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Abstract 

Keeping road network databases up-to-date is crucial to Geographical Information 

System (GIS) applications such as vehicle navigation. The vector road centerlines 

extracted from satellite images or in-car Global Positioning System (GPS) devices are 

likely to be inaccurate due to costly and labour intensive or long updating circle. The 

GPS data crowdsourced through smartphones provides an emerging source for refining 

road map due to its rich spatio-temporal coverage and reasonable level of accuracy. This 

thesis introduces an optimized methodology to automatically generate road network data 

from smartphone GPS data without using any reference maps. The horizontal accuracy of 

the extracted road centerlines, measured as a root mean square of 1.424 m and 1.252 m 

for curved and straight road segments respectively, is better than that of some existing 

road datasets. The outcome of this research will provide a new way of generating a more 

accurate and up-to-date road network databases. 
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Chapter 1. Introduction 

1.1. Research Motivation 

GPS data crowdsourced through in-car devices is an emerging source of inexpensive data 

that can be used to provide real-time traffic information, identify traffic patterns, and 

predict traffic congestions (Cao and Krumm, 2009). This new data collection method is a 

type of volunteered geographic information that overcomes the high cost of using the 

traditional intrusive and non-intrusive on-road sensors (e.g., inductive loops) methods, as 

well as their limitations in data coverage (Grossman et al, 2005). Over the last few years, 

studies have been done using in-car GPS devices (Yoon et al., 2007; Young, 2007) and 

more recently with smart phones (Herrera et al., 2010; Li et al., 2012), to develop data 

processing techniques, traffic patterns and traffic prediction models, geometric modeling 

of roads, and generation of road network maps. 

The benefits of using GPS trajectory data from smartphones or mobile devices 

equipped with the GPS receiver and the wireless communication equipment lies in the 

low cost of data collection, no need for specialized and expensive data collection 

equipment, potentially massive data collected by road users capturing real-time changes 

and status of the roads, and rich spatial and temporal coverage. The rich real-time 

information (e.g. coordinates, traveling timestamp, speed, and direction) of an 

individual’s current location is an emerging source of inexpensive data that can be used 

for fast updating of a road network database. With proper data processing and analysis in 

place, it is possible to update road network data in real-time or near real-time (e.g. 

detecting unknown roads). Although the accuracy of the data is not ideal, ranging from 6-

10 m (Haklay and Weber, 2008), the huge number of positioning points form a point 

cloud which offer excellent samples for statistically significant results. 

Keeping the road network database up-to-date is clearly important to many 

applications based on Geographic Information System (GIS), such as navigation, 

intelligent transportation system, traffic congestion prediction, emergency handling, as 

well as traffic surveillance and management. In fact, extracting the road information from 

the high resolution satellite image has been dominant in updating road network for years 
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because of the rich multi-spectrum information and stable acquisition of imagery (Park 

and Kim, 2001; Zhao et al., 2002; Mohammadzadeh et al., 2004 & 2006; Lin et al., 2008 

& 2009).  

More recently, the GPS trajectory data has been used to extract road geometric 

data for road network database updating and road maps refinement. This new approach 

entails a fast, inexpensive way of updating existing road maps and refining road maps 

with real-time changes (e.g., new roads not showing in the existing road network data). 

Studies and experiments have been done on extracting road centerlines and other road 

network attributes such as number of lanes. Some used existing road maps as prior 

knowledge to find road centerline (e.g., Guo et al., 2007; Zhang et al., 2010). Others 

examined different ways of extracting road centerline without prior knowledge about the 

road, such as using Artificial Neural Network (ANN) and GPS trajectories mining 

methods (e.g., Schroedl et al., 2004; Ekpenyong et al., 2009).  

Although researchers have proposed various approaches to generate the road 

network based on GPS data, these methods are not suitable for generating road 

centerlines for two scenarios simultaneously, one-way roads and two-way roads. 

Consequently, studies conducted by (Shi et al., 2009a; Shi et al., 2009b; Limaa and 

Ferreiraa, 2009; Guo et al., 2010; Zhao et al., 2011; Liu et al., 2012; Karagiorgou and 

Pfoser, 2012) were restricted to local roads in urban areas because the assumed road 

width cannot be suitable for both highway and local roads. In this regard, it is necessary 

to develop ways to use the vast amount of valuable GPS trajectory data in the generation 

of the bi-directional road centerline, which models each direction of travel as a separate 

alignment along the same road. Herman (2002) summarized the benefits of using bi-

directional road centerline such as: better matching with other data layers; providing a 

truer presentation of the highway network, and analyzing the road information more 

effectively (e.g., lane closures pertaining to certain direction of travel).  

1.2. Research Objectives 

The ultimate goal of this thesis is to develop a cost-effective road network data extraction 

methodology based on GIS and crowdsourcing GPS data from smartphone users. This 

will allow mobile technology companies, providing location-based services, to take 
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advantages of their GPS data collected through mobile navigation applications for 

developing the road network data acquisition and updating system without matching GPS 

data to existing road maps.  

The biased GPS measurements cause uncertain level of noise that degrades the 

quality of GPS trajectory data collected by different types of smartphones. As the GPS 

trajectories are collected regardless of where the smartphone user is (e.g. driving on roads, 

idling, waiting at traffic lights, or inside buildings), it is challenging to completely filter 

out such point clouds from raw data. The distribution of positioning data of moving 

vehicles could be normal, scattered or multimodal within a certain width around a road 

centerline. However, it is implausible to utilize a fixed value of road width to cluster 

positioning points belonging to the same road segment, especially at a road split or merge. 

GPS trajectories that are travelling along two parallel roads are usually overlapped at the 

road median due to the biased GPS measurements. It is difficult to define a distance 

threshold to classify them into corresponding road segments. At road splitting/merging or 

road curvature sections, portions of a GPS trajectory could be offset from a road, even 

though its predecessor and successor travelled along the same road.  

In order to minimize the negative effects of biased GPS measurements collected 

by crowd-sourced smartphone users and ensure the quality of extracted road centerlines, 

the objectives of this research are summarized as: 

1) To develop an automatic road network data extraction methodology based on GIS 

and crowdsourcing GPS data from smartphone users without using any digital 

road map as reference, includes: 

 To develop methods to reduce the volume of smartphone GPS data without 

affecting underlying road network geometry;  

 To develop methods to distinguish GPS trajectories on nearby parallel roads 

and to separate GPS trajectories on road segments that have splits of a narrow 

angle; 

 To develop methods to construct bi-directional road centerlines and 

topological connectivity at road intersections and Y-split sections; 
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2) To evaluate the horizontal accuracy of the generated road centerline by comparing 

with the Ministry of Transportation Ontario (MTO) highway alignment data; and 

3) To implement algorithms by developing standalone python script tools that 

automate the overall workflow from road centerline extraction to the connectivity 

of road network. 

1.3. Limitations 

The research reported in this thesis is subject to several possible constraints and 

limitations listed as follows: 

1) Millions of smartphone GPS data points covering the road network in southern 

Ontario cannot be processed together, due to the memory limitation to running 32-

bit PythonWin
1
 on the 64-bit Microsoft Windows 7 operating system. Therefore, 

the GPS data points are tilted in certain region for data processing. 

2) Road centerlines are omitted if insufficient smartphone GPS data points were 

collected on highway ramps and minor roads.   

1.4. Contributions 

This research makes the following contributions to the overall field of knowledge in this 

area: 

1) The thesis presents a comprehensive understanding of various efforts that have 

been devoted to extract proper road information from different data sources. It 

also summarizes the limitations, strengths, and similarities of existing methods.  

2) The hybrid method taking GPS trajectory and GPS data point as the basic 

processing units is developed for generating bi-directional road centerlines 

without using a reference map. The extracted road network data can support with 

practical requirements of navigation and linear referencing system, because each 

extracted road centerline contains geographic location (e.g. starting and ending 

                                                 

 

1
 PythonWin is the name of interactive development environment for running python 

scripting programs. 
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positions) and corresponding attributes (e.g. moving direction and turning 

direction).  

3) The developed research prototype demonstrates the feasibility of automating the 

process of extracting road network data instead of manual editing the connectivity 

of the extracted road centerlines. 

4) The results obtained from performance testing provide measures of the 

effectiveness of the proposed alternative solution to road network extraction 

studies.  

1.5. Thesis Organization  

The thesis is organized into six chapters, starting with this chapter that presented the 

overall introduction of research motivation, challenges and objectives, research 

contributions, and limitations that may affect building a detailed and fine-grained road 

network database. Chapter 2 reviews published methods on extracting road centerlines by 

using image processing techniques, clustering algorithms, or the combinations; as well as 

the polyline merging algorithms that were used to find the representative polyline of a 

group of polyline segments. Chapter 3 presents the detailed descriptions of algorithms 

taken to extract the basic road data (bi-directional road centerlines) and construct 

connectivity of road centerlines without matching GPS data points to a reference road 

map. Chapter 4 gives some insight on the selection of the study area, the acquisition of 

the experimental GPS data, accuracy of smartphone GPS data, and statistical analysis of 

original GPS data. Chapter 5 presents results of the proposed methodology overlaid with 

digital orthophoto image of 15-cm spatial resolution obtained from Ministry of Natural 

Resources Ontario (MNR). The comparative analysis is done by quantitatively evaluating 

the accuracy of the generated road centerlines against the ground truth data, MTO 

highway alignment data. The effects of GPS data point density on the extraction of road 

centerlines are analyzed. Chapter 6 concludes this thesis and shares thoughts for future 

work. 
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Chapter 2. Literature Review 

This chapter presents an overview of existing literature related to road network extraction. 

Section 2.1 summarizes and points out the common limitations of the existing work in 

using low/high resolution imagery to extract road data, either semi-automatically or 

automatically. Section 2.2 provides a detailed review on current clustering techniques 

used for extracting road data from GPS data; and summarizes these road extraction 

methods based on the vector data, and provides observations to show the necessity of this 

research.  

2.1. Road Extraction Based on Satellite Imagery 

Road network extraction based on satellite imageries has been studied by numerous 

scientific practitioners. Various efforts have been devoted to extract proper road 

information from different data sources by employing different preprocessing techniques. 

These include reducing noise occluding along the road pixels; segmentation of road 

features with respect to the linear elements or elongated regions with edges; road tracking 

methods for eliminating road-like pixels; and different grouping methods to connect the 

traced road segments (Fortier et al., 1999). After data preprocessing, road extraction can 

be performed based on two categories of approach: semi-automatic and automatic 

approaches. 

The semi-automatic road extraction method usually requires the human 

intervention to detect road pixels, such as selection of seed points and search direction for 

initializing the road tracking algorithm, or selection of training area in classification 

based methods. In template matching method as addressed by Park and Kim (2001), Zhao 

et al. (2002), and Lin et al. (2008 & 2009), the operator has to choose the starting point 

and the directional point on each road in order to guide the direction of extracting road 

centerline. Seed points coarsely descripting the road geometry are also needed to 

initialize the modified merit function (Dal Poz and Do Vale, 2003) based on the dynamic 

programming algorithm proposed by Gruen and Li (1997). Mena and Malpica (2005) 

used the manually selected training area from existing road network database in the 

process of image binarization to extract road segments. These operator-aid techniques are 
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capable of handling more complex road geometry (Guo et al., 2008), but are dependent 

on the natural skills of the operator who identifies the objects in the image as roads (Dal 

Poz and Do Vale, 2006). With respect to the drawbacks of human errors and labor 

intensive operations, the fully automated road extraction methods are highly desirable for 

improving the efficiency of generating and updating road data in GIS (Yun and Uchimura, 

2007; Rajeswari et al., 2011). 

In automatic road extraction methods, road features are separated from other 

surrounding objects in image by using approaches such as hypothesis-verification 

strategy. The fuzzy-based method is used (Mohammadzadeh et al., 2004 & 2006) to 

identify the road pixels and incorporated the morphological techniques to automatically 

eliminate the occlusion of roads caused by shadow or vegetation. Hu and Tao (2005) 

developed the ribbon road detector to separate the roads from other features based on the 

profile matching and analysis methods as well as a model-based verification strategy. 

Peteri and Ranchin (2002) presented the street surface reconstruction algorithm 

integrating the deformable contour models with the multi-resolution analysis for 

extracting the road boundaries. Dal Poz et al. (2006) adopted a prior road knowledge-

based method to automatically extract road segments from elongated road surface 

detected by the Canny edge detector. 

2.1.1. Major Extraction Techniques 

Both semi- and fully automatic extraction of road network from satellite imageries has 

been the subject of extensive research during the past decades. According to Fortier et al. 

(1999), Mena (2003), and Quackenbush (2004), the major extraction techniques used in 

various road extraction methods are: road tracking, mathematical morphology, multi-

resolution analysis, classification-based methods, and deformable contour models. 

Road tracking is a widespread technique mainly used for semi-automatic road 

extraction based on the operator-selected initial seed points per each road segment in the 

image. In (Shukla et al., 2002), the anisotropic diffusion technique is adopted to reduce 

image noise and preserve the edges of image objects. All edges in the diffused image 

were detected by the Canny edge detector. Then, the path following algorithm starting 

with operator-selected initial seed points is utilized to derive the road width. At every 
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seed point, the road width is the distance along the projected line with right angle 

crossing the orientation of two closest seed points. The road center point was calculated 

by averaging those two intersecting points on edges of the road. Similarly, Zhao et al. 

(2002) also used the Canny edge detector to extract road edge pixels from the binary 

image containing road and non-road pixels. The edge pixels along the straight and 

continuous road were smoothed by using a 3x3 filtering window. Likewise, Gao and Wu 

(2004) as well as Mena and Malpica (2005) utilized the median filter in the data 

preprocessing step for image smoothing. Seed points were then extracted by tracing the 

road edge pixels. The implementation of the road line tracing requires the input of two 

control points, the starting point and the directional point at the road intersection or Y-

split section. In (Park and Kim, 2001; Lin et al., 2008), the implementation of road 

tracking is highly dependent on the operator’s skills. The starting point and the 

directional point must be manually chosen on each road in order to guide the direction of 

extracting road centerline while using the template matching method. The selection of 

control points directly affects the accuracy of the extracted road lines.    

Mathematical morphology, initiated in the late 1960s by Matheron and Serra 

(2002), aims at extracting geometric objects from the image based on their shape and size. 

Mohammadzadeh et al. (2004 & 2006) utilized the morphological trivial opening and the 

granulometry to identify the main road pixels from the classified image, in order to 

overcome the perturbations caused by nearby features with similar spectral characteristics 

as road surfaces. The trivial opening is used to repair the classified pixels by removing 

noise from the road surface and the driveways connecting to the main roads. Instead of 

extracting road from the classified image, Valero et al. (2010) applied the advanced 

directional mathematical morphology to directly extract roads from the original satellite 

image. Their experimental work identified the linear geometrical pixels according to the 

morphological profile, which was constructed by applying the granulometric analysis to 

each pixel in original image. 

Multi-resolution analysis in connection with the road extraction topic enables to 

minimize the occlusion of roads caused by other objects in the image. Fortier et al. (1999) 

addressed that road objects are differently represented in the low-resolution and high-
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resolution satellite images. Roads mainly appear as lines in the low-resolution image and 

as elongated regions with more or less parallel edges in the high-resolution image. A 

number of road extraction methods combining multi-scale or multi-resolution analysis 

and deformable contour models were proposed in the 90s, because deformable contour 

models can be used to speed up the detection of road boundaries in the image 

segmentation (Mena, 2003). Mayer et al. (1997) combined the multi-scale analysis with 

the ribbon snake to extract road boundaries from the digital aerial image, while 

Baumgartner et al. (1996) extracted roads based on the fusion of the extracted line 

segments from the low-resolution aerial image and the detected edges from the high-

resolution image. Following the previous work described above, Peteri and Ranchin 

(2003) presented the street surface reconstruction algorithm integrating deformable 

contour models with the multi-resolution analysis and the wavelet transform for 

extracting the boundaries of road segments and intersections. 

Road data in the satellite image can be extracted by using classification-based 

methods based on texture analysis, wavelet transform, or fuzzy logic system as well. 

Apart from conventional fuzzy logic classification techniques utilized in the identification 

of road pixels (Carsten et al., 1997; Chen and Lu, 2002; Yun and Uchimura, 2007), 

Mohammadzadeh et al. (2004) presented the developed fuzzy logic algorithm based on 

the previous work done by Melgani et al. (2000). Every pixel in each band (Red, Green, 

and Blue) of the pan-sharpened IKONOS image is classified into five categories (as 

known as membership functions) according to its closeness to the mean grey value of the 

arbitrary user-selected road pixels. Then, the fuzzy “if-then” rules are applied to 

distinguish the class of road pixels from other non-road classes. According to Mena and 

Malpica (2005), three different classification methods are combined to extract roads in 

the regions around a pre-existed road in GIS database. These methods include 

Mahalanobis distance, describing the closeness of the target pixel to road pixels in the 

training area; Bhattacharyya distance, analyzing the closeness of the target pixel’s 

neighbors to road pixels in the training area; and the texture cube technique used to 

analyze the color relation. Zhang and Couloigner (2004) investigated the use of wavelet 

transform for detecting road junctions and centerline pixels. Gao and Wu (2004) 

introduced a spatial reasoning-based method into the extraction of road networks in a 
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large region. Firstly, road pixels are identified by using the unsupervised classification 

method and then converted to a binary image containing road and non-road pixels. 

Secondly, spatial filter is applied to remove noises unrelated to the road class. Thirdly, 

the directional cone search method is utilized to link pixels in the same road segment. 

Finally, the skeleton of only one pixel wide is obtained for each road by the 

implementation of the thinning algorithm. 

2.1.2. Discussion  

The above review indicates that substantial studies have been carried out to semi- or fully 

automatically extract roads from the satellite imageries. The semi-automated extractions 

(Park and Kim, 2001; Lin et al., 2008 & 2009) are able to handle more complex road 

geometry than the fully-automated methods, but are dependent on the natural skills of the 

operator who sets the objects in the image as roads (Dal Poz et al., 2006) and the assumed 

constant road width. High resolution stereo satellite image, for example, IKONOS, 

Quickbird, can overcome to limitation of medium-resolution satellite image for extracting 

the 2D/3D highway alignments (Shaker et al.，2010 & 2011); however, semi-automatic 

operation has to be performed to extract the 3D alignments. The fully automated road 

extraction methods are highly desirable for improving the efficiency of generating and 

updating road data in GIS (Yun and Uchimura, 2007; Rajeswari et al., 2011). However, 

only few automated methods produced satisfactory results with quantitative accuracy 

evaluation. For example, Mena and Malpica (2005) assessed their results and found that 

the average Root Mean Square error of 1.2 m was close to the average resolution of the 

IKONOS image (2 m).  

 Most studies are still limited to specific study areas and may be futile whenever a 

different geographic region is involved. They are moderate successful in extracting 

salient major roads but still cannot eliminate the difficulty of resolving the occlusion of 

roads caused by clouds and shadows of vehicles, vegetation, or other nearby objects. For 

example, the extracted road centerlines are off from the actual location or represented as a 

group of zigzag polylines even with the use of the line smoothing algorithm, such as 

Douglas-Peucker. The local roads are missing or disconnected to major roads.  
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 On the other hand, most methods were developed based on the user’s prior 

knowledge of the road in the study area, such as the assumption of the constant road 

width. These methods are not capable of creating accurate bi-directional road centerlines 

on all roads in a large region. In addition, the source and availability of satellite imageries 

also affects the road extraction due to its long updating circle and high cost. Table 1 lists 

examples of the popular satellite imageries utilized by previous studies on road extraction 

and their spatial resolution, revisit rate (temporal resolution), and minimum cost in the 

market. 

Table 2.1: Sources of sample satellite imageries utilized by previous studies 

Satellite Imagery Spatial Resolution
2
 Revisit Interval

3
 Min. purchase & Cost

4
 

QuickBird 0.6 m – 2.4 m 1-3.5 days 25 km
2
 – archive  

($14-17 / km
2
 ) 

100 km
2
 – tasking  

($20-23/ km
2
) 

IKONOS 0.82 m – 3.2 m 3-5 days 49 km
2
 – archive  

($35/ km
2
) 

100 km
2
 – tasking  

($35/ km
2
) 

SPOT 1.5 m – 20 m  2 -3 days 169 km
2
 ($6.5/km

2
) 

 

It is still a long way to apply the satellite image based road recognition to the 

practical road updating due to the above discussed challenges and limitations. However, 

the rapid development of GPS and wireless communication technologies provides an 

alternative data source for extracting road geometric data for road network database 

updating and road maps refinement. This new approach entails a fast, inexpensive way of 

updating existing road maps and refining road maps with real-time changes. 

