ducted in the field of wireless sensor and ad hoc networks. However, they fail to provide

a vivid guidance on the choice of MAC techniques and the associated parameters. By

contrast, the authors in [58] propose spatial correlation-based collaborative medium

access control (CC-MAC), an energy efficient MAC that exploits spatial correlation in

wireless sensor networks on the MAC layer. Both of them admit that the MAC layer

plays an important role in the performance of the overall system and affects other

layers, while they ignore these effects and their impact on the system performance.

A delta diagram for synthesizing link layer is illustrated in Figure 3.4 which provides

a road map for picking parameters to be optimized while framework execution is in

progress.

• Network layer: the authors in [59] summarize the data routing algorithms and clas-

sify the approaches into three categories: data-centric, hierarchical and location based.

In addition, in [60], the authors study the design trade-offs between energy and com-

munication overhead savings for the existing routing protocols. However, neither of

them is appropriate for IoT since the physical attributes of nodes are not taken into

account, which have direct impact on the performance and even the validity of the

routing algorithms. Furthermore, they omit the interactions between routing algo-

rithm and other layers. A delta diagram for synthesizing network layer is illustrated

in Figure 3.3 which provides a road map for picking parameters to be optimized while

framework execution is in progress.

• Physical layer: in [61], the authors advocate a physical layer-driven approach to

protocol design for wireless sensor networks with emphasis on the underlying hardware

parameters. Referring [58], the authors demonstrate the importance of the physical

layer modeling on the performance evaluation. Nevertheless, neither of them exploits

the interrelation among the MAC and other layer functionalities with the physical layer

and hence, their joint influence on the point-to-point communication performance. A
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delta diagram for synthesizing physical layer is illustrated in Figure 3.2 which provides

a road map for picking parameters to be optimized while framework execution is in

progress.

From the above, it is clear that these layered solutions cannot successfully capture the

twofold heterogeneity of the IoT. Cross-layer protocols have been successfully developed in

other paradigms such as Wireless Sensor Networks (WSNs)[50, 51], Wireless Mesh Networks

(WMNs)[52] or Ad Hoc Networks (AHNs)[53], among others. Consequently these cannot be

directly used in the IoT, due to salient differences in the paradigms.

3.4 Network Architecture

The Network Architecture for our Cross-layer framework comprises the following.

• Gateway Access Points (GAPs): advanced devices which play the role of local

network coordinator as well as interface and gateway for the communication over the

Internet. We refer to the set of things under the control of a single GAP as the GAP

domain.

• The Internet: fundamental component of the IoT. In our analysis, we treat the

Internet as a black box which is characterized by an stochastic queuing delay model

and a stochastic packet loss model[62].

• Things: physical objects with very diverse hardware specifications in terms of com-

munication, computation, memory and data storage capacity, or transmission power.

Personal electronic devices, home appliances or all sorts of equipment, are examples of

things.

Figure 3.5 illustrates the network architecture of the IoT, in which several things are con-

nected to the Internet via a common GAP. In common scenarios (e.g., at home, in the office),
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Figure 3.5: A example Network Architecture for IoT

each GAP domain is composed by a few tens of things.

The Additional network considerations are summarized as follows.

• Interconnection between things and GAP: the GAP is able to directly commu-

nicate with all the things in its domain in a single hop. However, not all the things are

able to directly communicate with the GAP, in which case multi-hop links are required.
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This asymmetry in the links results from the fact that the transmission power of the

GAP is generally higher than that of many things.

• Network knowledge: the GAP is able to collect information about all the things

in its domain (e.g., during the network association phase), such as device type, ap-

proximate location, communication or computation capabilities, among others. By

contrast, things might only know the GAP ID, but have no information about other

things. Things are not able to perform complex computation locally.

• Communication types: we distinguish two types of communication, namely, intra-

GAP and inter-GAP. Intra-GAP communication is established among things within

the same GAP domain. Despite direct transmission among things might be possible,

different capabilities among them motivates the use of the GAP for coordination. Inter-

GAP communication is established among things in different GAP domains. In this

case, the GAP serves as a gateway as well as the coordinator.

• Centralized decision: the GAP is able to run optimization algorithms locally by

exploiting its network knowledge. Therefore, the computation complexity is shifted

from things as in a distributed manner to the GAP in a centralized fashion. As a result,

global optimal routes and communication parameter values for the GAP domain can

be obtained. This is feasible since the size of the GAP domain is in the order of a

few tens of things and, thus, the resulting complexity is affordable for standard GAP

hardware capabilities.

3.5 Cross-layer Optimization

In this section, we propose a novel cross-layer optimization model for the IoT using a pa-

rameter synthesizing road map provided by Delta diagrams as illustrated in Figures. 3.2,

3.3 and 3.4 for physical, network and data link layers respectively. Furthermore the Delta
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diagram synthesizer can be generalized and extended to any layer chosen by the optimization

model adopted by a communication system. For the IoT network architecture specified in

Fig. 3.5, the Delta diagram is applied to synthesize three layers: Physical, network and data

link layers of the protocol stack described in Fig. 3.1.

We adopt a resource allocation approach which involves centralized management [63] to

estimate resource availability and environmental dynamics, coordinate the allocation of re-

sources across applications and nodes, and therefore adapt the protocol parameters at each

layer based on the synthesizer road map provided by Delta diagram. This approach assists

in integrating scattered communication functionalities into a united coherent optimization

model and provide an flexible solution for cross-layer design and control. We use this ap-

proach to jointly control and synthesize a select case of Quality of Service (QoS) requirements.

Based on our selected QoS case, we synthesize the physical layer of network architecture of

Fig. 3.5 using the Delta diagram in Figures 3.6 that results in parameters, channel and

modulation. Similarly, data link layer synthesizer (Figures 3.7) utilizes only MAC layer pa-

rameters like Access Control and error control and network layer synthesizer in Figures 3.10

produces parameters like addressing and routing for the selected case. The synthesizer pro-

duces these parameters based on case with differentiated services for applications having

contrasting QoS requirements, ranging from error-limited applications or minimum energy

consumption applications to highly-delay-sensitive applications or any combination of them.

We can model this case as a multi-objective optimization problem that must simultaneously

optimize multiple conflicting objectives of QoS requirements subject to certain constraints

of Delta diagram synthesizer, given by a minimization fitness function that produces a triple
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as follows,

Ffit = minimize
x

J(x)

⇐⇒ minimize
x

J(x) =
(
x0, x1, x2

)
=
(
ξp2pmin, T

p2p
min,PE

p2p
min

)
subject to O1 =

∣∣∣∣ξopt − ξp2pξopt

∣∣∣∣ · ∣∣∣∣PEp2p − PETh

PETh

∣∣∣∣
O2 =

∣∣∣∣PEp2p − PEopt

PEopt

∣∣∣∣
O3 =

∣∣∣∣T p2p − T Opt

T Opt

∣∣∣∣
where δξ ·O1 · δPE +O2 · δPE +O3 · δT

δPE = 1− (δξ + δT )

(3.1)

The fitness function Ffit is a minimization function. It takes a vector x of dimensions 3× 1

having elements x0, x1 and x2 and produces a minimized triple ( ξp2pmin, T p2p
min, PEp2p

min ) for

a given instance when subjected to constraint conditions in Eq. (3.1). For the IoT network

architecture in Figure. 3.5, we consider the end-to-end communication as point-to-point

communication due the vast diversity of end nodes and its heterogeneousness with respect

to its computing capacity, storage, etc. The terms in Eq. (3.1) are as follows: PEp2p is point-

to-point packet error rate ratio which is the number of error packets after applying Forward

Error Correction (FEC) divided by the total number of received packets. It is important

to note that a packet is the unit of data for radio transmission with applicable FEC. T p2p

and ξp2p represent point-to-point delay and energy consumption, while δξ, δPE, δT are linear

weighting coefficients for energy consumption, time delay and point-to-point packet error rate

respectively. PEopt, T Opt and ξopt are defined as the quintessential values[64] for point-to-

point energy consumption, delay and packet error rate for normalizing purposes respectively.

These quintessential values are defined to be the most optimistic and usually unattainable

minimum values, which are used to provide the non-dimensional objective functions and can

be computed off line. These values are used to normalize each of constraint terms O1, O2
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and O3, and optimize their deviations with respect to a pre-defined threshold, instead to

minimize their absolute values. This is done due to the fact that there are three differing

objectives which are measured in separate units as well as their order of magnitude. The

constraints terms in Eq. (3.1) are defined as follows,

Point-to-point energy coefficient is

O1 ←
∣∣∣∣ξopt − ξp2pξopt

∣∣∣∣ · ∣∣∣∣PEp2p − PETh

PETh

∣∣∣∣ (3.2a)

Point-to-point packet error rate coefficient is

O2 ←
∣∣∣∣PEp2p − PEopt

PEopt

∣∣∣∣ (3.2b)

Point-to-point timing coefficient is

O3 ←
∣∣∣∣T p2p − T Opt

T Opt

∣∣∣∣ (3.2c)

3.6 Physical Layer Traits

At the level of physical layer (Figure. 3.1), the things of IoT can have their communication

synthesized on any of the network domains relating to Behavioral, structural and Optimizer

parameters depicted in Figure 3.2. For example, in case of network architecture of Fig-

ure. 3.5, different things have a variety of maximum transmission power parameter which

tend to choose differing modulation schemes and have varying data storage capacities (i.e.,

the number of packets that things can locally queue). As a consequence the physical layer

Delta diagram synthesizer of Figure 3.6 depicts this action corresponding to parameter level

parsing across specified domains.

3.6.1 Channel model and frequency allocation

Our model adopts the frequency spectrum allocation based on IEEE 802.15.4 standard[56]

where things are able to dynamically select any of the 5-MHz-wide sub-channels in 2400 −
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Figure 3.6: Parameter synthesizing action for Physical Layer Synthesis

2480 MHz band. Due to the fact that many applications of IoT are based indoor (e.g., home,

office, warehouses), we set the ITU channel model for indoor propagation [65]. The total

path loss L in dB is given by

L(d, fc) = A log10(d) + Lf (r) + 20 log10(fc)− 28 (3.3)

where fc represents carrier frequency in MHz, d is the distance in meters to transmit, r is

the number of floors between the transmitter and the receiver (we consider only one floor in

our current scenario, i.e., r = 1 and A is the distance attenuation coefficient (i.e., A = 20

in our simulations), and Lf is the floor penetration loss factor since whose value is zero for

only one floor.
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3.6.2 Power, Modulation and BE for Transmission

The Bit Error Rate (BE) is directly affected by the transmission power and modulation.

The Bit Error Rate over a data link ` denoted by BEDL
` is determined by its respective

Signal-to-Noise Ratio SNRDL
` and modulation M` as,

BEDL
` (d, fc) = Sψ

(
M`, SNR

DL
` (d, fc)

)
where SNRDL

` (d, fc) = PTx` − Pnoise − LDL
` (d, fc)

(3.4)

where the BE is calculated by function Sψ for a given modulation and SNR, and it is common

knowledge for standard modulations. From Eq. (3.4), we observe that the SNR (in dB) of a

data link ` has a transmission power PTx` in dB, total noise power Pnoise in dB at the receiver

and a path loss LDL
` (d, fc) for data link ` estimated using Eq. (3.3)

The three most predominant modulations, namely, BPSK, QPSK and 16-QAM are utilized

for simulation purposes using intel-LEACH protocol[49], but any other modulation can be

easily included in the framework. These modulations are distinguishable in terms of achiev-

able BER for a given SNR, i.e., Sψ in Eq. (3.4), and spectral efficiency, i.e., theoretical

achievable data bit-rate for a given transmission bandwidth. A higher complexity modula-

tion exhibits higher bandwidth efficiency, which results in a higher transmission data rate

or a shorter transmission time, data
iT . However, these come with the cost of an increase

in the energy consumption at the transmitter and the receiver due to the increase in the

computation complexity, as well as, potentially, also in the processing time. Furthermore,

more complex modulations require a higher SNRDL
` , thus, higher PTx` , to achieve the same

BEDL
` . At the same time, though, the transmission time, T Data

` , is shorter, which also affects

the link energy consumption. These interrelations are properly captured in the following

GWO framework.

48



CHAPTER 3. IOT NETWORK ARCHITECTURE CROSS-LAYER OPTIMIZATION

3.6.3 Probability of Packet Drop-out and Data Buffer Capacity

The probability of packet drop-out is directly influenced by data storage capacity µ of the

things. Thus, the probability of discarding a packet at link `, Pdrop
` is related to the fact

that it cannot be queued at the transmitter or at the receiver given by,

Pdrop
` = Gψ(µ`,<`) (3.5)

such that the maximum number of packets µ` that can be queued at the transmitter or the

receiver and the total local traffic <` (self traffic and relayed traffic) is influenced by function

Gψ. Considering a simplest case of Poisson traffic, the transmitter and receiver are modeled

as single serve First In First Out (FIFO) queue having data buffer capacity of µ`.

3.7 Data Link Layer Synthesis

In IEEE 802 LAN/MAN standards, the medium access control (MAC) sublayer (also known

as the media access control sublayer) and the logical link control (LLC) sublayer together

make up the data link layer. Within that data link layer, the LLC provides flow control and

multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag, etc.), while the MAC

provides flow control and multiplexing for the transmission medium.

For the IoT network architecture in Figure. 3.5, the delta diagram for data link layer synthe-

sizer (Figure 3.3) utilizes only MAC layer parameters like Access Control and error control as

per QoS requirements defined for Eq. (3.1). We analyze the impact of the error control mech-

anism and the MAC protocol on the network performance, as well as, their interrelations

with other layers and the limitations imposed by the things capabilities. This parameter

level parsing action is depicted sequentially in data link layer delta diagram synthesizer of

Figures 3.7, 3.8 and 3.9.
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Figure 3.7: Parameter synthesizing start action for Data Link Layer Synthesis

3.7.1 Packet Error Rate and Error Control

For our cross layer model we adopt a Hybrid ARQ error control scheme [66], the overall

packet error rate over data link ` is given by

PEoverall
` = Kψ

(
PEnon-Code

` , Nmax
` , Nbits

FEC

)
(3.6)

where Kψ is a function that relates the PE of data link ` after Hybrid ARQ error control,

PEoverall
` , with the uncoded data link PEnon-Code

` . In the above equation, Nbits
FEC is the FEC

redundancy length and Nmax
` is the maximum number of transmissions including retransmis-

sions, which can be adjustable in our cross-layer model.
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Figure 3.8: Parameter synthesizing sophomore action for Data Link Layer Synthesis

The uncoded packet error rate PEnon-Code
` over a link ` in Eq. (3.6) is given by,

PEnon-Code
` =

[
1− ( 1− BEDL

` )N
bits]

·( 1− Pdrop
` )

(3.7)

where Nbits is obtained by network layer synthesis calculation specified in Sec. 3.8

Using Eq. (3.6), PEm-Hops is defined as a function of PE over link ` given by,

PEm-Hops = 1−
m Hops∏
`=1

(1− PEoverall
` ) (3.8)

From Eq. (3.6) we can infer that higher magnitude values of Nbits
FEC and Nmax

` lead to (i) a lower

transmission data rate or larger link delay, (ii) a lower PER, and (iii) a higher total energy

consumption. The impact of the error control parameters interplays with those made by

adjusting the transmission power and the modulation scheme at the physical layer. Finally,
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Figure 3.9: Parameter synthesizing final action for Data Link Layer Synthesis

the point-to-point packet error rate constricted by the threshold PETh dependent on PEm-Hops,

and PENet (PE over the Internet) is defined by,

PEp2p = 1− (1− PEm-Hops)(1− PENet) ≤ PETh (3.9)

3.7.2 Medium Access Control

We consider a variation of Sleep MAC (SMAC) [30] and Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA), for mainly two reasons. First, idle listening is a major

source of energy consumption in low traffic applications such as those expected in the IoT,

and many of the physical objects in the IoT may have very limited energy storage. Therefore,

we adopt the idea of SMAC in which things periodically listen and sleep [30]. For example,

almost, 90% of the total energy consumed during idle listening can be saved when things use

an awake/sleep duty cycle of 10%. However, by decreasing the duty cycle, the chances for
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things to be connected decrease too and the link delay increases. Second, the interference

among the things in one GAP domain or in close GAP domains affects the SNR and thus

degrades the BER and the PER. In the CSMA/CA, a node attempts to reserve the channel

after it sees the medium idle for an Inter-Frame Space (IFS) amount of time. If the node

fails to reserve the medium, it switches to sleep mode to save energy and waits for the next

listening cycle. This medium access method can eliminate the interference drastically if the

carrier sensing is properly performed. As a result, the hybrid of SMAC and CSMA/CA

medium access protocol can save the energy as well as reduce the interference among the

things.

