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ABSTRACT 
Computed tomography (CT) relies on computational algorithms to reconstruct images from 

CT projections. Current filtered backprojection reconstruction methods have inherent limitations 

in situations with sharp density gradients and limited beam views. In this thesis two novel 

reconstruction algorithms were introduced: the Algebraic Image Reconstruction (AIR) algorithm, 

and the Geometric Image Reconstruction Algorithm (GIRA). A CT simulation was developed to 

test these novel algorithms and compare their images to filtered backprojection images. AIR and 

GIRA each demonstrated their proof of principle in these preliminary tests. AIR and its 

extension, the Parsed AIR algorithm (PAIR), were able to reconstruct optimal images compared 

to filtered backprojection after empirically determining parameters relevant to the algorithms. 

While GIRA reconstructed optimal images in preliminary tests, reconstruction was complicated 

by error propagation for larger imaging domains. The initial success of these novel approaches 

justifies continued research and development to determine their feasibility for practical CT image 

reconstruction. 
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GLOSSARY OF TERMS 

AIR 

Beamlet 

Data Collection 

GIRA 

Image Artifact 

Linear Attenuation Coefficient 

PAIR 

Phantom Grid 

The Algebraic Image Reconstruction algorithm developed 

in this thesis. 

The path of a beam that contributes to a single detector. 

Each detector has its OVvTI respective beam let. In contrast to 

a ray, which is defined to have no width, a beamlet has the 

width of its corresponding detector size. 

Denotes the entire computed tomography scanning process. 

The Geometric Image Reconstruction Algorithm developed 

in this thesis 

A degradation in image quality that may render the image 

unfit for its intended purpose. 

A measure of an x-ray beam's attenuation per unit 

thickness in a given material (depends on the x-ray energy 

and material properties). Other terms that are used 

synonymously in this thesis are absorption density, 

density, attenuation. 

The Parsed Algebraic Image Reconstruction algorithm 

developed in this thesis. PAIR is an extension of AIR 

A matrix of values defining the Shepp and Logan head 

phantom used in the CT simulation. 
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Phantom Pixel 

Projection 

Projection Function 

Reconstruction Pixel 

Reconstruction Resolution 

---WWES !l5 ---r--w 

A pixel in the phantom matrix. 

Describes the integral sum of the attenuation along a 

beamlet path: 

p = -In(~) = f /1(x)dx 
1

0 L 

where 1 is the detected x-ray intensity, 10 is the input x-ray 

intensity, and p(x) is the attenuation coefficient of the 

material at a depth x. 

A set of projection measurements from one beam angle. 

A pixel in the reconstruction grid. Also called image pixel. 

The resolution of the reconstructed image defined in the 

reconstruction algorithm. 
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CHAPTER I 

INTRODUCTION 

1.1 An Introduction to Computed Tomography Imaging 

The success of computed tomography (CT) for diagnostics and treatment planning rests on 

its ability to produce accurate images that represent the true structure and densities of the subject 

being imaged. CT is aptly named as it depends on computer algorithms (computed) to 

reconstruct slices (tomography) of images comprising the three-dimensional structure that has 

been scanned. CT imaging takes advantage of radiation absorption in tissues, relying on the fact 

that the attenuation of an x-ray beam is a function of the internal structures' electron and proton 

densities or effectively, attenuation coefficients, 11 [1,2]. 

The process of obtaining CT images can be broken down into two steps: data collection and 

image reconstruction. In data collection, the object or patient being imaged is placed between the 

x-ray source, which emits an x-ray bearn, and the detector array, which detects radiation that has 

not been absorbed in the object. For each image slice, the CT source and detector rotate around a 

gantry to collect information from a full range of angles. The object or patient being imaged is 

moved through the gantry to allow many slices to be scanned. At each angle the data collected is 

a discretized function called a projection function, effectively describing the total absorption 

along the various paths from the source to each detector in the array. Data collection is complete 

once projections have been obtained for all slices at a range of angles [1,2,3]. 

In image reconstruction, a mathematical algorithm is used to determine the structures and 

densities of the imaged region from the collected projections. Unfortunately, exact images are 

1 
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not possible. CT has intrinsic noise considerations related to (but not limited to) the stochastic 

nature of the interaction of radiation with matter, as well as noise in the detectors. Furthermore, 

the process of reconstructing an image from the projection functions is not trivial. The image 

reconstruction algorithm can be a contributing factor towards poor or unrepresentative images, 

for exanlple yielding unwanted image artifacts (image artifacts will be discussed in more detail 

in a subsequent section). For this reason there has been much investigation into image 

reconstruction algorithms. Current accepted reconstruction algorithms are based on a process 

called filtered backprojection (which will be described in a later section) with subtle variation in 

implementation between facilities. 

The research in this thesis focuses on developing fundamentally distinctive image 

reconstruction alternatives that could optimize image quality for a given CT scan. An optimal 

reconstruction algorithm can have important medical implications in areas ranging from 

radiation treatment planning, where representative attenuation coefficients are needed, to 

diagnostic imaging, where false positives or undetected disease due to poor images are a concern 

[1-5]. 

Optimizing image reconstruction can also have significant implications for radiation safety. 

By improving image contrast and eliminating artifacts, it may be possible to reduce the dose to 

patients required to obtain clear images. Furthermore, advancements in reconstruction algorithms 

are more easily and cheaply adapted in a clinical setting compared to CT system design 

advancements, which necessitate new and often expensive hardware. 

Before going into the details of various reconstruction algorithms it will be useful to examine 

the basics of CT imaging. This will help lay the groundwork for the investigation, and define 

terms that will be referred to throughout this paper. 

2 
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1.2 The Basics o/Computed Tomography Imaging 

X-ray source 

The two main components of any CT machine are the x-ray source and the x-ray detector. 

The source consists of an x-ray tube, responsible for the production of a high-energy photon 

beam. This high-energy photon beam is achieved by heating electrons off a cathode, and 

accelerating them through a potential difference towards an anode consisting of a heavy metal 

target. As the electrons bombard the target they interact with the metal. While over 99% of the 

input energy is lost to heat, some electrons are destined for more relevant interactions. There are 

two important types of interactions that contribute to the intensity spectrum of the output photons 

(figure 1.2.1) [1]. 

Some electrons ",ill experience Bremsstrahlung interactions producing high-speed photons of 

peak energy equal to the kinetic energy of the incident electron. X-ray beam energies are 

typically defined by this peak energy indicated by KVp, while in reality an x-ray beam consists 

of a spectrum of energies. Bremsstrahlung interactions refer to electrons that are decelerated due 

to the opposing electric force as they approach the nucleus of an atom. This rapid transfer of 

energy creates Bremsstrahlung radiation, which results in a spectrum of photon energies, whose 

highest energy has a forward trajectory relative to the axis of the electron flux [1,2]. 

The second type of interaction that affects the photon spectrum is so-called characteristic 

radiation. When an incident electron bumps an inner shell electron from its orbit, and an outer 

shell electron replaces it, a characteristic photon is emitted with energy equal to the difference 

between the binding energies of the two shells. This phenomenon heavily impacts the photon 

intensity spectrum and is responsible for the sharp peaks that can be seen in the figure (1.2.1). 

Ideally what is desired is a monochromatic beam energy rather than a spectrum of energies. For 
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this re3son \'3fious teclmiques 3fe employed to n3ffOW the spectrum such as the use of x-ray 

filters. which 3fe built into the CT machine. Even with beam hardening filters, a monochromatic 

tlu.\'. of photons cannot be achieved [1,2]. 

Typical CT x-ray energies range from 80 KVp-140 KVp, though MVp x-rays are used in 

certain circumstances [7]. While KeV photons offer better soft tissue contrast, MeV x-rays can 

be used in combination with a medicalline3f accelerator, for treatment planning and patient 

setup. This thesis focuses on CT systems with KeV range photons. 
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Figure 1.2.1: The nonnalized output intensity spectrum of photons due to the 
bombardment of 120kV electrons on a heavy metal target as a function of photon energy. 

The main curve is due to the contribution from Bremsstrahlung interactions while the 
sharp spikes are caused by so called characteristic interactions [1]. 

Interactions of x-rays with matter 

At energies in the Ke V range, photons interact with matter through a number of interactions .. 

The main interactions that concern CT 3fe the photoelectric effect and Compton scattering. The 

photoelectric effect refers to a photon that transfers all its energy into liberating an orbiting 

electron. This is only possible when the photon has greater energy than the binding energy of a 

givcn shel1. The remaining energy is imp3fted to the electron as kinetic energy. This process also 
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releases a characteristic photon when an outer shell electron fills the hole of the ejected electron. 

Due to the low binding energies of tissues, the resulting characteristic photon will not travel far 

before being absorbed in the tissue. The probability of the photoelectric effect is proportional to 

the cubic proton density, of the material and inversely proportional to the cubic photon 

energy, E3 [1-4]. 

Compton scattering refers to a photon that knocks an electron out of its orbit but does not 

transfer all of its energy to the electron. The photon is deflected at an angle much like a billiard 

ball and continues on to interact with the tissue. The probability of Compton scattering depends 

on the electron density of the material and the energy of the photon. Figure 1.2.2 depicts the 

relative contributions of Compton scattering and the photoelectric effect in water [1]. 

100 

"0 80 
CD ... ... 
~ 60 Ih 
C 
1'1:1 ... ->- 40 t:/) ... 
CD 
C 
CD 

20 ~ .. 

0 
0 50 100 150 

energy (keV) 

photoelectric --- --- --- Compton 

Figure 1.2.2: This graph shows the relative contributions of Compton interactions and the 
photoelectric effect as a function of photon energy. Plotting percent energy transfer gives a 

more descriptive representation as opposed to the percent of the total interactions as it 
includes a measure of the impact of those interactions. This plot was obtained using photons 

incident on water [1]. 

Both of these interactions contribute to the attenuation of photons from the source to the 

detector. Because the probability of both these interactions depends on the tissue, it is intuitive 
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that by examining the out-coming photon intensity one could make some inferences about the 

material that has been traversed. Mathematically, the intensity of a monochromatic photon beam 

traveling through a homogeneous medium, can be described by Lambert-Beer's law as an 

exponential decay [1,2]: 

(1.2.1) I = I e-(T+O)L 
o 

Where 1 is the out-corning photon intensity (as measured by the detector), 10 is the input 

photon intensity, T and a are the attenuation coefficients (which is a representation of the 

probability of an interaction occurring per cm) of the photoelectric effect and Compton scattering 

respectively, and L is the length of the material that has been traversed. The attenuation 

coefficients are commonly represented as a sum, called the linear attenuation coefficient, !-t. 

Keep in mind that this coefficient is a function of both the photon energy and the material. At 

If a photon beam passes through a non-homogeneous region, each infinitesimal region will 

have its corresponding !-l value and the output intensity will be a function of the integral sum of 

the linear attenuation coefficients along the beanl' s path. Therefore equation (1.2.1) can be 

represented in the well-known form [1,2]: 

(1.2.2) 

-f J.l(x)dx 

I = I e L 
o 

Where !-l is now a function of the depth, which in general is not homogeneous. By taking the 

natural logarithmic ratio of 1 and 10 one can solve for the integral sum of all !-l values along the 

photon path: 

(1.2.3) P = -In(.!...) == f !1(x)dx 
10 L 
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Here, P is defined as the projection value due to a monochromatic photon beam incident on 

any material. It is using these projections that CT image reconstruction algorithms attempt to 

find all values of !l as a function of the three spatial dimensions. The !l values can be graphically 

represented to form an image. To improve image contrast what is graphically represented is the 

CT number, which is a rescaling of!l expressed in Hounsfield Units (HU): 

(1.2.4) CT _ number = f.,t - f.,twaler 1000 
!1warer 

Where !1warer is the attenuation coefficient of water (this thesis does not rely on Hounsfield units; 

rather, linear attenuation coefficients or density are used interchangeably throughout this paper). 

Typical tissue ranges from -100 to 100 HU and bone is above 1000 HU facilitating high contrast 

[4]. 

Much like a simple x-ray image, it is not possible to deduce axial resolution from one 

projection. As equation (1.2.3) suggests, one can only know the sum of the attenuation 

coefficients along the beam path. However, collecting projection data from a full range of angles 

allows for the possibility of resolving the !l values along any axis. Of course, the process of 

resolving those !l values from the projection data is the topic of this thesis. 

One issue with equation (1.2.3) is that, as mentioned before, an x-ray beanl is not 

monochromatic. The simple exponential decay does not hold because the attenuation coefficients 

are a function of the photon energy. Furthermore, equation (1.2.1) describes the attenuation of 

ballistic photons, while in reality scattered photons can continue to interact through the medium 

creating noise in the projections. These issues are complex and beyond the scope of this 

discussion, but it should be noted that the equations outlined here only apply to ideal conditions. 

In practice, additional processing and compensation is required to interpret the projection 

information accurately [1,2]. In this research, an ideal monochromatic model is assumed for 
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simplicity. Now that we have examined the x-ray source as well as the propagation of x-rays 

through tissue, let us examine the final step of data acquisition, namely, the detectors. 

X-ray detectors 

The function of a detector is to deduce the exiting intensity of photons. This can only be 

achieved indirectly by correlating some signal to photon count. There has been much 

development regarding detectors in CT devices over the last 30 years. Early CT machines rely on 

detectors filled with pressurized xenon gas that functions much like an ionization chamber. Each 

detector in the array is constructed with two thin tungsten plates, one that is connected to a high

voltage supply and one that is at zero volts. As a photon enters the detector, it may interact with 

the gas through the photoelectric effect thus causing ionization. The positive xenon ions will be 

attracted to the lower potential while the electrons will be attracted to the positive potential 

creating a current. If the bias voltage across the plates is set properly, the current will be 

proportional to the total energy of the photons that entered the detector. This measurement can 

then be related to the photon intensity. While this type of detector is inexpensive and was useful 

in older CT applications, a major problem is that a photon may pass through the xenon gas 

without interacting due to the low density of the gas [1,3,4,6]. 

A more efficient detector type called a solid-state detector makes use of a scintillating 

material such as CdW04, Gd20 2S or HiLight. As photons enter the detector they interact with the 

scintillating material though the photoelectric effect releasing photoelectrons. As these electrons 

interact with other electrons in the material, characteristic radiation is emitted in the form of 

light. This light is then detected by photodiodes located at the bottom of the detectors, and it is 

this signal that is related to the intensity of the photons entering the detectors. This type of 

detector is the basis of many CT machines today, some using amorphous silicon-based flat panel 

8 
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detectors to cover a large detector region with high spatial resolution (each detector pixel is 

about 100-200 microns) [1,3,4,6]. 

There are many factors that playa role in the effectiveness of detectors including linearity 

with respect to energy and intensity of the photon flu.x, linearity with respect to ambient 

temperature, the potential of radiation damage to the detectors, inter-detector (between two 

detectors) and intra-detector (inside a detector) uniformity, as well as the electronics associated 

with the measurements. Another crucial factor is the spacing between adjacent detectors in the 

array and the individual detector width. Both of these parameters affect the sampling rate of the 

projection measurements, and can have significant effects on image quality [1,2]. Now that we 

have discussed some of the basic components of CT machines, let us examine how all these 

components are utilized in commercial devices. 

CT source-detector geometry 

Of much interest to this thesis concerns the geometry involved in data acquisition. As CT has 

matured since its inception some 40 years ago, there have been a number of major developments 

in CT source-detector geometry for the main purpose of reducing scan time. The first clinical CT 

machine built in 1971 is aptly called first-generation. In this setup, the source emits a narrow 

pencil beam a few millimeters wide that traverses the patient and is detected at the opposite side 

by a single detector. The source and detector are then incrementally linearly translated to make 

single measurements of the subject (figure 1.2.3). Following this, the source and detector are 

rotated one degree and the process is repeated for 180 degrees to obtain information for one slice 

(after 180 degrees the information obtained is simply a mirror representation of that angle minus 

180 degrees). A projection function is defined by complete set of measurements at an angle. The 
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projection function is discretized due to the detector width and spacing between adjacent 

measurements [1,3]. 
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Figure 1.2.3: First generation CT geometry. A pencil beam and a single detector are 
translated across the object to collect projection information at one angle. The source 

and detector are then rotated and the process is repeated. 

The fIrst generation scanners have a conceptually simple geometry as the various beam paths 

can simply be described by a rotating coordinate system. As well, since there is only one 

detector, the issue of photon scatter plays less of a role. The major disadvantage of first 

generation scanner is that lengthy scan times (about four and a half minutes) translate into 

serious degradation in image quality due to patient motion [1,3]. 

Second generation scanners still rely on both translational and rotational motion, but in order 

to decrease scan time the beam is collimated into a fan shape (figure 1.2.4), Second generation 
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scanners make use of an array of detectors instead of just one detector. This type of geometry can 

scan a complete slice in about 20 seconds [I ,3J. 

x-ray source 
translation 

rotation 1.......-,,--,---'-- - - - - ----- - -- - - - ---.. 

x-ray detector array 

Figure 1.2.4: Second generation CT geometry. A fan beam and an array of detectors are 
translated across the object to collect projection information at one angle. The source and 

detector are then rotated and the process is repeated. 

Third and fourth generation CT incorporates broader beams of either fan shape (for slice by 

slice) or cone shape (to scan multiple slices at a time) in conjunction with multiple detectors in 

an array. In third generation scanners, the fan beam width covers the entire object (or patient) 

eliminating the translational motion required in first and second-generation scanners. Fourth 

generation scanners incorporate a stationary ring of detectors, and a rotating source (figure 

1.2.5). The novelty of fourth generation scanners is that each detector defines a unique set of 

projections collected over time, in contrast to a projection being defined by a set of adjacent 

11 
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detectors at an instant. The spacing between samples in a projection function is not determined 

by the detector spacing, but rather the sampling rate at which measurements are taken from a 

single detector [1,3]. 

While these developments have shortened scan time, to less than half a second per gantry 

rotation, issues of x-ray scatter, and reconstruction geometry have complicated image 

reconstruction and have introduced distinctive image artifacts. 

The research in this thesis uses first generation scanner geometry as the developing and 

testing environment for the novel reconstruction algorithms, as it is the most simple to 

implement. An extension to more complex geometries is discussed where appropriate. 

, ....... -~--
~/rotat1on 

Figure 1.2.5: Fourth generation CT geometry. A diverging beam rotates around the patient, 
while a fixed detector ring measures out coming radiation. The sampling rate ofthe detector 

measurements determines the spacing between samples in a projection. 
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It is useful here to define a concept that will be referred to throughout the rest of this paper. 

Using first generation scanner geometry, one can say that the projections at any given angle stem 

from a common conceptual 'parallel beam' (while in reality there is no parallel beam, only a 

pencil beam that has been translated across the object), while each individual projection is made 

by a 'beamlef. Just as a projection function is discretized by the detector array, each parallel 

beam can be thought of as consisting of discrete beamlets having a width equal to the detector 

width. The idea of a beamlet is commonly referred to as a ray in the literature. However a ray is 

usually defined as having no width [3]. The tenns beamlet and detector are used somewhat 

interchangeably in this paper. They are defined to organize the CT infonnation when discussing 

reconstruction algorithms. 
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J.31mage Reconstruction Algorithms 

Now that we have examined the basics of data acquisition and the physics of CT imaging, we 

can begin to explore the ideas behind image reconstruction. The conceptual goal of image 

reconstruction is to obtain a two-dimensional image slice from a series of one-dimensional 

projections. The simplest example of this is the two-dimensional point function. Any projection 

of the two-dimensional point function is a one~dimensional point function located at the position 

corresponding to the image (figure 1.3.1) [1,2]. 

Intuitively the reconstruction seems simple, but as the complexity of the function increases, 

the problem quickly loses its intuitive nature. The question then becomes: Through what 

mathematical process can an image be obtained from its projections? As it turns out the answer 

to this question is not trivial, and it has been the source of much research and development over 

....... ----~~' 
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Figure 1.3.1: Parallel beam projections ofa two-dimensional point function 
produces one dimensional point functions. 
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the last few decades. Presented here are various reconstruction approaches that have been 

investigated in the literature. For the sake of simplicity and elegance we will consider only one 

slice using 1 st generation CT geometry. 