2.2. Road Extraction Based on GPS Data 

GPS data collected using in-vehicle GPS devices is an emerging source of inexpensive 

geospatial data. It can be categorized as a type of volunteered geographic information 

                                                 

 

2
 http://www.geoeye.com/CorpSite/products/earth-imagery/geoeye-satellites.aspx#ikonos  

3
 http://www.geoeye.com/CorpSite/products/earth-imagery/geoeye-satellites.aspx#ikonos 

  http://www.nrcan.gc.ca/earth-sciences/geography-boundary/remote-sensing/fundamentals/1954 
4
 http://www.landinfo.com/products_satellite.htm  
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(Goodchild, 2007) that can be used to provide real-time traffic information, identify 

traffic patterns and predict traffic congestions. Such data collection method does not 

require dedicated devices and infrastructure because of the mature GPS and cellular 

communication technologies. Therefore, this method has lower cost and shorter updating 

cycle than those collected through satellite images or ground surveying by probe vehicles.  

Over the last few years, studies have been carried out using in-vehicle GPS devices 

(Schroedl et al., 2004; Worrall and Nebot, 2007; Zhang et al., 2010; Chen and Krumm, 

2010; Jang et al., 2010) and more recently with smart phones ( Li et al., 2012) to develop 

data processing techniques, geometric modeling of roads, and generation of road network 

maps. The smartphone GPS data are a type of volunteered geographic information that 

has rich spatial and temporal coverage but comes with lower accuracy than that of in-car 

GPS devices.  

 Biagioni and Eriksson (2012a) addressed that existing road map generation 

methods can be categorized by the types of clustering algorithms: K-means, trace 

merging, or kernel density estimation (KDE). In K-means based approach, one of 

partitioned spatial clustering methods in GIS, a user-specified number of clusters together 

with fixed proximity measurements (distance and directional differences) are used to 

group nearby GPS points into clusters. In trace-merging based approach, GPS sub-

trajectories on the same road segment are incrementally merged to a unique polyline 

segment representing the road centerline. In KDE-based approach, an integration of 

density analysis and grid-based rasterization, GPS points within the study area are first 

quantized into a finite number of cells. Image processing techniques are then used to 

extract single-pixel road centerline from contiguous dense cells. However, not all 

published studies on extracting road network from GPS trajectories can be grouped into 

these categories. For example, the agglomerative hierarchical clustering method is 

adopted by Worrall and Nebot (2007) and Guo et al. (2010) to generate road centerlines, 

where each point is treated as a separate cluster and then successively merged with 

nearby points into clusters. Lee et al. (2007) and Li et al. (2010) used the modified 

density-based clustering method (DBSCAN) to group together GPS sub-trajectories on 

the same road based on their connectivity and density. Cao and Krumm (2009) used the 

simulated attraction force model to relocate every GPS trajectory towards the middle of 
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roads. It is difficult to categorize all existing methods by their adopted spatial clustering 

algorithm. Therefore, it is suggested in this thesis to classify early studies by the basic 

processing unit involved in spatial clustering techniques, including points, polylines, or 

grid.  

 This section aims at summarizing road extraction techniques with respect to their 

specific strengths, similarities, and limitations. Through this comprehensive review, 

suitable techniques were selected for further development of the proposed methodology 

for extracting road centerlines from massive smartphone GPS data. These techniques 

include: data preprocessing, data clustering, and road centerline inference (topological 

connecting, and geometric merging). Table 2.2 summarizes the literature on road map 

generation in terms of data source, coverage, processing unit, result type, and evaluation 

method.  

2.2.1. Point-based Method 

In point-based road map generation methods, road centerlines are usually retrieved from 

GPS trajectories by employing point spatial clustering algorithms, including the 

agglomerative hierarchical clustering and partitional clustering. Work under this category 

includes studies conducted by Edelkamp and Schrodl (2003), Schroedl et al. (2004), 

Worrall and Nebot (2007), Zhang et al. (2010), and Guo et al. (2010). The road 

generation process consists of three main steps, preprocessing GPS points, extracting the 

road center point from clustered GPS points, and inferring road centerline by linking 

cluster centers. 

 The agglomerative hierarchical clustering starts with each point as a separate 

cluster and then is successively merged with nearby points into clusters (Wang and 

Hamilton, 2010). Most of earlier works use a specific algorithm and a particular set of 

threshold values to tackle with the measurement errors caused by the limited GPS 

accuracy and the low sampling rate, in order to reduce negative impacts on the quality of 

output data. The Douglas-Peucker algorithm based on maximum distance is frequently 

used to simplify GPS trajectories by removing redundant points (Limaa and Ferreiraa, 

2009;   Biagioni et al., 2011). The angle-threshold based smoothing filter is used in the 

weighted clustering algorithm (Wang et al., 2011). Li et al. (2012) simply reduced the 
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data size by utilizing a threshold value of the vehicle speed. Liu et al. (2012) only 

reserved critical points at where the direction of a trajectory changes rapidly. Shi et al. 

(2009a) and Niehoefer et al. (2009) pruned GPS trajectories according to threshold values 

of direction difference, acceleration, and/or velocity change between two consecutive 

points. 

 To overcome above limitations of data reduction, Guo et al. (2010) introduced a 

two-step approach to reduce the data redundancy and volume on roads, while preserving 

the underlying road network. The approach proposed by Guo et al. (2010) starts with a 

moving-window smoothing process which brings every point closer to the center of the 

road. Every point is relocated to the new location by averaging the coordinates of its 

nearby points. And then, the modified distance-based clustering algorithm, which focuses 

on both topological and geometrical simplifications, is applied to link extracted 

representative points from smoothed points. 

 Worrall and Nebot (2007) proposed an exceptional method without removing 

noise. It compresses the raw GPS data collected from operational vehicles at a mining site 

by clustering them according to similar position and directions. Their method can only be 

applied to GPS trajectories following a fixed driving route, where overtaking or changing 

lanes never happened. New GPS points are directly added into corresponding cluster 

based on the distance and directional differences, without any further editing. The cluster 

center is calculated by averaging all GPS points within the same cluster. To form a 

coherent chain representing a road, cluster centers are linked together based on thresholds 

of distance and bearing differences, as well as a semantic road-knowledge based rule: one 

cluster center only has one forward link but could have more than two backward links 

when there is an intersection. Finally, the regression analysis is performed by using non-

linear least square fitting to generate better presentations for straight and arc road 

segments. However, this method is restricted to the single road for two reasons:  

1) Different road geometries require different threshold values used to identify a 

group of linked cluster centers with similar curvature; and  
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2) The non-linear least square fitting on an arc requires estimation of center and 

radius of the circle for connected cluster centers on each road. 

 The partitional clustering assisted by map-matching techniques starts with user-

selected clusters and iteratively reallocated points to clusters (Wang and Hamilton, 2010). 

Zhang et al. (2010) used GPS trajectories to refine the existing road maps by applying the 

fuzzy C-means clustering method and a reference map from OpenStreetMap. Firstly, the 

map matching method based on a threshold value of 20-degree direction change and the 

profile with 30-m width orthogonal to the existing road is used to identify GPS points on 

the same road. Then, fuzzy c-means clustering algorithm is applied to separate GPS 

points from nearby parallel roads in terms of distances to its left- and right-side cluster 

centers, which are the weighted mean of all GPS points in each cluster. To extract road 

centerlines at highway ramps, the speed values are also taken into account because the 

speed of vehicle on highway exits is much slower than on highway (Zhang et al., 2010). 

The design speed on highway ramp is indeed slower than that on highway. Nevertheless, 

making use of the speed values of volunteered GPS data as a criterion for separating 

highway ramps from highways are improbable while the traffic on both highway and 

ramps is possibly going as 30 or 40 km/h in rush hour. The problem of the reference map 

assisted methods is that they are restricted to the particular area where there are existing 

roads. The experimental work conducted by Zhang et al. (2010) showed that the position 

accuracy of extracted road centerlines is affected by the quality of the original road map 

and the number of GPS points. Errors in the reference map are propagated to the output 

by using map-matching method; and fewer numbers of GPS points on an existing road 

cause the extracted road centerline large offset from its actual location.  

 Edelkamp and Schrodl (2003) and Schroedl et al. (2004) generated road 

centerlines by applying spline fitting on differential GPS datasets. All GPS points are 

partitioned into sequence of road segments of a commercial base map by implementing a 

map-matching module based on Dijkstra’s algorithm. For clustered points belonging to 

each road segment, B-spline approximation is applied to generate road centerlines. The 

drawback of this approach is that the number of control points must be defined according 

to the number of sample points in a cluster and a small scale factor. The locations of 
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control points must be estimated by human inspection and then adjusted according to the 

trade-off between the mean offset of all points (on the same road) from the generated 

road centerlines and the second derivative of curvature of piecewise road centerline 

segments. It may be a good solution to create a curve to fit actual GPS points on the same 

road, but cannot match with the actual complex road shape. Therefore, Liu et al. (2012) 

suggested an alternative and simple way to determine the number of control points and 

their locations, so as to obtain better fitting performance for various road geometries. The 

shape-aware fitting is adopted to choose control points where the directions of aggregated 

GPS trajectories start to change. 

 In addition to agglomerative hierarchical clustering and partitional clustering 

methods, Cao and Krumm (2009) proposed an alternative GPS data clarification 

algorithm for minimizing the effect of GPS noise and clustering GPS points together on 

the same road, and an incremental graph generation algorithm for capturing the 

connectivity and geometry properties of the road network. Wang et al. (2011) proposed a 

weighted clustering algorithm embedded with angle-threshold based smoothing to 

improve the effective and efficiency of the GPS data clarification algorithm presented by 

Cao and Krumn (2009). The weight factor, which involves the speed of a point and the 

direction change over three consecutive points, is introduced into the physical attraction 

model in order to achieve better convergence of all GPS points along the same road. 

 In road clarification algorithm, Cao and Krumm (2009) addressed that the final 

position of each GPS point under the action of attraction and spring forces should not be 

far away from its original position with respect to the center of the road. This assumption 

keeps every GPS point from being grouped to the wrong road. Every GPS point is 

relocated on the direction of the resultant force by considering different roads of opposite 

directions. The resultant force includes the attraction forces caused by nearby GPS trace 

segments and the spring force from each GPS point’s original position. Roads of opposite 

directions are differentiated by considering the attraction force of nearby trace segments 

to the GPS point together with the topological relationship to its nearby trace segments.  

 In the graph generation algorithm, GPS points along the same road are merged 

together based on distance amongst them and similar moving direction, but no cluster 
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center is calculated from the grouped GPS points. Making use of the first searched GPS 

point as the final road center point reduces the positional accuracy of the generated road 

centerline. In addition, this method is designed for the extraction of roads from a 

particular area. For instance, parameters governing the resultant forces in the road 

clarification algorithm are estimated by performing theoretical analysis on only two road 

scenarios, nearby roads in similar direction and road split, within their study area. The 

theoretical analysis is dependent on assumed threshold values for the minimum distance 

between two parallel roads and the angle between them before splitting. In reality, there 

are no constant values for those thresholds due to the nature of complex road geometry. 

Besides, this study did not perform any quantitative accuracy assessment of the derived 

routable road map before it was tested in answering route planning queries.  In order to 

produce a digital road map that meets with practical requirements such as navigation and 

mapping, the quality of road map in terms of positional accuracy must be assessed and 

justified (Willrich, 2002). 

 After the cluster centers are extracted from a set of GPS points, the 

aforementioned studies show that the road centerlines can be formed in four different 

approaches. The first is to link cluster centers together according to geometric 

relationship (directional difference and distance thresholds) (Jang et al., 2010; Zhang et 

al., 2010; Li et al., 2012). The second is to combine the semantic rule with geometric 

relationship into the connection of cluster centers (Worrall and Nebot, 2007). The third is 

to use B-spline approximation to fit road curves based on control points (Edelkamp and 

Schrodl, 2003; Schroedl et al., 2004; Wang et al., 2011). The fourth is to perform spatial 

queries in terms of topological and geometrical relationships amongst extracted center 

points and GPS trajectories passing through them, and to connect adjacent cluster points 

(Limaa and Ferreiraa, 2009).  

2.2.2. Polyline-based Method 

Most polyline-based road extraction methods consist of two steps: GPS sub-trajectory 

clustering and merging. They have been utilized in many applications, such as animal 

movement and hurricane tracking, to reveal the underlying trends of moving objects 

based on their similarity (Lee et al., 2007; Kharrat et al., 2008). Lee et al. (2007) 
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proposed a trajectory-clustering algorithm (TRACLUS) based on partition-and-group 

framework to group similar sub-trajectories into a cluster. Each trajectory is simplified 

and split into a set of polyline segments. Similar polyline segments are grouped into a 

cluster by using the modified polyline density-based clustering derived from the point 

density based spatial clustering of applications with noise (DBSCAN) algorithm. Besides 

inheriting all characteristics from the point DBSCAN algorithm, TRACLUS takes into 

account the number of trajectories from which polyline segments are grouped into each 

cluster so as to avoid the generation of the single-trajectory cluster. Moreover, 

TRACLUS employed the distance function (Chen et al., 2003) in the process of polyline 

clustering instead of using the Euclidean distance. The distance function consists of three 

components, parallel distance, perpendicular distance, and angle distance. Nevertheless, 

this algorithm is primarily developed to discover common trajectories from free moving 

objects, such as hurricane track dataset and animal movement dataset.  

 To deal with trajectories collected from the constraint network, such as vehicle 

GPS trajectories, Li et al. (2010) modified and incorporated TRACLUS algorithm in the 

incremental trajectories clustering method (TCMM). The perpendicular distance is 

replaced by the distance between centers of polyline segments because vehicle GPS 

trajectories on the road are denser than free moving objects.  However, both TRACLUS 

and TCMM are sensitive to the parameter of allowable distance amongst polyline 

segments. In order to obtain optimal quality of clustering, algorithms have to be 

repeatedly performed by using different values of the allowable distance. Similarly, 

Ahmed and Wenk (2012) developed a simple undirectional street-network constructing 

algorithm by matching GPS sub-trajectories to existing map based on Frechet distance. 

Unlike methods in (Lee et al., 2007; Li et al., 2010), the performance of this algorithm 

only involves one precision parameter, which is subject to the measurement error of each 

GPS trajectory. 

 Instead of using distance function as the unique criterion to group GPS sub-

trajectories, Liu et al. (2012) presented an alternative solution. Polyline segments with 

similar direction and short geographical distance (Lumelsky, 1985) are initially grouped 

into a cluster. Cluster refinement is then performed to split the initialized cluster into two 
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or more new clusters if it contains several different roads. The second step provides an 

innovative solution to tackle with the complex road geometry as road merging or splitting. 

However, the results of the study conducted by Liu et al. (2012) demonstrated that the 

assumed uniform road width prevents this approach from constructing the continuous bi-

directional centerlines, especially at road junction or splitting. 

 In polyline clustering based methods, each extracted road centerline is composed 

of a set of polyline segments. Achtert et al. (2006) and Lee et al.(2007) addressed that 

each polyline segment has to represent the overall movement of all sub-trajectories 

belonged to the cluster. There are three methods populated in extracting representative 

moving trend from a group of unidirectional moving trajectories. Tavares and Padilha 

(1995) considered the lengths of each participated polyline segments as weights for 

defining the orientation and placement of the resulting polyline. Lee et al. (2007) 

computed the average coordinates of endpoints of the representative polyline segment 

with respect to the average direction vector of the cluster. However, it did not clearly 

explain how to select the major axis of a cluster on which the sweep line was performed 

to obtain intersection points on other grouped polyline segments. Li et al. (2010) 

modified the approach proposed in (Lee et al., 2007) by considering mean values of 

length, coordinates of center point, and direction in the cluster. Compared to approaches 

used in (Lee et al., 2007; Li et al., 2010), the method proposed by Tavares and Padilha  

(1995) is more appropriate for the complex distribution of polyline segments in a cluster, 

such as partial overlapping, full overlapping, and none overlapping segments in similar 

directions. On the other hand, the resulting polyline segment is closer to its true location 

in the cluster than the other two methods because the centroid of all participated polyline 

segments in the cluster is calculated by taking their lengths as weights. 

2.2.3. Grid-based Method 

Grid-based road map generation methods quantize GPS points within the study area into 

a finite number of cells; and then adopt image-processing techniques to extract single-

pixel road centerline from contiguous dense cells. Chen and Cheng (2008) addressed that 

exploiting morphological operations can help reduce effects of GPS measurement errors 

on extracted road network. In binary image construction step, coordinates of GPS points 
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(WGS84) are directly transformed to coordinates of image (row and column) by simply 

multiplying latitude and longitude by 10
5
. Morphological operations, dilation and closing, 

are used to merge points and then smooth road boundaries in the binary image. To obtain 

road centerlines, the thinning algorithm is applied to skeletonize the smoothed road pixels. 

The digital road graph was generated by subtracting image coordinates of pixels by 10
5
 to 

get their corresponding geographical coordinates in WGS84 system. A similar method 

was proposed by Shi et al. (2009a & 2009b), but the affine transformation is employed in 

the transformation of geographical coordinates of GPS points. Moreover, morphological 

erosion and dilation operations are implemented to smooth road boundaries and remove 

small noise in the binary image (Shi et al., 2009a). 

 Different from assigning binary numbers to cells based on the number of GPS 

points in (Shi et al., 2009a & 2009b), the value of each cell can also be presented by scale 

value that is proportionate to the length of intersected GPS trajectory within this unit 

square cell (Davies et al., 2006; Davies, 2009; Biagioni et al., 2011). After threshold cell 

values for identifying road features in binary image, a contour follower is employed to 

detect road boundaries. Finally, the coordinates of the road center point can be derived by 

averaging coordinates of nearest two points on the road boundaries. 

 The road inference based on the image processing techniques still faces the same 

challenges as the satellite image based road recognition:  

(1) Jagged and undirectional extracted road centerlines (Chen and Cheng, 2008; 

Davies, 2009; Shi et al., 2009a & 2009b; Steiner and Leonhardt, 2011; Zhao et al., 2011); 

(2) The size of cell in binary image affecting the recognition of nearby roads with 

similar direction and accuracy of extracted road centerlines (Zhao et al., 2011; Biagioni 

and Eriksson, 2012a);  

(3) Inaccurate extracted road junctions (Davies, 2009; Zhao et al., 2011); and  

(4) Difficulties in distinguishing road interchanges from road junctions (Davies, 

2009). For instance, Zhao et al. (2011) performed raster-based road centerline extraction 
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by integrating map matching, point density analysis (Silverman, 1986) and the automatic 

vectorization of binary image (Mena, 2006).  

The limitations of this kind of work are: only unidirectional road centerlines can 

be extracted due to the oversized raster cell in point density analysis; and using the 

uniformed road width in map-matching process is implausible for complex road 

geometries in a large region. In (Steiner and Leonhardt, 2011), Transverse Mercator 

projection on the ellipsoid is employed to transform geographical coordinates to planar 

coordinates, in order to achieve minimal distortions of road boundaries. The Watershed 

transform is then used to extract road centerlines. According to (Biagioni and Eriksson, 

2012b), the two drawbacks of Watershed transformation are: the quality of extracted line 

segments is highly dependent on a set of initial local minima (Gonzalez and Woods, 2008) 

and dead-end road centerline cannot be extracted. In addition, grid-based spatial 

clustering methods are heavily dependent on the grid structure. The finer size of cell, the 

higher cost of constructing the bitmap; the coarser cell size thus reduces the quality of 

spatial clustering (Wang and Hamilton, 2010; Li et al., 2012). Accordingly, grid-based 

road map extraction methods are not considered in this thesis. 

2.2.4. Hybrid Method 

Based on the review of the aforementioned studies, it is clear that the basic connectivity 

problem in linking road center points or representative polyline segments has not been 

properly addressed.  Worrall and Nebot (2007) linked cluster centers together based on a 

semantic road-knowledge based rule: one cluster center only has one forward link but 

could have more than two backward links when there is an intersection. This approach 

was only applied to the simple road geometry where all vehicle GPS trajectories were 

collected from several fixed paths (as discussed in Section 2.2.1). Liu et al. (2012) 

applied B-spline fitting to generate road centerline segment by segment, but ignored the 

continuity of extracted segmented road centerlines. Therefore, Cao and Krumm (2009) 

suggested that the connectivity properties of road network can be captured based on 

threshold values of distance and directional differences amongst GPS points, as well as 

the shortest distance to existing road centerlines. Nevertheless, this method cannot be 

applied to the GPS data from different regions because universal threshold values are 
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hardly estimated. To overcome this challenge, studies on topological and geometrical 

relationships amongst extracted road center points and preprocessed vehicle GPS 

trajectories were conducted by Limaa and Ferreiraa (2009), Li et al. (2012) , and 

Karagiorgou and Pfoser (2012).  

