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ABSTRACT 

 

Development of a Library of Responses for an Early-Warning Biomonitoring 

System to Detect and Identify Various Aquatic Contaminants 

 

 

 

By: 

 

Aryo Maradona 

Master of Applied Science, 

Environmental Applied Science and Management 

Ryerson University 

2011 

 

 

 

Biomonitors can be implemented in aquatic ecosystems to continuously assess 

water quality, but existing monitors are still reliant on a single species and unable to 

identify any stressor.  A library of responses could potentially address these drawbacks 

by stereotyping the responses of several aquatic species to different contaminants.  A 

model for the library was developed by conducting a bioassay on Pseudokirchneriella 

subcapitata and collecting the response data of Daphnia magna, Hyalella azteca and 

Lumbriculus variegatus from published ecotoxicological studies.  Multivariate statistical 

tools were then employed to process the response data set and evaluate the ability of the 

model to distinguish contaminations by atrazine and tributyltin.  Based on preliminary 

tests, the library was able to detect and identify each contaminant within 4 hours with an 

accuracy of 97%.  These findings supported the integration of a library of responses in a 

biomonitoring system to provide a more comprehensive water quality assessment. 
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CHAPTER 1                                                                             

INTRODUCTION 

Freshwater is an integral component of human lives, yet the availability of clean 

and potable water is constantly threatened by a variety of factors.  Traditionally, many 

human settlements have been concentrated near a lake or a river due to the convenience 

of having a nearby freshwater supply.  Close proximity to a water body also increased the 

accessibility of the settlements and facilitated the transport of goods and raw materials 

through shipping.  As the populations of settlements grew and more water-side 

communities were established, the risk of contamination due to anthropogenic activities 

also increased.   

 

According to a survey conducted in 1999 among 153 water providers in the 

United States and Canada, the most common causes of water contamination can be 

attributed to transportation accidents, pipeline and storage tank leaks, pesticides from 

agricultural runoff, and pathogenic microbes from untreated sewage (Gullick et al., 

2003).  Water contamination also occurred frequently according to the 2009 Spill Action 

Report published by the Ontario Ministry of Environment which recorded 1,162 spills 

into water bodies in Ontario that year, with 595 of these cases confirmed to have caused a 

significant environmental impact (Ontario Ministry of the Environment, 2010).  Although 

far more unlikely, the United States Environmental Protection Agency (US EPA) also 

recently evaluated the heightened concerns of terrorist attacks through the release of 

harmful chemical, microbial or radioactive materials into the national water infrastructure 
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and suggested the installation of an Early-Warning System (EWS) to mitigate these risks 

(US EPA, 2005).  Based on the various threats highlighted above, it is evident that a 

strategy must be developed to better protect and preserve freshwater sources as well as 

drinking water reservoirs and distribution networks. 

 

 The installation of an EWS in water-monitoring stations is one of the 

recommended strategies for water quality protection.  An EWS typically comprises 

sensors to detect contaminants, a computer unit to process incoming data, an alarm 

system to notify the operators, and protocols to facilitate decision-making and emergency 

responses (US EPA, 2005).  A number of criteria has been proposed for the development 

of a robust and reliable EWS (US EPA, 2005;  ILSI, 1999;  Grayman, 2004;  Hasan, 

2004), and the system must be: 

• Accurately and rapidly responsive to changing water quality with minimal false-

positives and false-negatives; 

• Capable of providing real-time, continuous measurements and detection for a 

wide range of potential contaminants; 

• Mostly automated with little need for human supervision; 

• Inexpensive to install, maintain and upgrade; 

• Easy to operate by low-to-moderately skilled technicians; and 

• Capable of identifying the source, type and concentration of the contaminant. 

 

A technological gap exists because no system currently satisfies all of the above 

recommendations (US EPA, 2005).  Water-monitoring stations typically only measure 
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common physico-chemical parameters such as temperature, dissolved oxygen content, 

conductivity, pH, and turbidity as well as other target chemicals which vary among 

different jurisdictions (Evans et al., 1986; Roig et al., 2007; Dort, 2010).  Physico-

chemical parameters alone do not describe the composition of chemicals which may be 

present in the water and are not adequate for measuring toxicity.  Some real-time 

contaminant monitors have been installed in certain rivers to detect a number of 

predetermined target compounds (e.g., volatile organic compounds), but the range of 

detection for these monitors is very narrow and thus renders the monitors inefficient 

(Dort, 2010; Calder, 2010).   

 

When more thorough analyses are required, spot-sampling must be conducted 

where a sample of water is sent to an off-site laboratory for chemical or microbial 

analysis (Roig et al., 2007).  A variety of analytical instruments, such as 

spectrophotometers, gas chromatographs, high-performance liquid chromatographs or 

mass spectrometers, are often employed to identify the chemical species in the sample.  

These instruments generally require highly-trained professionals to operate, involve large 

capital and maintenance costs, and are unable to detect all known chemicals (Van der 

Schalie et al., 2004; Gerhardt et al., 2006).  Furthermore, there is a delay between sample 

collection and the conclusion of the analysis which can vary from hours to days (Miller et 

al., 1985).  This delay presents an additional risk as a contaminant may potentially travel 

undetected downstream and reach a drinking water intake. 
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Another approach to water quality monitoring is the use of biological organisms 

as components of an online sensor system to detect contaminants.  Similar to a miner’s 

canary, a variety of aquatic organisms display rapid changes in physiology and behaviour 

upon exposure to acute, fast-acting toxins (Streb et al., 2002).  A water safety operator 

can thus indirectly assess the water quality by monitoring a variety of endpoints exhibited 

by these aquatic organisms.  When a deviation occurs in these endpoints, an alarm is 

raised and appropriate mitigative actions can then be taken.   

 

A number of bioassays have evaluated the use of fish (Cairns et al., 1970; Roig et 

al., 2003; Van der Schalie et al., 2004; Van der Schalie et al., 2006; bbe Moldaenke, 

n.d.b), cladocerans (Knie, 1985; Green et al., 2003; Jeon et al., 2008), bivalves (Gunkel 

and Streit, 1980; Kramer and Foekema, 2001; White et al., 2001; Borcheding, 2006), and 

algae (Pandard et al., 1993; Osbild et al., 1995; Durrieu et al., 2006; Fai et al., 2007) in 

biomonitoring systems.  A major drawback to the biomonitors in these studies is their 

reliance on a single species which may lead to an overestimation or underestimation of 

risks posed by a certain contaminant.  Employing only a single species will severely 

compromise the integrity of the EWS as many organisms exhibit varying levels of 

sensitivities to different contaminants (Bunn, 1995).  To address this issue, a number of 

water monitoring stations in Germany and the Netherlands have installed several 

biomonitoring systems including multiple species of various trophic levels (Diehl et al., 

2006).  Despite the system redundancy, there has been no published work to characterize 

the responses of these biomonitors to different contaminants, and as a result, current 
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biomonitoring systems are only capable of indicating the occurrence of a pollutant 

without identifying the actual contaminating agent. 

 

 

1.1 Objectives 

The present study is a component of a large-scale project funded by the Natural 

Sciences and Engineering Research Council of Canada (NSERC) – Strategic Research 

Grants Program to develop a holistic, real-time, multi-organism Early-Warning 

Biomonitoring System (EWBS).  A novel feature of this biomonitoring system is its 

ability to more accurately detect and identify contaminants in a sample of water.  The 

proposed EWBS could potentially bridge the aforementioned technological gap in water 

quality monitoring as the system satisfies most of the previously-mentioned criteria for a 

robust and reliable early-warning system. 

 

A number of studies have been previously conducted for the development of the 

EWBS.  Marshall (2009) examined the changes in the behavioural responses 

(movements) and respiration rates of Daphnia magna, Hyalella azteca, and Lumbriculus 

variegatus when exposed to varying concentrations of atrazine and tributyltin over a brief 

time period.  Similarly, Pearce (2009) monitored various endpoints of Lemna minor, 

Pseudokirchneriella subcapitata, Euglena gracilis, and Anodonta grandis to different 

levels of atrazine and tributyltin.  The objectives of these studies were to evaluate the 

suitability of the selected aquatic organisms for use in the EWBS and to determine which 

endpoints were particularly sensitive to the two contaminants.  By examining the findings 
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from the previous studies and supplementing the collected data with another experiment 

using an online algal fluorometer, the present study intended to investigate whether the 

responses exhibited by a suite of aquatic organisms to different contaminants could be 

characterized.  Ultimately, the present study aimed to create a model for a library of 

responses which can be incorporated into the design of the EWBS to provide a more 

accurate detection and identification of contaminants. 

 

In summary, the objectives of the present study are: 

• To analyze all previous bioassays and to evaluate the suitability of each endpoint 

for inclusion in the library of responses for the EWBS.   

• To supplement the endpoint data collected from the previous studies by 

conducting another bioassay involving the green algae Pseudokirchneriella 

subcapitata.  An online algal monitor was used to measure the effective 

photosynthetic yield of the algae, and the performance of this instrument was also 

evaluated. 

• To characterize the behavioural and physiological responses collected from the 

previous and current studies according to test contaminants.  A number of 

multivariate statistical tools were employed to reduce the variable 

interdependence and to highlight the greatest variance within the data set. 

• To establish a preliminary library of responses and to provide suggestions for the 

future expansion of this library. 
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1.2 Expectations 

In theory, contaminants with distinct modes of action should elicit different sets of 

reactions in a test organism.  Furthermore, different test organisms may also exhibit 

varying sensitivities to a particular contaminant, resulting in various species-specific 

dose-response relationships.  Analyzing this network of interactions between various 

species and doses of contaminants would be cumbersome, and thus a series of data-

simplification tools were applied to facilitate data analysis.  Overall, it was expected that 

the aquatic organisms selected in the present study would exhibit distinct patterns of 

responses to each test contaminant, and this finding could be incorporated in the 

construction of the library of responses. 
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CHAPTER 2                                                                                   

LITERATURE REVIEW 

2.1 Introduction 

The overall objective of this NSERC project is to develop and implement a real-

time early-warning system for drinking water facilities that is capable of detecting 

chemical contaminants using a suite of biomonitoring organisms.  Prior to achieving this 

objective, further theoretical background information on current biomonitoring organisms 

and technologies must be explored.  The present chapter also examines the strengths and 

caveats of many commercially-available biomonitors.  A few of these biomonitors were 

in fact obtained for this NSERC project and evaluated by past researchers (Fleet, 2010; 

Netto, 2010).  This chapter then provides a progress summary of the NSERC project 

based on the findings of past researchers and outlines the strategies to accomplish the 

objectives of the present study.  Finally, some of the challenges in developing the library 

of responses for the EWBS are the large numbers of variables and data observations, and 

thus a series of multivariate statistical tools must be employed to facilitate data analysis.  

These multivariate statistical tools are elaborated as well in this chapter. 

 

 

2.2 Evaluation of Current Biomonitoring Technologies 

2.2.1 Fish Biomonitors 

The research for an automated biomonitoring system started as early as the 

beginning of the 1970s.  In a study by Cairns et al. (1970), a goldfish was placed in an 

aquarium equipped with several light beams and photoreceptors at various levels to 
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provide a rudimentary method of monitoring the swimming pattern of the fish.  By 

counting the number of light beam interruptions, the swimming activity of the fish was 

assessed.  Simple polygraph kits were also set up to measure the heart rate and breathing 

pattern of the fish.  The results of this study supported the use of fish as an indicator 

species in a biomonitoring system.  

  

Recent refinements in fish biomonitoring systems have introduced video-based 

technologies to track other endpoints such as swimming speed, turning rate and swarm 

formation.  The bbe Fish Toximeter (bbe Moldaenke GmbH, Kiel, Germany) consists of 

a tank where a number of fish are observed by a camera, and the recording is analyzed 

using an image-analysis software (bbe Moldaenke, n.d.b).  The unit also minimizes the 

probability of a false-alarm by simultaneously monitoring several parameters such as 

swimming speed, swimming behaviour (e.g. height, the number of turns and circular 

motions), size of each fish, number of active fish, and the location of the fish in the 

aquarium.  A drawback to many video-based biomonitoring systems, however, is the 

need to pre-treat the water because high turbidity levels can affect the ability of the 

camera to track the movement of the animals (Gerhardt et al., 2006).  Alternative 

technologies employing non-visual endpoint measurements have since been developed. 

  

The United States Army Center for Environmental Health Research (USACEHR) 

has conducted extensive research to develop a portable online drinking water monitoring 

system which is capable of rapidly detecting a broad range of chemicals such as cyanide, 

malathion, pentachlorophenol, phenol, tetrachloroethane, tricaine methanesulfonate, and 
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zinc (United States Army Center for Environmental Health Research, 2004; Van Der 

Schalie, 2004).  This system was designed to identify any potential threat of bioterrorism, 

and the equipment was dubbed the Intelligent Aquatic Biomonitor System™ (iABS) 

(IAC 1090, Honeywell Corporation, USA).  Preliminary experiments measured the 

ventilatory rate, ventilatory depth, cough rate and movement of bluegills (Lepomis 

macrochirus Rafinesque) upon exposure to a variety of toxicants at high concentrations 

approaching the 96-h LC50 concentrations of the species (Van Der Schalie et al., 2001; 

Van Der Schalie et al., 2004).  The bluegills were placed in individual chambers with 

carbon block electrodes placed at the top and bottom of each chamber, and as the fish 

ventilated their gills, the electrodes received electrical signals from the muscular 

contractions and recorded the frequency.  The study found that the responses by the fish 

to the toxicants were rapid and consistent with the high exposure levels, and that different 

toxicants even resulted in unique patterns of responses. 

 

Despite the reported success with the instrument, there are still very few peer-

reviewed publications evaluating the performance of the iABS, and thus it is difficult to 

objectively assess the efficacy of the system.  The study by Van Der Schalie et al. (2004) 

utilized toxicants at very high concentrations, but such high levels are unlikely to be 

found in the environment.  Roig et al. (2003) cited the relatively low chemical sensitivity 

of fish as bioindicator organisms, and thus higher concentrations of contaminants are 

typically required in fish bioassays.  Furthermore, the chambers for the fish in the iABS 

are very small and this limited containment may induce additional stress on the fish.  

Gerhardt et al. (2006) also raised some ethical concerns with placing higher organisms 
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such as fish in a very confined space as the organisms would be constantly under stress 

due to the lack of space for manoeuvring.  Due to the limited number of reliable fish-

based biomonitoring systems as well as the relative insensitivity of fish to contaminants 

at environmentally-relevant concentrations, the current NSERC project does not 

recommend the use of fish in the proposed early-warning biomonitoring system. 

 

2.2.2 Daphnid Biomonitors 

Daphnids have been studied extensively in various environmental bioassays, and 

as a result, there is a large amount of ecotoxicological data for the organism (Kieu et al., 

2001; Kiss et al., 2003; Schmidt et al.,2005; Gerhardt et al., 2006; Ren et al., 2009).  One 

of the earliest implementations of daphnids in a biomonitoring system was the Dynamic 

Daphnia Test developed by Knie (1982).  Similar to the fish test by Cairns et al. (1970), 

this test attempted to monitor the swimming activity of several daphnids in an aquarium 

by placing several infrared light beams at various heights and subsequently counting the 

number of beam interruptions.  This setup was partly unsuccessful because of several 

technical interferences.  One hyperactive animal crossing through several beams would 

yield a response pattern that was similar to numerous less active animals passing through 

fewer beams.  In order to address this counting error, a number of technologies have 

integrated digital image analysis to track the location and record the swimming activity of 

individual organisms.  

 

The bbe Daphnia Toximeter II (bbe Moldaenke GmbH, Kiel, Germany) was 

developed based on the Dynamic Daphnia Test (bbe Moldaenke, n.d.a). The instrument 
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obtains a live image of each daphnid using an onboard surveillance camera, and the 

endpoints are then calculated using digital image-analysis software.  The Daphnia 

Toximeter tracks a variety of endpoints, and an alarm is raised when a statistically 

significant departure is exhibited by two or more endpoints.  The bbe Daphnia Toximeter 

II was deployed during the Olympic Games of 2002 in Salt Lake City, Utah, where the 

instrument monitored the water supply and distribution system for any deliberate 

contamination (Green et al., 2003).    

 

A study by Green et al. (2003) evaluated the performance of the bbe Daphnia 

Toximeter in detecting chemical warfare agents in a water sample.  When exposed to 

varying concentrations of sarin, soman, tabun and cyclosarin, the daphnids exhibited 

relatively rapid changes in behaviour, indicating the reaction of the organisms to the 

toxicants.  The study, however, noted that the daphnids were very sensitive to a change in 

pH as well as high levels of chlorine in the water.  Since water distribution systems often 

involve chlorination, dechlorination is required if the toximeter is to be employed to 

monitor the water.  Gerhardt et al. (2006) also noted the hypersensitivity of daphnids to a 

variety of physico-chemical parameters of their environment such as pH, temperature and 

dissolved oxygen level, and this extreme sensitivity presents a significant drawback in 

using daphnids as biomonitors.   

 

Despite reported hypersensitivities of daphnids in various ecotoxicological 

studies, the current study still recommended the use of this organism due to its acute 

sensing ability.  To avoid false readings and minimize any experimental noise, a number 
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of design factors must be carefully controlled.  First, the water used during experiments 

must be pre-treated to eliminate any disruptive particles.  Furthermore, since daphnids 

require continuous feeding by a stable algal culture, a consistent procedure for growing 

the algae must be established to prevent any experimental uncertainty (Gerhardt et al., 

2006).  Last, multiple trials are recommended to ensure that experimental results are 

replicable and not affected by other unaccounted factors.  By following the above 

recommendations, daphnids could be implemented as a sensing organism in a 

biomonitoring system. 

 

2.2.3 Bivalve Biomonitors 

Bivalves are another type of aquatic organism which has been extensively 

evaluated for use in a biomonitoring system (Gunkel and Streit, 1980; Kramer and 

Foekema, 2001; White et al., 2001; Borcheding, 2006).  Gunkel and Streit (1980) found 

that bivalves filtered not only large volumes of water but also suspended particulates, and 

therefore these organisms would be an excellent indicator for hydrophobic pollutants.  A 

typical measured endpoint in a bivalve monitoring system is the opening and closing of 

the shell which is related to the health of the organism (Kramer and Foekema, 2001).   

 

An example of a bivalve-based biomonitor is the Dreissena-Monitor.  In 1989, the 

‘German Commission for the Protection of the Rhine Against Pollution‘ (DKRR) 

initiated a research project to develop, test, and install biomonitors along the River Rhine 

and its tributaries (Bund/Länder-Projektgruppe ‘Wirkungstests Rhein’, 1994).   The 

research project resulted in the installation of the Dreissena-Monitor in 1991 in the city of 
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Bergheim to monitor the River Erft, which is one of the tributaries of the Rhine 

(Borcherding, 2006).  Presently, a number of other Dreissena-Monitors have also been 

installed in other municipalities such as Hattingen, Frödenberg and Amsberg to monitor 

the River Ruhr; and Jochenstein and Bad Abbach to monitor the River Donau.  A 

complete diagram showing all operational sites of the Dreissena-Monitor in Germany is 

published by Borcherding (2006).  

 

 The Dreissena-Monitor employs eighty-four zebra mussels (Dreissena 

polymorpha) which are distributed equally into two parallel channels, and a reed switch 

and magnet which are attached to the top valve of each mussel to record the number of 

open and closed valves (Borcherding and Volpers, 1994).  The percentage of open 

mussels and the number of valve movements per mussel per hour are computed as 

running averages for each channel.  Dynamic limits are also calculated for each channel 

such that, if the latest measurement plus the three-fold standard deviation is lower than 

the previous measurement, an alarm is signalled.   

 

While the measurement of valve movements in the Dreissena-Monitor is binary 

(e.g., 1 = open, 0 = closed), a newer bivalve biomonitoring technology developed in the 

Netherlands measures shell opening as a continuous variable.  Dubbed as the Mossel 

Monitor™, this instrument attaches an emitter and receiver on each shell of the mussel in 

order to record the width of the shell opening (White et al., 2002).  Due to this 

modification, the Mossel Monitor™ is capable of providing more extensive information 

on the mussel activities. 
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 The biggest drawback in using bivalves in a biomonitoring system is the difficulty 

in distinguishing whether any behavioural changes in the mussels are caused by the 

presence of a contaminant, or if the drift is simply a natural variation of the behaviour of 

the organisms.  Based on the data collected over the past ten years with the Dreissena-

Monitor, the valve movements and the percentage of open mussels change regularly, and 

thus the baseline parameters must be adjusted accordingly to prevent false alarms 

(Borcherding, 2006).  An analysis of the mussel behaviour throughout the year also 

reveals a direct relationship between temperature and the number of valve movements.  

As a result, during summer times when the water is warmer, there is > 3-fold increase in 

valve movement activity (Borcherding, 2006).   

 

Because of the large variation in the activity of the bivalves as well as the 

difficulties in characterizing the general behaviour of the organism, implementing 

bivalves in a biomonitoring requires extensive preliminary tests.  A preliminary study on 

bivalves for the current NSERC project was conducted by Pearce (2009) where the 

percentage of open valves and the respiration rates of a group of Anodonta grandis were 

measured.  The study reported some difficulties in maintaining the culture as well as a 

number of inconsistencies among the percentages of open valves and the concentration of 

toxicants.  Due to the poor results in the preliminary tests, bivalves are not recommended 

at the moment for inclusion in the present study.  Additional experiments, however, may 

be considered in the future to further assess the implementation of this organism as a 

biological sensor. 
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2.2.4 Algal Biomonitors 

The use of aquatic plants and algae in biomonitoring systems has been extensively 

studied due to the sensitivity of the photosynthetic activity of aquatic plants to various 

contaminants (Pandard et al., 1993; Osbild et al., 1995; Durrieu et al., 2006; Fai et al., 

2007).  One of the earliest algal biomonitor experiments was conducted by Pandard et al. 

(1993) where photosynthesis rates were quantified using an oxygen electrode.  Measuring 

only oxygen production, however, may lead to inaccuracies in the detection of 

contaminants because other factors such as nutrients and ambient conditions may also 

affect the rates of oxygen production and release.  In order to improve the accuracy, 

subsequent algal biomonitors have incorporated other methods to measure the 

photosynthetic activities such as by quantifying the amount of in-vivo prompt 

fluorescence (IPF).  Other plant endpoints which have been studied are cell growth, 

delayed fluorescence and sometimes motility (for example, in the case of the flagellate 

Euglena gracilis) (Osbild et al., 1995; Tahedl and Häder, 1999; Tahedl and Häder, 2001; 

Gerhardt et al., 2006).   

 

IPF is a short illumination pulse which determines the biomass and the 

physiological state of the organism (Osbild et al., 1995).  When chlorophyll is irradiated 

by a short pulse of light, the energy is either absorbed to drive photosynthesis or re-

emitted as radiation or fluorescence (Strasser et al., 2000).  When a plant is affected by 

the presence of a contaminant, the ability of the plant to photosynthesize could be 

compromised, and thus the ratio of light absorbed versus light re-emitted, or the 

photosynthetic yield, would change (Berden-Zrimec et al., 2007).  Effective 
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photosynthetic yield can be measured using a pulse-amplitude modulation (PAM) 

fluorometer where a suspension of algae is irradiated using a short pulse of light of a 

specific wavelength for a brief period of time.  A study was conducted by Fai et al. 

(2007) where the changes in the IPF and photosynthetic yield of Pseudokirchneriella 

subcapitata were analyzed after exposing the algae to different types and concentrations 

of herbicides.  The study found the algal fluorescence to be a quick indicator of stress in 

plants and could be used in the screening of environmental samples (Fai et al., 2007).   