Algebraic Reconstruction Algorithm 

Let us begin with the most intuitive approach called the 

Algebraic Reconstruction Algorithm (ARA). First imagine a 

grid of four unknO\\-TI attenuation coefficients !-li. Suppose one 

wishes to image this unkno\\-TI region using a CT scanner by 

taking five projection measurements each gathering unique 

information as sho\\TI in the (figure 1.3.2) [1,2]. 

Figure 1.3.2: Theoretical 
projections of a region of 
four unknown densities 

It should be noted that these measurements are not in general independent as is readily seen 

in this simple example (PI= P5+P4-P2). From the definition of a projection above (equation 

1.2.3), each projection is an integral sum of all the attenuation coefficients that are in that 

beamlet's path. Now supposing that every path-length in this example is two units long (though 

in reality it is not), corresponding to the two pixels that each beamlet has traversed, one obtains 

five equations: 

P. = III + 112 - 1 1 0 0 PI 
I1t 

~ = 113 + 114 • 0 0 1 1 Pl 
(1.3.1) 1(2 

~ = III + 114 ... 1 0 0 1 x = P3 

P4 = 112 + 114 ~ 0 1 0 1 
I~ 

P4 - .u4 
Ps = III + 113 - 1 0 1 0 Ps 

By solving the matrix equation Ax=b one could theoretically solve the unknowns and thus 

reconstruct the image. While this seems like a straightforward approach, ARA suffers from many 
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limitations and difficulties. First of all, the matrix equation is highly unstable. When the system 

is underdetermined or over-determined solutions are often not possible and solving the equations 

results in non-physical or negative values. This issue is further pronounced when considering 

noise, radiation scatter, and measurement errors that cause inconsistencies in the matrix 

equations. In fact, Steve Webb, in his book The Physics o/Three-Dimensional Radiation 

Therapy, describes the "impossibility of true inverse computed tomography" alluding to these 

issues [8]. Another limitation to ARA is its size constraint. ARA solves a matrix equation Ax=b, 

where b is a vector of projection values and A is a matrix of reconstruction pixel indices. The 

number of columns in A is determined by the number of image pixels in a slice (the desired 

reconstruction resolution), and the number ofrows is determined by the number of detector 

measurements. In order to have a well-behaved system the number ofrows should be of the same 

magnitude as the number of columns. Due to its theoretical simplicity, ARA was used on one of 

the first CT scanners in 1967. However, as the need for higher spatial resolution increased, huge 

computational difficulties arose given the very large size needed for array A. For example, for a 

reconstructed image resolution of 256x256 pixels, A would be an array of about 65,OOOx65,OOO 

elements [1,2]. 

One final point should be noted regarding the previous example describing ARA. That 

example, taken from Jiang Hsieh's book, Computed Tomography principles, designs, artifacts, 

and recent advances, was simplified in an unreasonable way according to this researcher. Notice 

that any angled projection (which necessarily has a finite non zero width) must traverse partial 

pixels. The result of this is that the matrix A will contain non-integer values ranging from ° to 1. 

The impact of these fractional contributions to a projection may be a highly overlooked source of 
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error that will be discussed in the body of this paper. For now, let us look at alternatives to ARA 

that have been developed in order to offer a more practical reconstruction algorithm [1,2). 

Iterative Reconstruction Techniques 

Given the same example described above, another logical approach to the reconstruction 

involves iterative approximations. These techniques including ART (Algebraic Reconstruction 

Techniques) and SART (Simultaneous ART) make an initial guess at the true image, determine 

the projections of that image, and compare those projections with the true projection values. The 

difference between the true projections and the projections of a guess image is optimized in 

iterative steps. This process can best be described by a visual example (figure 1.3.3). It is easy 

5 

5 

c .. _ .......... 

1.5 1.5 3 

3.5 3.5 7 

5 5 4 6 

Figu re 1.3.3: a) A region of four unknown densities is scanned producing five unique projections. b) 
The first iterative guess at the densities is based on the average value of the projections divided by the 
number of unknowns that each beamlet has passed through. This assumes that all unknowns have the 

same density. Following this, two theoretical projections are made from the estimated region and 
compared to the true projections. c) In the second iteration, the image is updated by adding or 

subtracting the difference between the theoretical projections and the true projections. Notice that the 
difference is applied evenly over the pi.xels that contribute to the projection in question. Following this, 
another set of theoretical projections in taken from the newly updated estimated image. d) After making 
the appropriate changes the theoretical projections of the third iteration match the true projections, and 

one can say that the image has been optimized [I]. 
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to see that as the region becomes larger and more scans are taken, the complexity of the problem 

increases and these techniques often suffer a trade off between noise and convergence [1,2,9-12]. 

From the iterative example, one can understand an important concept in image 

reconstruction. This is the concept of backprojection. Backprojection is the process of applying a 

projection evenly, back along the beamlet's path. Given projections from only one angle of a 

region, backprojection represents the best possible estimate of the image. But what happens 

when one applies the backprojection algorithm for full set of projection data? Figure 1.3.4 shows 

Backprojection <II 

True Function 

Figure 1.3.4: Using the backprojection method to reconstruct a two-dimensional 
point function from a full range of parallel projections. Images a through i 
depicts this process in steps. The result is an image with radial blurring [1]. 

the backprojection process in steps attempting to reconstruct a point function located in the 

center of the region. There appears to be radial blurring of the point function, which represents 

the impulse response function of the backprojection algorithm. In order to recover the optimal 

estimate of the image the inverse of the impulse would have to be deconvolved from the result of 

the backprojection. This is a mathematical process whereby one filters the impulse response out 

of the backprojection. Together, the entire process has been aptly termed backprojection-

filtering. However, this elegant concept is quite difficult to translate to application as the impulse 
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response function is not easily definable, and the deconvolution involves non-trivial calculations 

in the space domain [1,2,13]. 

While this approach is not practically applied, it is a perfect introduction to discuss the most 

commonly used algorithm called filtered backprojection, which is based on the Fourier slice 

theorem. As the name implies the filtering takes place before the backprojection, which while 

being more conceptually difficult than backprojection-filtering, is more easily implemented. 

Before describing the filtered backprojection, it is important to understand the Fourier slice 

theorem. 

The Fourier slice theorem 

The Fourier slice theorem (for parallel beam geometry) states that the Fourier transform So' 

of a projection Po(t) , from a functionj(x,y), is equal to a slice of the two-dimensional Fourier 

transform F(u,v), of that image subtending an angle e (figure 1.3.5) [2]. 

Founer Trans~orm ... 
44~--------------~. " , , 

" .. , 
1( 0' ... -----.;;;...-.+--------"..; 

, 

Figure 1.3.5: A depiction of the Fourier slice theorem. 

" .. ... , .. 
" S"aF,(u.\') .. ~ 

" .. 

In order to gain more insight into the Fourier Slice theorem a derivation is presented for a 

beam angle, 8=0. A more rigorous derivation can be found in textbooks on signal processing [2]. 
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Beginning with an unkno\\TI two-dimensional function ofx and y,j(x,y), one can take a one-

dimensional projection from any angle p(t)tj. Taking a projection at 8=0 gives: 

:x; 

(1.3.2) p(x)o_o = f !(x,y)dy 
-x 

Taking the Fourier transform with respect to x on both sides gives: 

:x; x x 

(1.3.3) f p(x)o_oe-J2Jrxudx = f f !(x,y}!- J2JfXUdxdy 

Looking at the right side of the equation, it appears very similar to the two dimensional Fourier 

transform ofj(x,y). In fact: 

:x; !X) 

(1.3.4) F(u,v) = f f !(x,y}!-J2Jf(xu+YV)dxdy 

Evaluating F(u, v) at v=O gives: 

(1.3.5) F(u,v)lv.o = f f !(x,y}!- J2JfXUdxdy 

Thus it has been sho\\TI: 

Xl 

(1.3.6) f p(x)o_oe-J2
1/X

Udx = F(u,v)lv_o 

The Fourier slice theorem suggests that image reconstruction can be accomplished by 

building up the two-dimensional Fourier transform ofj(x,y) from the one-dimensional transforms 

of pet)!). Once the frequency space has been filled, an inverse Fourier transform should recover 

the reconstructed image [1,2]. 
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'While the Fourier slice theorem seems to be a theoretically sound approach to image 

reconstruction, it like other reconstruction methods, suffers from practical problems. A major 

difficulty arises when building the frequency space from the series of slices (each slice produced 

by an individual set of p(t)8> contains a series of points, or samples corresponding to the detectors 

in the array). These slices form a pattern that can be described by a polar coordinate system 

(figure 1.3.6). However, in order to perform the two-dimensional inverse transform to recover 

the image, the samples must be interpolated onto a Cartesian grid. Interpolation in frequency 

space cause global artifacts in the reconstructed image. This is because each point in frequency 

space represents a frequency rather than a physical position. Furthermore, due to the polar 

orientation of the slices, the density of sample points decreases moving further from the origin. 

This causes the interpolation error to be greater for the higher frequency components. These as 

well as other issues do not allow the Fourier slice theorem to be applied for practical image 

reconstruction [1]. 

• 
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Figure 1.3.6: Sampling pattern from parallel beam projections 

in Fourier space based on the Fourier slice theorem [1]. 
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Filtered backprojection 

This brings us to the filtered backprojection algorithm, which is the most widely used 

algorithm employed today. The idea behind filtered back projection is to avoid summing the 

projections in the frequency domain. Instead, each projection is Fourier transformed, mUltiplied 

by a filter in the frequency domain, inverse transformed, and finally, backprojected on to the 

reconstruction grid. This process is done for each projection p(t)e, and all the filtered 

backprojected images are summed up to form the final image. Interpolation and smoothing can 

then be performed on the image itself. The reason that a filter is needed is due to the polar 

coordinate sampling pattern. Looking at figure 1.3.7 a) if each transformed projection was a pie 

shape piece, then no filtering would be needed. However, due to the fact that each signal is 

shaped like a strip as shown in b), the lower frequencies are over sampled compared to the 

higher frequencies. It is thus necessary to approximate the pie shape with a weighting function 

that is shown in c) [1,2,13-19]. 

.".'1' ,- ..... , ), 
... <. I .. 

; .. " ,,-" ,'\ 
" "\ I ~ ," \ 

" ..... ,", I ;' ",,_\ ........ ,\1, 4f# __ "" • t-- ____ • ., 

, .,.,. -,. ~\' :: -----' 
~-- " 1\....... I 
\ "'/ ".... I 
, ,,' ; 1 \, ........ 1 

< ,I " I , , " ; 
" \ V -- .... -' \..." "'" 

weighting fu~on 

(a) (b) (c) 

Figure 1.3.7: Illustration of filtered backprojection concept. a) Ideal frequency data from one 
projection. b) Actual frequency data from one projection. c) Weighting function in the 

frequency domain needed to approximate an ideal condition [IJ. 
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Notice that the tilter is non-zero only in the region containing information from the given 

projection. The filter for each transformed projection assumes that all other frequency 

components are zero. In theory the tilter would be a '''''edge function called the cropped Ram-Lak 

or ranlp tilter detined by If I where fis the frequency. However, due its sharp cutoff in the 

frequency domain. and its sensitivity to noise in the projections, this filter is typically modified 

through multiplication of a sine or cosine function to smooth it out [1,2,15]. 

The filtered backprojection algorithm has many advantages compared to other approaches 

that have been discussed. Instead of performing a large tv.;o-dimensional inverse Fourier 

transfom1. as is the case in applying the Fourier slice theorem directly, the filtered backprojection 

computes multiple inYerse transforms of much less complexity (each one being essentially onc

dimensional). \Vith fast Fourier transform algorithms this can be accomplished quite fast [20]. 

The speed is increased further when considering that each backprojection is essentially 

independent and the tiltered backprojection algorithm can begin reconstruction upon receiving 

the first projection measurements; it need not wait for all the CT data to be acquired. Filtered 

backprojection also solves the issue previously mentioned about backprojection filtering. It is 

well kno\\n that a convolution in the space domain can be performed more simply as a 

multiplication in the frequency domain. This is exactly the case in filtered backprojection; each 

p(t)e is filtered in the frequency by multiplication with a wedge filter before it is backprojected. It 

also solves the problems associated with the size constraints of ARA. as t..'lJ.e filtered 

backprojection algorithm stores only a small amount of information at a time. It is due to its 

effectiwness and efficiency that the filtered backprojection algorithm has become the method of 

choice for image reconstruction [1,2,13-19 J. 



This is not to say that there are no problems associated with this method. The issues with 

filtered backprojection are a result of its reliance on the frequency domain and its inherent 

approximations. A major concern is that in order to properly reconstruct an image, the frequency 

domain must be sufficiently sampled. This precludes the possibility of a small number of angle 

views (ie: a full set of projection data is needed spanning all angles). As well, along the same 

lines is the necessity of a frequency cutoff of the wedge filter and the Fourier transformed 

projection data, which can have detrimental effects on the image. These issues and others v.ill be 

exanlined in more depth in the next section on image artifacts [21]. 
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1.4 Sources of Image Artifacts 

The tenn image artifact connotes some degradation in image quality that hinders the image as 

a tool for its intended purpose. This somewhat qualitative definition is needed because no 

reconstructed image can perfectly represent the subject being imaged, therefore defining an 

artifact as a deviation between the image and the true object is difficult. There are many causes 

of image artifacts, each creating a unique type of image degradation such as streaking, shading, 

ringing, and bands. By examining the sources of these artifacts certain steps can be taken to 

reduce their effects. Some of these artifacts are inherent in the CT scanners themselves, or the 

scanning process (such as patient motion) while others are a function of the algorithms used for 

reconstruction. Although this research is aimed at reducing image artifacts due specifically to the 

reconstruction algorithms, presented here are many of the common artifacts found in CT. While 

textbooks have clearly defined the sources of many of these artifacts as stemming from the CT 

system design, most of this type of artifact actually stem from contributions from both the system 

design as well as limitations in the reconstruction algorithm [1,2,4]. 

Artifacts stemming from measurement errors 

During the scanning process radiation scatter, patient motion, or mechanical malfunction can 

cause errors in isolated measurements. If the projection measurement is unrepresentative of the 

imaged region this will result in an unrepresentative reconstructed image. While this type of 

error cannot be totally avoided in the reconstruction, the graphical result will vary between 

different algorithms. The filtered backprojection algorithm causes streaking, blurring and ring 

artifacts in these cases due to the nature of the reconstruction filter. Radiation scatter affects the 

signal in the following way. Through Compton scattering, a photon may be deflected off the 

straight beam path and may enter another detector. The results of scatter are a lower signal to 
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noise ratio and reduced contrast. The effects of scatter can be reduced with the use of collimators 

located on the detector that only allows entry of photons from a certain range of angles. 

Alternatively, the use of an air gap located between the patient and the detector allows some 

scattered photons to miss the detector array. 

The effects of internal organ motion can be reduced by gating the x-ray beam in consonance 

with the breathing cycle. Alternatively, the real time visualization of organ motion, called 4D 

CT, has been enabled by the fast acquisition times of modern CT machines. 

If a detector in the array has malfunctioned resulting in no measurement, the resulting image 

will contain artifacts characteristic of the CT geometry used. In third generation CT the result is 

a ring artifact [1,2,4]. 

Beam hardening 

As mentioned above, Lambert-Beer's law only holds for a monoenergetic x-ray source. In 

reality, the x-ray tube produces a beam comprising a spectrum of energies (figure 1.2.1). Tissue 

attenuates lower energy photons more readily than higher energy photons, translating to energy 

dependant attenuation coefficients. Beam hardening refers to the phenomenon that as an x-ray 

beam passes through a subject, the lower energy photons are attenuated quickly, and the beam 

becomes proportionally more energetic as it travels further through the medium. This causes the 

measured projection to be less than it should be under ideal conditions. Beam hardening occurs 

in a non-linear fashion and the error that it causes increases with the beam path length. The 

characteristic artifacts of beam hardening are unwanted shading, blurring of boundaries, and 

streaks that are especially pronounced around sharp attenuation gradients. The effects of beam 

hardening can be reduced with the use of filters in the CT machine. By placing a metal filter 

(made of aluminum, copper, or brass) between the x-ray source and the patient, the beam can be 
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hardened before it reaches the patient, resulting in a more narrow beam spectrum. Alternatively, 

computational methods such as two-pass beam hardening correction algorithms can be employed 

to reduce the effects of beam hardening. A two-pass algorithm refers to first reconstructing an 

image and then using the information of the positions of bone and soft tissue from that image, to 

create an accurate beam hardening correction for the final reconstruction [1,2,4]. 

Photon starvation 

Photon starvation can occur in the presence of highly attenuating metal objects, dense bone, 

contrast agents, or obese patients. As the beam passes though this region, a large percent of the 

beam is attenuated producing a very small signal in the detector, translating to a very large 

projection measurement. Due to the logarithmic definition of a projection measurement (equation 

1.2.3), a small error in the detector measurement in these circumstances results in a very large 

error in the projection measurement. Photon starvation can result in a low contrast high noise 

image, and can be responsible for severe streaking artifacts [1,2,4]. 

Aliasing artifacts 

There are some artifacts, commonly referred to as aliasing artifacts that occur as a direct 

result of the filtered backprojection algorithm. The most fundamental source of these artifacts 

stems from fact that the actual imaged region is not bandlimited and thus exceeds the highest 

frequency that can be sampled. Specifically, Nyquist theorem suggests that errors in 

reconstruction will result ifthe projection data, Po (t), is sampled less than twice for its highest 

frequency component. This sampling is mainly a function of the CT system design set by the 

number of detectors in an array and the spacing between each detector. The characteristic artifact 

for under sampled data is streaking. Along the same lines, insufficient views (projection angles) 

will under-represent the frequency domain and will result in artifacts kno\vn as Moire patterns 
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[2]. Sharp gradients present in the imaged region, such as metal inserts emphasize these aliasing 

artifacts. In many cases, the presence of a metal inserts severely limits the effectiveness of CT 

for treatment planning and diagnostic use [1,4,21]. 

It should be noted that Tretiak has derived an algorithm-independent 100ver bound for the 

mean squared error in a reconstructed image based on intrinsic noise in CT [22]. He has argued 

that the error estimated by Brooks and Dichiro [23] for filtered backprojection algorithms are 

close to this lower bound, leading him to conclude that no improvement can be made to 

reconstruction. However, the contradiction between the simple concept of reconstructing a point 

function, compared to the complex and unsatisfactory reconstruction methods currently 

available, has motivated this researcher to investigate new alternatives to CT image 

reconstruction. 
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1.5 The Point Function: 

The research contained in this thesis began by examining the simple two-dimensional point 

function (figure 1.5.1). What was noticed was the intuitiveness of its reconstruction from its 

corresponding projections. With as few as two projections the human mind can quite easily 

determine that there is a single area of density in the center of the region and zero everywhere 

else. To reconstruct the image using the filtered backprojection much more information is 

required, and it still cannot truly represent the point function. Granted most regions are more 

complex than the point function, but the 'point' remains clear; the example of the point function 

begs for a reconstruction algorithm that can truly optimize the reconstructed images given a set 

of projections. 

Figure 1.5.1: Two
dimensional point function 
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1.6. Hypothesis and Specific Aims 

The goal of this thesis was to develop an image reconstruction algorithm that did not rely on 

traditional approaches to do the reconstruction. Specifically, the aim was to avoid Fourier 

transforms with all its inherent limitations. In the course of this research two unique algorithms 

were derived (and a third that was an extension to one of these novel algorithms) that could 

theoretically optimize the quality of the reconstructed image. The hypothesis was that developing 

and practically implementing these conceptually new methods of image reconstruction could 

optimize the images obtained from a CT scan. It was proposed that these methods could 

minimize image artifacts for situations of sharp density gradients, random noise, and limited 

angle views. To test this hypothesis, the algorithms were coded in a simulated CT environment 

to adapt to realistic situations such as, added noise in the detectors, and other non-idealities that 

are discussed in the methods section. The results of these algorithms were compared to currently 

accepted algorithms in order to validate the hypothesis. The specific objectives of this project 

were to: 

a. Create a realistic simulated CT environment in Matlab in order to test the novel 

algorithms. 

b. Fully develop each image algorithm in Matlab to optimize computational efficiency and 

to adapt to realistic concerns. Because these algorithms were not based on any previous 

reconstruction algorithms, and because of the intrinsic nature of these new reconstruction 

techniques, systematic errors were a concern. 

c. Determine the feasibility of combining the novel algorithms to reconstruct an image. 