 Limaa and Ferreiraa (2009) proposed an approach to automatically extract road 

network by applying spatial queries based on the topological and geometrical relationship 

amongst center points and filtered GPS trajectories, without using a base map. In data 

preprocessing/filtering, Limma and Ferreiraa (2009) applied five filters to eliminate noise 

and to simplify GPS trajectories, with respect to the characteristics of GPS data (e.g., 

speed, horizontal dilution of precision, number of satellites, time interval, and data 

amount). In their experiment, road center point is derived by calculating geographic 

coordinates of centroid per each 5-m resolution raster cell, which has at least 20 GPS 

trajectories passing through. The spatial queries in terms of topological and geometrical 

relationships are performed to connect adjacent center points when at least one GPS 

trajectory passed them, with the radius of 1.5 m that likely covers one lane width. The 

road intersection is detected when a center point is an end point for at least three 

connections. The quantitative evaluation, comparing extracted road centerlines with the 

reference (commercial) map with 5-cm accuracy, concluded that average offset distance 

was of 1.43 m with respect to input GPS data of 15-m average accuracy and 77 

percentages of extracted road center points matched to the reference map. This innovative 

approach only generates undirectional road centerline for each road. It is caused by the 

defined cell size of 5 m in the rasterization process, which covered roads of opposite 

directions. It is difficult to make an assumption for a uniform road width for all roads 

since the width of the road can vary along a road. For example, the width of the ramp is 

narrower than that of highway; and the width of the local road at turning is wider than 

that of straight road segment.  

 Li et al. (2012) developed an incremental road network extraction method that is 

specially designed for low frequency dynamic positioning data from China’s National 

Commercial Vehicle Monitoring Platform (NCVMP). Unlike the early work proposed by 

Bruntrup et al., (2005), the spatial relationship amongst points and identified road-like 
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trajectories as well as the semantic relationship amongst any three successive points on 

the same trajectory are introduced into GPS point classification algorithm. The position 

of the identified road-like trajectory is gradually updated by calculating the weighted 

mean value of coordinates of recent matched GPS points and the pre-existing trajectory 

point. There are 18 parameters in terms of point density, distances and angles involved in 

this algorithm according to the characteristics of major roads in the study area. This 

method cannot tackle with the complex road geometric shape as road intersections and 

ramps so that manual editing was required for connecting extracted road segments. 

 Karagiorgou and Pfoser (2012) offered a better solution to extract road network in 

consideration of the connectivity of underlying road network embedded in the vehicle 

GPS trajectories. This automatic road network recognition algorithm consists of two steps. 

Given speed and direction difference threshold values, turning points are identified by 

scanning point by point on every GPS trajectory. Intersection point is obtained from each 

turning-point cluster grouped based on distance and turning type. And then, sub-

trajectories between any two intersection points are merged together to generate positions 

of representative line segment with associate spatial extent. The representative line 

segment can be refined by adding more nearby sub-trajectories, which intersect with the 

spatial extent and if their parent trajectories pass one of two intersection points. However, 

inferring bi-directional road centerlines amongst intersections is infeasible since all 

turning points were merged into one intersection point regardless of turning directions. 

2.2.5. Discussion 

The aforementioned studies reveal various kinds of efforts that have been devoted to 

extracting proper road information from different GPS data sources by utilizing different 

spatial clustering techniques. Following by the brief summarization of individual method, 

its limitations, strengths, and similarity to other methods are discussed. Table 2.2 

summarizes the literature on road map generation in terms of GPS data source and 

characteristics, study area, processing unit, result type, and evaluation method.  

Although all these research efforts are relevant to this thesis research, only six out 

of the 18 papers focus on extraction of bi-directional road centerlines. The bi-directional 

route system, modelling each direction of travel as a separate alignment, was instituted by 
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the New York State Thruway Authority in 2001. Herman (2002) summarized the benefits 

of using bi-directional road centerline such as: better matching with other data layers; 

providing a truer presentation of the highway network, and analyzing the road 

information more effectively (e.g., lane closures pertaining to certain direction of travel).  

The traditional unidirectional road centerline cannot respect one-way streets and 

roads of opposite directions simultaneously. Consequently, studies conducted by (Shi et 

al., 2009a & 2009b; Limaa and Ferreiraa, 2009; Guo et al., 2010; Zhao et al., 2011; 

Karagiorgou and Pfoser, 2012; Liu et al., 2012) are restricted to local roads in urban areas 

because the assumed road width cannot be suitable for both highway and local roads. In 

contrast, Zhang et al. (2010) provided a better solution for extracting bi-directional road 

centerlines with acceptable positional accuracy. Nevertheless, the quality of resulted 

roads is easily affected by errors in the base map due to the limitation of map-matching 

method. In addition, Davies et al. (2006) suggested that the direction be manually 

appended as metadata to the undirectional road centerline. However, grid-based methods 

are not considered in this research thesis due to the aforementioned discussion in Section 

2.2.3. 

As noted in the “Evaluation” column, most of the literature provides the visual 

inspection by overlaying the generated road map with a satellite image or digital map 

instead of the quantitative evaluation. In order to produce a digital road map meeting with 

practical requirements such as route direction and mapping, the quality of road map in 

terms of positional accuracy must be provided (Willrich, 2002). Only few studies 

provided the quantitative evaluation to conclude the positional accuracy of the generated 

road centerline with respect to the relative accurate commercial road map. Zhang et al. 

(2010) compared the extracted bi-directional road centerlines to digital road map from 

TeleAtlas dataset of 2 to 10 m accuracy. The research concluded that 27.4% of extracted 

road centerlines are within 2 m, 61.7% are within 5 m, and 73.9% are within 7 m. Limaa 

and Ferreiraa (2009) concluded that 77% of extracted undirectional road centerlines 

matched with the commercial digital road map of 5-cm accuracy provided by 

InfoPortugal.  
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As reviewed in Section 2.2, the main challenge in existing methods is how to 

generate a road centerline capturing both accurate geometry and connectivity. Some 

factors have not yet been fully investigated. For example, reducing data without affecting 

underlying road network extraction; spatial clustering algorithms distinguishing nearby 

parallel roads and road splits are subject to various parameters; topological and 

geometrical relationships for generating accurate road junctions; and constructing bi-

directional road centerlines. Therefore, it is still desirable that a practical approach 

integrates all the factors together to automatically extracting road network without 

referencing to a base map or image. Moreover, none of the aforementioned studies 

performed quantitative evaluation by comparing the results with the actual ground truth 

maps (geometric road alignment data). Table 2.3 provides a summary of available data 

processing techniques relevant to this thesis research. This thesis research attempts to fill 

the current gap by proposing a new methodology, integrating point- and polyline-based 

approaches, to iteratively infer road network from smartphone GPS trajectories.  
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Table 2.2: Road map generation literature 

Literature Purpose Data Source (Accuracy 

& Sampling Rate) 

Study Area Processing 

Unit 

Map-matching Result Type Evaluation 

Li et al. (2012) Road map 

updating 

China NCVMP
5
(5 m & 

33 sec) 

City-wide Hybrid of 

Points & 

Polylines 

No Bi-directional
6
  Visual 

Inspection 

Cao and Krumm (2009) Routable 

graph 

generation 

55 Shuttles with GPS 

loggers
7
  

(unknown; 1 sec) 

Campus-

wide 

Points  

 

No Bi-directional Visual 

Inspection 

Wang et al. (2011) Routable 

graph 

generation 

Unknown GPS loggers 

(unknown) 

Town Points  

 

No Bi-directional N/A 

Edelkamp and Schrodl, 

(2003); Schroedl et al., 

(2004) 

Road 

Centerline 

Extraction 

Unknown GPS loggers 

(unknown; 1-4  sec) 

Small area
8
 Points Yes Bi-directional N/A 

Zhang et al. (2010) Road map 

updating 

OpenStreetMap (6-10 m; 

unknown) 

Small area
9
 Points Yes Bi-directional Quantitative 

Evaluation
10

 

Limaa and Ferreiraa 

(2009) 

Road 

Centerline 

Extraction 

Unknown GPS loggers 

(15 m; 1 sec) 

City-wide Hybrid of 

Points & 

Polylines 

No Undirectional Visual 

Inspection & 

Quantitative 

Evaluation
11

 

Worrall and Nebot (2007) Routable 

graph 

generation 

Unknown GPS loggers 

on five mining trucks 

(unknown) 

Mining site Points No Bi-directional N/A 

                                                 

 

5
 China National Commercial Vehicle Monitoring Platform 

6
 Road of opposite directions which can respect one-way streets. 

7
 RoyalTek RBT-2300 with SiRF Satr III chipset and WAAS enabled. 

8
 It contains a combined length of approx. 20 km of urban and freeway roads. 

9
 It contains one highway interchange area and one urban intersection area. 

10
 Quantitative evaluation with respect to standard road map from TeleAtlas dataset with accuracy of 2 to 10 m. 

11
 Quantitative evaluation with respect to vector road map provided by mapping company (InfoPortugal), with accuracy of 5 cm; Visual evaluation is performed 

by overlapping with Google Map. 
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Literature Purpose Data Source (Accuracy 

& Sampling Rate) 

Study Area Processing 

Unit 

Map-matching Result Type Evaluation 

Guo et al. (2010) Trajectories 

Clustering 

Unknown GPS loggers 

(10-20 m; 30 sec) 

City-wide Points No Undirectional N/A 

Lee et al. (2007); Li et al. 

(2010) 

Trajectories 

Clustering 

Hurricane track and 

animal movement 

(unknown) 

Unknown Polylines No Undirectional N/A 

Liu et al. (2012) Road 

Centerline 

Extraction 

Unknown GPS loggers 

on taxis 

 (7 m; 16-61 sec) 

Small area
12

 Polylines No Undirectional Visual 

Inspection & 

Quantitative 

Evaluation
[9]13

 

Karagiorgou and Pfoser, 

(2012) 

Road 

Centerline 

Extraction  

Unknown GPS loggers 

on taxis  

(unknown) 

Small urban 

area 

Hybrid of 

Points & 

Polylines 

No Undirectional Visual 

Inspection & 

Quantitative 

Evaluation
14

 

Ahmed and Wenk (2012) Road 

Centerline 

Extraction 

Unknown GPS loggers 

(unknown; 30 sec) 

Municipal 

area of 

Berlin 

Polylines Yes Undirectional Visual 

Inspection 

Chen and Cheng (2008) Road 

Centerline 

Extraction 

Garmin GPS25-LVS  

(5-15 m
15

; 1 sec) 

Certain 

Roads 

Pixels No Undirectional Visual 

Inspection 

Shi et al. (2009a) Road 

Centerline 

Extraction 

Unknown GPS loggers  

(5 m; unknown) 

City-wide Pixels No Undirectional Visual 

Inspection 

Shi et al. (2009b) Road 

Centerline 

Extraction 

Unknown GPS loggers 

on probe vehicle 

(unknown) 

Campus-

wide 

Pixels No Undirectional Visual 

Inspection 

                                                 

 

12
 A selected area of 14.5 km x 14 km in urban area 

13
 Quantitative evaluating the accuracy of recognized roads in comparison to OpenStreetMap. 

14
 Evaluation of connectivity & shortest-path similiarity to existing map 

15
 http://www.wildsong.biz/index.php?title=GPS_receivers; ftp://ftp.tapr.org/gps/garmin/Spek25lp.pdf 
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Literature Purpose Data Source (Accuracy 

& Sampling Rate) 

Study 

Area 

Processing 

Unit 

Map-matching Result Type Evaluation 

Zhao et al. (2011) Road map 

updating 

China TTIC
16

 

(unknown; several mins) 

Certain 

Roads 

Pixels Yes Undirectional Visual 

Inspection 

Steiner and Leonhardt 

(2011) 

Road 

Centerline 

Extraction 

Unknown GPS loggers 

on Taxis  

(1.2-1.9 m; 15-90 sec) 

Small 

urban area 

Pixels No Undirectional Visual 

Inspection 

Biagioni et al. (2011); 

Davies et al. (2006) 

Road map 

updating 

Unknown GPS loggers 

(4.25-8.5 m; unknown) 

County-

wide 

Pixels No Directed graph
17

  Visual 

Inspection
18

 

                                                 

 

16
 Transportation and Telecommunication Information Center 

17
 Undirected road graph with manually appended direction metadata 

18
 Compared with digital road map created by UK Ordnance Survey 
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Table 2.3: Summary of data processing techniques 

Type of 

Classification 

Literature Data 

Clarification 

Data 

Classification 

Data Extraction Centerline 

Inference 

Point-based Edelkamp and 

Schrodl 

( 2003; 

Schroedl et 

al., (2004) 

Map-matching 

 

Partitional spatial 

clustering based 

on minimum 

distance between 

points. 

Iteratively 

averaging 

clustered points to 

get cluster center, 

if new point is 

added.  

B-spline 

fitting based 

on user-

selected 

control points 

Worrall and 

Nebot (2007) 

N/A Simple clustering 

based on similar 

position and 

similar direction. 

Averaging 

clustered points to 

get cluster center. 

Linking 

cluster points 

based distance 

function and 

sematic rule. 

Cao and 

Krumm, 

(2009) 

Simulated 

attraction 

forces  

N/A Gradually merging 

points to existing 

point without 

replacement. 

N/A 

 Guo et al. 

(2010) 

Moving 

window 

smoothing 

Hierarchical 

spatial clustering 

based on 

minimum 

distance between 

points. 

Calculating 

centroid of 

clustered points 

N/A 

Zhang et al. 

(2010) 

Split GPS 

trajectory by 

distance and 

speed 

Map-matching & 

Partitional spatial 

clustering (fuzzy 

c-means) 

Calculating 

centroids of 

clustered points, 

weighted by 

degree of 

belonging to the 

cluster. 

Linking 

cluster points 

on each road. 

Wang et al. 

(2011) 

simulated 

attraction 

forces 

Clustering points 

attached with a 

weight. 

Gradually merging 

points to existing 

point without 

replacement. 

N/A 

Polyline-

based 

Lee et al. 

(2007; Li et 

al., (2010) 

Approximate 

trajectory 

partitioning. 

Density-based 

Polyline 

Clustering 

Extracting 

representative 

trajectory from 

grouped sub-

trajectories 

N/A 

Liu et al. 

(2012) 

Eliminating 

noise based on 

threshold 

values of 

direction 

difference, 

acceleration, 

and/or velocity 

change 

between two 

consecutive 

points. 

Basic polyline 

segment 

clustering based 

on geographical 

distance and 

direction change. 

Clustering 

refinement for 

road splitting. 

B-spline 

fitting & 

Shape-ware 

fitting for 

choose control 

points 
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Method 

Classification 

Method Data 

Clarification 

Data 

Classification 

Data Extraction Centerline 

Inference 

Hybrid Limaa and 

Ferreiraa 

(2009) 

Eliminating 

noise based on 

threshold 

values of 

speed, HDOP, 

and the number 

of satellites. 

Grid-based 

method quantized 

GPS points 

within the study 

area into a finite 

number of cells. 

Calculate centroid 

in each point-

occupied cell. 

Linking 

centroids 

based on 

topological 

and 

geometrical 

relationships 

to GPS 

trajectories. 

 Li et al. 

(2012) 

Eliminating 

noise based on 

threshold 

values of speed 

and direction 

change. 

Clustering points 

based on their 

spatial 

relationship to 

same road 

trajectory and 

semantic 

relationship 

amongst three 

consecutive 

points. 

Weighted mean 

value of 

coordinates of 

recent matched 

GPS points and the 

pre-existing GPS 

point. 

Linking 

cluster points 

based on 

thresholds of 

distance and 

direction 

change. 

Karagiorgou 

and Pfoser 

(2012) 

N/A Clustering turns 

to identify 

Intersection 

points 

Extracted common 

GPS trajectories 

passing through at 

least two 

intersection points 

Iteratively 

update the 

road 

centerline 

between two 

intersections 

until no more 

new trajectory 
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Chapter 3. Methodologies 

Chapter 2 surveyed the state of the art on road network extraction from satellite image 

and vehicle GPS trajectories, and summarized crucial factors that were not fully taken 

into account to automatically generate a road network capturing the accurate road 

geometry and connectivity. The methodology of automatic extraction of road network in 

this thesis research identifies GPS trajectories that restricted to the road network without 

using map-matching technology; therefore, it faces following dilemma. First, positioning 

data is collected regardless of where the smartphone user is (e.g. driving on roads, idling 

(in parking lots or traffic jams), waiting at traffic lights, or inside buildings), so it is 

difficult to completely filter out such point clouds from raw data. Second, the distribution 

of positioning data of moving vehicles could be normal, scattered or multimodal within a 

certain width around a road centerline. However, it is implausible to utilize a fixed value 

of road width to cluster positioning points belonging to the same road segment, especially 

at a road split or merge.  

Taking these uncertainties into account, the objective of this chapter is to 

overcome five challenges in similar studies, including:  

1) Data reduction without affecting underlying road network extraction; 

2) Distinguishing GPS trajectories on nearby parallel roads; 

3) Separating GPS trajectories on roads that have splits of a narrow angle; 

4) Constructing bi-directional road centerlines, and  

5) Building topological connectivity at road junctions.  

Section 3.1 outlines the general procedures of extracting the road network from 

smartphone GPS trajectories of moving vehicles. Section 3.2 describes the pre-processing 

of raw data. The detailed explanations of every step and techniques adapted to this 

methodology are presented in subsequent sections.   

3.1. Overall Workflow 

The overall workflow of automatic extraction of road networks data from smartphone 

GPS trajectories is shown in Fig. 3.1. The basic idea behind this new methodology is: 
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restructuring GPS trajectories on each road so as to ideally obtain at least one new GPS 

trajectory in each lane; grouping reconstructed GPS trajectories on the same road 

segment into one cluster and then merging them into one polyline segment representing 

the road centerline; and utilizing the topological relationships amongst polyline segments 

to construct the final road network data.  

 

Figure 3.1: Overall workflow of automatic extraction of road network. 

 

Given a set of smartphone GPS trajectories, the preprocessing step and weighted-

mean smoothing algorithm (see Fig. 3.2 (a)) were applied to eliminate extraneous and 

duplicated data and replace inaccurate data. The modified density-based point clustering 

method was applied to extract representative points for each lane on the road, as 

illustrated in Fig. 3.2 (b). Next, representative points belonging to the same lane were 

Preprocessing 

Weighted-mean Smoothing 

Representative Points Extraction 

Reforming GPS trajectories 

Raw Smartphone GPS 

trajectories 

GPS Sub-Trajectories Clustering 

Clustered GPS Sub-Trajectories 

Merging 

Topological Connection of 

Extracted Centerlines 

Extracted Road 

Network 

Data Analysis  

Circular Moving Window Smoothing 

Modified Density-based Point Spatial Clustering 

Topological and Semantic linking of 

Representative Points 

Customized Density-based Polyline Clustering 

Weighted Polyline Merging  

Topological, Geometric, and Sematic relationships 
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connected based on their topological relationships and directions (see Fig. 3.2 (c)), in 

order to remain faithful to the underlying road network geometry. Then, the road 

centerlines were derived by applying the customized density-based polyline segment 

clustering method (Fig. 3.2 (d)) to merge those reformed GPS trajectories (see Fig. 3.2 (e)) 

sharing the same geometric attributes on the road. Last, road centerlines were 

topologically connected together to generate a completed road network. 

 

Figure 3.2: Demonstration of road centerline extraction algorithms: (a) weighted-mean 

smoothing (b) Representative point extraction (c) Linking representative points (d) 

Polyline spatial clustering (e) Merging clustered polylines.
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3.2. Positioning Data Preprocessing  

In order to improving the quality of GPS trajectories, road extraction method begins with 

the data preprocessing step. It is performed to reduce the size of input data without 

affecting the underlying road network geometry by: 1) filtering out the off-road point 

clouds, 2) splitting a daily GPS trajectory into a set of individual trips, 3) converging GPS 

positioning points of each moving vehicle towards the middle of a road by applying the 

weighted moving circular window smoothing, and 4) eliminating the duplicated 

positioning points.  

Off-road positioning point clouds could be removed by applying the threshold 

value of speed (1.904 m/s or 6.854 km/hr obtained through data analysis in Section 4.4).  

It helped to remove noise positioning points caused by slow moving vehicles at traffic 

lights or traffic congestions as shown in Fig 3.3. 

 

Figure 3.3: Noise positioning points in slow-moving traffic flow. 

 

Unreasonable trajectories may be generated amongst different trips made by the 

same smartphone users in a same day, as highlighted (in red color) in Fig 3.4. For 
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example, a connection between a pair of consecutive GPS points is off from the actual 

road. The road network data is inferred by connecting endpoints of extracted road 

centerlines based on their topological relationships to GPS trajectories revealing the 

underlying road network geometry. Therefore, a daily trip travelled by a smartphone user 

must be split into a set of individual on-road GPS trajectories. In this regard, every trip is 

subject to two checks, change of driving direction and distance between consecutive 

positioning points. Each trip is split into discrete GPS trajectories whenever a gap 

between any two time-stamped positioning points is larger than distance threshold or the 

change in their moving direction is over direction threshold (100 m and 11˚ obtained 

through data analysis in Section 4.4).  