In our framework, the duration of the listen and sleep cycles (T Listen,T Sleep = 9 × T Listen

for a 10% duty cycle) are adaptive to the QoS requirements and they are set the same for

all nodes in one GAP domain. The longer the sleep duration is, the lower the idle energy

consumption, but the longer point-to-point delay. This duration parameter in the MAC

protocol is taken into account in our cross-layer framework to interplay with the physical

layer parameters as well as Hybrid ARQ parameters.

3.8 Network Layer Synthesis

We discuss the impact of the packet size on the different layers. During the stage of network

layer, the things of IoT can have variations based on the Behavioral, structural and Optimizer

parameters depicted in synthesizer Figure 3.3. We analyze the addressing and information

routing on the network performance, as well as, their interrelations with other layers and

the limitations imposed by the things capabilities. The initiation of parameter level parsing

action is depicted in network layer delta diagram synthesizer of Figures 3.10.
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Figure 3.10: Parameter synthesizing begin action on Network Layer

3.8.1 Addressing of things and Routing

Since a huge amount of things are part of the IoT architecture depicted in Fig. 3.5, it is

imperative to use IPv6 addressing for the IoT. IPv6 addresses are expressed by 128 bits,

which allow the definition of 1038 unique addresses (these are expectedly enough for the time

being). However, IPv6 addresses are only used for inter-GAP communications, while much

shorter local addresses are used in intra-GAP communications.

Our model for routing mechanism uses destination-based routing mechanism [67] where the

GAP selects the point-to-point route and the configuration parameters for each data link in

a centralized manner resulting from cross layer modeling.
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3.8.2 Packet Size Impact

In our model, a fixed packet size Nbits is selected and used for all the data links ` throughout

a given path. A larger packet size results in a reduced point-to-point delay by saving the

handshake time T hshake, the acknowledgement time T ack, and the queuing time T Queue that

are required for each packet. Additionally, the reduction of the total number of packets to be

sent has an impact on the total energy consumption, while at the same time, transmitting

more bits of information in a packet affects the PER. All these interrelations are incorporated

in our cross-layer framework.

Nbits= Nbits
Header + Nbits

FEC + Nbits
Data where Nbits is packet size containing header size, data length,

and FEC redundancy length, NDL
` = (1 - PEnon-Code

` )−1 is the upper bound for the total

number of transmissions of a packet with correct decoding over link `. We can now describe

the overall energy consumption and timing delays (for complete point-to-point path of the

IoT network) having constraints ξTh and T Th in evaluating the Fitness function in Eq. (3.1)

as follows.

kξ = Nbits · ξkb

⇐⇒ ξk ≤ ξThk

(3.10)

where energy on the kTh node is kξ resulting from the product of packet size Nbits and the

energy per bit ξkb calculated by,

ξkb = 2ξEqp
b +

PTx

<k
⇐⇒ ξEqp

b = ξEqp
b−Tx = ξEqp

b−Rx J/bit

(3.11)

where ξEqp
b is the energy to transmit one bit independent of the distance involved and ξEqp

b−Tx,

ξEqp
b−Rx constitute energy for transmitter and receiver device equipment.

Let T p2p be the point-to-point time duration which also includes the Internet delay T Net

constricted by threshold T Th for inter-GAP communications and the link queuing delay
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T Queue. Factors such as current traffic, behavior of other nodes in IoT or its hardware status

etc., determine the queuing delay and Internet delay. Thus T p2p is defined as,

T p2p =

m Hops∑
`=1

( T Queue
` + T` + T Net

` )

⇐⇒ T` ≤ (NDL
` − 1) · (T hshake

` + T Data
` + T Time−out

` )

+T Sleep + T Signal( T hshake + T Data + T ack )

(3.12)

Using Central Limit Theorem [68], the complete point-to-point delay T p2p can be modeled

as a Gaussian distributed random variable with variance given below,

variance = var(T Net+Queue) where

T Net+Queue =

m Hops∑
`=1

T Queue
` + T Net

(3.13)

The target probability tγ is obtained by Chebyshev’s inequality[69] to decompose point-to-

point delay constraint into,

P( T p2p ≥ T Th )

≤ var(T Net+Queue)
var(T Net+Queue) + (T Th −

∑m Hops
`=1 T` − T Net+Queue)2

≤ 1− tγ

⇐⇒ P(T p2p ≤ T Th) ≥ tγ satisfying

(T Th −
m Hops∑
`=1

T` − T Net+Queue) > 0

(3.14)
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The complete point-to-point throughput of IoT architecture is inversely proportional to the

point-to-point delay p2pT given by,

ρp2p =
Nbits

Data

T p2p
≥ ρTh (3.15)

So far, we have explored the interrelations among the parameters at the physical layer

(Section 3.6), the link layer (Section 3.7) and the network layer in Section 3.8. These

parameters including the transmission power, modulation type, the FEC length, the number

of retransmissions, the listen duration, the packet size and their interactions, are all optimized

in our cross-layer framework, as described in the following section.

3.9 GWO Cross-layer Optimizer framework

3.9.1 Background on Grey Wolf Optimizer

We adopt the GWO algorithm framework discussed in Chapter. 2 Sec. 2.6.2 and apply for

extracting a minimized triple specified in Eq. (3.1) by synthesizing the parameters discussed

in delta diagram Figures 3.6, 3.10 and 3.9.

3.9.2 Algorithm Set-up

The GWO-Cross-layer framework records fitness values Ffit(
−→
Xi) using Eq. (3.1) for each

candidate solution
−→
Xi. The following notations and assumptions are to be conveyed before

designing the algorithm for GWO-Cross-layer framework.

• Each and every candidate solution
−→
Xi is a triple defined in Eq. (3.1).

• The three most optimal candidate solutions are shortlisted as
−→
Xα,
−→
Xβ and

−→
Xδ respec-

tively.
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• Every fitness function call is subjected to the QoS constraints of Eqs. (3.2a), (3.2b)

and (3.2c).

• The values for PEopt, ξopt, T Opt, PETh, ξTh, T Th, Nbits
Header, PE

Net, T Net are computed off

line and not during the framework execution in real time.

• The timing parameters tγ, T hshake, T Data, T Time−out, T ack, T Queue, µ` and the helper

functions Kψ, Gψ, Sψ are also independent of GWO and will be computed off line.

• The linear weights δξ, δT , δPE and link traffic parameters <`, NDL are global and

precomputed values independent of QoS framework.

The outcome of Alg. (2) will be near optimal set of triples which satisfy the minimization

requirements of Eq. 3.1 subjected to QoS requirements of Eqs. (3.2a), (3.2b) and (3.2c).
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ALGORITHM 2: GWO-Cross-layer Framework

Data: Wn–magnitude of the wolf pack, IterMAX – total number of iterations more
than 0, set of ordered triples Striples ← { ( ξp2p, T p2p,PEp2p ) }, user defined
constraints specified in Sec 3.9.2

Result: Most Minimum Triple:( ξp2p, T p2p,PEp2p ) ← Ffit(
−→
Xi), Optimal Grey wolf

position within given Cross-layer Architecture.
1 begin

2 Randomly initialize Wn number of candidate
−→
Xi Grey wolves

3 Using Eq. (4.31) identify the best three triples as Xα, Xβ and Xδ wolves
4 Set t:=0
5 repeat

6 foreach
−→
Xi ∈ Striples do

7 Update
−→
Xi using Eq. (2.16)

8 end
9 Compute Eqs. (2.23, 2.15, 2.14) to update a, A, C

10 forall Wolves
−→
Xi of Striples do

11 newPositions ← get positions using Eq. (2.10)
12 if newPositions /∈ Range then
13 newPositions ← get positions using Eq. (2.11)
14 end

15 end

16 foreach
−→
Xi ∈ Striples do

17 Deduce Minimum-Triple using fitness function Ffit(
−→
Xi) subject to QoS

constraints of Eq. (3.2)

18 end
19 Rank α, β, and δ positions as premier 3 best solutions based on Minimum

Triples from Previous Step.
20 t ← t+ 1

21 until t ≤ IterMAX
22 Choose Optimal Grey Wolf position given by Eq. (3.1)

23 end
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3.10 Real-time Protocol Testing

The intel-LEACH protocol [49] was incorporated to test our framework from synthesis to

optimization steps in practical point-to-point IoT scenarios. The operation is briefly listed

in following phases.

1. Transmission Phase

• Check route validity from point to point nodes and following initialization routines

of MAC operation described in Section 3.7.

• Failure mitigation by generating Route Request (RR) packet containing the des-

tination thing ID directed towards nearest GAP.

2. Service Phase

• GAP transmits its ID in broadcast mode periodically

• GAP has sufficiently large power to directly communicate with every thing in its

domain (Section 3.4).

• The things register themselves to GAP with Network Association (NAS) packet.

3. Messaging Phase

• Upon receiving packet data, the thing sends a Route Acknowledge (RA) packet

to the previous hop in the route to show its alive.

• The above process is repeated in multi-hops scenario until source is reached.

• Data is transmitted by following the optimal route with the chosen communication

parameters defined by delta diagram in Figure 3.9 and according to description

in Sec. 3.8.

• Computation complexity is shifted from things to GAP which reduces multi-flow

problems.
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4. Routing Phase

• GAP receives the RR packet via several paths, the intermediate nodes are ear-

marked as priority candidates for data transmission

• GAP initiates the GWO-Cross-layer framework for potential paths and QoS re-

quirements to find the near optimal path and the associated communication pa-

rameters, as explained in Sec. 3.9.

The performance of the GWO-Cross-layer framework and traditional layered solutions was

compared and analyzed by setting the network with following random variables for testing

cross-layer functionalities.

• Additive white Gaussian noise (AWGN) at each link ` as N` ∼ N (µnoise, Pnoise) where

µnoise = 0, 10 log10 Pnoise = −86dB

• Queuing Delay for things at each link ` as T Queue
` ∼ N (10, 104) ms

• Delay due to Internet as T Net ∼ N (102, 104) ms

• Packet drop-out rate at every link ` as Pdrop
` ∼ U(0, 10−1)

• Packet Error rate of internet as PENet ∼ U(0, 10−4)

The traditional layered approach has each layer autonomously optimized based on Dynamic

programming approach as described in [70, 71]. We consider the results only when the QoS

is focused on either point-to-point delay minimization, energy consumption minimization,

or a linear combination of both, while the threshold for PE is constricted to be less than

PETh = 104. However, for simulation purposes, the total amount of data to transmit per

transmission is set to 105 bits and the possible packet sizes Nbits are 200, 500 or 2000 bits. It

is important to note that for every transmission, the thing randomly selects its destination

and there is an equal probability that links are either inter-GAP or intra-GAP. The things

are randomly assigned diverse hardware capabilities, in terms of computing, memory, energy
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storage, power and communication. Consequently the link rate of things ranges among [250,

103 , 104] kbps and the power of things varies among [10, 30, 50, 80, 100] milliwatts.

Notice that the error bars in Figures. 3.11a, 3.11b and 3.11c represent the uncertainty inter-

val at the 95% confidence level. The four layered solutions that are plotted for comparison

differ in the modulation scheme and the packet size, and make use of the shortest path

routing. The Figure 3.11a illustrates point-to-point delay in ms and the energy consump-

tion in mJs (micros Joules) plotted against the number of things in an IoT network. The

distance between the transmitter and the receiver is set to 40 m. Our GWO Delta diagram

based cross-layer approach has at least 10% gain over other layered solutions. Consequently,

we can observe that neither the point-to-point delay nor the energy consumption increases

as the number of things increases. This happens when higher node density creates more

optional paths for transmission, and contrastingly the point-to-point consumption does not

have proportional relationship with it. The 95% confidence interval implies that our GWO

Delta digram Cross-layer solution stabilizes than other layered solutions, and the point-to-

point performance does not significantly deviate although the computation complexity at

the GAP increases.

Another scenario was observed that by increasing the number of hops in the path implied

the rise of the point-to-point delay since there are additional handshake, processing and

queuing delay introduced into the transmission and the trend is seen in T p2p increases as

distance increases (Fig. 3.11b). In addition, the energy consumed for the longer distance

and by the additional nodes increase the overall ξp2p (Figure 3.11c). It can be inferred from

Fig. 3.11d that the energy consumed per bit (Eq. 3.10,Eq. 3.11) is directly proportional to

the distance between point to point and also evident that energy consumed by GWO Delta

diagram cross-layer model is lower than referenced methods. Also PE improves significantly

with increased SNR for our model compared to other benchmarks as depicted in Fig. 3.11e.

The transmission power is very much lower compared to other layered approaches involving

the distance covered as shown in Fig. 3.11f.
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(a) Delay vs Things (b) Delay vs Distance

(c) Energy vs Things (d) Bitwise Energy ξb vs Distance

(e) Error Probability vs SNR (f) Transmitted Power PTx vs Distance

Figure 3.11: GWO Delta diagram Synthesized Cross-layer solution compared with traditional
layered solutions
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Energy Analysis: A critical cost analysis for energy benchmarking GWO-Crosslayer

Framework with traditional crosslayer models having different modulation levels is depicted

in Fig. 3.12c. It can clearly interpreted from Fig. 3.12c that our model based on Delta dia-

gram outlasts all the other models in terms of network longevity and energy conservation.

The comparison of energy dissipation among various optimization algorithms is shown in

Fig. 3.12a. We begin the study of evolutionary algorithms by applying the multi-objective

optimization (MOO) for energy factor described in fitness function of Eq. 3.1. Initially we

choose MOO algorithms such as Simulated Annealing(SA) algorithm and the Genetic Algo-

rithms(GA) for our model. However, SA algorithm suffers from extreme slowness thereby

searching for an optimal solution is not very efficient and feasible. Thus as depicted in Fig

3.12a, the curve for SA predicates worst performance among all other comparative algorithms

for energy model in Eq. 3.1. Although relatively the Genetic Algorithm (GA) performs better

than SA, it encounters issues about not only termination time, but also with the convergence

rate. This is due to the fact that GA has a major drawback of getting stuck in local min-

ima, making it unsuitable for multi-objective based optimization problems. Particle Swarm

Optimization (PSO) overcomes the above challenges faced by SA and GA, however it still

falls short with problems related to high dimensional space. Furthermore, Hybrid Grey Wolf

Optimizer Sine Cosine Algorithm (HGWOSCA) [72], Sine Cosine Algorithm (SCA) [73] and

Artificial Bee Colony (ABC) [35] methods overcome most of the problems faced by other

algorithms described earlier. But the GWO based framework described in Alg. 3 performs

optimally for our the specific context and able to find the best possible fitness energy scores

with least number of iterations. The Fig. 3.12b show that the box-plot of GWO is signifi-

cantly lower and narrower than other algorithms. Fig. 15 shows that the box-plot of SA is

super narrow implying worst suitability for our model; while GWO is under the minima of

other algorithms. This means that GWO tends to find the global minimum and significantly

outperforms other algorithms.
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(a) Comparative tests of algorithms for Delta
Diagram Synthesizer using Box-plot

(b) Comparative tests of algorithms for
achieving convergence for our Delta Diagram
model.

(c) Network Longevity Analysis

Figure 3.12: Network Lifetime and Convergence Scenario Analysis

3.11 Conclusion

In this Chapter, we presented the novel cross-layer design of the IoT protocol stack, which

ranges bottom-up from the Physical to the MAC layer. The approach uses a Delta-diagram

based synthesizer to identify the parameters to consider for optimization. The parameters

chosen are completely dependent on the type of network and topology of IoT setup and
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hence it is very flexible. Furthermore, synthesis process enables parsing differing levels

of parameters and moving across different domains of Behavior, Structural and Optimizer

requirements of the chosen protocol for IoT.

We constructed a model for deriving the fitness function which simultaneously minimizes

Energy, Timing delays and Packet Error rate requirements of the IoT network protocol

subjected to the QoS constraints.

We introduced a modified Grey Wolf Optimizer algorithm to optimize and search the near

optimal minimized triple resulting from model search space. The results and analysis of the

methodology shows that our approach using a test protocol outperforms other cross-layered

approaches significantly and is highly flexible in nature so that it can adapted to any type

QoS requirements of different IoT network protocols.
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Chapter 4

HLS for Resource Constrained IoT

Hardware

In this chapter a mathematical model to arrive at an optimal arrangement of resource

utilizations within DSE is proposed. The proposed model resolves conflicting objectives

of power-performance as well as area occupied by different types of critical hardware re-

sources. We resolve for arriving at this type of arrangement with minimum completion time

among all of the possible permuted arrangements. The problem is formulated in term of

multi-objectives as in the case of DSE for ensuring reliable power-performance-area trade-off

for application specific processors. For resolving such a trade–off problem many heuristic

algorithms are considered a natural fit to derive an optimal solution in DSE procedure. Con-

sequently, in this chapter a comprehensive mapping process and reliable solution evaluation

approach called Grey Wolf Optimizer Driven DSE (GWO-DSE) is proposed with several

advantages over other heuristics. The contributions of the chapter are outlined as: i) Intro-

duction of a novel GWO-DSE methodology for power-performance-area trade-off ii) Unique

solution evaluation methodology called Utility Coefficients and Utility Ranking iii) Novel

fitness function evaluation technique for GWO iv) Comparative benchmarks using digital
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filter transfer functions v) Substantial improvement in solution arrival within search space

(average > 51%) and reduction in exploration time (> 89%) when compared to recent DSE

approaches for the tested benchmarks.