While both algorithms may be implemented independently, theoretical evidence had 
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shown the possibility of decreasing computational effort by adapting the two algorithms 

into one process. 

d. Determine if these newly developed algorithms could be adapted into clinical use, based 

on factors such as image quality and computational effort. These factors were judged 

relative to the currently accepted filtered backprojection algorithm. It was therefore 

necessary to include the filtered backprojection algorithm in the simulations. 

31 I 





CHAPTER II 

THEORY 

2.1 The Parallel Between External Beam Radiation Therapy and CT Imaging 

To develop a novel approach to image reconstruction, optimization solutions to problems that 

contained parallels to image reconstruction were investigated. Specifically, there exists an 

interesting parallel between image reconstruction and the challenge of beam optimization for 

intensity modulated external beam radiotherapy. It may be helpful here to gain a conceptual 

understanding of this parallel, as the first novel reconstruction approach developed here was 

based on a beam optimization algorithm called the Fast Inverse Dose Optimization (FIDO) [24]. 

In external beam radiation therapy, a patient is prescribed a dose of radiation to a tumor 

volume. The oncologist also frequently prescribes a maximum allowed dose to other structures 

called organs at risk (these include the spine, rectum, and optic nerve just to name a few possible 

examples). Furthermore, radiation to all structures outside the defined targeted region should be 

kept to a minimum in accordance with the ALARA principle (as low as reasonably achievable). 

Of course it is impossible to deposit dose exclusively to the tumor region because external beams 

must traverse other tissues and bodily structures. In order to meet the oncologist's prescriptions, 

a treatment plan must be developed defining the trajectories and intensities of multiple beams 

incident on the patient. These beams will each interact with the patient and deposit their dose 

according to the physics of the interaction of radiation with matter. The dose deposition of each 

of these beams combine and overlap to create a high dose region at the defined tumor volume 

while maintaining the prescribed standards in the other regions. Finding the optimum angles and 
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intensities of these beams constitutes a complex optimization problem that has been an area of 

much research. But what does this have to do with image reconstruction? The answer provides a 

beautiful insight into both these areas. 

What the Oncologist prescribes can be thought of as an "image". The prescription consists of 

areas of relative high and low dose regions, which can be visualized as contrast of an image. The 

dose in beam optimization is the parallel to the unkno\\TI f..l values in image reconstruction. In 

beam optimization one begins with the 'dose image' and what is sought after is the beams that 

best define that 'dose image'. Image reconstruction begins with the beam information (the angles 

and the input and output intensities) and seeks the image that best fits that information. So it 

becomes clear that image reconstruction is just the inverse problem with respect to beam 

optimization. Using these parallels, and the innovative FIDO algorithm, development began on a 

new image reconstruction algorithm called AIR (Algebraic Image Reconstruction). 
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2.2Algebraic Image Reconstruction (AIR) Theory 

In order to derive the equations of AIR it is necessary to define some terms. These temlS will 

be used throughout this paper both for AIR and the other novel algorithms. Figure 2.2.1 shows a 

hypothetical 2-dimensional domain being imaged. This region consists of a grid of unknov.n 

pixels each with its ov..n absorption coefficient. The x-ray and detector array rotate around this 

region resulting in a projection qm, for bean1111, where m is the index of the beam angle (ranging 

from 1 to the total number of angles that are being used). qm is further divided by the individual 

detectors in the array. It is helpful to think of each beam as being subdivided into smaller beams, 

called rays or beamlets. Let A be the index of a beamlet in a beam. Let qm.A be defined as the 

projection value due to beamlet A in beam m. It is also necessary to define the weighting term 

h~'\ where f is the index of the image pixel. h~').. represents the fractional area (or volume in 3-

D) of pixel f traversed by beamlet A of beam m. In a simplistic implementation of this algorithm 

h~'A could be given a value of 1 if the beamlet has passed through the center of pixel f, and 

zeros otherwise . 
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Figure 2.2.1: Defining the terms necessary to derive AIR 
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The derivation of AIR begins by defining Ile as an estimate to the true value of pixel index f. 

The goal is to find an optimal set of Ilt that most closely resembles the true values 11;. Given an 

estimated solution consisting of a set of 11(, one can define its corresponding set of projection 

values as: 

(2.2.1) 

Where Pm.). is the theoretical projection value from beamlet A of beam m. 

In order to find the set of I1t which most closely approximates the true values 11; we require , 

the difference between Pm.)., the estimated projections, and qm,)., the measured projections, to be a 

minimum. AIR is at its essence an optimization algorithm that seeks to minimize this difference 

between pm,;" and qm.).. An objective function, can be defined, which is minimized to zero under 

such conditions. 

(2.2.2) a~T = ~[Pm.;.. - qm.;..r 
I.Em 

Where a~T is the objective function for one beam angle. 

The objective function is summed over all beamlets in a beam, and the term inside the 

summation is squared to prevent the possible solution of negative and positive values canceling 

out. 

Substituting in the definition of pm.;.. from (2.2.1) into (2.2.2) gives: 

(2.2.3) 

Now the expression contains the unknO\\l1S, 11" Summing over all beam angles to obtain an 

objective function, which considers all beamlets in all beams: 
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(2.2.4) 

This is called the CT tenn objective function. The set of values 11k that minimize 

aCT represents the optimal estimate of the true imaged region. The solution is found by setting 

the derivative of aCT with respect to 11k equal to zero: 

(2.2.5) 

Substituting (2.2.4) into (2.2.5) gives: 

(2.2.6) 

\\'here the derivative operator does not depend on m or A. Applying the operator through the 

brackets gives: 

(2.2.7) 

\Vbere h;').. comes out as a result of the operator choosing the index k from all f. Further 

simplifying: 

(2.2.8) 
m i,Em £ m i.Em 

Because ~l1l does not depend on m or A it can be brought to the front of the first tenn in (2.2.8): 
f 

(2.2.9) 2LI11L Lh';'Ah';'A - 2L Lqm,Ah;,A = 0 
m J,Em m )£m 

Equation (9) can be \\Titten more compactly as: 

(2.2.10) i) LaiJ III = f3j;CT where, ii) a[! = 2L Lh';')'h';A and iii) f3k
CT = 2L Lh;,Aqm.). 

l m i,Em m )'Em 
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Equation (2.2.10) is an algebraic system where aCT is a matrix containing an amount of rows 

and columns each equal to the number of unkno\\-TIs, and f3CT is a column vector oflength equal 

to the number of unknowns. The optimum solution set of 11k can be found by inverting aCT: 

(2.2.11) 
n 

AIR results in a matrix equation that is fundamentally different from ARA (ARA was 

described in section 1.3). Let us examine the physical meaning of a~T and f3iT to gain a more 

intuitive understanding of AIR. 

In ARA the columns of A represent the pixel index, and each row identifies the pixels that 

contributed to a given projection from a given beamlet. B is a vector of projection values 

corresponding to each detectorlbeamlet. AIR is not formulated this way. Examining the 

expression for afJ (2.2.10ii), and assuming h values of either zero or one, the value assigned to 

the kth row and f! th columns represents the number of beamlets that have passed through both 

pixels 11k and III in the imaged region. The values along the diagonal aii, simply counts the 

number of beam lets that have passed through pixel k. The matrix aCT is completely independent 

of the projection values. This means that for a given beam configuration, aCT and its inverse 

need only be initialized once, allowing for fast reconstruction. Furthermore aCT is symmetric 

allowing for efficient memory storage. Examining the expression for f3iT (2.2. 1 Oiii) the Jth entry 

of f3CT is the sum of all projections from beamlets that have passed through Ilk' 

In order to actualize AIR, two pieces of information are necessary from the CT scan. The 

first is the projection values from every detector, and the other is the set of pixels (or fractions of 
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pixels) in the reconstruction grid that each beamlet has passed through, h m,J.., which can be 

determined geometrically. 

Solving equation (2.2.11) results in a global minimum only if the system is determined (i.e. if 

there is an adequate number of beam angles). However, some reconstructions may be 

underdetermined due to a lack of projection values, or may be undetermined due to detector 

noise or the stochastic nature of radiation. Considering these factors, solving equation (2.2.11) 

may yield non-physical or negative absorption densities. It is for this reason that another term, 

called the vveighted average term was developed and added to the objective function, which 

effectively imposes a physical constraint in order to break possible degeneracy. Conceptually, 

this constraint assumes a homogenous or constant absorption density along the path of any 

beamlet when h is zero or one. Mathematically, this can be expressed as: 

(2.2.12) 

Where Nm.A is the sum of h~'J.. values (or geometric area) that beamlet A of beam 111 has 

traversed. In the simple case that h~·J.. is assigned values of 0 and 1, N m.J.. can be defined as the 

number of pixels beamlet A of beam m has passed through. a:\ is the average term objective 

function for beamlet A of beam m. 

Upon minimization to zero, equation (2.2.12) forces all pixels along the path ofa beamlet to 

be the same value. Summing over all beamlets in a beam, and over all beams equation (2.2.12) 

becomes: 

(2.2.13) 

Upon minimization to zero, equation (2.2.13) will result in each III being an average of every 

projection that it has contributed to. Equation (2.2.13) is essentially backprojection formalized as 
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a matrix equation, smearing back each projection along the respective beamlet's path, and 

averaging all the contributions to form an image. It should be noted that when h is given 

fractional values this definition does not hold, but its degeneracy breaking ability remains. 

It may not be intuitive to assume that f-te should be the average of all projections that it has 

contributed to; rather, it may be more logical to attribute a larger weight in this averaging to the 

beamlets that passed through fewer pixels. For example, if a beamlet has passed through only 

one pixel, then the projection value would be equal to the f-te that that beanllet has traversed. 

Therefore, a weighting factor was incorporated into equation (2.2.13), which is a function of the 

number of pixels that a given beamlet has traversed (a beamlet passing through fewer pixels, is 

assigned a higher weight): 

(2.2.14i) 

Where wav stands for weighted averaging. w m,;" is the normalized weighting factor for beamlet J.., 

belonging to beam m 

(2.2.14ii) W m,;" = .L ~': a possible expression for wm,;..: (14iii) 
wm,). 

m ).Em 

_ 1 
W -----

m,).-(N -ht 
m,). 

Where a can be any positive integer whose value determines the magnitude of the weight. In 

the single pixel case, for a=2, the weight w m,;" will be 1 00 times larger than the weight for a 

beamlet containing 2 pixels, while the beamlet containing two pixels will be four times larger 

than the weight for a beamlet with three pixels (During preliminary testing, the weighting factor 

displayed limited effectiveness and thus a was set to zero for the main tests). b can be varied 

from zero to 1 but should never be set larger than the minimum value of N m ).' 

8 wav 

Setting ~ = 0 to find the optimum set of f-tk satisfying this minimum gives: 
8f-tk 
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(2.2.lSi) 

Defining (2.2.1Sii) f3t
V = 22: 2: wm.Ah';)· ~m'A and (2.2. 1 Siii) a~av = 22: 2: Wm.Jl;'Ah;'AOlk 

m }"Em m.A m ).Em 

Using these definitions, equation (2.2.lSi) becomes a linear system much like (2.2.11). 

Because both (2.2.15) and (2.2.11) are linear systems, they can be added to obtain another linear 

system, \vhich represents the complete AIR objective function, that is: 

(2.2.l6) 

Where C
CT and c wav are the respective importance coefficients of the CT object term and 

weighted averaging objective term. 

Equation (2.2.16) shows that the objective functions are not simply added, but have attributed 

to them respective importance coefficients. This is done because the desired solution results from 

aCT, while a wav is needed only to break the degeneracy in an under determined system. For this 

reason C
CT can be set to one and cwav can be made relatively small. While the precise values of 

the importance coefficients are not crucial, they need to be determined empirically from the 

simulations. 

Upon optimization, equation (2.2.16) becomes: 

(2 2 17) ') ~ R h") CT CT wa" wav d ... ) f3 CTf3CT wa"f3 wav 
•• 1 L" aid f.,l f = fJk were 11 au = c akf + c akf an 111 k = C k + c k 

t 

Other terms were also developed in order to break degeneracy and avoid negative densities. 

The relevance of each is examined in the results section of this thesis. One significant term called 

the zero averaging term is formulated exactly the same as the weighted averaging term except 

for one difference. The zero averaging term is applied only for projections that are equal to zero 

(in reality this would mean below a set threshold in order to account for noise and attenuation 
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through air), and its importance coefficient should be made relatively high. The result is to force 

all pixels that contributed to a zero projection to be equal to zero. 

Other terms that were developed are the global and local averaging or smoothing terms. 

Again their function is to break degeneracy and avoid negative densities. The global smoothing 

term was designed to smooth out large differences in density over the whole image slice. 

Conceptually it seeks to minimize the difference between all pixels. If given a large enough 

weight within the objectivity function, the result will be a constant density over the whole slice, 

so the intention is to assign only a small importance to this term. 

(2.2.18) aglobal = ~ ~ (,ui -,u j) 2 

i j 

The optimum value can be found by: 

(2.2.19) o = (1(1 ;~ = 2 ~ ~ (,u; - ,u j )( 0ik - 0 jk) 

i j 

By calling Ncells the number of pixels in the image slice we obtain the a and ~ array: 

(2.2.20) i) aglobal = 4(0 - _1_) ii) f3k8lohal = 0 
kJ kJ Nee/Is 

The local term is very similar in concept to the global term, however the local term seeks to 

minimize the difference between nearest neighbor pixels. The total objective function can 

theoretically be a sum of all these terms described above, each with its own importance 

coefficient: 

(2.2.21) i) ~akl,ul:' = 13k 
i 

ii) a = CCT aCT + cwava way + C:eroava:eroav + cglobalaglobal + local local 
kI kI kI kI kI C a kl 

iii) 13 = CCT f3CT + c wav f3wav + C:eroavf3:eroav + glohalf3global localf3'0cal 
k k k kI C ki +C ki 

By making use of the various AIR terms it is hypothesized that AIR can solve the optimal 

image reconstruction while avoiding negative attenuation coefficients in the image. 
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2.3 Parsed Algebraic Image Reconstruction (PAIR) Theory 

While AIR presents a sound theoretical solution to image reconstruction, it is subject to 

similar size constraints associated with ARA. This constraint confines algebraic reconstruction 

algorithms to relatively low image resolution. The premise behind PAIR (the Parsed Algebraic 

Image Reconstruction) in reconstructing an image to a desired resolution is to instead solve, 

using the theory outlined in AIR, multiple but independent lower resolution images that still 

cover the entire domain. Once the images have been acquired one can use these independent 

solutions to gain added spatial resolution. Higher resolution can be achieved through a number of 

lower resolution images. Let us explore how this can be achieved as we examine the theory 

behind PAIR. 

Suppose one wishes to reconstruct an image with a resolution of m x n cells. As explained 

above, AIR would require an mn x mn sized alpha matrix. One can instead reconstruct a lower 

resolution image using AIR by assuming, for example, that every group of four adjacent 

absorption densities is actually one homogeneous value of fl. This grouping can be achieved in a 

number of different configurations as shown in figure 2.3.1. 

U sing the solutions (as obtained using AIR) from a number of independently oriented lower 

resolution grids one can obtain the resolution of the desired grid. This is the meaning of the name 

Parsed Algebraic Image Reconstruction. 
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Figu re 2.3.1: (A) Shows a grid of 14x 14 unknowns f.ll' which is an example of a desired resolution for 

image reconstruction. Figures (8), (C), (D), and (£) show four independent configurations that can be used 

to group the unknowns in (A) in to a lower resolution grid. Here f.ln connotes the set of solved absorption 

densities for the nth configuration. 
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,Obtaining the higher resolution from the lower resolution grids is straightforward. Referring 

to Figure 2.3.1 for definitions of absorption densities belonging to specific grids, the method of 

obtaining the desired absorption densities Ilt, can be accomplished in steps as follows (the 

superscript index denotes a reconstruction orientation and the sUbscript denotes a pixel in that 

grid): 

(2.3.1) i) 

ii) 

iii) 

Where equation (2.3.1) utilizes the independence of the four grids to recover the underlying 

higher resolution image. 

From (2.3.1) it is clear that the solution begins at the comer of grid (E) (figure 2.3.1) whose 

comer values are equal to the comer absorption densities of the desired grid. The solution then 

progresses inwards, using the solved pixels to determine the next adjacent pixel. It is expected 

that, due to noise, there will not be one unique solution to the underlying grid's absorption 

densities. In fact, beginning at different comers of the problem, may give different solutions. To 

minimize propagation of errors, and to represent the higher resolution grid more accurately, it is 

expected that by solving equation (2.3.1) four times (one solution from each comer) and then 

averaging, may yield a desirable solution. 

An alternative approach to obtain the final image while avoiding the propagation of noise is 

to simply map the parsed solutions onto the higher resolution grid and then average those 

solutions. Error propagation is avoided because each solved pixel does not depend on the others. 
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The dow11side is that this method cannot truly resolve the desired resolution, and may exhibit 

unwanted smoothing of the image. 

The theory of PAIR can be extended to any user defined PAIR pixel sizes. Suppose a very 

fine reconstruction resolution is desired; it may be necessary to employ more than four parsed 

solutions. One could then solve nine independent PAIR images to achieve the desired resolution. 

Each PAIR reconstruction pixel will be the size of nine AIR reconstruction pixels, and the 

solution could be determined using a similar process to that in equation (2.3.1). Because PAIR 

solves multiple independent solutions, its implementation is in theory easily parallelizable. 

Increasing the number of AIR pixels per PAIR pixels would decrease computational concerns, 

but it must be determined if this process can be practically applied for any number of parsed 

solutions. 
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Geometric Image Reconstruction Algorithm (GIRA) Theory 

The motivation behind GlRA (Geometric Image Reconstruction Algorithm) was to develop a 

reconstruction method that does not rely on constructing a matrix of equations> or Fourier 

transforms> but instead solves the reconstruction one unknown at a time. In this respect it would 

only be necessary to store a matrix of unknowns P.e> and fill in individual pixels as the solution 

progresses. The idea behind GlRA was to exploit the beamlets that pass through only a small 

geometric area in the imaged region. The projection values of these 'special' case detectors give 

definitive information about that small region that has been traversed. Why not consider that area 

to be solved (its Pe value equal to the projection value scaled by the size of the region) and 

remove it from the set of unknowns? By repeating this process, GlRA could shave away the 

problem set and possibly solve the entire image reconstruction. Each time another small region is 

solved and removed from the set of unknowns, it may open up more possible solutions. A 

corollary of GIRA is that the reconstruction resolution is no longer user defined, nor is it made 

up of equally size square pixels, but it is an outcome of the beam geometries and each solved 

region will in general be an irregular shape. The resolution can then be mapped onto pixels or 

voxels for display. The hypothesis is that the resolution inherent in GIRA will be higher than 

other reconstruction techniques. There is also no theoretical need for averaging terms or for 

terms that avoid negative densities because the solutions are solved individually. GIRA has the 

added advantage of being able to begin reconstruction with the first set of projections, unlike 

matrix solutions, which depend on all the projection information to reconstruct the image. This 

suggests speedy reconstruction times. 

The theory of GlRA has thus been described in brief. A more detailed description will be 

given in the methods section when examining the practical implementation of GlRA. 
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CHAPTER III 

METHODS 

3.1 Simulating CT Projections in Matlab 

In developing each algorithm, there was much feedback from practical testing. A theoretical 

concept was derived, it was then implemented in Matlab, and from those results the theories and 

concepts were revised. This section examines the practical implementation of the algorithms in 

Matlab, referring to progressive generations of the CT simulation to gain perspective of the 

developing process and the various simulation models used for testing. The progressive 

generations represent added complexity in the CT simulation. As is the case in much scientific 

research, theories were initially tested in over simplified scenarios before graduating to less 

ideal, or more complex testing environments. 

