ADAPTIVE ECHO CANCELLATION ANALYSIS

by

Yongdong Sun
(B.Eng., Shenyang, China, June 1993)

A Project
presented to Ryerson University
in partial fulfillment of the
requirements for the degree of

Master of Engineering

in the Program of
Electrical and Computer Engineering

Toronto, Ontario, Canada, 2004

© Yongdong Sun 2004

PROPFRTY OF
RYERSCH UikividnaiTY LIBRARY

UMI Number: EC52987

All rights reserved

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
- -submitted. Broken or indistinct print, colored or poor quality illustrations and
. ‘photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC52987
Copyright 2008 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Author’s Declaration
I hereby declare that I am the sole author of this Research Paper.
I authorize Ryerson University to lend this Research Paper to other institutions or

individuals for the purpose of scholarly research.

Signature

I further authorize Ryerson University to reproduce this Research Paper by photocopying
or by other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

Signature

Borrow List
Ryerson University requires the signatures of all persons using or photocopying this thesis.

Please sign below, and give address and date.

iii

Abstract

Title: Adaptive Echo Cancellation Analysis

Echo cancellation is a classic problem in DSP and digital communication. Adaptive echo
cancellation is an application of adaptive filtering to the attenuation of undesired echo in
the telecommunication network. This 1s accomplished by modeling the echo path using
an adaptive filter and subtracting the estimated echo from the echo-path output.

In this project, the concept of echo cancellation and echo cancellation systems are
studied, simulated, and implemented in Matlab and TI TMS320C6711 DSK. The LMS,
NLMS, Fast Block LMS and RLS algorithm are investigated for echo canceller ;nd two
double talk detection algorithms: the Geigel algorithm and the normalized cross-
correlation algorithm are presented and combined with NLMS adaptive algorithm against
double talk. Finally The adaptive echo cancellation system successfully developed by the
NLMS and normalized cross-correlation DTD algorithms meet the general ITU G. 168

requirements and show excellent robustness against double talk.

iv

Acknowledgements
Many thanks to Dr. Mike Kassam, my supervisor, for his thoughtful advice, assistance
and comments.

Also, thanks to my wife and my family for supporting me during this project.

Table of Contents

CHAPTER 1 INTRODUCTION ...oooccceoooeceoeeeeseeeessceeesesseeeses e ssmsesssessssnsssees 1
1.1 Adaptive Echo Cancellationccicveeeieeiiiiiieeieeie et esresser e ssseessnvnnsessssesssaeses 1
1.2 AdaPLIVE FIlLeIS...cccouiieitiieeciieeeteeeeee ettt ettt setee e srte s s erbe s eessnaeessanensnenn 3
1.3 PTOJECE ODJECIIVE. .. .vieuiieecieiinteeieeteests et eseestte st e esseesrrestnessreesbeessnessbaansneessessssassnns 5

CHAPTER 2 ECHO CANCELLATION ADAPTIVE METHODScccocvterrreceeereennn 6
2.1 LMS AIGOTIHIMIS ...ttt ettt et str e b e s e e naaessnaassnnesans 6
2.2 NLMS AIZOTIHINS ...cotutiiieiiieiieeereeeieiieceteestte e stteeseeeeaeeesveeesvaeeessesensesssnsessnsanans 9
2.3 Fast Block LMS AIgOTItRM ...cccooiiiiiiiiii et ae e s ae e 10
2.4 RLS al@Orithmm....iceceiiiiiiiie ettt srr e s snr e s ssba e e snsbbeeesessanaesesnnnessane 13

CHAPTER 3 DOUBLE TALK DETECTION ALGORITHMS.........ccoooveiiiecireereeeeens 15
3.1 The Geigel algorithmociiiiiiii e s 15
3.2 Normalized cross-correlation algorithmccccoeviiiniiiniiiiiiiicicceesrcneecene, 16
3.3 Evaluation procedure of double detectors..........uvvieiviciiiiiiiiriiiiiiiesnniesrees s 18

CHAPTER 4 MATLAB SIMULATION & ANALYSIS. ..ot 20
4.1 Adaptive algorithmis......ccociiiiiiriiiiii et 20

B L L LIS e et as e e n e e e re s neaaeeae s s areene 21
L2 INLIMS oottt sttt ettt ne e e e e e e s n e e ae e enre e ree e 23
4.1.3Fast BIOCK LIMS ...ttt ettt et esbasemes e re e mee s 25
B LA RLS ettt et st e et at e s e e e ts s eaaeea 27
4.2 NLMS and DTD AIZOTItRIMS ...oooiviiiiiiiieiiiieciiee et rseess e s sssana s s sanassons 29
4.2.1 The Geigel DTD algorithm........ccccooiiiiiiiiiiiiiiiiiin e 30
4.2.2 NLMS and normalized cross-correlation DTD algorithm....c..ccccceveecveveinnnnnn. 33
4.3 Matlab Simulation SUMIMATYccccceiiiiiiieee ittt es e sans 35

CHAPTER 5 ADAPTIVE ECHO CANCELLER WITH DTD STRUCTURE............... 39
5.1 Adaptive Echo Canceller with DTDccccoociiiiiiiiiiieieeees 39
5.2 NON-INEAT PIOCESSOTivieeiirieiiiisre sttt s e st sre s a e s e baebeeneesees 41
5.3 SOftware WOTKIIOWvviiiiiiiie et 42

CHAPTER 6 ITU G.168 TEST CASES.....ooi ittt 43
6.1 Test 1: Steady state residual and residual echo level testcoevivnineiiininnnnnne. 43
6.2 Test 2A and 2B: Convergence test with NLP enabled and disabled 44

6.2.1 Test 2A: Convergence test with NLP enabled........covvieneecninininiiiiiniinnien, 44
6.2.1 Test 2B: Convergence test with NLP disabledc.cooveeveeniinniinniiinniininnee 44

vi

6.3 Test 2C: Convergence test in the presence of background noise..........c.cecevvueiirenane 45

6.4 Test 3: Performance under conditions of double talk...........cccveeeiiirriiieeneeenencciinnes 47
6.4.1 Test 3A: Double talk test with low near end levelsc.ccccovevieiiriececiicnnnenn. 47
6.4.2 Test 3B: Double talk test with high near end levelscccevveiivvreeenscnenene. 48

6.5 Test 3C: Double talk test under simulated conversationc.....cccevveeeeercevecrennnns 50

6.6 Test 4: Leak Tate LEST....uuiieieiiieeeeieeeeieee e et ettt e ettt e s sbe e e sibaeesstsaeeessbseeesessnnnessensns 51

6.7 Test 5: Infinite return 1osS CONVErgeNnce tEStcocvvvvriiiereriiiieiiiire e ereeeeesessenes 52

6.8 Test 6: Non-divergence on narrow-band Signalsccccccieeeiiiriinivieenscrsessesnnes 53

6.9 Test 7: StADILILY TEST ooivieiieiiiiie et e e st e e e e s st reseseessnannnees 54

6.10 Test 8: Non-convergence, in-band signaling, and continuity check tones 55

6.1 1 SUIMIMATY ..vvvvieiriiitie ettt et e e st e seeieere s e s s bbb e e s bbb b e s e baresstneessaabresnernens 56

CHAPTER 7 REAL TIME SIMULATIONooiiiiitieiiiieeiiieeerieee st esieee e srmeeesesassessnas 59

7.1 TITMS320CO71T DSK ittt rieee ettt e e erer e e s esessesaanesesbanes 59

7.2 C6711 DSK Simulation using Code Composer Studioccceeviiiiiiniinininneennen. 59
7.2.1 Simulation Procedure INtroductioncccviiiiiiiiiiiieiniiiicen e recttisessesannns 59
7.2.2 C6711 DSK Simulation ReSults.......ccceeeeiciiieiiriiiririeicereerce e vnennnscescscanes 61