 

Based on published studies, aquatic plants and algae could potentially be 

employed as a rapid sensing organism in a biomonitoring system.  For the current 

NSERC project, preliminary algal bioassays were conducted by Pearce (2009) where the 

respiratory and physiological parameters of Lemna minor, Pseudokirchneriella 

subcapitata, and Euglena gracilis were measured in response to varying levels of atrazine 

and tributyltin.  Pearce (2009) found a number of endpoints to be useful in providing 

rapid water quality assessment and recommended the inclusion of aquatic plants in the 

EWBS.  The present study aimed to verify these recommendations by conducting a 

similar algal bioassay.   

 

2.2.5 ECOTOX 

The ECOTOX is a commercially-available automated biotest system which 

records different movement parameters of the motile, unicellular flagellate Euglena 

gracilis.  Euglena gracilis possesses a single flagellum at its front end which controls its 

movement and orientation according to external factors such as light and gravity (Tahedl 
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and Häder, 1998).  In the absence of light, the organisms exhibit negative gravitaxis 

where they swim upwards toward the water surface.  At a low level of light exposure, 

however, the organisms tend to travel toward any light source until a certain irradiance 

threshold is reached, and after which they start to exhibit negative phototaxis.  In their 

natural habitat, Euglena gracilis maintain their orientation in the water column through 

an antagonistic balance between negative gravitaxis and negative phototaxis (Netto, 

2010).   

 

Experiments with ECOTOX have shown that the gravitactic orientation is the 

most sensitive movement parameter with significant deviations recorded in as little as 

two minutes after the addition of different toxins (Tahedl and Häder, 1998).  This 

behaviour was attributed to the influence of toxins on the stretch-sensitive ion channels 

located asymmetrically on the cell membrane which act as gravireceptors (Lebert and 

Häder, 1996).  Streb et al. (2002) also found movement and orientation responses of the 

organism to be very susceptible to the presence of heavy metals and organic compounds.  

 

By monitoring the orientation of Euglena gracilis, the ECOTOX can detect 

contaminants in a water sample (Netto, 2010).  The instrument consists of three stock 

chambers which contain the test organisms in water, a distilled water reservoir for 

dilution and rinsing, and the test solution to be analyzed.  The three stocks are pumped 

into the mixing chamber according to the ratio set by the operator, and a small portion of 

this mixture is transferred to a cuvette made of an opaque stainless steel frame to exclude 

phototaxis.  To visualize the organisms, an infrared diode with a wavelength of 875 nm is 
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used as a light source, and the image is recorded using a combination of a miniaturized 

microscope and camera.  A system with a similar setup can also be used to measure the 

behavioural parameters of daphnids, and this modified instrument is dubbed the 

DaphniaTox (Netto, 2010).  

 

The ECOTOX can be used as a rapid biotest in an early-warning system due to 

the very short time required for a complete measurement (Tahedl and Häder, 1999; 

Tahedl and Häder, 2001).  The efficacy of the instrument for longer-term bioassays had 

also been reported where the motility and photosynthetic parameters of Euglena gracilis 

were monitored after twenty-four hours of exposure to various concentrations of nickel 

(Ahmed and Häder, 2010).    Other claimed major advantages were the small size of the 

instrument, the reliability of the image analysis, the ability to simultaneously monitor 

several endpoints, and the automation of the instrument.  The majority of published 

studies to date, however, were authored or co-authored by at least one of the inventors of 

the instrument (i.e. Harald Tahedl and Donat-P. Häder).  This strong bias may have 

hindered any objective assessment of the performance of the ECOTOX based on 

literature reviews alone. 

 

Netto (2010) examined the usability of the ECOTOX and DaphniaTox in 

monitoring the behavioural parameters of selected aquatic organisms to varying levels of 

atrazine, tributyltin, and copper.  Visual observations revealed some contaminant-specific 

sensitivities of the organism where the cell shape and motility were significantly different 

from the reference condition at higher levels of exposure to copper but no significant 
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difference when exposed to atrazine and tributyltin.  Based on this finding, Euglena 

gracilis may be an excellent indicator to differentiate contamination by metals and 

organic contaminants, but further research must be conducted to investigate the 

discriminating ability of the organism for the two types of contaminants (Netto, 2010).   

 

Despite the claimed advantages of the ECOTOX and DaphniaTox, Netto (2010) 

reported some major hardware and software issues which hindered the performance of 

both instruments.  The image analysis software in the ECOTOX was not able to 

adequately capture the movements of the Euglena gracilis, and the study on the 

sensitivity of the ECOTOX was thus considered inconclusive.  Similarly, the DaphniaTox 

system was not functioning at all due to a major instability in the associated image 

analysis software.  Based on the above findings, Netto (2010) recommended some major 

modifications for both the ECOTOX and the DaphniaTox before the systems could be 

implemented in a water quality testing facility.         

 

2.2.6 Multispecies Freshwater Biomonitor 

All other previously-discussed biomonitoring systems have been single-species 

systems where only one type of aquatic organism could be employed at a time or a signal 

disturbance would occur.  The Multispecies Freshwater Biomonitor (MFB), however, is 

capable of measuring the behavioural responses of several different species at the same 

time (Gerhardt et al., 2006).  Despite the claim that the MFB was capable of monitoring 

the behavioural endpoints of several species simultaneously, however, there has been no 
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research documenting such an experimental setup.  Currently, there are only published 

studies documenting the performance of the MFB in single-species experiments.   

 

The instrument comprises a computer, a processing unit, and several individual 

test chambers in which different aquatic organisms could be placed and monitored.  Two 

pairs of electrodes are installed on the walls of each test chamber where the first pair 

generates a high-frequency alternating current of 100 kHz, and the non-current carrying 

second pair senses any change in impedance due to the movement of the organisms.  By 

changing the band of the instrument, different types of movements such as locomotion 

and ventilation can be tracked and recorded (Kirkpatrick et al., 2006).  Because the MFB 

measurements are non-optical, there is no need to pre-treat the incoming water for 

sediments or other impurities (Gerhardt et al., 2006).  This advantage allows the MFB to 

provide a realistic representation of both dissolved and particle-bound pollutants, as well 

as their synergistic effects.  The impedance measurement also enables the MFB to 

monitor the movements of organisms buried in sediments because the measurements are 

unaffected by non-living materials (Gerhardt et al., 2003).    

 

In-situ tests have been reportedly conducted in monitoring stations along the 

Rhine River, France; Aller River, Germany; and Meuse River, the Netherlands using 

Gammarus pulex (Gerhardt et al., 2003; Gerhardt et al., 2007).  Other single-species 

experiments examined the movement patterns of Caenorhabditis elegans (nematoda) to 

study their behavioural parameters in sediments (Gerhardt et al., 2002), as well as the 

assessment of behavioural changes of Corophium volutator in response to toxicant 
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exposure in sediment (Kirkpatrick et al., 2006).  Interestingly, successful non-aquatic 

application of the MFB has also been reported where Bednarska et al. (2010) examined 

the locomotor activity of the ground beetle Pterostichus oblongopunctatus to determine 

any links between the behavioural and physiological activities of the beetle. 

 

In all aforementioned studies, the respective organisms were sensitive to the 

tested toxicants, and the use of each organism was recommended in future MFB 

experiments.  Similar to published studies involving ECOTOX, however, the majority of 

publications advocating the use of the MFB are also authored or co-authored by the 

inventor of the biomonitor (Dr. Almut Gerhardt).  The objectivity of these studies may 

therefore be questioned, and the findings must be carefully considered. 

 

Fleet (2010) examined the use of the MFB to assess the behavioural change of 

Daphnia magna and Hyalella azteca upon exposure to varying levels of atrazine and 

tributyltin.  The behavioural endpoints of both organisms were previously studied in 

bioassays containing atrazine and tributyltin, and the organisms were found to be 

excellent indicators due to their sensitivities, even at low, environmentally-relevant 

concentrations (Marshall, 2009).  The MFB, however, was unable to detect any 

behavioural changes from the Daphnia magna and Hyalella azteca, even at high 

contaminant concentrations.  The organisms also exhibited large variations in behaviour 

when studied using the MFB, resulting in major difficulties to reproduce and replicate 

experiments.  An attempt by the researcher to contact Dr. Almut Gerhardt to verify the 
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conflicting results was also unsuccessful, and as a result, the MFB was deemed unsuitable 

for use in a multi-species early-warning biomonitoring system (Fleet, 2010). 

 

2.2.7 Remarks on Current Biomonitoring Technologies 

Sections 2.2.2 – 2.2.6 have outlined a number of published studies involving some 

of the latest commercially-available biomonitoring technologies.  When compared 

against the recommendations listed in Chapter 1 for a robust and reliable early-warning 

system, none of these biomonitors meets all of the requirements.  For example, the 

ECOTOX and the DaphniaTox are not flow-through systems, and thus these instruments 

would require frequent sampling or a major modification to allow flow-through modes.  

Many of the biomonitors are optical-based, and thus some pre-treatment of the incoming 

water might be necessary to reduce turbidity and remove excess sediment.   

 

In addition, the selected organism must be sensitive enough to low and 

environmentally-relevant levels of contamination, but the exhibited stress response must 

be consistent and replicable.  The fish biomonitoring system is not sensitive enough to 

low levels of contaminants, and thus such a system is only useful for monitoring sudden, 

large spikes of contamination in the water supply.   Conversely, bivalves are quite 

sensitive to low concentrations of contaminants, but their behavioural parameters are 

reported to be largely variable according to season and other water parameters.  More 

studies where the water parameters are carefully controlled must therefore be conducted 

to fully characterize the behaviours of bivalves before employing these organisms in a 

water monitoring facility.  Extreme caution must also be exercised when selecting a 
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particular technology, as published results may be biased, and objective evaluations of 

the technology must be obtained if available. 

 

As mentioned earlier, these biomonitoring systems rely mostly on the endpoints 

of a single aquatic species, and thus despite some reported success in detecting 

contaminants, there are still issues associated with species-specific sensitivities.  Single-

species biomonitoring systems are also only capable of sensing the presence of a 

contaminant but not identifying the source, type and concentration of the contaminant.  

While it is impossible to test for every single contaminant and potential threat to aquatic 

systems, many chemicals can be grouped together according to their physico-chemical, 

structural and functional classifications.  By exploiting species-specific sensitivities, it 

may be possible to create a fingerprint of responses and characterize the responses of the 

organisms to different contaminants.  This hypothesis forms the basis of the current 

research, which is to develop a library of responses of aquatic organisms to multiple 

contaminants and to analyze for any specific patterns of responses which would help 

distinguish different types of contaminants and potentially estimate the concentration of 

the contaminant. 

 

 

2.3 Current Progress of the NSERC Project 

As previously stated, the large-scale NSERC project aims to develop a multi-

species early-warning biomonitoring system (EWBS) that would detect and identify 

different chemical contaminants and pathogens.  This EWBS is aimed to be fully 
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implemented in a water treatment facility in the Niagara Region within the next few 

years.  In order to achieve this long-term goal, the project is divided into a few smaller 

objectives: 

1. To measure responses in aquatic plants and invertebrates when exposed to 

pathogens and chemical stressors at environmentally-relevant concentrations; 

2. To develop a microarray-based test to directly detect the presence of pathogens as 

well as a UV-based system to treat the pathogens; 

3. To build and test a biomonitoring system for measuring stress-response in real-

time; and 

4. To develop a profile of stereotyped responses for the whole suite of biomonitoring 

organisms to chemical contaminants and pathogens. 

 

A number of studies and experiments have been conducted by previous graduate 

students to meet the objectives listed above.  Marshall (2009), Pearce (2009), and Dort 

(2010) accomplished a portion of the first objective by measuring the effects of 

tributyltin, atrazine and copper at various concentrations on a variety of aquatic plants 

and invertebrates.  Upon the completion of their studies, Marshall (2009) and Pearce 

(2009) recommended a set of endpoints for a subset of the species tested which were 

sensitive to the selected levels of atrazine and tributyltin, and some of their suggestions 

were incorporated into the experimental designs of Netto (2010) and Fleet (2010).  As 

elaborated in Sections 2.2.5 and 2.2.6 of this thesis, Netto (2010) and Fleet (2010) 

evaluated the use of several automated biomonitoring systems, and the results of their 
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studies concluded that their respective instruments were inadequate in providing real-time 

stress-response measurements as currently configured.   

 

For the second objective, Barrera (2011) examined different photochemical 

treatments for pathogens, while Clark (2010) designed and validated oligonucleotide 

primers for detecting waterborne bacterial pathogens, resulting in primer sets with high 

specificity and sensitivity for Escherichia coli O157:H7, Salmonella Typhimurium, 

Campylobacter jejuni, Pseudomonas aeruginosa, and Shigella flexneri (Clark, 2011).  

Other studies relevant to the project are the analysis of land use and potential sources of 

contaminants surrounding the Welland Canal (Labbaf, 2010), the investigation of 

drinking water frameworks across Canada (Dort, 2010), and the study of benthic 

invertebrates to some toxicants by a current graduate student, Jason Solnik.   

 

This thesis aims to contribute to the fourth objective by creating a library which 

describes and characterizes the responses of several aquatic organisms to some 

contaminants.  Marshall (2009) and Pearce (2009) had studied the effects of atrazine and 

tributyltin on a suite of organisms, and their results were analyzed for inclusion in the 

library of responses.  To supplement the results by Marshall (2009) and Pearce (2009), a 

bioassay measuring the effects of atrazine and tributyltin on the effective photosynthetic 

yield of Pseudokirchneriella subcapitata was also conducted in the present study.  

Finally, a number of multivariate statistical tools were employed to create a model for the 

library of responses. 
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2.3.1 Background on Test Contaminants in Previous and Current Studies 

In the previous and current studies, three different chemicals were tested on the 

selected aquatic organisms. The first two chemicals, atrazine and tributyltin, are some of 

most commonly found contaminants in aquatic systems.  The third chemical, dimethyl 

sulfoxide (DMSO), is not classified as a common waterway pollutant, but this chemical 

was used during experiments as a solvent for the delivery of atrazine and tributyltin.  A 

summary of the chemical properties of the three compounds is listed in Table 2.1. 

 

Atrazine is a chloro-N-diakyl triazine compound commonly used as herbicide.  

Other similar herbicides include simeton, simazine, propazine, terbumeton, 

terbuthylazine, cyprazine, simetryn, prometryn, terbutryn, methoprotryne, and 

hexazinone (Zhang et al., 2006).  In North America, between 70,000 and 90,000 tonnes 

of atrazine are applied annually to control the growth of weeds in croplands (Graymore et 

al., 2001).  Due to leaching and run-off, atrazine may enter the aquatic ecosystem, and 

trace levels of the compound have been found in surface and well waters across Canada 

and the United States (Health Canada, 1993).  Various studies have classified atrazine as 

a potentially carcinogenic and endocrine-disrupting compound (Donna et al., 1984; Hoar 

et al., 1988; Health Canada, 1993).  An extensive re-evaluation of the effects of atrazine 

on human health is currently underway by the United States Environmental Protection 

Agency (US EPA, 2011) which may lead to further restrictions in the use of the chemical.  

Currently, however, atrazine is still widely applied and thus remains a threat to various 

water bodies. 
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Table 2.1. Chemical properties of atrazine, tributyltin and dimethyl sulfoxide. 

 

 
a 
Atrazine 

b 
Tributyltin hydride 

c 
Dimethyl sulfoxide 

Chemical 

Structure 

 

  

Molecular 

Formula 

 

C8H14ClN5 SnC12H26 C2H6OS 

Density 

 

1.187 g/cm
3 

at 20 ºC 1.17 g/ cm
3 

at 20 ºC 1.1004 g/ cm
3
 at 20 ºC 

Melting Point 

 

175 – 177 ºC <45 ºC 19 ºC 

Solubility in 

Water at 20 ºC  

0.030 g/litre 0.020 g/litre miscible 

Toxicity (Oral 

LD50) 

1869 to 3080 mg/kg body 

weight (rat) 

672 to 3000 mg/kg 

body weight (rat) 

17400 to 28300 mg/kg 

body weight (rat) 

a
 World Health Organization (1996) 

b
 United States Environmental Protection Agency (1997) 

c
 Gaylord Chemical Company (2007) 
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The second contaminant was tributyltin, a tri-substituted organotin compound 

commonly used as a biocide and an anti-fouling agent in the paints of boats and cargo 

ships, oil rigs, fish cages and other floating structures (Alzieu, 1998; Konstantinou and 

Albanis, 2004).  Other similar biocides include fentin hydroxide, cyhexatin, azocyclotin, 

and fenbutatin oxide (Ma, 2005).  The teratogenic effects of tributyltin in several 

crustacean species have been reported, and an international ban on the use of tributyltin 

was proposed in 2003 by the International Maritime Organization (Oberdöster et al., 

1998; Alzieu, 1998).  Many goods-exporting countries, however, have not agreed to this 

convention, and thus trace levels of tributyltin can still be found in heavily-travelled 

waterways (Konstantinou and Albanis, 2004).     

  

 Atrazine and tributyltin uniquely affect aquatic organisms due to their distinct 

structures and properties as listed in Table 2.1.  Their toxicities are similar as indicated by 

their relatively close oral LD50 values in rats.  Atrazine strongly exerts its toxicities by 

inhibiting the electron transport process in the photosystem II (PSII) complex in plants 

(Solomon et al., 1996).  Conversely, tributyltin causes malformations of the 

mitochondrial membranes in aquatic invertebrates and decreases their metabolic outputs 

by inhibiting the conversion of ATP to ADP (Alzieu, 1998; Fent, 1996). 

 

Another chemical was also used in the current and previous studies in conjunction 

with atrazine and tributyltin.  The solubilities of atrazine and tributyltin in water are low, 

and thus organic solvents such as DMSO are necessary to help evenly distribute the 

contaminants in the test solutions (Stratton, 1985; Haap et al., 2007).  To prevent the 
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organic solvent from interfering with the bioassays, a concentration of 0.1% v/v should 

not be exceeded for acute toxicity tests (LeBlanc and Surprenant, 1983).  Studies 

involving 0.1% v/v DMSO found that the solvent had a minimal impact on a number of 

aquatic organisms (Martins et al., 2007; Ren et al., 2008; Ren et al., 2009).  Marshall 

(2009) and Pearce (2009) also confirmed the negligible impact of 0.1% v/v DMSO on the 

organisms used in the previous and current studies by comparing the endpoints of the 

organisms in dechlorinated tap water with and without DMSO using a one-way analysis 

of variance. 

 

2.3.2 Analysis of Bioassays by Marshall (2009) 

Marshall (2009) examined the changes in many behavioural and respiratory 

endpoints of Daphnia magna, Hyalella azteca, and Lumbriculus variegatus when 

exposed to various concentrations of tributyltin and atrazine.  For the majority of the 

bioassays, the prepared concentrations were 0.010, 0.050, and 0.100 mg/L for tributyltin 

and 0.005, 0.050, and 0.100 mg/L for atrazine.  When creating solutions of atrazine or 

tributyltin, 0.1% v/v DMSO was also added to increase the solubility of atrazine and 

tributyltin in dechlorinated tap water.  Sixteen endpoints were recommended by Marshall 

(2009) due to the sensitivities of the organisms to atrazine and tributyltin.  For example, 

the percentages of Daphnia magna exhibiting a change in their swimming height was 

drastically affected by the additions of tributyltin and atrazine, thus making this endpoint 

an excellent indicator for the two contaminants and for inclusion in the EWBS.  The 

present study followed most of the recommendations by Marshall (2009) except for 

several cases as outlined in Table 2.2. 
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Table 2.2. A series of endpoints measured and recommended by Marshall (2009) to 

evaluate the effects of atrazine and tributyltin on the selected aquatic 

organisms.   

 

 Measured Endpoints (% Organism) 
Recommended by 

Marshall (2009) 

Included in the 

present study 

Daphnia magna   

 Changing swimming height √ √ 

 Spinning √ √ 

 Changing body orientation  √ 

 Immobilized √ √ 

 Using secondary antennae √ √ 

 Changing swimming style √ √ 

    

Hyalella azteca   

 Changing swimming height  √ 

 Crawling on substrate √  

 Immobilized √ √ 

 Burrowing √ √ 

 Changing grouping behaviour √ √ 

 Shortening body length √ √ 

 Changing body orientation  √ 

    

Lumbriculus variegatus   

 Burrowing √  

 Changing grouping behaviour   

 Swimming in the middle of the beaker   

 Displaying abnormal behaviour √ √ 

 Immobilized √ √ 

 Shortening body length √ √ 

 Changing body orientation √ √ 

  Moving within groups  √ √  

Total Number of Endpoints 16 17 
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Several endpoints were previously not recommended for inclusion in the EWBS, 

but the present study found these endpoints to be potentially useful and should be 

included in the library of responses.  For example, Marshall (2009) did not recommend 

monitoring the percentage of Daphnia magna displaying a change in their body 

orientation due to the lack of observable trends between the endpoint and the tested 

concentrations of atrazine or tributyltin.  It was noted, however, that despite the difficulty 

in discriminating between concentrations, there was still a statistically significant 

difference between all tributyltin and atrazine treatments versus the reference condition.  

Based on this finding, the present study included this endpoint for the development of the 

EWBS library as the endpoint would be very useful in discriminating between the 

reference condition and a condition where either one of the two contaminants is present.   

 

In addition, Marshall (2009) did not recommend measuring the percentages of 

Hyalella azteca displaying a change in the swimming behaviour because all of the 

organisms were immobilized after 6 hours of exposure to all concentrations of tributyltin, 

while exposure to atrazine did not affect the swimming behaviour to such a severe extent.  

Similarly, the percentages of Hyalella azteca displaying a change in body orientation was 

also not recommended for measurement because the exposure to atrazine did not affect 

the organisms except at higher concentrations after a longer incubation time, while 

exposure to tributyltin affected the organisms within one hour even at lower 

concentrations.  Such species-specific sensitivities, however, would be crucial in 

distinguishing cases of contamination by the two compounds.  As a result, the present 
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study recommended the inclusion of the above two endpoints in the library of responses 

due to their potential to discriminate atrazine and tributyltin contaminations. 

 

Conversely, a number of endpoints recommended by Marshall (2009) were not 

included in the present study for several reasons. First, Marshall (2009) suggested 

measuring the percentage of Hyalella azteca crawling on substrate due to the sensitivity 

of the parameter to the tested contaminants.  Upon analysis of the data, however, it was 

found that the percentage of organisms crawling was highly related to the percentage of 

organisms immobilized (i.e. it was impossible for the organism to crawl and be 

immobilized at the same time).  Measuring both endpoints would therefore be 

unnecessarily redundant, and only one of the two endpoints should be selected for the 

EWBS library.  From the standpoint of automation, measuring the percentage of 

immobilized organisms would be easier as monitoring the percentage of crawling 

organisms requires a more detailed image analysis, and the percentage of immobilized H. 

azteca was then selected for inclusion in the current library. 