 

 

Figure 3.4: Unreasonable connections within raw GPS trajectories.  
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Figure 3.5: Noise positioning points on shoulders due to the biased smartphone GPS 

measurement. 

 

The distribution of positioning points of moving vehicles could be normal, 

scattered or multimodal within a certain width around a road centerline, due to the biased 

smartphone GPS measurements. Some GPS trajectories do not exactly follow the road 

segment, especially at a road split or merge. Fig 3.5 shows that many positioning points 

(red-color biased GPS measurements) were located at the median section between nearby 

divided roadways or road shoulders of an undivided road. To overcome these inaccurate 

measurements, a weighted moving circular window smoothing is proposed to relocate 

positioning points towards the center of the road based on the similar algorithm adopted 

by Guo et al. (2010). In that algorithm, the new position of each positioning point was 

obtained by averaging all points within its 30-meter circle. However, the algorithm in this 

thesis research is different in that it uses 4-meter circular window and assigns different 

weight to the positioning point in terms of its accuracy. 

A 4-meter circular window is placed on each positioning points in order to cover 

the lane width ranges between 3.5 and 3.7 m (TAC, 1999). The new location of the 

positioning point is changed to the weighted mean of all positioning points in the similar 

direction (cos(directional change between any two points) > 0) within the circular 
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window. Fig. 3.6(a) illustrates the performance of smoothing by using Eq. 3.1. As shown 

in Fig. 3.6 (b), positioning points of opposite directions on parallel roads can be 

differentiated by using the cosine of the angular difference between two moving 

directions. It is inspired from the GPS trajectory clarification algorithm adopted by (Cao 

and Krumm, 2009). In their algorithm, the cosine of the difference between two 

directions was used to differentiate polyline segments of opposite directions. However, 

the algorithm adapted in this thesis research focuses on converging positioning points in 

similar direction toward the middle of road. For example, any neighbor point Ptj, within 

the 4-meter circle and moving in similar direction as Pt0 and cos(direction of Ptj – 

direction of Pt0) > 0, will be used to calculate the new position of Pt0 by using Eq. 3.2. 

The moving direction of Pt0′ remains the same as that of Pt0.  

Fig. 3.6 (c) presents locations of a smoothed point by leveraging weighted mean 

or simple mean. Making use of the simple mean only brings the positioning point to the 

geometric center of a 4-m cluster. In contrast, taking the accuracy of each point as a 

weight brings the positioning point close to its neighbor points with high accuracy. In 

case a positioning point does not have any other points within its circular window, it will 

be discarded as an outlier point that has no contribution to extracting road centerlines. At 

the end, the duplicated smoothed positioning points are eliminated. For example, if 

smoothed positioning points, Pt1′ and Pt2′, are overlapped at the same location in Fig. 3.6 

(a), Pt2′ will be removed and the direction of Pt1′ will be substituted by the mean direction 

of these two points.  
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(a) 

 

(b) 
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(c) 

Figure 3.6: Illustration of (a) moving window smoothing algorithm (b) cosine curve of 

directional change (c) difference between weighted mean and simple mean. 

 

3.3. Representative Point Extraction 

After the preprocessing step, a modified density-based point clustering method is adopted 

to reduce the data size by extracting a smaller set of new positioning points as 

representative of smoothed points, without affecting the underlying road geometry. This 

step is similar to the data reduction method adopted by Guo et al. (2010), but takes into 

consideration the moving direction of individual positioning point and accuracy of 

individual positioning point as a weight. The smoothed positioning points within a 4-

meter (definition of 4-m refers to Section 3.2) cluster must satisfy six properties:  

1) A smoothed positioning point can only be represented by one preliminary 

representative point;  

2) One preliminary representative point represents at least one smoothed positioning 

point;  

3) If one smoothed positioning point falls inside of a 4-m circle of any positioning 

point that belongs a cluster of one preliminary representative point and is within 

4-meter buffer of the preliminary representative point, it is also represented by 

that preliminary representative point;  
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4) If one smoothed positioning point is already represented by another preliminary 

representative point but is closer to the current preliminary representative point, it 

thus belongs to the current cluster;  

5) If one smoothed positioning point is out of 4-meter circle of current preliminary 

representative point, it is removed from its current cluster; and 

6) All smoothed positioning points within a cluster must have similar directions.  

    
        

    
 (            )

    
 (  )

 Equation 3.2 

 where, weight   
 

             
               

A more formal description is shown in Algorithm 1 in Appendix A. It consists of 

two steps, preliminary representative point extraction (Step 1) and refinement (Step 2). 

Figs. 3.7 and 3.8 illustrate core procedures of extracting representative points in Step 1 

and 2. Fig.3.7 (a) demonstrated the 1
st
 and the 6

th
  properties that all nearby unrepresented 

smoothed positioning points within the 4-meter buffer of Pt0′ are stored together with Pt0′ 

into one cluster (line 8 to 16 of algorithm 1) except Pt1′, which is in opposite direction. A 

preliminary representative point CP1 is calculated by using Eqs. 3.1 and 3.2 (in line 18 of 

algorithm 1). Fig.3.7 (b) exemplifies the 5
th

 property that Pt3′ is outside of the 4-meter 

circle of CP1 and no longer belongs to the cluster of CP1 (line 23 to 25) after applying 

Eqs. 3.2 and 3.3. Meanwhile, Pt4′ satisfies the 3
rd

 property that it is within 4-meter circle 

of Pt5′ where Pt5′ is represented by CP1, so that it is also inside of CP1’s cluster (line 27 

to 34). Fig.3.7 (c) explains the 4
th

 property (line 20 to 22 of algorithm 1) that Pt6′ is 

previously grouped into CP1’s cluster but is closer to the new preliminary representative 

point CP3, so that Pt6′ is being represented by CP3. Step 1 is repeatedly implemented 

until all smoothed positioning points are represented and stored in a temporary 

dictionary
19

: tempC = {CP1, CP2 …, CPn | n < D}, where each cluster is a set of 

represented smoothed positioning points CP1 = {Ptj | 0 < j < D}, D denotes the number of 

input smoothed positioning points. 

                                                 

 

19
  Python dictionary definition( http://www.tutorialspoint.com/python/python_dictionary.htm)  
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(a) (b) (c) 

Figure 3.7: Illustration of extracting preliminary representative positioning point; arrows 

(in different colors) represent the different moving directions. 

 

In Step 2, the temporary clusters in tempC are further refined by checking if there 

are smoothed positioning points moving in different direction to the preliminary 

representative point in the cluster. If yes, it further splits the cluster into smaller clusters. 

Fig. 3.8 (a) and (b) illustrate the implementation of cluster refinement based on the cosine 

of angle difference in Fig. 3.8 (c). For example, the preliminary representative point CP4 

representing four sets of smoothed positioning points (in colors of blue, yellow, green, 

and lavender) can be divided into following sub-clusters: 

1) If cos(direct of Pt – direct of CP4) ∈ [     ˚      ˚]  p int Pt in the blue-color 

point set is in a direction similar to CP4 on the same road;  

2) If cos(direct of Pt – direct of CP4) ∈ (   9 ˚,      ˚)  point Pt in the yellow-

color point set is in a direction different from that of CP4 but may be on the 

same road (at road split or turning);  

3) If cos(direct of Pt – direct of CP4) < 0, point Pt in green-color point set is on the 

road of opposite direction; and  

4) Point Pt is moving in perpendicular direction to that of CP4 (at road intersection 

or highway interchange), if the cosine of angle difference is zero.  

Finally, new representative points (CP4, CP5, CP6, and CP7) are calculated for 

each sub-cluster by using Eq. 3.1 and 3.2. 
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(a) (b) 

 

 

(c) 

Figure 3.8: Illustration of exacting final representative point. 

 

3.4. Trajectory Reconstruction 

Section 3.3 topologically simplifies GPS trajectories by extracting a smaller set of 

representatives of original GPS positioning points. In conventional point-based methods, 

the final road centerline could be generated by leveraging one of four approaches, 
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including: simply linking cluster centers on the same road together based on geometric 

relationships (threshold values of direction difference and distance) amongst them; 

integrating semantic rules and geometric relationships; B-spline approximation based on 

control points; or spatial queries in terms of topological and geometric relationships 

between cluster centers and original GPS trajectories. However, as discussed in Section 

2.2, they are restricted by the fixed value of road width that is applied to cluster 

positioning points belonging to the same road segment, especially at a road split or merge.  

In order to clarify GPS trajectories on roads of complex geometry, this section 

aims at restructuring the GPS trajectories on each road so as to ideally obtain at least one 

new GPS trajectory in each lane. Therefore, the boundary of the road segment (road 

width) can be outlined by the evenly distribution of reconstructed GPS trajectories along 

the road. As shown in Fig. 3.9, representative points belonging to the same lane were 

connected based on their topological relationships to GPS trajectories and semantic 

relations, in order to remain faithful to the underlying road network geometry. Blue dash-

line denotes the new reformed GPS trajectory. Grey solid lines represent the preprocessed 

GPS trajectories. 4-meter dash-line circle (in color of red and green) of each yellow-color 

representative positioning point covers the lane width ranges from 3.5 to 3.7 m.  

 

Figure 3.9: Illustration of GPS Trajectory Reconstruction. 
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The overall logic flowchart of reforming GPS trajectories is represented in Fig. 

3.10. Starting with any one of unconnected representative positioning points, its 

surrounding representative positioning points are checked based on three conditions:  

1) Distance to the current representative positioning point must be within 50 m (see 

Section 5.1 for searching radius);  

2) At least one preprocessed GPS trajectory passing through 4-m buffers of 

surrounding and current representative points; and 

3) The difference of the directions of surrounding and current representative points is 

smaller than 11˚.  

If a surrounding representative point satisfies these prerequisites, it becomes a 

candidate point for constructing new connection from or to the current representative 

positioning point. If a representative positioning point is selected as the current 

representative positioning point (e.g. RepPt1 in Fig. 3.9) but has no candidate point, the 

next representative positioning point (RepPt2) becomes the available current point. The 

GPS trajectory reconstruction algorithm detects optimal succeeding and preceding points 

(RepPt11 and RepPt7) from candidates of RepPt2 to construct new connections along with 

their moving directions. New polyline segments (from RepPt2 to RepPt11 and from 

RepPt7 to RepPt2) are generated as shown in Fig.3.9. The algorithm is repeatedly 

implemented until all representative positioning points are connected. 
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Figure 3.10: Main logic flowchart of reconstructing GPS trajectories. 

 

The GPS trajectory reconstruction algorithm consists of five core subroutines 

(shown in Fig. 3.10) that are repeatedly utilized to search optimal preceding and 

succeeding points for reforming GPS trajectories based on their moving directions. Given 

a set of candidate points of a current representative positioning point, Subroutine 1 is 

used to determine the single preceding or succeeding point of the current point as the 

Start 

Get Rep. Point 

as current point 

(curr) 

 Get nearby points within 50-m 

of curr 

Count # of candidate 

connection points of curr 

Count = 0, 1 

or >1 

= 0 

Subroutine1: Determine 

single optimal preceding 

OR succeeding point 

Preceding or 

Succeeding 

Subroutine3A and 3B: 

Determine optimal 

preceding AND succeeding 

point from two groups 

Subroutine5: 

Continuously search 

preceding points 

Subroutine4: 

Continuously search 

succeeding points 

Reformed 

GPS 

trajectories 

End 

Subroutine2: 

Classify candidate 

points 

Store classified points into 

two groups: ahead or behind 

of current point 

ahead !=[ ] & 

behind !=[ ] 

Subroutine3A: Determine 

optimal succeeding point 

from ahead group 

= 1 

>1 

True 

preceding 

False 

ahead !=[ ] & 

behind ==[ ] 

False 

True 

succeeding 

ahead == [ ] & 

behind !=[ ] 

 Subroutine3B: 

Determine optimal 

preceding point from 

behind group 

True 

 Off page connector 

False 



46 

 

initial point, if there is only one candidate point; if there is more than one candidate 

points are found, Subroutine 2 classifies them into two groups: ahead and behind of 

current point with respect to their moving directions; Subroutine 3 determines the optimal 

preceding and succeeding points from each group as initial points; Subroutine 4 and 5 are 

implemented to continuously search and determine rest of connecting points from initial 

points, until all representative points on the common direction are connected. A more 

formal description of this algorithm is shown in Algorithm 2 in Appendix A. 

 

Figure 3.11: Comparison of azimuth and average direction of points. 

 

Subroutine 1 is applied in case there is only one candidate point of the current 

representative positioning point was found. For example, if RepPt13 in Fig. 3.11 is taken 

as the current point, only RepPt10 could be the candidate to which a new connection is 

constructed from RepPt13, because there are two preprocessed GPS trajectories passing 

through their buffers. In order to construct a new connection following the moving 

directions of these two points, two azimuths
20

 (Az) are calculated by using Eq.3.3: Az1 is 

from RepPt13 to RepPt10 and Az2 is from RepPt10 to RepPt13, as shown in Fig.3.11. If the 

                                                 

 

20
 Azimuth is the horizontal angle measured clockwise from north, in plane surveying (Charles D. Ghilani, 

Paul R.Wolf, 2002)  
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angular difference between Az1 and the average of directions of two points (RepPt13 and 

RepPt10) is not over 11°, a new connection from RepPt13 to RepPt10 is constructed and 

RepPt10 is recorded as the succeeding point of RepPt13. If RepPt10 is selected as the 

current point that has RepPt13 as the unique candidate point, the connection is still 

generated from RepPt13 to RepPt10 except that RepPt13 becomes the preceding point of 

RepPt10. The reformed connection is recorded and its endpoints are marked as “connected 

representative points”, in order to avoid the duplication in later process. The logic 

flowchart of Subroutine 1 is represented in Fig. 3.12 for reader’s easy understanding.  

           (
  

  
)    Equation 3.3 

where, C places the azimuth in the proper quadrant;                     

   > 0 and    > 0 C=0° 

   < 0 C=180° 

   < 0 and    > 0 C=360° 
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Figure 3.12: Logic flowchart of determining preceding or succeeding point from a single 

candidate point. 

 

 Subroutine 2 is implemented to classify candidate points of a current point based 

on their precedence relationship in terms of the direction vector between any two 

distinct points, in case that there are more than one point satisfying aforementioned three 

conditions in Section 3.4. Eq. 3.4 presents the algorithm of finding one point is ahead of 

or behind another point with respect to the moving direction and the azimuth. Fig. 3.13 
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demonstrates the algorithm by using some sample points whose moving directions are 

within first or third quadrant. For example, RepPt10 is selected as the current point and 

others (RepPt2, 4 9, 12, and 13) are its candidate points in Fig.3.13, because they share four 

preprocessed GPS trajectories and move in similar directions. Azimuths from RepPt10 to 

each candidate point are calculated using Eq. 3.4 and listed in Table 3.1. The logic 

flowchart of Subroutine 2 is represented in Fig. 3.14. 

Table 3.1: Azimuth from current point to its candidate point 

Azimuth (Az) From To 

1  RepPt10 RepPt12 

2  RepPt10 RepPt2 

3  RepPt10 RepPt9 

4  RepPt10 RepPt4 

5  RepPt10 RepPt13 

 

In Fig. 3.13, the azimuths (Az5 and Az2) are assumed to be about 235° and 85°, 

respectively; and the moving direction of current point (RepPt10) represented as the red-

color arrow is assumed to be 45° in Fig. 3.13 (a) and 225° in Fig. 3.14 (b). With respect 

to the current point (RepPt10), RepPt13 is identified as the preceding point and RepPt12 is 

found to be the succeeding point by using Eq. 3.4, in Fig. 3.13 (a). The difference (T) 

between Az5 and the direction of the current point is 190°. It is converted to be -170° 

because of larger than 180°, and is not within the range of (-90, 90). Therefore, RepPt13 is 

classified as the preceding point of RepPt10. In the second case as shown in Fig. 3.13 (b), 

RepPt12 is determined as the preceding point of RepPt10 based on Eq. 3.4, if Az1 is 

assumed to 35°.  

 

T = Az -  direction of current point 

If T > 180°  T=T-360° Equation 3.4 

Else T < -180° T=T+360°  

If T > -90° and T < 90°  candidate point is ahead of the current point  

Else candidate point is behind the current point  
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(a) 

 

(b) 

Figure 3.13: Precedence relationship of candidate points: ahead or behind groups. (a) 1
st
 

quadrant and (b) 3
rd

 quadrant. 
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Figure 3.14: Logic flowchart of classifying candidate points of the current point into 

ahead or behind group 

 

Subroutine 3 is invoked to determine the optimal preceding or succeeding points 

from candidates classified in ahead or behind group (the output of the Subroutine 2). As 

shown in Fig. 3.15, subroutine 3A is applied to search the succeeding point while 

subroutine 3B is required for determining the preceding point. Both of them iterate over 

the candidate points of any sequence inside a classified (“ahead” or “behind”) group until 

there is one point with minimum difference between the azimuth and the average 

direction of current and candidate points. The only difference is that the orientation of the 
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azimuth in Subroutine 3A is from the current point to the point classified in the “head” 

group, while Subroutine 3B calculates the azimuth from the point inside the “behind” 

group to the current point. In case there are two points having the same value of azimuth 

in terms of the current point, the one with shorter distance to the current point is selected 

as the preceding or succeeding point.   
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(b) Subroutine 3B 

Figure 3.15: Logic flowchart of (a) Subroutine3A determining optimal succeeding point 

from ahead group (b) Subroutine3B determining optimal preceding point from behind 

group. 
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Subroutine 4 and 5 continuously search and connect the optimal preceding and 

succeeding points, respectively, based on the output from subroutines (1 to 3). In order to 

obtain optimal connections representing the underlying road network geometry, the 

second condition is revised to select the candidate point that shares at least one 

preprocessed GPS trajectory with its two preceding points. Fig. 3.16 represents the 

logical workflow of detecting sequential succeeding or preceding points from two or 

three known points obtained from previous subroutines. The performance of searching 

optimal sequential succeeding and/or preceding points is divided into two cases: bi-

directional connection (Case I) and one-way connection (Case II). 
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Subroutine 5 

Figure 3.16: Logic flowchart of continuously searching sequential proceeding and/or 

succeeding points 

 

Case I: Fig. 3.17 illustrates the process of bi-directional search by integrating the 

Subroutine 4 and 5. Given the current point (Curr) and its preceding and succeeding 

points (P
0
 and S

0
); Subroutine 5 takes them as the input to start the backward searching. 

Fig. 3.17 (b) shows that there are three candidate points (cand1, 2, and3) sharing three 

preprocessed GPS trajectories (dark-red arrow line) with Curr and P
0
. Fig. 3.17(c) 

represents that the candidate point (cand1) is determined to be the optimal preceding 

point (P
1
) by employing Subroutine 3. The candidate point (cand1) is selected because it 
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has min difference between the azimuth from Curr to cand1 and average direction of curr 

and cand1. Subroutine 4 is activated to implement the forward search when the backward 

search finds no more preceding points, as shown in Fig. 3.17 (d). In case there is only one 

candidate point sharing preprocessed GPS trajectories with Curr
(temp)

 and P (S
0
 and Curr 

in (a)), Subroutine 2 is invoked to determine whether it is a succeeding or preceding point 

with respect to Curr. If so, a connection (in dark blue) from S
0
 to S

1
 is generated. 

 

(a) (b) 

 

 

(c) (d) 

Figure 3.17: Bi-directional connection of preceding and succeeding points 

 

Case II: Fig. 3.18 shows the example of the one-way search by employing the 

Subroutine 4 when the current point (Curr), an extreme point of the sample area, has no 
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preceding points along its moving direction. Similarly, the Subroutine 5 is used for 

backward connecting preceding points from a current point that has no succeeding points. 

Given a current point (Curr) and its succeeding point (S
0
), Subroutine 4 detects four 

candidate points sharing preprocessed GPS trajectories with them (Fig. 3.18 (b)). 

Subroutine 3A determines that the candidate point (cand1) is the optimal succeeding 

point to which a new connection from S
0
 can be created, as shown in Fig. 3.18 (c). These 

two subroutines are repeatedly implemented to generate connections (e.g. S
0
 to S

1
, S

1
 to 

S
2
, S

2
 to S

3
, and S

3
 to S

4
) until that there is only one candidate point found (Fig. 3.18 (b-

j)). Similar to Case I, Subroutine 2 is invoked again to determine whether the unique 

candidate point is the succeeding or preceding point with respect to Curr. If so, a 

connection (in dark blue) from S
4
 to S

5
 is generated.  
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(a) (b) (c) 

 

(d) (e) (f) 

 

(g) (h) (i) 

 

(j) (k) 

Figure 3.18: One-way connection of succeeding or preceding points 
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3.5. Polyline Segment Clustering 

Section 3.4 reconstructs GPS trajectories by linking representative points based on their 

topological relationships to preprocessed GPS trajectories and semantic relations. The 

geometry of road network can be clearly outlined by employing the reformed GPS 

trajectories, instead of using original GPS trajectories. This section presents a sub-

trajectory clustering algorithm that segregates reconstructed GPS trajectories on the same 

road from others on nearby roads or the same road of opposite direction. The sub-

trajectory denotes one polyline segment of the reformed GPS trajectory. One reformed 

GPS trajectory is composed of a number of sequential polyline segments. The 

aforementioned polyline-based clustering methods in Section 2.2.2 classify all GPS 

trajectories on the same road into one cluster. They are sensitive to the parameters of 

allowable distance amongst polyline segments or assumed road width. For example, the 

algorithm proposed by Lee et al. (2007) has to be repeatedly tested by using different 

values of the allowable distance, in order to obtain optimal quality of clustering. The 

assumed uniform road width utilized by Liu et al. (2012) cannot serve the purpose of 

constructing the continuous bi-directional centerlines, especially at road junction or 

splitting.  