7.3 Real time simulation SUIMIMALYcccevveieeerietieeeieieeereensirrcs st senesssssssneesessaees 70

CHAPTER 8 CONCLUSION.oiiitiiiiitieresierenieressireeeesiiseeseiastesssresssssssesesssssnessesansoses 72
CHAPTER 9 FURTHER WORKcooiioiiiiiiriaritee ettt sintee s ssrenresesannsenssaneses 73
REFERENCESoovtreieiieeeceeeeeeteseeeeeessseessnesesaesessssnnesessstesssssstnessssnnssosssasasssssnassssnsnes 74
APPENDIX A: MATLAB CODEootiiocieecirircsininiiieicnieeinsessirnsseeesssssssssnsssssanesas 76
APPENDIX B: TI CCS CODE....oocoieceeieieeciiieeererrireee e sermerteesessssntasssssesssssassnsesesssssasas 87

vii

Chapter 1

Introduction

1.1 Adaptive Echo Cancellation

Echo 1s a phenomenon in which a delayed and distorted version of an original sound or
electrical signal is reflected back to the source. In real life, echoes often occurrence
among conversations. The echoes of speech waves can be heard as they are reflected
from the floor, wall and other neighboring objects. In such a case when the reflected
wave arrives a few tens of milliseconds delay after the direct sound, it can be heard as an
obvious echo. These echoes are bothering and may unexpectedly interrupt a conversation.
Thus it is desired to eliminate these echoes. In telephone communication, there are two
main types of echo: network and acoustic echoes. The network echo results from the
impedance mismatch at points along the transmission line, for example, at the hybrids of
a public switched telephony network (PSTN) exchange, where the subscriber two-wire
lines are connected to four-wire lines. Acoustic echo is due to the acoustic coupling
between the loudspeaker and microphone in hands-free telephone systems, for example,
if a communication is between one or more hands-free telephones (or speaker phones),
then acoustic feedback paths are set up between the telephone's loudspeaker and
microphone at each end. Acoustic Echo is more hostile than network echo mainly
because of the different nature of echo paths.

The solution to these echo problems is to eliminate the echo with an echo suppressor or

echo canceller.

The problems with echo suppressor are:
e only one speaker can talk at a time
e clips speech
e take time to detect the beginning of speech
Now using adaptive filter to reduce the echo and increase communication quality is a
common technology in communication system, but there are still some challenges :
e many existing adaptive algorithms give different performance
e different adaptive algorithms need different parameter setting
e overcome double talk disturbance
This project focuses on the following achievements:

(1) Providing an easy approach to compare and review various adaptive algorithms
based on their convergence rate, steady state ERLE and complexity of implementation,
etc.

(2) Supplying different pre-designed double talk detection methods that can be easily

configured with different parameter to obtain the expected performance.

(3) Implementation of AEC and DTD algorithms to work practically and efficiently using
smooth estimation and the pre-set parameters selected from experiments.

Adaptive cancellation of such acoustic echo has became very important in hands-free
communication systems, €.g. tele-conference, video-conference and PC telephony

systems.

Echo canceller is a better solution to the acoustic echo problem, which allows both

speakers to talk at the same time.

The Basic Structure of Adaptive Echo Canceller is shown in Figure 1.1 and the estimated

echo signal y(¢) generated by an adaptive filter eliminates the echo signal y(¢). The

coefficients of the adaptive filter are adjusted by adaptive algorithm according to the

estimation error signal e(z) .

x(?)

/

7
Adaptive Filter Echo Path

(1) (@)
- v +

y + s
el(t) (: > (:) u(t)

z(2) = y(2) +u(?)

Figure 1.1 Basic structure of adaptive echo canceller: far end signal x(¢), echo signal

y(2), near end signal u(¢), received signal z(f), estimated echo signal y(¢) and error
signal e(t).

1.2 Adaptive Filters

Adaptive usually deploys a traversal Finite Impulse Response (FIR) structure due to its
guaranteed stability and the adaptation of the FIR filter coefficients is controlled by an
adaptive algorithm. The adaptive algorithm is the heart of an AEC, which decides the

convergence behavior and tracking behavior of the AEC. The tracking behavior indicates

how fast the adaptive filter can follow enclosure dislocations, whereas the convergence

behavior is studied as an initial adjustment of the adaptive filter to the impulse response

of the room or car.
In Figure 1.2, wrepresents the coefficients of the FIR filter tap weight vector, x(k) is the
input vector samples, z™' is the delay unit, y(k) is the adaptive filter output, d, is the

desired echoed signal and ¢, is the estimation error at time k.

input

xx | T =1 .

+ y(k)

Figure 1.2 Adaptive filter block diagram

The adaptive filter is used to calculate the difference between the desired signal and the
adaptive filter output, &, . This error signal is fed back into the adaptive filter and its
coefficients are changed algorithmically to minimize the cost function that is a function
of &, . In acoustic echo cancellation, the optimal output of the adaptive filter is the value
of the unwanted echoed signal. When the adaptive filter output is equal to desired signal,

the error signal becomes 0, in this ideal situation, the echo signal will be completely

cancelled and the far end user will not hear his original speech returned to him.

1.3 Project Objective

In the project, the LMS, NLMS, Fast Block LMS and RLS algorithm are studied and
alternatively used in adaptive acoustic echo canceller. The NLMS with two different
Double Talk detection algorithms are integrated in the adaptive echo canceller against
double talk. The performance and parameters of these adaptive algorithms such as filter
length, step size and convergence speed are studied in details and the two Double Talk
algorithms: detection algorithms: the Geigel algorithm and the normalized cross-
correlation algorithm are studied and simulated with NLMS algorithm in Matlab and TI
TMS320C6711 DSK. The ITU G.168 standard is used to study the performance of the

adaptive echo canceller.

Chapter 2

Echo Cancellation Adaptive Methods

Most echo cancellers use variants of the LMS adaptation algorithm [1] [2][3]. The

attractions of the LMS are its relatively low memory and computational requirements and

its ease of implementation and monitoring. In practice, LMS adaptation has produced

effective line echo cancellation systems.

2.1 LMS Algorithms

In Figure 1.1, the error signal &, is
&=d,-y,

and
y,=XIw=wWTX,

So,
g,=d,-XIw=d, -W'X,

We can square ¢, to get the instantaneous squared error,
gl=d2+W'X X/ W-2d,X; W
E[¢2]=E[d}]+ W™ E[X, X}]W-2E[d, X}]W

Let R be defined as the autocorrelation matrix

TRTh TpTg—1

. Tp—1Tk Tk—1Lk—1
R=E[X:XT]|=E

Tp_N41Tk Tp—N+1Tk—1

2.1.1)
(2.1.2)
(2.1.3)
(2.1.4)
(2.1.5)
T Th-N41
Zp—1Tp—-N+1
Tp—N4+1TE—N41
(2.1.6)

Let P be similarly defined as the cross-correlation matrix

a'.k:vk
; drTr—1
P=E[d, X]=F

SR Tr—N+1
@.1.7)

And the mean-square error can be designated by &£ and we can obtain the following
expression:

MSE= ¢£=E[¢,]=E[d: [+W ™ RW-2PW (2.1.8)
Now it is clear that the mean-square error £ is a quadratic function of the weight vector
W. When we expand this expression, the elements of W will appear in first and second
degree only. If we have two weights, we can get the quadratic error function, or
performance surface. (the vertical axis represents the mean-square error and the
horizontal axes the values of the two weights.) The point at the “bottom of the surface” is
projected onto the weight-vector plane and then we can obtain the optimal weight vector
W or the minimum mean-square error point. And there is only a single global optimum
in this performance surface. To search the performance surface for minimum point, we

can do gradient methods:

_oe [oe ae oe | _
V(g)zaW_[awo P awNJ JRW-2P (2.1.9)

To obtain the minimum mean-square error, the weight vector W is set at its optimal value
W and where the gradient is zero.
V =0=2RW"-2P » (2.1.10)

RW'=P (2.1.11)

Then the
W*=R P, (2.1.12)
To develop the Least Mean Square (LMS) algorithm, we take & itself as an estimate of

&, . Then, for each iteration in the adaptive process, we have a gradient estimate of the

form
[852] [05, |
ow, ow,
V.=l =28, |- =-2¢X, (2.1.13)
8gk2 aé‘k
LawN—l B LéwN-l _

With this simple estimate of the gradient, we can have
W, ,=W,-uV, =W, +2u¢eX, (2.1.14)
This is the LMS algorithm. u is the gain constant that regulates the speed and stability of

adaptation. The LMS algorithm can be implemented in a practical system without
squaring, averaging, or differentiation and is simple and efficient. For each iteration the
LMS algorithm requires 2N additions and 2N+1 multiplications (N is the filter length, N

for calculating the output, one for 2u £, and an additional N for the scalar by vector

multiplication).

2.2 NLMS Algorithms

When uis optimized as described by u(n) =

B+ xTOEn)x(n) ,2€(0,2),0< 5, (2.2.1)

[guarantees that the denominator never becomes zero, while « is a relaxation factor, the
normalized LMS algorithm results. In this case, uis time varying,.

The echo canceller coefficients w, (m) are adapted to minimize the energy of the echo

signal on a telephone line. Assuming that the speech signals x ,(m) and x,(m) are

uncorrelated, the energy on the telephone line from B to A is minimized when the echo

~ echo ~ echo

canceller output x4 (m) 1s equal to the echo xz (m)on the line. The echo canceller

coefficients can be adapted using the least mean squared error (LMS) adaptation
algorithm or one of the most widely used algorithms for adaptation of the coefficients of
an echo canceller is the normalized least mean square error(NLMS) method. The time-

updated equation describing the adaptation of the filter coefficient vector is

M om) (2.2.2)

X
x(m)ﬁxA (m)

where x ,(m) =[x, (m),..,x ,(m—N +1)]and x(m) =[x,(m),...,x,_ (m ~ N +1)] are the

w(m)=w(m—-1)+ u

input signal vector and the coefficient vector of the echo canceller, and e(m) is the
difference between the signal and the echo line and the output of the echo synthesizer.
The normalized quanity x(m)’,x ,(m) is the energy of the input speech to the adaptive
filter. The scalar u is the adaptation step size, and controls the speed of convergence, the

steady-state error and the stability of the adaptation process.
Each iteration of the NLMS algorithm requires 3N+1 multiplications (N is filter length),

this is only N more than the standard LMS algorithm.

2.3 Fast Block LMS Algorithm

In the normalized LMS algorithm, the filter coefficients of a finite-duration impulse
(FIR) filter are adapted in the time domain. Because the Fourier transform maps time-
domain signals into the frequency domain and the inverse Fourier transform provides the
inverse mapping that takes the signals back into the time domain, it is workable to
perform the adaptation of filter coefficients in the frequency domain, which is called
frequency-domain adaptive filtering.

In a block-adaptive filter, shown in Figure 2.1, the input data sequence x(n) is sectioned
into L -point blocks by means of a serial-to-parallel converter, and the blocks of input
data so produced are applied to an FIR filter of length M , one block at a time. The
coefficients of the filter are updated after the collection of each block of data samples, so
that adaptation of the filter proceeds on a block-by-block basis rather than on a sample-

by-sample basis as in the conventional LMS algorithm.

filter outupt y(n)

input signal x(n)

Block FIR

Filter Unblock input Select >

——» Blockinput

'y

y

Block /J +
correlation, Block input
weight update ennor signal desired signal

Figure 2.1 Block-adaptive filter

10

The Fast Block LMS algorithm represents a precise frequency-domain implementation of
the block LMS algorithm and its convergence properties are identical to those of the
block LMS algorithm.

Fast Block LMS Algorithm is based on Overlap-Save Sectioning (Assuming Real-
Valued Data).

Initialization:
w(0) = 2M by 1 zero vector (2.3.1)
Pi(0) =96, 2.3.2)

where the &, are small positive constants and i =0,...,2M —1

Notations:
0 =M by 1 zero vector
FFT = fast Fourier transformation
IFFT = inverse fast Fourier transformation
a = adaptation constant

Computation: For each new block of M input samples, compute:

Filtering |
U(k) = diag {FFT[u(kM = M),...,u(kM =1),u(kM),...,u(kM + M -DI'} (2.3.3)
y7 (k) = the last M elements of IFFT [U (k)W (k)] (2.3.4)
Error estimation
e(k) = d(k) — y(k) (2.3.5)
E(k)=FFT 0 (2.3.6)
(k)= o0) 3.
Signal-power estimation
Pi(k) = yPi(k = 1) + (1 - P|Uik)]" , i=0,1,...,2M -1 (2.3.7)
D(k) = diag[P, (k), B (k)ss Py ()] (2.3.8)

Filter coefficient adaptation

#(k) = the first M elements of IFFT[D(k)U " (k)E(k)] (2.3.9)

W(k+1)=W(k)+ aFFT[qu)k)} (2.3.10)

11

Choice of Block Size:

The block size L in relation to the length M of the adaptive filter. There are three possible
choices that can be chosen, each with its own practical implications:
e [=M which is optimum choice
o L<M advantage of reduced processing delay and if the block size smaller
than the filter length, the adaptive filtering algorithm computationally is still

more efficient than the conventional LMS algorithm.

e L>M increased redundant operations in the adaptive process, because the
estimation of the gradient vector now uses more information than the filter

itself.

In the fast block LMS algorithm there are 5 FFT transforms, requiring approximately
2M log(2M) real multiplications each, and also other 16M operations (when updating the
parameters, computing the errors, element-wise multiplications of FFT transformed

vectors), so the total is 10M log(2M) + 16M = 10M log(M) + 26M.

12

2.4 RLS algorithm

The Recursive Least Square (RLS) algorithm is used to minimize the cost function:
&= Arel(k) (2.4.1)
k=1

Where k=1 is the time at which the RLS algorithm starts and A is a small positive
constant very close to, but smaller than 1.

Unlike the LMS algorithm and its derivatives, the RLS algorithm directly considers the
values of previous error estimations. In fact, it is impossible to use all previous values of
the estimation error from the start of the algorithm with the cost equation in real FIR
implementation for the computation complexity. In practice, only a finite number of

previous values are considered, this number corresponds to the order of the RLS FIR

filter, N.
Yalk) =w' (n)x(k), e,(k) =d(k) -y, (k) (24.2)
d(n) =[d(1),d(2)..dm] , e(n) =[e,(D),e,(2)...e, (] 2.4.3)
e(n) = d(n) - y(n) 2.4.4)
¢ = kiz"-"ej (k) =" () Ae(n)=d” Ad -26] w+w' ®, w (2.4.5)

where 0 (n)= x(n)/i d(n), Ci)z(n) = x(n) 1~\(n)xT(n)

w(n) = ©;7 (1) 91(n) (2.4.6)

Find the inverse matrix using recursive form,

i (1) =AD" (n 1) + x(m)xT (n) = A (@17 (n = 1) — k(n)x" (n) @27 (n—1))

(2.4.7)

13

where k(n) = — @2 (2= Dx(n) - 1

- = 7 u(n)
1+ 7T ()@ (n—Dx(n) A HF ()

02(n) =2 01(n —1)+x(n)d(n) (2.4.8)

so RLS algorithm filter weight update vector

w(n) = @17 (n) 9a(n)

=@;" (n=1) G1(n—1) - k(n)x” ©," (n=1)) 1 (n —1) +k(n)d(n)

=w(n—1) + k(1) ena(n) " (2.4.9)
where e,.1(n) =d(n) - w’ (n—=Dx(n)

Each iteration of the RLS algorithm requires 4N”2 multiplication operations (N is the

filter length).