The first step was to create a model of the CT scanning process. This was necessary in order 

to test the algorithms in controlled and simplified scenarios and allowed for the controlling of 

parameters such as beam angles, detector size, noise, and to define the subject being image. In 

creating the simulation it was first necessary to define a matrix of values, which would represent 

the densities of the subject being imaged. Matlab has a built in function called phantom that 

produces the Shepp and Logan head phantom of any user defined resolution. The Shepp and 

Logan phantom is a commonly used phantom in CT image testing and quality assurance. The 

center of each pixel of the phantom matrix was then mapped onto a Cartesian coordinate system 

so that each pixel in the matrix occupied a unit position on the two-dimensional grid. 
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To imitate the CT scanning process, a method was devised to effectively sum the pixel values 

of the phantom matrix along different paths creating the individual projections. Given a beam's 

angle and the size of each detector (initially set to a unit length) in the array, the path of each 

beanllet can be determined with the respect to the Cartesian coordinate system. At any given 

angle the detector array can be thought of as being positioned at an arbitrary distance from the 

phantom grid, with the center of the detector array on axis ,vith the center of the phantom grid. 

The cross-sectional length of the phantom changes depending on the beanl angle, so the detector 

array was initialized to fit the maximum length (occurring at 45 degrees relative to the phantom 

grid). Because of this, there are instances when some beamlets do not traverse any of the pixels, 

and the projection value is trivially zero. 

y 
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Figure 3.1.1: The projection value measured by detector i is simulated in Matlab by 
determining which pixel's centers lie within the path of that beam let. Knowing the start and 

end of each detector, a for loop checks if the coordinate of a pixel is with in those boundaries. 
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With the positions of the detector boundaries (the start and end of each detector) kno"'TI 

within the Cartesian coordinate system, determining which pixels lie within a given beamlet path 

is straightforward (figure 3.1.1). To accomplish this in Matlab, afor loop was coded, which 

checks each pixel in the phantom matrix to determine if its center lies within the path of a given 

beanllet. If the center is within the beamlets path, it is considered to be completely within that 

beanllet, and it is summed into the projection measurement corresponding to that detector. 

The for loop checks all pixels for every beamlet and stores two crucial output parameters for 

each beamlet: 

1 The projection value corresponding to that detector 

2 The set of pixel indices that contributed to that projection. 

Notice that referring to equation (2.2.1), values ofh are either one if the pixel's center is 

contained in the beamlet path, or zero if it is not. There can be no partial pixel contributions. This 

aspect was subsequently modified to allow for partial contributions. The issue of partial 

contributions will be discussed in more detail shortly. 

Due to the fact that in the simulation each detector in an array begins where the other ends, it 

may happen that a pixel contributes to two adjacent detector measurements (Le. a beamlet 

boundary lies directly on the center of a pixel). In this case the program assigns it to only one of 

the two beam lets and its corresponding projection value maintaining consistency in the 

projections. 

The issue of noise was approached in a simplistic way. While in reality CT noise can be 

broken down into many different aspects, each depending on many factors, for the sake of this 

research it was sufficient to incorporate a superficial noise function. The purpose was to test how 

the algorithms handle inconsistent projection information. Included in the simulation were two 
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independent noise functions; one that simulates a random background noise in the detectors, and 

one that simulates noise due to radiation scatter. The background noise function adds a user 

defined background level noise to each projection value. Before it is added to each projection, 

the background level noise is multiplied by a random number (ranging from 0 to 1). Each 

projection is thus perturbed by a different amount ranging from 0 to the maximum user defined 

value. The second noise function, simulating radiation scatter is specified by the user as a percent 

of the projection value. The user-defined percent of each projection multiplied by a random 

number is added to each projection value. In this case, more noise will be added to higher 

projection values. It must be noted that these functions do not represent the reality of noise in CT 

imaging. They served only to test our algorithms under varying conditions. A more realistic 

treatment of noise would be required for advanced simulation models. 

The process of obtaining CT projections can be described as performing Radon transforms 

on a function from various angles. A Radon transform in two dimensions, is the integral 

transform consisting of the integral of a function over straight lines. Matlab contains a function 

called radon, which can perform the CT projections but with some differences compared to the 

simulation developed here. It is worth describing this method and why it was not used for the 

testing environment. 

Using Radon transforms, a projection at any angle consists of discrete points rather than 

finite sized detectors (figure 3.1.2). For this reason, an interpolation process is employed to 

ensure accurate projections. The radon function projects the coordinates of the pixel onto the 

detector line. It will fall somewhere on this line, but not in general directly on a point demarcated 

as a detector. The value of that pixel is then distributed to the two nearest detectors relative to the 
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distance from the detectors. This is the process of Radon transforms with linear interpolation. 

The result is projections that can have partial or fractional contributions from pixels. 

It was decided that it was necessary to code an alternative CT simulation to allow for total 

control over the simulation parameters, and the ability to test the novel algorithms in situations 

with varying degrees of complexity. Let us now examine the various simulation types that were 

developed in order to test the algorithms in progressively more complex and less ideal 

conditions. As the complexity increases, one can say that the simulation more closely represents 

a subset of the non-idealities of real CT imaging. 
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detector array at 45 degrees 

Figure 3.1.2: An example of the Radon transfonn algorithm in Matlab. For each beam angle, the 
coordinates of each pixel are projected on to the detector line. In contrast to the simulation 

developed in this work, the detector array consists of point detectors. It is therefore necessary to 
interpolate the projections. In this example, the projection lies directly between two detectors, 
and the value of the pixel will be distributed halfto the ilb detector and half to the Jh detector. 
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3.2 Developing a Realistic CT Simulation Model 

The initial simulation that was developed has certain simplifications that do not extend to 

more realistic circumstances in a trivial way. The main issue concerned representing the object 

being imaged by a finite grid. Specifically, two aspects of the simulation seemed to be 

unrepresentative of the reality of CT imaging. The first aspect is the lack of partial contributions 

of pixels to the projection values. The second simplification is that the reconstruction grid is set 

to have the same resolution as the phantom matrix, which is not possible in reality because the 

actual imaged region is not pixilated. This simplification implies that the phantom matrix is 

homogeneous within the defined reconstruction pixel size, which is not generally true. The 

assumption leads to a much more self-consistent system of equations. The simulation with the 

mentioned assumptions refers to the most ideal or simplified model that was used to test the 

algorithms. 

In order to allow for partial pixel contributions, the values of the phantom matrix can be 

mapped onto a higher resolution grid before simulating the projections. The higher resolution 

grid is then used to simulate the projection measurements. This allows for partial contributions as 

can be seen in the example in figure 3.2.1. In this example a beamlet may traverse Y.!, Yz, %, or 

the full area of any given reconstruction pixel. 

However, the reconstruction of the image is carried out using the original resolution 

(indicated in red in 3.2.1). The original pixel size is defined as a squared unit in dimensions, and 

the width of each detector in the array is a unit in width. This method was expected to produce 

projections very similar to the Matlab radon transform function, as this process acts as an 

interpolation function. In fact, the Matlab function radon does this exact same process to 

improve the accuracy of its projections. When taking projections, it divides each pixel into four 
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fractions. The difference is that in the simulation developed in this thesis, one can specify any 

number of small pixels per larger pixel (which we will refer to as fractions per phantom pixel). 

By increasing the number of fractions, one can approximate the true paths taken by the beamlets. 

The addition of partial pixel contributions constituted the next progressively complex model that 

was used in testing the algorithms. 

Figure 3.2.1: The grid in bold red is the resolution of the phantom being scanned. Each pixel in 
the red grid is a unit area and contains an attenuation coefficient that is homogeneous within the 

pixel. The black lines are an example ofa remapping of the phantom matrix. The attenuation 
coefficients from the red grid are divided by the number of small black cells within one red cell. 

Note that each red pixel still has a homogeneous attenuation coefficient. 

While this approach solved the first concern of partial contributions, it did not correct the 

second issue of the unrealistic homogeneity within the reconstruction pixels. In other words, the 

simulation model at this point approximates the case of an infinitely fine reconstruction 

resolution (so fine that the object being imaged is homogeneous within the predefined 

reconstruction pixels). 

To gain more insight into exactly why this is not representative of reality, it must be 

understood that in real CT reconstruction there is no phantom grid. The definition of a pixel is 

required only for the reconstruction. The geometric coordinates of any given pixel in the 

reconstruction grid will likely encompass many inhomogeneities in the true medium. This means 
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that while many beamlet paths along different angles may pass through the san1e reconstruction 

pixel in the course of a scan, they will each sample a unique geometry of that pixel and thus 

record inconsistent measurements. 

The subsequent incarnation of the simulation addressed the reality of inhomogeneity within 

the regions of the phantom matrix demarcated as reconstruction pixels. This was achieved by 

defining the reconstruction resolution independent of the phantom resolution. Referring to figure 

3.2.2, first a phantom resolution is chosen (indicated by red) whose pixels define a unit 

dimension and then, as described above, the phantom matrix is mapped onto a higher resolution 

grid in preparation for taking the projections. Each detector is a unit in width. 

1 

__ I 

I 

1 

Figure 3.2.2: The grid in bold red is the resolution of the phantom being scanned. The black lines 
are an examp Ie of a remapping of the phantom matrix onto a finer resolution for the sake of taking 

projections. The dotted blue grid is the pixel resolution of the reconstructed image. This model 
has an additional level of complexity in that the reconstruction pixel may contain inhomogeneous 
regions. The relative resolutions of these grids can be changed and tested for convergence within 

the simulations. 

After simulating the projection measurements, the program is left with the projection values 

for each detector, and the set of pixel indices that contributed to each projection. At this point, 

the set of pixel indices represent the highest resolution grid in figure 3.2.2. At that resolution 

there are no partial pixel contributions, so all h weights will be either zero or one. In order to 

prepare the information for reconstruction and to maintain a level of 'blindness' with respect to 
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the phantom, the small pixel indices that were recorded are remapped to confoffi1 to the lower 

resolution reconstruction grid (blue). That is, all little pixels that are contained in one big blue 

reconstruction pixel are assigned the same pixel index. The h weights are updated to represent a 

fraction of the reconstruction pixel. In the example in figure 3.2.2, every little pixel is given a 

1/16th fraction of the reconstruction pixels. There are four unique phantom pixels per 

reconstruction pixel and each phantom pixel is subdivided into an additional four fractions. From 

this example it is clear that the reconstruction pixels may contain inhomogeneities with regard to 

the phantom matrix. It is the job of the reconstruction algorithm to average those 

inhomogeneities into a single value to be represented in the reconstruction resolution. This 

simulation model marked another, less ideal test for the reconstruction algorithms. 

It is important to realize that this paradigm of relating to varying resolutions was an after 

thought of the theoretical idea behind PAIR. The example just described is essentially the same 

process of obtaining one of the PAIR solutions necessary to reconstruct a finer resolution. 

However, in PAIR reconstruction, additional lower resolution grids are defined and from those 

solutions PAIR seeks to resolve the resolution of the blue grid. 

The final incarnation of the simulation, allows for a change in the detector width relative to 

the phantom resolution. This added yet another degree of complexity, and allowed for more 

control over the simulation parameters. 
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3.3 An Alternative Afethod of Representing Pixels 

The shift towards a more complex simulation model was expected to impact AIR and PAIR's 

ability to accurately reconstruct an image. In solving a low-resolution image (lower than the 

phantom resolution) AIR must assume that each reconstruction pixel is composed of a 

homogeneous density. This assumption is mathematically represented in the theory of AIR in 

equation (2.2.1). Recall that equation (2.2.1) states that a projection is defined retrospectively, as 

the sum ofthe reconstruction pixels' fractions that it has passed through. If a beamlet has passed 

through a partial reconstruction pixel, that pixel's contribution is multiplied by a weighting factor 

equal to the fractional area of the pixel that was contained in the beamlet's path. Therein lies the 

problem. The weighting factor h, is a geometric weight while in reality it should represent the 

fraction of density contained in the pixel. These two definitions are equivalent only when the 

region being imaged is homogeneous within each reconstruction pixel. 

(f1.)(~) = 0 

(f1.)(h2) ;o! 0 

Contradiction 

Figure 3.3.1: if a single reconstruction pixel containing inhomogeneous density (blue indicates 
some I.t value and white is zero) is scanned by two beam lets, their respective projections will create 
conflicting equations as shown in the figure. These equations build the matrices of AIR and PAIR. 

In the less ideal simulations there may be varying attenuation coefficients within a 

reconstruction pixel. This leads to inconsistencies in the matrix equation (figure 3.3.1). To 
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overcome these inconsistencies an alternative formulation of equation (2.21) was developed. It is 

important to note that the CT simulation itself (including the calculation of projection values) 

does not change from the previously described model. This new development occurs at the level 

of retroactively representing the beamlets' paths in preparation for the matrix equations. 

The idea behind this development stemmed from the desire to avoid the partial contribution 

of pixels in the matrix equations. In the original simulation the angled beams' paths were 

imposed on to the coordinate system of a grid that remained un-rotated. Suppose instead, 

defining a rotated coordinate system in which a grid of pixels is parallel to the incident beam. 

This grid does not represent the reconstruction grid, but is a theoretical construct that covers the 

same geometric region as the reconstruction grid (except for the comers which will lie outside 

the region of interest) (figure 3.3.2). 

Each beam angle has its oVvn respective grid in which no partial pixels are traversed, meaning 

that all h values are by definition equal to either zero or one. Here no assumption has been made 

Figure 3.3.2: Supposing a beam angle at 45 deirees, the blue grid is a theoretical grid 
of unknown attenuation coefficients (index C, ) oriented parallel to the beam angle. 

Beamlets pass through the blue pixels with a weight (h value) of eit~er z:ro or ~n:. A 
similar grid can be designed for each beam angle. The reconstructIOn pIxel gnd 111 

indicated in red with index C;. 
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as to the homogeneity of the pixels. One can then map each angled grid back on to the 

reconstruction grid, relating their respective geometric overlap. For a given beam angle, each 

pixel's area in the reconstruction grid is covered by some combination of the geometric areas of 

the pixels in the rotated grid. This relationship can be expressed in a matrix equation as follows: 

.. 
CUI ,I c t c 1 .. 

c 2 c 2 .. 
(3.3.1) X 

c 3 c 3 .. = 
o.J .. 

t, } c j c j 

Wnere Ciis the geometric area of lh pixel in the reconstruction grid, Cj * is the geometric area 

of /h pixel in the rotated grid, and (J)iJ is the fraction of Cj * that geometrically overlaps Ci. Except 

for the rows and columns of the matrix corresponding to comer pixels, each row and each 

column should add up to one representing the fact that each pixel is overlapped entirely by pixels 

in the other grid (a discussion the issue of comer pixels will be presented shortly). 

Upon solving for the set of geometric areas, Cj • in terms of Cj equation (3.3.1) becomes: 

.. -1 
C 1 OJl,l C 1 .. 
C 2 Cz .. 

(3.3.2) 
c 3 x 

c 3 .. 
c j 

OJ .. 
t,} c i 

Where the matrix of WtJ weights has been inverted. 

Intuition may suggest that the inverse of the matrix should be nothing more than the 

transpose. The rows of the {JJiJ matrix relate the geometric area of Ci in terms of C·, while the 

columns relate the geometric area of Cj • in terms of C. This is most clearly recognizable in the 
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case of a beam angle at 0 degrees. The (f)ij matrix will be the identity matrix and its inverse 

would be equal to its transpose. Nevertheless, at angles other than 0 or 90 degrees, the matrix 

inversion results in a non-trivial relationship between the two grids. 

After the inversion, the C/ areas are expressed in terms of fractions of Cj in an unintuitive 

way, which no longer represents the simple geometric overlap. Knowing that each beam let 

traverses a set of C/ (rotated grid pixels) with no partial contributions, one can instead express 

that set in terms of C j using the fractions obtained from the inversion. 

From this method ones arrives at an altered equation (2.2.1): 

(3.3.3) 

_m.A 

_m.A 

Pm.A = ~flt he 
e 

Vvbere h t is the modified h value for the pixel C contributing to beamlet A in beam 111. 

There were a number of practical issues to overcome in the implementation of this method. 

One challenge was to accurately determine the (f)jJ values. The premise relies on the 

determination of the shared area of two squares in separate coordinate systems. The overlapping 

area was approximated in following way. Because each reconstruction pixel can consist of a 

number of smaller pixels determined by the choice of phantom resolution, it can be determined if 

the centers of those small phantom pixels lie inside a square defined by four comer coordinates 

using the Matlab function inpo/ygon. The small pixels approximate the fractional area with an 

accuracy corresponding to the simulated projections (figure 3.3.3). It should be noted this 

method of determining the shared areas is not the only possible approach. 
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Figure 3.3.3: The overlapping areas are approximated by counting the number of small 
pixels (indicated by a dotted red line) in a blue pixel using the Matlab function inpolygon. 

Due to the fact that the number of small pixels represents only an approximate area, it can 

happen that a given pixel in the rotated grid may seemingly contain more than a unit area. For 

this reason, this method of representing pixels was only implemented in cases where the number 

of phantom pixels per reconstruction pixel was made large enough to minimize this error. 

The second issue was that in order to ensure that the matrix of weights had a stable inverse, a 

square matrix was desired. This requires the number of pixels of the rotated grid be equal to the 

number of reconstruction pixels. There are two problems associated with the requirement that the 

number pixels in both grids be equal. The first problem is that the imaged region will not be fully 

covered by the rotated grid at angles other than 0 and 90 degrees (see figure 3.3.3). The second 

difficulty is that the stability of inverting the matrix may depend on a one-to-one relationship 

between the two grids, and this relationship will not generally exist as the reconstruction grid and 

the rotated grid do not occupy the same domain. To overcome the first problem that the imaged 

region will not be covered, trivial rows and columns of pixels can be added to the problem set, 

keeping the imaged region in the center, ensuring that the corners that are not covered are not of 

62 



crucial importance. The extra rows and columns can be discarded after the inversion, as they do 

not represent unknown densities. 

However, the issue of comer cells still posed a problem in setting up and inverting the system 

of equations. There will always be rows and columns of the matrix in equation (3.3.1) that do not 

add up to one. To correct for this, the comers had to be 'cut', literally. Before explaining this 

procedure, note that these comer pixels do not represent any part of the imaged region, and are 

outside of the reconstruction domain. The overhanging comers can therefore be manipulated to 

conform to a neat set of equations. Looking at figure 3.3.4, and considering arguments of 

symmetry, it is clear that any exposed comer area of the reconstruction grid will have a 

corresponding comer in the rotated grid. In order to ensure that both grids occupy the san1e 

domain and thus maintain a one-to-one relationship, the unshared area of the comer pixels in the 

rotated grid can be assigned to the corresponding pixels of the reconstruction grid. Presented 

here is a simple 2x2 pixel example of this procedure for clarity: 

Figu re 3.3.4: A) a beam angle at 20 degrees represented by a 2x2 pixel grid in a rotated. coordinate s,Ystem 
cannot cover the oriainal grid as the comers are exposed. B) The comers of the rotated gnd can be asSIgned to 

the exposed ;ea of the original grid maintaining a one-to-one relationship between the two grids. 
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Referring to figure 3.3.4, the matrix equation relating the two grids in A) is: 

0.7031 0.1875 0 0 * C1 c) 
0 0.7031 0 0.1875 • 

C2 C 2 (3.3.4) x • = 
0.1875 0 0.7031 0 c3 C 3 

0 0 0.1875 0.7031 • 
C4 c4 

Notice that the rows and columns do not add up to one because the comers are not included 

in the domain. Assigning the corners of the rotated grid to the corresponding corners of the 

original grid as shown in figure 3.3.4 B), gives: 

0.7031 0.1875 0.1094 0 • c1 C1 

0 0.7031 0 0.2969 • 
C2 Cz (3.3.5) x = 

0.2969 0 0.7031 0 • c3 c3 

0 0.1094 0.1875 0.7031 • c4 c4 

Now each row and column adds up to one representing the fact that the entire domain is 

l 

I 
shared by both grids. Although in this simple case both equations (3.3.4) and (3.3.5) are solvable, 

the later forn1Ulation is more stable especially in larger domains. 