 

Additionally, Marshall (2009) recommended measuring the percentage of 

Lumbriculus variegatus burrowing, but the concentrations of tributyltin used in this 

bioassay (0.0001, 0.001 and 0.010 mg/L) were completely different than the rest of the 

bioassays (0.010, 0.050 and 0.100 mg/L, as stated previously).  As a result, it was 

impossible to incorporate the measured endpoint data into the EWBS library as the tested 

concentrations must be consistent at 0.010, 0.050 and 0.100 mg/L for tributyltin, and 

0.005, 0.050 and 0.100 mg/L for atrazine.   
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Last, Marshall (2009) also measured the effects of tributyltin and atrazine on the 

respiration rates of Daphnia magna, Hyalella azteca and Lumbriculus variegatus.  While 

the contaminants exerted some effects on the respiratory rates of each species, the tests 

employed to measure the dissolved oxygen content were inconsistent.  For example, three 

adult Hyalella azteca were employed in solutions of tributyltin, but five Hyalella azteca 

were used to measure the effects of atrazine.  Furthermore, despite the respiratory rates 

being normalized in relation to the total average body weight of the organisms, replicates 

of the reference condition yielded very large difference in magnitude.  Based on these 

findings, the respiration data collected for the three organisms should not be used for the 

development of the EWBS library. 

 

2.3.3 Analysis of Bioassays by Pearce (2009) 

Pearce (2009) monitored various endpoints of Lemna minor, Pseudokirchneriella 

subcapitata, Euglena gracilis, and Anodonta grandis in response to different levels of 

tributyltin and atrazine.  The concentrations used in this study ranged from 0.001 to 0.100 

mg/L for tributyltin, and 0.005 to 0.500 for atrazine.  Similar to the experimental design 

of Marshall (2009), DMSO at a concentration of 0.1% v/v was added to increase the 

solubility of atrazine and tributyltin in dechlorinated tap water.  Table 2.3 summarizes the 

endpoints measured and recommended by Pearce (2009) for inclusion in the EWBS 

library, and a total of five endpoints were suggested for use in the proposed early-warning 

biomonitoring system.  Despite some success with the studied organisms, however, the 

results from the study by Pearce (2009) could not be included in the present study due to 

a number of factors.   
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Table 2.3.   A series of endpoints measured and recommended by Pearce (2009) to 

evaluate the effects of atrazine and tributyltin on the selected aquatic 

organisms.   

 

Measured Endpoints 
Recommended by 

Pearce (2009) 

Included in the 

present study 

Lemna minor   

 Population growth √  

    

Pseudokirchneriella subcapitata   

 Photosynthesis rate √  

 Respiration rate   

 Population growth √  

    

Euglena gracilis   

 Respiration under light-saturated conditions   

 Respiration in dark conditions   

 Population growth   

 

Percentage of cysts formed under light-

saturated conditions √  

 

Percentage of cysts formed under dark 

conditions   

    

Anodonta grandis   

 Percentage of opened valves   

 Respiration rate √  

Total Number of Endpoints 5 0 
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 The first recommended endpoint was the population growth of Lemna minor.  

While this parameter showed a statistically-significant difference between the reference 

condition and higher levels of tributyltin (0.100 mg/L) and atrazine (0.500 mg/L), the 

growth rate measurement was conducted over a period of four days (96 hours).  Since the 

EWBS aims for a rapid detection of contaminants, this measurement period is considered 

too long and therefore unsuitable for use in a rapid detection, early-warning system.   

 

The largest hindrance in incorporating the endpoint data by Pearce (2009) into the 

EWBS library was the inconsistent doses of contaminants used in different bioassays 

which did not match the concentrations used in the previous study by Marshall (2009).  

For example, Pearce (2009) conducted experiments involving Pseudokirchneriella 

subcapitata and Euglena gracilis in tributyltin solutions of 0.010 and 0.100 mg/L, and 

atrazine solutions of 0.050 and 0.500 mg/L, whereas Marshall (2009) worked with 

concentrations of 0.010, 0.050 and 0.100 mg/L for tributyltin, and 0.005, 0.050 and 0.100 

mg/L for atrazine.  The concentration levels tested on the Anodonta grandis were even 

more significantly different at 0.0001, 0.001 and 0.01 mg/L of tributyltin, and 0.0005, 

0.005 and 0.05 mg/L of atrazine.  Furthermore, large standard deviations were often 

found for different replicates, and in most cases no clear trend was observed between the 

measured endpoint and the concentration.  Due to the non-linear dose-response 

relationship, data interpolation or extrapolation methods could not be employed to match 

the concentrations by Marshall (2009) as more uncertainties would have resulted.  The 

recommendations by Pearce (2009) were therefore not included for the development of 
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the EWBS library and could only serve as guidance for future experiments involving 

aquatic plants.   

 

2.3.4 Supplementary Algal Bioassay  

Despite the inability to incorporate experimental data by Pearce (2009), the 

present study recognized the importance of including photosynthetic organisms among 

the suite of organisms employed for biomonitoring.  Since atrazine is a herbicide which 

directly affects the photosynthetic activity of aquatic plants, measuring the responses 

from photosynthetic organisms may help differentiate between contaminations by 

herbicidal and non-herbicidal compounds.  Based on the recommendations by Pearce 

(2009), the present study re-measured the photosynthesis rate of Pseudokirchneriella 

subcapitata using an online algal fluorometer.   

 

As elaborated in Section 2.2.4, a fluorometer can measure the in-vivo prompt 

fluorescence (IPF) and the photosynthetic yield of an algal solution.  When chlorophyll is 

irradiated by a short pulse of light, a portion of the energy is used to perform 

photosynthesis while the remainder is re-emitted as heat and fluorescence (Strasser et al., 

2000).  Thus, a relationship can be inferred such that (Balan et al., 2006): 

 

F + P + H = 1           (1) 

where 

F  =  Fluorescence, 

P =  Photochemical conversion, and 



 

 
39 

H =  Non-radiative heat dissipation. 

 

If the plant is dark-adapted, the photochemical conversion approaches zero and 

heat dissipation can be assumed constant.  Equation (1) can thus be rearranged as: 

         Fm = 1 – H          (2) 

where 

Fm = Maximum fluorescence. 

 

The photosynthetic yield is the ratio between the absorbed energy and the re-

emitted fluorescence.  This parameter can be expressed by the following equation: 

         Y = (Fm – F)/ Fm          (3) 

where 

Y  = Photosynthetic yield, and 

(Fm – F) =  P. 

 

 When the sample is not dark-adapted and experiments are conducted on light-

adapted plants, a different notation is used to describe the maximum fluorescence (Fm’) 

and the photosynthetic yield is termed the effective photosynthetic yield.  The presence of 

a herbicide may damage the structure of chlorophyll, resulting in lower photochemical 

conversion by the plant (P), higher re-emitted fluorescence (F), and thus less effective 

photosynthetic yield (Y).  By including the change in effective photosynthetic yield in the 

library of responses, the effects of atrazine and tributyltin on an algal population can be 

examined, and a summary of all included endpoints is listed in Table 2.4. 



 

 
40 

 

 

Table 2.4.   Summary of all endpoints from the present study and previous work by 

Marshall (2009) for inclusion in the library of responses. 

 

Measured Endpoints 

Daphnia magna 

1 Changing swimming height 

2 Spinning 

3 Changing body orientation 

4 Immobilized 

5 Using secondary antennae 

6 Changing swimming style 

  

Hyalella azteca 

7 Changing swimming height 

8 Immobilized 

9 Burrowing 

10 Changing grouping behaviour 

11 Shortening body length 

12 Changing body orientation 

  

Lumbriculus variegatus 

13 Displaying abnormal behaviour 

14 Immobilized 

15 Shortening body length 

16 Changing body orientation 

17 Moving within groups 

  

Pseudokirchneriella subcapitata 

18 Effective photosynthetic yield 
 

Total Number of Endpoints = 18 
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2.4 Multivariate Statistical Tools 

Multivariate analysis is the process of examining three or more variables which 

may or may not be intercorrelated to each other (Shaw, 2003).  By analyzing a large 

number of variables, one is able to obtain a more comprehensive depiction of the 

analyzed subject.  As outlined in Table 2.4 and Section 2.3.4, the present study would 

incorporate a total of 18 endpoints, where 17 endpoints were extracted from Marshall 

(2009) and 1 endpoint was obtained from the algal bioassay.  Analyzing these 18 

endpoints simultaneously would be very difficult as they contained a large number of 

data points, and complex interdependencies could also exist within the data set.  A 

number of multivariate statistical tools must therefore be utilized to facilitate the analysis.   

 

2.4.1 Principal Component Analysis  

Principal Component Analysis (PCA) is a multivariate statistical tool that reduces 

a large number of variables into a smaller set of independent variables with minimum 

loss of the original information (Reimann et al., 2008).  First derived by Pearson (1901) 

and refined later by Hotelling (1933), PCA was widely used in many ecological studies in 

the 1950s and remains one of the more popular ordination techniques due to its ease of 

calculations and non-dependence on the normality of the data (Shaw, 2003).   

 

Figures 2.1(a) and 2.1(b) provide a step-by-step example of data-reduction using 

PCA.  In Figure 2.1(a), data points which are distributed in a three-dimensional data 

space are to be expressed in a two-dimensional plane.  In order to create this plane, two 

new independent axes, or principal components, must be constructed.  The first principal 
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component (PC1) can be obtained by drawing an imaginary line through the cloud of data 

points, similar to the line-of-best-fit in a linear regression.  This imaginary line must also 

pass through an imaginary point that represents the overall mean of the original data set, 

and thus the first principal component describes the greatest degree of data variation.  

After constructing the first principal component, the procedure can be repeated to obtain 

the second principal component.  A second line-of-best-fit can be fitted similarly by 

passing through the overall mean, but this secondary line must be orthogonal to the first 

principal component as shown in Figure 2.1(a). 

 

The dynamics between the two principal components can be compared to a wheel, 

with the first axis being the axle and the second axis lying on the plane of the wheel.  The 

second axis is able to rotate in a complete circle until this axis reaches a position that 

describes the second largest variance among the data points.  Because both axes pass 

through the overall mean of the original data set, the new transformed data set is said to 

be mean-centered where the average is located on the origin.  PC1 and PC2 then form a 

plane describing the relative positions of the data points in a two-dimensional space as 

shown by the top view of the plane in Figure 2.1(b).  This procedure thus accomplished 

data reduction from three to two dimensions. 
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Figure 2.1.   The application of Principal Component Analysis where data points in a 

three-dimensional space are described using a two-dimensional plane. 
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When performing data-reduction from a large number of variables, more than two 

principal components are sometimes required.  In this case, it is harder to visualize the 

original data set as the human depth perception is limited to three dimensions, but the 

process of data reduction is very similar to the previous example.  After constructing the 

first two principal components, the third axis is defined by default as this axis must be 

orthogonal to both the first and second principal components.  It is possible to construct 

more than three principal components, but the analysis of such multi-dimensional data set 

would be cumbersome, and such practice is impractical when applied to interpret 

environmental data (Shaw, 2003). 

 

The following steps describe the general mathematical algorithms involved in 

PCA.  Figure 2.2 also provides a graphical depiction of these steps. 

 

1) Tabulate data points 

Research findings are collected and presented in an j-by-k matrix where the 

columns (k) correspond to the variables and the rows (j) list the observations for 

each variable. 

 

2) Pre-condition certain variables 

The variables in the matrix may differ significantly from each other in unit and 

magnitude.  For example, a researcher may examine the mass of different fish and 

the dissolved oxygen content in the water.  In order to prevent strong bias by 

variables with larger magnitudes, some data transformation may be necessary.  
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One of the most commonly applied transformations is mean-centering, in which 

the mean across each dimension is subtracted from each data point, resulting in a 

modified matrix with a mean of zero for each variable.  Other transformations 

may include additive, centred or isometric log transformations, as well as 

normalization of each variable.  Extreme caution must be applied when selecting 

methods for data transformation so as to avoid highly-skewed data sets.  After 

applying appropriate transformations, a modified matrix is created. 

 

3) Calculate the covariance matrix based on the modified matrix 

The covariance matrix is a square matrix displaying all possible interrelations 

among the variables.  The size of the matrix (k-by-k) corresponds to the total 

number of variables in the experiment.  This matrix can be easily constructed 

using most statistical software. 

 

4) Calculate the eigenvectors and eigenvalues of the covariance matrix 

From the covariance matrix, eigenvectors and eigenvalues can be calculated.  A 

detailed explanation of eigenvectors and eigenvalues can be found in most 

textbooks on matrix algebra (Anton, 2003).  In simple terms, the eigenvectors of a 

matrix are a series of vectors that, upon multiplication with the matrix, only 

change the scale and not the direction.  The eigenvalue is then a measure of the 

variance described by each eigenvector.  For a square (k-by-k) covariance matrix, 

k eigenvectors are generated, and these eigenvectors are arranged in order of 

decreasing eigenvalues.   
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Figure 2.2.   Flowchart of the data-reduction procedure using PCA  
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5) Transform the original data set 

The original data set, which is composed of k possibly correlated variables, can be 

transformed into a new data set containing fewer completely independent 

variables (also known as principal components).  The number of principal 

components selected must be specified according to the intent of the researcher.  

If the original data set is to be reduced into i principal components, then i 

eigenvectors with the largest eigenvalues are selected, and matrix multiplication is 

carried out between the original data set matrix and these i eigenvectors.  The 

resulting matrix is a transformed data set which can be expressed as (Helena et. 

al, 2000; Shrestha and Kazama, 2007): 

  

  kjikjijijiij xaxaxaxaz ++++= K332211           (4) 

  

 where  

 z  =  the coordinate in the new principal component,  

 a   = the eigenvector coefficient,  

 x   =  the original measured value,  

 i  = the component number,  

 j  =  the observation number, and  

 k  = the number of variables in the original data set 

 

A number of published ecological studies have incorporated PCA in their data 

treatment and analysis process.  Shrestha and Kazama (2007) employed PCA, along with 
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other multivariate statistical tools such as cluster analysis, discriminant analysis and 

factor analysis, to assess the surface water quality of the Fuji River, Japan.  In this study, 

a large data matrix containing water quality parameters collected during an eight-year 

monitoring program was constructed.  The objectives of the study were to determine any 

similarities or dissimilarities between sampling sites and to identify factors which might 

cause spatial and temporal variations in water quality.  By applying PCA, the study was 

able to extract and identify the factors affecting the water quality of the river at three 

different sampling sites.  Akbal et al. (2011) also conducted a similar study using PCA 

and other multivariate statistical tools, where the causes of variation in surface water 

quality at the mid-Black Sea coast of Turkey were determined.  These studies 

demonstrated the capability of PCA to handle and resolve patterns within a complex data 

set, and this powerful multivariate statistical tool was thus employed in the current study. 

 

2.4.2 Cluster Analysis 

 After applying PCA on a data set, some patterns among the data points may be 

observed where a number of points appear to separate into discrete clusters.  PCA, 

however, is an ordination technique which simply displays a representation of a data set 

and does not perform actual data set separation (Shaw, 2003).  Since no formal rules exist 

in defining a cluster, a subjective decision must often be made by the researcher 

regarding the clustering patterns within the data (Rao, 1952).  Figure 2.3 displays some 

examples of possible clustering patterns typically found in an environmental data set.   
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(a) Clear separation into two clusters 

 

(b) No strong evidence of clustering 

 

(c) Some evidence of clustering 

 

Figure 2.3.   Some possible patterns found in a data set after simplification using 

principal component analysis (Adapted from Shaw, 2003). 
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Figure 2.3(a) presents an ideal situation where the data points are clearly 

partitioned into two different clusters.  This condition is known as ball clusters, a 

condition where the distance between the clusters is greater than the longest distance 

between any two data points within each cluster (Shaw, 2003).  Environmental data sets, 

however, may not always resolve into ball clusters, and some overlaps are often 

observed.  In Figure 2.3(b), the data points appear as a continuum across the two 

principal components with clear separation among data points, and there is no strong 

indication of a subpopulation within the data set.  Environmental data points are more 

likely to be distributed as shown in Figure 2.3(c) (Shaw, 2003).  In this case, the data 

points show some evidence of clustering, with a point lying in between the two groups. 

 

In order to assess whether a data set could be objectively partitioned into several 

clusters, Cluster Analysis (CA) could be employed.  A number of CA techniques 

currently exist, and these techniques can be categorized as hierarchical or non-

hierarchical.  In hierarchical techniques, each cluster is designated as a subset of a higher-

order cluster, and a branching diagram can be constructed.  An example of a hierarchical 

separation is the biological taxonomic classification which separates all living organisms 

according to kingdom, phylum/division, class, order, family, genus, and species 

(Gingerich, 1987).  Conversely, non-hierarchical techniques subdivide data points into 

different clusters without exploring how different clusters may relate to each other.  For 

the present study, non-hierarchical techniques would be more appropriate since the data 

points were to be separated according to the different water conditions, and each 

condition was not a subset of any higher-order group.    
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An example of a non-hierarchical classification technique is the K-means 

clustering.  In this classification technique, a series of iterative algorithms are employed 

to separate n data points into k clusters according to the cluster means.  An example of 

the application of K-means clustering is shown in Figure 2.4, where the algorithm is 

employed to separate 10 data points into 2 clusters.  By randomly selecting 2 data points, 

2 clusters are created.  Then, new means for these 2 clusters are identified, and 2 new 

clusters are re-calculated based on these means.  This step is repeated several times until 

a convergence is reached.  By applying K-means clustering to the data set in the present 

study, the number of correctly assigned data points could be identified, and the results 

would describe whether the clusters in the data set are clearly defined and well-separated. 

 

Kaufman and Rousseeuw (1990) devised a technique to further assess cluster 

quality called the Average Silhouette Width Plot.  In this technique, a data point from a 

cluster is selected, and the average distance of this data point to all other data points in 

the same cluster is calculated.  Then, the average distance of this data point to all data 

points in the next closest cluster is also determined.  By comparing the two averages, a 

silhouette coefficient can be calculated as: 

),max( ii

ii

C
nm

mn
S

−
=           (5) 

 where  

 im  =  the average distance for point i to all other points in the same cluster  

 in   = the average distance for point i to all other points in the nearest cluster, and 

 CS  =  the silhouette coefficient.  
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Step 1: If the data points are to be 

separated into 2 clusters, 2 random data 

points are selected as cluster means 

 

Step 2: Clusters are then created where 

data points are grouped according to their 

distance to the cluster means in Step 1 

  

Step 3: New means for the clusters 

constructed in Step 2 are identified 

 

Step 4: Based on the means in Step 3, 2 

new clusters are re-calculated 

  

Step 5: New means for the clusters 

constructed in Step 4 are identified 

Step 6: New clusters are re-calculated 

again based on the previous step.  This 

process is repeated until a convergence is 

reached. 

 

Figure 2.4.   Algorithms for K-means clustering (Adapted from Govaert, 2009). 

PC1 

PC2 

PC1 

PC2 

PC1 

PC2 

PC1 

PC2 

PC1 

PC2 

PC1 

PC2 



 

 
53 

The silhouette coefficient in Equation (5) ranges from -1 to 1, and this number is a 

measure of how well each data point is represented in the cluster (Reimann, 2008).  A 

data point with a coefficient of -1 denotes that the point is assigned to the wrong cluster 

because average distances of that point to other points in the same cluster is greater than 

the average distances of that point to other points in the nearest cluster.  Conversely, a 

coefficient of 1 indicates a very well-clustered object.  In general, a cluster exhibits 

strong cluster qualities if the average coefficient for that cluster is higher than 0.7, while 

an average coefficient of less than 0.25 indicates the absence of a cluster structure 

(Kaufman and Rousseeuw, 1990) 

 

2.4.3 Discriminant Analysis 

The proposed EWBS aims to not only provide a more sensitive and accurate 

detection of contaminants but also the means to identify different contaminants by 

comparing the responses of the organisms to a set of stereotyped responses.  When a 

series of responses are observed by the EWBS, this incoming reading is assessed against 

the library of responses and matched according to established conditions in order to 

identify the offending toxicant.  To perform this type of data classification, a statistical 

tool such as the Discriminant Analysis (DA) method could be employed. 

 

Discriminant analysis uses a priori knowledge on existing group memberships to 

develop a function which will predict the group membership of new observations (Fisher, 

1936).  A variety of different methods exist for performing DA, and one of the simplest 

techniques is linear discriminant analysis where group covariances are assumed to be 
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equal, and linear functions are used to separate the groups (Huberty, 1994; Johnson and 

Wichern, 2002).  An example of linear discriminant analysis is depicted in Figure 2.5.   

 

Figure 2.5(a) illustrates two independent variables, X and Y, as well as two 

clusters of data points, group A and group B.  A discriminant function Z is also projected 

in the sample space of X and Y, and data points in groups A and B can subsequently be 

projected onto this discriminant function to form two distribution curves.  When a new 

data point is introduced, the membership of this point is determined based on a 

combination of functions that minimizes the probability of misclassifications (Figure 

2.5(b)).  The calculations to perform DA techniques can be complicated, but statistical 

packages such as MATLAB can easily process data sets and calculate simple linear cases.   

 

 

2.5 Concluding Remarks 

 This chapter provides an overview of some recently-developed biomonitoring 

technologies, their strengths, and their limitations.  As previously elaborated, current 

biomonitoring technologies do not sufficiently meet the criteria outlined in Chapter 1 for 

a robust and reliable early-warning system.  A large-scale project funded by NSERC was 

initiated to develop an early-warning biomonitoring system which would more accurately 

detect and identify contaminants, and studies have been conducted by previous graduate 

students to complete some of the objectives of the project. The present study aimed to 

accomplish the last objective by creating a model for a library of responses which can be 

incorporated into the design of the EWBS.   
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Figure 2.5.   Graphical illustration of the discriminant analysis technique (adapted from 

Dillon and Goldstein, 1984). 
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CHAPTER 3                                                                                    

MATERIALS AND METHODS 

  3.1 Introduction 

A key objective of the current work is to establish a model for the library of 

responses which could be incorporated into an early-warning biomonitoring system.  As 

outlined in Table 2.4 in the previous chapter, a total of 18 endpoints were used in the 

current study to distinguish atrazine and tributyltin contaminations from the reference 

condition.  To establish this library of responses, a number of endpoint data sets were 

obtained from a previous study by Marshall (2009), and an algal bioassay was conducted 

in the present study to supplement these data sets.  Following the recommendations by 

Pearce (2009), the effective photosynthetic yield of the green alga Pseudokirchneriella 

subcapitata was measured in the present study using an online algal fluorometer. 

 

This chapter starts by elaborating on the procedures for growing and testing the 

algal cultures.  After conducting the algal bioassay and combining all endpoint data from 

previous and present studies, this chapter then elaborates on the statistical treatment of 

these endpoint data and the design parameters chosen to perform the multivariate 

statistical analysis.  By applying principal component analysis on the endpoint data, a 

preliminary library of responses was created.  A series of cluster analysis methods were 

then applied on the preliminary library to objectively assess the cluster quality.  Finally, 

the chapter describes the discriminant analysis method employed to evaluate the potential 

ability of the library in distinguishing different contaminants. 
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3.2 Experimental Setup for Online Algal Fluorometer 

3.2.1 Procedures for Cleaning and Disinfection 

Prior to any experiment, each glassware and equipment was thoroughly cleaned to 

avoid any bacterial contamination and remove any potential residues which could affect 

the growth of the green algae.  To perform sterilization, glassware was autoclaved at 120 

ºC and 15 psi for an hour and cooled prior to use.  Before and after performing 

experiments, each glassware and equipment was washed using acetone and distilled water 

three times to remove any residues which might have adhered to the glass.  After rinsing 

with acetone, each glassware and equipment was washed using the Extran organic 

decontaminating soap (VWR Cat#: CAEX0995-1) to remove any residual organics and 

then rinsed with distilled water.  Finally, each glassware and equipment was washed 

using 10% v/v hydrochloric acid, rinsed with distilled water, and placed in the drying 

rack in an inverted position to dry. 