4.1 Background

High-level synthesis (HLS), also referred to as C synthesis, electronic system-level (ESL)

synthesis, algorithmic synthesis, or behavioral synthesis, comprises of an automated de-

sign process that interprets an algorithmic description of a desired behavior and creates

digital hardware that realizes that behavior[74]. Synthesis begins with a high-level specifi-

cation of the problem, where behavior is generally decoupled from structure e.g. clock-level

timing. Early HLS explored a variety of input specification languages[75], although re-

cent research and commercial applications generally accept synthesizable subsets of ANSI

C/C++/SystemC/MATLAB. The code is analyzed, architecturally constrained, and sched-

uled to create a register-transfer level (RTL) hardware description language (HDL), which

is then in turn commonly synthesized to the gate level by using a logic synthesis tool. The

goal of HLS is to let hardware designers efficiently build and verify hardware, by giving

them better control over optimization of their design architecture, and through the nature

of allowing the designer to describe the design at a higher level of abstraction while the tool

does the RTL implementation. An algorithmic description specifies the inputs and outputs

of the behavior of the algorithm in terms of operations to be preformed and data flow[75]. A

description of the algorithm is usually represented in the form of an acyclic directed graph

known as a sequencing graph[76]. These graphs specify the input/output relation of the

algorithm and the data dependency present in the data flow. The graph is defined in terms

of its vertices and edges, wherein the vertices signify the operations and the edges indicate

the data dependency present in the function. Hence HLS is a conversion from the abstract

behavioral description to its respective hardware description in the form of memory ele-
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ments, storage units, multiplexers/de-multiplexers and the necessary interconnections. The

transformed algorithm at the RT level is comprised of a data path unit and the control

unit[77]. Multi-Objective Optimization techniques for very-large scale integrated (VLSI) is

an area of multiple criteria decision making. Multi-objective VLSI designs are concerned

with mathematical optimization problems involving more than one objective function such

as cost of solving the scheduling, allocation, module selection since an exhaustive search has

a prohibitive complexity. Techniques based on Multi-Objective Optimization are employed

both in low end Application Specific Integrated Circuits (ASICs) with low power dissipation

and acceptable performance and in high end ASICs with high performance requirements

and optimal power expenditure. Therefore, it warrants efficient design space exploration

(DSE) techniques to determine optimal usage of time as a consequence of time-to-market

circumstance[78]. Design space exploration (DSE) refers to the activity of exploring design

alternatives prior to implementation. The power to operate on the space of potential design

candidates renders DSE useful for many engineering tasks, including rapid prototyping, opti-

mization, and system integration. The main challenge in DSE arises from the sheer size of the

design space that must be explored. Typically, a large system has millions, if not billions,

of possibilities, and so enumerating every point in the design space is prohibitive[79, 80].

Typically DSE refers to the activity of discovering and evaluating design alternatives during

system development using multi-objective techniques. The usage of DSE includes but not

limited to (1) Rapid prototyping-to generate a set of prototypes prior to implementation.

Simulating and profiling of these prototypes can increase understanding of the impact of de-

sign decisions while taking complex system dynamics into account. (2) Optimization-When

metrics are available for comparing one design to another, DSE can be used to perform opti-

mization, eliminating inferior designs and collecting a set of final candidates that are further

studied.(3) System integration-requires the assembly and configuration of multiple compo-

nents into a working whole. DSE can be used to find legal assemblies and configurations

that satisfy a set of global design constraints[79, 81, 82].
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4.2 Related Work

The area optimization, delay and power in behavioral synthesis was achieved in [83] albeit it

does not emphasize high level design space exploration using swarm intelligence techniques.

The model described in [33] solves DSE problem using a hybridized technique of GA and

weighted sum particle swarm optimization (WSPSO). The WSPSO solved the DSE prob-

lem by performing a crossover between current position with global best position and local

best position similar to GA while not considering velocity to update the position. However,

WSPSO approach does not utilize multiple user constraints for power, execution time and

area in cost function. Particle Swarm Optimization (PSO) is also a heuristic search method-

ology similar to Grey Wolf Optimizer (GWO)[3] algorithm which emulates the journey of

a flock of birds aiming at finding food[84]. However, the performance of heuristic GWO-

based algorithm[3] is far superior to well-known evolutionary trainers like GA, PSO, and

Differential Evolution (DE). From our best knowledge, this chapter is the first to consider a

IoT approach for parameter estimation in DSE based on the resource classification of design

space.

4.3 Hypotheses and Problem Definition

In this section several definitions are postulated that will help to understand the flow of

the design problem. A novel approach for establishing a design search space with defined

boundaries and content format will eventually be discussed in this section to shortlist the

ideal candidate micro-architecture from a collection of architecture design tuples. Therefore

the proposed approach serves as a cornerstone for rapid high level synthesis design flow.

Hypothetically the process of DSE is a protracted task for the designer since the exploration

is a long-drawn-out procedure[76]. In order to arrive at an optimum design configuration,

the DSE process warrants tremendous accuracy with extensive analysis. Ideally, it is advan-

tageous to arrive at a best variant within large design space in shortest possible time and
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Γ× T Γ⊗ T

Λ

ς

⊗

ς̃

Figure 4.1: Universal Property for Tensor Product

having least complexity. Consequently, the impact a resource will have on each optimized

parameter during its change must be determined and the following theory forms the basis

to explain a real world example via HLS.

4.3.1 Execution Time Analysis

The Def. 1 introduces the term ’Reliability-Aware Workload’ (Raw) as described below.

Definition 1. The Raw of an ith resource γji of type j is defined as time expended (or clock

cycles processed) by a resource to complete its assigned operation during the process of

scheduling. The type j of the resource γji represents the category to which it belongs among

m categories e.g. adder, subtracter, multiplexer, alu, etc. and n number of total resources

where 1 ≤ i ≤ n, 1 ≤ j ≤ m. �

The maximum resources in a category is given by Def. 2 which follows from Def. 1.

Definition 2. Let ηj denote the maximum number of resources for any category j. Then

ηj can be defined using a maximum function f for any given ith resource as follows:

ηj := max
γji ∈Ω⊆Γ

f(γji ) = {h | γji ∈ Ω ∧ ∀ κh ∈ Ω : f(κh) ≤ f(γji )} (4.1)

�
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The design space can be formulated as a plurality of vectors that represents total available

resources as Γ =
[
γ1

1 , γ1
2 , . . . , γ1

η1 , γ
2
1 , γ2

2 , γ2
ηj , . . . , γm1 , γm2 , . . . , γmn−1, γmηm

]
and the

number of clock cycles for respective resource as T =
[
τ 1

1 , τ 1
2 , . . . , τ 1

η1 , τ
2
1 , τ 2

2 , τ 2
ηj , . . . ,

τm1 , τm2 , . . . , τmn−1, τmηm
]T

. A tensor product of Γ and T homomorphically mapping to Λ

is described in the Def. 3 below.

Definition 3. [85] Let Γ and T be two vector spaces in a given domain of design space.

The tensor product of Γ and T denoted by Γ⊗ T is a vector space with a bilinear map

⊗ : Γ× T → Γ⊗ T (4.2)

which has the universal property as described in Figure. 4.1. Iff ς : Γ×T → Λ, there exists

a unique linear map up to isomorphism, ς̃ : Γ⊗ T 7→ Λ such that ⊗ ◦ ς̃ = ς �

Consequently Raw from can be defined in terms of all available resources for finishing

their respective operations by multiplying the tensor product Λ with %data – a constant

which specifies the iterations an entire set of data elements needs to be processed and %t–the

time period of the clock defined below.

Raw := Λ · %data · %t (4.3)

It is observed that there are simultaneous infinitesimal changes δγ, δτ and δ%t to resources,

resource clock cycles, and total period respectively during the exploration process. As a

result, we can take a total differential [86] based on every category in Eq. (4.3) resulting in

Eq. (4.4),

dRaw =

[
∂Raw

∂Γ
·∆Γ +

∂Raw

∂%t
·∆%t

]
· %data (4.4)

The partial derivative applied to the Eq. (4.3) with respect to Γ is evaluated individually as

follows,
∂dRaw

∂Γ
=
∂ (Γ⊗ T · %data · %t)

∂Γ
(4.5)
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Proposition 1. The number of clock cycles τ ji for an ith resource γji is a constant value for

jth category if resources are monotonous[87] i.e. τj i = 0, ∀j 6= i =⇒ τ j ← T , ∀i.

As a consequence of Prop. (1), the tensor product in Eq. (4.2) contracts to product of

summations[85] and partially differentiates with respect to individual jth category subsets.

Thereby, Eq. (4.5) reformulates to,

∂Raw

∂Γ
∼=
∂

(
m∏
j=1

(ηj + τ j)

)
∂ ηj

· %data · %t

=
m∏
j=1

(
1 +

∂τ j

∂ ηj

)
· %data · %t

(by reciprocity transformation

and getting the dual using [88])

=

∂ τ j

∂ ηj

1−
(

1 + ∂ τ j

∂ ηj

)−m · %data · %t (4.6)

=

∂ τ j

∂ ηj

1− ζr
· %data · %t

where ζr =
1(

1 + ∂ τ j

∂ ηj

)m
is the resource depletion ratio

It is observed from Eq. (4.6) that resource depletion ratio ζr closely mimics present value

analysis (PVA) applied to cost-benefit analysis [89] of asset management given by,

PV
FV

=
1(

1 + ∂ τ j

∂ ηj

)m
= ζr (4.7)
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where PV is Present Resource Value

and FV is Future Resource Value.

From Eq. (4.7) it follows that the resource depletion ratio ζr can be equated as the rate of

compounded depreciation over m number of resources.

Substituting Eq. (4.7) in Eq. (4.6) we get,

∂Raw

∂Γ
=

1(
1− PV

FV

) · %data · %t (4.8)

The total differential in Eq. (4.4) can be expressed in terms of Eq. (4.8) as,

dRaw =

[
1

(1− ζr)
· %data · %t ·∆Γ + Λ · %data ·∆%t

]
· %data

using Prop. (1),

=

[
1

(1− ζr)
· %t ·∆Γ +

m∏
j=1

(
ηj + τ j

)
·∆%t

]
· %2

data (4.9)

The individual terms of Eq. (4.9) can be interpreted as follows,

• Eq. (4.9) denotes that the effective change in Raw is a consequence of changes in total

number of resources and the clock periodicity (frequency) respectively.

• The coefficient term 1
(1−ζr)

· %t ·∆Γ in Eq. (4.9) indicates that rate of increase in Raw

is proportionate to an increase in j categories and/or i number of resources for that

particular resource ∆Γ (e.g. if the number of multiplexers in a specific resource category

increases from one to ten, it results in a substantial increase in Raw due to resource

constraints).

• The coefficient term
m∏
j=1

(ηj + τ j) ·∆%t in Eq. (4.9) specifies rate of change in Raw con-

tributed by the clock period (frequency) changes. Typically, the timing constraints[90]
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occur due to propagation delays and net clock frequency changes. The effective corre-

lation of synthesis and place-and-route timing delivers better timing quality-of-results

(QoR) for resource clock[90] thus improving Raw.

• Based on the above analysis, we define the term Utility Coefficient (UC) during the

DSE process of our proposed model. The UC underlines the influence of any given

resource in net variability of optimization parameters such as area, time of execution

and power consumption. The UC plays a vital role in organizing the architecture design

space, which consists of variants arranged in either ascending or descending order of

magnitude

Definition 4. The UCT for parameter associated with time of execution for any given

resource in Γ =
[
γ1

1 , γ1
2 , . . . , γ1

η1 , γ
2
1 , γ2

2 , γ2
ηj , . . . , γm1 , γm2 , . . . , γmn−1, γmηm

]
is defined

as,

UCT(γji ) =

1
(1−ζr)

· %t ·∆Γ

(ηj/τ j)

=

1
(1−ζr)

· %t · τ j ·∆Γ

ηj
(4.10)

UCT(γclock) =

m∏
j=1

(ηj + τ j) ·∆%t

( ηj clock/τ
j)

=

m∏
j=1

(ηj + τ j) · τ j ·∆%t

ηj clock

(4.11)

�

The UCT defined in Def. 4 determines the rate of change of Raw with respect to change in

number of resources. The constant %data in Eq. (4.9) is ignored in evaluating UC since it

does not have any impact on the Utility Rank (UR) calculations described in Def. 9 which

contributes to design space variant evaluation.
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A system with n functional resources of j type has its execution time Texe related to cycle

time τ ji of each resource i by,

Texe = [ L+ (n− 1) · τ ji ] (4.12)

where L represents latency of execution and n denotes the total resource count. As the

number of resources to be processed is large for real life applications, L can be ignored

while jτi becomes a primary factor in evaluating UC and UR. However, L will be considered

for design flow analysis discussed in Sec. (4.5).

4.3.2 Power Consumption Analysis

The Def. 5 introduces the term ’Reliability-Aware Power’(Rap) as described below.

Definition 5. The Rap for a system with n functional resources having m categories is

obtained by multiplying %c–power expended per area unit resource and tensor product

(Eq. (4.2)) of the resource Γ =
[
γ1

1 , γ1
2 , . . . , γ1

η1 , γ
2
1 , γ2

2 , γ2
ηj , . . . , γm1 , γm2 , . . . ,

γmn−1, γmηm
]

and the respective area Ξ =
[
ξ1

1 , ξ1
2 , . . . , ξ1

η1 , ξ
2
1 , ξ2

2 , ξ2
ηj , . . . , ξm1 , ξm2 , . . . ,

ξmn−1, ξmηm
]T

occupied per unit resource at given operating frequency where 1 ≤ i ≤ n,

1 ≤ j ≤ m defined as,

Rap = (Γ⊗ Ξ) · %c (4.13)

�

Proposition 2. The area occupied per unit resource ξji for an ith resource γji is a fixed for

each jth category if resources are monotonous[87] i.e. ξji = 0, ∀j 6= i =⇒ ξj ← Ξ, ∀i.

As a result of Prop. (2), the tensor product in Eq. (4.13) will be reduced as follows,

Rap
∼=

m∑
j=1

(ηj · ξj) · %c (4.14)
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Similar to the observation of Eq. (4.4), there will be simultaneous infinitesimal changes δγ,

δξ and δ%c to resources, unit resource area, and power expended per area unit resource

respectively during the exploration process.

By taking a total differential [86] based on every category in Eq. (4.14) gives Eq. (4.15) as,

dRap =
∂Rap

∂ ηj
·∆ηj +

∂Rap

∂%c
·∆%c (4.15)

The partial derivative applied to the Eq. (4.14) with respect to ηj is evaluated individually

as follows,

∂Rap

∂ ηj
=

∂

∂ ηj

[(
m∑
j=1

ηj · ξj
)
· %c

]
(4.16)

As %c and ηj are mutually independent.

Hence,
∂%c
∂ ηj

= 0;

Applying chain rule [86] to Eq. (4.16),

∂Rap

∂ ηj
=

[
m∑
j=1

(ηj · ∂ ξ
j

∂ ηj
+ ξj · ∂ η

j

∂ ηj
)

]
· %c

Also ξj and ηj are mutually independent,

so
∂ ξj

∂ ηj
= 0;

∂Rap

∂ ηj
=

(
m∑
j=1

ξj

)
· %c

= ξ(1+2+···+m)

mth term in arithmetic series summation 1 + 2 ... + m

=⇒
∂Rap

∂ ηj
= ξm · %c (4.17)

Similarly, the partial derivative applied to the Eq. (4.14) with respect to ηj is evaluated
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individually as follows,

∂Rap

∂%c
=

∂

∂%c

[(
m∑
j=1

ηj · ξj
)
· %c

]
(4.18)

Applying chain rule[86] to Eq. (4.18), it reduces to

∂Rap

∂%c
=

∂

∂%c

(
m∑
j=1

ηj · ξj
)
· %c +

∂%c
∂%c
·

(
m∑
j=1

ηj · ξj
)

where
∂

∂%c

(
m∑
j=1

ηj · ξj
)

= 0;

=⇒
∂Rap

∂%c
=

m∑
j=1

ηj · ξj (4.19)

By using Eqs. (4.17) and (4.19), the total differential in Eq. (4.15) reduces to Eq. (4.20).

dRap = ξm · %c ·∆ηj +

(
m∑
j=1

ηj · ξj
)
·∆%c (4.20)

The terms in Eq. (4.20) can be summarized as follows,

• Eq. (4.20) denotes that the effective change inRap due to an alternation in total number

of resources and the clock periodicity (frequency) respectively.