Due to all the above-mentioned issues, this method was only carried out and tested in this 

thesis under specific cases. To summarize, they were: 

A larger number of phantom pixels per reconstruction pixel (low reconstruction 

resolution relative to the imaged region) in order to ensure an accurate approximation of 

the shared areas of the grids. 

The number of detectors in the array was set equal to the reconstruction resolution (Le.: 

if 50 detectors were used, the reconstruction resolution would be 50x50 pixels), in order 

to maintain a square matrix in equation (3.3.5). 

64 



b 

This method of representing pixels will be referred to as the inversion method as opposed to 

the original method. When no mention of the method is made, the original method is assumed. 
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3.4 The Graphical User Interface (GUI) 

Due to the need to test the reconstruction algorithms in many situations including, for 

example, changes to the phantom matrix and varied beam angle views, it was necessary to 

develop a simulation environment where changes to such parameters could be made without 

going into the code and manually making changes. As well, the output would need to be 

displayed in an organized fashion. For these reasons a graphical user interface was created 

through which all the simulations were performed. Matlab contains all the graphics necessary for 

the interface, all that was needed was to design the layout, and program each button, window, 

checkbox, and textbox. 

Figure 3.4.1 shows the OUI for the CT simulation along with AIR and PAIR reconstruction 

(a similar ~UI was developed for OIRA). Starting on the left there is a choice of the type of l 

i 
phantom to image, as well as the ability to make value changes to individual pixels in the 

phantom. This was used to add 'metal' type gradients. There is control over the nwnber of 

detectors in the detector array. The number of fractions per phantom pixel allows for the added 

of fractions, the phantom matrix is remapped onto a higher resolution grid as was described I 
complexity of splitting each pixel of the phantom matrix into fractions. By increasing the nwnber 

f 

above. The nwnber of phantom pixels per detector effectively defines the phantom matrix 

resolution relative to the nwnber of detectors. There is also, as discussed previously, the ability 

to choose the reconstruction resolution, which is controlled by changing the nwnber of detectors 

per AIR pixel. To the right there are parameters that control the beam angles. One can specify 

the starting and ending angle, and either the increment or the total nwnber of angles. To the right 

of that are parameters that control noise such as background 'electronic' noise, or a percent of 

the projection noise. Next over are the parameters specific to AIR and PAIR. There is control 
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over the importance coefficients of the terms that comprise the objective function. After that 

there is a list of filters to choose from pertaining to the filtered backprojection algorithm, which 

was used as a control algorithm against which to compare the novel reconstruction algorithms. 

To the far right, the output displays a measure of the error in the reconstruction. As well as 

controls that allow rescaling of the images for visual purposes. The images are displayed in the 

four plots in the center. One can include the true phantom, AIR reconstruction, the difference 

between the phantom and the AIR image, as well as the filtered backprojection reconstruction for 

comparison, or one can display the basic ARA reconstruction. The center button entitled 'figure 

window' opens up a new window containing the images for quick and easy saving. The very 

bottom of the GUI displays crucial messages, such as the number of negative pixels in the 

reconstruction or other appropriate information. 
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Figure 3.4.1: The GUI for the CT simulation for AIR and PAIR (a similar one was created for GIRA). It allows for quick parameter 
changes such as the type of phantom to image. making individual changes to values in the phantom matrix, the number of detectors in 
the detector array , the reconstruction resolution relative to the phantom resolution, beam angle spacing, random n()i se in the projection. 

and rescaling of the reconstructed images, just to name some. 
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3.5 Implementing AIR and PAIR 

While the theory of AIR and PAIR presented straightforward methods for image 

reconstruction, their implementation was made difficult due to computational effort and memory 

concerns. In approaching the issue of storing data, it was decided that the CT information could 

be stored most efficiently with the use of structures. There were two possibilities of how to orient 

these structures. The information could be stored as a subset of the detectors (or beamlets) or as 

the subset of the reconstruction pixels. If the information were to be stored as a subset of the 

pixels, each pixel index would contain the beamlet indices that it had contributed to as well as 

the respective fraction that is had contributed. By storing the information as a subset of the 

beamlets, each beamlet would contain the fractions and pixel indices that had contributed to that 

given detector. It was decided that organizing the information as a subset of beamlets/detectors 

was more practical. The structure called 'Beamlet' was organized as follows (where i is the index 

of all beamlets in the CT scan): 

Beamlet(i).projection 

Bean1Iet(i).cellspot 

Beamlet(i).h 

Beamlet(i).lengths 

The projection value of detector i. 

A vector of image pixel indices that contributed to the ith 

projection. 

A vector of values of the same size as the corresponding 

'cellspot' vector, representing the fraction (or h value) of 

each pixel index that contributed to the i th projection. 

= The length of vector' cellspot' . 

Note that the pixel indices and their respective fractions would at first be representative of 

the highest resolution used in the calculation of the projections. After the simulation they are 

updated to represent the user defined reconstruction grid resolution, which is not generally the 
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same as the phantom resolution. This stage is critical to maintain 'blindness' with respect to the 

subject being imaged. 

This structure called 'Beamlet' is the only information required to implement AIR. Presented 

here is the Matlab code to produce the Alpha and Beta arrays for the CT term objective function. 

(Equations (2.2.10) i, and ii): 

alphaCT=zeros(res12,res12); % initializing the Alpha matrix to the appropriate size 
% this loop runs through each beamlet index for 1 :length(beamlets) 

if Beamlet(i).lengths-=O 
C=Beamlet(i).cellspot; 
H=Beamlet(i).h; 
for j=l :beamlet(i).lengths; 

% continues if beamlet contains at least one pixel 

for k= l:j 
alphaCT(CG),C(k))=aJphaCT(CG),C(k))+2*HG)*H(k); 

end 
end 

end 
end 

Notice that the code constructs only the lower triangular and the diagonal elements of the 
Alpha matrix. Because the matrix is symmetric, the upper triangular portion can be constructed 
easily using the transpose of the lower triangular portion. 

betaCT= zeros(res12,1); % initializing the Beta vector to the appropriate size 
for i=l :length(beamlets) % this loop runs through each beamlet index 

end 

if Beamlet(i).lengths-=O; % continues if beamlet contains at least one pixel 

end 

pr= Beamlet(i).projection; 
C= Beamlet(i).cellspot; 
H= Beamlet(i).h; 
for j= 1: Beamlet(i).lengths 
betaCT(CG))= betaCT(C(j))+2*pr*H(j); 
end 

For every detector, the code calls up the pixel indices that were traversed by that beamlet, 

and adds the appropriate value to the Alpha and Beta array index. As was discussed in the theory 

of AIR, the Alpha matrix is not constructed with the projection values, and can be initialized 
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prior to the CT scan. The Alpha and Beta arrays for the other terms are constructed separately 

and then added together in proportion to their importance coefficients. The final values of the 

image pixels !-lk are then recovered by using the backslash function (essentially performing 

matrix left division) given by: 

(3.4.1) Mews = Alpha\Beta 

t ; Where Mews is a vector containing the solution values !-lk, which can be reshaped into a square 

I 

I 
1 

grid for visualization. 

During the testing of the reconstruction algorithms, while experimenting \vith the values of 

the importance coefficients, there was a need to make multiple attempts to reconstruct an image 

from each CT simulation. For this reason it was not efficient to perform each CT simulation 

repeatedly and to construct the various matrices each time. To avoid this, after each CT 

simulation the structure 'Beamlet' and the Alpha and Beta matrices for each objective function 

were saved to the computer's hard drive. This allowed for fast testing where applicable. When a 

change was made to the phantom matrix, like the addition of a region of high density, this would 

cause a change in the projection values. In this case both the CT simulation (the projection 

measurements) and the Beta vectors would need to be recalculated. However the Alpha matrices 

would not be affected. The cases that would necessitate the construction of new Alpha matrix are 

either a change in the CT beam angles or a change in the desired reconstruction resolution. 

Coding for PAIR not only implied that the above-mentioned procedure be carried out 

multiple times, but PAIR introduced additional levels of complexity. In theory the user defines 

the number of AIR pixels per PAIR pixel in order to meet computational needs. However, in this 

research only the first degree of PAIR was implemented. That is, four AIR pixels per PAIR 

pixel, or in other words, four PAIR images used to recover the desired resolution. To obtain each 
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independent PAIR solution the structure 'Beamlet' needs to be modified. After the simulated CT 

scan the structure is configured for the AIR resolution, but it must be reconfigured for each PAIR 

orientation. Specifically, this can be achieved as follows: 

Beamlet(i). projection These values remain the same. The infonnation here is not 

dependant on the choice of reconstruction resolution. 

Beamlet(i).cellspot These indices are remapped to conform with the PAIR orientation 

and resolution (figure 2.3.1). 

Beamlet(i).h These value need to be updated because h must represent the 

fraction of the PAIR pixel that is contained in the given beamlet. 

Beamlet(i).lengths These values are updated to equal the new length of vector 

'cellspot' . 

This structure is redefined for each PAIR solution. After the four independent low-resolution 

solutions have been calculated, they are mapped back onto the desired resolution grid in 

preparation to solve the final !l values. Now they can either be simply averaged together, or 

solved using equation (2.3.1). In this research, implementation of equation (2.3.1) to resolve the 

higher resolution image was not met with initial success and therefore the simple averaging 
( 

technique (described in the theory of PAIR) was used. The reason for this will be discussed in 

the discussions section. 

I 
i 

I 
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3.6 Implementing GIRA 

GIRA requires almost the same information as AIR and PAIR, namely, the projection values 

from each beamlet qm),' and the geometric region that each beamlet has traversed hm,A. However, 

whereas AIR and PAIR only require values for hffl'\ GIRA requires the geometric locations or 

coordinates of all hffl,A values. This is necessary because GIRA may solve any geometric region 

of the imaged domain (recall that in theory, the reconstruction resolution need not be user 

defined in GIRA but is a function of the geometric regions traversed by beanllets). In this 

research testing of GIRA was conducted using the most simplified model of the simulation, 

namely setting the reconstruction resolution equal to the phantom resolution necessitating all 

hffl,A values to be equal to 0 or 1. The extension to less ideal situations will be discussed 

subsequently. 

GIRA is split up into a number a distinct stages or functions, but does not progress through 

these stages linearly. Rather, GIRA moves back and forth between these stages each triggered by 

certain characteristics of the reconstruction. 

The first function of GIRA identifies all qm A = O. This special case is of much importance 

because it implies that all unknowns corresponding to hr,A = 1 must satisfy fle = O. In other 

words, if GIRA finds a projection value of zero, it can be assumed that the pixels that contributed 

to this projection must also be equal to zero. GIRA then fills in the reconstruction grid with the 

now known values, eliminates the zero projections from the computers memory, and finally, 

searches through all beamlets and sets all hr,A = 0 corresponding to pixels that have been solved. 

This effectively erases all solved pixels from the problem set. A graphical depiction of the first 

stage of GIRA, called ""GlRA ZEROS", is illustrated in figure 3.6.1 below. Once all zero 
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projections have been exhausted (and the set of q m.A = 0 removed), and all knO\\TI pixels have 

been eliminated from the problem set (by updating the set of h), GIRA moves on to the next 

stage. 

(C 

pro jectioJ:::::l;:::::::=::t:; 
function 

(B 

Reconstruction 

(D 

Reconstruction 

~r%-Imf 10 ! 0 000 
o 0 000 roro 

00 0 0 ~ o 0 000 
~~ o 0 000 
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o 0 0 000 
o 0 0 o 0 o 0 
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Figure 3.6.1: (A) an unknown region is imaged using a number of different angles (the arrows represent 
individual beamlets. (8) GlRA begins by initializing a solution grid, but no pixels have been solved. (C) All 
projections that are equal to zero are eliminated and all pixels that contributed to these zero projections are 
removed from the set of unknowns. (D) The reconstructed image is filled in with zeros where applicable. 
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The next function of GlRA searches for beamlets that have only passed through one 

unknown (ie, ~htA = 1). This condition implies that the unknown pixel's density is equal to the 
e 

projection value of that beamlet (qm,A = 11k' where k is the index of the unknown). The kth pixel is 

filled into the reconstruction grid, and it must also be removed from the problem set. To do this, 

GIRA finds all beamlets that have passed through pixel k, (beamlets satisfying h';,A = 1) and 

eliminates this pixel from the beamlets memory by setting h';,A = O. GIRA then subtracts the 

value of 11k from all projections that pixel k has contributed to. This process of searching for 

beamlets that pass through one pixel, called "'GlRA ONES" is repeated until there are no more 

beamlets that have passed through only one pixel. Once GlRA cannot perform the ONES 

function, it returns to the ZEROS function, as it is possible that subsequent to subtracting from 

the projections q, there may be some zero projections. For a graphical illustration of GlRA 

ONES, see figure 3.6.2. 
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Figure 3.6.2: (A) The problem space after the ZEROS function. The red stars indicate a beamlet that 
has only passed through one pixel. (8) The reconstruction grid subsequent to GIRA ZEROS. (C) The 

beamlets (and their corresponding projections) passing through only pixel are eliminated and the 
solution begins to be 'carved' out. Notice the other reduced projection values as a result of the 

eliminated pixel. (D) The reconstruction grid is filled in with solved densities. 

GlRA passes between the ZEROS function and the ONES function until one of two 

conditions is met: 

1) The reconstruction grid is completely filled and thus the reconstruction is complete. 

2) There are no more zero projections and no more beamlets passing through one pixel. 

If the second condition arises, GlRA will proceed to the next stage of reconstruction. In this 

stage called "GlRA TWOS", GlRA searches for two beamlets that pass through the same pixels, 
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with one of the beamlets passing through one extra pixeL This implies that the difference 

between their projection values will be equal to the absorption density of the pixel that is 

exclusive to one beamlet. The value of that pixel is filled into the solution grid and all qm,). and 

h;·A are updated to remove that pixel and its absorption density from the problem. Once GlRA 

TWOS finds the solution to one pixel, GlRA goes back to looking for zero projections and 

beamlets that pass through one celL 

GlRA passes between the ZEROS function, the ONES function and the TWOS function until 

one of two conditions is met: 

1) The reconstruction grid is completely filled and thus the reconstruction is complete. 

2) There are no more zero projections, no more beamlets passing through one pixel, and no 

more sets of two beamlets that satisfy the necessary conditions to execute GlRA TWOS. 

If the second condition arises, GIRA will proceed to the next function. In this next stage, no 

pixels are solved; rather, the information in qm.A and 11;·A is reorganized to allow more pixels to 

be solved using ZEROS, ONES, and TWOS. This function, called GlRA MEWS, removes small 

groups of pixels from beamlets in order to uncover more solutions. GlRA MEWS works as 

follows. Beginning with the beamlet that has the smallest number of contributing pixels, these 

pixels are for the moment considered as one region with absorption density equal to the 

corresponding projection value. This group of pixels is then removed from all other beamlets 

containing the whole group. This is achieved by setting all lIrA = 0 for all the pixels in the group 

and subtracting their total absorption density from the beamlet's projection value. It is important 

to note that if another beam let contains only some of the pixels in the group but not all, it is not 

modified. This process is carried out for all beamlets, starting from the beamlets passing through 

the smallest number of pixels. 
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GIRA MEWS is in reality a way to reorganize the projection infonnation to uncover 

additional trivial solutions. Once MEWS has completed this task, it is likely that the other GlRA 

functions will be able to solve additional pixels. GIRA passes through all four functions in the 

way described above until the grid is solved. 

As the projection values are updated throughout GIRA by subtracting pixel values from 

them, it may occur that a projection value becomes less than zero. This can occur if various 

projections contain inconsistent measurements of the same region, or it can result from a 

propagation of round-off error. If this happens, GIRA will immediately remove that beamlet 

from the problem set assigning any pixels contained in that beamlet a value of zero. 

As mentioned before, it is foreseen that GIRA could be implemented without a predefined 

reconstruction pixel size. Consider for exanlple GIRA ZEROS. When a projection value equals 

zero, it can be concluded that the entire geometric area the contributed to that projection has a 

density of zero. Instead of GIRA ONES searching for a beamlet containing only one pixel, it can 

be defined as a beamlet containing the smallest geometric area. In the simulations and testing 

that were conducted in this thesis however, a predefined reconstruction grid was defined. 

There may be cases when GlRA may not be able to fully reconstruct an image, for example 

an underdetenuined system. To deal with these cases, a number of approaches could be 

proposed. The first is to combine AIR with GlRA by using GlRA to reconstruct the image until 

it cannot solve more pixels, and then using AIR to solve the remaining system. Another way to 

combine the two algorithms is to find small groups of cells that can be solved by AIR within the 

GlRA algorithm. A third idea could be to add additional tenus to the GIRA algorithm that would 

group pixels and assign them an average value based on a projection. These ideas have not been 

explored in this thesis but constitute an interesting direction of future research. 
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It is interesting to note that GIRA can be thought of as a method of solving a special case of a 

matrix equation. GIRA searches out the matrix rows that have trivial solutions, either because the 

right hand side (projection value) is equal to zero, or because there is only one unknovvTI in the 

row. Once trivial solutions have been exhausted, GIRA performs minimal matrix algebra (similar 

to row reducing) to uncover other trivial solutions. This process continues until all unkno\vTIS are 

solved. The reason it can be called a 'special case' of a matrix problem is because the geometry 

of the beams leads to a system of equations with many trivial solutions, and it is precisely this 

t type of system that GIRA can exploit. 
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3.7 Implementing ARA and the Filtered Backprojection 

One of the most essential aspects of scientific research is the inclusion of a control. A control 

in the context of this research was the use of an established algorithm such as ARA and filtered 

Backprojection, against which to compare AIR, PAIR, and GIRA. For research based on 

simulations the employment of a control had especially pronounced importance. Implementing 

ARA and filtered backprojection on the simulated data provided insight into any bugs in the CT 

simulation itself. 

Matlab comes equipped with a very easy to use filtered backprojection algorithm called 

iradon, but it is based on the projections created using the Matlab function radon, which was 

described above. It would not represent a control to implement filtered backprojection using the 

radonliradon functions while employing the newly developed CT simulation for the novel 

algorithms. A control by definition needs to be subjected to the same conditions as the 

experimental treatment. It was therefore necessary to ~Tite the code for filtered backprojection as 

well as ARA from scratch. The code would need to take as an input the structure • Beamlet' from 

the CT simulation, and output the reconstructed images from the filtered backprojection and 

ARA. 

Implementation of ARA in Matlab was trivial as the structure 'Beamlet' is configured quite 

well for construction of the ARA arrays. Beamlet(i).projection is the value of the ith index in the 

Beta vector. Beamlet(i).cellspot represents the column indices of Alpha matrix, and Beamlet(i).h 

are the values assigned to those indices 

In implementing the filtered backprojection, it was necessary to reorganize the information 

from the CT simulation. The projection values from Beamlet(i).projection were rearranged into a 

matrix, called 'Proj', with the number ofrows equal to the number of beam lets in a beam (in 
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other words the number of detectors at any angle) and the number of columns equal to the 

number of beam angles. With this organization, the Matlab function for the fast Fourier 

transform,ffi can be applied to each column in one command. However, before the projection 

information could be transfoffiled to the frequency domain it must be zero padded. This was 

achieved by adding additional rows of zeros to the bottom of the matrix 'Proj' (approximately 

doubling the number ofrows). After transforming the projections to the frequency domain using 

ffi, the data was multiplied by a filter. The filter designs and their respective Matlab codes were 

taken from the irdaon function. Included was the basic cropped Ram-Lak filter, and various 

manipulations of this filter through multiplication of cosine or sine functions such as cosine 

ramps and hamming windows. Included in the Gill was the ability to change the filter type with 

ease. In preliminary testing it was determined that the Ram-Lak filter multiplied by a Hann 

window provided the optimal filter, so all the filtered backprojection results in this research used 

this filter. 