 

3.2.2 Procedures for Algal Culturing 

For the algal bioassay, Pseudokirchneriella subcapitata was grown according to 

the protocols outlined by Environment Canada (2007) with a few modifications.  A 

starter culture of the algae was obtained from an agar slant (Wards™ Natural Science, 

item# 86V0620), and a group of cells from this agar slant was aseptically transferred 

using a sterile loop and resuspended into several 250-mL Erlenmeyer flasks, each 

containing 50 mL of sterile growth medium as prepared in Table 3.1. 
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Table 3.1.   Stock nutrient solutions as recommended by Environment Canada (2007) 

for growing Pseudokirchneriella subcapitata.  

 

Stock Nutrient Solution Compound Amount per 500 mL of 

dechlorinated tap water 

1 NaNO3 12.75 g 

 

2 MgCl2 • 6H2O 

CaCl2 • 2H2O 

H3BO3 

MnCl2 • 4H2O 

ZnCl2  

FeCl3 • 6H2O 

CoCl2 • 6H2O 

NaMoO4 • 2H2O 

CuCl2 • 2H2O 

Na2EDTA • 2H2O 

6.08 g 

2.1919 g 

92.8 mg 

207.2 mg 

1.64 mg 

79.9 mg 

0.714 mg 

3.63 mg 

0.006 mg 

150.1 g 

 

3 MgSO4 • 7H2O 7.35 g 

 

4 K2HPO4 0.522 g 

 

5 NaHCO3 7.5 g 

 

Note:   

• To prepare the ‘original growth medium’ as recommended by Environment Canada (2007), 1 

mL of each stock solution was added to approximately 995 mL of autoclaved dechlorinated tap 

water, yielding  ~1000-mL of growth medium.   

• To prepare the ‘modified growth medium’ as recommended by the present study, 4 mL of each 
stock solution was added to approximately 980 mL of autoclaved dechlorinated tap water, yielding  

~1000-mL of growth medium.   
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 The original protocol by Environment Canada (2007) suggested sterilizing each 

stock nutrient solution by filtering though a sterile 0.2 µm membrane and recommended 

against autoclaving as the heat could destroy the nutrients in the stock solutions and result 

in a reduced algal growth.  Following this recommendation, filter-sterilization was 

initially performed in preliminary trials, but the filter-sterilized stock nutrient solutions 

were found to result in very low algal growth rates.  Conversely, the autoclaved stock 

nutrient solutions were found to yield faster algal growth rates while still eliminating any 

unwanted microorganisms.   Based on these findings, autoclaving appeared to be a more 

advantageous sterilization technique and was therefore employed in the present study. 

 

The procedures for culturing the algae and preparing the algal growth medium 

were also modified from the protocols of Environment Canada (2007).  For culturing, 

Environment Canada (2007) suggested aseptically transferring approximately 1 mL of the 

first generation algal culture into a 250-mL Erlenmeyer flask containing 50 mL of the 

‘original growth medium’ as outlined in Table 3.1.  This procedure, however, did not 

result in sufficient algal growth as the concentration of the algae peaked at only ~1 × 10
5
 

cells/mL.  Such concentration was too low to be detected by the online algal fluorometer, 

and the procedure must be modified to yield more algal growth.   

 

In order to achieve more growth, a larger amount of the first generation algal 

culture was transferred, and a more nutrient-rich ‘modified growth medium’ was 

prepared as outlined in Table 3.1.  An optimal growth was achieved when approximately 

20 mL of the first generation algal culture was transferred into a 500-mL Erlenmeyer 
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flask containing 130 mL of the modified growth medium.  The modified growth medium 

was prepared by adding 4 mL of each stock nutrient solution into 980 mL of autoclaved 

dechlorinated tap water, yielding 1000 mL of solution containing four-times the amount 

of nutrients originally specified by Environment Canada (2007).  By following this 

adjusted recipe, an algal cell concentration of up to 1.3 × 10
7
 cells/mL was obtained.   

 

After inoculating the algal cells from the agar slant into several flasks containing 

the modified growth medium, the flasks were incubated at 21.8 ºC under continuous ‘cool 

white’ fluorescent light with a light quantal flux of 56 – 66 µmol/m
2
-s.  To ensure 

complete mixing, the flasks were also placed on a continuous shaker at 100 rotations per 

minute.  Environment Canada (2007) did not recommend testing on the first generation 

algal cultures, and thus the algae were sub-cultured at least once.  Between 3 – 7 days, the 

cultures reached a logarithmic growth phase and were sub-cultured.  The algal cells were 

also enumerated daily using a haemocytometer, and a growth curve was constructed to 

verify that the cells were at the logarithmic growth phase.  The algal bioassay must be 

conducted during the logarithmic growth phase because the cells are actively dividing at 

this stage and would produce the highest effective photosynthetic yield.   

 

3.2.3 Procedures for Algal Bioassay 

As previously elaborated, Pseudokirchneriella subcapitata was cultured for 

testing using the fluorometer.  The setup for the algal bioassay is shown in Figures 3.1 

and 3.2. 
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Compositions: 

• Reference:   50 mL algae  

• DMSO at 0.1% v/v: 50 mL algae + 50.0 µL DMSO 

• Atrazine at 0.005 mg/L:  50 mL algae + 47.5 µL DMSO + 2.50 µL atrazine stock at 100 mg/L 

• Atrazine at 0.050 mg/L:  50 mL algae + 25.0 µL DMSO + 25.0 µL atrazine stock at 100 mg/L 

• Atrazine at 0.100 mg/L:  50 mL algae + 50.0 µL atrazine stock at 100 mg/L 

• Tributyltin at 0.010 mg/L:  50 mL algae + 45.0 µL DMSO + 5.00 µL tributyltin stock at 100 mg/L 

• Tributyltin at 0.050 mg/L:  50 mL algae + 25.0 µL DMSO + 25.0 µL tributyltin stock at 100 mg/L 

• Tributyltin at 0.100 mg/L:  50 mL algae + 50.0 µL tributyltin stock at 100 mg/L 

 

 

Note:  The atrazine and tributyltin stocks contained 100 mg of the respective contaminant per litre of 

DMSO  

 

 

Figure 3.1.   Experimental setup and chemical composition for the test solutions 

prepared for the algal bioassay.   
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As shown in Figure 3.1, test solutions were prepared at the same concentrations 

used in the previous study by Marshall (2009) so that the results from the current and 

previous studies could be integrated into one data set.  To create the test solutions, the 

algal suspensions were distributed into twenty-four 250-mL Erlenmeyer flasks in 50-mL 

aliquots.  As elaborated in Section 3.2.2, the algae used in the bioassay must be at their 

logarithmic growth phase to ensure maximum photosynthetic activity.  The algal 

suspension also should not be too dilute (~1 × 10
5
 cells/mL) or too concentrated (greater 

than 2 × 10
6
 cells/mL), otherwise the fluorometer would signal an error in measurements.  

If the suspension was too concentrated, the algae solution was diluted using the modified 

growth medium to ensure that the cells were not starved of nutrients.  An ideal algal 

concentration for the bioassay was approximately 1 – 1.5 × 10
6
 cells/mL. 

 

 After aliquoting the algal suspension into each Erlenmeyer flask, a concentrated 

stock of atrazine or tributyltin was added to some flasks to obtain the desired 

concentration of contaminants.  The concentrated stock solutions of atrazine and 

tributyltin were prepared at a concentration of 100 milligrams contaminant per litre 

DMSO.  A stock of pure DMSO was also prepared to be added into some flask to achieve 

a ratio of 0.1% v/v DMSO.  Sample calculations for determining the chemical 

composition of each test solution are available in Appendix A.1.  Test solutions were 

prepared in triplicates for: 

• Reference condition with and without 0.1% v/v dimethyl sulfoxide;  

• Atrazine at concentrations of 0.005, 0.050, and 0.100 mg/L; and  

• Tributyltin at concentrations of 0.010, 0.050, and 0.100 mg/L.   
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Note: The test solution contained a suspension of Pseudokirchneriella subcapitata at a concentration of approximately 1.25 × 106 cells/mL.  For each reading, 

a small portion of the algal suspension was transferred using a peristaltic pump to the fluorometer where the effective photosynthetic yield of the algae 

was determined.   
 

Figure 3.2.   Instrumental setup for the algal bioassay.   

 Waste Beaker 

Online Algal 

Fluorometer 

Peristaltic Pump 

Test solution 
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 Figure 3.2 illustrates the setup for the equipments used in the algal bioassay.  

Each of the test solution in Figure 3.1 was shaken to ensure thorough mixing, and a small 

portion of the test solution was extracted using a peristaltic pump (Rabbit Peristaltic 

Pump No: 53890, Rainin Instrument Co, Boston, MA) at a flow rate of 6.7 mL/minute.  

The small extract was then fed into the fluorometer (Algae Online Monitor™ – AOM 

2800, Photon Systems Instruments, Czech Republic) where the effective photosynthetic 

yield of the algal solution was determined.  Photosynthetic yield is a highly-sensitive 

parameter which can be affected by changing light conditions, and therefore it was 

important to calibrate the amount of light present during the study.  During the algal 

bioassay, the test solutions were placed on a shaker at 100 rpm and under a continuous 

‘cool white’ fluorescent light.  Ambient light condition was measured using a light meter 

(Solar Electric Quantum Meter, Item#: 3415FSE, Spectrum Technologies Inc.), and 

flasks were positioned to maintain a light intensity between 56 – 66 µmol/m
2
-s of light 

quantal flux.  The flasks were also randomized in between trials to remove any bias due 

to the position of each flask relative to the light source. 

  

 After preparing and mixing all the chemical constituents as outlined in Figure 3.1, 

the effective photosynthetic yields of the test solutions were immediately measured using 

the AOM.  This measurement at t = 0 formed a baseline condition to which later 

measurements were compared, and measurements were conducted every 2 hours for 6 

hours starting from the measurement at t = 0. 
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3.3 Distinct Conditions Established for the Present study 

Based on the experimental setup outlined in Section 3.2 for the algal bioassay and 

the experimental setup developed in the previous study by Marshall (2009), a number of 

distinct conditions could formally be defined to establish groups of data points.  First, 

‘Reference Condition’ contained experiments conducted in dechlorinated tap water.  

Since the effects of DMSO were considered to be negligible on the behavioural and 

physiological endpoints of the aquatic organisms, test solutions containing dechlorinated 

tap water with 0.1% v/v could be categorized under reference condition as well.  The 

reference condition thus represented a condition where no contaminant was present or 

was present at a concentration much lower than the allowable concentration limit. 

 

Another distinct condition established by the experimental setup was 

‘Contamination by Atrazine’, and this condition simulated a potential atrazine runoff into 

the aquatic systems by preparing solutions containing atrazine at various 

environmentally-relevant concentrations.  The last distinct condition established by the 

experimental setup was ‘Contamination by Tributyltin’, where solutions containing 

various doses of tributyltin were prepared to represent a realistic spill of this contaminant 

into the waterways.  The three conditions above were expected to form distinct clusters of 

data sets in PCA and subsequent Cluster Analysis, and the descriptions for each condition 

are summarized in Table 3.2. 
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Table 3.2.   Three distinct conditions established for the library of responses 

 

Condition Basis for Establishing Condition 

Endpoints measured in dechlorinated tap water only 

  

‘Reference Condition’  

Endpoints measured in dechlorinated tap water with the 

addition of 0.1% v/v dimethyl sulfoxide  

  

 

‘Contamination by Tributyltin’ Endpoints measured in tributyltin solutions with the 

addition of 0.1% v/v dimethyl sulfoxide.  Test solutions 

were prepared at concentrations of 0.010, 0.050 and 

0.100 mg tributyltin per litre of dechlorinated tap water. 

  

 

‘Contamination by Atrazine’ Endpoints measured in atrazine solutions with the 

addition of 0.1% v/v dimethyl sulfoxide.  Test solutions 

were prepared at concentrations of 0.005, 0.050 and 

0.100 mg atrazine per litre of dechlorinated tap water. 
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3.4 Methodology for Creating the Library of Responses 

After measuring the endpoint in the algal bioassay and extracting endpoint data 

from a study by Marshall (2009), a total of 18 parameters were proposed for inclusion in 

the library of responses.  As outlined in Table 2.2, 17 endpoints were extracted from the 

study by Marshall (2009) which monitored the parameters for up to 24 h in solutions 

containing various levels of tributyltin and atrazine with the addition of 0.1% v/v DMSO.  

The goal of the EWBS, however, was to provide rapid, early-warning detection, and thus 

the present study only required endpoint measurements up to 6 h in order to capture the 

immediate, sub-acute responses of the organisms.  The endpoint data from Marshall 

(2009) at t = 6 h for Daphnia magna, Hyalella azteca and Lumbriculus variegatus are 

attached in Appendices B.1 – B.3. 

 

After conducting the algal bioassay, the responses collected from all four aquatic 

organisms were then arranged into a matrix of responses and analyzed for any 

contaminant-specific patterns.  As previously elaborated, Principal Component Analysis 

and Cluster Analysis were applied in the current research to simplify the data set of 

responses and objectively identify the presence of any clusters within the data set.  The 

clusters could then be labelled according to the three established conditions as outlined in 

Table 3.2.  The step-by-step methodologies for PCA were established earlier in Section 

2.4.1 and Figure 2.4.  All statistical computations were conducted using the MATLAB 

software (Version 7.7.0.471 (R2008b), MathWorks).  The detailed computer codes to 

perform each operation are included in Appendix C. 
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The following steps were taken in the present work to perform PCA: 

1) Data points were tabulated 

Measurements of the 18 endpoints were arranged into an 18-by-30 matrix.  Each 

column represented an endpoint, and 30 observations were collected for each 

endpoint where 6 replicates were conducted in dechlorinated tap water, 6 

replicates in dechlorinated tap water with 0.1% v/v DMSO, 9 replicates in various 

concentrations of atrazine, and 9 replicates in various concentrations of tributyltin. 

 

2) Variables were pre-conditioned 

To minimize any bias exhibited by variables of larger magnitudes, mean-centering 

was applied by subtracting the mean from each data point across each dimension.  

This procedure resulted in a modified matrix with a mean of zero for each 

endpoint.  Two options were then applied to further pre-condition the mean-

centered matrix.  In the first option, data normalization was not performed, while 

in the second option, data normalization was applied to further reduce any bias by 

larger variables.  By conducting the two options separately, the effects of 

normalization could be compared and analyzed. 

 

3) The covariance matrix was calculated from the pre-conditioned matrix 

After mean-centering, a covariance matrix was calculated from the modified 

matrix in Step 2.  The covariance matrix described the linear relationships among 

all 18 variables.   
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4) The eigenvectors and eigenvalues of the covariance matrix were calculated 

After the covariance matrix was constructed, a total of 18 unit eigenvectors and 

eigenvalues could be calculated.  Each eigenvector was composed of coefficients 

which would transform the original data set, and the eigenvalues corresponded to 

the amount of variance described by the eigenvectors. 

 

5) The original data set was transformed 

In order to minimize the data complexity and facilitate pattern analysis, it was 

decided to reduce the number of variables from 18 to 2 principal components.  To 

accomplish this reduction in dimension, matrix multiplication was applied 

between the original data set and 2 eigenvectors with the largest eigenvalues, 

resulting in a final matrix of 30 observations and 2 principal components.    

 

After transforming the original data set using PCA, the new matrix was then 

graphed and examined for any contaminant-specific pattern.  Non-hierarchical cluster 

analysis tools, such as K-means clustering, was applied to objectively separate the data 

points into the 3 clusters as defined in Section 3.3, and the number of correctly assigned 

data points would describe how clearly defined and well-separated the clusters were.  

Calculations for CA were performed using the MATLAB software, and the codes are 

listed in Appendix C.   

 

The following steps described the K-means clustering algorithm employed in the 

present study: 
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1) Three random data points were selected 

Since the data set was to be separated into the 3 conditions as described in Section 

3.3, 3 random data points were selected from the transformed matrix from Step 5 

of the PCA algorithm.   

 

2) Clusters were generated based on the 3 chosen points 

Using the 3 random points chosen in Step 1, 3 clusters were established where the 

remaining data points would be assigned to the most similar cluster.  The distance 

between each remaining data point and each 3 chosen points were calculated, and 

the data point would be assigned to the cluster with the shortest distance. 

 

3) Cluster means were re-calculated 

After grouping data points into 3 clusters, a new mean was calculated for each 

cluster.  All objects are then re-evaluated and re-assigned into the most similar 

cluster. 

   

4) Convergence was reached 

Step 3 was repeated several times until no data point was re-assigned to a 

different cluster and no changes were made in between iterations.  A full 

convergence was then reached, and 3 clusters were established.  

 



 

 
72 

After applying K-means clustering, the cluster quality was further assessed using 

the Average Silhouette Width Plot technique as described in Section 2.4.2.  By 

calculating the silhouette coefficient for each cluster, the validity of each group of data 

points was evaluated.  If distinct clusters were indeed formed by the data points, this 

finding would then demonstrate the capability of the suite of organisms to resolve 

different classes of contaminants as well as illustrate the versatility of multivariate 

statistics in revealing hidden patterns among large data sets.  The transformed matrix of 

responses could then be incorporated as a preliminary library of responses for the EWBS. 

 

 

3.5 Methodology for Testing the Library of Responses 

 After constructing the preliminary library of responses, the capability of this 

library to resolve different contaminants was evaluated.  As discussed in Section 3.3, the 

library of responses was constructed using endpoints at t = 6 h from the present study and 

a previous study by Marshall (2009).  The endpoints at t = 6 h thus served as the standard 

to which subsequent readings could be compared.  Since no blind experiments had been 

conducted for the current NSERC project, there was no actual reading data yet to test the 

library.  To simulate real in-situ reading data, two matrices of responses of 18 endpoints 

and 30 observations (12 observations for reference condition and 9 for each contaminant) 

were created using experimental data at t = 2 h and t = 4 h from the present algal bioassay 

and previous experiments by Marshall (2009).  Raw data for these two matrices are 

provided in Appendix E.  The resolving capability of the library was then determined 

according to the number of correctly classified data points. 



 

 
73 

CHAPTER 4                                                                                           

RESULTS AND DISCUSSION 

4.1 Introduction 

 As discussed in Chapter 3, a bioassay was developed to measure the effective 

photosynthetic yield of Pseudokirchneriella subcapitata over a period of six hours in 

solutions containing different doses of atrazine and tributyltin.  The results from the 

bioassay were analyzed in this chapter, and the suitability of the Algae Online Monitor™ 

for inclusion in the early-warning biomonitoring system was evaluated.  Data from the 

algal bioassay was then combined with the measurements collected by Marshall (2009), 

and the combined data set was transformed using principal component analysis.  Any 

distinct patterns pertaining to each contaminant was identified, as well as the general 

trend and behaviour associated with the data points.  Then, a preliminary library of 

responses was constructed, and the ability of this library to resolve the two contaminants 

was evaluated.  Last, the present study ended with a discussion of how the library of 

responses could be incorporated into an early-warning biomonitoring system and applied 

in an automated system to identify contaminants in a water sample. 

 

 

4.2 Results and Evaluation of the Algal Bioassay  

4.2.1 Construction of the Algal Growth Curve 

 Pseudokirchneriella subcapitata cultures were grown for use in the bioassay 

according to the protocols modified from Environment Canada (2007).   As elaborated in 

Section 3.2.2, the protocols for preparing the growth medium were modified, resulting in 
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a rich medium containing four times more nutrients than the original protocol.  More 

starting culture was also used to subculture the alga, and the algal concentration was 

measured every day using a haemocytometer to monitor for the exponential growth 

phase.  The resulting growth curve is shown in Figure 4.1, and the raw data and sample 

calculations are included in Appendix A.2. 

 

 The growth curve for the algae in the present study was comparable to the 8 to 10-

day growth curve of P. subcapitata published by Environment Canada (2007).  As seen 

in Figure 4.1, the algal culture started at a concentration of 4.0 ± 0.8 × 10
5
 cells/mL and 

grew exponentially before finally reaching a stationary phase at t = 5 d.  In a similar study 

by Environment Canada (2007), the algal culture reached the exponential growing phase 

at t = 3 d before finally arriving at the stationary phase around t = 8 d.  This finding 

confirmed that the algal culture used in the present study was healthy since the culture 

exhibited an exponential growth within 7 days, and this culture was therefore suitable for 

use in bioassays (Environment Canada, 2007).   

 

Constructing the growth curve also helped determine the suitability of the culture 

for use in a bioassay by identifying the growth stage of the algae.  For example, 

conducting a bioassay using a senescing algal culture would introduce a large bias in the 

measurements of effective photosynthetic yield as the culture would be undergoing a 

natural decline (Behera et al., 2003).  By utilizing an algal culture that is actively 

growing, the bioassay would be able to capture the maximum effective photosynthetic 

yield of the aquatic plant. 
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Note:  The bioassay was conducted at t = 4 d, when the concentration of the algal suspension was 

~7.3 ± 0.58 × 10
6
 cells/mL.   

 

Figure 4.1.   Growth curve of Pseudokirchneriella subcapitata used for the algal 

bioassay in the present study.   
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 At t = 4 d, the concentration of the algal culture reached 7.3 ± 0.58 × 10
6
 

cells/mL, and this culture was ideal for use in a bioassay.  As noted in Section 3.2.3, 

however, the algal concentration used in the bioassay should be around 1 × 10
6
 cells/mL 

to prevent any error in measurements by the fluorometer.  The algal culture was then 

diluted using the enriched media until the concentration was 1.25 ± 0.23 × 10
6
 cells/mL.  

The effects of atrazine and tributyltin on the effective photosynthetic yield of this diluted 

algal culture were subsequently measured. 

 

4.2.2 Influence of Atrazine and Tributyltin on the Effective Photosynthetic Yield of 

Pseudokirchneriella subcapitata 

 The effective photosynthetic yield can be defined as a measure of the performance 

of the photosystem II complex in plants (Strasser et al., 2000).  Photosystem II is a 

protein complex which contributes to photosynthetic reactions by transferring the energy 

absorbed from photons of light into electrons and subsequently driving photosynthesis 

through a series of cascade reactions.  Electron transport is crucial in photosynthesis, and 

thus any inhibition on the activity of the photosystem II complex may affect the 

physiological state of the plant (Juneau and Popovic, 1999). 

 

To examine the effects of atrazine and tributyltin on the effective photosynthetic 

yield of P. subcapitata, a series of test solutions were prepared according to the 

compositions listed in Figure 3.1, and the effective photosynthetic yield of each of these 

test solutions was measured.  Figure 4.2 depicted the effects of adding DMSO on the 

photosynthetic yield of the algae.  
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Note:  Error bars were drawn at ± 1 standard deviation. 

 

Figure 4.2.   Effective photosynthetic yields of Pseudokirchneriella subcapitata 

measured over a period of 6 h in dechlorinated tap water with and without 

0.1% v/v dimethyl sulfoxide.   
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 From Figure 4.2, the effective photosynthetic yields for the two treatments 

showed a tendency to increase as the experiment progressed.  Since the amount of 

fluorescence was proportional to the amount of absorbing pigments (Strasser et al., 

2000), this small increase in photosynthetic yield could potentially be attributed to the 

fact that the test algae were at the exponential growth phase and thus were actively 

growing.  The addition of DMSO, however, appeared to have slightly influenced the 

effective photosynthetic yield, resulting in lower values at t = 6 h.  A one-way analysis of 

variance (ANOVA) comparing the photosynthetic yields between reference and DMSO 

treatments at t = 6 h revealed a p-value of 0.0078, signifying a statistically-significant 

difference between the two treatments at 95% confidence.  This finding did not agree 

with some published studies as DMSO is a commonly used solvent for bioassays 

involving herbicides and pesticides (El Jay, 1996; Pearce, 2009; Marshall, 2009).  Further 

testing was therefore recommended to ensure that the DMSO did not significantly 

influence the endpoint measurements in the present study and was suitable for use in 

future bioassays. 