• The coefficient term ξm · %c · ∆ηj in Eq. (4.20) indicates that rate of increase in Rap

is proportionate to an increase in j categories and/or i number of resources for that

particular resource ∆Γ.

• The coefficient term

(
m∑
j=1

ηj · ξj
)
· ∆%c in Eq. (4.20) specifies rate of change in Rap

contributed by the clock period (frequency) changes.

The factors mentioned above describe the influence on total power consumption when there

is a change in number of resources at maximum clock frequency and specified using the Def. 6

of UCP for power estimation below.
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Definition 6. The Utility Coefficient UCP for power consumption for any given resource in

Γ =
[
γ1

1 , γ1
2 , . . . , γ1

η1 , γ
2
1 , γ2

2 , γ2
ηj , . . . , γm1 , γm2 , . . . , γmn−1, γmn

]
is defined as,

UCP(γji ) =
ξm · %c ·∆ηj

ηj
(4.21)

UCP(γClock) =

(
m∑
j=1

ηj · ξj
)
·∆%c

ηClock
(4.22)

�

4.3.3 Area Analysis

The Def. 7 introduces the term total ’Reliable-Area’(Rarea) as described below.

Definition 7. For a system of n functional resources having m categories, the Rarea is

obtained as a summation of Rclock
area – area of clock oscillator acting as resource providing the

requisite clock frequency to the system, Rmem
area– the storage elements’footprint in the context

of overall area and tensor product (Eq. (4.2)) of the resource Γ =
[
γ1

1 , γ1
2 , . . . , γ1

η1 , γ
2
1 ,

γ2
2 , γ2

ηj , . . . , γm1 , γm2 , . . . , γmn−1, γmn
]

and the respective area Ξ =
[
ξ1

1 , ξ1
2 , . . . , ξ1

η1 ,

ξ2
1 , ξ2

2 , ξ2
ηj , . . . , ξm1 , ξm2 , . . . , ξmn−1, ξmηm

]T
occupied per unit resource at given operating

frequency where 1 ≤ i ≤ n, 1 ≤ j ≤ m defined as,

Rarea = Rclock
area + Rmem

area + (Γ⊗ Ξ) (4.23)

�

Using Prop. (2) in Eq. (4.23), it reduces to,

Rarea
∼= Rclock

area + Rmem
area +

m∑
j=1

(ηj · ξj) (4.24)
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As discussed before in Eq. (4.4), there will be simultaneous infinitesimal changes δγ, δξ,

δ Rclock
area and δ Rmem

area to resources, unit resource area, clock resource and storage resource per

area unit resource respectively during the process of exploration.

By taking a total differential [86] based on every category in Eq. (4.24) gives Eq. (4.25) as,

dRarea =
∂Rarea

∂ Rclock
area

·∆ Rclock
area +

∂ Rarea

∂ Rmem
area

·∆ Rmem
area

+
∂

∂ ηj

(
m∑
j=1

ηj · ξj
)
·∆ηj (4.25)

Reducing the above equation and substituting Eq. (4.17),

dRarea = ∆ Rclock
area + ∆ Rmem

area + ξm ·∆ηj (4.26)

Based on Eq. (4.26) the following points can be itemized,

• Eq. (4.26) implies that the rate of change of the total exploration area Rarea is pro-

portional to area fluctuations ξm of any mth primitive resource(s), clock resources and

memory elements.

• The coefficient term ∆Rclock
area in Eq. (4.26) indicates that rate of increase inRarea is pro-

portionate to number of clock oscillator resources employed in exploration process.This

is one of the factors impacting the total resource space. the hardware resources.

• The coefficient term ∆ Rmem
area in Eq. (4.26) denotes the contribution of area taken up

by memory storage elements (e.g. latches, registers,etc.,) to the overall resource space.

• The coefficient term ξm · ∆ηj in Eq. (4.26) indicates that rate of increase in Rarea is

proportionate to a multiple of an increase in j categories for that particular resource

ηj and the area occupied by jth resource ξm.

Based on the summarization above, we define a Utility Coefficient UCA using the Def. 8

specified below.
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Definition 8. The Utility Coefficient UCA for area calculation for any given resource in Γ

=
[
γ1

1 , γ1
2 , . . . , γ1

η1 , γ
2
1 , γ2

2 , γ2
ηj , . . . , γm1 , γm2 , . . . , γmn−1, γmηm

]
is defined as,

UCA(γClock) =
∆ Rclock

area

ηclocki

(4.27)

UCA(γmem) =
∆ Rmem

area

ηmemi

(4.28)

UCA(γji ) =
ξm ·∆ηj

ηj
(4.29)

�

A Utility Rank (UR) can be defined subsequent to the calculation of Utility Coefficients

defined using Defs. 8, 6, 4 for execution time, power and area.

Definition 9. The UR is a unique set of ordered m-tuples ( a1, a2 , . . . , am ) generated by

the n-fold Cartesian product of resource categories η1, η2, η3 , . . . , ηm such that,

η1 × η2 × · · · × ηm =
{

(a1, a2 , . . . , am) :

aj ∈ ηj, ∀j = 1, 2 . . .m
}

(4.30)

The order of values in the n-tuple UR must follow a strict ordering (≺) proportional to

descending order of their UCs respectively. Thus, URk = [ ( a1, a2 , . . . , am ) ] where k

denotes either Area, Power or Execution Time and values in the n-tuple are strictly ordered

according to UCk(γmi ) ≺ UCk(γm−1
i ) , . . . , ≺ UCk(γ2

i ) ≺ UCk(γ1
i ). �

The UR in Def. 9 will be used to represent the architecture design space of our proposed

approach. The terms in the n-tuple of an UR indicates the variant combinations of available

resources viz. adders, subtracters, clocks, etc., during the process of system design.

For example, if there are three categories of resources: 2 multiplexers, 3 de-multiplexers

and 1 clock resource having an area of 60 area units (a.u.), 75 a.u. and 85 a.u. on the chip

respectively. Suppose it was determined that UCA (γClock) > UCA (γDe-Mux) > UCA (γMux).
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According to Def. 9, the UR will be a set of 3-tuples or triples given as: URA = [ (1,1,1),

(2,1,1), (1,2,1), (1,3,1), (2,2,1), (2,3,1) ]. The example shows that the m-ary Cartesian power

of resulting n-tuple in Def. 9 is isomorphic to the design space variants from m-categories

using tensor product in Def. 3.

4.4 Deployment of GWO-DSE framework for IoT Syn-

thesis

We adopt the GWO algorithm discussed in Chapter. 2 Sec. 2.6.2 and apply it for extracting

a minimized tuple specified Def. 9. The application of GWO for DSE process is termed as

the GWO-DSE framework.

4.4.1 Initialization of GWO-DSE

In the case of GWO-DSE, each candidate wolf
−→
Xi is treated as a n × 1 vector where n

matches the dimension of each tuple during UR set calculation using Def. 9. However each

tuple continues to comply with the initialization Equations. 2.10 and 2.11 of GWO.

4.4.2 Fitness function Calculation

The GWO-DSE framework records fitness values Ffit using Eq. (4.31) for each and every

candidate solution
−→
Xi. The three most optimal candidate solutions are shortlisted as

−→
Xα,

−→
Xβ and

−→
Xδ respectively. The following notations are to be conveyed before defining a fitness

function for GWO-DSE framework.

• frand is a uniformly distributed random variable between 0 and x, ub and lb represent

the first and last tuples generated by Cartesian product as a consequence of Def. 9.
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ALGORITHM 3: GWO-DSE Framework
Data: Wn–magnitude of the wolf pack, IterMAX – total number of iterations more

than 0, UR – set of ordered m-tuples ( aj i, aj i , . . . , am i ), CRaw
, CRap

and
CRarea

– user defined constraints

Result: Max +ve Difference Triple:( d+
1 , d+

2 , d+
3 ) ← Ffit(

−→
Xi), Optimal Grey wolf

position within given Design Space.
1 begin

2 Randomly initialize Wn number of candidate
−→
Xi Grey wolves

3 Using Eq. (4.31 identify the best three n-tuples as Xα, Xβ and Xδ wolves
4 Set t:=0
5 repeat

6 foreach
−→
Xi ∈ UR do

7 Update
−→
Xi using Eq. (2.16)

8 end
9 Compute Eqs. (2.23, 2.15, 2.14) to update a, A, C

10 forall Wolves
−→
Xi of UR do

11 newPositions ← get positions using Eq. (2.10)
12 if newPositions /∈ Range then
13 newPositions ← get positions using Eq. (2.11)
14 end

15 end

16 foreach
−→
Xi ∈ UR do

17 Deduce Difference-Triple ( d1, d2, d3 ) subject to CRaw
, CRap

and CRarea

using Eq. (4.31)

18 end
19 Rank α, β, and δ positions as premier 3 best solutions based on Difference

Triples from Previous Step.
20 t ← t+ 1

21 until t ≤ IterMAX
22 Choose Optimal Grey Wolf position based on ( d+

1 , d+
2 , d+

3 )

23 end

• CRaw
–workload or execution timing constraint, CRap

–power constraint and CRarea
–area

constraint values respectively set by the design specifications.

• Rwrk(
−→
Xi), R

pwr(
−→
Xi) and Rara(

−→
Xi)–fetch functions that take a ordered n-tuple (

−→
Xi) as

input and return the time of execution, power consumption and occupied area for that
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particular variant branch respectively.

• Difference function defined by Diffk(
−→
Xi ) = Ck − Rk(

−→
Xi) specifying either positive

difference or negative difference where k denotes either Area, Power or Execution Time.

A fitness function for the GWO-DSE framework is defined using Eq. (4.31) based on the

summarization above.

Ffit(
−→
Xi) = { (d1, d2, d3) | (4.31)

d1 ← Diffpwr(
−→
Xi),

d2 ← Diffwrk(
−→
Xi),

d3 ← Diffara(
−→
Xi) }

The steps for GWO-DSE algorithm is outlined using Alg. 3.

4.5 Design Flow Analysis

The theory specified for the proposed framework for DSE in the previous sections shall be

employed using real world examples in the following sections. The UR defined in Def. 9

determines the design space organized as a set of n-tuples based on UC specification for

each of the resource categories. In addition, the GWO-DSE algorithm proposed in Alg. 3

will be used as a tool for searching the best architecture after the design space is randomly

organized as part of the initialization procedure. The design objectives were chosen based

on the contemporary generation of VLSI computing systems such as smart-phones, MP3

players, smart-watches, etc., where reliability aware power consumption, area on chip and

execution time are of paramount importance[91]. The flow chart in Figure. 4.2 shows the

entire design flow for high level synthesis using the proposed GWO-DSE.
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Figure 4.2: The proposed framework for high level design flow based on multi-parametric
optimization.
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4.5.1 Resource Libraries and Operational Constraints

For the purpose of demonstrating the design flow, the following specifications are assumed.

1. Maximum power consumption: 8 milliwatts (mW).

2. Maximum resources available for the system design:

• Adder/Subtracter: 2 units

• Multiplier: 4 units

• Dividers: 2 units

• Clock Frequency oscillators: 3 units.

• Memory Element: 1 unit

3. Maximum Time of Execution: 140 µs (For 1000 sets of data).

4. Hardware Area of Resources: minimum while satisfying the above constraints.

Also, the following resource specifications are assumed as examples for system level design.

Clock Period for

! Divider/Operation : 4 clock cycles (cc)

! Multiplier/Operation : 4 cc

! Adder-Subtracter/Operation : 2 cc

Clock Frequency 100 MHz, 150 MHz and 200 MHz for 3 units respectively.

Area Occupied by

! Divider : 55 area units (a.u.) or 55 CLB on IoT device FPGA.

! Multiplier : 45 a.u. or 45 CLB on IoT device FPGA.

! Adder-Subtracter : 10 a.u.
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! 100 MHz Clock Oscillator : 5 a.u.

! 150 MHz Clock Oscillator : 6 a.u.

! 200 MHz Clock Oscillator : 10 a.u.

! Memory Element : 3 a.u.

Power Consumed by

! 100 MHz Clock Oscillator : 10 milliwatts / area unit ( mW/ a.u. )

! 200 MHz Clock Oscillator : 30 mW/ a.u.

! 150 MHz Clock Oscillator : 20 mW/ a.u.

In this chapter, the HLS design flow is demonstrated by utilizing the transfer function H(s)

of an Elliptic Wave filter. The example of Elliptic Wave filter was chosen arbitrarily and any

other filter can be utilized for demonstration purpose. The transfer function in the analogue

domain for an Elliptic Wave filter function is given by Eq. (4.33).

H(s) =
0.01 (s2 + 7.25) (s+ 1.576)

(s2 + 0.46s+ 0.212) (01279s+ 0.677)
(4.32)

which translates to H(z) in frequency domain denoted by,

H(z) =
0.078− 0.22z−1 + 0.22z−2

1− 2.54z−1 + 2.11z
(4.33)

Consequently, the input variables in time domain are x(n), x(n− 1), x(n− 2), x(n− 3) for

the Elliptic Wave filter and having an output as y(n) with previous outputs being y(n− 1)

and y(n− 2).

y(n) = 0.78 x(n)− 0.22 x(n− 1) +

0.22 x(n− 2) + 2.54 y(n− 1)− 2.11 y(n− 2) (4.34)

For the sake of simplicity in notations, the constants 0.78, 0.22, 2.54 and 2.11 shall be

represented as A, B, C and D respectively.
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4.5.2 Architecture Design Space development for Power Consump-

tion

The architecture design space for proposed framework utilizes the tuples resulted from UR

calculation defined in Def. 9. The design space organization manifests itself as strictly ordered

tuples generated by Cartesian product ofm sets of resources, where each set represents unique

type of resource elements. Every tuple in UR represents the potential optimal solution within

the design space. According to the specifications in Sec. (4.5.1), the UCP defined in Def. 6

will be calculated for Reliability-aware power as follows. Multiplier ( ∗ ) :

UCP(γ∗i ) =
(4− 1) · (45) · (30)

4

= 1012.5 mW (4.35)

Adder/Subtracter ( ± ) :

UCP(γ±i ) =
(2− 1) · (10) · (30)

2

= 150 mW (4.36)
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Figure 4.3: Phylogenetic tree indicating tuples arising due to URP evaluation in Eq. (4.40)
and Eq. (4.46)
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Divider ( ÷ ) :

UCP(γ÷i ) =
(2− 1) · (55) · (30)

2

= 825 mW (4.37)

Clock Oscillator (clock) :

UCP(γClocki ) =
[2(10) + 4(45) + 2(55)]

3
· (30− 10)

= 2066.66 mW (4.38)

Memory (mem) :

UCP(γmemi ) =
[(1) (3)]

1
· (30)

= 90 mW (4.39)

Based on the UCP calculations above, we can determine the set of tuples for URP as follows

Using Eq. (4.30) URP = ηmem × η± × η÷ × η∗ × ηClock

⇐⇒ UCP(γ±i ) ≺ UCP(γ÷i ) ≺ UCP(γ∗i ) ≺ UCP(γClocki )

≺ UCP(γmemi ) (4.40)

A branching diagram (Figure. 4.3) in the form of Phylogenetic tree[92] is employed to visu-

alize the n-tuples generated as a result of Eq. (4.40). In Figure. 4.3, the red boxes around

certain tuples illustrates an instance of Grey Wolf Optimizer discussed in Alg. 3 which is

set in motion during the process of pruning the DSE. This pruning process assists in finding

the Pareto-optimized design tuple satisfying the power consumption within specified user-

defined constraints CRaw
= 80 ms, CRap

= 6 mW and CRarea
= 220 a.u. The main objective
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of the Alg. 3 during the process of DSE is to shortlist potential candidate tuples of URP

that yield the maximum positive difference triple ( d+
1 , d+

2 , d+
3 ) in an increasing order of

potential optimal solutions such as Xα, Xβ and Xδ subject to CRaw
, CRap

and CRarea
.

For example, a snapshot of an execution instance of Alg. 3 during one of the iteration rounds

will have the following values specified for different parameters specified in Table. 4.1. The

input for initialization of the Alg. 3 during such an instance is the randomly generated tu-

ples with boundaries setup using phylogenetic tree of Figure. 4.3. The final outcome in the

example snapshot instantiation will choose Optimal Grey Wolf position based on ( d+
1 , d+

2 ,

d+
3 ) and it will be the tuple ( 3, 3, 1, 1, 1 ). Therefore, the Xα chosen will have corresponding

power as 6 mW, 60.03 ms of execution time and an area of 210 a.u. respectively, which falls

within user-defined constraints CRaw
= 80 ms, CRap

= 7 mW and CRarea
= 220 a.u. The

time of execution ( Texe ) and latency columns in Table. 4.1 are computed using Eq. (4.12).