After filtering the transformed data, the function ifft was used to obtain the inverse transform 

of each column resulting in a matrix, called 'filterproj' with columns representing the filtered 

projection data for each beam angle. Before backprojection, the additional rows that were added 

to zero pad the data were removed. Each column in the array 'filterproj' then represented the 

filtered projection for each beam angle. The values in the 'filterproj' array were then 

backprojected one by one, surnn1ing onto the image pixel grid. The code for the backprojection 

after filtering is wTitten out below for clarity. 

81 



Image=zeros(resl,res2); % initializing size of image grid 
for i=l :length(beamlets) % loop runs through each beamlet 

p=filterproj(i); % the ith filtered projection value corresponding to the ith detector 

end 

Place = Beamlet (i).cellspot; % vector of pixel indices the were traversed by the ith beamlet 
if Place-=O; % continues if beamlet traversed at least one pixel 

w- Beamlet (i).h; % vector of fractions of the pixels that were traversed 
for L= 1 :length(Place) % for each pixel index 

% the next line of code adds a fraction of the filtered projection to the appropriate pixel 
Image(Place(L» =Image(Place(L» + p*w(L); 

end 
end 

Finally the image needed to be scaled by the appropriate scaling factors. There was a scaling 

factor corresponding to the differential angle spacing; that is, the image pixels were multiplied 

by the range of angles used (in radians) divided by the number of beam angles used. Additional 

scaling corresponded to the image resolution relative to the resolution of the function imaged. 

With the CT simulation complete, and all reconstruction algorithms coded, testing of the 

hypothesis began. 
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3.8 A Note on Computational Constraints 

All simulations and testing were carried out on a Macintosh with a 2 GHz Intel Core Duo 

processor, and 2 GB of RAM. The computer's memory limitation constrained the domain of the 

testing. The largest solvable matrices in AIR were about 4,900 x 4,900 (corresponding to a 

reconstruction resolution of 70x70). 
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CHAPTER IV 

TESTING AND RESULTS 

4.1 Validation of the CT simulation 

Before testing the algorithms, it was necessary to validate the CT simulation. To achieve this 

the images produced using the built-in filtered backprojection algorithm, iradon, from 

projections obtained with the built in radon transform function were compared against the 

images obtained using the newly developed CT simulation, reconstructed with the coding of 

filtered backprojection presented in section 3.7. Both reconstruction algorithms used a hann 

filter. The initial results of the validation seemed to suggest some error in the simulation or the 

I 

r 

coding of the filtered backprojection, as the resulting image appeared more coarse and grainy 

compared to the image produced with radonliradon (figure 4.1.1). This could have been due to 
, 

r one or two factors. The first was the absence of interpolation in the CT simulation. Interpolation 

tends to act like a smoothing function for filtered backprojection. The second was that the radon 

function splits each pixel in the phantom matrix into four fractions before taking the projections. 

This also contributes to the overall smoothness of the resulting images. By increasing the number 

of fractions per phantom pixel (recall that this allows for partial cell contributions) a result nearly 

matching the image from radonliradon was achieved. This validated the simulation and it was 

time to test AIR, PAIR, and GlRA. Testing of the reconstruction algorithms began with the most 

simple simulation models and increased in simulation complexity throughout the testing. 
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Figure 4.1.1: a) Shepp and Logan head phantom at IOOxlOO resolution. b) Using our CT simulation and 
reconstructing the image with our adaptation of the filtered backprojection algorithm, the image appears grainy and 

coarse. c) Using the 'radon' function to produce the CT projections and 'iradon' for the reconstruction, a much 
smoother image is obtained. This is because radon uses a process of linear interpolation in the backprojection 
algorithm, while the image in b is produced assuming whole contributions from pixels. d) By increasing the 

number of fractions in our simulation (essentially splitting each pixel into fractions) we can approximate the effect 
oflinear interpolation. The image in d was obtained using 4 fractions per phantom pixel. Notice that the number of 

pixels on the grid has been multiplied by four. This does not represent a higher resolution. The solution is just 
mapped onto a rmer grid to indicate that we have used 4 fractions per phantom pixel. e) Using 16 fractions per 
pixel the image now almost exactly matches the image in c. This convergence demonstrates the validity of our 

simulation. Each image was produced from 180 beam angles spanning 180 degrees. Each reconstruction uses the 
same Hann filter. 
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4.2 Testing AIR and PAIR 

For a straightforward description of the simulation parameters for each test, the following 

notation is used: 

P The square root of the resolution of the phantom being imaged. (If the 

phantom is 60x60, P will be 60). 

F The square root of the number of fractions dividing each phantom pixel. (As 

F is increased the simulation becomes more realistic with respect to pixels' 

fractional contributions to the projections). When displaying the phantom 

and the reconstructed images, this grid will be used as a reference (i.e. the 

phantom and reconstructed images will be displayed on a (PFxPF) size grid. 

If F is not specified, assume F= 1. 

D = The number of detectors in the array per beam angle. 

R The square root of the resolution of the reconstructed image. (As R is 

, decreased relative to P, the simulation becomes more realistic with respect 

( 
to inhomogeneities within the reconstruction pixel size). / 

I M = The size and Jl coefficient of an added metal gradient in the imaged region. 
( 

If M is not specified assume no metal insert. 

A = The range of beam angles is displayed as follows (in degrees): 

Start angle: angle spacing: end angle 

Or in an alternative representation, which may at times be more useful: 

(Start angle I end angle I number of angles) 

Pnoise = The maximum percent noise perturbing each projection value. IfPnoise is 

not specified assume no noise. 
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= The value of the CT term importance coefficient (see equation 2.2.21). Ifed 

is not specified, assume C:t= 1. A similar term will be used for each 

importance coefficient. If the other terms are not specified, assume their 

importance equal to zero. 

It must be stated that it would neither be organized nor systematic to include all test results. 

The results displayed in this paper are the ones deemed most relevant to the hypothesis. In order 

to orient the reader to the organization of the results, a general description and motivation for 

each test is now presented. 

Test descriptions: a road map of the AIRIP AIR tests 

The first set of tests comprising figures 4.2.1, 4.2.2, and 4.2.3 are intended to demonstrate a 

number of relevant results. Figure 4.2.1 demonstrates AIR's proof of principle in reconstructing 

an image from a sufficient number of projections in the most simple simulation model (i.e. a 

determined system with consistent equations). Following this the number of beam angles is 

reduced in figures 4.2.2 and 4.2.3 creating underdetermined systems to demonstrate how the 

various averaging terms are employed in AIR to reconstruct an optimal image. 

The second test also reduces the beam angle views, but here the beam angle range is limited 

to 90 degrees. This test again demonstrates that by employing the AIR averaging terms an 

optimal solution is obtained. 

The third test includes two difficulties for image reconstruction; limited beam angle views 

and a sharp gradient in the imaged region. This test also observes the effects of simulating 

projections when the phantom pixels are divided into fractions indicated by the variable F. The 

simulation is therefore performed twice. Once for F=l and once for F=4. 
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The fourth test introduces simulated noise in the projection measurements. This simulation is 

also performed twice. Once for F=l and once for F=4. 

The simulations in tests one through four are ideal in that the phantom resolution and 

reconstruction resolution are the same (i.e. P=R). In the following tests (five through eleven), 

this ideality is removed from the simulations. Many of these tests parallel the earlier tests, only 

with this added non-ideality. 

The fifth test obtains projections using a high-resolution phantom but reconstruction is 

performed using a relatively lower resolution. This test also demonstrates the proof of principle 

of the inversion method (described in section 3.3). 

In the tests that follow, the reconstruction resolution is increased from the previous tests. 

Given the computational constraints (see section 3.8), this precludes the use of ARA and 

necessitates the use of PAIR (see section 2.3) to obtain the AIR solutions. 

The sixth and seventh tests attempt reconstruction at a higher resolution than that dictated by 

the number of detectors in the detector array (i.e. D<R). 

The eighth test attempts reconstruction from an insufficient number of beam views - a 

parallel to the first test. 

The ninth test attempts reconstruction with the presence of a sharp gradient in the imaged 

region. 

The tenth test simulates a limited beam angle range with the more complex simulation model 

(compared to the second test). 

The eleventh test includes two difficulties in image reconstruction; limited beam angle views 

and random noise in the projection functions. 
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Displaying the result: a road map to the AIR/PAIR figures 

Due to the nature of this research, many figures are presented in order to compare AIR with 

the original phantom, filtered backprojection, and ARA. For organization, the images in a figure 

are titled and are often labeled alphabetically as follows: Phantom (a) depicts the phantom being 

imaged. Backprojection (b) displays the filtered backprojection reconstruction. When ARA is 

present, it is given the title ARA (d), but when it is not included, the label (d) may be used for 

AIR. There are often multiple AIR or PAIR reconstructions in a figure. This is necessary to 

examine the effects of varying the importance coefficients of the objective terms in AIR (see 

equation 2.2.21). This is certainly the case in the first few tests (one to five), which specifically 

examine the effects of changing the importance coefficients. From tests six and on, once PAIR is 

included, for organization, only one AIR result is displayed (one choice of importance 

coefficients) representing the best estimate of the reconstruction (as judged visually by this 

researcher). 

The range of values in any reconstruction varies with the reconstruction method. The figures 

are displayed in the results each with its own relative contrast. That is, if a reconstructed image 

has values between -0.5 and 0.5, this is the range of values depicted. Presented as such, one can 

observe the accuracy of the reconstruction in terms of representative attenuation coefficients. If 

every image was displayed from 0 to 1, negative attenuation values and other deviations will not 

be visible. However, when displaying the images in the tests with a sharp gradient, the maximum 

value is set to one in order to visualize the image (no lower limit is set). For the sake of 

comparison, each set of results is displayed with value range from 0 to 1 on the adjacent page. 

These rescaled results are labeled with the letter i. For example, Figure 4.2.1 are the results of 

the first test with relative contrast, and Figure 4.2.li are the same results rescaled from 0 to 1. 
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Test one: Proof of principle of AIR 

The first set of results obtained from the ideal simulations reveals the proof of principle of 

AIR. Figure 4.2.1 is an example of a determined system with consistent equations - an ideal 

situation. In this case both AIR ( c) and ARA (d) recover the exact image. Here AIR does not 

require any averaging terms. The similarity of the ARA and AIR images reflects the similarity of 

the two algorithms. As was discussed previously, AIR reformulates the same information into a 

square matrix equation. This has obvious advantages even in this first test. In this test AIR 

inverted an array of size (3600 x 3600) to reconstruct the image while ARA inverted an array of 

size (13696 x 3600). The extra rows reflect the number of beam lets Ide tee tors in the scan. 

Because the filtered backprojection method is based on approximations, an exact solution is not 

possible (b). By increasing the number of fractions per phantom pixel (shown later in figure 

4.2.5) the filter backprojection image can be enhanced, but it cannot be exact. 
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The first set of tests were conducted with the following parameters: 

P = 60; D = 60; R = 60; A = 0: S : 180. Varying S (the angle spacing) from 1 to 18. When 8 1 

the simulation is performed with 180 beam angles. When S =18 the simulation is performed with 

a mere 10 beam angles. 

8=1 

10 
O.S 

20 
0.6 

30 

40 

50 

60 
20 40 60 

10 
0.8 

20 
0.6 

30 

40 

50 

60 
20 40 60 

10 

20 

30 

40 

50 

60 
20 

10 

20 

30 

40 

50 

60 
20 

40 60 

40 60 

0.7 

0.6 

0.5 

0.4 

. 0.3 

O.S 

0.6 

Figure 4.2.1: a) The phantom being imaged. b) Image reconstruction using filtered backprojection 
and a Hann filter. For an explanation of the degraded image quality see validation. c) Image 

reconstruction using AIR (only the CT objective term) produces exact reconstruction. d) Image 
reconstruction using ARA also produces an exact solution. This is possible because the system is 

determined with 180 beam angles, and no noise in the projections. 
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Figure 4.2.1i rescaled: a) The phantom being imaged. b) Image reconstruction using filtered 
backprojection and a Hann filter. For an explanation of the degraded image quality see validation. c) 

Image reconstruction using AIR (only the CT objective term) produces exact reconstruction. d) 
Image reconstruction using ARA also produces an exact solution. This is possible because the 

system is determined with 180 beam angles, and no noise in the projections. 
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Averaging terms of AIR used to break degeneracy 

The following figures (figure 4.2.2 images c, e, g, and h) depict how the main objective 

functions in AIR interact to reconstruct the image. By decreasing the number of beam angle 

views (the spacing. S is increased to 4 degrees between beam angle views) the system becomes 

underdetermined. However. at this point in the testing there are no inconsistencies in the 

projection data. When AIR relies only on the CT term objective function. the result is a non

physical solution much like ARA (compare images c and d). From the projection information of 

an underdetermined system. there may be an infinite number of solutions. 

Images e and f depict the similarity between the backprojection method without filtering and 

AIR's weighted averaging term. Both methods smear the projection data back along the 

beamlets' paths. By employing the weighted averaging and the zero averaging terms to break 

degeneracy, AIR is able to recover the exact image (h). In this case, the main term is the CT 

objective function. The exact values of importance coefficients of the averaging terms are not 

crucial here. They can even vary in order of magnitude and will not affect the result, as long as 

they are not given much more importance than the CT term. Image g shows the result of 

employing a small amount of averaging. 
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Figure 4.2.2: a) The phantom being imaged. b) Filtered backprojection with a Hann fIlter. c) AIR with 
Cd =1. d) ARA cannot reconstruct the image as the system is underdetermined. e) AIR with Cd =0 and 

Cwav= 1. f) Backprojection algorithm with no filtering. Notice the similarity between image f and image e. 
Both algorithms are based on the concept of smearing a projection back along the beamlet's path. g) AIR 

with cct=l and c wav= l.Ox 1 0-0. b) AIR with C"t=l, cwav=l.OxIO-O. czeroav=1. Image h is an exact 
reconstruction of the phantom, even though there were only 45 projections taken. 
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Figure 4.2.2i rescaled: a) The phantom being imaged. b) Filtered backprojection with aHann filter. c) AIR 
with cct = 1. d) ARA cannot reconstruct the image as the system is underdetermined. e) AIR with cct =0 and 

C",av=l. 1) Backprojection algorithm with no filtering. Notice the similarity between image f and image e. 
Both algorithms are based on the concept of smearing a projection back along the beamlef s path. g) AIR 

with Cct=l and C",sv=l.OxlO-6. b) AIR with C t =l, C",av=l.OxlO-6, Czeroav=l. Image h is an exact 
reconstruction of the phantom, even though there were only 45 projections taken. 
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Reducing beam angle views 

As the number of beam angle views continues to drop (figure 4.2.3), the exact solution 

cannot be recovered due to a lack of infonnation. The weighted averaging and zero averaging 

tenns begin to play more of a central role in image reconstruction and in avoiding negative 

attenuation values. The values of the importance coefficients seem to depend on the number of 

projections taken, and the reconstruction resolution. However, there has not been an effort made 

to develop an automatic way of detennining these coefficients. This is a necessary development 

before AIR can be considered a practical reconstruction tool. 

The images on the right show the extreme sensitivity of filtered backprojection to the number 

of beam angle views. The large number of negative attenuation values, streaking artifacts, noise, 

and low contrast render the images unrepresentative. 

97 



-

AIR Backprojedion 

0.8 

10 10 
0.8 0.6 

20 20 
S=5 0.6 0.4 

30 30 

0.4 
40 40 

50 50 

60 60 
20 40 60 20 40 60 

AIR Backprojedion 

0.8 

10 10 
0.8 0.6 

20 20 

S=6 0.6 0.4 
30 30 

40 40 

50 50 

60 60 
20 40 60 20 40 60 

AIR Backprojedion 
0.8 

10 10 
0.6 

0.8 
20 20 

S=7 0.6 0.4 
30 30 

40 40 

50 50 

60 60 
20 40 60 20 40 60 

AIR Backprojedion 
o.a 

O.B 10 10 0.6 

20 20 
S=18 

0.6 0.4 

30 
0.4 

30 
0.2 

40 40 
0.2 

50 50 

60 
0 

20 40 60 

Figure 4.2.3: A comparison of AIR and filtered backprojection as the number of beam angles 
drops (the spacing between angles increases). ARA is not included because all of these 

simulations lead to underdetermined systems. Im~es on the left are AIR reconstructions. These 
images were obtained with c=t =1, C",av=I.0xlO ,Czeroav=l, except the last image which was 

obtained with Crt=l, Cwav=2000, Czeroav=lOOOOOO. Images on the right were all obtained using 
filtered backprojection with a Hann filter. 
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Figure 4.2.3i rescaled: A comparison of AIR and filtered backprojection as the number of beam 
angles drops (the spacing between angles increases). ARA is not included because all of these 

simulations lead to underdetermined systems. Im~es on the left are AIR reconstructions. These 
images were obtained with Cd =l, Cwav=l.OxlO ,curoav=l, except the last image which was 

obtained with Cd =1, C wav=2000, curoav=1000000. Images on the right were all obtained using 
filtered backprojection with a Hann filter. 
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Test two: Limited beam angle range 

In the second test (figure 4.2.4), the CT simulation scans only a 90-degree range, using only 

45 beam angle views. The filtered backprojection algorithm relies on a sufficient and even 

sampling in the frequency domain, and thus cannot reconstruct the image without serious 

degradation (image b). Images c and d again depict the similarity of ARA and the CT objective 

term. The system is degenerate and cannot be solved. By adding a small amount of averaging 

AIR begins to recover the structure of the image (image e). By employing the zero averaging 

term along with the weighted averaging term, AIR collapses to the exact solution (image I). The 

main point to realize is that while the weighted average term is expected to perform in a manner 

similar to backprojection, and thus may degrade the image quality, the crucial term is the CT 

term and the others are employed only to break degeneracy. 
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The second set of tests were conducted with the following parameters: 

P 60; D=60; R = 60; A = (0190145). That is, scanning only a 90-degree range using 45 beam 

angles. 
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Figure 4.2.4: a) The phantom being imaged. b) Backprojection cannot reconstruct the image 
without serious degradation. c) AIR with cct =1. d) ARA cannot reconstruct the image, as the 

system is underdetermined. e) AIR with C't"'l, C,,·v=l.Ox] 0.0. f) AIR with crt =1, 
C"·"=l.Ox 1 0.0, czerea,,=l. Image (is an exact reconstruction of the phantom, even though there 

were only 45 projections taken spanning 90 degrees. 
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Figure 4.2.4i rescaled: a) The phantom being imaged. b) Backprojection cannot reconstruct 
the image without serious degradation. c) AIR with Cd =1. d) ARA cannot reconstruct the 
image, as the system is underdetermined. e) AIR with CI=l, Cwav=1.0xl0-6. f) AIR with 
Cd=l, Cwav=l.OxlO-6, Czeroav=l. Image fis an exact reconstruction of the phantom, even 

though there were only 45 projections taken spanning 90 degrees. 
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Test three: Metal gradient 

It is well known that the filtered backprojection introduces ringing or streaking in the 

presence of sharp density gradients. In the third test (figure 4.2.5), a single pixel in the phantom 

matrix is replaced with a value of30 (the maximum value of the phantom is otherwise 1). This 

simulation model also begins to increase complexity with the introduction of pixel fractions 

(images e and 1). 

The filtered backprojection images are greatly enhanced by this additional factor. The 

fractions help smooth the image when the filtered backprojected data is being summed together 

in the image grid (compare images b and 1). Notice the large number of negative attenuation 

values. 

Here again ARA cannot reconstruct the underdetermined system (image d). It should be 

noted that in this test ARA's inability to reconstruct is a function of the limited beam angles and 

not the metal gradient. 