14

Chapter 3

Double Talk Detection Algorithms

During double-talking periods, there exists the other end speaker’s adaptive signal v(n)

which acts as a very large interference to the adaptive filter. If the adaptive filter
continues to adjust its coefficients during double-talking periods, the adaptive filter will
be greatly disturbed and will quickly diverge from its convergence state. Therefore,
double-talk detectors are used in adaptive voice echo cancellers to detect the double-
talking periods, and the adaptive filter coefficients adjustment is prohibited during these
periods to prevent the echo canceller from being disturbed by the other end speaker’s
signal. Double-talk detection plays a very important part in adaptive acoustic echo
cancellation. The basic requirement for a double-talk detector is that it can detect double-
talking quickly and accurately and it should also have the ability to distinguish the
double-talking conditions from echo path variations and quickly track variations in the

echo path.

3.1 The Geigel algorithm

A simple approach is to measure the power of the received signal and compare it to the
power of the far-end signal; as shown in Figure 1.1, z() is the received signal, x(¢) is

the far end signal, this is the Geigel algorithm [4] and the decision variable is defined as

- 2] 3.1.1
() max {| x(¢) |,....| x(t —n + 1)} - ()

15

If d;(¢) is larger than some preset threshold, T, it is treated that Double Talk is

‘occurring, otherwise not. The Geigel detector is computationally simple and need little

memory, but the choice of 7, is not easy to obtain good performance.

3.2 Normalized cross-correlation algorithm

As shown in Figure 1.1, the power of the received signal can be written as
ol()=h/R,()h,+cl () (3.2.1)
where R_(¢1)=E{x,x[} is the L x L covariance matrix of the far-end signal ,
o2(¢) is the power of the near-end signal,

o (?) is the power of the received signal,

h, is room acoustic response.

As y()=hlx,, | (3.2.2)
Then r,(¢) = E{x,y(2)} = R, (DA, (3.2.3)
Yielding,

h, =R (), (t) (3.2.4)
So,

ol () =r (DR (O, () + o7 (1) (3.2.5)

When there is no near-end signal is present, v(z) =0, then z(¢) = y(¢) and

() =rL (OR;' (Dr, (1), with r, () = E{x,2()} (3.2.6)

re(OR'r, () _ ra(h (G.2.7)

The detection variable is d(¢) = 0',2 ® 0_22 B s

16

where % is the estimated room acoustic response and r,, (¢) is the estimated cross-

correlation between the far-end signal and the received signal.
The nominator is the power of the received signal if no near-end signal is present. The

denominator is the actual power of the received signal. Thus, if no near end signal is
present, d(¢) =1, otherwise d(¢) <1. The Double Talk decision is formed as d(¢) <T,,
double talk present, otherwise not.

When there is no near-end talk, it is known that the decision variable d is =1 for v=0 and
d <1 for v #0 when there exist near-end talk. To calculate the decision variable 4, in

implementation, we use the following smoothed estimate:
r.@=ar, (-1 +(1-a)X(t)z(2) (3.2.8)
ocl(t)=acl(t-1)+(1-a)z()’ (3.2.9)

where «is a smoothing factor which lies in (0,1). In experiment, ¢ is set to be 0.9 and
L-1
() =D X(t—k)z(t - k), (3.2.10)
k=0

using a L length sliding window, the 7, (¢) can be estimated [5] [6][7][8].

17

3.3 Evaluation procedure of double detectors

—» lx‘ ‘ ,@ p| comp

X

r x
threshold
(94 <_‘ Z‘l
Figure 3.1 Voice activity detector
x x
P Activity
Detector
v v
Activity AND L — 2 —>»
pi Detector —»
¢
DTD
. >
»| method E,' Th | |
N ¢
T Figure 3.2 DTD test procedure diagram

In the DTD methods discussed in the previous section, the role of threshold T is essential
to the performance. However, there hasn’t been a systemic approach to select the value of
T. In the paper [6][9][10], an objective technique is proposed for evaluating doubletalk
detectors in acoustic echo cancellers. It view DTD as a binary detection problem and use
it in actual operating environments. The general characteristics of a binary detection

scheme are as follows.

18

Probability of False Alarm (P,): Probability of declaring detection when a target is not
present.

Probability of Detection (P,): Probability of successful detection when a target is
present.

Probability of Miss (P, =1- P,): Probability of detection failure when a target is present.

Spex

P, = v (3.3.1)
P,=> gexev/> xev (3.3.2)
P,=1-) gexev/ D xev (3.3.3)

19

Chapter 4

Matlab Simulation & Analysis

4.1 Adaptive algorithms

Graphical User Interface

In this project, the command ‘guide’ is used in MATLAB v6.5 to make the Graphical

User Interface (GUI) of the AEC Analysis and Design program to help study different

AEC algorithms. The GUI of the program can be seen in Figure 4.1.

AEC Analysis and Design v1.0
AEC Algorithm . .
Voice File | mBkwav Leaky Factor [0 Start simuleting
@ LMS (" FastLMS
Filter Length [1024 Step Size {0007 Forgetting Factor 10 Status —
" NLMS ¢ RLS)
Nt AL Time(s) [280.676°s
e wrHLISR TRSEITSE
J 3 \‘Lh‘fw&wmﬂWM% -
DE 1 1 —l 1 i
o 35 1] z 4 H] 433 & Y 1000 1200
LMS: sesires sigral] LMS. fitar cosffromnts
2 T T T T — — T 3% v T T v
[+ _WM— 9 WW\W«—W .
z 1 1 1 1 [| 1 35 - L L L L
) 28 t B z B 1 3t [l ¢ ot » 62 0 1000 1200
LMS fater cutput % s LMS: mear sTuare wrrof
2 T ™ T T v T s v T
st 4
3 -
a2 b
-20 c_ls : Is ;l 2. — Tt B 3 MY W. Aado i s A A e A W
LUS: error sigral . 7 o5 ‘ TALMS: stentation in cB2.4 3 s 4
0.8 T v T — T T T 9 T T T — T t T
|——- avarage attenuaton:.1.7¥54 ¢B]
[-1 20 F -4
lo.s L L L L — — © 1 1 1 1 n 1 It
[} 2.5 1 .8 e 2% 3 38 4 0 0.8 1 1.5 2 28 3 38 4
4 4
NLMS & DTD Analysis and Design | x19 0

Figure 4.1 AEC Analysis and Design program GUI

In this program, user can choose:

1. AEC Algorithm

a. LMS algorithm

b. NLMS Algorithm

20

c. Fast LMS Algorithm
2. Input signal file (wav format)
3. Filter Length
4. Step Size
5. Leaky Factor

6. Forgetting Factor

4.1.1 LMS
The Figure 4.2 shows the desired signal, adaptive output signal, estimation error and

mean square error for the LMS algorithm with FIR Filter length of 1000, step size of

0.007.

I UIL il

Dl roct Sigrol

21

0 4 N s o NOY

o

Lo

-2
-0

-3s

RNV L}Mm 1 "l"\”mLm Mo ! TN |
Figure 4.2 LMS algorithm e

»* 10

=tternuation (aB)

i —~ N T
—
~ '
.
o o.5 E] s —= =5

Figure 4.3 LMS echo signal attenuation

The average attenuation for LMS FIR filter is —18.16dB.