4.5.3 Architecture Design Space development for Execution Time

In this section the methodology for organizing the design space tuples for UR calculation

follows similar steps outlined in Sec. (4.5.2). The resource depletion ratio ζr for UC estima-

tion described in Def. 4 will be set at a decaying rate of 1% for given 12 type of resources

under ideal conditions with specifications defined in Sec. (4.5.1). Thus, the UCT defined in

Def. 4 for Reliability-aware Workload can be deduced as, Multiplier ( ∗ ) :

UCT(γ∗i ) =
(4− 1) · (4) · (0.01)

0.99 · (4)

= 30.3 ms (4.41)

Adder/Subtracter ( ± ) :

UCT(γ±i ) =
(2− 1) · (2) · (0.01)

0.99 · (2)
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Tuple Power (mW) Latency Texe Area Ffit(
−→
Xi)

(1,1,1,1,1)

[ (1 * 5) + (1 * 45) +
(1 * 55) + (1 * 10) +

(1 * 3)]/1000 * 10
= 1.18 mW

26 240.02 114 (-160.02, 5.82, 106)

(3,4,2,2,1)

[ (3 * 5) + (4 * 45) +
(2 * 55) + (2 * 10) +

(1 * 3)]/1000 * 30
= 9.84 mW

14 60.01 320 (19.99, -2.84, -100)

(3,3,1,1,1)

[ (3 * 5) + (3 * 45) +
(1 * 55) + (1 * 10) +

(1 * 3)]/1000 * 10
= 6.54 mW

18 60.03 210 (19.97, 0.46, 10)

(3,2,1,1,1)

[ (3 * 5) + (2 * 45) +
(1 * 55) + (1 * 10) +

(1 * 3)]/1000 * 30
= 5.19 mW

20 80.02 165 (-0.02, 1.81, 55)

(2,3,2,1,1)

[ (2 * 5) + (3 * 45) +
(2 * 55) + (1 * 10) +

(1 * 3)]/1000 * 20
= 5.36 mW

16 79.22 216 (0.78, 1.64, 4)

Table 4.1: An instance of GWO-DSE framework in action for power analysis. Note. Units
for Latency is in c.c., Texe is in ms and area in a.u. respectively.

= 10.1 ms (4.42)

Divider ( ÷ ) :

UCT(γ÷i ) =
(2− 1) · (4) · (0.01)

0.99 · (2)

= = 20.3 ms (4.43)
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Clock Oscillator (clock) :

UCT(γClocki ) =
[(2 + 2) · (4 + 4) · (2 + 4) · (0.01− 0.005)]

3

= 320 ms (4.44)

Memory (mem) :

UCT(γmemi ) =
[(1) · (1) · (0.01)]

0.99 · (1)

= 10.1 ms (4.45)

As per the UCT calculations above, the set of tuples for URT can be determined as,

Using Eq. (4.30) URT = ηmem × η± × η÷ × η∗ × ηClock

⇐⇒ UCT(γ±i ) ≺ UCT(γ÷i ) ≺ UCT(γ∗i ) ≺ UCT(γClocki )

≺ UCT(γmemi ) (4.46)

By observing the Phylogenetic tree in Figure. 4.3, the green boxes around certain tuples

illustrates an instance of Grey Wolf Optimizer discussed in Alg. 3 which is a process state

while pruning the DSE. The Pareto-optimized design tuple ( 3, 3, 1, 1, 1 ) is obtained during

the pruning process and it is the final outcome result having optimal execution time based

on user-defined constraints CRaw
= 80 ms, CRap

= 6 mW and CRarea
= 220 a.u.

The crux of the Alg. 3 is to determine potential tuples of URT that produce the maximum

positive difference triple ( d+
1 , d+

2 , d+
3 ) in a strict increasing order to attain the objective

Xα, Xβ and Xδ subject to CRaw
, CRap

and CRarea
.
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Tuple Texe (ms) Latency Power Area Ffit(
−→
Xi)

(1,1,1,1,1)
[ (26) + (1000 - 1) * 24

] * 0.01 =
240.02 ms

26 1.18 114 (-160.02, 5.82, 106)

(3,2,1,1,1)
[ (20) + (1000 - 1) * 16

] * 0.005
= 80.02 ms

14 5.19 320 (19.99, -2.84, -100)

(2,4,2,2,1)
[ (14) + (1000 - 1) * 12
] * 0.0066 = 79.21 ms

20 6.2 165 (-0.02, 1.81, 55)

(2,3,2,1,1)
[ (16) + (1000 - 1) * 12

] * 0.0066 =
79.22 ms

16 5.36 216 (0.78, 1.64, 4)

(3,3,1,1,1)
[ (18 + (1000 - 1) * 12

] * 0.005
= 60.03 ms

18 6.54 210 (19.97, 0.46, 10)

Table 4.2: An instance of GWO-DSE framework in action for execution time analysis. Note.
Units for Latency is in c.c., Texe is in ms and area in a.u. respectively.

4.5.4 Architecture Design Space development for Area Calcula-

tion

For an architecture design space resulting due to tuple set generation using Def. 9, each

tuple in UR represents a potential optimal solution to represent the design space. As per

the specifications defined in Sec. (4.5.1), the UCA defined in Def. 4 will be calculated for

Reliable-Area as follows.

94



CHAPTER 4. HLS FOR RESOURCE CONSTRAINED IOT HARDWARE

Figure 4.4: Phylogenetic tree indicating tuples arising due to URA evaluation in Eq. (4.54)
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Multiplier ( ∗ ) :

UCA(γ∗i ) =
(4− 1) · (45)

4

= 33.75 a.u. (4.47)

Adder/Subtracter ( ± ) :

UCA(γ±i ) =
(2− 1) · (10)

2

= 5 a.u. (4.48)

Divider ( ÷ ) :

UCA(γ÷i ) =
(2− 1) · (55)

2

= 27.5 a.u. (4.49)

Clock Oscillator 1 (100 MHz) :

UCA(γClock1i ) =
[(3− 1) · (5)]

3

= 3.33 a.u. (4.50)

Clock Oscillator 2 (150 MHz) :

UCA(γClock2i ) =
[(3− 1) · (6)]

3

= 4 a.u. (4.51)
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Clock Oscillator 3 (200 MHz) :

UCA(γClock3i ) =
[(3− 1) · (10)]

3

= 6.66 a.u. (4.52)

Memory (mem) :

UCA(γmemi ) =
[(1) (3)]

1

= 3 a.u. (4.53)

Based on the UCA calculations above, we can determine the set of tuples for URA as follows,

Using Eq. (4.30) URA = ηmem × η± × ηClock × η÷ × η∗

⇐⇒ UCA( γ∗ i) ≺ UCA( γ÷ i) ≺ UCA(γClocki ) ≺ UCA( γ± i)

≺ UCA(γmemi ) (4.54)

The orange boxes in the Phylogenetic tree of Figure. 4.4 show certain tuples which are

generated as a result of an instance of Grey Wolf Optimizer discussed in Alg. 3. Alg. 3

initiates the process of pruning the DSE to find the pareto-optimized design tuple satisfying

the surface area occupies within specified user-defined constraints CRaw
= 80 ms, CRap

= 6

mW and CRarea
= 220 a.u. The Alg. 3 generates random tuples within the boundaries of

DSE and identifies potential candidate tuples of URA that can produce maximum positive

difference triple ( d+
1 , d+

2 , d+
3 ) in a strict increasing order beginning with the Xα, Xβ and

Xδ subject to CRaw
, CRap

and CRarea
. An instance of Alg. 3 during the DSE process iteration

rounds shall have the following tuples identified described in Table. 4.3. As visualized in the

Table. 4.3, the final optimal solution deduced by the algorithm is shown by the corresponding

row using red colored text. [h]
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Tuple Area (a.u.) Latency Texe Power Ffit(
−→
Xi)

(3,1,3,1,1)

[ (3 * 45) + (1 * 55) +
(1 * 10) + (1 * 10) +

(1 * 3)]
= 213 a.u.

20 60.02 6.54 (19.99, -2.84, -100)

(3,2,2,2,1)

[ (3 * 45) + (2 * 55) +
(6 * 1) + (1 * 10) +

(1 * 3)]
= 264 a.u.

14 260.01 6.84 (-160.02, 5.82, 106)

(4,2,2,2,1)

[(4 * 45) + (2 * 55) +
(6 * 1) + (2 * 10) +

(1 * 3)]
= 319 a.u.

18 60.03 210 (19.97, 0.46, 10)

(3,2,1,1,1)

[ (3 * 45) + (2 * 55) +
(1 * 5) + (1 * 10) +

(1 * 3)]
= 263 a.u.

20 80.02 5.19 (-0.02, 1.81, 55)

(2,1,2,2,1)

[ (2 * 45) + (1 * 55) +
(1 * 6) + (2 * 10) +

(1 * 3)]
= 174 a.u.

16 79.22 3.5 (0.78, 1.64, 4)

Table 4.3: An instance of GWO-DSE framework in action for area analysis. Note. Units for
Latency is in c.c., Texe is in ms and area in a.u. respectively.

4.6 Results and analysis

4.6.1 Preprocessing for Data-path and Control Unit

When the optimal architecture configuration is processed by GWO-DSE framework as de-

scribed in the previous sections, a scheduling procedure must be determined for the optimal

tuple chosen by the DSE process. The scheduling must also adhere to the specifications in

Sec. (4.5.1). There are a plethora of ways for implementing this scheduling procedure. How-

ever, in GWO-DSE model unconstrained scheduling[93] is chosen since the initial framework

allocates starting time to components under the assumption that an unlimited amount of re-

sources are available. Therefore in case of reconfigurable devices, this corresponds to placing
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Figure 4.5: DFG Sequencing using ASAP algorithm for Elliptic Wave Filter of Eq. (4.33)

modules in a device with unlimited size that allows any partition to be implemented. Because

the devices in reality have only a limited amount of resources, unconstrained scheduling can-

not be used as such. Instead, it is usually used as pre-processing step for other algorithms. It

can be used for instance for the computation of the upper and lower bounds on the starting

time of operations in a dataflow graph. Whereas the lower bound provides the earliest time

at which a module can be scheduled, the upper bound defines the latest time at which a

module can be started. The difference between the upper and the lower bound of a module

is its mobility range[93].

To compute the earliest starting time of each component, the as soon as possible (ASAP)-

Algorithm defined in Alg. 4 is utilized for the GWO-DSE framework. The ASAP-algorithm

traverses the dataflow in topological order starting from the primary input. Each primary

input resource is assigned a starting time 0. The ASAP algorithm idealizes the binding pro-

cess by assuming an unlimited amount of available resource, and assigns each operation as

soon as it is ready to be executed, therefore providing the lowest starting time of the tasks in

the graphs. The pseudo code for the ASAP-algorithm is described in Alg. 4 for the resulting
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status scheduling output. The corresponding time allocation using Alg. 4 for specifications

in Sec. (4.5.1) is illustrated by Figure. 4.5.

As the scheduling procedure is completed a multiplexing scheme for each resource must be

devised and such a multiplexing scheme is described in detail in [94, 76]. Using the multi-

plexing scheme, a data-path generation block diagram for case study of Elliptic Wave Filter

(Eq. (4.33)) application is developed. This is followed by estimation of control and other

synchronization signals which assist in design of a centralized control unit. Thus a complete

schematic structure at Register Transfer (RT) level will become available subject to simul-

taneous development of data path unit and control path unit of Elliptic Wave filter ASP

and subsequent deployment in the target IoT FPGA (Spartan 3E FPGA) for verification.

The simulation of the block schematic performed in Xilinx ISE simulator[95] produced the

expected outcome for the digital Elliptic Wave Filter design. Furthermore the hardware

emulation of the design was performed to check the correct functionality of the design. The

final results deduced that the device was realized successfully in IoT FPGA and is in com-

pliance with all specifications in Sec. (4.5.1).

In the DFG described in Figure. 4.5 the Register Z represents the memory element which

has been incorporated in time slot t3 because the results of multiplier at time slot t1 is not

utilized until time slot t4. As visualized from the Figure. 4.5, the total latency is 18 clock

cycles and Figure. 4.6 shows the cycle time calculation using a Sequence Diagram for optimal

tuple evaluation using Def. 9. A sequence diagram is an interaction diagram that shows how

objects operate with one another and also the order of their interaction[96].

4.6.2 Comparative analysis with Contemporary Heuristic approach

and ABF method

The GWO-DSE framework introduced in this chapter is streamlined in terms of efficiency

with respect to architecture evaluation and its respective exploration time. The salient

highlights of designing an optimized hardware is to choose a tuple of the design that best
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reflects the algorithm in its micro-architecture. Based on the available hardware resources

there can be a numerous ways of synthesizing a given logic at different abstraction levels like

RTL. The GWO-DSE framework facilitates to determine and evaluate the suitability of a

particular design tuple for a given task. The set of tuples realized using UR evaluation for

power, execution time and area can have different characteristics and operational properties.

The proposed framework has been verified on a number of popular high level synthesis

benchmark digital signal processing (DSP) filters[97] both large and small, such as Auto

Regressive Filter (ARF), Discrete Wavelet Transformation (DWT), Infinite impulse response

(IIR) Digital Butterworth Filter and other different IIR digital filters. The framework also

utilizes finite impulse response (FIR) filter as well as an Elliptic Wave Filter (Eq. (4.33))

which is case study filter in the proposed framework. The magnitude of the design space

consisting of different tuple sets for respective DSP filters are indicated in Table. 4.4.
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Figure 4.6: Cycle time diagram for finding the optimal tuple in UR based on DFG in
Figure. 4.5
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For example, 450 is the cardinality of the tuple set generated in design space for EWF,

if 2 parameters were chosen; while on the other hand, the cardinality of set for design space

with respect to Chebyshev and DWT are 188 and 266 respectively.

For larger sets, the exhaustive search process is extremely slow and takes a few weeks to

return the possible solution. Also, an exhaustive search iterates over each possible tuple in

the design space to find the most optimal solution. To speed up the exhaustive search, an

attempt was made to arrive at an Pareto-optimal solution employing knapsack algorithm in

[38]. However the method in [38] performs faster under select conditions of best and average

cases whereas in worst case is same as exhaustive search due to exponential complexity of

MDMKP[98]. Thus we discard the exhaustive search for comparison and choose the PSO[42]

and ABF[1] for our comparative analysis in Table. 4.44.5 since they are the most recent DSE

methodologies that closely compete with our domain in this article.

A summary of critical analysis benchmarking PSO[42] and ABF[1] with respect to GWO-

DSE framework is outlined in Table. 4.4. As evident from the results indicated in in Ta-

ble. 4.4, the proposed approach is capable of achieving tremendous speed boost compared to

the PSO[42] and ABF[1] methodologies. The acceleration achieved is more than 90% while

comparing IIR 3 variant, Auto regressive, DWT filters while it is more than 100% in case of

Elliptic Wave and FIR filters.

The Table. 4.5 outlines two aspects: (1) architectural evaluation methods using DSE based

on different methodologies to find the best optimal resource arrangement for IoT device

realization (2) the speed achieved due to respective methodologies. The benchmarks in Ta-

ble. 4.4 utilizes the meta-heuristic optimizations based search like PSO and ABF which are

the contemporary state of the art methodology for DSE. Further investigations reveal that

the proposed approach is able to provide high acceleration for design space exploration while

simultaneously maintaining the accuracy needed in architecture selection. It is evident from

architecture evaluation section of the Table. 4.5 that GWO-DSE column numbers have higher

magnitude than its counterpart heuristic method PSO, but substantially lesser magnitude
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compared to search based on ABF[1]. This is due to the fact that GWO-DSE tends to cast

wider net to accommodate as many unique tuples as possible due to Cartesian product falling

short of repetitive arrangements as in ABF search model. Furthermore ABF suffers from

adaptive mechanisms such as resource clamping and step size clamping to handle boundary

outreach problem during exploration which limits its search space outreach. Comparatively

in [42] the PSO model accommodates less number of search variants which includes best,

worst and average case tuples for each iteration, although this might be efficient momentarily

it leads to the issue of optimal solution stuck in local minima. As observed from the speed

boost percentage indicators of column 3 of Table. 4.5, the proposed GWO-DSE framework

significantly outpaces in terms of acceleration compared both to its counterpart heuristic

PSO methodology as well as ABF methodologies all the while delivering accurate resource

configurations during DSE.