 

 In the next analysis, the effects of various doses of atrazine on the effective 

photosynthetic yield of algae were studied, and the results for the atrazine experiments 

are shown in Figure 4.3.  As previously noted, dimethyl sulfoxide at a concentration of 

0.1% v/v was added to all atrazine solutions to increase the solubility of the compound in 

the dechlorinated tap water. 
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Figure 4.3.   Effective photosynthetic yields of Pseudokirchneriella subcapitata 

measured over a period of 6 h in dechlorinated tap water and in various 

solutions of atrazine.   

 



 

 
80 

Since atrazine is a photosystem II inhibitor, the addition of this contaminant was 

expected to strongly affect the effective photosynthetic yield of P. subcapitata as the 

photosynthetic yield is a direct measurement of the photosystem II efficiency (Fai et al., 

2007).  Atrazine exerts its phytotoxic action on aquatic plants by interfering with the 

electron transport process in photosystem II and binding specifically to the quinone site 

within the thylakoid membrane of the protein (Solomon et al., 1996).  As described by 

Equation (1) in Section 2.3.4, if the ability of the plant to absorb and process energy from 

photons is reduced, more of the exerted energy would be dissipated as fluorescence, 

resulting in a lower photosynthetic yield. 

 

From Figure 4.3, exposure to atrazine resulted in a decrease in the effective 

photosynthetic yield of the algae with a response time of at least 2 h.  A similar study by 

Fai et al. (2007) also noted the inhibitory effects of atrazine on the photosynthetic yields 

of P. subcapitata which was observed after 1 h of incubation.  In the present study, higher 

atrazine concentrations also resulted in a further reduction of the endpoint.  A one-way 

ANOVA revealed statistically-significant differences at 95% confidence level between: 

• 0.005 mg /L atrazine and dechlorinated tap water at t = 6 h (p-value = 0.0009);  

• 0.050 mg/L atrazine and dechlorinated tap water at t = 6 h (p-value = 2.53 × 10
-5

); 

and  

• 0.100 mg/L atrazine and dechlorinated tap water at t = 6 h (p-value = 0.0002).   

 

Last, the effects of various doses of tributyltin on the effective photosynthetic 

yield of the algae were investigated, and the results are displayed in Figure 4.4.   
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Figure 4.4.   Effective photosynthetic yields of Pseudokirchneriella subcapitata 

measured over a period of 6 h in dechlorinated tap water and in various 

solutions of tributyltin.   
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 Unlike the experiments with atrazine, the various doses of tributyltin did not as 

strongly influence the effective photosynthetic yield of P. subcapitata, but a significant 

decrease in the endpoint was still observed after 2 h of exposure.  Increasing the 

concentration of tributyltin also did not seem to more strongly affect the endpoint as 

shown in Figure 4.4, and the effective photosynthetic yields for all tributyltin experiments 

remained very similar throughout the entire bioassay.  Overall, the effective 

photosynthetic yield of the algae increased over a period of 6 h, but the rates of increase 

were reduced by at least 40% from the reference condition.  A one-way ANOVA 

revealed statistically significant differences at 95% confidence level between: 

• 0.010 mg /L tributyltin and dechlorinated tap water at t = 6 h (p-value = 0. 0004);  

• 0.050 mg /L tributyltin and dechlorinated tap water at t = 6 h (p-value = 0.0008); 

and  

• 0.100 mg/L tributyltin and dechlorinated tap water at t = 6 h (p-value = 0.022).   

 

 Very few studies have actually examined the effects of tributyltin on the 

photosynthetic parameters of plants.  Jensen et al. (2004) studied the effects of tributyltin-

contaminated soil on the seagrass Ruppia maritima.  The performance of the plants was 

monitored over a period of 3-4 weeks, and the photosynthetic activity was found to be 

reduced by up to 60%.  Fargasová (1998) also examined the inhibitory effects of various 

tributyltin compounds on the freshwater planktonic alga Scenedesmus quadricauda, 

where a reduction in growth, photosynthetic activities, and chlorophyll content was 

observed after 12 days of cultivation.  Despite some noted inhibitory effects, the above 

studies were long-term bioassays which lasted for several weeks and thus could not be 
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incorporated into an early-warning biomonitoring system.  It was interesting to note, 

however, that the Algae Online Monitor™ used in the present study was able to detect a 

change in the physiological state of the algae upon exposure to tributyltin within only 2 h.  

Similar rapid detections were also reported by Pearce (2009) where tributyltin at 0.100 

mg/L was found to significantly inhibit the photosynthetic rate of P. subcapitata after 6 h. 

  

Overall, the algal bioassay illustrated the importance of employing multiple 

aquatic organisms from different trophic levels in a biomonitoring system, as each 

organism may exhibit distinct sensitivities to a particular contaminant.  In this case, the 

alga Pseudokirchneriella subcapitata was susceptible to herbicides, and the effective 

photosynthetic yield of the alga was strongly affected by the presence of a PSII-inhibitor 

such as atrazine.  By measuring the photosynthetic yield, the bioassay was able to detect 

the presence of atrazine as rapid as within 2 h of exposure.  Exposure to tributyltin also 

caused a change in the effective photosynthetic yield, but the deviation was not as 

significant as when exposed to atrazine.  This difference in response intensity would be a 

useful discriminating parameter to help resolve contamination cases by atrazine and 

tributyltin.  Due to the sensitivity of the effective photosynthetic yield, this endpoint was 

recommended for inclusion in the library of responses for the early-warning 

biomonitoring system. 

 

4.2.3 Performance Evaluation of the Algae Online Monitor™ 2800  

 A schematic of the Algae Online Monitor™ (model: AOM 2800) was shown in 

Figure 3.2 in Section 3.2.3.  According to the specifications from the manufacturer, the 
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device is capable of online detection and continuous monitoring of several photosynthetic 

parameters in a field or laboratory setting.  Since one of the contaminants tested in the 

present study was a known PSII-inhibitor, the effective photosynthetic rate was deemed 

the most suitable parameter for monitoring.  Besides photosynthetic yield, the device can 

also measure the instantaneous fluorescence (FT) and construct a curve for the 

chlorophyll fluorescence induction kinetics (0JIP curve).  Experiments measuring the 

0JIP curve are typically conducted on dark-adapted plants because dark-adaptation results 

in a reduced photochemical activity of the plant which then allows for the measurement 

of the maximum algal fluorescence as described by Equation (2) in Section 2.3.4.  The 

shape of the 0JIP curve can then provide rich information on the physiological state of the 

sample (Strasser et al., 2000).  For the current study, measuring the effective 

photosynthetic rates was already adequate in characterizing the effects of atrazine and 

tributyltin on Pseudokirchneriella subcapitata, but if more studies on the physiology of 

the algal cells are required, experiments measuring the behaviour of dark-adapted algal 

cultures as well as the change in the 0JIP curve could be considered.  

 

 A recent literature search did not find any published study employing this 

particular model of fluorometer, and thus an objective assessment of the AOM 2800 

could not be obtained.  A published study involving the same device would have been 

very useful as some of the features of the AOM 2800 were not clearly detailed in the 

operation manual.  As a result, it was necessary to perform a number of trial-and-error 

experiments to obtain empirical settings for several experimental parameters such as flow 

rate and concentration.  Despite the claimed detection limit of 10 algal cells/mL, the 
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fluorometer was not able to measure the photosynthetic yield of algal cultures with a 

concentration of less than 1 × 10
5
 cells/mL.  When the concentration exceeded ~2 × 10

6
 

cells/mL, an ‘overflow’ error message was displayed by the fluorometer.  Several 

preliminary experiments found an optimal concentration of ~1 × 10
6
 cells/mL when used 

in conjunction with a pump flow rate of 6.7 mL/minute. 

 

Preliminary experiments also found that by reducing the algal concentration, the 

AOM yielded lower effective photosynthetic yield measurements even though the 

physiological state of the algal cells was unchanged.  Since the current bioassay was 

conducted as a semi-batch experiment, where aliquots of different test solutions were fed 

into the fluorometer at different times, maintaining roughly the same concentration 

throughout the experiment was easily accomplished.  When applied in a continuous flow-

through setting, however, an instrument such as a turbidostat must be employed to sustain 

the concentration of the algal cells and prevent a false assessment of the water condition.  

 

Overall, the present study found the performance of the AOM 2800 to be 

satisfactory.  Despite some initial difficulties encountered in the experimental setup, the 

bioassay was able to rapidly detect the change in the effective photosynthetic yields of P. 

subcapitata when exposed to atrazine and tributyltin.  Upon examination of the features 

of the device, the fluorometer could potentially conduct a continuous assessment of water 

quality with minimal supervision since the device was equipped with an automated 

measuring function at defined intervals.  The memory capacity of the device was 4 

megabytes which could store up to 100,000 measurements or approximately 300 0JIP 
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curves.  Further tests examining the performance of the device in a flow-through setting 

were recommended to assess whether the machine could effectively provide a real-time 

online analysis of water conditions. 

 

 

4.3 Application of Multivariate Statistical Tools on the Endpoint Data Set 

A number endpoint data were collected from a study by Marshall (2009), and one 

endpoint was obtained from the algal bioassay in the present study.  The endpoint data for 

Daphnia magna, Hyalella azteca and Lumbriculus variegatus at t = 6 h are attached in 

Appendices B.1 – B.3, while the measurements for the effective photosynthetic yield of 

Pseudokirchneriella subcapitata are listed in Appendix A.3.  These endpoints resulted in 

a 30-by-18 matrix of responses. 

 

4.3.1 Results of Principal Component Analysis  

After constructing the 30-by-18 matrix of responses, PCA was applied to this data 

set to reduce the number of dimensions to 2 principal components.  All statistical 

calculations were performed using the MATLAB software and according to the steps 

outlined in Section 3.4.  The MATLAB codes to perform the steps are listed in Appendix 

C, and all intermediate calculations for the PCA are included in Appendix D.  As 

elaborated earlier, two different options were considered for the matrix preconditioning – 

non-normalization and normalization.  The non-normalized data set is shown in Table 4.1 

and Figure 4.5, and the normalized data set in Table 4.2 and Figure 4.6.  
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Table 4.1.   Transformed non-normalized matrix of responses at t = 6 h. 

Treatment Principal Component 1 Principal Component 2 

Dechlorinated tap water   

 Replicate 1 -154.57 4.01 

 Replicate 2 -154.60 3.93 

 Replicate 3 -154.60 3.93 

 Replicate 4 -154.57 4.01 

 Replicate 5 -154.60 3.93 

 Replicate 6 -147.65 2.21 

    

Dechlorinated tap water with 0.1% v/v DMSO   

 Replicate 1 -152.63 0.39 

 Replicate 2 -152.63 0.39 

 Replicate 3 -154.53 4.09 

 Replicate 4 -154.13 1.58 

 Replicate 5 -154.50 4.17 

 Replicate 6 -147.58 2.36 

    

Tributyltin (0.010 mg/L)   

 Replicate 1 6.36 -55.92 

 Replicate 2 87.63 -17.44 

 Replicate 3 42.27 -14.24 

    

Tributyltin (0.050 mg/L)   

 Replicate 1 54.68 -68.68 

 Replicate 2 98.61 -24.74 

 Replicate 3 87.99 -46.86 

    

Tributyltin (0.100 mg/L)   

 Replicate 1 136.75 -95.46 

 Replicate 2 158.12 -26.60 

 Replicate 3 138.47 -42.89 

    

Atrazine (0.005 mg/L)   

 Replicate 1 40.00 49.33 

 Replicate 2 84.87 35.55 

 Replicate 3 89.83 34.61 

    

Atrazine (0.050 mg/L)   

 Replicate 1 121.12 67.07 

 Replicate 2 128.16 36.94 

 Replicate 3 109.59 15.09 

    

Atrazine (0.100 mg/L)   

 Replicate 1 157.51 79.78 

 Replicate 2 161.30 33.63 

 Replicate 3 133.35 5.83 
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Figure 4.5.   A plot of the transformed non-normalized matrix of responses containing 

endpoints at t = 6 h.    
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Table 4.2.   Transformed normalized matrix of responses at t = 6 h. 

Treatment Principal Component 1 Principal Component 2 

Dechlorinated tap water   

 Replicate 1 -146.60 -5.68 

 Replicate 2 -146.82 -6.05 

 Replicate 3 -146.82 -6.05 

 Replicate 4 -146.60 -5.68 

 Replicate 5 -146.82 -6.05 

 Replicate 6 -141.17 -6.18 

    

Dechlorinated tap water with 0.1% v/v DMSO   

 Replicate 1 -143.13 -7.81 

 Replicate 2 -143.13 -7.81 

 Replicate 3 -146.38 -5.30 

 Replicate 4 -144.98 -9.85 

 Replicate 5 -146.16 -4.93 

 Replicate 6 -140.72 -5.43 

    

Tributyltin (0.010 mg/L)   

 Replicate 1 8.38 -46.50 

 Replicate 2 84.18 1.63 

 Replicate 3 30.63 5.97 

    

Tributyltin (0.050 mg/L)   

 Replicate 1 46.97 -48.52 

 Replicate 2 91.02 -14.96 

 Replicate 3 82.29 -32.06 

    

Tributyltin (0.100 mg/L)   

 Replicate 1 144.01 -74.02 

 Replicate 2 157.27 -33.64 

 Replicate 3 142.02 -43.17 

    

Atrazine (0.005 mg/L)   

 Replicate 1 27.03 28.30 

 Replicate 2 68.44 33.31 

 Replicate 3 86.73 35.39 

    

Atrazine (0.050 mg/L)   

 Replicate 1 115.39 53.98 

 Replicate 2 116.58 43.76 

 Replicate 3 104.78 30.95 

    

Atrazine (0.100 mg/L)   

 Replicate 1 147.08 80.99 

 Replicate 2 155.38 42.33 

 Replicate 3 131.18 13.06 
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Figure 4.6.   A plot of the transformed normalized matrix of responses containing 

endpoints at t = 6 h.    
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The transformed non-normalized matrix of responses contained approximately 

85% of information from the original data set, where the first principal component (PC1) 

described 78.3% of the variance and the second principal component (PC2) described an 

additional 6.5% of variance.  The allocated variance was determined by the eigenvalue of 

each eigenvector as described in Appendix D.  For the transformed normalized matrix of 

responses, 63.5% of variance is contained in PC1 while 14.2% of variance was described 

by PC2, totalling approximately 78% of information from the original data set.  In the 

non-normalized case, data points appeared to form three distinct groups with a relatively 

greater distance between the atrazine and tributyltin treatments.  For the normalized case, 

significant separation was obtained between higher concentrations of atrazine and 

tributyltin, but not at lower concentrations of the toxicants. 

 

A test to formally evaluate the number of non-trivial axes does not currently exist, 

and therefore the number of axes must be selected based on the purpose and objectives of 

each study (Shaw, 2003).  Some methods have been discussed among statisticians to 

determine the appropriate number of principal components required to accurately 

describe the original data set without significant loss of information.  An example of such 

evaluation method is the Kaiser-Guttman criterion which recommended discarding any 

principal components with an eigenvalue of less than 1% (Cliff, 1988).  A major 

drawback to the Kaiser-Guttman criterion, however, is the tendency of the method to 

overestimate the number of non-trivial axes, resulting in a data set that would still contain 

a large number of variables (Jackson, 1993).  Another method was suggested by Jackson 

(2003) where the total explained variability by different principal components should 
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exceed 80%.  By following this method, selecting two principal components in the 

present study was sufficient for the non-normalized case as the total variance was 85%, 

but the normalized case did not meet this criterion as the total variance was only 78%.  

This finding suggested that reducing the original data set into two principal components 

was not appropriate for the normalized case, and only the non-normalized case was 

therefore considered for further analysis in the present work.  Normalizing the original 

matrix of responses may also be inappropriate for the current study as the number of trials 

and replicates were relatively few, resulting in a more discrete distribution.  The 

normalized case, however, could still be considered in future studies by including more 

principal components and rotating the axes which could increase the total variance. 

 

In Figure 4.5, the two principal components displayed the data points as three 

different groups which corresponded to the three different treatments described in Table 

3.2 of Section 3.3.  The reference condition contained measurements conducted in 

dechlorinated tap water with and without 0.1% v/v DMSO, and data points from this 

condition formed a closely-packed cluster to the left of the origin.  In the first quadrant of 

Figure 4.5, a loosely-formed group of data points was observed, and this group comprised 

measurements conducted in solutions of atrazine.  To the opposite of the atrazine group, 

just across the PC1 axis and in the fourth quadrant of the graph, another loosely-formed 

group of data points was found.  This second group was composed of measurements 

conducted in solutions containing tributyltin.  Higher doses of either contaminant were 

also found to cause data points to shift further toward larger positive PC1 values. 
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The first principal component contained the largest variance, and this value was 

attributed to the responses exhibited by the selected aquatic organisms to the 

contaminants.   Since data points were pre-conditioned by mean-centering, the overall 

mean of the two principal components was located at the origin of the graph.  When the 

organisms were not stressed, they displayed very small deviations, close to 0%, in their 

parameters, and these below-average deviations resulted in the data points falling to the 

left of the average for PC1.  When a stressor was introduced into the test solution, 

however, the organisms displayed rapid changes in their endpoints, which in turn caused 

a drift towards the positive PC1 direction.  A greater intensity in response generally 

resulted in a drift further away from the origin.  Based on this finding, PC1 could 

therefore be used as an indicator of a contamination or a stressed condition for the 

behavioural endpoints, regardless of the cause or the type of contamination.   

 

The proposed early-warning biomonitoring system, however, aimed to not only 

accurately detect the presence of a contaminant, but also to identify a number of 

contaminants.  In order to identify the contaminants in the present study, the second 

principal component was useful in differentiating the responses exhibited by the selected 

aquatic organisms.  As observed in Figure 4.5, atrazine elicited certain responses in the 

aquatic organisms which caused a drift towards the positive PC2 direction.  Conversely, 

the responses in solutions containing tributyltin resulted in data points leaning toward the 

negative PC2 direction.  These findings reflected the different modes of action exhibited 

by the two chemicals on the endpoints of the aquatic organisms and the possibility to 

characterize contaminant-specific responses for atrazine and tributyltin. 



 

 
94 

  

Equation (4) in Section 2.4.1 describes the relationship between the original 

endpoint measurements and the new data points plotted in Figure 4.5.  This equation also 

established PC1 and PC2 as aggregate variables, which signified that each principal 

component was composed of different weightings of the original 18 endpoints.  These 

weightings were determined by the eigenvectors as the original matrix of responses was 

transformed through matrix multiplication with these eigenvectors.  Each of the 

eigenvector was composed of coefficients as shown in Table 4.3. 

 

By examining the eigenvector coefficients listed in Table 4.3, endpoints which 

acted as indicators and/or discriminators could then be identified.  For example, 

endpoints with a large positive PC1 coefficient tended to strongly indicate the presence of 

a contaminant, and an example of such endpoint would be the percentage of Daphnia 

magna exhibiting a change in the swimming height.  As discussed earlier, the exposure to 

atrazine generally caused a data point to fall on the positive PC2 axis, while exposure to 

tributyltin resulted in a drift towards the negative PC2 axis.  Based on this observation, 

endpoints with a large positive PC2 coefficient, such as the percentage of Hyalella azteca 

burrowing, were more strongly affected by atrazine, while endpoints with a large 

negative PC2 coefficient, such as the percentage of Lumbriculus variegatus moving 

within groups, were better predictors of tributyltin contamination.  By incorporating the 

contaminant indicators and discriminators into the design of the early-warning 

biomonitoring system, a more accurate and comprehensive analysis of water quality 

could be accomplished. 
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Table 4.3.   Eigenvector coefficients which governed the contribution of each endpoint 

towards the construction of the transformed data set.  

 

Measured Endpoint (%) PC1 coefficients PC2 coefficients 

Daphnia magna   

 Changing swimming height 0.35 -0.12 

 Spinning 0.09 -0.19 

 Changing in body orientation 0.18 0.21 

 Immobilized 0.23 0.03 

 Swimming using secondary antennae 0.24 -0.15 

 Changing swimming style 0.32 0.11 

    

Hyalella azteca   

 Changing swimming height 0.35 -0.09 

 Immobilized 0.35 0.02 

 Burrowing 0.21 0.43 

 Changing grouping behaviour 0.26 0.49 

 Shortening body length 0.33 0.06 

 Changing body orientation 0.04 -0.16 

    

Lumbriculus variegatus   

 Displaying abnormal behaviour 0.34 -0.18 

 Immobilized 0.07 -0.27 

 Shortening body length 0.16 -0.34 

 Changing body orientation 0.04 -0.26 

 Moving within groups 0.12 -0.36 

    

Pseudokirchneriella subcapitata   

 Effective photosynthetic yield 0.03 0.08 
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4.3.2 Further Analysis of Endpoints Using a Biplot  

 In order to visualize the significance and the extent of contribution by each 

endpoint to the transformed data set, a biplot can be constructed.  A biplot is an 

exploratory graph that displays the eigenvector coefficients as unit vectors and then 

superimposes the vectors on a plot of the transformed data points (Kohler and Luniak, 

2005; Reimann et al., 2008).  Figure 4.7 depicts a biplot of the eigenvector coefficients in 

Table 4.3 and the data points from Table 4.1 which had been scaled by a factor of 1/200 

to more clearly illustrate the relationship between the unit vectors and the data points.  By 

applying the analysis in a study of biplots by Kohler and Luniak (2005), two properties in 

Figure 4.7 were examined. 

 

1) Length of the unit vectors 

 The length of each unit vector in Figure 4.7 describes the variance for each 

endpoint.  In the present study, each endpoint was measured in reference condition as 

well as in solutions containing atrazine or tributyltin, and the results from all conditions 

were tabulated in a single column of observations.  A large variance in an endpoint 

therefore indicated a more pronounced departure of that behavioural parameter from the 

reference condition when exposed to one of the two contaminants.  Since sensitivity is 

often correlated to the intensity of responses, any endpoint exhibiting a long unit vector 

could be inferred as being sensitive to the test contaminants.  From Figure 4.7, unit 

vectors 09 and 10, which correspond to the percentages of Hyalella azteca burrowing and 

grouping, respectively, were the longest unit vectors.  These endpoints were therefore the 

most susceptible parameters to the contaminants. 
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 Conversely, endpoints with short unit vectors, such as the change in the effective 

photosynthetic yield of Pseudokirchneriella subcapitata (vector 18) and the percentages 

of Hyalella azteca changing body orientation (vector 12), showed relatively small 

deviations from the reference condition in the presence of the two contaminants.  For 

endpoints with low sensitivities, a highly precise automated monitoring system must be 

implemented in order to adequately capture and minimize incorrect readings, or these 

endpoints could be eliminated altogether from the library of responses since their 

contribution to the overall model was relatively low. 

 

2) Angle between two unit vectors 

 The angle between two unit vectors in a biplot is a measure of their correlation.  