Unlike similar studies reviewed in Section 2.2.2, the clustering algorithm 

proposed in this thesis research selects a unique reformed GPS trajectory on each road as 

the reference; the reference must have the maximum number of polyline segments 

compared to other trajectories on the same road; and at least one reformed GPS trajectory 

has the maximum components on each road. Then, polyline segments near each segment 

of the reference are incrementally grouped into the corresponding cluster. As shown in 

Fig. 3.19, trace 3 is selected as references because it consists of the six polyline segments 

(seg. 1 to seg. 6), which is more than others (trace 1, 2, and 4) in the same direction. The 

allowable distance is determined as the maximum distance between polyline segments of 

opposite directions that are located at the left-side edges of the two-way road. Within the 

polyline-segment cluster of seg.3, the distance between polyline segments of trace 5 and 

trace 4, which move in opposite direction, is larger than that of polyline segments of any 

two traces in similar direction but is the shortest distance between any two polyline 

segments in opposite direction. A more formal description is shown in Algorithm 3 in 
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Appendix A. It consists of two algorithms performing subtasks, including sweep-line 

algorithm (Subroutine 6 in Appendix A) and recursive polyline searching algorithm 

(Subroutine 7 in Appendix A).  

 

Figure 3.19: Demonstration of polyline clustering algorithm. 

 

The sweep-line algorithm is performed to select portion of nearby polyline 

segments (divisional polyline segments, Fig. 3.20) within the extent of the reference 

polyline segment. As shown in Fig. 3.20, two perpendicular lines are placed at starting 

and ending points of the reference polyline segment. The solid blue dot denotes the 

intersection points of the perpendicular line and the nearby polyline segments belonging 

to another reformed GPS trajectory. If the nearby and reference polyline segments are 

totally overlapping, such as 1
st
 and the Ref Ln Segment in Fig. 3.20, a new divisional 

polyline segment is generated because the intersection points substitute the original 

endpoints of the 1
st
 polyline segment. If the entire polyline segment is within the extent of 

the Ref Ln Segment, such as 4
th

 polyline segment, its endpoints remain unchanged. If 
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nearby polyline segment, such as 2
nd

 or 3
rd

 polyline segment, and the reference polyline 

segment are partially overlapping, only one endpoint needs to be replaced by the 

intersection point. For instance, the ending point of the 2
nd

 polyline segment is substituted 

by the intersection point while the starting point of the 3
rd

 polyline segment also needs to 

be replaced. At the end, divisional polyline segments are obtained as shown in Fig. 3.20. 

 

Figure 3.20:  Demonstration of intersection points of nearby and reference polyline 

segments. 

 

The intersection point of any two lines can be found by treating two lines as a 

system of two linear equations in two variables (x and y). The equations of nearby 

polyline segment and sweep line perpendicular to the reference polyline segment can be 

created by using Eq. 3.5 and 3.6. The slope (  ) and y-intercept (  ) of the sweep line 

can be derived based on the moving direction (Azimuth angle, Az) and coordinates of 

endpoints of the reference line segment. The slope (            ) and y-intercept 

(           ) of the nearby polyline segment are calculated based on its moving direction 

and one of endpoints. The coordinates of the intersection point can be obtained by using 

Eq. 3.7.  

Sweep line  

          

   t n(9   (   9  );  

                                         

Equation 3.5  

Nearby line  

                           

            t n(9              ) 

                                                 

Equation 3.6  

       Equation 3.7 
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The recursive polyline searching algorithm serves the purpose of clustering 

divisional polyline segment nearby the reference polyline segment according to the 

allowable distance, threshold value of directional change (11°), and minimum number of 

polyline segments inside of a cluster. According to (Lee et al., 2007), the result of 

polyline clustering is usually affected by the minimum number of polyline segments 

depending on different data sources or user’s preference. The minimum three polyline 

segments are mandatory for forming a cluster, based on the rule of thumb adopted in the 

point density-based spatial clustering of applications with noise (DBSCAN).  

 

The reformed GPS trajectories passing through the extent of the reference 

polyline segment are recorded for later process. For example, Fig. 3.21 show the close-up 

view of the reference polyline segment seg.3 in Fig. 3.19 and its nearby divisional 

polyline segments in both directions, which are found by employing the sweep-line 

algorithm. Starting from the reference seg.3 of trace 3, the algorithm found its closest 

divisional neighbors (seg.1, 2, 3, and 4 from trace 2; and seg. 2, 3, and 4 from trace 4). 

There is no more polyline segment on the left side of seg. 3 of trace 3 can be clustered 

because the distances from polyline segments of trace 5 to those of trace 4 are larger than 

the allowable distance. On the right side of the reference polyline segment, the divisional 

seg.1 of trace 1 (in color of dark) is clustered because it has shorter distances to divisional 

polyline segments of trace 2 than the allowable distance. Meanwhile, the reformed GPS 

trajectory is recorded if anyone of its polyline segments is divisional into the extent of the 

reference polyline segment. 
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Figure 3.21: The close-up view of reference polyline segment and its nearby divisional 

polyline segments (dark color). 

 

The distance function employed in the recursive polyline searching algorithm is to 

calculate the distance between two close polyline segments. The complex distance 

function consists of perpendicular distance, parallel distance and the angle distance 

between two polyline segments are already used in the trace clustering algorithm 

proposed by Lee et al. (2007) and Li et al. (2010). In this thesis research, only the 

perpendicular distance (shown in Fig. 3.22) is employed because the trajectory 

reconstruction algorithm converges GPS trajectories on the same road to the middle of 

the road and the spacing amongst them are less than the lane width.  

 

Figure 3.22: Perpendicular distance function for clustering polyline segments. 

 

Given moving direction (Azimuth angle, Az) and coordinates of starting and 

ending points (c and d) of polyline segment cd, the linear equation of cd based on the 
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slope and y-intercept of cd can be obtained by using Eq. 3.6. The perpendicular linear 

equation can be derived according to the fact that the slope of the line perpendicular to cd 

with slope (m) is -1/m. The y-intercept (b) of the line perpendicular to cd can be found by 

substituting the coordinates of endpoint (a) into the linear equation in Eq. 3.6. At 

projected point (a'), these two equations are equal to each other. Therefore, the 

coordinates of the projected point (a') on the polyline cd can be expressed by coordinates 

of point (a). The distance distaa’ is the perpendicular distance from endpoint (a) to 

polyline (cd) that can be solved by using Eq. 3.8. In the recursive polyline searching 

algorithm, two polyline segments are in the same cluster if perpendicular distances 

between them are within the allowable distance. As shown in Figure 3.22, polyline 

segments ab and cd are grouped together if their perpendicular distances (distaa’, distbb’, 

distcc’, and distdd’) are not larger than the allowable distance. Checking all perpendicular 

distances between any two close polyline segments make sure that at road split polyline 

segments on different road are not grouped into one cluster. 

Perpendicular 

distance       
|        |

√    
 

Equation 3.8 
 

where, m is the slope of the polyline segment on which point is projected; b is y-intercept 

of the polyline segment; (xp, yp) is the coordinates of the endpoint 

3.6. Road Centerline Extraction 

Section 3.5 generates the clustered polyline segments at each road segment. This section 

is to extract the road centerline segment by merging all divisional polyline segments 

belonging to the cluster. As discussed in Section 2.2.2, the method proposed by (Tavares 

and Padilha, 1995) is more appropriate for the complex distribution of polyline segments 

in a cluster, such as partial overlapping, full overlapping, and none overlapping segments 

in similar directions. On the other hand, the resulting polyline segment is closer to its true 

location in the cluster because the centroid of all participated polyline segments in the 

cluster is calculated by taking their lengths as weights. Therefore, the polyline merging 

algorithm is adopted from the edge line merging used in the area of computer vision 

(Tavares and Padilha, 1995) with two modifications.  
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 Only two polyline segment distributions, partial overlapping and full overlapping, 

are considered because sweep lines at starting and ending points of the reference polyline 

segment divide nearby polyline into two or three segments. The divisional polyline 

segments are grouped into a cluster by segment. As shown in Fig. 3.23, polyline 

segments (seg. 3 and 4 of trace 2, seg.3 and 4 of trace 1 ) are partial overlapping with the 

reference polyline segment (seg.4 of Ref. Trace); and the polyline segment (seg.4 of trace 

5) is full overlapping. 

 The divisional polyline is involved if its reformed GPS trajectory has similar 

moving behavior with the reference trajectory. Fig. 3.24 illustrates the approach of 

selecting the optimal divisional polyline segments from each cluster. At reference 

polyline segment seg.4, only two reformed GPS trajectories (trace1 and 2) passing 

through extents of its predecessor (seg.3) and successor (seg.5) simultaneously. Therefore, 

only divisional polyline segments in color of dark (seg.3 and 4 of trace2, seg.3 and 4 of 

trace1) and the reference polyline segment are used to calculate centerline segment. In 

another case, the polyline segment (seg.4 of trace 6) is partial overlapping with the 

reference polyline segment (seg.4 of Ref. Trace).  However, it is not involved in the 

extraction of road centerline segment regarding the seg.4 of the reference trace (Ref. 

Trace in Fig. 3.23) because the trace 6 does not have common movement with the 

reference trajectory. The trace 6 only passes through extents of seg.4 and its predecessor 

(seg.3). Thus, the divisional polyline segment of seg.4 in trace 6 (dark color) is not used 

to extract road centerline segment with respect to the reference polyline segment (seg4. of 

Ref. Trace). But, it will be used to update the position and direction of extracted road 

centerline segment in later process if it is within the estimated road width. The road width 

can be estimated by generating a polygon around the extracted road centerline based on 

its furthest vertexes at four corners.  
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Figure 3.23: Illustration of divisional polylines involved in the polyline merging 

algorithm. 

  

The road centerline at each cluster is extracted by merging all divisional polyline 

segments into one representative polyline segment. The algorithm proposed in this 

section runs in three steps (A more formal description of this algorithm is shown in 

Algorithm 4 in Appendix A.):   

1) Road centerline segment extraction; 

2) Road width estimation; and 

3) Road centerline segment updating.  

Road centerline segment extraction: The direction and coordinates of the road 

centerline can be derived by merging all divisional polyline segments in the cluster into 

one polyline. Fig. 3.24 illustrates the polyline merging algorithm adapted from the edge 

line merging used in the area of computer vision. Given a polyline cluster with n 

divisional polyline segments; Cpolyln = {polyln1, polyln2, …, polylnn} where each of them 

contains moving direction (Az) and coordinates of starting and ending points intersected 

with the sweeping line; polylni = {xstart, ystart, xend, yend, direct, length} where i <= n. 
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Taking the length of  the polyline segment as the weight, coordinates of the centroid of 

the polyline cluster and the overall moving direction of the merged polyline are 

calculated by using Eq. 3.9 and Eq. 3.10, respectively. 

      
∑    (             )

 
   

 ∑    
   

 

      
∑    (             )

 
   

 ∑    
   

 

Equation 3.9 

 

where,   = length of the polyline;  i       = coordinates of start and end points of the 

divisional polyline segment i. 

    
∑        

   

∑    
   

 

    (   9  ) 

Equation 3.10 
 

where,    = moving direction of the merged;   = rotation angle from original coordinate 

system XY to new coordinate system X′Y′; Azi = direction of divisional polyline segment 

i that is measure as the azimuth angle. 

The new coordinate system X′Y′ with x-axis parallel to the overall moving 

direction and origin at the centroid O’ can be defined based on the rotation relative to the 

XY-coordinate system. Along with the overall moving direction, the starting point of the 

merged point always has minimum value of x while the ending point has the maximum 

one. In order to find the minimum and maximum values of x coordinate, all endpoints of 

divisional polyline segments are projected to the x-axis of the X′Y′ frame by applying Eq. 

3.11. The coordinates of starting and ending points in original XY-coordinate system can 

be determined based on the coordinate transformation in Eq. 3.12.  

     (     )      (     )     
y     

Equation 3.11 
 

x_start                          ;  

y_start  in          in            ; 

x_end                           ; 

y_end                         o’; 

Equation 3.12 
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As shown in Fig. 3.24, x-coordinates of endpoints (a, b, c, d, e, f, m, and n) can be 

projected to the x-axis of X′Y′ frame as projected points (a′, b′, c′, d′, e′, f′, m′, and n′). 

The starting and ending points of the merged polyline, passing through the centroid O’ 

and on the overall moving direction, are defined by two projected points (a′ and b′) that 

are farther apart on the X′-axis.  

  

Figure 3.24: Extraction of road centerline segment at each cluster. 

 

 Road width estimation: Instead of using assumed constant road width as 

discussed in Section 2.2.2, the road width at every extracted road centerline segment can 

be estimated by outlining a polygon based on four vertexes, instead of using the assumed 

uniformed road width. The vertex is defined as the furthest endpoint on each side of the 

starting or ending point of the extracted road centerline segment. Fig. 3.25 illustrates the 

off-line point P (x0, y0) and the extracted road centerline segment with starting point A 

(x1, y1) and ending point B (x2, y2). In order to determine the side of the oriented line 

AB at which the point P is located, the definition of the cross product is adapted by using 

Eq. 3.13 relative to the overall moving direction based on the right-hand rule.  
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  (           ) 

  (           ) 

       ‖ ‖‖ ‖  in   

       (     )(     )  (     )(     ) 

If z > 0; P is on left-side of AB 

If z < 0; P is on right-side of AB 

Equation 3.13 

where, a is the vector from A to B, b is vector from A to P, z is the vector perpendicular 

to a and b,   is the angle between vectors a and b within the range from zero to 1   . 

 

Figure 3.25: Determining left or right-side point of the oriented line segment. 

 

 Road centerline segment updating: To perform feature-based topological 

analysis to identify some unclassified divisional polyline segments within the polygon. If 

so, updating the coordinates and direction of extracted road centerline segment. Recall 

the second modification early introduced in this section, the divisional polyline is 

involved in the polyline merging algorithm if its reformed GPS trajectory has similar 

moving behavior with the reference trajectory. It results in that the unclassified divisional 

polyline segment is generated. For instance, in Fig. 3.23, the polyline segment (seg.4 of 

trace 6) is partial overlapping with the reference polyline segment (seg.4 of Ref. Trace).  

However, it is not involved in the extraction of road centerline segment regarding the 

seg.4 of Ref. Trace because the trace 6 does not have common movement with the 
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reference trajectory. The plumb-line algorithm
21

is utilized to determine if both 

intersection points of the divisional polyline segment are inside of the polygon. In the 

plumb-line algorithm, if the vertical line dropped from the point intersects an odd number 

of sides of the polygon, the point is inside the polygon. Otherwise, the point is not in the 

polygon. Eqs 3.9 – 3.12 are used again to update the location and direction of the 

extracted road centerline segment if there is any new divisional polyline segment with 

both endpoints inside of the polygon. 

3.7. Topological Connectivity at Road Intersections 

Section 3.6 extracts the road centerline from clustered divisional polylines by segment. 

On each road, there is only one road centerline that is composed of a number of 

sequential centerline segments. As introduced in Section 3.5, the reformed GPS trajectory 

with the maximum number of components on every road is considered to be reference 

line based upon which the polyline segment clustering algorithm is applied to classify 

similar trajectories. Extracted road centerlines are disconnected where road is splitting or 

merging, because relative small change in moving directions of reformed GPS 

trajectories or sparse distribution of original GPS trajectories. Reformed GPS trajectories 

have moving directions in common when the road starts splitting apart or merging 

together. The sparse spatial distribution of vehicle positioning points causes that the 

number of reformed GPS trajectories is less than the parameter value of polyline 

clustering algorithm in Section 3.5. Fig.3.26 illustrates two significant scenarios 

regarding the connectivity of the extracted road centerlines, Y-split and intersection. 

Every extracted road centerline is composed of a sequential set of endpoints; CLi = {Pti_1, 

Pti_2, …, Pti_j}, where Pts are stored with respect to the direction of CL. 

 Section 3.7 addresses the topological connectivity of extracted road centerlines in 

order to create an integrated road network represented by nodes and edges. The 

intersection of two or more extracted road centerlines are represented as nodes; and 

connections among neighbor nodes are represented by edges. The identification of nodes 

is done through spatial query that is implemented at endpoints (starting and ending points) 

                                                 

 

21Yeung, A. K., & Lo, C. (2002). Concepts and techniques of geographic information systems Prentice Hall. 
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of the extracted road centerline, respectively. A more formal description of this algorithm 

is shown in Algorithm 5 in Appendix A. The connectivity between extracted road 

centerlines are derived based on the semantic road-knowledge based rules of their 

endpoints and the topological relationship among endpoints of extracted road centerlines 

and the underlying reformed GPS trajectories. 

1) The ending point of one extracted road centerline may have one or two forward 

links to starting points of others; 

2) The starting point of one extracted road centerline may have one or two backward 

links to ending points of others; 

3) The ending point of the extracted road centerline of the highway exit ramp has 

two forward links intersecting with other extracted road centerlines; and 

4) The connection is formed if and only if the common underlying reformed GPS 

trajectories passing through extents of both extracted road centerlines.  

 

(a) 
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(b) 

 

(c) 

Figure 3.26: Illustrations of connectivity of extracted road centerlines. 

 

 The geometric relationship amongst endpoints of extracted road centerlines is a 

prerequisite for linking them together to be an integrated road network. Fig. 3.26(a) 

illustrates the disconnected road centerlines at road Y-split section. Eq. 3.13 is applied 

repeatedly at starting and ending points (Pt1_4, Pt2_1, and Pt3_1) to assist in determining the 

optimal node at where these three extracted road centerlines are intersected. For example, 
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nearby starting points (Pt2_1, Pt2_2, Pt3_1, and Pt3_2) are within 150-meter range of the 

ending point (Pt1_4) are classified into two groups, left or right-side of the direction of 

extracted road centerline CL1. The threshold value of 150 m is selected in order to 

compensate the unexpected discontinuity caused by 100-meter distance threshold adapted 

in preprocessing of original GPS trajectories. In each classified starting-point group, the 

optimal starting point is derived if the difference between its azimuth angle (from ending 

point, Pt1_4, to starting point, Pt2_1 or Pt2_2) and the direction of ending point (Pt1_4) is the 

smallest. At each optimal starting point, a reverse search is implemented by using Eq. 

3.13 to determine the optimal ending point on CL1. In case that there are two optimal 

ending points found by the reverse search, they are recorded as intersection-nodes if their 

space on CL1 is over 50 m (see experimental threshold in Section 5.1). Otherwise, the one 

closer to both optimal starting points is recorded as the node if the distance is within 50 m. 

Fig. 3.27(b) shows the disconnection extracted road centerlines at road merging section. 

In this case, Eq. 3.13 is utilized at the ending point (Pt6_4) to search the intersecting node 

with CL5. The intersecting node must be one of endpoints on CL5 which has minimum 

difference between its azimuth angle (from Pt6_4 to itself) and the direction of CL6.  

 The most challenge is the connectivity of extracted road centerlines representing 

the turning at the road intersection. As shown in Fig. 3.26(c), the ending point (Pt4_6) is 

supposed to be linked to one right-side node on CL9 and one left-side node on CL11. The 

intersection node detected could not represent the actual turning information at this road 

intersection if only Eq. 3.13 is applied. For instance, Pt9_3 and Pt9_4 could be linked from 

Pt4_6 because they all have minimum change in azimuths comparing to others at each side. 

Therefore, Eq. 3.13 combined with Eq. 3.14 are used to guarantee that only endpoints of 

CL9 on right-side of CL4 and those of CL11 on left side of CL4 are taken into account.  

 Given last two endpoints of one extracted road centerline (P1 and P2, where P1 is 

the endpoint P4_5 and P2 is the ending point Pt4_6) and two endpoints (Pt9_4 and Pt11_3), 

Pt9_4 and Pt11_3 are classified into the right-side group by Eq. 3.13 but on opposite 

directions of the road. Let Pt3 denoting either one of them, the vector starting at Pt3 can be 

calculated by assuming one close temporary point (Pt4) on the direction of Pt3 in Eq. 3.14. 