4.6.3 Convergence Analysis

Figures. 4.7b, 4.7c and 4.7d show the time taken to converge by the GWO algorithm for

the Elliptic Wave Filter (EWF). The convergence time is plotted with respect to number of

iterations for the architecture design space development in terms of execution time, power

and area respectively. As depicted in Fig. 4.7a, it is evident that the development of the

design space in terms of area reaches convergence before the development of the design space

in terms of power and time can be reached. The convergence time for most optimal tuples

found from the GWO algorithm for Area calculations is about 10 seconds whereas for time

and power is close to 20 seconds.

On comparing the GWO algorithm with other heuristic methods in Fig. 4.7b such as the

ABF, GA and the PSO algorithms for different filters while analyzing the convergence time,

it can be observed that ABF and the GA methods take the highest amount of time to con-

verge. The ABF requires handling of constraints and parameters such as decoders, special

operators, and penalty functions. There is a generalization difficulty as well as an acute
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(a) Convergence vs Iterations (b) UCA convergence analysis

(c) UCP convergence analysis (d) UCT convergence analysis

Figure 4.7: Convergence Scenario Analysis

hindrance in fine tuning of parameters when the number of iterations increase in the algo-

rithm. This leads to a higher complexity cost and consequently the convergence time also

increases. The GA requires a certain number of chromosomes for the mutation and crossover

operations and also suffers from loss of diversity after a few iterations. As a result, design

engineers will have to make intermittent tweaks in order to render the algorithm back into

the system for it to consistently function and produce quality results. Consequently, this

tweaking, and rendering after every few iterations impacts the time taken by the algorithm

to converge with an exponential increase. For filters such as the Chebyshev filter, the GA

converges faster but for filters that are more complex such as the Auto Regressive Filter or
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the Elliptic Wave filter, the time taken by the algorithm to converge is significantly higher

(Greater than 50seconds). The PSO algorithm does not have to go through the aforemen-

tioned adjustments that GAs will need to undergo, and it works far better. However, if

space becomes highly complex and highly dimensional, it does not perform well and results

in inconsistent output. Comparatively, GWO is much more robust meta-heuristic that over-

comes the challenges faced by the previously mentioned algorithms since it has best ability

to fully exploit and explore the search space despite the complex nature of the problem. As a

result, the convergence time taken by the GWO in finding the most optimal tuples in terms

of power area and time is far less than the other compared algorithms.
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ALGORITHM 4: As Soon As Possible
Input: Operations O, Maximum number of control steps M .
Output: Control step for each operations, Status of scheduling

1 index← 0
2 foreach oi in O do
3 if TRUE = hasImmediatePredecessor(oi) then
4 control step(oi) ← 1

/* control step (oi) indicates control step into which operation oi
is scheduled. */

5 else
6 control step (oi) ← MAX (control step (oj)) + 1,
7 ∀ oj ∈ {o′ | o′ ← immediate predecessor(oj)}.
8 end

9 end
10 foreach m ≤ M do
11 if control stepm (oi) == 1 then
12 Status Scheduling ← Success
13 end
14

15 end
16 return Status Scheduling
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Total Tuples ∈ URArchitecture Design Space Tuples Analyzed by GWO-DSE Net Estimate for GWO-DSE

DSP Filters 1 Parameter 2 Parameters Workload Power Area Total tuples Acceleration %

IIR Butterworth 24 48 4 4 5 18 79.6
IIR 1 32 64 4 4 5 18 77.3
IIR 2 36 72 4 5 7 19 82.7
IIR 3 48 96 5 6 4 21 94.23
Auto Regressive 98 172 6 9 12 29 95.06
Discrete Wavelet Transform 188 266 7 9 12 31 94.07
Differential Equation Solver 90 188 17 22 16 45 89.11
IIR Chebyshev 64 188 17 14 25 52 88.56
Elliptic Wave 220 450 7 27 32 52 102.08
Finite Impulse Response 550 1200 7 27 32 57 107.1

Table 4.4: Critical Analysis benchmarking ABF vs GWO-DSE framework

Total Tuples ∈ URArchitecture Design Space

Architecture evaluation
methods using DSE to

find optimal arrangement
Speed Boost % of GWO-DSE

DSP Filters 1 Parameter 2 Parameters GWO-DSE PSO[42] ABF[1] PSO[42] ABF[1]

IIR Butterworth 24 48 8 4 5 65.34 79.6
IIR 1 32 64 8 4 5 45.67 77.3
IIR 2 36 72 7 3 5 62.88 82.7
IIR 3 48 96 8 3 5 57.08 94.23
Auto Regressive 98 172 6 4 9 67.54 95.06
Discrete Wavelet Transform 188 266 5 4 9 53.22 94.07
Differential Equation Solver 90 188 22 12 31 62.34 89.11
IIR Chebyshev 64 188 16 9 21 54.98 88.56
Elliptic Wave 220 450 39 27 62 72.12 102.08
Finite Impulse Response 550 1200 15 8 22 67.09 107.1

Table 4.5: Performance highlights of GWO-DSE framework vs ABF[1] and State of the art
Heuristic method.
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4.7 Conclusion

In this chapter, a structured approach is presented to synthesize a multi parametric opti-

mized Application Specific Processor. A clear step by step flow from the inception of Utility

Coefficients for Power, Area and Workload analysis to establish a framework to search the

best optimal arrangement ranked using utility ranking concept is presented in this chapter.

The results disseminated in this chapter and hardware synthesized on an IoT device verifies

correctness of the design process. The logic synthesized can work as hardware accelerator

for large systems or as a stand alone processing element as ASIC. The proposed GWO-DSE

framework ensures that an efficient and multi-parametric optimized hardware can be syn-

thesized accurately for any computational intensive application. Moreover it significantly

outperforms the state of the art heuristic technique such as PSO as well as ABF methodolo-

gies in terms of speed and accuracy. We believe that this is the first work which shows how

to optimize hardware resource configurations based on Grey Wolf optimization methodology

for HLS.

109



Chapter 5

Security Enhancement in IoT device

In this chapter we introduce an adaptive scheme is to keep pace with the mobile security re-

quirements of lightweight cipher systems of IoT devices. Adaptive ciphers are emerging to be

an effective cryptographic architecture for the next generation security infrastructures. Such

cipher designs are difficult to implement since they are prone to weaknesses based on usage,

with properties being similar to one-time pad; keystream is also subjected to very strict

requirements. A more practical solution is essentially not to develop an newer or stronger

cipher scheme, but to devise ways to enhance cipher strength without undue changes to un-

derlying VLSI architectures on a permanent basis. Recently, Modulo Addition 2n has been

suggested over logic XOR as a mixing operator to guard against such attacks. However, it

has been observed that the complexity of Modulo Addition can be drastically decreased with

the appropriate formulation of polynomial equations and probabilistic conditions. In this

Chapter, we present a new cryptographic architecture for Modulo Addition. The framework

for the new design is characterized by user-defined expandable security for stronger encryp-

tion and does not impose changes in existing layout of light weight cipher designs of IoT.

The structure of the proposed design is highly scalable, which boosts the algebraic degree

and thwarts the probabilistic conditions by maintaining the original hardware complexity
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without changing the integrity of the Modulo Addition 2n component.

5.1 Background

The security of data transmission is a vital aspect of IoT communication networks. An

IoT communication system is only reliable as long as it provides a high level of security.

Nowadays, millions of users exchange sensitive or classified information and documents via

global system of interconnected computer networks that use the Internet. From e-mail to

cellular communications secure web access to digital cash, cryptography is an essential part

of today’s information systems. Cryptography is the science of keeping transmitted data

secure. Cryptography helps provide accountability, fairness, accuracy, and confidentiality. It

can prevent fraud in electronic commerce and assure the validity of critical data transactions.

In this age of explosive worldwide growth of electronic data storage and mobile commu-

nications, many vital information exchange tasks require effective protection especially in

the IoT domain. When used in conjunction with other approaches to information security,

cryptography provides a powerful means for protecting information and data encryption

for secure communication. Although cryptography improves the achievable communications

confidentiality, it requires additional computational power and imposes latency [99], since a

certain amount of time is required for both data encryption and decryption [100]. Recently,

there has been an emergence of scalable security protocols using lightweight cryptography for

IoT devices. These protocols target a wide variety of IoT devices that can be implemented

on a broad spectrum of devices to establish secure communications. On the high end of the

device spectrum are servers and desktop computers followed by tablets and smart-phones.

Protocols using conventional cryptographic algorithms may perform well in these devices;

therefore, these platforms may not require lightweight algorithms. However, on the lower

end of the spectrum are IoT devices such as RFID tags, industrial controllers, WSN, smart

cards, etc., which are ubiquitous in today’s dynamic communications ecosystem. In fact,
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lightweight cryptography is primarily focused on such resource constrained IoT devices that

constitute the lower end of this spectrum [101].

5.2 An Adaptive Security Architecture for Lightweight

IoT Ciphers

5.2.1 Algebraic Cryptanalysis

Algebraic cryptanalysis is an extremely successful technique for evaluating the security ro-

bustness of block and stream lightweight ciphers in Iot devices as well as a threat to the

structures which are resistant to other types of attacks. Algebraic attacks have been proven

to be effective against lightweight ciphers that include combining or filtering Boolean function

along with linear part. Also, highly successful attacks have been staged against lightweight

ciphers with non–linear components with or without memory[102]. Considering any secure

lightweight IoT cipher, algebraic cryptanalysis consists of mainly two steps: First, one must

convert the cipher and possibly some supplemental information (eg. file formats) into a

system of polynomial equations, usually over GF(2), but occasionally over other group rings.

Second, one must solve the system of equations and derive the secret key of the given cipher

from the solution.

5.2.2 Algebraic Attack on IoT based Ciphers

Algebraic attack focuses on formulating multivariate polynomial equations between inputs

and outputs with low algebraic degree. Algebraic attack against a function F : {0, 1}n 7→

{0, 1}m start with an output {yk}mk=0 = {ym−1, . . . , y1, y0} (presumably in the image of F)

and use it to initialize a system of polynomial equations over the hidden input variables

{xk}nk=0 = {xn−1, . . . , x1, x0}. The system is further manipulated and extended (e.g.,by

multiplying the polynomials by some low–degree polynomial) until a solution is found (e.g.,
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linearization and Gaussian elimination or by computing a Gröbner basis of the expanded

system[103], [102] and [104]). The significance of the attack is that the formulae exist with

probability of 1 or close to 1, unlike traditional probabilistic attacks such as differential crypt-

analysis[105] and linear cryptanalysis[106]. Subsequently, solving such equations successfully

shall definitely yield the desired value of the targeted variable. Applications of this idea were

first introduced in [107] and [108] to break public key scheme. Eventually, the attack was

generalized and applied on stream ciphers and block ciphers[109] and [110]. One approach

in algebraic cryptanalysis is to build a system of linear equations in the key variables using

extensive preprocessing, such as cube attacks[111, 112, 113, 114] and timing attacks[115]

and [116, 117]. Although it is evident that higher degree boosts the difficulty to solve the

equations, it is quite common that the number of multivariate equations is usually less than

the number of variables. This ensures that Algebraic attacks can solve large systems of low

degree polynomial equations with surprisingly low complexity. For example, solving dense

random-looking equations of degree 16 in several thousand variables over GF(2) (which cor-

respond to many types of LFSR-based stream ciphers) can now be done in less than 232

complexity[118].

5.2.3 Modular Addition

Stream ciphers such as SNOW 2.0[119], SOBER-t32[110], and ZUC[120], as well as block

ciphers which include IDEA[121, 122], CAST[123], TWOFISH[108], and MARS[124] employ

Modular Addition 2n as an elementary cryptographic module. Typically, it is used for

mixing, which combines two data sources to provide security. While the logic Exclusive–

OR operation is also often used for mixing, Modular Addition offers better security against

Algebraic attack[125] and side–channel attacks[126] because it is partly non-linear in GF(2).

A linear operation in GF(2), such as Exclusive–OR, can be described by an equation of

algebraic degree 1. In [125] it was shown that the algebraic degree of the formulae describing

Modular Addition can be reduced to quadratic. At the same time, conditional properties
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Figure 5.1: Block Schematic Diagram for New Design Framework of Modular Addition

of the Modular Addition have been found to lower the algebraic degree and create new

independent equations. These techniques help reduce the complexity of solving Modular

Addition significantly.

5.2.4 Security Enhancement for Ciphers in IoT

Our published research work [127, 128] and [129] devises a new design framework of Modular

Addition that will increase the algebraic degree when compared to the general Modular

Addition and increase the difficulty of using the conditional properties. However the size of

the structure is user-defined and flexible, giving its users a scalable security against Algebraic

attack (Figure. 5.1). Furthermore, the results in article [128] describes a framework for

stream cipher systems only while [127, 129] deals for all types of cipher systems which includes

both Stream and Block Ciphers in IoT devices. We briefly outline the major contribution

in the following sections for enhancing the security of IoT based lightweight cipher systems

which can be realized using both hardware and software[127, 128, 129].
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5.3 Modular Addition Preliminaries

Most of the conventional IoT based lightweight ciphers are based on mixing of S–Boxes,

arithmetic and Boolean operations. By being one of the fastest arithmetic operations, the

Modular Addition as a power of 2 is handled very efficiently on IoT processors. Furthermore

we adopt the notation| for this operation in this article, to distinguish it from the Exclusive–

OR operation denoted by ⊕.

By considering Modular Addition from the perspective of threats posed by an Algebraic

attack, a derivation can be deduced using a set of equations which describes the relation

between inputs and outputs. This is outlined in [130] for the n–bit Modular Addition of

Z = X | Y mod 2n : (xk, yk) 7→ zk, and shown in Eq. 5.1



zk = xk + yk if k = 0

zk = xk + yk + ck−1 if k = 1, carry bit ck = xkyk

...

zk−1 = xk−1 + yk−1 + ck−2 if 2 ≤ k < n− 1

(5.1)
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The addition operation is denoted by + sign in GF(2), which is the logic Exclusive–OR

operation. The carry variable obtained above can be described by Eq. 5.2.

ck = xkyk if k = 0

ck = xkyk + (xk + yk)(ck−1) if k = 1

...

ck−1 = xk−2yk−2 + (xk−2 + yk−2)(ck−2) if 2 ≤ k < n− 1

In general,

ck = xkyk + (xk + yk)(xk−1yk−1) +
k−2∑
q=0

xqyq

k∏
r=q+1

(xr + yr) if 2 ≤ k < n− 1

(5.2)

By merging Eq. 5.1, Eq. 5.2, we observe that the Modular Addition is not completely non-

linear since the least significant bit(lsb) of the resulting output always stays linear. Also the

carry terms dominate all other terms of the resulting Algebraic degree. Consequently, the

degree increases linearly with the carry terms as in Eq. 5.2. This is due to the fact that

the more significantly positioned carry terms not only depend on their corresponding input

variables, which have a degree 1, but also on the previous carry terms. As C0 is generated

by X0 and Y0, the degree of Z1 becomes 2. Similarly, C1 is generated by X1 and Y1, and the

degree of Z2 becomes 3. In general, for an n-bit output, we can define the Algebraic degree

deg for each output bit k as:

deg(k) = k + 1, where 0 < k ≤ n (5.3)

Thus, the complexity of solving the equations is directly proportional to the Algebraic degree.

In [125], a set of equations was devised that describes Modular Addition but limits the
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Algebraic degree to 2. This property is described using Eq. 5.4. Moreover the methods

in [125] produced 6n − 3 independent equations instead of the original n equations. This

effectively reduces the complexity of Algebraic attack on Modular Addition even before the

deployment of conditional properties.

zk = xk + yk if k = 0

zk = xk + yk + xk−1yk−1 if k = 1

z2 = x2 + y2 + x1y1+

(x1 + y1)(x1 + y1 + z1) if k = 2

...

In general,

zn = xn−1 + yn−1 + xn−1yn−1+

(xn−1 + yn−1)(xn−1 + yn−1 + zn−1)

(5.4)

5.4 The New Adaptive Lightweight Framework for IoT

In our proposed design[128, 129, 127], a new type of cryptographic model is devised that

provides user-defined scalable security against Algebraic attack for Lightweight ciphers in IoT

device nodes. Fig.5.1 clearly contrasts our new design framework with the general Modular

Addition.

Definition 10 (Inflate Function Jf ). This component expands each single input bit into a

2m–bit string based on an n ∗ m–bit control string KI. The user–define parameter m is

determined based on the user’s requirement. The input control string KI typically can be

generated within a cipher. The actual expansion function can be flexible; the user can sub-

stitute other expanding functions instead of the proposed one. For example, the expanding

function can be an algebraic function or it can be an S-box (a basic component of symmetric

key algorithms which performs substitution).
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The proposed expansion function is an arithmetic relationship that is easily scalable.