For example, the percentages of Hyalella azteca burrowing and changing grouping 

behaviour, or unit vectors 09 and 10, resulted in two unit vectors which were almost 

identical in magnitude and direction.  This finding indicates that the two endpoints were 

very strongly related and behaved very similarly when either atrazine or tributyltin was 

added to the test solution.  Some other endpoints also exhibited very strong correlations 

such as vectors 15 and 17, or the percentages of Lumbriculus variegatus shortening their 

body lengths and moving within groups, respectively.  The pairs of strongly-correlated 

endpoints could either be maintained to provide system redundancy, or one of the 

endpoints could be eliminated to streamline the biomonitoring system.  Having 

redundancy is advantageous as the system becomes more robust, but if the cost to 

measure more endpoints outweighs the benefits, then some endpoints can be eliminated.   
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LEGEND FOR UNIT VECTORS: 

     

Daphnia magna  Hyalella azteca 

01 Changing swimming height  07 Changing swimming height 

02 Spinning  08 Immobilized 

03 Changing body orientation  09 Burrowing 

04 Immobilized  10 Grouping 

05 Using secondary antennae  11 Shortening body length 

06 Changing swimming style  12 Changing body orientation 

     

Lumbriculus variegatus  Pseudokirchneriella subcapitata 

13 Displaying abnormal swimming  18 Changing effective  

14 Immobilized   photosynthetic yield 

15 Shortening body length    

16 Changing body orientation    

17 Moving within groups    

 

Figure 4.7.   Biplot of the unit vectors formed by the coefficients in Table 4.3 and data 

points scaled by a factor of 1/200 from Table 4.1. 



 

 
99 

 In addition, vectors which are directly superimposed on top of one another 

indicate multicollinearity, and these vectors describe the same information.  If 

multicollinearity occurs in a future experiment, only one of the endpoints should be 

recommended for the library of responses.  As discussed in Section 2.3.2, Marshall 

(2009) recommended measuring both the percentages of H. azteca crawling and 

immobilized, but only the former endpoint was included in the present study because the 

two endpoints were exact complements of each other.  Including both endpoints would 

have caused multicollinearity and resulted in two superimposed and identical unit 

vectors.  Similar to having strongly-correlated endpoints, multicollinear endpoints can be 

advantageous as the endpoints create a more robust system.  Most biomonitoring systems, 

however, are only capable of measuring a limited number of endpoints, and including 

extra endpoints may necessitate some instrumental upgrades.  In this case, measuring the 

percentages of H. azteca crawling may require a more detailed camera and image 

analysis software, and thus a measurement of immobilized H. azteca was preferred.  

 

 On the contrary, unit vectors which are almost perpendicular to each other signify 

a weak relationship between the two endpoints, and the vectors could be assumed to be 

independent of each other.  An example of such a situation is the relationship between the 

percentages of Daphnia magna changing swimming height and body orientation, or 

vectors 01 and 03, respectively.  These two vectors were weakly correlated as the 

swimming height of the D. magna was more susceptible to a contamination by tributyltin, 

while the body orientation of the invertebrate changed more rapidly in the presence of 
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atrazine.  Having several pairs of perpendicular unit vectors indicated some contaminant-

specific sensitivity of different endpoints to the test contaminants. 

 

4.3.3 Results of Cluster Analysis  

By visual inspection, the data points in Figure 4.5 appeared to separate into three 

distinct clusters on the basis of treatment.  As previously elaborated, however, an 

unbiased evaluation must be performed to assess whether the data points were actually 

separable into a number of well-defined clusters.  To perform this evaluation, K-means 

clustering was applied to objectively classify the data points into three unspecified 

clusters, and the number of correctly assigned data points would be a measure of cluster 

quality.  The algorithms for K-means clustering were conducted using MATLAB, and the 

resulting groups of data points are shown in Figure 4.8. 

 

The application of K-means clustering on the data points in Figure 4.5 resulted in 

three groups of data points which were analogous to the conditions listed in Table 3.2 in 

Section 3.3.  Cluster 1 matched the reference condition, while clusters 2 and 3 

corresponded to the tributyltin and atrazine treatments, respectively.  K-means clustering 

also assigned data points from similar treatments into the same group resulting in an 

accuracy of 100% as no data point was incorrectly classified into the wrong cluster of 

data points.  This finding signified a strong evidence of contaminant-specific patterns 

exhibited by the organisms to the test contaminants in the present study, and these 

organisms could potentially be employed to distinguish the two contaminants by 

monitoring different changes in their endpoints. 
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Figure 4.8.   Classification of data points in Figure 4.5 using K-means clustering. 
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The clusters in Figure 4.8 were further evaluated using the Average Silhouette 

Plot method as outlined in Section 3.4.  By comparing the average distance of a data 

point to other points in the same cluster and the average distance of the same data point to 

other point in the nearby cluster, an assessment of the cluster quality could be obtained as 

governed by Equation (5).  Figure 4.9 displays the Average Silhouette Plot constructed 

from data points in the present study.  Raw data for the plot are included in Appendix F.   

 

Data points for the reference condition formed a ball cluster in Figure 4.9, 

resulting in a high average silhouette coefficient of 0.98.  This number indicated strong 

evidence of a cluster for the data points measured in reference condition.  The clusters for 

the atrazine and tributyltin treatments in Figure 4.5 were more loosely-formed, and as a 

result, the average silhouette coefficient for the two clusters was lower at 0.43 and 0.28, 

respectively.  Despite the lower values, these coefficients were still higher than 0.25, and 

thus there was still some evidence of a cluster structure (Kaufman and Rousseeuw, 1990).   

 

One of the tributyltin treatments, specifically the second replicate at 0.100 mg/L, 

resulted in a silhouette coefficient of almost 0.  This value denoted an ambiguity for that 

particular data point where the point could be correctly classified as a contamination by 

tributyltin or misclassified as a contamination by atrazine.  Despite this ambiguity, 

however, several runs of K-means clustering were still able to correctly classify this data 

point, and so this data point was considered acceptable for the present study. 
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Note: A silhouette coefficient of greater than 0.7 indicates strong cluster quality while a coefficient less 

than 0.25 signifies the absence of a cluster. 

 
 

 

Figure 4.9.   Average Silhouette Plot describing the cluster quality for data points in 

Figure 4.8. 
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 As elaborated in Section 2.4.2, data points collected from environmental samples 

are more likely to form loose clusters with a few data points lying in between several 

main groups (Shaw, 2003).  Based on this assumption, encountering data points with low 

silhouette coefficients was reasonable for the present study.  A factor which could have 

contributed to these low coefficient values was the limited number of trials in the present 

study where only 9 trials were conducted for each stressor condition.  These small sets 

were more strongly influenced by any unforeseen and unaccounted factors which could 

have affected the central mean of each cluster.  In addition, as higher doses of atrazine 

and tributyltin were added, the responses exhibited by the aquatic organisms started to 

become similar as the organisms were distressed in general.  These similarities in stressed 

responses could also present some ambiguities, and more experimental trials involving 

different concentrations are highly recommended for future experiments in order to 

improve the separation between different clusters. 

 

4.3.4 Results of Discriminant Analysis  

Cluster analysis revealed some contaminant-specific patterns in the data set from 

the present study as the data points formed three relatively-defined groups corresponding 

to the three test conditions listed in Table 3.2.  Based on this finding, the data set could be 

employed as a preliminary library of responses to distinguish contaminations by atrazine 

and tributyltin.  As discussed in Section 3.5, two matrices of responses were created to 

simulate real in-situ readings, and each of the matrices contained 30 observations (12 for 

reference condition and 9 for each contaminant).  Figure 4.10 and Table 4.4 illustrate the 

classification of the endpoint data measured at t = 2 h by the library of responses. 
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Figure 4.10.   Plot of the endpoint measurements at t = 2 h against the library of 

responses. 
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Table 4.4.   Classification of the endpoint measurements at t = 2 h using the current 

library of responses.  

Observation Actual Condition Classified Condition 

1 Reference Condition Reference Condition 

2 Reference Condition Reference Condition 

3 Reference Condition Reference Condition 

4 Reference Condition Reference Condition 

5 Reference Condition Reference Condition 

6 Reference Condition Reference Condition 

7 Reference Condition Reference Condition 

8 Reference Condition Reference Condition 

9 Reference Condition Reference Condition 

10 Reference Condition Reference Condition 

11 Reference Condition Reference Condition 

12 Reference Condition Reference Condition 

13 Contamination by Tributyltin Reference Condition 

14 Contamination by Tributyltin Reference Condition 

15 Contamination by Tributyltin Reference Condition 

16 Contamination by Tributyltin Reference Condition 

17 Contamination by Tributyltin Reference Condition 

18 Contamination by Tributyltin Contamination by Tributyltin 

19 Contamination by Tributyltin Contamination by Tributyltin 

20 Contamination by Tributyltin Contamination by Atrazine 

21 Contamination by Tributyltin Contamination by Tributyltin 

22 Contamination by Atrazine Contamination by Atrazine 

23 Contamination by Atrazine Reference Condition 

24 Contamination by Atrazine Contamination by Atrazine 

25 Contamination by Atrazine Contamination by Atrazine 

26 Contamination by Atrazine Contamination by Atrazine 

27 Contamination by Atrazine Contamination by Tributyltin 

28 Contamination by Atrazine Contamination by Atrazine 

29 Contamination by Atrazine Contamination by Atrazine 

30 Contamination by Atrazine Contamination by Atrazine 

 

Note:      

•   Italicized entries denote incorrectly classified data points. 

•   Total accuracy = 22/30 = 73.3% 

•   The following treatments were applied on the respective observations: 

Observation Treatment 

1-12 Dechlorinated tap water with and without 0.1% v/v DMSO 

13-15 Tributyltin at 0.010 mg/L 

16-18 Tributyltin at 0.050 mg/L 

19-21 Tributyltin at 0.100 mg/L 

22-24 Atrazine at 0.005 mg/L 

25-27 Atrazine at 0.050 mg/L 

28-30 Atrazine at 0.100 mg/L 
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 From Figure 4.10, many of the data points measured at t = 2 h were located near 

the origin which signified that these endpoints were similar in magnitudes to the overall 

mean of the library of responses.  As discussed in previous sections, the library of 

responses contained one extreme, where the endpoints are close to 0% during the 

reference condition, and another extreme, where the endpoints may approach 100% in the 

presence of contaminants.  In addition, the library of responses was created using 

measurements collected after 6 h of exposure to the contaminants.  As a result, any 

readings collected between t = 0 and t = 6 h would result in data points falling in between 

the two extremities as the organisms were still reacting to the contaminants and the full 

extent of the stressor had not been reached.   

 

 Despite having been exposed for only 2 h to the contaminants, a number of 

observations could still be correctly classified by the library of responses as summarized 

in Table 4.4.  All the reference conditions were correctly identified, while 33% of the 

tributyltin contaminations and 78% of the atrazine contaminations were properly 

classified, resulting in an overall accuracy of 73%.  The majority of misclassified 

observations occurred at low concentrations of tributyltin (observations 13 – 17) and 

atrazine (observation 23) where these observations resulted in false negative readings.  

From the raw data in Appendix E, many of the endpoints at t = 2 h did not exhibit large 

departures yet from the reference condition, and this delayed response could be attributed 

to the low doses of the contaminants which required a longer incubation time to elicit a 

significant response from the organisms.  After a longer exposure at 4 h, more of the 

observations could be correctly classified as shown in Figure 4.11 and Table 4.5. 
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Figure 4.11.   Plot of the endpoint measurements at t = 4 h against the library of 

responses. 
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Table 4.5.   Classification of endpoint measurements at t = 4 h using the current library 

of responses.  

Observation Actual Condition Classified Condition 

1 Reference Condition Reference Condition 

2 Reference Condition Reference Condition 

3 Reference Condition Reference Condition 

4 Reference Condition Reference Condition 

5 Reference Condition Reference Condition 

6 Reference Condition Reference Condition 

7 Reference Condition Reference Condition 

8 Reference Condition Reference Condition 

9 Reference Condition Reference Condition 

10 Reference Condition Reference Condition 

11 Reference Condition Reference Condition 

12 Reference Condition Reference Condition 

13 Contamination by Tributyltin Contamination by Tributyltin 

14 Contamination by Tributyltin Contamination by Tributyltin 

15 Contamination by Tributyltin Contamination by Tributyltin 

16 Contamination by Tributyltin Contamination by Tributyltin 

17 Contamination by Tributyltin Contamination by Tributyltin 

18 Contamination by Tributyltin Contamination by Tributyltin 

19 Contamination by Tributyltin Contamination by Tributyltin 

20 Contamination by Tributyltin Contamination by Tributyltin 

21 Contamination by Tributyltin Contamination by Tributyltin 

22 Contamination by Atrazine Contamination by Atrazine 

23 Contamination by Atrazine Contamination by Atrazine 

24 Contamination by Atrazine Contamination by Atrazine 

25 Contamination by Atrazine Contamination by Atrazine 

26 Contamination by Atrazine Contamination by Atrazine 

27 Contamination by Atrazine Contamination by Atrazine 

28 Contamination by Atrazine Contamination by Atrazine 

29 Contamination by Atrazine Contamination by Atrazine 

30 Contamination by Atrazine Contamination by Tributyltin 

 

Note:      

•   Italicized entries denote incorrectly classified data points. 

•   Total accuracy = 29/30 = 96.7% 

•   The following treatments were applied on the respective observations: 

Observation Treatment 

1-12 Dechlorinated tap water with and without 0.1% v/v DMSO 

13-15 Tributyltin at 0.010 mg/L 

16-18 Tributyltin at 0.050 mg/L 

19-21 Tributyltin at 0.100 mg/L 

22-24 Atrazine at 0.005 mg/L 

25-27 Atrazine at 0.050 mg/L 

28-30 Atrazine at 0.100 mg/L 
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 From Figure 4.11, many of the data points measured at t = 4 h had shifted from 

their previous positions at t = 2 h and were situated closer to the measurements at t = 6 h 

(the actual library of responses).  This shift in position could be attributed to the fact that 

the organisms had been incubated for a longer period in the contaminated solutions, and 

the harmful effects of the contaminants were starting to affect many of the behavioural 

and physiological endpoints of the organisms.  A visual inspection of the raw data in 

Appendix E confirmed that after a longer exposure of 4 h, many of the endpoints 

displayed more significant departures from the reference condition even at lower 

concentrations of atrazine and tributyltin. 

 

Since the endpoints were more susceptible to the two contaminants after 4 h of 

exposure, more observations could be correctly classified by the library of responses as 

summarized in Table 4.5.  All the reference conditions and the tributyltin contaminations 

were correctly identified, while 88% of the atrazine contaminations were properly 

classified, resulting in an overall accuracy of 97%.  Observation 30, which was conducted 

in a solution containing 0.100 mg/L atrazine, was incorrectly classified as a tributyltin 

contamination by the library of responses.  While this classification was inaccurate, the 

library of responses still categorized observation 30 as a non-reference condition.  During 

the in-situ deployment of the early-warning biomonitoring system, the consequences of 

such misclassification would not be critical because an alarm would still be raised to 

warn the water safety operator of a contamination in the water.  Furthermore, the 

proposed EWBS is a flow-through, online monitoring system, so a continuous 

measurement of water parameters would still be performed.  When additional 
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measurements are collected at t = 6 h, observation 30 would be correctly identified as the 

organisms would have been exposed even longer to the contaminants.  The preliminary 

library of responses in the current study was therefore capable of accurately detecting 

either atrazine or tributyltin within 4 h of exposure, but a longer exposure of at least 6 h 

was recommended to obtain a correct identification of contaminants. 

 

 

4.4 Potential Implementation of the Library of Responses 

The present study provided a model for a library of responses which could be 

incorporated into the design of an automated early-warning biomonitoring system.  A 

potential configuration for the EWBS is shown in Figure 4.12(a), where a central 

computer is connected to n biomonitors which continuously measure the endpoints of m 

aquatic organisms.  To process the incoming endpoint data, a computer algorithm was 

developed as shown in Figure 4.12(b) where automated measurements can be conducted 

at specified time intervals.  As previously elaborated, endpoint data are obtained from the 

biomonitors and compared against the library of responses to determine the current water 

condition.  To minimize false-positives, the system can be configured to issue a first 

warning (e.g.  a yellow screen) when a contamination is detected and a second warning 

(e.g. a red screen) when the same contaminant is registered again in the next set of 

reading.  When a second warning is issued, an audible alarm can also be deployed to 

warn the water safety operators to take some corrective actions.  By implementing these 

configurations, the proposed EWBS can provide a real-time, comprehensive, and 

automated monitoring of water quality. 
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Figure 4.12.   Illustration of the early-warning biomonitoring system in action where (a) 

depicts the overall system configuration, and (b) displays the MATLAB 

program to process the endpoint data. 
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CHAPTER 5                                                                                   

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The following conclusions can be drawn from this thesis: 

1) In order to develop the library of responses, a number of endpoints were extracted 

from a number of previous studies.  In a previous study of Daphnia magna, 

Hyalella azteca, and Lumbriculus variegatus, only 17 endpoints were considered 

appropriate for inclusion in the present study.  Another published study involving 

a number of aquatic plants could not be incorporated at all into the present study 

due to the inconsistencies in the doses of atrazine and tributyltin used in that 

study. 

 

2) An algal bioassay was conducted in the present study where the effective 

photosynthetic yield of Pseudokirchneriella subcapitata was measured over a 

period of 6 h in various test solutions.  Effective photosynthetic yield was found 

to be a sensitive endpoint as the parameter was strongly affected by various doses 

of atrazine and less-strongly affected by tributyltin.  A performance analysis of 

the Algae Online Monitor™ (AOM) 2800 also found the instrument to be 

satisfactory for quantifying various photosynthetic parameters and could 

potentially be deployed for continuous online measurements. 

 

3) Data-simplification by PCA was successful in reducing the original matrix of 

responses, which contained 18 intercorrelated variables, into a transformed matrix 
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of 2 independent variables.  The reduction process resulted in the creation of two 

principal components that contained ~85% of the original information.  This 

amount of original information was considered adequate for the present study as 

three separate clusters of data sets could be visually distinguished.  The first 

principal component separated data sets according to the presence of 

contaminants, while the second principal component differentiated data sets 

according to the type of the contaminant.   

 

4) An objective assessment of the data points using some cluster analysis techniques 

revealed that the groups of points were quite well separated.  An application of the 

K-means clustering algorithm was able to correctly classify all data points into 3 

distinct clusters according to contaminant type.  Results of the silhouette plot 

revealed strong evidence of a cluster for the data points measured at reference 

condition, while the clusters for the atrazine and tributyltin conditions could be 

further improved. 

 

5) Analysis of the endpoints using a biplot revealed specific properties associated 

with each endpoint.  A number of endpoints were more sensitive than others to the 

contaminants used in the present study, and these highly-sensitive endpoints could 

be identified by examining the length of each unit vector.  Some endpoints were 

also useful for identifying any contamination by atrazine or tributyltin, and these 

discriminators could be identified by noting the direction of each unit vector.  

Unit vectors which pointed toward the atrazine cluster were better predictors of 
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atrazine, while unit vectors facing the tributyltin cluster were more susceptible to 

tributyltin.   

 

6) Preliminary evaluation of the discriminating ability of the library of responses 

revealed that endpoint measurements at t = 2 h could be classified with an 

accuracy of 73%, while endpoint measurements at t = 4 h were classified with an 

accuracy of 97%.  This finding demonstrated the potential capability of the library 

of responses to accurately detect contaminants and correctly identify a number of 

chemicals in a water sample. 

 

 

5.2 Recommendations for Future Research 

The following recommendations are suggested to guide future research on the 

development of an early-warning biomonitoring system: 

 

1) Results from the algal bioassay were promising as the effects of tributyltin and 

atrazine on the photosynthetic parameters of the algae were detected after only 2 h 

of exposure.  More algal bioassays should be conducted to measure the effects of 

other contaminants.  The present study only measured the effective photosynthetic 

yield, but a number of other parameters could also be examined.  Last, the algae 

online monitor should be tested in a continuous, flow-through setting to assess 

whether the instrument was indeed capable of performing real-time assessments 

of water quality. 
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2) The library of responses created in this study was still preliminary because it only 

comprised a relatively small number of endpoints measured for two contaminants 

at three different concentrations.  This library of responses to atrazine and 

tributyltin could be expanded by including more measurements at different 

concentrations.  Smaller increments and more trials should be conducted to 

improve the separation between clusters of data points. Other chemicals which are 

commonly found in aquatic systems could also be tested on the suite of aquatic 

organisms to increase the number of contaminants that could be identified by the 

early-warning biomonitoring system.   

 

3) For future experiments, all bioassays must be performed at the same doses so that 

the endpoints measured from different studies could be compared and 

incorporated into the library of responses. 

 

4) Some endpoint measurements in previous studies exhibited very large standard 

deviations which may have resulted from an experimental error or indicated that 

the behaviour of such endpoint was poorly understood.  These endpoints should 

be carefully re-examined, and some bioassays could be repeated to verify whether 

the endpoints were suitable for monitoring contaminants. 

 

5) Data normalization was not performed to pre-condition the matrix of responses in 

the current study because such procedure resulted in less defined boundaries 

between the two treatments and could potentially require more than two principal 
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components.  Normalization could be considered in future experiments where a 

large number of replicates are conducted, more than two principal components are 

employed, and more than two contaminants are tested. 

 

6) A number of other tests could be employed to further assess cluster quality, and 

one example is the leave-one-out cross validation technique.  This technique was 

not applied in the current study as several cluster validation techniques were 

already applied, but this method could be considered in future studies if required. 

 

7) After creating the library of responses, blind experiments should be conducted to 

assess whether the library of responses was capable of resolving different 

situations.  To conduct these blind experiments, one researcher should prepare 

several test solutions pertaining to either one of the established conditions, and a 

second researcher would then conduct a series of bioassays to try to identify the 

unknown test solution. By performing such experiment, the discriminating ability 

of the suite of biomonitoring organisms could thus be truly and objectively 

evaluated. 
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APPENDIX A: Raw Data for Algal Bioassay  

A.1 Sample Calculations for Preparing Test Solutions 

 A number of test solutions were prepared for the algal bioassay, and these 

solutions contained an algal suspension and other chemical constituents depending on the 

specifications.  These test solutions were prepared in 250-mL Erlenmeyer flasks, and the 

total volume of the test solutions was 50 mL.  Stocks of tributyltin and atrazine were 

available, where the contaminants were dissolved in dimethyl sulfoxide at a concentration 

of 100 mg tributyltin or atrazine per litre dimethyl sulfoxide.  A stock of pure dimethyl 

sulfoxide was also prepared for mixing.  Test solutions were prepared in triplicates 

according to the following specifications: 

1. Reference condition 

These test solutions contained only 50 mL of algal suspension.  The concentration 

of the algae was approximately 1.25 × 10
6
 cells/mL 

 

2. Reference condition with 0.1% v/v dimethyl sulfoxide 

These test solutions were similar to the reference condition, except that dimethyl 

sulfoxide was added at a ratio of 1:1000.  To achieve this specification, the test 

solutions were filled with 50 mL of algal suspension and 50 µL, or 0.05 mL, 

dimethyl sulfoxide. 

%1.0001.0
50

05.0
==

mL

mL
 

 

3. Atrazine solutions at 0.005, 0.050, and 0.100 mg/L with the addition of 0.1% v/v 

dimethyl sulfoxide 
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Atrazine test solutions were prepared at concentrations 0.005, 0.050 and 0.100 

mg/L by adding the stock solutions into the algal suspension.  In addition, the 

total dimethyl sulfoxide concentration must also be 0.1% v/v.  To achieve these 

specifications for the 0.005 mg/L solutions, the following steps were taken: 

i. Determine the total mass of atrazine. 

4105.2
1000

1
50

005.0 −
×=××

mL

L
mL

L

mg
 mg atrazine 

 

ii. Determine how much atrazine stock was required to obtain the amount of 

atrazine in step (i). 