22

R R I o P T I I T
L FIter SO N AN N ST TR, | LR O

Figure 4.4 LMS FIR filter impulse response

4.1.2 NLMS

The Figure 4.5 shows the desired signal, filter output signal, estimation error and mean

square error for the NLMS algorithm with FIR Filter length of 1000.

desirect sidgrveal

i

o QS 3 1.5 = 2.5

fitar ouwutput

Wk
iy
[}

?

-1 B = =z. 5 2
o ==] =z
”* 1O
«BEAL TR kGRS G rTCer
o
e
— —
TOLS B .5 = 5 L R

23

-5
—-30
~BES

—3O

Figure 4.5 NLMS algorithm

acsiroad sigrnal

attenuation (a3)

v . -
[~
. .
(=] = hl 1.5 =2 2.5

Figure 4.6 NLMS echo signal attenuation

The average attenuation for NLMS FIR filter is -27.99dB

TS P TN

24

Figure 4.7 NLMS FIR filter impulse response

4.1.3 Fast Block LMS
The Figure 4.8 shows input signal, the desired signal, filter estimation error and mean

square error for the FLMS algorithm with FIR Filter length of 1000.

input sigmneal

- 8

gesired signal
T

25

o.7 Maan sqQuUare error

.5
O.a
o3

D=

.1

Figure 4.8 Fast Block LMS algorithm

M Lalsres Cer S DO M e

filterr irvipuinda’ FraOS S OMnSes

Figure 4.9 Fast Block LMS FIR filter impulse response

PROPFRTY OF
26 _ RYERSGN WhitvikeiTy LIBRARY

attenuvation (d8)

. 0.5 1 1.5 2 2..5 3

Figure 4.10 Fast Block LMS FIR filter echo signal attenuation

The average attenuation for NLMS FIR filter is -5.33dB.

4.1.4 RLS
The Figure 4.11 shows the desired signal, filter output signal, estimation error and mean

square error for the RLS algorithm with FIR Filter length of 1000 and A =1.

desired signeal

—
3 3.5
»x 10°%
Tiltear ourip>ust
1S —
-k |
(=3 o N
L=
o.s |- N
-]
-1-Sg 5660 ” IGG60 - Fsooo

estimated arror

27

Figure 4.11 RLS algorithm

ImMmpulse responsea

200 a00G . SO0) 800

ftar iIMpPpiuse resEoNEE. Iteratl N1 SO0 .

o.8 |-
oes |

O =2 b

o=
o L-»M—-r\h IVLAﬂM’w—“\‘JMMW-WW‘-WMVW —‘L-y«v»

Figure 4.12 RLS FIR filter impulse response
as . — dﬁe;sired sigral .

28

Flgure 413 RLS echo 31gnal attenuatlon

The average attenuation for RLS algorithm is —33dB.

4.2 NLMS and DTD Algorithms

The NLMS & DTD Analysis and Design program is another GUI program made by
‘guide’ to study NLMS and DTD performance, and shown in Figure 4.14.

cJ gui_] nlms dtd algonthm

NLMS & DTD Algorithm——— S
Filter Length [1 024 NCC low limit [0.9 coverge hold(s) 01125 Start simulalingJ
" NLMS & Giegel DTD algorithm . —
1
B A Geigel Th L NCC high limit | 1.05 DT hold(s) 100375 staws N
@ NLMS & NCC DTD algorithm Geigel L 300
x 10‘ NLMS & NCC: farerd sigral x ‘.‘:‘ NUS & NCS: astimates ngral
5 T N T T T T T — T - T T T T
0 M“‘*“"‘“*“‘"‘“‘HM"‘HW‘“ {1 = MH«—"M«M—M%
t] 1 1 1 1 L 1 1 1 £ L 1 1 1 1 1 1 1
9 2 4 a 2 z 4 - 5 B < 4 2 £ 14] 16
X109 NLIS & NCC: far 2rz gzro siral 4 x'Z NLWS & NCT. prror s5ra ul
—— T T T T T T B T T T —T T T T —
9 _
e L e Lt L B P M
5 L L 1 L I) N ' - L L L 4 L L L L
0 H 4 2 s) 12 14] 5 g 2 4] B 90 12 14 ® 13
& NLMS & NCC: rear erd signal K NLMS & NCC: filter impiins r@sgonse 4
2 x W . - ks " = 2 T T T — T =
1}F
| | IH ; -
Q
% L 1 i o —L 1 | L L
“o 1 = [1] o 40) 1000 1200
x10 Nws 2 N"C rrume- 5 A NLWS L NCC. ERLE
T — T T T k2] T T T — T
2 .
[\ -
0 J
. | 1 i 1 3 1 1 . L 1 1 1 1 1 n I
5t‘.l 2 ; -] 8] 12 " ® 8 ‘ma 2 4 L] w 12 1“4 " 1
* 4
AEC Analysis and Design | x 10 cr0

Figure 4.14 NLMS & DTD Analysis and Design program GUI

29

In this program, user can choose:
1. NLMS & DTD Algorithm
a. NLMS and Giegel DTD algorithm
b. NLMS and normalized cross-correlation (NCC) DTD algorithm
2. Filter Length
3. Geigel Threshold
4. Geigel Length
5. NCC low limit
6. NCC high limit
7. Converge hold time

8. Double Talk period hold time

4.2.1 The Geigel DTD algorithm
The Figure 4.15 shows the far end signal, far end echo signal, near end signal with DTD
detection, received signal, error signal, filter impulse response, and ERLE for NLMS &

Geigel DTD algorithm.

NLMS & Geigol: Tar end signal

30

NLMS & Geiget: far end echo sis

NLMS & Geigel: near end signal

x 10

NL_MS & Geigel rmaasuraed signal

31

arror sigonal - i £ e

NLMS & Geaigel: fiter impulse response

RN I e —————

0.3}

_0.4 —a L s . L
o 200 400 SO0 800 1000

NLMSS 8 Geigel: ERLE

Figure 4.15 NLMS & Geigel DTD algorithm

The Geigel DTD miss alarm rate is Pm=1- 21715 / 33368=35%. and its false alarm rate is

Pf=15559/96009=16%.

32

4.2.2 NLMS and normalized cross-correlation DTD algorithm
The Figure 4.16 shows the far end signal, far end echo signal, near end signal with DTD

detection, received signal, error signal, filter impulse response, and ERLE for . NLMS

and The normalized cross-correlation DTD algorithm.

= »x 10 NLMS & NCC: far end signal
=. M v N

»x 10 NLMS & NCC: far end echo signal

~O.5

R |

1.5

."2_ 7

2.5 1 y = =

x 10

NLMS & NCC: neoar ond signal

33

2 1O aerror signal

AL i
o.5 - -
O st — e fpinee- - i
-0.5 - —fl
& & _

-1

io
x 10%

N 2
o =2 4

o.a NLMS & NCC: fiter impulse response

-O.3 |- —

o =60 PYeTs) 860 800 S000

NLMS & NCC: ERLE

Figure 4.16 NLMS and the normalized cross-correlation DTD algorithm

The miss alarm rate is Pm=1-30118/ 33368=0.1=10% and the false alarm rate is P/=

2432/96009=2.5%.