Also, each of its output bit is 0–1 balanced. The Inflate function Jf can be described as

follows: for a given n–bit word input X = {xk}nk=0 = {xn−1, . . . , x1, x0} in Z with the

corresponding key input KIX defined as KIX =
{
KIxn−1 , KIxn−2 , . . ., KIx1 , KIx0 | KIxk ∈

{0, 1}m , 0 ≤ k ≤ n− 1}. Consequently for each key input bit, we have KIxk ,
{
KIxk,m−1

,

. . ., KIxk,1 ,KIxk,0
}
∀ KIxk,j ∈ {0,1} with 0 ≤ k ≤ n−1, 0 ≤ j ≤ m−1. Furthermore, let X̀

be the inflated input where X̀ = {x̀k}nk=0 = {x̀n−1, . . . , x̀1, x̀0} and x̀k ∈ {{0, 1}w |w = 2m}

and KIxk are considered as decimal numbers in Eq. 5.5 as follows. �

x̀k = Jf (xk, KIxk) (5.5a)

where, Jf (xk, KIxk) =

2w − 1− 2KIxk if xk = 0,

2KIxk if xk = 1

(5.5b)

It is recommended to define an user-defined parameter m ≥ 2 for Eq. 5.5 in order to avoid

repeating values. Fig. 5.2 illustrates an example for m = 3.

Definition 11 (Modular Addition). This component of the new framework instantiates

modular addition operation using the inputs X̀ = {x̀n−1 , . . ., x̀1, x̀0} ,
{
x̀(n−1)(w−1) , . . .,

x̀(n−1)1, x̀(n−1)0, . . ., x̀1(w−1), . . ., x̀11, x̀10, x̀0(w−1)1, . . ., x̀01, x̀00} and Ỳ = {ỳn−1 , . . ., ỳ1,

ỳ0},
{
ỳ(n−1)(w−1) , . . ., ỳ(n−1)1, ỳ(n−1)0, . . ., ỳ1(w−1), . . ., ỳ11, ỳ10, ỳ0(w−1)1, . . ., ỳ01, ỳ00} to

perform the operation. These inputs were generated as a result of previous Inflate func-

tion component during its expansion process. Consequently, the number of additions to be

performed by this particular component has increased from 2n to 2(n)(w) with w = 2m for

some user-defined m ∈ Z∗. The output for the Modular Addition component is given by

Z̀ = {z̀n−1 , . . ., z̀1, z̀0},
{
z̀(n−1)(w−1) , . . ., z̀(n−1)1, z̀(n−1)0, . . ., z̀1(w−1), . . ., z̀11, z̀10, z̀0(w−1)1,

. . ., z̀01, z̀00}. In general, we can derive Eq. 5.6 using Eq. 5.4 or Eq. 5.1 and Eq. 5.2 as

follows. �
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Figure 5.2: Inflate function output states x̀k,j depending on control input KIxk,j for m = 3

z̀kj =


x̀kj + ỳkj if k=0, j=0 ;

x̀kj + ỳkj + x̀kj−1ỳkj−1 +

(x̀kj−1 + ỳkj−1)(x̀kj−1 + ỳkj−1 + z̀kj−1) for 0<k≤n−1
0<j≤w−1

(5.6)

Definition 12 (Deflate Function Df ). This function completes the last component of our

proposed design. It is a compaction function that compresses {z̀k 7→ zk | {0, 1}nw 7→ {0, 1}n ∀ n,

w ∈ Z∗} based on a n ∗m–bit control string KO. The Deflate function is highly flexile since

the type of compaction method chosen to implement the task of compressing the summa-

tion output is solely user–dependent. In our design, we choose a 2m : 1 multiplexer (MUX)

function. Let KO = {KOn−1 , . . ., KOk, . . ., KO1 , KO0 | KOk ∈ {0, 1}m , 0 < k ≤ n− 1}.
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Thereby we have, Z = {zn−1 , . . ., z1, z0}= {Df (z̀n−1, KOn−1) , . . ., Df (z̀1, KO1), Df (z̀0, KO0)}.

Therefore the expression for Df can be generalized as in Eq. 5.7a �

zk = Df (z̀k, KOk) (5.7a)

where, Df (z̀k, KOk) =

{
w−1∑
℘=0

z̀k℘

m−1∏
k=0

(−1)
℘

2k
+1KO℘k (5.7b)

In the equation above, (−1) refers to the complement of KO℘b, summation refers to logic

Exclusive–OR operation and multiplication implies logic AND operations.

Example An example is discussed below as in Eq. 5.8a for evaluating Deflate function

with m = 2, where ℘ and k are index variables.

Df (z̀k, KOk) =
w−1∑
℘=0

z̀k℘

m−1∏
k=0

(−1)
℘

2k
+1KO℘k (5.8a)

=
4−1∑
℘=0

z̀k℘

2−1∏
k=0

(−1)
℘

2k
+1KO℘k

= z̀k0(−1)1KO℘0(−1)1KO℘1

+z̀k1(−1)2KO℘0(−1)1KO℘1

+z̀k2(−1)3KO℘0(−1)2KO℘1

+z̀k3(−1)4KO℘0(−1)2KO℘1

=⇒ Df (z̀k, KOk) = (5.8b)

= z̀k0KO℘0 KO℘1 + z̀k1KO℘0KO℘1

+z̀k2KO℘0KO℘1 + z̀k3KO℘0KO℘1
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Figure 5.3: Algebraic degree deg(k) for general Modular Addition corresponding to every bit
k where 1 ≤ k ≤ 7, n = 8.
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Figure 5.4: An outspread of Algebraic degree deg(k) for New Design Framework of Modular
Addition corresponding to every bit k where 1 ≤ k ≤ 7, n = 8 and 0 < j ≤ w − 1, w = 15,
m = 4.
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5.5 Design Analysis for New Modular Addition Frame-

work

In this section, we employ Algebraic cryptanalysis to analyze the design of the proposed

model.

5.5.1 The Characteristics of the New Design Framework

Output characteristic can be defined for the new design framework by initially consid-

ering the general Modular Addition where the output bits can be used directly to derive

potential carries and input pairings. In the new design framework however, the Deflate

function is lossy; thus, the attacker can only obtain n bits out of 2nw bits even if the output

control string KO is known. Therefore, these n bits cannot provide enough information to

derive the potential carries and input pairings. It is still possible to have all 1’s in the sum

of the Modular Addition component in the new design framework. This requires specific

combinations of the two m-bit input control strings KIxk and KIyk . In particular, the two

input control strings should be the same while the corresponding inputs should be a propa-

gate pair. As discussed before, the probability of output being all 1’s in a general Modular

Addition is 2−n. Thus the probability of this condition occurring in the new design frame-

work is decreased to (2−n)(2−mn). Apparently the difficulty has increased and the resulting

derivation is shown in Section S.II (A) of the electronic appendix supplementary material

for this article.

Input characteristic can be evaluated by employing a similar procedure while considering

input characteristics of the general Modular Addition component. Initially, the expanded

inputs will never be all 0’s when using the Inflate function given in Eq. 5.5. Therefore, this

characteristic becomes invalid. Nevertheless, it is possible for the expanded inputs to be

the Two’s Complement of one another. By observing Eq. 5.5 carefully, it is evident that
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there are only 3 such cases given any m and m ≥ 2. Thus, the probability is derived to

be (3/22m+2), which is significantly less than 2−n. A more elaborate derivation is shown in

Section S.II (B) of the electronic appendix supplementary material for this article.

5.5.2 Carry Absence in Modular Addition

We observe that the probability of carry has decreased from 2−(n−1) to 2−(wn−1) for the same

n-bit input pair as evident in Eq. 5.12. This results in an increase of difficulty for an attacker

to create a scenario without any carry, as discussed in Sect. 5.5.1.

5.5.3 Carry Probability

We can estimate the probability of carry for general Modular Addition using Eq. 5.12. As

discussed in preceding sections, each bit of the expanded input is 0 − 1 balanced. We can

view the Inflate function component as an amalgamation of Boolean functions wherein each

output bit corresponds to a {0, 1}m+1 7→ {0, 1} function. However in this case, each Boolean

function is 0− 1 balanced since the output of the function has an equal chance of producing

either a 0 or 1. Using this assumption, the probability of carry for the new design framework

can be deduced as given below. The ensuing result produces an equation which is very

similar to Eq. 5.12. Suppose the carry bits generated due to the summation of two expanded

inputs is given by C̀ = {c̀n−1 , . . ., c̀1, c̀0},
{
c̀(n−1)(w) , . . ., c̀(n−1)0, . . ., c̀w, . . ., c̀11, c̀10, c̀0w,

. . ., c̀01, c̀00 | w = 2m,m ∈ Z∗}, then the probability can be deduced using the examples in

(5.9), (5.10) and (5.11).

Pr(c̀01 = ζ) =


1
2
∗ 1

2
= 1

4
if ζ=1

3
4

if ζ=0

 where x′00 = y′00 = 1 (5.9)
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Pr(c̀02 = ζ) = 1
2
∗ 1

2
∗ 1

4
+ 1

2
∗ 1

2
∗ 3

4

+1
2
∗ 1

4
∗ 1

2
+ 1

2
∗ 1

4
∗ 1

2

= 3
8

 ⇐⇒



x̀01 = ỳ01 = c̀01 = 1; ζ = 1

x̀01 = ỳ01 = 1, c̀01 = 0

x̀01 = c̀01 = 1, ỳ01 = 0

ỳ01 = c̀01 = 1, x̀01 = 0

(5.10)

Pr(c̀02 = 0) = 1− Pr(c̀02 = 1) =
5

8
(5.11)

By utilizing Equations (5.9), (5.10) and (5.11), we can generalize the probability using

Eq. 5.12 as follows.

Pr(c̀kj = ζ) =


2k∗w+j−1
2k∗w+j+1 if ζ=0

1− Pr(c̀kj = ζ) if ζ=1


where 0 ≤ k ≤ n− 1,

1 ≤ j ≤ w ∀ w = 2m
(5.12)

5.5.4 The Complexity Analysis for the New Model

The Algebraic degree must be obtained in order to evaluate the complexity of solving the

new design framework under an Algebraic attack. A cryptosystem can be seen as a set of

Boolean functions, each of which is represented as a polynomial modulo 2 in what is known

as its Algebriac Normal Form (ANF). Therefore, the new design framework is expressed

using ANF, which describes a Boolean function using logic Exclusive–OR gates[103]. The

Algebraic degree of each component is first studied before considering the degree of whole

design.

Algebraic Degree of Inflate Function Jf is a monomial with the largest degree in the

Algebraic normal form. With regard to the Inflate function, each expanded variable can be

expressed in the ANF by considering itself a Boolean function. Intuitively, the value of the

expanded variable is a manipulation of the original input value based on the value of the
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user-defined parameter m. By carefully observing the 2 examples outlined in the Table 5.1, it

can be deduced that Algebraic degree relates directly to the value of user-defined parameter

m.

Effective Algebraic Degree of Modular Addition can be evaluated for the new model

using Eq. 5.4 or Eq. 5.1 and Eq. 5.2. We notice that Eq. 5.4 limits the algebraic degree to

quadratic in the original Modular Addition by utilizing the output variables. This is under

the assumption that output is observable. However, in the new design framework, the output

variables of the Modular Addition component may not be observable. Moreover, it is possible

to define them as additional variables so that the algebraic degree of the expression can be

reduced. The drawback to this method is that the number of variables used to solve the set

of equations has increased. Assuming that additional variables are used, the algebraic degree

of the Modular Addition component is at most 2m. This is due to the fact that each input

variable now has a degree of m and the largest degree is quadratic using Eq. 5.4. At this

point, it can be observed that the algebraic degree has already increased by the user-defined

parameter m.

Subsequently, it is possible to express the Modular Addition using Eq. 5.1 and Eq. 5.2, with

its algebraic degree being outlined by Eq. 5.3. As discussed before, currently each input

variable has a degree of m. We outline the following notion while evaluating individual bits

for any given n–bit word: the Algebraic degree of the least significant bit(lsb) is represented

by lsbdeg and the rest of the bits by ∼lsbdeg where as the combined bits are denoted by a

tuple as 〈lsbdeg,∼lsbdeg〉. Considering addition operation we have, lsbdeg = m and for rest of

the output bits, it is ∼lsbdeg = (k ∗w+ j+ 1)m where 0 ≤ k ≤ n− 1, 0 ≤ j ≤ w− 1, w = 2m.

The derivation approach is similar to what is outlined in the preceding section. It can be

noticed that the degree of the carry terms increases linearly according to their bit positions.

However, the degree increases in multiples of m because the expanded input variables have a

degree of m. As a result, the degree of z̀01 is generated by the multiplication of two degree-m

variables x̀00 and ỳ00. Similarly, the degree of z̀02 can be generated by the multiplication
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of x̀01, x̀00, and ỳ00, or the combination of ỳ01, x̀00 and ỳ00 whose degrees are 2m and 3m

respectively. Therefore, each output variable of the Modular Addition, z̀kj, has a degree of

(k ∗ w + j + 1)m. A comparison summary of algebraic degree for the summation operation

is illustrated in Table. 5.2. Therefore, by comparison the effective increase of algebraic is m

with regard to the general Modular Addition.

Algebraic Degree of Deflate function Df As specified in preceding sections, this func-

tion is a 2m:1 logic Multiplexer (MUX) function defined by Eq. 5.7a. As this equation is itself

in the Algebraic normal form (ANF), the degree can be determined by observing Eq. 5.7a.

Consequently, the degree is m + 1 since the output of the MUX function depends on the

values of all the select lines and the input. The 1 comes from the assumption that the degree

of input to the MUX is 1. When the degree changes, it must be substituted accordingly.

5.5.5 Overall Algebraic degree of New Design Framework

This can be estimated by accruing the degrees of all the components for our new model.

Table. 5.3 provides a summary of the algebraic degree of the new design framework and

a comparison to the general Modular Addition. Here the algebraic degree of the general

Modular Addition is calculated using Eq. 5.4. As summarized in Table. 5.4, the Algebraic

Immunity has increased by 2m, or at least 4 for m = 2. Moreover, the Describing Degree

has increased from 2 to at least 66 for m = 2 and n = 8 bits. Also, it is worth noting that an

attacker can seek to lower the degree of the new design framework by looking for additional

independent equations with lower degree or by creating extra variables. The benefit of these

methods is to be determined by the attacker. Considering this aspect, a corner case study

is provided in Sect. 5.5.6 as a starting point.

An illustration of a comparative analysis of Algebraic degrees between the general Modular

Addition and our New Design Framework is depicted using Figures. 5.3 and 5.4 for m =

4, n = 8, w = 24 − 1. These radar plots act as valuable tools in comparative analysis
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of multivariate data. In the plot, each spoke denotes individual bits k > 0 or non–lsb

bits whereas the data value points on each spoke represents the additional j component of

inflate function. It is intuitively clear from Figure. 5.4, that the Algebraic degree obtained

by drawing a unique colored line connecting the data values for each spoke has an outward

spread due to its expansive property. Subsequently, the highest Algebraic degree corresponds

to the point where the subscripts k, j of the expanded word are at their maximum values

i.e., i = 7 and j = 15 thereby, completing the cycle in an ascending order.

5.5.6 A Corner Case Analysis for the New Design Framework

A corner case for the new design framework can be derived by carefully observing for a

conditional property; a probabilistic condition can help reduce the Algebraic degree. As

described in Sect. 5.5.4 and inferring example from Table. 5.1, it is clear that the Algebraic

degree of the Inflate function depends on the multiplication of the input control string

variables. Therefore, if the variables are all known, the degree falls to 1. Specifically, if the

Figure 5.5: Differentiating various properties using Corner Case Analysis with m = 2 and
n = 8.
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input control string has all 0’s, the expanded inputs are either the same as the inputs or

the complement of the inputs. Under this condition, the degree of addition becomes at least

1, which is the same as the general Modular Addition. In each block of expanded inputs,

the expression of the summation of expanded input variables can be reduced because many

of the variables are the same. In fact, lsbdeg in each block of inflated inputs is k + 1, for

0 ≤ k ≤ n − 1. The rest of the summation bits ∼lsbdeg obtained from adding each block

of the inflated inputs have a degree of k + 2. An example of the derivation is shown in

Section S.I as part of the electronic appendix supplementary material for this article using

m = 2. Furthermore, the attacker would notice that if the Deflate function is able to select

the lsb in each block of the summation, i.e., z̀k0, the Algebraic degree is the lowest. In order

to recreate this condition, the output control string needs to be all 0’s. As a result, the

degree of the new design framework becomes k + 1 for z̀k with 0 ≤ k ≤ n− 1. Incidentally,

this is the same as the general Modular Addition as shown in Table. 5.2. The cost of this

condition has a probability of 2−3mn as all control bits need to be 0’s. The general Modular

Addition and our new design framework can be viewed as S-Boxes and their complexity

against Algebraic attack can be approximated as S-Boxes. For the general Modular Addition,

the required parameters have been studied in [125]. A comparison for the same has been

listed in Table. 5.4. While referring to the corner case, the number of monomials is still

larger because of the increased number of variables and Algebraic degree. Simultaneously,

the complexity has also increased by attaching the conditional cost. A comparative bar

graph is shown in Figure. 5.5 distinguishing various corner case properties between general

Modular Addition and our proposed New Design Framework of Modular Addition.
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Table 5.1: ANF Case Analysis for resultant Jf Outputs.