Atrazine stock concentration = 100 mg/L 

L
L

L

mg

L
mg µ

µ
5.2

1

1000000

100

1
105.2 4

=×××
− atrazine stock 

 

iii. Determine how much dimethyl sulfoxide should be added to obtain a 

concentration of 0.1% v/v. 

To obtain 0.1% v/v, a total of 50 µL DMSO must be added 

Remainder = 50 µL – 2.5 µL = 47.5 µL 

 

iv. Summarize 

To prepare test solutions at 0.005 mg/L atrazine and 0.1% v/v dimethyl 

sulfoxide, the following amounts were required:  50 mL algal suspension 

+ 47.5 µL dimethyl sulfoxide + 2.5 µL atrazine stock at 100 mg/L. 
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4. Tributyltin solutions at 0.010, 0.050, and 0.100 mg/L with the addition of 0.1% 

v/v dimethyl sulfoxide 

Tributyltin test solutions were prepared at concentrations 0.010, 0.050 and 0.100 

mg/L by adding the stock solutions into the algal suspension.  In addition, the 

total dimethyl sulfoxide concentration must also be 0.1% v/v.  To achieve these 

specifications for the 0.010 mg/L solutions, the following steps were taken: 

i. Determine the total mass of tributyltin. 

4105
1000

1
50

010.0 −
×=××

mL

L
mL

L

mg
 mg tributyltin 

 

ii. Determine how much tributyltin stock was required to obtain the amount 

of tributyltin in step (i). 

Tributyltin stock concentration = 100 mg/L 

L
L

L

mg

L
mg µ

µ
5

1

1000000

100

1
105 4

=×××
− tributyltin stock 

 

iii. Determine how much dimethyl sulfoxide should be added to obtain a 

concentration of 0.1% v/v. 

To obtain 0.1% v/v, a total of 50 µL DMSO must be added 

Remainder = 50 µL – 5 µL = 45 µL 
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iv. Summarize 

To prepare test solutions at 0.005 mg/L tributyltin and 0.1% v/v dimethyl 

sulfoxide, the following amounts were required:  50 mL algal suspension 

+ 45 µL dimethyl sulfoxide + 5 µL tributyltin stock at 100 mg/L. 

 

A.2 Sample Calculations and Raw Data for Algal Growth Curve 

 A haemocytometer was used to estimate the number of algal cells in given batch, 

and thus the overall concentration of the entire flask could be inferred by assuming the 

sample was well-mixed.  To count the number of algal cells, the flask was swirled several 

times to ensure the algal cells were uniformly distributed, and a small aliquot of algal 

suspension was aseptically extracted using a sterile pipette.  This aliquot was often 

diluted according to different ratio since the algal suspension could contain a very high 

concentration.  A drop from this aliquot was then placed on the haemocytometer, and the 

cells were counted by using a microscope.  A haemocytometer typically comprises the 

following grids: 

 

Figure A1: Grids commonly found in a haemocytometer. 

6.25 nL 
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The four corner squares are typically divided into 16 smaller squares, each 

containing approximately 6.25 nL of liquid (See Figure A1), and therefore an entire 

corner square contains 0.0001 mL of liquid.  To determine the concentration of the algal 

suspension, three of the four corner squares were examined, and the number of algal cells 

was counted.  

 

 Day 0: 

 

 

 

Total for corner square #1: 12 cells 

Total for corner square #2: 8 cells 

Total for corner square #3: 10 cells 

Average count: 10
3

10812
=

++
cells 

Dilution ratio: 4 times 

Total number of cells = 000,400
0001.0

410
=

×

mL

cells
cells/mL or 5104× cells/mL 

 

Day 1: 

 

 

 

Total for corner square #1: 31 cells 

Total for corner square #2: 23cells 

1 1 0 0  0 0 0 1  1 2 0 0 

1 0 1 2  0 1 1 0  0 0 1 0 

0 0 1 1  2 1 0 1  0 1 0 1 

1 2 0 1  0 1 0 0  0 4 0 0 

0 5 2 4  1 3 0 0  4 2 1 2 

3 1 2 1  0 4 0 1  0 1 0 3 

2 2 0 2  0 2 1 3  0 1 1 2 

3 1 2 1  1 0 4 3  1 1 0 3 
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Total for corner square #3: 22 cells 

Average count: 25.33 cells 

Dilution ratio: 4 times 

Total number of cells = 61001.1 × cells/mL 

 

 

Day 2: 

 

 

 

Total for corner square #1: 72 cells 

Total for corner square #2: 84cells 

Total for corner square #3: 98 cells 

Average count: 84.67 cells 

Dilution ratio: 4 times 

Total number of cells = 61039.3 × cells/mL 

 

 

Day 4: 

 

 

 

Total for corner square #1: 137 cells 

Total for corner square #2: 159 cells 

2 4 4 4  4 2 8 10  5 6 7 6 

3 3 3 10  6 4 8 2  3 5 9 9 

7 6 5 4  6 2 5 6  4 9 7 2 

5 2 7 3  6 9 2 4  11 7 7 1 

4 6 5 12  9 12 8 10  12 10 9 5 

10 5 11 10  12 12 11 8  10 10 7 12 

5 10 13 7  13 6 12 7  12 9 9 5 

10 12 5 12  9 11 10 9  7 8 8 9 
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Total for corner square #3: 142 cells 

Average count: 146 cells 

Dilution ratio: 5 times 

Total number of cells = 61030.7 × cells/mL 

 

 

Day 5: 

 

 

 

Total for corner square #1: 77 cells 

Total for corner square #2: 85 cells 

Total for corner square #3: 77 cells 

Average count: 79.33 cells 

Dilution ratio: 10 times 

Total number of cells = 61093.7 × cells/mL 

 

 

For Algal Bioassay: 

On Day 4, some of the algal cultures were taken for use in the bioassay.   The culture was 

diluted approximately 5 times using the enriched growth medium, and the following 

concentration was obtained: 

 

 

1 9 6 2  8 10 4 4  4 2 13 3 

2 3 5 5  8 3 4 7  5 3 6 7 

4 8 6 5  1 10 3 3  4 4 5 3 

6 5 4 6  5 5 6 3  7 5 3 3 

1 1 0 5  1 2 6 3  4 0 2 0 

4 2 4 2  2 2 5 0  1 2 3 2 

4 0 3 1  0 2 1 1  7 0 3 0 

3 3 0 5  0 1 0 2  1 2 0 1 
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Total for corner square #1: 38 cells 

Total for corner square #2: 28 cells 

Total for corner square #3: 28 cells 

Average count: 31.33 cells 

Dilution ratio: 4 times 

Total number of cells = 61025.1 × cells/mL 

 

 

A.3 Endpoint Data for Effective Photosynthetic Yield Experiments 

All measurements were reported as percentages of yield 

Treatment 0 h 2 h 4 h 6 h 

Dechlorinated tap water     

 Replicate 1 13 18 20 23 

 Replicate 2 14 20 22 24 

 Replicate 3 15 21 23 24 

      

Dechlorinated tap water 

with 0.1% v/v DMSO     

 Replicate 1 13 18 19 21 

 Replicate 2 14 18 19 21 

 Replicate 3 16 18 21 22 

      

Tributyltin (0.010 mg/L)     

 Replicate 1 15 17 19 19 

 Replicate 2 16 18 18 18 

 Replicate 3 15 18 19 19 

      

Tributyltin (0.050 mg/L)     

 Replicate 1 14 17 17 19 

 Replicate 2 14 18 19 20 

 Replicate 3 15 19 20 19 

      

Tributyltin (0.100 mg/L)     

 Replicate 1 14 19 18 19 

 Replicate 2 15 18 19 20 

 Replicate 3 16 16 18 18 
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Atrazine (0.005 mg/L)     

 Replicate 1 15 15 13 15 

 Replicate 2 16 16 14 13 

 Replicate 3 16 17 16 11 

      

Atrazine (0.050 mg/L)     

 Replicate 1 13 11 11 10 

 Replicate 2 14 12 12 9 

 Replicate 3 13 13 13 8 

      

Atrazine (0.100 mg/L)     

 Replicate 1 15 9 9 5 

 Replicate 2 14 11 10 8 

  Replicate 3 15 12 11 9 

 

Note: For implementation in the library of responses, the effective photosynthetic yield 

measurements at t = 6 h (last row) were used.  In order to convert this endpoint 

into a stress indicator, an average value for the reference condition was calculated 

(22.5), and this value was subtracted from each replicate in the last column and 

multiplied by -1.   
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APPENDIX B: Raw Data for Invertebrates Bioassay 

B.1 Daphnia magna at t = 6 h 

All columns are expressed as the percentages of organisms exhibiting the stressed 

endpoints.  Data were obtained from Marshall (2009) 

 

Treatment 

Changing 

swimming 

height 

Spinning 

Changing  

body 

orientation 

Immobilized 

Using 

secondary 

antennae 

Changing 

swimming 

style 

Dechlorinated tap water       

 Replicate 1 0 0 0 0 0 0 

 Replicate 2 0 0 0 0 0 0 

 Replicate 3 0 0 0 0 0 0 

 Replicate 4 0 0 0 0 0 0 

 Replicate 5 0 0 0 0 0 0 

 Replicate 6 0 0 0 0 0 0 

        

Dechlorinated tap water 

with 0.1% v/v DMSO       

 Replicate 1 0 20 0 0 0 0 

 Replicate 2 0 20 0 0 0 0 

 Replicate 3 0 0 0 0 0 0 

 Replicate 4 0 0 0 0 0 0 

 Replicate 5 0 0 0 0 0 0 

 Replicate 6 0 0 0 0 0 0 

        

Tributyltin (0.010 mg/L)       

 Replicate 1 80 60 0 40 40 40 

 Replicate 2 80 40 60 60 60 80 

 Replicate 3 100 20 20 40 40 60 

        

Tributyltin (0.050 mg/L)       

 Replicate 1 100 0 0 40 80 60 

 Replicate 2 100 40 40 60 60 100 

 Replicate 3 100 0 20 60 80 80 

        

Tributyltin (0.100 mg/L)       

 Replicate 1 100 100 40 60 80 60 

 Replicate 2 100 40 20 60 80 100 

 Replicate 3 100 0 60 60 60 80 

        

Atrazine (0.005 mg/L)       

 Replicate 1 100 0 0 0 0 60 

 Replicate 2 100 40 40 0 0 60 

 Replicate 3 60 40 60 60 60 60 
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Atrazine (0.050 mg/L)       

 Replicate 1 80 60 40 80 60 100 

 Replicate 2 100 20 60 60 60 100 

 Replicate 3 80 20 60 80 80 100 

        

Atrazine (0.100 mg/L)       

 Replicate 1 100 0 80 100 100 100 

 Replicate 2 100 0 80 80 80 100 

 Replicate 3 100 40 60 60 60 100 

 

 

B.2 Hyalella azteca at t = 6 h 

All columns are expressed as the percentages of organisms exhibiting the stressed 

endpoints.  Data were obtained from Marshall (2009) 

 

Treatment 

Changing 

swimming 

height 

Immobilized Burrowing Grouping 

Shortening 

body 

length 

Changing 

body 

orientation 

Dechlorinated tap water       

 Replicate 1 0 0 0 0 0 0 

 Replicate 2 0 0 0 0 0 0 

 Replicate 3 0 0 0 0 0 0 

 Replicate 4 0 0 0 0 0 0 

 Replicate 5 0 0 0 0 0 0 

 Replicate 6 20 0 0 0 0 0 

        

Dechlorinated tap water 

with 0.1% v/v DMSO       

 Replicate 1 0 0 0 0 0 0 

 Replicate 2 0 0 0 0 0 0 

 Replicate 3 0 0 0 0 0 0 

 Replicate 4 0 0 0 0 0 0 

 Replicate 5 0 0 0 0 0 0 

 Replicate 6 20 0 0 0 0 0 

        

Tributyltin (0.010 mg/L)       

 Replicate 1 80 60 0 0 80 20 

 Replicate 2 100 100 40 40 40 20 

 Replicate 3 100 60 40 0 60 20 

        

Tributyltin (0.050 mg/L)       

 Replicate 1 100 80 0 0 60 0 

 Replicate 2 100 80 0 60 80 0 

 Replicate 3 100 80 0 40 80 40 
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Tributyltin (0.100 mg/L)       

 Replicate 1 100 100 40 40 100 20 

 Replicate 2 100 100 100 80 100 0 

 Replicate 3 100 100 60 60 100 40 

        

Atrazine (0.005 mg/L)       

 Replicate 1 80 80 80 80 80 0 

 Replicate 2 100 100 40 100 100 0 

 Replicate 3 100 100 60 80 100 0 

        

Atrazine (0.050 mg/L)       

 Replicate 1 100 100 100 100 100 0 

 Replicate 2 100 100 60 80 100 0 

 Replicate 3 80 80 40 60 100 20 

        

Atrazine (0.100 mg/L)       

 Replicate 1 100 100 100 100 100 0 

 Replicate 2 100 100 80 100 100 0 

 Replicate 3 100 100 60 80 80 40 

 

 

B.3 Lumbriculus variegatus at t = 6 h 

All columns are expressed as the percentages of organisms exhibiting the stressed 

endpoints.  Data were obtained from Marshall (2009) 

 

Treatment 

Displaying 

abnormal 

behaviour 

Immobilized 
Shortening 

body length 

Changing 

body 

orientation 

Moving 

within 

groups 

Dechlorinated tap water      

 Replicate 1 0 0 0 0 0 

 Replicate 2 0 0 0 0 0 

 Replicate 3 0 0 0 0 0 

 Replicate 4 0 0 0 0 0 

 Replicate 5 0 0 0 0 0 

 Replicate 6 0 0 0 0 0 

       

Dechlorinated tap water 
with 0.1% v/v DMSO      

 Replicate 1 0 0 0 0 0 

 Replicate 2 0 0 0 0 0 

 Replicate 3 0 0 0 0 0 

 Replicate 4 0 0 0 10 0 

 Replicate 5 0 0 0 0 0 
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 Replicate 6 0 0 0 0 0 

       

Tributyltin (0.010 mg/L)      

 Replicate 1 33 33 17 17 25 

 Replicate 2 100 0 0 0 80 

 Replicate 3 100 0 0 0 0 

       

Tributyltin (0.050 mg/L)      

 Replicate 1 100 40 40 40 0 

 Replicate 2 100 20 40 40 0 

 Replicate 3 100 25 25 25 33 

       

Tributyltin (0.100 mg/L)      

 Replicate 1 100 33 100 33 100 

 Replicate 2 100 60 75 25 83 

 Replicate 3 100 60 75 25 83 

       

Atrazine (0.005 mg/L)      

 Replicate 1 50 20 0 0 20 

 Replicate 2 100 0 0 0 30 

 Replicate 3 50 0 30 0 30 

       

Atrazine (0.050 mg/L)      

 Replicate 1 50 10 10 0 10 

 Replicate 2 100 10 20 0 10 

 Replicate 3 100 0 33 0 10 

       

Atrazine (0.100 mg/L)      

 Replicate 1 100 0 0 0 0 

 Replicate 2 100 10 100 0 10 

 Replicate 3 100 20 60 0 20 
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APPENDIX C: MATLAB Codes  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% PRINCIPAL COMPONENT ANALYSIS %%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Step 1: Reading from Excel file 
DATA_BASE_RAW = xlsread('input_newset2.xls'); 
MEAN_DATA_BASE = mean(DATA_BASE_RAW); 

   
%Step 2: Mean-centering of raw data to create a modified matrix 
for n = 1:size(DATA_BASE_RAW,1) 
    DATA_BASE(n,:) = (DATA_BASE_RAW(n,:) - MEAN_DATA_BASE); 
end 

   
%Step 3: Calculating the covariance matrix 
COV_INPUT = cov((DATA_BASE)); 

  
%Step 4: Calculating the eigenvectors and eigenvalues 
[EIG_VECTORS, EIG_VALUES] = eig(COV_INPUT); 
LATENT = diag(EIG_VALUES); 

  
%Step 5: Two largest eigenvectors were selected, and the original data 

set was transformed 
FEAT_VECTORS = [-EIG_VECTORS(:,18) EIG_VECTORS(:,17)]; 
DATA_TRANSFORMED = (DATA_BASE*FEAT_VECTORS); 

  

  
%Graphing  
figure(1); 
plot(DATA_TRANSFORMED(1:12,1),DATA_TRANSFORMED(1:12,2),'+','MarkerEdgeCo

lor','k','LineWidth',2) 
hold on 
plot(DATA_TRANSFORMED(13:15,1),DATA_TRANSFORMED(13:15,2),'^','MarkerEdge

Color','k','LineWidth',2,'MarkerSize',6) 
plot(DATA_TRANSFORMED(16:18,1),DATA_TRANSFORMED(16:18,2),'^','MarkerEdge

Color','k','LineWidth',2,'MarkerSize',9) 
plot(DATA_TRANSFORMED(19:21,1),DATA_TRANSFORMED(19:21,2),'^','MarkerEdge

Color','k','LineWidth',2,'MarkerSize',12) 
plot(DATA_TRANSFORMED(22:24,1),DATA_TRANSFORMED(22:24,2),'o','MarkerEdge

Color','k','LineWidth',2,'MarkerSize',6) 
plot(DATA_TRANSFORMED(25:27,1),DATA_TRANSFORMED(25:27,2),'o','MarkerEdge

Color','k','LineWidth',2,'MarkerSize',9) 
plot(DATA_TRANSFORMED(28:30,1),DATA_TRANSFORMED(28:30,2),'o','MarkerEdge

Color','k','LineWidth',2,'MarkerSize',12) 
legend('Reference Condition','Tributyltin at 0.010 mg/L','Tributyltin at 

0.050 mg/L', 'Tributyltin at 0.100 mg/L', 'Atrazine at 0.005 

mg/L','Atrazine at 0.050 mg/L','Atrazine at 0.100 

mg/L','Location','NW'); 
grid on 
AXIS1 = [1000;-1000]; 
AXIS2 = [0;0]; 
plot(AXIS1,AXIS2,'-k','LineWidth',1) 
plot(AXIS2,AXIS1,'-k','LineWidth',1) 
xlabel('Principal Component 1 (Variance explained = 78.33%)') 
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ylabel('Principal Component 2 (Variance explained = 6.46%)') 
set(gca,'box','on') 
ylim([-100 100]); 
xlim([-200 200]); 
hold off 

  
%Constructing the biplot 
figure(2); 
LABEL = 

['01';'02';'03';'04';'05';'06';'07';'08';'09';'10';'11';'12';'13';'14';'

15';'16';'17';'18']; 
DATA_TRANSFORMED2 = DATA_TRANSFORMED./200; 
plot(DATA_TRANSFORMED2(1:12,1),DATA_TRANSFORMED2(1:12,2),'+','MarkerEdge

Color',[0.65 0.65 0.65],'LineWidth',2) 
hold on 
plot(DATA_TRANSFORMED2(13:15,1),DATA_TRANSFORMED2(13:15,2),'^','MarkerEd

geColor',[0.65 0.65 0.65],'LineWidth',2,'MarkerSize',6) 
plot(DATA_TRANSFORMED2(16:18,1),DATA_TRANSFORMED2(16:18,2),'^','MarkerEd

geColor',[0.65 0.65 0.65],'LineWidth',2,'MarkerSize',9) 
plot(DATA_TRANSFORMED2(19:21,1),DATA_TRANSFORMED2(19:21,2),'^','MarkerEd

geColor',[0.65 0.65 0.65],'LineWidth',2,'MarkerSize',12) 
plot(DATA_TRANSFORMED2(22:24,1),DATA_TRANSFORMED2(22:24,2),'o','MarkerEd

geColor',[0.65 0.65 0.65],'LineWidth',2,'MarkerSize',6) 
plot(DATA_TRANSFORMED2(25:27,1),DATA_TRANSFORMED2(25:27,2),'o','MarkerEd

geColor',[0.65 0.65 0.65],'LineWidth',2,'MarkerSize',9) 
plot(DATA_TRANSFORMED2(28:30,1),DATA_TRANSFORMED2(28:30,2),'o','MarkerEd

geColor',[0.65 0.65 0.65],'LineWidth',2,'MarkerSize',12) 
h = 

biplot(FEAT_VECTORS(:,1:2),'LineWidth',1,'Color','k','VarLabels',LABEL); 
legend('Reference Condition','Tributyltin at 0.010 mg/L','Tributyltin at 

0.050 mg/L', 'Tributyltin at 0.100 mg/L', 'Atrazine at 0.005 

mg/L','Atrazine at 0.050 mg/L','Atrazine at 0.100 

mg/L','Location','NW'); 
xlabel('PC1 Coefficient') 
ylabel('PC2 Coefficient') 
set(gca,'box','on') 
ylim([-0.5 0.5]); 
xlim([-1 1]); 
plot(AXIS1,AXIS2,'-k','LineWidth',1) 
plot(AXIS2,AXIS1,'-k','LineWidth',1) 
grid off 
hold off 
  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% CLUSTER ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
[CA_SCORE C] = kmeans(DATA_TRANSFORMED,3); 
SIZE_SCORE = size(CA_SCORE,1); 

  
A = CA_SCORE(1,1); 
B = CA_SCORE(13,1); 

  
for Z=1:SIZE_SCORE 
    if CA_SCORE(Z,1)==A 
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        CA_SCORE(Z,1)=1; 
    elseif CA_SCORE(Z,1)==B 
        CA_SCORE(Z,1)=2; 
    else 
        CA_SCORE(Z,1)=3; 
    end 
end 

  
%Silhouette plot 
figure(3); 
[silh3,h] = silhouette(DATA_TRANSFORMED,CA_SCORE,'Euclidean'); 
hold on 
set(gca,'box','on') 
grid on 
hold off 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% DISCRIMINANT ANALYSIS %%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Step 1: Reading from Excel file 
DATA_BASE_RAW = xlsread('input_newset2.xls'); 
MEAN_DATA_BASE = mean(DATA_BASE_RAW); 

%for reading at t = 2 h: 
READING_RAW = xlsread('input_newset3.xls'); 
%for reading at t = 4 h: 
READING_RAW = xlsread('input_newset4.xls'); 
 

  
%Step 2: Mean-centering of raw data to create a modified matrix 
for n = 1:size(DATA_BASE_RAW,1) 
    DATA_BASE(n,:) = (DATA_BASE_RAW(n,:) - MEAN_DATA_BASE); 
    READING(n,:) = (READING_RAW(n,:) - MEAN_DATA_BASE); 
end 

  
%Step 3: Calculating the covariance matrix 
COV_INPUT = cov((DATA_BASE)); 

  
%Step 4: Calculating the eigenvectors and eigenvalues 
[EIG_VECTORS, EIG_VALUES] = eig(COV_INPUT); 
LATENT = diag(EIG_VALUES); 

  
%Step 5: Two largest eigenvectors were selected, and the original data 

set was transformed 
FEAT_VECTORS = [EIG_VECTORS(:,18) -EIG_VECTORS(:,17)]; 
DATA_TRANSFORMED = (DATA_BASE*FEAT_VECTORS); 
READING_TRANSFORMED = (READING*FEAT_VECTORS); 

  
CLUSTER = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 

2; 3; 3; 3; 3; 3; 3; 3; 3; 3]; 

  
DA_DATA = classify(READING_TRANSFORMED, DATA_TRANSFORMED, CLUSTER); 
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APPENDIX D: Intermediate Calculations in PCA  

The following steps describe the intermediate calculations in PCA 

 

1) Data points were tabulated into a matrix of responses 

 
  Endpoint 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 

 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.5 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.5 Ref 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 