AIR with the degeneracy breaking averaging terms reconstructs an exact image (images c 

and e). While the addition of the fractions alters the projection information, it does not introduce 

inconsistencies and thus does not have a significant effect on AIR at this point. 
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PI iRE 7 F 

The third test was conducted with the following parameters: 

P = 60; F = 1 or 4; D = 60; R = 60; M= (IxI), ~=30; A = (01180145) 
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Figure 4.2.5: All images have been rescaled to a maximum value of one in order to display the results. 
F=l: a) The phantom being imaged. b) Filtered backprojection introduces ringing artifacts in the presence 

of sharp density gradients. c) AIR with C:t =l, Cwav=l.OxlO-6, Czeroav=l produces an exact solution. 
d) ARA cannot solve the underdetermined system. F=4: Performing the same simulation only now the 
phantom pixels and reconstruction pixels are split up into 16 fractions each, in order to interpolate the 
projection data. Notice that the number of pixels has been mUltiplied by 16. This does not represent a 

[mer reconstruction resolution. The solution has been mapped on to a higher resolution grid to indicate 
that we have used 16 fractions per phantom pixel. e) AIR with Cd =I, Cwav=l.OxlO-6, Czeroav=l produces 

the same solution as in c. f) The filtered backprojection reconstruction is enhanced by the addition of 
pixel fractions as the backprojected data is averaged from multiple beamlet contributions. Ringing 

artifacts are still prevalent, and densities are underrepresented. 
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Figure 4.2.Si rescaled: 
F=l: a) The phantom being imaged. b) Filtered backprojection introduces ringing artifacts in the presence 

of sharp density gradients. c) AIR with Ct=l, Cwav=I.Ox I 0-6, Czeroav=l produces an exact solution. d) 
ARA cannot solve the underdetermined system. 

F=4: Performing the same simulation only now the phantom pixels and reconstruction pixels are split up 
into 16 fractions each, in order to interpolate the projection data. Notice that the number of pixels has 
been multiplied by 16. This does not represent a finer reconstruction resolution. The solution has been 
mapped on to a higher resolution grid to indicate that we have used 16 fractions per phantom pixel. e) 

AIR with Cd=l, Cwa"=l.OxlO-6, Curoav=1 produces the same solution as in c. f) Filtered backprojection 
reconstruction is enhanced by the addition of pixel fractions as the backprojected data is averaged from 
multiple beamlet contributions. Ringing artifacts are still prevalent, and densities are underrepresented. 
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Test four: Adding noise to the projections 

The fourth test examines reconstruction in the presence of noise (figure 4.2.6 and 4.2.7). 

With the addition of noise, comes a fundamentally distinct issue that was not present in the 

previous tests. While the number of equations lends to a determined system, the projection 

information is no longer self-consistent, and an exact solution is no longer possible. ARA 

reconstructs an image with many negative and unrepresentative attenuation values (image d of 

figure 4.2.6 and 4.2.7). Filtered backprojection is smoothed out by the addition of pixel fractions 

(compare image b of figure 4.2.6 with image b of figure 4.2.7). 

AIR with small importance values for the averaging terms results in an image much like the 

ARA reconstruction (compare images c and d of figure 4.2.6). In this test the averaging terms in 

AIR begin to take on a more central role (This was certainly the case later, in the more realistic 

simulations). Figure 4.2.6 (images e, f and g) highlights the manual choice of importance 

coefficients, and the solution's sensitivity to those values. It is not clear whether image for g is 

the optimal solution (figure 4.2.6). As the importance of the weighted averaging term is 

increased, contrast seems to be in tradeoff with the overall smoothness of the image. Image h 

depicts a smeared image when too much importance is attributed to the weighted averaging term. 

Image h also highlights the relevance of the CT term. While it may use a smaller importance 

coefficient in more realistic simulations, if the CTterm's importance is made too small relative 

to the other terms, the result is image h. 

AIR, ARA and filtered backprojection images are smoothed and enhanced with the addition 

of pixel fractions in figure 4.2.7. Again, images c, e and f illustrate the difficulty in defining the 

term optimal in situation when an exact solution is not possible. 
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The fourth test was conducted with the following parameters: 

P = 60; F = 1 or 4; D = 60; R = 60; A = (011801180); Pnoise = 10% 
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Figure 4.2.6: a) The phantom being im~ed. b) Filtered backprojection seems to average out random 
noise. c) AIR with c't =1, C .. av=l.Oxl 0 ,CUro8V=I. d) ARA cannot reconstruct the image due to the 

inconsistencies in the matrix equations. e) AIR with Cd =}, C .. 8V=lOO, curoav=1000. f) AIR with Crt=l, 
cwav=1.0x104

, Cze .... av=lx106
• g) AIR with Cd =l, C,,·v=3.0x104

, Czeroav=l xl 06
• b) AIR with Cd=l, 

C .. av=l.Oxl06
, curoav=lxI06. These images depict the sensitivity to the choice of importance 

coefficients. The zero averaging term must be given more importance than the weighted averaging. 
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Figure 4.2.6i rescaled: a) The phantom being imaged. b) Filtered backprojection seems to average out 
random noise. c) AIR with Cd =l, C .. av=l.OxIO..(i. Czeroav=l. d) ARA cannot reconstruct the image due 
to the inconsistencies in the matrix equations. e) AIR with Cel =1, Cwav=lOO, Czeroav=lOOO. t) AIR with 

Cd =!, C .. 8Y=I.OxI04
, Czeroav=lxI06. g) AIR with Cel=I, C .. av=3.0xI04, Czer()av=lxl06• b) AIR with 

C I =1, Cwav=1.0x106
, czeroav=1xI06

• These images depict the sensitivity to the choice of importance 
coefficients. The zero averaging term must be given more importance than the weighted averaging. 
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Figure 4.2.7: 
a) The phantom being imaged. b) Filtered backprojection reconstruction. c) AIR with Cd =1, 

C wav=2.0xl04
, czeroav=lxI06

• d) ARA reconstruction. e) AIR with CI=l, Cwav=5.0xlO\ 
C-0av=lxI06

• f) AIR with Cet=l, Cwav=8.0xl04
, C-0av=8xl06
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Figure 4.2.7i rescaled: 
a) The phantom being imaged. b) Filtered backprojection reconstruction. c) AIR with ee'=l, 

e wav=2.0xl04. ezeroav=lxl06. d) ARA reconstruction. e) AIR with C '=l. e wav=5.0x 1 04
• 

e:teroav=lxl06• t) AIR with Cel =1. Cwav=8.0xlO\ Czeroav=8x106. 
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Test five: High-resolution phantom reconstructed on a lower resolution grid 

All the tests of AIR and PAIR from this point on were conducted using the more complex 

simulation model that was developed. By imaging a 540 x 540 resolution phantom and 

attempting to reconstruct the image on a 60 x 60 grid, there are many inconsistent projections. 

Inconsistent - meaning that many beam lets may pass through the same reconstruction pixel area, 

but will sample unique phantom pixels within that region, leading to inconsistent measurements. 

This situation has some parallels to using the homogeneous pixel fractions, but with simulated 

noise. It is for this reason that the last test preceded this one. 

The fifth test also includes reconstruction using the inversion method. As mentioned in the 

section describing the inversion method, it was only implemented in cases with a large number 

of phantom pixels per reconstruction pixel, and an equal number of detectors in the array (60) 

compared to the reconstruction resolution (60x60). In the initial test, the inversion method could 

not calculate the altered h weights for the beam angles at 45 and 135 degrees. The reason for this 

will be discussed in a separate section devoted to an in depth discussion of the inversion method. 

Nevertheless, in this test those two angles were removed from the simulation in order to compare 

the results. 

Image b shows that even though the projections contain inconsistent information, filtered 

backprojection is smoothed by the fractioned contributions. The contrast is degraded and the 

image is blurred. 

Images c and d are the results of AIR using the original method of representing pixels. AIR 

requires the averaging terms to produce an optimal image. Even though the importance 

coefficients of both the weighted averaging and zero averaging terms are much large than the CT 

term, the CT term is still a fundamental component to AIR Without it, image contrast would be 
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smeared (as was depicted in figure 4.2.6 image b). With the proper choice of importance 

coefficients, AIR produces image d. This image has better contrast and sharpness compared to 

the filtered backprojection's reconstruction, but there seems to be a bit of noise. As was 

mentioned before, by increasing the weighted averaging term a trade off is made between 

contrast and overall smoothness. 

It should be noted that the ARA reconstruction was not included in these figures. ARA 

reconstruction in this simulation results in an unrepresentative image much like AIR without the 

degeneracy breaking average terms (image c). 

Image e shows results of AIR with the inversion method of representing pixels, and using 

only the CT term. The initial result seems much more representative than the original method 

producing image c. Although the image is far from perfect, the initial result gives credit to the 

theory behind the inversion method. The issue is that the averaging terms in AIR are formulated 

specifically for the original method of representing pixels. By imposing the inversion method on 

the averaging terms, the result is a non-physical solution (that has not been shown). Image fis 

the result of attempting to use the inversion method of representing pixels for the CT term 

function, but the original method for the averaging terms. Though the image is somewhat 

improved by this strategy, the result is far from optimal. 
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The fifth test included the inversion method and was conducted with the following parameters: 

P = 540; F = 1; D = 60; R = 60; A = (0 I 180 I 178) (Initially 180 angles were desired, but when 

using the inversion method, the inversion at 45 and 135 degrees resulted in an unusable singular 

matrix. To avoid this the projection information from those two angles was removed from the 

simulation). 
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Figure 4.2.8: a) The phantom being imaged. b) Filtered backprojection recon~tru(..1ion. The 
reconstruction resolution is 60x60 but it has been displayed on a higher resolution grid. t:) AlR "ith 
c:r =1. d) AIR with c:r =1, C .... v=5.0xl04

• C-.... v=LOxl 07
, These importance coefficients produce an 

optimal image. e) AIR with C" =1. using the inversion method to represent pixels. The initial result 
seems much more representative than the original method producing image c. f) AlR with c:r -=1, 

C,,·v=1.0xJ Os, C-".v=5.0xl 07
, using the inversion method to represent pixels for the CT term, and 

the original method to represent pixels for the weighted averaging and zero averaging terms. 
Employing the inversion method for the weighted averaging and zero averaging terms results in 

unrepresentative images (not shown here). 



-

100 0.8 100 0.8 

200 0.6 200 0.6 

300 
0.4 

300 
0.4 

400 400 

500 500 

100 200 300 400 500 100 200 300 400 500 

AIR AIR 

100 0.8 100 0.8 

200 0.6 200 0.6 

300 300 

400 400 

500 500 

100 200 300 400 500 100 200 300 400 500 

e) PJR 

100 0.8 100 0.8 

200 O.S 200 0.8 

300 300 

400 400 

500 500 

100 200 300 400 500 

Figure 4.2.Si rescaled: a) The phantom being imaged. b) Filtered backprojection reconstruction. The 
reconstruction resolution is 60x60 but it has been displayed on a higher resolution grid. c) AIR with 
CI=l. d) AIR with eel=l, e wav=5.0xl04

, ezeroa"=l.Oxl07. These importance coefficients produce an 
optimal image. e) AIR with ed =1, using the inversion method to represent pixels. The initial result 
seems much more representative than the original method producing image c. t) AIR with eel=1, 
ewav=l.Ox1O's, ezeroav=5.0x107

, using the inversion method to represent pixels for the CT term, and 
the original method to represent pixels for the weighted averaging and zero averaging terms. 

Employing the inversion method for the weighted averaging and zero averaging terms results in 
unrepresentative images (not shown here). 
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Test six and seven: Reconstruction resolution set higher than detector resolution 

The sixth and seventh tests (figures 4.2.9 and 4.2.10) represent the special case of 

reconstruction resolution beyond the seeming limits dictated by the number of detectors. In the 

sixth test (Figure 4.2.9), the reconstruction resolution is set equal to the phantom resolution, but 

the detector width is twice the size of the phantom pixel. Though the reconstruction resolution 

was set to 120x120, the filtered backprojection algorithm is inherently constrained by the width 

of the detectors and thus reconstructs an image that appears to conform to a 60x60 grid (image 

b). Furthermore, the image appears blurred and contains subtle streaking artifacts. ARA cannot 

be included in all the tests that follow because the matrix equation exceeds computational ability 

(see section 3.8). 

Normally, this situation would present AIR with a simple underdetermined system 

comprising consistent projection information, and an exact solution could be found. However, 

due to the relatively high reconstruction resolution, PAIR is used to reconstruct the image. For 

each PAIR orientation, the reconstruction pixels may contain inhomogeneous phantom pixels 

leading to an inconsistent set of projections. In the seventh test (Figure 4.2.10), by increasing the 

imaged phantom resolution, the simulation becomes less ideal by incorporating more 

inhomogeneities in a reconstruction pixel. 

The four images of c (figures 4.2.10 and 4.2.9) are the four independently oriented PAIR 

images using the CT term, the weighted averaging term, the zero averaging term, and the local 

averaging term. The local averaging term contributes to the overall smoothness of the image, but 

a tradeoff exists between smoothness and contrast. 

The final AIR result is depicted in d. This image is obtained by first mapping each PAIR 

solution onto a 120x120 grid, and then averaging all four images onto the final AIR grid. This 

115 • 



averaging process itself smoothes out random fluctuations in the image. Though the result is not 

exact, it represents the true function with more accuracy than the filtered backprojection image. 

Interestingly, both the AIR and filtered backprojection images are enhanced in the simulation 

using a higher phantom resolution (Figure 4.2.10). 

i 
'j' 
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The sixth test included PAIR and was conducted with the following parameters: 

P = 120; F = 1; D = 60; R = 120 (each PAIR solution used a 60x60 resolution; A=(O 1180 1180). 
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Figure 4.2.9: 
a) The phantom being imaged. b) Filtered backprojection reconstruction on a 120x 120 grid has 

blurring and slight streaking artifacts. c) PAIR with Cd =l, Cwav=1.0xl04
, Czeroav=l.Oxl01 

C1oeal=100. Each PAIR solution uses a reconstruction grid of 60x60. The images are displayed on 
a higher resolution grid. d) The fmal AIR image results from averaging four 60x60 PAIR 

solutions onto a 120x120 grid. The result is of noticeably higher quality than the backprojected 
image. ARA is not included because the system of equations exceeds computational ability. 
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Figure 4.2.9i rescaled: 
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a) The phantom being imaged. b) Filtered backprojection reconstruction on a 120x120 grid has 
blurring and slight streaking artifacts. c) PAIR with Cd =1. Cwav=l.OxlO\ czeroav= 1.0x 1 07 

C1oeal=IOO. Each PAIR solution uses a reconstruction grid of 60x60. The images are displayed on 
a higher resolution grid. d) The final AIR image results from averaging four 60x60 PAIR 

solutions onto a 120x120 grid. The result is of noticeably higher quality than the backprojected 
image. ARA is not included because the system of equations exceeds computational ability. 

118 

, 
I 



p x = 7 

The seventh test included PAIR and was conducted with the fullowing parameters: 

P 240; F = I; D = 60; R:;:, 120 (each PAIR solution used a 60x60 resolution; A=(O 1180 1180). 
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Figure 4.2.10: 
a) The phantom being imaged. b) Filtered backprojection reconstruction on a 120x I 20 grid. The 

image is blurred. c) PAIR with C"'=l, C,."v=1.0xl04
, C",o'"'=1.0xI07 Cl/"''''=lOO. Each PAIR 

solution uses a reconstruction grid of 60x60. The images are displayed on a higher resolution grid. 
d) The final AIR image results from averaging four 60x60 PAIR solutions onto a 120x120 grid. 

The result is of noticeably higher quality than the backprojected image. ARA is not included 
because the system of equations exceeds computational ability. 
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Figure 4.2.10i rescaled: 
a) The phantom being imaged. b) Filtered backprojection reconstruction on a 120x120 grid. The 

image is blurred. c) PAIR with Cd =1, Cwav=1.0xl04
, Czeroav=1.0xl07 C1ocal=lOO. Each PAIR 

solution uses a reconstruction grid of 60x60. The images are displayed on a higher resolution grid. 
d) The fmal AIR image results from averaging four 60x60 PAIR so lutions onto a 120x 120 grid. 

The result is of noticeably higher quality than the backprojected image. ARA is not included 
because the system of equations exceeds computational ability. 
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Test eight: Limited beam angle views in the less ideal simulation model 

The eighth test (figure 4.2.11) examines the effect of minimal angle views in the less ideal 

simulation model (a more realistic parallel to the fIrst set of tests). The filtered backprojection is 

under sampled in the frequency domain and therefore has pronounced streaking artifacts (image 

b). Notice the representation of non-physical negative attenuation values in the image. 

The PAIR images avoid these streaks mainly due to the large value assigned to the 

importance coeffIcient of the zero averaging term (image c). The fInal AIR image is smooth and 

avoids negative values, and large artifacts, but the contrast is degraded (image d). A range of 

results can be obtained with higher contrast but more overall image noise. 
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The eighth test included PAIR and was conducted with the following parameters: 

P = 240; F = 2; D 120; R = 120 (each PAIR solution used 60x60 resolution; A = (01180122). 
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Figure 4.2.11: 
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400 

a) The phantom being imaged. b) Filtered backprojection reconstruction on a 120x120 grid has 
streaking artifacts. c) PAIR with Cd =l, CWlIv=1.8xI04

, c..,roav=2.0xI07
, C~L Each PAIR solution 

uses a reconstruction grid of 60x60. The images are displayed on a higher resolution grid. d) The 
fmal AIR image results from averaging four 60x60 PAIR solutions onto a 120x 120 grid. The result 

is of noticeably higher quality than the backprojected image. ARA is not included because the 
system of equations exceeds computational ability. 
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a) Phantom b) Backprojection 
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Figure 4.2.1li rescaled: 
8) The phantom being imaged. b) Filtered backprojection reconstruction on a 120x120 grid has 

streaking artifacts. c) PAIR with C1=1, Cwav=1.8xI04
, Czeroav=2.0xl07, C1oeal=1. Each PAIR solution 

uses a reconstruction grid of 60x60. The images are displayed on a higher resolution grid. 
d) The final AIR image results from averaging four 60x60 PAIR solutions onto a 120x120 grid. 

ARA is not included because the system of equations exceeds computational ability. 
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Test nine: Metal gradient in the less ideal simulation model 

The ninth test (figure 4.2.12) revisits the sharp gradient scenario in the less ideal simulation 

mode1. All the images have been rescaled to a max value of one for visualization. The filtered 

backprojection image depicts aliasing or ringing artifacts, and has a significant number of 

negative values (image b). 