34

4.3 Matlab Simulation Summary

The ERLE (Echo Return Loss Enhancement) is used o assess the quality of an echo
cancellation filter. ERLE, a function of the discrete-time index n, is defined as the ratio of
the instantaneous power of signal d(n) and the instantaneous power of the residual echo
e(n):

ERLE(n) =10* log{g:"/ %

Average ERLE Multiplication (Filter Length: N), ;. ." .
LMS -18.16 dB 2N+1 | — |
NLMS -27.99 dB 3N+1
Fast LMS -53dB 10 Nlog,N+26N
RLS -33dB 4N"2

Table 4.1 Algorithm summary
The LMS algorithm belongs to the class of stochastic gradient algerithms and it’s the
simplest one. The mean square error of LMS in Figure 4.2 shows that the LMS filter’s
impulse response converges to the actual impulse response as the average value of the
cost function decreases so that the filter could more accurately emulate the desired signal
and more effectively cancel the echo signal. LMS is easily to be implemented and if the
step size is correctly selected, it is stable. In Figure 4.5, the error signal and mean square
error of the Normalized Least Mean Square (NLMS) algorithm is obviously smaller than
those of LMS and has faster convergence speed than that of the LMS algorithm. The
NLMS differs from the standard LMS algorithm in the sense that it varies the step size
according to the power level of the far-end signal. Thus the convergence speed is

independent of the input signal power. The average echo signal attenuation of NLMS

35

algorithm is —27.99 dB and is much better than the LMS average echo signal attenuation
—18.16 dB. Due to the presence of feedback in the NLMS algorithm, there exists a
possibility of it becoming unstable. The stability of the algorithm depends on the step
seize parameter 3. For the NLMS algorithm, the step size 8 should satisfy: 0<@<2 and the
fastest convergence occurs when =1. Since NLMS algorithm is easier to be
implemented and the computation is not very intensive, as well as good echo cancellation
performance, it is widely used in real time adaptive echo cancellation.

Figure 4.8 shows the Fast LMS error estimation signal is larger, the average echo signal
attenuation is only —5.3 dB, but its converge speed is faster and computation complexity
is lighter. The RLS algorithm is more effective than all other algorithms. Figure 4.11
shows its error estimation signal is also very small and its mean square error quickly
approach to zero and its average echo signal attenuation is —33 dB, but each iteration of
the RLS algorithm requires 4N”2 multiplication operations, it is more intensive
computation so that in practice it is not popular to be implemented.

From Figure 4.11 and Figure 4.2, we can see that RLS algorithm has a much better
convergence rate that the LMS algorithm, but it comes out with more computational
complexity. In addition, echo cancellation generally requires large FIR order and thus the

RLS algorithm is not suitable for real time implementation.

Figure 4.15 shows the simulation results of the NLMS FIR filter combined with The
Geigel DTD algorithm. When the near-end speaker is silent, the FIR has a good
performance to cancel the echo signal and keep the error signal in very low level. When
both the near-end and the far-end are active - the Double Talk is occurring, the error

signal not only contains the echo estimation error, but also the near-end signal.

36

At this time, the Geigel DTD algorithm will detect the DT period and not update the filter
coefficients to prevent the echo canceller from being disturbed by the near end speaker’s

signal. From the miss alarm rate and false alarm rate, the Gegel algorithm is not very

accurate to detect double talk.

For cross-correlation double talk detection algorithm, at the beginning, the decision

.2
T
variable is simplified as d(¢) = r;_,ft)h _o:()
o) °?

o (1)

a2 A2
where o.(f)=o0.(t-1)+2z°()-2(t-L)

2 2

oo (1) = 0 (t—1)+ 2(8) 9(£) — 2(t — L) y(¢ — L)
When double talk is presented, Figure 5.1 shows the filter output error signal is not
correct and Figure 5.2 displays the double talk detection is not accurate. Through
introducing the smoothed estimate and adjusting the smooth factor that described in 3.2,

the better results can be achieved.

x 107 error signal

Figure 4.17 Error signal

37

-O.5

x 10

Figure 4.18 Double talk detection
Figure 4.16 shows the simulation results of the NLMS FIR filter combined with the
selected normalized cross-correlation DTD algorithm described in 3.2. In no Double Talk
period, the filter echo cancellation keep the same as the Geigel DTD algorithm. Figure
4.16 shows the normalized cross-correlation DTD has a better decision in distinguishing
DT period. Though it causes more intensive computation, the miss alarm rate is 10% and

the false alarm rate 2.5% is much better than Geigel algorithm.

38

Chapter 5

Adaptive Echo Canceller with DTD Structure

5.1 Adaptive Echo Canceller with DTD

Based on above adaptive algorithm analysis and DTD studies, the NLMS algorithm and
normalized cross-correlation DTD algorithm are finally selected in designing the AEC as

shown in Figure 6.1.

Far End

Adaptive Echo
Filter Path

A

DTD

<+ NLP + e

A

o

Adaptive Echo Canceller with DTD
Figure 5.1 Adaptive echo canceller with DTD
The adaptive filter is based on the normalized least mean square (NLMS) algorithm and
in the NLMS coefficient update equation (2.2.2),

e(m)

el

w(m)=w(m-1)+ u

the variable u is the step size, which is usually between (0, 2) to maintain the system

stable.

39

The length of the adaptive filter depends on the reverberation time constant of the room.
The system is working with sample rate of 8KHZ and the predicted echo path is about
128msec. Thus adaptive filter length will be set as:

Filter length = echo path * sample rate /1000 = 1024.
With the equations (3.2.7), (3.2.8) and (3.2.9) of the normalized cross-correlation DTD
algorithm, the smoothing factor a is set to be 0.9 in the equations (3.2.8) and (3.2.9)
from experiments. Thus the received decision variable d is a good estimate of the theory

value only after the adaptive filter converge, as well as r_, o, become good statistical

estimates. Hence the adaptive filter has to converge first to make this DTD algorithm
effective. However, it won’t cause much problem; because the adaptive algorithm takes
relative short time to converge and remain converge most of the time. Initially, the DTD
has to be switched off until the adaptive filter first time converges. To detect the
convergence of the adaptive filter, we still use the same decision variable d. We know
that the decision variable d is about 1 only when the adaptive has converged and there is
no double-talk. Hence, the convergence is claimed when the decision variable d
approaches 1 and remaining approaching 1 for a certain time. The range of approaching 1
is set to be (0.9, 1.05) and the certain time is set to be 0./25 second in practice. In this
project, the AEC takes about 25472 samples to converge and the convergence time is
calculated as:

Initial Convergence Time= 25472/8000=3.2 sec.
Once the convergence is claimed, we switch on the DTD. After that DTD monitors the
decision variable d and it claims double-talk occurs when the decision variable d is out of

the range (0.75, 1.35). Once double talk is declared, the detection is held for a minimum

40

period of time. While the detection is held, the filter adaptation and non-linear processor
is frozen. After the hold time, the DTD resumes monitoring again. The hold time is

necessary due to the noisy behavior of the detection statistic and is set to 38 ms in

implementation.

5.2 Non-linear processor

Since the residual echo is inevitable for the non-linearity of the echo path, the non-linear
processor (NLP) is used to degrade the residual echo to an inaudible level. Only during
single talk, NLP is active and it is controlled by the DTD. The NLP in this project is set

as a controlled attenuator, which attenuates the echo during single-talk by 20dB.

41

5.3 Software Workflow

load Far end & Measured
signal

Initislize NLMS & DTD
variables

No

New Sample

Adaptation of filter
coefficients

New Sample

Doule Talk

No

Inhibit adaptation

Adaptation of filter
coefficients

No

Figure 5.2 Adaptive echo canceller with DTD software workflow

42

Chapter 6

ITU G.168 Test Cases

The International Telecommunications Union (ITU), as well as the European
Telecommunication Standard Institute (ETSI) regulated the specifications of telephone
systems. The ITU-T recommendations: G.167 specifies the performance requirements of
acoustic echo control devices. G.165 specifies the requirements of network echo
canceller. G.168 is an enhanced version and specifies the new requirements of digital

network echo canceller.