After that, Eq. 3.13 takes vectors     
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   and     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   to further distinguishes endpoints on the 

same side but not on the same road. For instance, Pt9_4 is on CL9 and Pt11_3 is on CL11. 
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Finally, only the endpoint on each extracted road centerline and with minimum distance 

to Pt4_6 is deemed to be the intersection node which can be linked from the ending point 

(Pt4_6).  

P1= (P1x, P1y); P2= (P2x, P2y); P3= (P3x, P3y); P4= (P4x,P4y) 

 

If P3.direct IN  [   9  ) 
P4x = P3x +    in(     i   t) 

P4y = P3y +      (     i   t) 

 

Else If P3.direct IN  [9       ) 
P4x = P3x +    in(          i   t) 

P4y = P3y -      (          i   t) 

 

Else If P3.direct IN  [         ) 
P4x = P3x -    in(     i   t      ) 

P4y = P3y -      (     i   t      ) 

 

Else If P3.direct IN  [         ) 
P4x = P3x -    in(     i   t      ) 

P4y = P3y +      (     i   t      ) 
 

 

where, the constant value  is an assumed distance starting from P3. 

Equation 3.14 
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Chapter 4. Experimental Data and Study Area 

4.1. GPS Data Collection 

The real-world GPS dataset was collected by the smartphone application named Traffic 

Alert developed by the GreenOwls Mobile Solutions Inc. After initial launch of Traffic 

Alert, over 4,000 users have registered and downloaded the applications for streaming the 

GPS data to the central database. The experimental data, provided by the GreenOwls 

Mobile Solution Inc., spans from January 1
st
 to June 15

th
 in 2011 and covers the southern 

Ontario. Fig. 4.1 shows the spatial distribution of 30,906,455 GPS positioning points of 

smartphone users (Blackberry, iPhone and Android-based smartphones), who traveled 

around the south region of the Ontario province, including points related to driving, idling, 

walking, and biking. Each GPS trajectory is composed of a sequence of time-stamped 

positioning points which have geographic coordinates (latitude and longitude), direction 

(azimuth), timestamp, accuracy, speed, and the system-generated identification (SID). 

The GPS points related to the movement of smartphone users were collected with 

sampling rate of one second. Most smartphone users never turned off the location access 

permission to stop the GreenOwls’s Traffic Alert application. Consequently, point clouds 

were generated at some particular locations, such as building (home, office, and shopping 

mall), parking lots, sidewalks, driveways, traffic lights, and traffic congestions. The SID 

is randomly generated and automatically assigned to the user at the initialization of the 

Traffic Alert application. The SID does not change with the update of the operating 

system of the smart phone. Other attributes of the positioning point, such as accuracy, 

direction, and speed, are GPS calculations that are uploaded to the central server in real 

time.  
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Figure 4.1: Spatial distribution of collected GPS data. 

 

4.2. Case Study Area 

The original GPS data retrieved from the central database were stored in comma 

separated values (.csv) files monthly. Since Environmental Systems Research Institute 

(ESRI) shapefile is unable to handle such huge amount monthly GPS data because all 

component files of a shapefile (.shp, .dbf, and .shx) are limited to 2 GB each, the 

experimental GPS data were split into 67 equal-area tiles covering the majority regions of 

the southern Ontario as shown in Fig. 4.1. Monthly GPS data in each tile were merged 

into one feature class in the ArcGIS file geodatabase due to the unlimited file 

geodatabase size. In the file geodatabase, each feature class can store 4,294,967,295 

records. The 11
th

 tile was selected as the study area, because it has the maximum number 

of GPS points comparing to other tiles. The 11
th

 tile the region in the Great Toronto Area 

with a geographical range of 79  34’  . 9’’ W, 43  35’ 39.17’’ N, 79  22’ 44.42’’ W, and 

43  44’ 38.15’’ N. Fig. 4.2 shows that the study area covering the southeastern region of 

Peel and the west of Toronto as highlighted in the blue rectangular area. The GPS dataset, 

inside of the tile 11, is composed of 2,026,251 GPS points. The detailed analysis of GPS 

data is available in Section 5.1. 
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Figure 4.2: Study area and spatial distribution of GPS data of the 11
th

 tile. 

 

4.3. Accuracy of GPS-enabled Mobile Device 

The accuracy of GPS data is affected by various factors. For instance, multipath errors 

could be caused by nearby buildings in local area, the signal reflected by the surrounding 

vehicles on highway, or/and satellite visibility (satellite geometry and weather condition). 

Other factors such as ionosphere delay and tropospheric delay were not considered in this 

project, because accuracy requirements for smart phones GPS cannot match with those of 

survey-graded professional GPS devices antennas. As has been well known, the more 

satellites that are available, the less likely to encounter poor Dilution of Precision (DOP) 

situation. It is difficult to determine the threshold value of accuracy for selecting optimal 

GPS data, because no standards regarding the accuracy of GPS chips utilized by iPhone 

and Blackberry have been disclosed by the manufacturers. Accordingly, the parameter of 

GPS data accuracy involved in the data preprocessing algorithm was selected by 

considering existing evaluations of GPS-enabled smartphones’ accuracy.  
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 To date, little quantitative information is available about the horizontal accuracy 

of GPS data obtained from the iPhone and Blackberry. No formal studies on the 

performance of the integrated positioning system (Assisted GPS, Wi-Fi, and Cellular 

network) of the iPhone were conducted, except a few iPhone blogs having posts based on 

the users’ experiences without any scientific accuracy evaluation. Blackberry locates the 

user’s position by using the combination of Autonomous, Assisted-GPS, and Cellular-

network modes.  

 Table 4.1 lists the available studies of the positional accuracy of smartphone GPS 

data. The accuracy of Wi-Fi and cellular-network positioning is highly dependent on the 

density of the Wi-Fi access points and the cell towers. The minimum horizontal errors of 

Wi-Fi and Cellular-network are reported as 16 and 30 m, respectively. Therefore, Wi-Fi 

and Cellular network are rarely used for navigation purpose. Unlike the autonomous GPS 

directly receiving radio signals from satellites, Assisted-GPS establishes a GPS reference 

network to increase the positional accuracy in case of the weak signals from satellites. 

However, Assisted-GPS locations are less accurate than those from regular autonomous 

GPS enabled smartphones. Under the static outdoor testing condition Zandbergen (2009) 

addressed that the mean horizontal positional accuracy of Assisted-GPS locations is 7.7 

m while the regular autonomous GPS can be less than two meters. For real-time traffic 

analysis, Menard and Miller (2011) concluded that 

- “94.38% of the time
22

 the iPhone 4 report within 10 m and 50.66% of the time 

being within 5 m. (12000 sample data points)” and 

- “93.22% of the time within 50 m and 45.92% of the time within 18 m. (26000 

sample data points)”. 

As of this writing, only Wiehe et al. (2008) addressed that the approximate six-meter 

horizontal accuracy of Blackberry’s Assisted-GPS data was employed to rack the travel 

patterns of adolescents. Additionally, (Zandbergen and Barbeau, 2011) evaluated the 

reliability of Assisted-GPS on other types of smartphones (Sanyo and Motorola) and 

                                                 

 

22
 manually timed how long vehicle took to travel along a 1.59 km section of roadway 
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suggested that the smartphone GPS data can be qualified as the source of location 

information for the location based service applications. According to Canadian Radio-

television and Telecommunications Commission (CRTC), a positional error within a 

radius of 10 to 300 m from the user’s actual location is acceptable for most location based 

services. 
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Table 4.1: Studies of the positional accuracy of smartphone GPS data

Mode Priority Static outdoor test Dynamic outdoor test 

Published  Unofficial Driving Walking 

Assisted-

GPS/Aut

onomous 

*** iPhone 3G: 

Average 

Horizontal 

Median of 7.7 

m 

10 m iPhone 3G: 

(2600pts) 

93.22% 

within 50 m; 

45.92% 

within 18 m 

of accuracy 

iPhone 4: 

(1200 pts) 

94.38% 

within 10 m; 

50.66% 

within 5 m of 

accuracy 

iPhone 4: 

(626 pts) 

97.77% 

within 10 

m; 58.63 % 

within 5 m 

of accuracy 

iPhone 3G: 

(combination of three 

positioning modes) 

Accuracy varies from 

9 to 47 m 

Sanyo SCP 7050 & 

Motorola i580: 95th 

percentiles of the horizontal 

error distribution from 10.26 

to 23.90 m 

Sanyo SCP 7050 & Motorola i580: 95th percentiles of the horizontal 

error varied from 4.04 to 8.51 m 

 

Blackberry 7520:  horizontal 

accuracy approx. 6m 

Samsung Galaxy S: (652 pts) 97% of all data points within 5 m of 

accuracy; 

Motorola Droid X: (665 pts) 80.15% of all data points within 5 m; 

95.94% within 10 m 

WiFi ** iPhone 3G: 

Average 

Horizontal 

Median of 74 

m 

30 m  

Cellular * iPhone 3G: 

Average 

Horizontal 

Median of 599 

m 

500 m 
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4.4. Raw GPS Data Analysis 

The extracted road centerlines could be offset from the road geometry or twisted due to 

the inherent noise of the raw smartphone GPS data: off-road points (outliers) or point 

clouds. Therefore, it is necessary to improve the quality of input data as part of the 

automatic road network extracting algorithm. This section determines optimal universal 

parameters for data preprocessing based on the statistics of original collected smartphone 

GPS data, including accuracy and speed.  

The threshold value of accuracy in the data preprocessing algorithm was 

developed based on the statistics of monthly raw GPS data accuracy. According to mean 

values of accuracy in Fig. 4.3 (a-f), it was found that around 72.8% of raw smartphone 

GPS data are in the range of zero to 11.28 m as shown in Fig. 4.3 (g). As aforementioned 

in Section 4.3, the dynamic accuracy of smartphone GPS data varies from zero to approx. 

50 m depending on the model of smartphone while the static accuracy is up to 7.7 m. 17.2% 

of the low-accurate collected smartphone GPS data can be eliminated as a result of 

applying the threshold value of accuracy (11.28 m). Due to the lack of existing literature 

reviewing the accuracy of smartphone, the threshold value of 11.28m is used for selecting 

the majority of data input to serve the experimental testing. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

 

(f) 
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(f) 

 

(g) 

Figure 4.3: Statistics of accuracy of collected smartphone GPS data. 
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Figure 4.4: Point clouds caused by users’ slow-moving activities. 

 

GPS point clouds could be generated because of the slow movement at particular 

locations, such as building (home, office, and shopping mall), parking lots, sidewalks, 

driveways, traffic lights, and traffic congestions. These activities can be categorized into 

two groups, locational or navigational activities. As shown in Fig. 4.4, GPS point cloud is 

generated due to the slow-moving traffic at the intersection, walking around at the same 

place, or idling at the parking lot. The patterns of users’ GPS trajectories at such places 

were significantly different from those on roads and highways with normal movement. 

In order to get rid of the GPS point clouds, the second filter of the data 

preprocessing algorithm was developed based on the speed information. A total of 11 

datasets are manually sampled tile by tile from the original collected smartphone GPS 

data; each of sample datasets contained 10,781 GPS points which are densely located at 

significant places, such as road intersections, parking lots, or buildings. Most of the 

sampled GPS points were distributed in GTA as shown in Fig. 4.5. Speed distributions of 

11 sample datasets were highly correlated to one another (see Fig. 4.6) and were usually 

skewed to the right. It thus indicated that there are a few large measurements (high 
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moving speeds) in the sample datasets. The average speed of the sample dataset (1.904 

m/s) is selected as the speed filter in the data preprocessing algorithm, because it can 

remove the majority of noisy points from other sample datasets. Table 4.2 lists the results 

after applying such filter. For example, there are about 97.6% of 10,781 GPS points in the 

2
nd

 sample dataset with speeds less than 1.904 m/s are identified as noise; and overall 

96.65 % of GPS points within point clouds are deemed as noise and then can be removed.  

 

Figure 4.5: 11 sample datasets of point clouds from original collected GPS data 
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Figure 4.6: Correlations between speeds of 11 sample datasets 

 

Table 4.2: Evaluating the threshold of GPS speed (1.904 m/s) on sample datasets 

Sample Dataset % Removed (≤1.904 m/s) % Remaining (>1.904 

m/s) 

1 99.7 % 0.3 % 

2 97.6 % 2.4 % 

3 97.0 % 3.0 % 

4 95.4 % 4.6 % 

5 95.0 % 5.0 % 

6 95.7 % 4.3 % 

7 95.1 % 4.9 % 

8 96.5 % 3.5 % 

9 96.8 % 3.2 % 

10 96.3 % 3.7 % 

11 98.1 % 1.9 % 

Overall 96.65 % 3.35 % 
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Figure 4.7: Removal of point clouds by applying speed and accuracy thresholds. 

Fig. 4.7 illustrates the results after applying above two filters (speed and accuracy) 

to the same sample areas as shown in Fig. 4.4. Compared to the raw GPS points, it is 

clear that the noise in raw GPS points can be suppressed by the preprocessing algorithm. 

For instance, most of dense GPS points at the airport or closed to the intersection are 

eliminated because they are noise for the automatic extraction of road centerlines.  

The distance threshold was referred to similar studies (Wang et al., 2011; Cao and 

Krumm, 2009). Instead of determining the best empirical value of direction threshold by 

a series of experiments (Li et al., 2012; Karagiorgou & Pfoser, 2012; Wang et al., 2011; L. 

Zhang et al., 2010; Cao and Krumm, 2009), it is inspired by the resolution of heading 

direction proposed by Liu et al. (2012) and derived based on the definition of degree of 

curve described by Ghilani and Wolf (2002) (in Eq. 4.1). 
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 in(  ⁄ )
 Equation 4.1 

where,   is the degree of circular curve; and   is the radius of circular curve depending 

on the superelevation and design speed, according to the Geometric Design Guide for 

Canadian Roads (TAC, 1999). Easa (2002) addressed that the recommended design 

superelevation is 0.04 for more recent developments of geometric design of urban 

freeways and high-speed urban streets, which is applicable to the road network in Great 

Toronto Area. The mean speed of vehicle passing through a circular curve such as the 

highway ramps is close to 60 km/h based on the data analysis. As shown in Fig. 4.8, GPS 

trajectories on highway ramps in the 11
th

 tile are sampled for calculating the average 

driving speed (16.18 m/s or 58.24 km/h).  
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Figure 4.8: Sample GPS trajectories are used for calculating mean speed on highway 

ramps. 

 

Based on the Table 2.1.2.5 in the Geometric Design Guide for Canadian Roads, it 

is illustrated that the minimum radius ( ) of 150 m is required for superelevation value of 

0.04 and speed value of 60 km/h. The value of   is calculated from Eq. 4.1 to be around 

11°. As illustrated in Fig 4.9, if directional change over two consecutive positioning 

points is larger than 11° , the GPS trajectories is split into three trips. The first trip 
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includes Pt1 and Pt2; the second trip contains Pt3, Pt4, and Pt5; and the third trip has Pt6 

and Pt7 (see Fig 4.9). 

 

Figure 4.9: A sample GPS trajectory consists of seven time-stamped positioning points 

with different driving directions. 

 

Fig. 4.10 (a) shows the unreasonable connections between any pair of consecutive 

GPS points that are off from the actual road network. Fig. 4.10 (b) presents the 

preprocessed GPS trajectories after data pruning by using four threshold values, including 

speed, accuracy, direction, and distance. There are 1,810,617 GPS points remaining in the 

11
th

 tile after the preprocessing. Obviously, the preprocessed GPS trajectories reveal the 

better geometry of the underlying road network.    

 

(a) (b) 

Figure 4.10: Comparison of raw (a) and preprocessed (b) GPS trajectories. 
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Chapter 5. Results and Analysis 

This chapter presents the results of applying the automatic road network extraction 

algorithm on the large and rich GPS datasets in different regions. After that, a 

quantitative evaluation of the horizontal accuracy of the generated road centerlines is 

provided by comparing them with the MTO highway horizontal alignment data. The 

chapter then finishes with the section analyzing effects of GPS point density on the 

accuracy of derived road centerlines.  

5.1. Experimental Results 

This section tests the effectiveness of the proposed road network construction 

methodology by extracting road centerlines from the testing data in the study area. After 

applying the data smoothing algorithm, the amount of GPS data is reduced to 84.8 % 

(1,719,242 out of 2,026,251 GPS points in the 11
th

 tile) of the total raw GPS points. Due 

to the 2-Gigabyte memory limitation to running 32-bit PythonWin on the 64-bit 

Microsoft Windows 7 operating system (OS), smoothed GPS data in the 11
th

 tile cannot 

be completely processed by the later algorithm of representative point extraction, even 

though a patching application
23

 is utilized to allow the OS addressing up to 4-Gigabyte of 

Random Access Memory (RAM). For the effective perspective, algorithms are 

implemented based on smoothed data within three typical regions in the study area. 

  Fig. 5.1 shows the overviews of the collected GPS data and the constructed road 

network in three different typical regions. Region 1 is selected for testing the proposed 

methodology because it has typical parallel straight segments as well as intersections of 

highway ramps and major roads. In Region 2, there are highway interchanges connecting 

with straight segments. Region 3 is selected for further testing the adaptability of the 

methodology on additional complex highway than Region 2. It is apparent that 

centerlines of major roads and highways can be accurately extracted by using the 

proposed methodology. However, road centerlines of several minor roads and parts of 

                                                 

 

23
 Increasing the memory limit for 32-bit applications in Windows 64-bit OS: 

(www.maketecheasier.com/increase-memory-limit-for-32-bit-applications-in-windows-64-bit-

os/2011/08/13) 
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highway ramps are missing due to the fact that the fewer GPS data were collected. The 

detailed analysis regarding the effect of GPS point density to the result is provided in 

Section 5.3.  

 

Region 1 

 

Region 2 

 

Region 3 

Figure 5.1: Overviews of collected GPS data (left) and extracted road network data (right) 

on three typical scenes. 
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In order to introduce the process of extracting road centerlines more clearly and to 

better understand the results, Fig. 5.2 illustrates the result of each stage for the special 

road sections in detail, including the road intersection, straight segment of opposite 

directions, and Y-split section. After the first two processes (preprocessing and 

smoothing), duplicated GPS points (overlapping GPS points at the same location) were 

removed while the remaining GPS points are converged to the middle of the road. 

Therefore, the spacing among roads can be wider so that GPS points on different roads 

will be distinguished. However, some outliers of GPS points still remained at the road 

median section. It is not accurate enough to show the geometric characteristic of the 

underlying road network. The algorithm of extracting representative points was then 

applied to reduce the data size by extracting a smaller set of new points as representative 

of smoothed GPS points, while preserving the geometric shape of major roads. It is clear 

that the generated road centerlines captured the important direction and connectivity of 

the road network in each road section. 
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(a) Road Intersection 
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(b) Straight Road Segment 
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Raw GPS points Preprocessed GPS points Smoothed GPS points 

 

 

Extracted representative points Reformed GPS trajectories Merged road centerlines 

(c) Y-split Road Section 

Figure 5.2: A detailed view of results at each step of the proposed methodology at various road sections: (a) road intersection, (b) 

straight road segment, (c) Y-split road section. 
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It is impracticable to extract a road centerline by merging original GPS 

trajectories along the same road. As shown in Fig. 5.3, without the aforementioned 

processing, the noisy data in the point cloud occurred during the traffic congestion caused 

the bended GPS trajectories; and the noisy data (biased GPS measurement) caused a 

number of GPS trajectories offsetting from the road and overlapped with other 

trajectories of opposite directions. In order to generate road centerlines for roads of 

various complex geometric shapes, GPS trajectories along each road are reformed by 

linking representative points of similar movement on the same road. 

 

 

Figure 5.3: Deficiency of merging original GPS trajectories along the same road. 
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The searching radius (maximum distance amongst consecutive points) for linking 

representative points along the same road is important to the GPS-trajectory reforming.  

The optimal value is determined by testing different values of searching radius (as listed 

in Table 5.1) on the sample area with 12603 representative points. Table 5.1 contains the 

size of input table, the generated polyline segments, the number of reformed GPS 

trajectories consist of a set of polyline segments, and consumed time. The input data is an 

individual table that stores representative points with coordinates and directions and their 

neighbors within the search radius. 