 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.5 

 6 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 -1.5 

 7 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 

 8 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 DMSO 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1.5 

 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 

 12 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0.5 

TBT 13 80 60 0 40 40 40 80 60 0 0 80 20 33 33 17 17 25 3.5 

0.010 14 80 40 60 60 60 80 100 100 40 40 40 20 100 0 0 0 80 4.5 

mg/L 15 100 20 20 40 40 60 100 60 40 0 60 20 100 0 0 0 0 3.5 

TBT 16 100 0 0 40 80 60 100 80 0 0 60 0 100 40 40 40 0 3.5 

0.050 17 100 40 40 60 60 100 100 80 0 60 80 0 100 20 40 40 0 2.5 

mg/L 18 100 0 20 60 80 80 100 80 0 40 80 40 100 25 25 25 33 3.5 

TBT 19 100 100 40 60 80 60 100 100 40 40 100 20 100 33 100 33 100 3.5 

0.100 20 100 40 20 60 80 100 100 100 100 80 100 0 100 60 75 25 83 2.5 

mg/L 21 100 0 60 60 60 80 100 100 60 60 100 40 100 60 75 25 83 4.5 
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ATZ 22 100 0 0 0 0 60 80 80 80 80 80 0 50 20 0 0 20 7.5 

0.005 23 100 40 40 0 0 60 100 100 40 100 100 0 100 0 0 0 30 9.5 

mg/L 24 60 40 60 60 60 60 100 100 60 80 100 0 50 0 30 0 30 11.5 

ATZ 25 80 60 40 80 60 100 100 100 100 100 100 0 50 10 10 0 10 12.5 

0.050 26 100 20 60 60 60 100 100 100 60 80 100 0 100 10 20 0 10 13.5 

mg/L 27 80 20 60 80 80 100 80 80 40 60 100 20 100 0 33 0 10 14.5 

ATZ 28 100 0 80 100 100 100 100 100 100 100 100 0 100 0 0 0 0 17.5 

0.100 29 100 0 80 80 80 100 100 100 80 100 100 0 100 10 100 0 10 14.5 

mg/L 30 100 40 60 60 60 100 100 100 60 80 80 40 100 20 60 0 20 13.5 

 

 

2) Variables were pre-conditioned 

The mean across each variable was calculated, and each data point was subtracted by their respective mean: 

 Endpoint 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Avg 56 18.7 24.7 33.3 36 48 59.3 54 30 36.7 52 7.33 52.8 11.4 20.8 7.17 18.1 4.9 

  

 The original matrix of responses then became a modified, pre-conditioned matrix: 

 

LEGEND FOR ENDPOINTS 1 -18 

Daphnia magna Hyalella azteca Lumbriculus variegatus Pseudokirchneriella subcapitata 

1 Changing swimming height 7 Changing swimming height 13 Displaying abnormal  18 Changing effective  

2 Spinning 8 Immobilized  swimming  photosynthetic yield 

3 Changing body orientation 9 Burrowing 14 Immobilized   

4 Immobilized 10 Grouping 15 Shortening body length   

5 Using secondary antennae 11 Shortening body length 16 Changing body orientation   

6 Changing swimming style 12 Changing body orientation 17 Moving within groups   
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 Endpoint 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -5.4 

2 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -6.4 

3 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -6.4 

4 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -5.4 

5 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -6.4 

6 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -39.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -6.4 

7 -56.0 1.3 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -3.4 

8 -56.0 1.3 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -3.4 

9 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -4.4 

10 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 2.8 -18.1 -3.4 

11 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -59.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -3.4 

12 -56.0 -18.7 -24.7 -33.3 -36.0 -48.0 -39.3 -54.0 -30.0 -36.7 -52.0 -7.3 -52.8 -11.4 -20.8 -7.2 -18.1 -4.4 

13 24.0 41.3 -24.7 6.7 4.0 -8.0 20.7 6.0 -30.0 -36.7 28.0 12.7 -19.8 21.6 -3.8 9.8 6.9 -1.4 

14 24.0 21.3 35.3 26.7 24.0 32.0 40.7 46.0 10.0 3.3 -12.0 12.7 47.2 -11.4 -20.8 -7.2 61.9 -0.4 

15 44.0 1.3 -4.7 6.7 4.0 12.0 40.7 6.0 10.0 -36.7 8.0 12.7 47.2 -11.4 -20.8 -7.2 -18.1 -1.4 

16 44.0 -18.7 -24.7 6.7 44.0 12.0 40.7 26.0 -30.0 -36.7 8.0 -7.3 47.2 28.6 19.2 32.8 -18.1 -1.4 

17 44.0 21.3 15.3 26.7 24.0 52.0 40.7 26.0 -30.0 23.3 28.0 -7.3 47.2 8.6 19.2 32.8 -18.1 -2.4 

18 44.0 -18.7 -4.7 26.7 44.0 32.0 40.7 26.0 -30.0 3.3 28.0 32.7 47.2 13.6 4.2 17.8 14.9 -1.4 

19 44.0 81.3 15.3 26.7 44.0 12.0 40.7 46.0 10.0 3.3 48.0 12.7 47.2 21.6 79.2 25.8 81.9 -1.4 

20 44.0 21.3 -4.7 26.7 44.0 52.0 40.7 46.0 70.0 43.3 48.0 -7.3 47.2 48.6 54.2 17.8 64.9 -2.4 

21 44.0 -18.7 35.3 26.7 24.0 32.0 40.7 46.0 30.0 23.3 48.0 32.7 47.2 48.6 54.2 17.8 64.9 -0.4 

22 44.0 -18.7 -24.7 -33.3 -36.0 12.0 20.7 26.0 50.0 43.3 28.0 -7.3 -2.8 8.6 -20.8 -7.2 1.9 2.6 

23 44.0 21.3 15.3 -33.3 -36.0 12.0 40.7 46.0 10.0 63.3 48.0 -7.3 47.2 -11.4 -20.8 -7.2 11.9 4.6 

24 4.0 21.3 35.3 26.7 24.0 12.0 40.7 46.0 30.0 43.3 48.0 -7.3 -2.8 -11.4 9.2 -7.2 11.9 6.6 

25 24.0 41.3 15.3 46.7 24.0 52.0 40.7 46.0 70.0 63.3 48.0 -7.3 -2.8 -1.4 -10.8 -7.2 -8.1 7.6 

26 44.0 1.3 35.3 26.7 24.0 52.0 40.7 46.0 30.0 43.3 48.0 -7.3 47.2 -1.4 -0.8 -7.2 -8.1 8.6 

27 24.0 1.3 35.3 46.7 44.0 52.0 20.7 26.0 10.0 23.3 48.0 12.7 47.2 -11.4 12.2 -7.2 -8.1 9.6 

28 44.0 -18.7 55.3 66.7 64.0 52.0 40.7 46.0 70.0 63.3 48.0 -7.3 47.2 -11.4 -20.8 -7.2 -18.1 12.6 

29 44.0 -18.7 55.3 46.7 44.0 52.0 40.7 46.0 50.0 63.3 48.0 -7.3 47.2 -1.4 79.2 -7.2 -8.1 9.6 

30 44.0 21.3 35.3 26.7 24.0 52.0 40.7 46.0 30.0 43.3 28.0 32.7 47.2 8.6 39.2 -7.2 1.9 8.6 
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3) A covariance matrix was calculated from the pre-conditioned matrix in Step 2 

The covariance matrix was determined using the MATLAB software 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 2245.5 532.4 929.7 1255.2 1390.3 1881.4 2176.6 2085.5 1158.6 1420.7 2008.3 292.4 2137.7 487.7 865.5 280.0 697.8 181.5 

2 532.4 632.6 227.1 349.4 353.1 438.6 592.2 598.6 275.9 340.2 582.1 79.1 463.1 128.1 317.7 100.2 416.0 35.7 

3 929.7 227.1 818.9 818.4 777.9 1009.7 996.3 1063.4 737.9 940.2 990.3 130.1 1032.9 69.3 471.1 4.0 320.0 137.5 

4 1255.2 349.4 818.4 1140.2 1172.4 1310.3 1319.5 1310.3 841.4 956.3 1269.0 188.5 1294.9 235.6 634.0 137.7 400.2 144.6 

5 1390.3 353.1 777.9 1172.4 1307.6 1357.2 1431.7 1395.9 786.2 896.6 1332.4 209.7 1459.7 333.9 762.8 230.3 492.3 133.9 

6 1881.4 438.6 1009.7 1310.3 1357.2 1837.2 1881.4 1870.3 1186.2 1462.1 1790.3 229.0 1873.7 356.3 782.1 180.7 540.3 192.1 

7 2176.6 592.2 996.3 1319.5 1431.7 1881.4 2220.2 2120.0 1179.3 1446.0 2008.3 280.9 2093.6 441.6 842.0 255.3 724.9 186.5 

8 2085.5 598.6 1063.4 1310.3 1395.9 1870.3 2120.0 2128.3 1289.7 1579.3 2005.5 252.4 2017.2 423.0 872.8 210.7 785.0 200.2 

9 1158.6 275.9 737.9 841.4 786.2 1186.2 1179.3 1289.7 1317.2 1275.9 1255.2 48.3 1052.1 203.1 488.6 -39.0 440.0 159.7 

10 1420.7 340.2 940.2 956.3 896.6 1462.1 1446.0 1579.3 1275.9 1629.9 1558.6 66.7 1343.3 186.8 578.0 11.6 420.5 195.7 

11 2008.3 582.1 990.3 1269.0 1332.4 1790.3 2008.3 2005.5 1255.2 1558.6 2057.9 226.2 1873.2 427.9 881.4 209.7 667.3 201.7 

12 292.4 79.1 130.1 188.5 209.7 229.0 280.9 252.4 48.3 66.7 226.2 178.9 312.1 104.1 166.1 49.1 198.3 13.1 

13 2137.7 463.1 1032.9 1294.9 1459.7 1873.7 2093.6 2017.2 1052.1 1343.3 1873.2 312.1 2243.4 427.4 909.7 276.4 724.8 175.4 

14 487.7 128.1 69.3 235.6 333.9 356.3 441.6 423.0 203.1 186.8 427.9 104.1 427.4 318.2 389.0 180.4 338.8 3.2 

15 865.5 317.7 471.1 634.0 762.8 782.1 842.0 872.8 488.6 578.0 881.4 166.1 909.7 389.0 980.4 230.5 555.1 58.6 

16 280.0 100.2 4.0 137.7 230.3 180.7 255.3 210.7 -39.0 11.6 209.7 49.1 276.4 180.4 230.5 172.8 165.6 -12.2 

17 697.8 416.0 320.0 400.2 492.3 540.3 724.9 785.0 440.0 420.5 667.3 198.3 724.8 338.8 555.1 165.6 863.0 15.4 

18 181.5 35.7 137.5 144.6 133.9 192.1 186.5 200.2 159.7 195.7 201.7 13.1 175.4 3.2 58.6 -12.2 15.4 32.7 
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4) The eigenvectors and eigenvalues for the covariance matrix in Step 3 were calculated 

Eigenvectors 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 -0.06 0.07 -0.22 0.65 -0.08 0.35 0.05 0.06 0.08 0.18 0.14 -0.05 -0.07 -0.16 0.34 -0.20 0.12 0.35 

2 -0.04 0.02 -0.09 -0.13 0.02 0.16 0.03 0.05 0.20 -0.04 0.32 0.12 -0.30 0.71 0.18 0.34 0.19 0.09 

3 -0.22 0.23 -0.10 -0.01 -0.04 0.22 0.55 -0.07 -0.15 0.16 -0.10 0.38 0.35 0.19 -0.32 0.01 -0.21 0.18 

4 0.41 -0.51 -0.01 0.25 0.17 -0.03 0.16 -0.01 0.09 0.03 -0.13 -0.25 -0.06 0.28 -0.46 -0.13 -0.03 0.23 

5 -0.30 0.29 -0.20 -0.09 -0.08 0.18 -0.43 0.13 -0.23 -0.18 -0.05 -0.31 -0.08 0.13 -0.46 -0.19 0.15 0.24 

6 -0.14 0.26 0.15 0.07 -0.23 -0.48 0.12 -0.13 0.59 -0.27 0.07 -0.04 -0.03 -0.01 -0.09 -0.16 -0.11 0.32 

7 0.05 0.14 -0.16 -0.18 0.44 -0.30 -0.01 -0.55 -0.28 0.15 -0.02 -0.08 -0.02 0.09 0.26 -0.15 0.09 0.35 

8 0.01 -0.30 0.39 -0.12 -0.59 0.19 -0.13 -0.33 -0.23 -0.06 -0.12 0.02 0.07 0.07 0.17 0.05 -0.02 0.35 

9 -0.06 0.06 0.20 -0.12 0.13 0.11 0.08 0.07 -0.02 0.23 0.43 -0.51 0.05 -0.18 -0.05 0.38 -0.43 0.21 

10 0.06 -0.09 -0.23 0.02 0.27 0.20 -0.31 -0.05 0.14 -0.39 -0.23 0.31 -0.06 -0.14 0.05 0.26 -0.48 0.26 

11 -0.07 0.02 0.12 -0.10 -0.02 -0.28 0.09 0.56 -0.16 0.29 -0.43 0.07 -0.36 -0.01 0.15 0.07 -0.06 0.33 

12 -0.08 0.03 0.20 -0.19 0.19 0.26 -0.30 -0.07 0.54 0.49 -0.30 0.01 0.25 0.03 -0.02 -0.04 0.16 0.04 

13 0.15 -0.21 0.00 -0.35 0.12 0.00 -0.02 0.40 0.00 -0.15 0.40 0.23 0.37 -0.12 0.08 -0.30 0.18 0.34 

14 0.05 -0.09 -0.44 -0.41 -0.16 0.21 0.40 -0.09 0.21 -0.10 -0.19 -0.25 -0.16 -0.34 0.02 0.14 0.27 0.07 

15 0.03 -0.04 0.06 0.09 -0.01 -0.13 -0.13 -0.18 -0.04 0.22 0.26 0.41 -0.27 -0.36 -0.43 0.32 0.34 0.16 

16 0.01 0.20 0.59 0.05 0.39 0.32 0.26 -0.01 -0.05 -0.39 -0.11 -0.02 -0.19 -0.10 0.00 -0.04 0.26 0.04 

17 0.07 0.09 -0.05 0.25 0.02 -0.22 -0.04 0.12 -0.07 -0.18 -0.20 -0.16 0.54 0.05 0.07 0.55 0.36 0.12 

18 0.79 0.54 0.00 -0.07 -0.20 0.11 -0.07 0.04 -0.01 0.08 -0.02 0.03 -0.02 0.03 -0.03 -0.02 -0.08 0.03 
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The corresponding eigenvalue and variance for each eigenvector were also calculated.  

Based on the table below, eigenvectors 17 and 18 had the two largest eigenvalues, each 

describing 6.46% and 78.33% of variance, respectively. 

 

Eigenvector Eigenvalue Variance 

1 0.75 0.003% 

2 1.66 0.01% 

3 6.32 0.03% 

4 18.53 0.08% 

5 19.72 0.09% 

6 25.50 0.12% 

7 34.40 0.16% 

8 67.54 0.31% 

9 108.10 0.49% 

10 131.47 0.59% 

11 150.27 0.68% 

12 303.70 1.37% 

13 365.28 1.65% 

14 480.71 2.17% 

15 740.50 3.35% 

16 910.13 4.11% 

17 1429.68 6.46% 

18 17330.81 78.33% 

 

 

 

5) The matrix of responses from Step 1 was transformed into a new data set of 2 

variables and 30 observations 

 

Eigenvectors 18 and 17 were then combined to form an 18-by-2 matrix, and 

matrix multiplication was performed between the original matrix of responses 
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from Step 1 and this combined matrix of eigenvectors.  A 30-by-2 transformed 

matrix was then created. 

  PC1 PC2 

 1 -154.57 4.01 

 2 -154.60 3.93 

 3 -154.60 3.93 

 4 -154.57 4.01 

 5 -154.60 3.93 

 6 -147.65 2.21 

 7 -152.63 0.39 

 8 -152.63 0.39 

 9 -154.53 4.09 

 10 -154.13 1.58 

 11 -154.50 4.17 

 12 -147.58 2.36 

 13 6.36 -55.92 

 14 87.63 -17.44 

15 42.27 -14.24 
Obs. 

16 54.68 -68.68 

 17 98.61 -24.74 

 18 87.99 -46.86 

 19 136.75 -95.46 

 20 158.12 -26.60 

 21 138.47 -42.89 

 22 40.00 49.33 

 23 84.87 35.55 

 24 89.83 34.61 

 25 121.12 67.07 

 26 128.16 36.94 

 27 109.59 15.09 

 28 157.51 79.78 

 29 161.30 33.63 

 30 133.35 5.83 
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APPENDIX E: Raw Data for Discriminant Analysis  

 

The following matrices were constructed to test the capability of the library of responses to resolve different contaminants. 

 

 

• Matrix #1 was constructed using endpoint data at t = 2 h from the current algal bioassay and the previous study by Marshall 

(2009) 

 

Endpoint 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.33 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.33 

4 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.33 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.33 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

13 40 40 0 20 0 0 100 80 0 0 40 0 0 0 0 0 0 2.67 

14 60 0 40 40 40 60 100 60 0 0 0 0 0 0 0 0 0 1.67 

15 80 0 40 0 40 60 100 0 0 0 20 0 0 0 0 0 0 1.67 

16 80 40 0 20 0 80 80 40 0 0 40 20 0 0 0 0 0 2.67 

17 100 0 0 0 20 60 80 60 20 0 40 0 0 0 10 0 0 1.67 

18 100 60 20 40 40 60 80 20 20 0 40 20 0 0 0 0 0 0.67 

19 100 40 0 40 40 80 100 60 40 0 60 40 0 0 0 0 0 0.67 

20 80 80 20 40 60 80 100 100 60 0 100 0 0 0 0 0 0 1.67 

21 100 20 0 40 40 60 100 40 20 0 60 0 0 0 0 0 0 3.67 

22 80 0 0 0 0 0 100 100 80 100 100 0 0 0 0 0 0 4.67 
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23 80 20 0 0 20 80 60 0 0 0 20 0 0 0 0 0 0 3.67 

24 0 40 0 20 0 0 100 100 100 100 100 0 0 0 0 0 0 2.67 

25 60 40 20 0 40 60 100 100 100 100 100 0 0 0 0 0 0 8.67 

26 80 20 20 40 60 80 80 60 40 0 80 0 0 0 0 0 0 7.67 

27 40 60 20 60 20 60 80 60 0 0 80 0 20 0 0 0 0 6.67 

28 100 60 40 60 0 80 100 100 60 100 100 0 40 0 10 20 0 10.67 

29 80 0 40 0 40 80 80 60 20 60 80 0 40 10 0 10 0 8.67 

30 100 40 0 40 60 80 80 60 0 60 60 0 20 0 0 0 0 7.67 

 

 

 

 

• Matrix #2 was constructed using endpoint data at t = 4 h from the current algal bioassay and the previous study by Marshall 

(2009) 

 

Endpoint 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.33 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.33 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.67 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.33 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.33 

7 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 2.67 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.67 

9 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0.67 

10 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 2.67 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.67 

12 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0.67 

13 100 40 0 20 20 20 60 60 20 0 60 0 40 40 0 20 100 2.67 

14 80 40 20 0 40 40 100 60 0 60 40 20 20 20 0 20 0 3.67 

15 80 20 0 40 40 60 100 60 0 0 40 20 0 20 0 0 0 2.67 
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16 100 20 0 40 80 100 80 0 0 0 80 0 50 0 0 0 0 4.67 

17 80 40 0 20 40 60 100 100 0 0 100 0 0 0 0 0 0 2.67 

18 100 40 0 40 80 100 100 60 0 0 80 40 100 0 0 100 0 1.67 

19 100 40 0 0 0 60 100 100 40 80 100 60 100 100 100 100 20 3.67 

20 80 40 60 0 40 80 100 100 40 60 100 0 66 67 67 67 0 2.67 

21 100 0 0 40 60 60 100 100 40 60 60 40 100 80 80 80 0 3.67 

22 100 40 20 0 0 100 80 80 80 80 80 0 0 0 0 0 0 8.67 

23 80 40 0 0 0 100 100 60 40 60 40 0 10 0 0 0 0 7.67 

24 60 60 0 40 40 40 100 100 80 100 100 0 0 10 0 0 0 5.67 

25 100 40 40 80 80 100 80 100 80 100 80 0 100 0 0 0 0 10.67 

26 80 40 20 20 20 100 80 80 60 100 100 0 100 0 25 0 0 9.67 

27 80 60 20 40 40 100 100 80 80 60 100 0 100 10 0 0 10 8.67 

28 100 60 40 40 40 100 100 100 80 100 80 0 100 20 0 30 0 12.67 

29 100 0 60 40 40 100 100 100 40 100 100 40 100 0 100 0 0 11.67 

30 80 40 0 40 40 100 100 80 40 80 100 40 100 20 100 0 30 10.67 

 

 

 

 

 

 

 

Observation Treatment Observation Treatment Observation Treatment 

1-12 Dechlorinated tap water  13-15 Tributyltin at 0.010 mg/L 22-24 Atrazine at 0.005 mg/L 

 with and without 0.1%  16-18 Tributyltin at 0.050 mg/L 25-27 Atrazine at 0.050 mg/L 

 v/v DMSO 19-21 Tributyltin at 0.100 mg/L 28-30 Atrazine at 0.100 mg/L 

 

LEGEND FOR ENDPOINTS 1 -18 

Daphnia magna Hyalella azteca Lumbriculus variegatus Pseudokirchneriella subcapitata 

1 Changing swimming height 7 Changing swimming height 13 Displaying abnormal  18 Changing effective  

2 Spinning 8 Immobilized  swimming  photosynthetic yield 

3 Changing body orientation 9 Burrowing 14 Immobilized   

4 Immobilized 10 Grouping 15 Shortening body length   

5 Using secondary antennae 11 Shortening body length 16 Changing body orientation   

6 Changing swimming style 12 Changing body orientation 17 Moving within groups   



 

 
156 

APPENDIX F: Raw Data for Average Silhouette Plot  
 

 
 Treatment Silhouette Coefficient 

Dechlorinated tap water  

 Replicate 1 0.99 

 Replicate 2 0.99 

 Replicate 3 0.99 

 Replicate 4 0.99 

 Replicate 5 0.99 

 Replicate 6 0.97 

   

Dechlorinated tap water with 0.1% v/v DMSO  

 Replicate 1 0.98 

 Replicate 2 0.98 

 Replicate 3 0.99 

 Replicate 4 0.99 

 Replicate 5 0.99 

 Replicate 6 0.97 

   

Tributyltin (0.010 mg/L)  

 Replicate 1 0.32 

 Replicate 2 0.20 

 Replicate 3 0.20 

   

Tributyltin (0.050 mg/L)  

 Replicate 1 0.46 

 Replicate 2 0.27 

 Replicate 3 0.45 

   

Tributyltin (0.100 mg/L)  

 Replicate 1 0.37 

 Replicate 2 0.00 

 Replicate 3 0.26 

   

Atrazine (0.005 mg/L)  

 Replicate 1 0.24 

 Replicate 2 0.46 

 Replicate 3 0.49 

   

Atrazine (0.050 mg/L)  

 Replicate 1 0.58 

 Replicate 2 0.56 

 Replicate 3 0.38 

   

Atrazine (0.100 mg/L)  

 Replicate 1 0.50 

 Replicate 2 0.45 

  Replicate 3 0.28 
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