6.1 Test 1: Steady state residual and residual echo level test

The G.168 Requirements for Test 1: In the Table 6.1 below, “L(Rin) Input”™, are the
various input levels. “L{Res), NLP Dis, OQutput Req.” are the requirements per G.168

(2000). “Sample” column is for the users to record their test results.

| L(Res), NLP Dis | Result L(Res), NLP enab
Output Req. Output Req. El
-37 dBm0O -46.15 dBm0 | -65 dBm0 -66.15 dBm0O

Table 6.1 Test 1 results

¢
1
L
<

error signal

Figure 6.1 Test 1

43

6.2 Test 2A and 2B: Convergence test with NLP enabled and disabled

6.2.1 Test 2A: Convergence test with NLP enabled

The G.168 Requirements for Test 2A: the echo path delay is considered as time “zero”.

For 50 ms beyond the echo path delay, the EC is required to do no better than the

minimum ERL of 6 dB. Between 50 ms and 1 sec, the performance of the EC must

increase from the minimum of 6 dB to up to 20 dB. Beyond 1 sec, the EC performance is

dependent on the input signal level and should be 55 dBmO or greater for input signal

levels of 0 dBmO and —10 dBmoO.

L (Rin)-L (Ret) Result T
(NLP Enabled) (NLP Enabled)
6 dB 48 dB

50ms-1s 6 dB~20 dB 50 dB

1s+ @-10dBm0 55dB 57 dB

Table 6.2 Test 2A results

6.2.1 Test 2B: Convergence test with NLP disabled

The G.168 Requirements for Test 2B: the echo path delay is considered time “zero”.

From 0 to 50 ms, the EC is not required to perform, therefore the 6 dB minimum

requirement (equal to the minimum ERL). Between 50 ms to 1 sec, the EC is required to

increase its performance to 20 dB of loss and maintain at least this requirement for up to

10 sec. Beyond 10 sec, the requirement is dependent on signal level.

L (Rin)-L (Ret) Result "
(NLP Disabled) (NLP Disabl¢d
6 dB 8.8 dB

6 dB~20 dB 9 dB ~20 dB

20 dB 40 dB
@-10dBm0 27dB 42dB

Table 6.3 Test 2B results

44

6.3 Test 2C: Convergence test in the presence of background noise

The G.168 Requirements for Test 2C Convergence Test with NLP Enabled (part (a)).
The columns are interpreted as follows. “L(Rin) Input” is the input signal level. There are
three separate files provided for levels -0 dBm0, -10 dBm0, and —20 dBm0. The “Noise
Level L(Rin) —15” is the noise level mixed in along with the echo. Note that the
maximum level of the noise is -30 dBm0. “L(Ret) Requirement” is the appropriate

requirement from G.168 (2000) specification.

Rin) - | Noise Level L(Ret) Result
Input , L(Rin)-15 Requirement)
-10 dBmO -30 dBmO -30 dBmO -46 dBmO

Table 6.4 Test 2C(a) results

1 v J \ —
Lo % - 4

oS

1 T 1

L= 2O 3
- o2
Lo

—o.=

0.

e N -1

T 1 T T

—-O.8

-

2. dsn
10 -1

Np
Iy
o
]

o

N

&4

Iy

Y

¢
l‘lll%llll

X
a4
Q

error signal

Figure 6.2 Test 2C(a)
The G.168 Requirements for Test 2C Steady State Test with NLP Enabled (part
(). The columns are interpreted as follows. “L(Rin) Input” is the input signal level. The
“Noise Level —55 dBm0” is the noise level mixed in along with the echo. “L(Ret)

Requirement” is the appropriate requirement from G.168 (2000) specification.

Noise Level L(Ret) Resul?’ffi il
“inp - Requirement (NLP”En bled):. -
—10 dBmoO -55 dBm0 -38 dBmO -46 dBmO

Table 6.5 Test 2C(b) results

45

error signal

Figure 6.3 Test 2C(b)

The G.168 Requirements for Test 2C with NLP disabled (part (¢)). The columns are
interpreted as follows. The input requirements with NLP disabled are similar to those for

NLP enabled. The corresponding requirements are given in the column “L(Ret)

Requirement”.

,(Rin) - | Noise Level L(Ret) Sample -
put L(Rin)-15 Requirement (NLP Disabled

-10 dBmO -30 dBmO -30 dBmO -37 dBmO

Table 6.6 Test 2C(c) results

®x 10

error signal
Figure 6.4 Test 2C(c)

46

6.4 Test 3: Performance under conditions of double talk

6.4.1 Test 3A: Double talk test with low near end levels

The G.168 Requirements for Test 3A: the requirement as given in the Table 6.7 below

is such that the residual echo level should be equal to lower than the doubletalk level. The

convergence occurs during the periods when the echo and doubletalk signals do not

overlap.

Low Near-End Level L(Res) Result - SR
“Input L(Rin)-15 Requirement (NLP Disabled)
-10 dBmO -25 dBmO -25 dBm0 -34 dBmO0
Table 6.7 Test 3A results

| S N N TN O

| S S I S SR N S |

fare end echoed signal

n "
10 12

47

16

as
]

x 10

error signal

Figure 6.5

Test 3A

6.4.2 Test 3B: Double talk test with high near end levels

The G.168 Requirements for Test 3B: notice that the doubletalk level should be at

least as great as the input level. The residual echo requirement is relaxed by 10 dB from

the steady state requirements.

in) Doubletalk Level L(Ret) Result 20t
iput N>L(Rin) Requirement (NLP Disabled):
-10 dBmO -10 dBmoO -27 dBm0 -35 dBm0

Table 6.8 Test 3B results

48

o 2 4 s 8 10 12 14 18 18
3 x 10*
far end signal

osa |- N
oe |- n
O.a
o.2

o

-0 2

-Oo.4

-O0.G |- -
-8 - -

-1 " N " s " . n x

O 2 < [=3 8 10 12 14 1S 18

far end echoed signal

—~BOOO |- —

eoos =2 - =3 =] 10 1= 13 16 B2
»x 10"

near end signal

2 i

error signal

Figure 6.6 Test 3B

49

6.5 Test 3C: Double talk test under simulated conversation

The G.168 Requirements for Test 3C: in the Table 6.9 below, note that the table
continues, i.e. there are actually eight (8) columns. The doubletalk signal is applied
simultaneously with the input signal. The resultant signal is divided into 5 periods (refer
to G.168 (2000) spec) and denoted as t1, t2, 3, t4, and ts. The requirements for these

different periods are given in the table below.

L(Rin) Doubletalk Level t2(Req.) Result
Input N Performance ' :
-10 dBm0 -10 dBm0O no peaks>N meets req.

B(Req.) Result t4(Req.)
“Performance
-65 dBm0 -52 dBmO no peaks>N+6 dBm0 meets req.

Table 6.9 Test 3C results

I I [N SR N A M

far end echoed signal

50

~-3000 |- l l

— 3OO0 |-

-SOo00

near end signal

5000

4000 |
3OO0 |-
2000
1000 [
° -
1000
2000 -
-3O00
- 000 |-
-Sooog =2 - =3 [=] 10 12 14 16 10
. *x 10
error signal

Figure 6.7 Test 3C

6.6 Test 4: Leak rate test
The G.168 Requirements for Test 4: the requirements for the residual echo level are

relaxed by 10 dB from the requirements for steady state in Test 1 and 2.

L(Ret) RIS
Requirement (NLP Disabled)
-27 dBmO

Table 6.10 Test 4 results

51

error signal

Figure 6.8 Test 4

6.7 Test S: Infinite return loss convergence test

The G.168 Requirements for Test 5: the requirements are such that any spurious
response vanishes to less than 20 dB below the input level by 1 sec after the echo path is
cut off and to less than 27 or 25 dB below the input level by 10 sec after the echo path is

cut off,

L(Rin) — L(Res) Sample x
Requirement (NLP Disabled) o

e
s
H

-10 dBmO >20 dB after 1 sec meet req.
>27 dB after 10 sec

Table 6.11 Test 5 results

far end si gnal

52

os
o.s
o.a

o2

0.2
‘o4

s —0.6

-8

RS ¥ ST S YR Y

received signal

Figure 6.9 Test 5

6.8 Test 6: Non-divergence on narrow-band signals
The G.168 Requirements for Test 6: the requirements for this test for the residual

echo are relaxed by 10 dB versus the steady state residual echo requirements for Tests 1

and 2.