Table 5.1: Statistics of applying different values of search radius 

Searching 

Radius 

(m) 

Size of Input 

Data (# of 

rows) 

# of Polyline 

Segments 

Consumed time 

(sec) 

# of GPS 

trajectories 

10 61468 5776 349.67 2634 

15 127518 8123 510.83 2048 

20 206996 9150 568.57 1668 

25 302136 9754 647.83 1460 

30 414970 10192 870.81 1365 

35 540898 10492 908.8 1288 

40 677832 10701 979.7 1180 

45 824432 10832 1212.01 1143 

50 983466 10925 1315.99 1083 

55 1157378 11029 1454.52 1063 

 

Fig. 5.4 gives experimental results of linking representative points based on 

various values of searching radius. The longer the search radius, the more representative 

points are linked. The searching radius less than 20 m only provides a large number of 

discrete short connections. The number of long-distance links increases when larger value 

of searching radius is applied, but most of the connections are still in the form of sinuous 

polylines. The result is significantly improved once the value of searching radius is 

greater than or equal to 50 m, because more long-distance linear shaped links can be 

produced.  
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Figure 5.4: Reformed GPS trajectories based on different values of searching radius. 
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As shown in Fig. 5.5, the processing time is linearly dependent on the size of the 

input data. It took more than half an hour to generate new GPS trajectories from 12603 

representative points when 55-meter searching radius was used. Recalling the definition 

of reforming GPS trajectories in Section 3.4, only the representative point with shortest 

distance to the current point can be connected if more than one representative point met 

another two requirements. Fig. 5.4 presents that performances of applying 50-m and 55-m 

searching radius have similar outputs showing dense converged trajectories on individual 

road. Making use of 50-m searching radius takes less time to implement the GPS 

trajectories reconstruction compared to using 55-m, and preserve the connectivity of 

reconstructed GPS trajectories at road Y-split sections (e.g. highway ramp merge to 

highway collector in Fig. 5.4). Therefore, 50-m searching radius deems to be a better 

trade off that conforms to the requirements of linking representative points, and provides 

an acceptable representation of road geometry for merging converged polyline segments 

on the same road.  

 

Figure 5.5: Testing the search radius for reforming GPS trajectories in terms of 

processing time and the number of input data 
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The search radius is only one of prerequisite for selecting candidate points to 

reconstruct GPS trajectory. The more concerns in GPS reconstruction algorithm are the 

geometric relationship between representative points and the topological relationship 

between representative points and the preprocessed trajectories. 

 

5.2. Visual Inspection 

Visual comparison of the extracted road network and aerial images shows that extracted 

road centerlines match well with road features in the aerial images, which are digital 

orthophoto image of 15-cm spatial resolution provided by MNR. Fig. 5.6 shows the 

overview of the correspondence between the extracted road network and road features in 

three classical regions. The majority of road centerlines can be obtained and matched 

with the geometry of road features except that several road centerlines are discrete at 

highway ramps or road intersections.  

 

 Figure 5.6: Visual inspection of extracted road network with high-resolution aerial 

orthophoto image. 
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Fig. 5.7 shows close-up views of extracted road centerlines at the road 

intersection, Y-split section, and highway interchanges. Bi-directional road centerlines, 

modeling each direction of travel as a separate alignment, can be extracted from massive 

GPS points for providing a “close-to-reality” presentation of the road network. However, 

the position of the extracted road centerline is slightly oscillated within the boundary of 

road feature in the image. For example, the extracted road centerlines are offset from the 

middle of the road curve in Fig. 5.7 (d) and (e), while most of them are close to their 

actual locations along the straight road segments in Fig. 5.7 (c). Another significant 

contribution of the proposed methodology is to generate the topological connectivity of 

extracted road centerlines at the road intersection and the complex Y-split section. As 

presented in Fig. 5.7 (a, b, and f), the ramp connections and road merging/splitting in 

support of turning information can be automatically modeled instead of manually 

modifying connectivity after the road network has been created.  

 

Figure 5.7: Close-up views of extracted road network overlaid with high-resolution aerial 

orthophoto image. 
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5.3. Quantitative Evaluation 

The quality of road map in terms of positional accuracy must be assessed and justified, in 

order to produce a digital road map that meets with practical requirements such as navigation 

and mapping (Willrich, 2002). The effectiveness of the proposed methodology is 

investigated by assessing the horizontal accuracy of extracted road centerlines to the 

ground truth data. In order to achieve effective assessment of accuracy, extracted road 

centerlines in classic regions (in region 1 and region 2) shown in Fig. 5.1 are split into 

two sets of straight segments and curve segments. The highway horizontal alignment data 

(green-color line segments in Fig. 5.8) provided by the MTO are selected as the ground 

truth, because it provides information related to the geometric design of the highway, 

such as the length, direction, and position/layout of the centerline of the highway on the 

ground. 

 

 

Figure 5.8: MTO highway horizontal alignment data (green) overlaid with 15-cm 

resolution aerial orthophoto. 



105 

 

 

The horizontal accuracy of extracted road centerlines is assessed by measuring 

difference from the ground truth data. Every extracted road centerline in two sets is split 

into a set of equidistant points. The spacing between consecutive points on the extracted 

road centerline is defined to be 10 m, in order to match with the geometric shape of the 

road. The difference is defined as the perpendicular distance from the point to the 

reference alignment (from MTO), while both of them belong to the same road. Fig. 5.9 

demonstrates three samples of the reference alignments and the corresponding set of 

equidistant points in straight segment set and curve segment set. Equidistant points close 

to the road intersection or Y-split section (in dash-line circle of red color) are located 

farther from the reference alignment than the others along the straight road segment.  

 

Figure 5.9: Illustrating the approach of evaluating horizontal accuracy of extracted road 

centerlines. 
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Figure 5.10: Difference between extracted road centerlines and ground truth. 

 

The statistical summary of the quantitative evaluation is presented by using Fig. 

5.10 and Table 5.2. Fig. 5.10 shows the differences between extracted road centerlines 

and the ground truth data in two sets: road curve segment and straight segment. In general, 

90.78% of 951 equidistant points in the straight-segment set and 84.99% of 313 

equidistant points in the curve-segment set are within four-meter range of the ground 

truth. The extracted road centerlines in the straight-segment set (59.37%) are closer to the 

ground truth than those (44.74%) from the curve-segment set, within the range from 1 to 

4 m. However, there are less equidistant points from the straight-segment set than those 

of the curve-segment set in the one-meter buffer of the ground truth. It is concluded that 

accuracy of the extracted road centerline on road curve segment is higher than that of the 

straight road segment within one-meter range of the ground truth.  

Table 5.2 summaries the quantitative evaluation in terms of distance measurement 

from equidistant points to reference alignment. There are only 0.7% and 0.42% of 

equidistant points from both sets are far from the ground truth (over 6 m), while the 

maximum errors from both sets are 6.123 m and 6.849 m for the curve segment set and 

straight segment set, respectively. The root-mean square error (RMSE) is used to measure 

the horizontal accuracy of the result because it is frequently used to measure the 

difference between predicted value and actual value. The overall horizontal accuracy of 
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extracted centerlines measured by RMSE for 95% of the result is 1.424 m in road curve 

set and 1.252 m in straight road set, respectively.  

Table 5.2: Horizontal accuracy of extracted road centerlines based on the ground truth 

data 

 Curve Segment 

(meter) 

Straight Segment 

(meter) 

Minimum Error 0.002 0.007 

Maximum Error 6.123 6.849 

Mean 1.870 (1.87) 1.953 (1.95) 

Standard Deviation 1.593 (1.59) 1.390 (1.39) 

RMSE (95% of the results) 1.424 1.252 

 

 

5.4. Effects of GPS Point Density 

The experimental results cover majority of major roads and highways within three 

selected regions in the study area which has the largest volume of collected smartphone 

GPS data. The extracted road centerline is sometimes discrete on the highway ramp and 

found missing on the local road, because the Traffic Alert users do not normally use the 

application when driving along the local roads. This section analyzes the effects of GPS 

data point density on the extraction of road centerlines.  

Fig. 5.11 illustrates the calculated magnitude per square meter from raw GPS data 

that fall within a 3x3 rectangular neighborhood around each square-meter area. The color 

of dark green denotes the high-density areas though where vehicles are frequently 

travelling. The lighter color areas mean fewer opportunities for vehicles travelling on 

roads. Therefore, it is inferred that the smaller the magnitude of point density per square-

meter area, less chance of extracting the road centerline.  
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 Figure 5.11: Point density of GPS data within three different regions. 

 

To better understand this inference, Fig. 5.12 shows the effect of point density on 

the coverage of extracted road centerlines by using a partial cloverleaf interchange in the 

first region as an example. In the close-up view, there are four direct ramps and two loop 

ramps. The direct ramp connecting the highway and the major local road has more chance 

of having vehicles travelling on than another direct ramp (merging to the highway from 

the major local road), even though their point densities are within the same range (0.174 – 

4.111). Therefore, a continuous road centerline can be extracted for the existing direct 

ramp while a discrete road centerline was generated for the emerging direct ramp. In 

contrast, there is less chance to construct road centerline for other direct ramps and loop 

ramps due to low point density of GPS data collected. Nevertheless, such problem can be 

resolved if the GPS data used were collected from a longer period. Taking the loop ramp 
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and the direct ramp (in black dash-line circles) as examples, they are not qualified for 

generating road centerlines because the number of the reconstructed GPS trajectories 

does not meet with the requirement of polyline-segment clustering algorithm in Section 

3.5.  

 

Figure 5.12: Close-up view of the effect of point density on extracted road centerlines. 
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It is necessary to determine the minimum point density of raw GPS data (number 

of points per square meter) which ensures the successful extraction of road centerlines. 

As shown in Fig. 5.12, 15 sample GPS data were selected from these three road types, 

direct ramp, loop ramp, and straight road segment. Each sample contains similar value of 

square-meter area (1600 m
2
) except that sample 8 on the loop ramp has relative small 

value of area (944 m
2
). Table 5.3 summaries the number of points and point density for 

each sample. The minimum value of point density required for this proposed 

methodology is 0.3 points per square meter which is within the calculated range (0.174 – 

4.111) as shown in Fig. 5.12. In addition, the discrete road centerline is generated for 

direct ramp (black dash-line circle) due to that the point density of the sample 4 is smaller 

than the threshold value. Therefore, the minimum point density (0.30 points per square 

meter) must be utilized in the data preprocessing in order to generate the completed 

coverage of extracted road centerlines, which captures the most important connectivity 

and geometry properties of the actual road network.  

Table 5.3: Summary of point density of sample GPS data on different types of roads 
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Chapter 6. Conclusions and Future Work 

This chapter summarizes the work described in previous chapters and recapitulates the 

research objectives mentioned in Chapter 1 and how they were achieved, followed by a 

list of contributions to the subject of road network extraction based on GPS trajectories. 

The future work which could improve the research outcomes is then discussed.  

6.1. Conclusions 

As depicted in Chapter 1, the GPS trajectories collected from smartphones have been 

recently used to extract road geometric data for road network database updating and road 

maps refinement. This new approach entails a fast and inexpensive way of updating 

existing road maps and refining road maps with near real-time changes (e.g., new roads 

not showing in the existing road network database). Nevertheless, the presence of 

inevitable GPS noisy point clouds and uncertain distribution of smartphone GPS 

trajectories cause major obstacles for automatically extracting road network without 

using a reference road map.  

As discussed in Chapter 2, the main challenge of existing methods is how to 

automatically generate road centerlines that can effectively capture both accurate 

geometry and connectivity of the actual road network. Some of the factors, such as data 

reduction without affecting underlying road network extraction, spatial clustering 

algorithms that distinguish nearby parallel roads and road splits are subject to various 

parameters, topological and geometrical relationships for generating accurate road 

junctions, and constructing bi-directional road centerlines, have not yet been fully 

investigated.  

In this regard, this thesis demonstrated an attempt to fill the current gap by 

developing the new automatic methodology and prototype for extracting road network 

data from smartphone GPS data. This research focuses on integrating the modified 

conventional point- and polyline-based approaches to automate the entire process of 

accurately extracting road network without using any reference map. The proposed 

method includes five stages:  
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1) The preprocessing filters and weighted-mean smoothing algorithm were applied 

to remove extraneous, duplicated or inaccurate GPS data points from raw 

smartphone GPS trajectories.  

2) The modified density-based point clustering method was applied to extract 

representative points along each lane on the road.  

3) The representative points belonging to the same lane were connected based on 

their topological relationships and directions, in order to remain faithful to the 

underlying road network geometry.  

4) The road centerlines were derived by using customized density-based polyline 

segment clustering method to merge those reformed GPS trajectories, which share 

the same geometric attributes on the road.  

5) The road centerlines were topologically connected together to generate a 

completed road network. 

The contributions of this thesis research are to overcome the main challenges 

found in similar studies as discussed in Chapter 2.  

1) Overall 96.65% GPS data in point clouds are deemed to be noise and can be 

removed by utilizing the speed filter derived from the raw GPS data analysis.  

2) GPS trajectories on parallel roads of similar direction or the same road of opposite 

directions can be clarified by applying the modified 4-meter circular window 

smoothing and the customized density-based point clustering algorithms that take 

the accuracy of GPS data point as the weight.  

3) The bi-directional road centerlines can be extracted from a set of sequential 

polyline segment clusters on the same road of opposite directions, if collected 

GPS data meet with the minimum point density requirement. The extracted road 

network data can be added into the digital road map which meets with practical 

requirements (e.g. navigation and linear referencing system), because each 

extracted road centerline contains geographic location (e.g. starting and ending 

positions) and corresponding attributes (e.g. moving direction and turning 

direction).  
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4) The polyline segment cluster is formed by using polyline-based clustering 

algorithm among reconstructed GPS trajectories. Unlike those similar studies as 

reviewed in Section 2.2.2, the polyline-based clustering algorithm is an innovative 

approach to further identify GPS trajectories on different roads and group the 

same-road GPS trajectories together without using any reference map.  

5) The connectivity of extracted road centerlines can be automatically derived based 

on the semantic road-knowledge based rules of their endpoints as well as the 

topological relationship among endpoints of extracted road centerlines and the 

underlying reformed GPS trajectories. By means of the proposed method, there is 

no need for manually linking extracted road centerlines at the road junction or Y-

split section. 

6) The estimated road width is the byproduct of the polyline segment clustering 

algorithm. The position of extracted road centerline can be incrementally updated 

if recent collected GPS data are within its boundary. 

7) A GIS-based software tool can be developed for generating the road network data 

based on smartphone GPS data, because each procedure presented in Chapter 3 is 

developed as a standalone python script tool for ESRI ArcMap. There is no 

manual operation required, since these tools are sequentially strung together 

where feeding the output of one tool as the input for another tool. 

As of this writing, none of the aforementioned studies has performed quantitative 

evaluation by comparing the results with the actual ground truth maps (MTO highway 

alignment data). The visual inspection presented in Chapter 5 demonstrates that majority 

of road centerlines can be obtained and matched well with the geometry and connectivity 

of road features. Moreover, the horizontal accuracy of extracted road centerline measured 

by RMSE is 1.424 m and 1.252 m for curved road segments and straight road segments, 

respectively. The maximum offsets from the ground truth data are 6.123 m and 6.849 m 

for the curve road segments and straight road segments, respectively. The experimental 

results are more accurate than ESRI North American detailed street dataset (from sub to 
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12 m)
24

 and Ontario Road Network (up to 10 m) 
25

 published by Land Information 

Ontario (LIO), even though they are derived by using high-quality data from the road 

authorities such as TomTom North American, Inc., municipalities, and MNR. Therefore, 

it is proven that the proposed methodology can output the high-quality road network data 

if sufficient amount of smartphone GPS data possibly of low quality is provided and the 

minimum point density of source data is satisfied. To conclude, this thesis addressed an 

effective and automatic way to build detailed road network based on large-scale and 

coarse-grained smartphone GPS data without using any reference map data.  

6.2. Future Work 

This thesis research provides a foundation for developing an automatic self-learning GIS 

application for updating existing road maps and refining road maps with real-time 

changes. Some possible extensions of the proposed methodology are listed as follows: 

Data cleaning: This thesis proposed to incorporate the derived threshold values of 

speed and the change of moving direction in the data preprocessing algorithm. The 

accelerated speed and time gap between any two consecutive positioning points could be 

other optimal parameters that should be taken into account. Since GPS data were 

collected with the sampling rate of one second, point clouds could be formed if the 

acceleration of one vehicle is relatively slow on the road during a certain time period.   

Road information: Additional road associated information can be addressed 

based on the estimated road width and movement patterns, such as the number of lanes, 

speed limit, and road restriction, etc. For example, the number of lanes on the road is able 

to be estimated based on the known road width on every road segment and the 

approximate land width defined in the Geometric Design Guide for Canadian Roads. 

Mining driving directions, road width, and GPS data point density based on historical 

GPS trajectories cam provide drivers with the timely detour recommendation by 

predicting the traffic alert. 

                                                 

 

24
 http://library.duke.edu/data/files/esri/esridm/2010/streetmap_na/streets.html  

25
 http://publicdocs.mnr.gov.on.ca/View.asp?Document_ID=17566&Attachment_ID=37853 
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Road coverage: As described in Section 5.4 the point density of collected GPS 

data is a crucial factor to provide good coverage over all the roads, including highways 

and local roads. Building a detailed and fine-grained road network database is possible if 

sufficient data is in urban area is provided. Furthermore, the connectivity of extracted 

road centerlines at road junctions could be presented in a better way on the vector road 

map if an optimal line fitting algorithm is applied in future. 
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Appendix 

 Algorithm 1: Representative Point Extraction Algorithm 

1:  INPUT: Smoothed positioning points (pt), SPT 

2:  temPt=Ø; --- stores points found in current cluster, but already stored in another 

cluster  

3:  clsdPt = Ø; --- stores points already be clustered  

4:  tempC= Ø; --- stores preliminary centroids of clusters  

5:  resultC= Ø; --- stores final representative points 

6:  // Step 1: Generating preliminary representative points 

7:  FOR pt IN SPT:  

8:  IF pt NOT IN clsdPt  

9:  FOR nearby point (npt) IN 4-m buffer of pt: 

10:  IF npt IN clsdPt  

11:  ADD npt into temPt; 

12:  ELSE IF npt NOT IN clsdPt  

13:  ADD npt into clsdPt; 

14:  END IF  

15:  END FOR 

16:  ADD pt into clsdPt; 

17:  IF pt has neighbours within its 4-m buffer  

18:  CALCULATE centroid of current cluster using Eq.3.2 and Eq. 