Algebraic Degree Modular Addition Modular Addition based
on New Design Framework

deg 〈lsbdeg,∼lsbdeg〉 〈lsbdeg,∼lsbdeg〉

Using Eq. 5.4 〈1, 2〉 〈m, 2m〉
Using Equations (5.1)
and (5.2)

〈1, k + 1〉 〈m, (k ∗ w + j + 1)m〉

Table 5.2: Comparative Summary of Algebraic Degrees for Summation Component.
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Algebraic Degree Modular Addition Modular Addition based
on New Design Framework

deg 〈lsbdeg,∼lsbdeg〉 〈lsbdeg,∼lsbdeg〉

Inflate Function Jf 〈1, 1〉 〈m,m〉
Modular Addition 〈2, 2〉 〈m,m+ (i ∗ w + j + 1)m〉

Deflate Function Df NA 〈m+ 1,m+ 1〉
Total 〈1, 2〉 〈2m,m+ (i ∗ w + j + 1)m〉

Table 5.3: Exemplifying differences in Algebraic Degree for Generic and New Design Frame-
work of Modular Addition.

Table 5.4: Complexity Evaluation using Corner Case Analysis

Type Des
cr

ib
in

g
Deg

re
e (D

)

Alge
bra

ic
Im

m
unity

(A
I n

)

In
put Var

iab
les

Outp
ut Var

iab
les

Ext
ra

Var
iab

les

Equ
at

ion
s (R

)

Alge
bra

ic
Deg

re
e (d

eg
)

Con
diti

on
Cos

t

No.
of

M
on

om
ial

s (T
)

Com
plex

ity
(Γ

)

Modular Addition 2 1 2n n 0 6n− 3 2 0
2∑

k=0

(
3 ∗ n
k

)
(T/2n)dT/Re

New Design Framework m+ ((n−
1) ∗ 2m +
(2m − 1) +
1)m

2m 3mn + 2n n 0 n n+ 1 23mn

n+1∑
k=0

(
3n(1 +m)

k

)
(T/3mn+ 2n)dT/Re

Modular Addition

131



CHAPTER 5. SECURITY ENHANCEMENT IN IOT DEVICE

5.6 Case Study

In this section, we demonstrate the application of our proposed new design framework using

a stream cipher in case study. Further case studies including analysis on block ciphers have

been elaborated in our articles [].

5.6.1 New SNOW 2.0

A stream cipher like SNOW 2.0, utilizes combiner with memory[131, 132] or formally, (k, l)–

combiners in this example. A (k, l)–combiner C = (f, φ) with k inputs and l memory

bits is a finite state machine (FSM) which is defined by output function f : {0, 1}l x

{0, 1}k 7→ {0, 1} and a memory update function φ : {0, 1}l x {0, 1}k 7→ {0, 1}l. Given a

stream (x0, x2, . . . xn−1) of inputs, xi ∈ {0, 1}k, and an initial assignment Q1 ∈ {0, 1}l to

the memory bits, the corresponding output bitstream (z0, z1, . . . zn−1) is defined according

to zk=f(Qk, Xt) and Qk+1 = φ(Qk, Xk), where 0 ≤ k ≤ n− 1.

Overview of SNOW 2.0

This particular cipher uses a length of 16 LFSR over GF(232). In other words, the LFSR

has 16 elements, or states, but each state contains a 32-bit word. Let S0, S1, . . . , S15 denote

the states of the LFSR. The feedback function is defined as the XOR combination of S0

multiplied by α, S2 and S11 divided by α. To produce the output key stream, a Finite

State Machine (FSM) is used in conjunction with the LFSR. The FSM contains two 32–bit

registers R1 and R2. The value of R2 is determined by feeding the value of R1 through a

set of AES S–boxes and the AES Mix Column function. The value of R1 is determined by

performing Modulo Addition 232 between R2 and S5. Finally, the output combiner function

is defined as first performing Modulo Addition 232 between R1 and S15, then perform the

Exclusive–OR operation on the result with R2, and finally XOR–ing the result of the former

with S0. It operates in two modes: Initialization and Key Stream Generation. Succinctly,
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SNOW 2.0 uses a 128-bit secret key and a 128-bit initialization vector during Initialization

Mode.

Application using the New Design Framework

The new design framework is used to replace the two Modulo Additions and the user-defined

parameter m is chosen to be 3. There are 288 extra bits required to supply the input and

output control strings of each addition, because for each input bit of the 32-bit addition, a

3-bit control string is needed. Therefore, 576 bits in total are required for two additions.

The extra bits can be generated in my ways. In this case, S14 is used to generate 288 bits

and the same set of bits is used for the two insertions of the new design framework. The

logic behind this generation is as follows:

1. For each bit of the first input X, a total of 3 input control bits are needed. They will be

the 3 LSBs of the 3-bit circular-left-shifted S14. For example: KIx0 = (S14,2, S14,1, S14,0)

and KIx1= (S14,31, S14,30, S14,29).

2. For each bit of the second input Y, the 3 input control bits will propagate from the 3

LSBs of the 3-bit circular-right-shifted and inverted S14. Let S ′14 denote the bit-wise

inverted S14. Then, KIy0 = (S ′14,2, S
′
14,1, S

′
14,0) and KIy1 = (S ′14,5, S

′
14,4, S

′
14,3).

3. For the output control string, each 3 output control bits arrives from the 3 LSBs of

the 3-bit circular-right-shifted S14. For example: KO0 = (S14,2, S14,1, S14,0) and KO1

= (S14,5, S14,4, S14,3).

This setup can at least guarantee that the input control bits for the first input pair will not

be all 0’s simultaneously. The new SNOW 2.0 setup is shown in Figure. 5.6. An example

output is shown in Section S.III of the electronic appendix supplementary material for this

article to demonstrate the internal steps of applying the new design framework on S15 and

R1 during the generation of the first output key stream. The secret key is defined as 0xAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA. The initialization vector(IV) is defined
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Figure 5.6: Schematic for the New SNOW 2.0 Design

as 0x00000004000000030000000200000001. This is one of the test vectors listed in [132]. At

this specific timeframe, S15 = 0xCC15A50B, R1 = 0xAAB91A68, and S14 = 0x5164B6D

9. Consequently, the output of the new design is 0x37F7B4F7 while the original Modulo

Addition gives 0x76CEBF73. Also, the first output key stream of new SNOW 2.0 is 0x91C

C022F and the original key stream is 0xC355385D.

5.6.2 Analysis of New SNOW 2.0

The Algebraic Attack on SNOW 2.0 has been studied extensively in [133] and [125]. Two

methods have been proposed to linearize the Modulo Addition 232 in the stream cipher.

The first method is relatively straightforward, as the Modulo Addition can be completely

linearized when there are no carries. The probability of this occurring can be estimated using

Equation. (5.12). The condition is satisfied as long as each input pair does not generate a

carry. The probability of this happening is (3/4)31 because the probability of an input pair
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Type By Method 1 By Method 2 Corner Case

Fix Carries to 0 Fix Consecutive
Outputs

SNOW 2.0 2−248 2−288 --

New SNOW 2.0 2−4216 2−1768 NA

Table 5.5: Analysis of Results for the New SNOW 2.0.

generating no carries is (3/4). The author in [133] seeks to use this condition for both

additions and for 17 consecutive cycles. The probability of this is (3/4)31∗2∗17 ≈ 2−438, which

is close to exhaustive search 2−576. In SNOW 2.0, the exhaustive search includes the search

for 512 bits in the LFSR states and two 32-bit registers. In the new SNOW 2.0, the cost

of having no carries has greatly increased. As m = 3 in this application, the length of the

Modulo Addition component in the new design framework becomes 32 ∗ 23 = 256. To fix

the carries for one Modulo Addition, the probability is estimated to be 2−(31∗8∗17) = 2−4216

by using Equation. (5.12). This is much larger than exhaustive search. The second method

sees the attacker trying to manipulate the output characteristics of the Modulo Addition to

linearize the equations, as described in [125]. In particular, 9 consecutive values of the register

R1 are fixed. The desired output values from the summation are R11 = 0, R12 = 232 − 1,

R13 = 0, R14 = 0, R15 = 0, R16 = 0, R17 = 0, R18 = 0, and R19 = 0. The value of R1

comes from summing R2 and S5 but the value of R2 comes from feeding R1 through the

ASE S-Boxes and Mix Column operation. Therefore, only S5 needs to be fixed. Due to the

nature of LFSR, 9 states need to be fixed, namely: S5, S6, S7, S8, S9, S10, S11, S12, and

S13. The associated probability is 2−32∗9 = 2−288. With the new design framework applied;

however, the output characteristic may not be applicable. As discussed in Section. 5.5, the

probability of fixing all outputs to be 1 in the new design is 2−n(m+1). In this scenario, the

probability has become 2−32(3+1) = 2−128. In addition, the probability of fixing all outputs to

be 0 in the new design is (3/22m+2)n. Again, the probability becomes (3/22∗3+2)32 ≈ 2−205.

For a total of 9 consecutive cycles, the probability has become 2−205∗8 ∗ 2−128 = 2−1768. In
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essence, the adversary may want to utilize the corner case of the new design framework

to lower the Algebraic degree. However, the control string generation logic, outlined in

Section. 5.6, guarantees that the input control strings for the LSBs of the two inputs will

not be 0 simultaneously. Therefore, the set of equations cannot be completely linearized, as

illustrated in Table. 5.5.

5.7 Conclusion

In this chapter, a new type of model for Modulo Addition was proposed to defend against

attacks involving multivariate polynomials for lightweight ciphers involving both Stream

an Block type in IoT communication nodes. Our model features three components: an

Expandable Input, Modulo Addition, and a compression module called Deflate function.

Furthermore our new design framework utilizes an expanding and compacting structure that

can fit into various lightweight cryptographic systems based on user–based requirements de-

pending on the computational power of specific IoT nodes. Further case studies involving

lightweight ciphers for IoT such as SNOW 2.0[119] and IDEA[121, 122] ciphers were elab-

orated in [128, 129, 127]. This concludes potential security enhancements for IoT in this

chapter.
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Chapter 6

Conclusion and Contributions

6.1 Summary

We can summarize from the research work described in previous chapters as follows. In

Chapter 1, we discussed the gargantuan volume of data created by the IoT ranging from

devices in home to city infrastructure will have an unfathomable impact on the networking

systems used today, and managing them will be equally challenging. Furthermore in Chap-

ter 2, MOO algorithms have been a subject of intense interest to IoT researchers for solving

diverse multi-objective optimization problems, in which multiple objectives are treated si-

multaneously subject to a set of constraints. However, it is infeasible for multiple objectives

to achieve their respective optima at the same time, thus there may not exist a single globally

optimal solution, which is the best with respect to all objectives. We concluded that GWO

is an algorithm which is best suited considering the diverse optimization requirements of an

IoT. Also Chapter 5 discussed ways to enhance security of IoT nodes without compromising

the performance requirements and stated cost overhead of replacements is a significant chal-

lenge in IoT domain. We proposed a new type of model for Modulo Addition was proposed

to defend against attacks involving multivariate polynomials for IoT based lightweight ci-
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phers involving both Stream an Block ciphers without added overheads. A novel High-level

synthesis (HLS) is described in Chapter 4 that comprises of a reliability based design pro-

cess that interprets an algorithmic description of a desired behavior and creates digital IoT

specific hardware realizing the required behavior was formulated. The comparative analysis

concluded the superiority of our methodology. Ultimately in Chapter 3, a novel delta dia-

gram based parameter capture method to synthesize the network of resource deprived IoT

communication systems was initiated using optimization framework described in Chapter 2.

The final analysis concluded the point-to-point optimization benchmarks in comparison with

state-of-the-art methods.

For a more comprehensive review of the contributions made towards IoT research areas in

this thesis, we suggest the reader to follow through the main research highlights listed in the

next section.

6.2 Contributions

This research makes the following contribution.

6.2.1 Security enhancement methods for IoT

Our research proposed a new type of model for Modulo Addition was proposed to defend

against attacks involving multivariate polynomials for lightweight ciphers involving both

Stream an Block type in IoT communication nodes. Our model features three components:

an Expandable Input, Modulo Addition, and a compression module called Deflate function.

Furthermore our new design framework utilizes an expanding and compacting structure that

can fit into various lightweight cryptographic systems based on user–based requirements

depending on the constrained computational power of specific IoT nodes.
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6.2.2 Framework for Rapid DSE of IoT device

The thesis presented a new framework for an accelerated design space exploration of re-

source constrained IoT hardware. The approach was successful in laying the foundation for

exploring the design points from the architecture design space according to the performance

objective and intended functionality. The novel method determines the utility coefficient of

each resource for designing system of IoT hardware. After the architectural design specifica-

tion were organized in sorted order based on the utility coefficients calculated, the procedure

for applying the optimizer algorithm became easier. As a result the proposed approach was

able to drastically reduce the number of architectural variants to be analyzed for selection

of the system architecture. The proposed mechanism for DSE was able to resolve conflicting

objectives in DSE in HLS by utilizing a novel Grey Wolf Optimizer.

6.2.3 Grey Wolf Optimizer

We proposed a Grey Wolf Optimizer to solve the multi-objective problem with conflicting

parameters for DSE approach with the architecture synthesis process useful for micro scale

devices that are commonly employed by IoT based requirements. Thus it ensured that small,

rugged, inexpensive and low powered IoT sensors will bring the IoT to even the smallest

objects installed in any kind of environment, at substantially lower costs.

6.2.4 Automated Communication Synthesizer

We design and develop that uses a novel Delta Diagram based model for rapid choosing

of IoT network layer parameters to initiate a cross-layer optimization. Furthermore, the

optimization process utilizes our Grey wolf optimizer to optimize Quality of Service (QoS)

requirements in terms of delay, energy consumption and reliability requirements of an IoT

communication network.
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6.3 Future Work

From the communication systems point of view, in this thesis, we have explored the interac-

tion among functionalities across the different layers in protocol stack and developed a novel

cross-layer optimization framework for the IoT using Delta Diagram synthesis. However,

the proposed synthesis can be further expanded to any communication network (eg., Cellular

GSM Networks, Bluetooth Personal Area Networks, etc.) to be optimized by simply incor-

porating Delta Diagram for other layers of the protocol stack and deriving mathematical

models for them. The fundamental part of Delta Diagram based framework is to obtain

the optimal routing paths and the communication parameters among things, by exploiting

the interrelations among different layer functionalities in the IoT. This novel methodology

of finding parameter paths while optimizing the layers in form of delta diagram defined in

Figures 3.2, 3.3 and 3.4, can be exploited in next generation networks such as 5G cellular

communications, WiMAX network, etc.. Furthermore the Delta Diagram approach can be

a ideal optimizing framework for next generation intra-satellite networking paradigms where

research is still in nascent stage.

From the perspective of IoT hardware optimization, there is further scope in the area of

design space exploration and high level synthesis to improve the search time for finding the

final design architecture, and thereby accelerate the speed of the exploration process. The

developed design space exploration approach for high level synthesis can be improved further

by decreasing the search time required during the exploration process. This can be realized

by experimenting with parallel version of Grey wolf optimizer algorithms and its variants.

Additionally, the security enhancements described in this thesis for IoT ciphers can further

be expanded to incorporate optimization of the user–defined parameter under different per-

formance and resource constraints. In addition, the realization of the lightweight cipher

design in software and hardware can be optimized as well. Other functions can be developed

to substitute the existing functions in the Inflate function and deflate function to provide

different or extra cryptographic features.
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The next paradigm change at the door of Information and Communication Technology is

IoT. IoT, as an evolving technology, is gaining rapid popularity because of its basic idea: ac-

cessing the physical objects through Internet. It has number of inbuilt benefits as discussed

in Chapter 1, but there are numerous factors and bottlenecks discussed in this thesis which

are delaying the worldwide implementation of this technology. There are many on-going

world-wide research initiatives and standardization efforts, which aim at making the IoT

a reality. Unfortunately, the nature of very high heterogeneity in hardware capabilities of

things and QoS requirements for different applications throttles the performance of classical

layered protocol solutions and the existing cross-layer solutions for wireless sensor networks

or ad hoc networks.
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