The PAIR results seem to smooth out the sharp gradient but avoids the artifacts present in 

backprojection, as well as avoiding negative attenuation values (image c). Though it is not 

pictured here, assigning a large importance to the weighted averaging term results in streaks very 

similar to filtered backprojection image. The similarities can be seen faintly in the final AIR 

solution. The final AIR image smoothes out general noise that is present in the PAIR images 

though the contrast is degraded (image d). 
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The ninth test included PAIR and was conducted with the following parameters: 

P = 240; F == I; D 120; R = 120; M= (8x8), Jl=30; A = (011801180). 
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figure 4.2.12: 
a) The phantom being imaged. b) filtered bru:xprojeGllon reG(A'utru.ct}tJJl t..aA ttrealcing artifa£.1.t. 

c) PAIR with C-=I. C-=7.OxHt. C"'-=LOxH/.e-..... =1. £ad) PAIR y .. lutitm u~t a 
reconstruction grid of 6Ox60. The images are di<;pLaJ~ un a t.:g:.er rev .. lut.lt,'fj grid, d) Tl.(: fir.;-"] 
AIR image results from averaging four f:hx.6f) PAIR s.uLti6rll (.If.!;) a I '2Jn.12f} grid. Tl.(: 1et.1;lt it 

of noticeably higher quality than the badproje:c.1.ed irr.;.ag.e. ARA il TJJt i:.(.!...;(!.~A "~~~..e tJ-.(: 
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a) Phantom b) Sackprojection 
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Figure 4.2.12i rescaled: 
a) The phantom being imaged. b) Filtered backprojection reconstruction has streaking artifacts. 

c) PAIR with cct Cwav=7.0xl04
, Czeroav=l.Ox108, C1oaU=1. Each PAIR solution uses a 

reconstruction grid of 60x60. The images are displayed on a higher resolution grid. d) The final 
AIR image results from averaging four 60x60 PAIR solutions onto a 120x120 grid. The result is 

of noticeably higher quality than the backprojected image. ARA is not included because the 
system of equations exceeds computational ability. 
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Test ten: Limited beam angle range in the less ideal simulation model 

The tenth test (figure 4.2.13) examines a limited range of angle views in the less ideal 

simulation model. The results highlight the limits of AIR when it depends to heavily on the 

averaging terms (images c and d). In the more ideal simulation (the second test figure 4.2.4), 

only a small importance assigned to the averaging terms was enough to break degeneracy and 

find the exact solution. In the more complex simulations an exact reconstruction does not exist 

and thus the averaging terms are needed with greater importance. The filtered backprojection 

image has poor contrast, many negative values, and image blurring (image b). While the final 

AIR image is far from exact, it avoids negative values, improves contrast, and reduces blurring. 
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The tenth test included PAIR and was conducted with the following parameters: 

P == 240; F == 1; D 120; R = 120; A == (0 I 90 1180). 

a) Phantom Backprojection 
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Figure 4.2.13: a) The phantom being imaged. b) Filtered backprojection reconstruction requires 
a full range of angles. c) PAIR with C·I=l, Cwa"=l.Oxl03

, Czeroav=5.0xl07, Clocal=lOO. In the 
more complex simulations PAIR and AIR require a more complete set of projections. d) The 
fmal AIR image results from averaging four 60x60 PAIR solutions onto a 120x120 grid. The 

result is of higher quality than the backprojected image, but depicts the limitations of AIR. ARA 
is not included because the system of equations exceeds computational ability. 
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a) Phantom 
b) Backprojection 
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Figure 4.2.13i rescaled: a) The phantom being imaged. b) Filtered backprojection reconstruction 
requires a full range of angles. c) PAIR with Cd=l, Cwav=l.OxI03

, czero8V=5.0xI07
, Clocal=IOO. In 

the more complex simulations PAIR and AIR require a more complete set of projections. d) The 
fmal AIR image results from averaging four 60x60 PAIR solutions onto a 120xl20 grid. The 

result is of higher quality than the backprojected image, but depicts the limitations of AIR. ARA 
is not included because the system of equations exceeds computational ability. 
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Test eleven: Limited beam angle views and projection noise in the less ideal simulation 

The eleventh test (figure 4.2.14) imposes two difficulties to reconstruction: limited beam 

angle views and random noise. This final test was simulated with 1220 x 1220 resolution 

phantom and reconstruction was set to be 140 x 140. The filtered backprojection image is 

degraded by streaking, negative values, poor image contrast, and noise (image b). The final AIR 

result is more representative of the true phantom, but still suffers contrast degradation and image 

blurring (image d). This test highlights the advantages of AIR over the filtered backprojection 

algorithm in a situation involving many non-idealities. 
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The eleventh test included PAIR and was conducted with the following parameters: 

P = 1220; F = 1; D = 280; R = 140; A = (01180120); Pnoise = 10%. 

a) Phantom b) Backprojection 
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Figure 4.2.14: a) The phantom being imaged. b) Filtered backprojection reconstruction requires 
a full range of angles. c) PAIR with Cd :1, C'.av=4.2xlO", C"" •• v=1.0x 1 08

• d) The finaJ AIR 
image results from averaging four 70x70 PAIR solutions onto a 140x 140 grid. The result is of 

noticeably higher quality than the backprojected image. ARA is not included because the system 
of equations exceeds computational ability. 
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Figure 4.2.14i rescaled: a) The phantom being imaged. b) Filtered backprojection reconstruction 
requires a full range of angles. c) PAIR with Cct=l, Cwav=4.2xl04

, Czeroav=l.Oxl08. d) The fmal 
AIR image results from averaging four 70x70 PAIR solutions onto a 140x 140 grid. The result is 

of noticeably higher quality than the backprojected image. ARA is not included because the 
system of equations exceeds computational ability. 
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4.3 Testing GlRA 

GIRA was tested using only the most ideal simulation model (i.e. the reconstruction 

resolution is set to be equal to the resolution of the phantom being imaged). The tests presented 

here explore GIRA's ability to reconstruct an image from a limited number or range of beam 

angle views as well as the effects of increasing reconstruction resolution. 

In the first few tests (one, two and part of three) the results include GlRA reconstruction with 

only the ZEROS and ONES function (image b), GlRA reconstruction with the ZEROS, ONES, 

and TWOS function (image c), and the complete GlRA reconstruction employing all the GlRA 

functions (image d) as developed in section 3.6 (pg 71). Unless otherwise stated, all images are 

displayed each with its own relative contrast. 

Test one: Proof of principle of GlRA 

The flrst GlRA test (figure 4.3.1) simulates a limited number beam angle views. The figure 

depicts the progressive nature of GIRA. In image b, using only the ZEROS and ONES function, 

GlRA is able to solve the pixels around the phantom, and a few pixels of the phantom itself(the 

image does not differentiate in contrast between unsolved pixels and solved zero pixels). Given 

the 180-degree beam angle range, these two functions will tend to solve the image in a circular 

fashion working inwards. Image c shows the progress of the ZEROS, ONES, and TWOS 

functions. The pattern of the solution depends on the geometric relationship between the various 

beamlets. Using all GlRA functions the reconstruction is complete and produces an exact 

solution as shown in image d. The first result demonstrates the proof of principle ofGIRA. 
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The first test was performed using the following parameters: 

P = 50; D=50; R = 50; A = (01180168). 

b) GIRA ZEROS and ONES 
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Figure 4.3.1: a) The phantom being imaged. b) The image is reconstructed using only the ZEROS and ONES 
function. It is clear that the image is not complete c) Using the additional function TWOS, GIRA can reconstruct 
more of the image. d) Using all GIRA functions the reconstruction is complete and produces an exact solution. 
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Test two: Limited range of beam angles 

The second test (Figure 4.3.2) reduces both the range of angles and the number of angles in 

the simulation. It is clear that the solution pattern is much different compared to the previous test. 

An interesting point is that fewer angles are required to solve this scenario then the previous one. 

The reason being that here the beam angles are closer together and thus have much more 

geometric interaction. The final solution recovers the exact solution. 

The second test was performed using the following parameters: 

P 50; D=50; R = 50; A = (0190160). 
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Figure 4.3.2: a) The phantom being imaged. b) Th: imag: is reconstructed us~g only the 
ZEROS and ONES function. It is clear that the unage IS not complete c) Usmg the 

additional function TWOS, GIRA can reconstruct more of the image. d) Us~g all GlRA 
functions the reconstruction is complete and produces an exact solutIOn 
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Test three: Reconstructing an underdetermined system 

In the third test (figures 4.3.3 and 4.3.4), as the phantom resolution and reconstruction 

resolution are increased, a larger number of beam angles is required to reconstruct the entire 

image. Figures 4.3.3 depicts the incomplete reconstruction using only 90 beam angles. GlRA 

has not been developed to deal with underdetermined systems. By increasing the number of 

beam angles to 120, GIRA is able to complete the reconstruction (Figures 4.3.4). 
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The third test was performed using the following parameters: 
P 70; D=70; R = 70; A = (OI180IN). Where N, the number of beam angles, was varied. 
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Figure 4.3.3: a) The phantom being imaged. b) The image is not fully reconstructed using 
only the ZEROS and ONES function. c) Using the additional function TWOS, GlRA can 
reconstruct more of the image. d) Using all GIRA functions the reconstruction is still not 

N=120 

complete. There are not enough beam lets for GIRA to finish the reconstruction. 
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Figure 4.3.4: a) The phantom being imaged. b) With enough beam angles GlRA can fully 
reconstruct the image. 
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Test four: Increasing reconstruction resolution 

In the fourth test (figure 4.3.5) the resolution is again increased. Even though these 

simplified tests represent ideal conditions GIRA runs into a difficulty. Because the determination 

of pixels at the center of the image depends on the determination of the outer pixels, the 

accumulation of errors may have a large effect on the solution. Although these ideal simulations 

do not present inconsistent projection information, and errors should not be present, it seems as 

though the image degradation was caused by the accumulation of round-off error. 

Image d shows this issue beginning to surface. There is slight misrepresentation at the center of 

the image. Image g depicts the continued trend of the error. Moving towards the center the error 

increases. Image h has been rescaled for visualization of the error. Because GlRA works 

successively, with each pixels value depending on the previously solved pixels, the algorithm is 

inherently subject to such propagation errors. 
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The fourth tests were performed using the following parameters: 

P D = R G where G was varied; A = (011801180) 
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Figure 4.3.5: 
a) The phantom being imaged. b) GIRA image reconstruction. There is a small amount of degradation in the 

center of the image. 
c) The Phantom being imaged. d) GIRA image reconstruction. The error increases towards the center. e) The 

difference between the true phantom and the reconstructed image 
f) The Phantom being imaged. g) GIRA image reconstruction. The error increases towards the center. b) A 

rescaling of the image in ffrom 0-1. 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

5.1 Discussion of AIR and PAIR 

The results of AIR have demonstrated the proof of principle of this reconstruction method. A 

record of invention has been issued and a patent is being pursued. In ideal cases, AIR 

reconstructed the images exactly (exactly-meaning that the largest absolute difference between 

an image pixel and a corresponding phantom pixel was on the order of 10-8
). In these ideal cases, 

the role of the averaging terms was simply to break degeneracy in order for the CT term to 

recover the true solution. As the complexity of the simulation model was increased, the 

averaging terms became more central to the reconstruction. The reason for this is that in the 

realistic simulations, there is not one true solution, but an infinite number of approximate 

solutions. By changing the importance coefficients of the various terms, one can obtain various 

approximations; some with better contrast, or structural definition, or overall smoothness. 

The weighted averaging term seemed to perform much like the backprojection algorithm, and 

became a crucial term in the reconstruction. The zero averaging term removed any artifacts 

around the phantom. The concept of the zero averaging term can theoretically be applied to any 

reconstruction algorithm and should have profound effects on image quality. The local averaging 

term was not as central to reconstruction. It had overall smoothing effects but at the high cost of 

contrast. The global averaging term was not used at all in the depicted results. Its effect was 

similar to the local averaging term, but with a more profound and global smoothing effect at an 

even higher cost of contrast then the local averaging term. 

141 • 



The averaging tenns that were developed do not represent all possible fonnulations. It is 

likely that other averaging tenns could be derived and employed with effective results. While 

this was beyond the scope of this research, it can become a topic of future investigation. The 

point is that the performance of the averaging tenns fonnulated here should not necessarily be 

considered a limiting factor in the reconstruction. 

For AIR to become a plausible reconstruction tool it is necessary that the values of 

importance coefficients be built into the optimization. Changes to the importance coefficients in 

the tests conducted in this thesis relied on knowledge of the phantom that was imaged. 

Throughout the testing this researcher gained an intuitive approach to determining the values of 

the importance coefficients. The importance coefficients for the averaging tenns seemed to 

depend on the reconstruction resolution, the number of detectors in the array, the number of 

beam angles, and certain characteristics of the imaged region (for example, the presence of a 

sharp gradient necessitated higher importance values for the averaging tenns). Without this 

knowledge it may still be possible to find the optimum coefficients, but it may require a second 

iteration of AIR. This crucial aspect has not been fully investigated, and constitutes an important 

topic of future work. It should be noted that a similar difficulty exists in filtered backprojection, 

in determining the filter function that is used. In fact, one can argue that the ability to obtain 

multiple reconstruction images - some with better contrast or reduced noise - may be an 

advantage in the reconstruction method. Depending on the application, one can choose the 

importance coefficients accordingly. 

The implementation of PAIR in this testing was not the ideal implementation that was 

described in the theory of PAIR. Initially the goal was to fully resolve the higher resolution from 

the lower resolution images through equation (2.3.1). Because the PAIR solutions were only 
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approximations, equation (2.3.1) became very sensitive to error propagation and could not be 

used. The implementation in this thesis resorted to simply averaging the PAIR solutions together 

on a higher resolution grid. While this may not represent the most representative solution, the 

results were generally of higher quality than the corresponding filtered backprojection image. 

The results w-ere quite notable considering that the AIR solution was comprised of four PAIR 

solutions, each at half the resolution of the corresponding filtered backprojection image. It 

should be noted that the process of averaging the four PAIR solutions has the consequential 

benefit of smoothing out noise in the image, and it may be useful in conjunction with the other 

resolving methods that were described. 

AIR and PAIR have demonstrated their ability to reconstruct images under difficult 

conditions, one being limited angle views (figures 4.2.11 and 4.2.14). This scenario may have 

important implications on imaging. By reducing number of angle views, it may be possible to 

lower dose to patients complying with the ALARA principle. AIR's ability to reconstruct images 

in the presence of metal inserts may also have important applications to imaging. The existence 

of sharp gradients in the imaged region is a major concern in imaging, and often limits the 

effectiveness of computed tomography. 

Another question that remains is the issue of size. Due to computational constraints in this 

research, an upper limit to the reconstruction resolution possible for AIR and PAIR could not be 

defined. In current image reconstruction, where multiple slices are imaged together, the number 

of unknowns is multiplied by the number of slices that contribute to common projections. This 

may limit the application of AIR and PAIR to earlier generations of CT machines. 
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Although AIR and PAIR have sho\\u positive preliminary results, further development into 

the mentioned issues and investigation under increasingly complex scenarios are essential in 

order to determine the feasibility of these methods. 
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5.2 Discussion o/the Inversion Method 

To recap, the inversion method in this thesis refers to first expressing a beamlet's path by a 

grid oriented at the same angle as that beam. This rotated grid is subsequently expressed in terms 

of the reconstruction grid by a matrix inversion. The intermediate step of using a rotated grid 

resulted in a non-trivial relationship between the beamlet's path and the reconstruction grid. The 

results ofthe inversion (referring to the example in equation 3.3.5) were unintuitive, yielding in 

most cases, partial contribution (h values) from most or all reconstruction pixels to a given 

projection. Some of the contributions appeared negative in weight - something that was not 

expected. The inversion method demonstrated a proof of principle in the fifth test when AIR 

reconstructed the image with the employment of this method (Figure 4.2.8). This method was of 

course not without concerns. 

For one, the remapping required a solution to a matrix equation whose size was determined 

by the desired resolution. This matrix equation needed to be solved once for each angle and thus 

constituted a large set of computations. Of course, as this is strictly a geometric problem, these 

matrix equations can be solved once for a given geometry and kept in computed hard drive 

memory ready to use. 

The second problem with the method was in its practical representation. As was discussed in 

the methods section, the remapping required a one-to-one relationship with the original 

reconstruction grid and the rotated grid. In approximating the area of the grid in terms of smaller 

squares, this one to one relationship was not obtained in general. Though this problem was 

corrected in most cases, the difficulties in the remapping have not been completely eradicated. 

The issue seemed to resurface at angles close to 45 and 135 degrees where the corners of the 

rotated grid were far away from the domain of the original grid. The result was a relationship that 
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could not be inverted. It is suspected that the solution to this problem lies in the correct 

representation of the area of the grid instead of relying on approximations. 

It should be stated that the steps that were taken to produce a stable relationship between the 

1\\'0 grids should not be considered the only approach. For instance, a square matrix (the same 

number of pixels in the rotated grid and reconstruction grid) is not a theoretical necessity. 

Likewise, the method used to determine the overlap between the two grids does not constitute the 

only approach. The motivation here was only to demonstrate the proof of principle of this novel 

concept. 

The other concern with the inversion method was its incompatibility with the averaging 

terms (Figure 4.2.8 image f). This raises the question of whether other averaging terms specific 

to the inversion method could be developed. 

The development of the inversion method represented a fascinating tangent to this research, 

but due to computational constraints, was not be given the same rigorous treatment as the 

reconstruction methods. Though the preliminary tests displayed promising results, a more in 

depth examination of this method is required to determine its full implications towards 

reconstruction. Future investigation may involve an analytic solution to the overlap between the 

two grids, or the development of averaging terms designed to be compatible with the inversion 

representation of pixel fractions. 
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5.3 Discussion ofGlRA 

Using logical functions to reconstruct images, GlRA has demonstrated its ability to solve 

reconstructions that would otherwise cause computational concerns if formulated as a matrix 

equation. While the theory of GlRA presented a fast and computationally efficient method of 

reconstruction, the issue of error propagation posed a real concern (Figure 4.3.5). In the presence 

of noise this issue is expected to magnifY. There are many possible solutions to this problem. 

One such idea is to use information from multiple projections to determine the value of a pixel. 

Suppose there are multiple beamlets that satisfY the GlRA ONES condition for the same pixel. 

Due to random noise, their projection values may not be equal to each other. To solve the single 

pixel, an average value could be used to dampen the effect of the noise. A similar averaging 

concept can be applied to the other GIRA terms. This idea presents an interesting direction of 

future research. 

Another potential area of future research is the development of additional terms in GIRA to 

complete the reconstruction in cases of limited projection information (as was the case in the 

third GIRA test). A possible additional function could seek to solve small sets of pixels that, due 

to the geometry of the problem, form equations isolated from the rest of the unkno'WTIs. Amongst 

other terms that could be developed, a most intriguing idea alluded to in the hypothesis, is to 

combine AIR and GlRA to reconstruct an image. There are many plausible approaches to 

combine these algorithms. GlRA can be used to reduce the problem set to a smaller number of 

unknO'WTIS allowing AIR to complete the reconstruction. Alternatively they can be combined in a 

more dynamic way using AIR to solve small sets of pixels forming independent equations and 

employing GIRA to solve the trivial solutions. The drawback of these proposed approaches is 

that they preclude the initialization of the AIR matrices. 
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While this research has shown a proof of the basic principles of GlRA in ideal simulations, 

additional developments and a more thorough investigation is required to determine the 

feasibility of this approach towards practical image reconstruction. 
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5.4 Conclusions 

The developments in this research could be split into two distinct but overlapping areas. 

One area was the development of a CT simulation model, which could accurately represent a 

subset of the complexities in acquiring CT projections. The main focus in this area was to 

maintain a degree of blindness to the object being imaged. To this end, the reconstruction 

resolution, the detector resolution, and the reconstruction resolution were all defined separately. 

However, future developments to the CT simulation model should include, amongst other 

complexities, current CT source-detector geometries, a polychromatic x-ray source, a true 

representation of x-ray scatter, and object motion during the simulation. 

The second area was the development and testing of AIR, PAIR, and GlRA. These 

algorithms have each demonstrated preliminary abilities to optimize image reconstruction 

compared to the filtered backprojection algorithm and ARA under various conditions. 

Specifically, these novel algorithms showed particularly promising results in the presence of 

sharp density gradients and in under determined systems involving limited beam angle views. 

However, there are many pending questions that need to be addressed. These questions relate to 

additional terms for each algorithm, the inversion method of representing pixels, increasing the 

reconstruction resolution, increased complexity in CT the simulation, and the feasibility of 

combining the novel algorithms into one reconstruction method. The work presented here 

constitutes the preliminary research and development of these novel approaches to CT image 

reconstruction. 

One definition that was never clarified was the meaning of an optimal image. For the ideal 

simulations where an exact solution could be recovered, the definition was trivial. However, in 

the tests that involved reconstruction on a lower resolution grid, an exact solution was not 
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possible. In these scenarios, which were more representative of the reality of image 

reconstruction, only approximate solutions existed. The difficulty is in defining which 

approximation represents the optimal solution. The results presented in this research were 

qualitative in comparison and analysis, and a metric through which to determine the optimal 

solution was not defined. Although many of the comparative results presented here have visually 

obvious conclusions, the need for a strict metric of determining the optimal image would be 

required for further testing. 

Referring to the objectives mentioned in the hypothesis, the majority of the aims have been 

reached. The development of a realistic CT simulation in Matlab was one of the greatest 

challenges of tllis project. In adapting each algorithm into Matlab many practical issues were 

confronted, for example, the representation of inhomogeneous pixel fractions. 

The topic of optimizing the reconstruction speed and computational efficiency of the novel 

algorithms was, for the most part, left for future research due to the constraints of the computers 

that were used. Furthermore, it was decided that this investigation should be left until beta 

testing, and could not be given a full treatment in Matlab. 

The initial question that sparked this research was, "Why Fourier?" A major goal of this 

paper was to substantiate this question as a valid contention to current CT image reconstruction. 

The overwhelming majority of research in image reconstruction does not bother asking this 

question. With the preliminary success of AIR, PAIR and GIRA, it is this researchers' hope that 

"why Fourier?" becomes a question that is contemplated more often. 
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