3.3; 

19:  FOR nearby point (npt) IN 4-m buffer of pt: 

20:  IF npt is closer to centroid of current cluster  

21:  REMOVE npt from its old cluster in tempC; 

22:  ADD npt into current cluster in tempC; 

23:  ELSE IF npt is outside of current cluster  

24:  REMOVE npt from clsdPt and current cluster; 

25:  END IF 

26:  END FOR 

27:  FOR npt in current cluster: 

28:  IF npt’s surrounding points (nnpt) NOT IN current 

cluster but within 4-m buffer of the centroid  

29:  ADD nnpt into current cluster; 

30:  IF nnpt NOT IN clsdPt then 

31:  ADD nnpt into clsdPt; 

32:  END IF 

33:  END IF 

34:  END FOR 

35:  ELSE IF temPt NOT empty  

36:  FOR tpt IN temPt:  

37:  IF tpt is closer to centroid of current cluster than its 

old one 

38:  REMOVE tpt from tempC and add it into 

current cluster 
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39:  END IF 

40:  END FOR 

41:  ELSE 

42:  centroid = pt 

43:  ADD all points of current cluster into tempC; 

44:  END IF 

45:  END IF 

46:  END FOR 

47:  // Step 2: Split a cluster to two or more clusters if inside point has different 

moving direction comparing to its centroid 

48:  FOR temclsPt IN tempC: 

49:  ddirect  --- calculate cosine value of direction difference between temclsPt 

and its centroid 

50:  IF ddirect = ( , radian(11˚)]  

51:  ADD temclsPt into Cluster1; --- road non-similar direction to 

centroid, but maybe on the same road  

52:  ELSE IF ddirect =(radian (11˚),1]  

53:  ADD temclsPt into Cluster2; --- similar direction to centroid, on the 

same  

54:  ELSE IF ddirect < 0  

55:  ADD temclsPt into Cluster3; --- opposite direction to centroid, on 

different road 

56:  ELSE 

57:  ADD temclsPt into Cluster4; --- perpendicular direction to centroid, 

at intersection 

58:  END IF 

59:  CALCULATE new centroid of each cluster and assign it to be 

representative point; 

60:  ADD representative point into resultC; 

61:  END FOR 
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Algorithm 2: Trajectory Reconstruction Algorithm 

1:  curr : Current point  

Subroutine1: determine initial single optimal preceding or succeeding point; 

Subroutine2: classify point IN candidatePointSet into 2 groups regard to curr: 

ahead[] or behind[]; 

Subroutine3A: determine optimal succeeding point from ahead[]; 

Subroutine3B: determine optimal preceding point from behind[]; 

Subroutine 4: continuously search preceding point; 

Subroutine 5: continuously search succeeding points; 

2:  // Main Body 

3:  DO 

4:  curr = New Rep.point; 

5:  candidatePointSet = [ points with 50-m of curr AND sharing common traces ] ; 

6:  candidatePointCount = count of candidatePointSet; 

7:  IF candidatePointCount = 1 

8:  Subroutine1; 

9:  IF single optimal preceding point 

10:  Subroutine 4; 

11:  reformed GPS trajectories; 

12:  ELSE 

13:  Subroutine 5; 

14:  reformed GPS trajectories; 

15:  END IF 

16:  ELSE 

17:  IF candidatePointCount > 1 

18:  Subroutine2; 

19:  Store classified points into two group: ahead[] and behind[] 

20:  IF ahead[ ] IS NOT empty AND behind[ ] IS NOT empty 

21:  Subroutine3A and 3B; 

22:  Subrountine 4 AND Subrountine 5; 

23:  reformed GPS trajectories; 

24:  ELSE 

25:  IF ahead[ ] IS NOT empty AND behind[ ] IS empty 

26:  Subroutine3A 

27:  Subroutine 5; 

28:  reformed GPS trajectories; 

29:  ELSE 

30:  IF ahead[ ] IS empty AND behind[ ] IS NOT empty 

31:  Subroutine3B 

32:  Subroutine 4; 

33:  reformed GPS trajectories; 

34:  END IF 

35:  END IF 

36:  END IF 
37:  END IF 
38:  END IF 
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39:  WHILE ((candidatePointCount != 0 ) OR (candidatePointCount > 1 AND (ahead[] 

IS NOT empty OR behind[] IS empty))) 

40:   

41:  // Subroutine 1: determine single optimal preceding or succeeding point 

42:  Az1 = azimuths from current to candidate; 

43:  Az2 = azimuths from candidate to current; 

44:  Avg = average of current and candidate directions; 

45:  IF |Az1 - Avg| LESS THAN EQUAL 11° 

46:  create connection from curr to succeeding point; 

47:  ELSE 

48:  IF |Az2- Avg| LESS THAN EQUAL 11° 

49:  create connection from preceding point to curr; 

50:  ELSE 

51:  start from next available Rep.point; 

52:  END IF 

53:  END IF 

54:  IF connection IS valid 

55:  start from next available Rep.point; 

56:  ELSE 

57:  mark succeeding/preceding point as connected AND store the connection; 

58:  store (curr AND succeeding point) OR (preceding point AND curr) 

59:  END IF 

60:   

61:  // Subroutine 2: classify point IN candidatePointSet into 2 groups regard to 

curr: ahead[] or behind[] 

62:  T = different between azimuth (from curr to candidate point) and direct of curr; 

63:  IF T GREAT THAN 180°  

64:  T = T – 360°; 

65:  END IF 

66:  IF T LESS THAN -180° 

67:  T = T + 360°; 

68:  END IF 

69:  IF(T GREAT THAN -90°) AND (T LESS THAN 90°) 

70:  candidate point is ahead curr; 

71:  ELSE 

72:  candidate point is behind curr; 

73:  END IF 

74:   

75:  // Subroutine 3A/3B: determine optimal preceding/succeeding point from 

ahead[]/behind[] 

76:  minAz1: Az from curr to candidate point; 

minAz2: Az from candidate point to curr; 

point: preceding point/ succeeding point; 

Dist: distance b/n candidate point and curr; 

Avg: average direction of curr and candidate point; 

77:  minAz1 = 0; 



120 

 

78:  minAz2 =0; 

79:  Dist =0;  

80:  Avg=0; 

81:  point = NULL; 

82:  FOR i IN ahead[](behind[]) 

83:  IF Az of i !=0 and minAz1(minAz2) ==0 

84:  minAz1(minAz2)= Az of i; 

85:  Dist = distance of i to curr; 

86:  Avg = avg of i and curr; 

87:  point = ID of i; 

88:  Continue; 

89:  END IF 
90:  IF Az of i !=0 AND minAz1(minAz2) !=0 

91:  IF | Az of i – avg of i and curr| < |minAz1(minAz2) – Avg| 

92:  minAz1(minAz2)= Az of i; 

93:  Dist = distance of i to curr; 

94:  Avg = avg of i and curr; 

95:  point = ID of i; 

96:  ELSE IF | Az of i – avg of i and curr| == |minAz1(minAz2) – Avg| 

97:  IF distance of i to curr < Dist 

98:  minAz1(minAz2)= Az of i; 

99:  Dist = distance of i to curr; 

100:  Avg = avg of i and curr; 

101:  point = ID of i; 

102:  END IF 

103:  END IF 

104:  ELSE IF Az of i !=0 AND minAz1(minAz2) !=0 AND Az of i == 

minAz1(minAz2) 

105:  IF distance of i to curr < Dist 

106:  minAz1(minAz2)= Az of i; 

107:  Dist = distance of i to curr; 

108:  Avg = avg of i and curr; 

109:  point = ID of i; 

110:  END IF 
111:  END IF 
112:  END FOR 

113:   

114:  // Subroutine 4: continuously search and connect the optimal succeeding 

points. 

// Subroutine 5: continuously search and connect the optimal preceding points. 

115:  INITIALIZE   
116:  // Subroutine 4: current & succeeding points; (curr= succeeding; prev = current) 

// Subroutine 5: current & preceding points; (curr=preceding; next= current) 

117:  SELECT unconnected nearby points in similar direction to curr; 

118:  candidatePointSet = [ points with 50-m of curr AND sharing common traces with 

curr and prev / next] ; 
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119:  candidatePointCount = count of candidatePointSet; 

120:  IF candidatePointCount = 1 

121:  Subroutine 2 

122:  IF candidatePoint IS succeeding of curr 

123:  reformed connection from curr to succeeding point; 

124:  prev = curr 

125:  curr =succeeding 

126:  ELSE IF candidatePoint IS preceding of curr 

127:  reformed connection from preceding point to curr; 

128:  next=curr 

129:  curr=preceding 

130:  ELSE 

131:  curr = New Rep.point; 

132:  END IF 

133:  ELSE IF candidatePointCount >1 

134:  Subroutine3A or 3B 

135:  reformed connection from preceding point to curr OR from curr to succeeding; 

 



122 

 

Algorithm 3:  Sub-trajectories Clustering Algorithm (Polyline Spatial Clustering) 

1:  ReformC: stores reformed GPS trajectories in descending order regarding number of 

components (polyline segments); 

Subroutine6: Sweep line algorithm to partition nearby polyline segments and stored 

them as candidate divisional line segments for clustering; 

Subroutine7: Recursive line clustering algorithm to incrementally cluster divisional 

line segments on the same road with current polyline segment (lineid); 

Subroutine8: Calculate shortest distance between a point and a line segment; 

candidateNLS: dictionary store candidate divisional line segment (direct change <= 

11°) of a lineid; 

actualNLS: dictionary store actual divisional line segments on the same road with a 

lineid; 

tracepassingLS: dictionary store reformed GPS trajectory’s ID passing a lineid; 

2:  FOR connection IN ReformC 

3:  SELECT the first polyline segment FROM all segments of the connection 

// the first polyline segment must have no previous segment along the moving 

direction of entire connection 

4:  INITIALIZE lineid = first polyline segment.ID 

5:  WHILE lineid != 0 

6:  IF lineid is never be clustered 

7:  STORE IDs of all nearby (50-m)polyline segments around lineid 

INTO nearFIDlst 

8:  ADD lineid and its coordinates of endpoints, direct, and length 

INTO clustlst 

9:  MARK lineid as used line segment 

10:  IF nearFIDlst NOT EMPTY // lineid has nearby polylinesegments 

11:  Subroutine6 

12:  Subroutine7 

13:  END IF 

14:  lineid = nextline.ID 

15:  END IF 

16:  MARK all searched polyline segments as clustered 

17:  END FOR 

18:  // Subroutine6: Sweep line algorithm 

19:  CALCULATE slope and y-intercept of perpendicular line at starting point of lineid 

20:  CALCULATE slope and y- intercept of perpendicular line at ending point of lineid 

21:  INPUT: nearby polyline segment (coordinates of endpoints, direct) 

& lineid (coordinates of endpoints) 

22:  CALCULATE slope and y- intercept of nearby polyline segment 

23:  CALCULATE intersection points of nearby polyline segment with the perpendicular 

line at starting point of lineid and the perpendicular line at ending point of lineid 

24:  PARTITION nearby polyline segment into sub segments 

25:  IF sub segment is between perpendicular lines at starting and ending points of lineid 

26:  STORE sub segment as candidate divisional line segments in candidateNLS for 

clustering 

27:  END IF 
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28:  // Subroutine7: Recursive line clustering algorithm 

29:  FUNCTION RecursiveSearch(lineid) 

30:  FOR one nearby polyline segment (nlineid) of lineid 

31:  IF nlineid IN candidateNLS AND nlineid not being clustered 

32:  Subroutine8 // Calculate shortest distances (dist1 & dist2) from 

endpoints of one divisional polyline segment to another divisional 

polyline segment 

33:  IF dist1 <= allowable distance  AND dist2 <= allowable distance 

34:  ADD  nlineid INTO actualNLS 

35:  IF nlineid.TrajectoryID NOT IN tracepassingLS 

36:  ADD nlineid.TrajectoryID INTO tracepassingLS 

37:  END IF  

38:  RecursiveSearch(nlineid) 

39:  END IF 

40:  END IF 

41:  END FOR 

42:  // Subroutine8: Perpendicular distance from one point to a line 

43:  INPUT: coordinates of starting point and ending point of a line & coordinates of a 

point 

44:  CALCULATE vector of a line 

45:  CALCULATE length of a line 

46:  CALCULATE unit vector of a line 

47:  CALCULATE normal unit vector to a line 

48:  CALCULATE vector line from starting point of a line to a point 

49:  CALCULATE projection of vector line (from starting point of a line to a point) to 

normal unit vector to a line (shortest distance)  
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Algorithm 4: Road Centerline Extraction Algorithm 

1:  INPUT: tracepassingLS; 

actualNLS; 

2:  FOR connection IN ReformC 

3:  SELECT the first polyline segment FROM all segments of the connection 

4:  INITIALIZE lineid = first polyline segment.ID 

5:  WHILE lineid != 0 

6:  IF lineid is never be clustered 

7:  INITIALIZE prevline 

8:  INITIALIZE curntline 

9:  INITIALIZE nextline 

10:  IF lineid has no previous polyline segment 

11:  prevline = curntline = lineid 

12:  nextline = lineid.NEXTLineID 

13:  ELSE IF lineid has previous and next polyline segments 

14:  prevline = lineid.PREVIOUSLineID 

15:  curntline = lineid 

16:  nextline = lineid.NEXTLineID 

17:  ELSE // lineid has no next polyline segments 

18:  prevline = lineid.PREVIOUSLineID 

19:  nextline = curntline= lineid 

20:  END IF 

21:  FIND common reformed GPS trajectories passing through all 

three sequential polyline segments FROM tracepassingLS 

22:  SELECT clustered nearby divisional polyline segments FROM 

actualNLS[curntline] WHERE actualNLS[curntline] has more 

than three components 

23:  FOR each selected polyline segment 

24:  APPLY Subroutine6 to get intersection starting and ending 

points 

25:  ADD them into starting group and ending group, 

respectively 

26:  CALCULATE the length of divisional polyline segment 

27:  IF selected polyline segment.TraceID in common reformed 

GPS trajectories AND selected polyline segment never be 

clustered 

28:  ADD its new coordinates, direct, and length INTO 

final cluster for calculating centerline 

29:  ELSE  

30:  IF selected polyline segment never be clustered 

31:  ADD its new coordinates, direct, and length 

INTO temporary cluster for refining centerline 

32:  END IF 

33:  END IF 

34:  END FOR 

35:  APPLY Eq. 3.6 to calculate direction and coordinates of starting, 
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middle, and ending points of the road centerline segment from the 

final cluster 

36:  Subroutine9  

37:  IF temporary cluster NOT EMPTY 

38:  APPLY Eq. 3.11 plumb-line algorithm to detect if 

divisional polyline segments in the temporary cluster is 

inside of the polygon 

39:  IF inside of polygon 

40:  REFINE the coordinates and direction of extracted 

centerline segment 

41:  END IF 

42:  END IF 

43:  lineid = nextline.ID 

44:   

45:  Subroutine9 // constructing a polygon around the extracted centerline segment to 

cover the road width 

46:  Identify points in starting group as left-side or right-side of lineid and  points in 

ending group as left-side or right-side of lineid; 

47:  IN each group // left-side of starting; right-side of starting; left-side of ending; right-

side of ending 

48:  SELECT one point which has furthest distance to lineid as a vertex of the 

polygon coving the road width. 

49:  CONSTRUCT the polygon in direction of clockwise (left-side of starting, left-side 

of ending, right-side of ending, right-side of starting) 
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Algorithm5: Road Centerline Topological Connection Algorithm 

priorityoptIndex: stores Road ID by descending order of # of components; 

MptNbyLnDict: stores relationship between an endpoint and its 15-m nearby polyline 

segments; 

LNDict: stores attributes of a polyline segment: connectionID and direction; 

CLNbyLnDict: stores relationship between an endpoint and its 150-m nearby 

endpoints; 

RoadDict: stores a road (RoadID) and endpoints of its polyline segments; 

1.  // Constructing topological connectivity from the ending point of a road to the 

starting point of another road 

2.  INITIALIZE tempSplit: a dictionary temporarily stores next nodes of an 

endpoint of an extracted road centerline, where, 

tempSplit[key]=[(value pair)]; key =RoadID of nextnode, (value pair) = 

(nextnode, endpoint) 

3.  FOR road.ID IN priorityoptIndex: 

4.  SELECT last two ending points (endid1 & endid2) on the road; 

5.  CALCULATE Azimuth from endid2 to endid1; 

6.  SELECT all endpoints within 150-m of endid1 FROM CLNbyLnDict 

WHERE  sharing common connections AND in similar direction to endid1 

7.  FOR each endpoint IN Selected endpoints: 

8.  IF Abs(cos (endpoint.Direct – endid1.Direct) ) = [0.8, 1]  // Y-Split road 

9.  CLASSIFY the endpoint into: left-sideofendid1[] or right-

sideofendid1[ ]  

10.  SELECT the left-side endpoint has min. Azimuth from endid1 

FROM left-sideofendid1[ ] 

11.  SELECT the right-side endpoint has min. Azimuth from endid1 

FROM right-sideofendid1[ ] 

12.  ELSE IF Abs(cos (endpoint.Direct – endid1.Direct))  =[0, 0.8) // 

Intersection road 

13.  CLASSIFY the endpoint into: left-sideofendid1[] or right-

sideofendid1[] 

14.  SELECT the left-side endpoint has shortest distance from endid1 

FROM left-sideofendid1[ ] 

15.  SELECT the right-side endpoint has shortest distance from endid1 

FROM right-sideofendid1[ ] 

16.  END IF 

17.  END FOR 

18.  INITIALIZE nextnode1 to zero 

19.  INITIALIZE nextnode2 to zero 

20.  IF the left-side endpoint AND the right-side endpoint EMPTY 

21.  nextnode1=0 

22.  nextnode2=0 

23.  ELSE IF the left-side endpoint EMPTY 

24.  nextnode1=0 

25.  nextnode2= the right-side endpoint 

26.  ELSE IF the right-side endpoint EMPTY 
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27.  nextnode1= the left-side endpoint 

28.  nextnode2= 0 

29.  ELSE 

30.  IF the left-side endpoint.RoadID == the right-side endpoint.RoadID 

31.  IF the left-side endpoint.ID > the right-side endpoint.ID 

32.  nextnode1= the left-side endpoint 

33.  ELSE // the left-side endpoint.ID < the right-side endpoint.ID 

34.  nextnode2= the right-side endpoint 

35.  END IF 

36.  ELSE 

37.  nextnode1= the left-side endpoint 

38.  nextnode2= the right-side endpoint 

39.  END IF 

40.  END IF 

41.  IF nextnode1 <> 0 AND nextnode2<>0 

42.  ADD nextnode1 and nextnode2 INTO corresponding tempSplit;  

43.  // E.g. tempSplit[RoadID of nextnode1]=[(nextnode11, endid1), 

(nextnode12, endid1),..( nextnode1n, endid1)] 

tempSplit[RoadID of nextnode2]=[(nextnode21, endid1), (nextnode22, 

endid1),..( nextnode2n, endid1)] 

44.  ELSE IF nextnode1 <> 0 

45.  ADD nextnode1 INTO tempSplit; 

46.  ELSE IF nextnode2<>0 

47.  ADD nextnode2 INTO tempSplit; 

48.  ELSE 

49.  CONTINUE 

50.  END IF 

51.  END FOR 

52.  // Comparison of nextnodes stored in tempSplit, in order to select the optimal 

nextnode 

53.  INITIALIZE newSplit: a dictionary stores refined nextnodes in value pairs 

54.  FOR each road of nextnode IN tempSplit 

55.  IF tempSplit has two value pairs 

56.  IF two nextnodes close to each other 

57.  SELECT nextnode further from endid1 as the optimal nextnode as 

the optimal nextnode; 

58.  END IF 

59.  ADD optimal nextnode INTO each value pair in newSplit; 

60.  ELSE IF tempSplit has more than two value pairs 

61.  IF all nextnodes close to the starting point of a extracted road centerline 

62.  SELECT nextnode further from endid1 as the optimal nextnode as 

the optimal nextnode; 

63.  ADD optimal nextnode INTO each value pair in newSplit; 

64.  ELSE {all nextnodes locate at some polyline segments of a extracted 

road centerline 

65.  ADD all  nextnodes INTO corresponding value pairs in newSplit; 
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66.  // E.g. newSplit[RoadID of nextnodes]= [(nextnode11, endid11), 

(nextnode12, endid12),..( nextnode1n, endid1m)] 

67.  ELSE // tempSplit only has one value pair 

68.  ADD this unique value pair INTO newSplit; 

69.  END FOR 

70.  // Updating the starting point of each extracted road centerline, since some of 

them have new starting points (nextnode related to an endpoint of another 

extracted road centerline 

71.  FOR each road (RoadID)IN RoadDict 

72.  IF newSplit has RoadID 

73.  IF newSplit[RoadID] only has one value pair AND nextnode of the value 

pair is close to the original starting point of the current road 

74.  Update starting point IN RoadDict;  

75.  ELSE IF newSplit[RoadID] has more than one value pair 

76.  SELECT minimum nextnode.ID that is close to the original starting 

point of the current road; 

77.  Update starting point IN RoadDict; 

78.  ELSE 

79.  REMAIN original starting point IN RoadDict; 

80.  END IF 

81.  ELSE 

82.  REMAIN original starting point IN RoadDict; 

83.  END IF 

84.  END FOR 

85.  // Refining the topological connectivity amongst the starting point of one road 

and the ending point of another road 

86.  FOR road.ID  IN priorityoptIndex 

87.  IF  road has more than one value pair IN RoadDict 

88.  SELECT first two starting points (startid1 & startid2) on the road; 

89.  CALCULATE Azimuth from startid1 to startid2; 

90.  SELECT all endpoints within 150-m of startid1 FROM CLNbyLnDict 

WHERE  sharing common connections AND in similar direction to 

startid1 

91.  FOR each endpoints IN Selected endpoints 

92.  CLASSIFY the endpoint into: left-side of startid1 or right-side of 

startid1 

93.  SELECT the left-side endpoint has min. Azimuth to startid1 FROM 

left-sideofendid1[ ] 

94.  SELECT the right-side endpoint has min. Azimuth to startid1 

FROM right-sideofendid1[ ] 

95.  END FOR 

96.  INITIALIZE previousnode1 to zero 

97.  INITIALIZE previousnode2 to zero 

98.  IF the left-side endpoint AND the right-side endpoint EMPTY 

99.  previousnode1 =0 

100.  previousnode2 =0 
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101.  ELSE IF the left-side endpoint EMPTY 

102.  previousnode1 =0 

103.  previousnode2 = the right-side endpoint 

104.  ELSE IF the right-side endpoint EMPTY 

105.  previousnode1 = the left-side endpoint 

106.  previousnode2 = 0 

107.  ELSE 

108.  IF the left-side endpoint.RoadID == the right-side endpoint.RoadID 

109.  IF the left-side endpoint.ID > the right-side endpoint.ID 

110.  previousnode1= the left-side endpoint 

111.  ELSE // the left-side endpoint.ID < the right-side endpoint.ID 

112.  previousnode2 = the right-side endpoint 

113.  END IF 

114.  ELSE 

115.  previousnode1= the left-side endpoint 

116.  previousnode2 =the right-side endpoint 

117.  END IF 

118.  END IF 

119.  IF road. ID  NOT IN newSplit 

120.  IF previousnode1<>0 AND previousnode1<>0 

121.  ADD both INTO newSplit[road.ID ] AS new value pairs // [(startid1, 

previousnode2),(startid1, previousenode1)] 

122.  ELSE IF previousnode2== 0 

123.  ADD previousnode1 INTO newSplit[road.ID ] 

124.  ELSE IF previousnode1== 0 

125.  ADD previousnode2 INTO newSplit[road.ID] 

126.  END IF 

127.  END IF 

128.  END FOR 

129.  WRITE RoadDict AND newSplit INTO Feature Class 
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