L(Ret) . Result
Final Requirement | (NLP Disabled)
-27 dBmO -32 dBm0

Table 6.12 Test 6 results

i TR

far end signal

53

error signal

6.9 Test 7: Stability test

Figure 6.10 Test 6

The G.168 Requirements for Test 7: note that the requirements for this test are

actually more stringent than that for steady state.

n) L(Res), NLP dis _ | Result -
Input Output Requirement (NLP Disabled)
-10 dBmO (1 kHz) -38 dBm0O -48 dBm0

Table 6.13 Test 7 results

~1000
~-2000
~300C0

-4 OO0

~-S500C0 P

far end signal

error signal

I E—
oS

Figure 6.11 Test 7

54

6.10 Test 8: Non-convergence, in-band signaling, and continuity check tones
The G.168 Requirements for Test 8: in this test, the signal applied at near end signal must
remain uncancelled, while the echo of far end signal should be cancelled. The variation at

filter output as compared to input should be within + 2 dB.

-Far end/near end Input Variation Result
LR Requirement (NLP Enabled)
2400/2400 +2 dB meet req.

Table 6.14 Test & results

-O.4 |-

oS |- n
-o.a = Y S B 10
> : : x 10‘
far end signal

received signal

55

error signal

6.11 Summary

Test 1: Steady state residual and residual echo level test

Figure 6.12 Test 8

L(Res), NLP Dis | Result
Output Req.

L(Res), NLP enab | RESHIE:
Qutput Req. (NLP Enabled)

[

10 dBm0 | 37 dBm0

-46.15 dBmO

-65 dBm0O -66.15 dBmO

Test 2A and 2B: Convergence test with NLP enabled and disabled

Test 2A
ime (ms) L (Rin)-L (Ret) Result
1 (NLP Enabled) (NLP Enabled)
0 6 dB 48 dB
50ms-1s 6 dB~20 dB 50dB
15+ @-10dBm0 55dB 57 dB
Test 2B
: L (Rin)-L (Ret) | Result -
(NLP Disabled) 5 (NLP Disabl
6 dB 8.8 dB B
50ms-1s 6 dB~20 dB 9dB ~20 dB
1s-10s 20dB 40 dB
10s+ @-10dBm0 27dB 42dB

56

Test 2C: Convergence test in the presence of background noise

Test 2C(a)
in) Noise Level L(Ret) Result:: :
nput L(Rin)-15 Requirement (NLP:Enab
-10 dBm0 -30 dBmO -30 dBm0 -46 dBm0
Test 2C(b)
L(Rin) Noise Level L(Ret) Result
Input Requirement (NLP Enabled)
-10 dBmO -55 dBm0 -38 dBmO -46 dBm0
Test 2C(c)
L(Rin) Noise Level L(Ret) Sample
Input L(Rin)-15 Requirement (NLP Disabled)
-10 dBm{ -30 dBm0 -30 dBm0 -37 dBmO
Test 3: Performance under conditions of double talk
Test 3A
L(Rin) Low Near-End Level L(Res) Result
Input L(Rin)-15 Requirement (NLP Disabled)
-10 dBmoO -25 dBm0O -25 dBmoO -34 dBmO
Test 3B
‘L(Rin) Doubletalk Level L(Ret) Result »
Input N>L(Rin) Requirement (NLP Disabled)
-10 dBmO -10 dBm0Q -27 dBmO -35 dBmO
Test 3C
L(Rin) Doubletalk Level t2(Req.) Result
Input N Performance : .
-10 dBmO -10 dBmO no peaks>N meets req.
t3(Req.) Result t4(Req.) Reésult
‘Performance A
-65 dBmoO -52 dBmO no peaks>N+6 dBm0 meets req.

57

Test 4: Leak rate test

L(Rin) L(Ret) - Result
‘Input Requirement (NLP Disabled)
-10 dBmO -27 dBm0 -25 dBm0
Test 5: Infinite return loss convergence test
L(Rin) L(Rin) — L(Res) Sample
Input Requirement (NLP Disabled)
-10 dBm0O >20 dB after 1 sec meet req.
>27 dB after 10 sec
Test 6: Non-divergence on narrow-band signals
L(Rin) L(Ret) Result ,
' Final Requirement (NLP Disabled)
-10 dBmO -27 dBmO -32 dBmO
Test 7: Stability test
L(Res), NLP dis Result _
Output Requirement (NLP Disabled)
-38 dBm0O -48 dBm0

Test 8: Non-convergence, in-band signaling, and continuity check tones

‘Ear end/near end Input Variation Result o
Requirement (NLP Enabled) '
2400/2400 +2 dB meet req.

Table 6.15 Test result summary

58

Chapter 7

Real time simulation

7.1 TI TMS320C6711 DSK

The TI TMS320 floating-point family includes C3x, C4x, and C67x. Each generation of
the TMS320 series has a unique central processing unit (CPU) with a variety of memory
and peripheral configurations. In this project, the TMS320C6711 DSK is chosen to the
real-time AEC simulations.

The TI TMS320C6711 DSK is a digital signal processing development kit used to
prototype DSP applications targeted for the C6711 family of processors. It has a 3.5-mm
audio IN jack and 3.5-mm audio OUT jack, with ADC and DAC executed onboard. The
ADS535 codec works at a fixed sample rate of 8kHz. The DSK also includes 16MB of
synchronous dynamic RAM and 128 KB flash ROM and the 150-MHz C6711DSP is
capable of executing 900 million floating-point operations per second (MFLOPS).

The DSK board is connected to a PC via a parallel port. The program files can be created

in TI code composer studio on the PC, and then loaded onto the DSK [16].

7.2 C6711 DSK Simulation using Code Composer Studio
7.2.1 Simulation Procedure Introduction

CCS IDE from TI is easy to use development environment allows DSP designers of all
experience levels to move quickly through each phase of the application development
process including design, code and build, debug, analyze and optimize. The fully

integrated development environment includes, real-time analysis capabilities, easy to use

59

debugger, C/C++ Compiler, Assembler, linker, editor, visual project manager, simulators,

XDS560 and XDS510 emulation drivers and DSP/BIOS support.

EEE— MIC

TI TMS320C6711 DSK PC and T Code
Composer Studio

] Speaker <

Figure 7.1 Adaptive echo cancellation implementation block diagram
The real-time acoustic echo cancellation system has been implemented as shown in figure
8.1. A microphone is used to input a voice signal from the user, this is then fed into the
Texas Instrument TMS320C6711 development board. Based on human voice frequency
range and adaptive echo cancellation system performance consideration, the sampling
rate 8 KHz is used in the AD535 codec. The echo cancellation system use the normalized
LMS algorithm and the normalized cross-correlation DTD algorithm detailed in previous
sections. At each new sample time the input is sampled and input to memory and these
memory audio data can be output to a file. In this project, there are two audio data files
that contain these samples are loaded into memory as far end signal and received signal,
and the CCS development workbench window is show in the Figure 8.2. The step size
value for this iteration of the NLMS algorithm is then calculated by inverting the dot
product of the input vector and a small constant should be included in the denominator to
avoid zero divides. The output of the adaptive filter is then calculated by the dot product
of the input vector and the current filter tap weight vector. This output is then subtracted
from the desired signal to determine the estimation error value, e(n). This error value, the
step size value and the current FIR tap weight vector are then input to the NLMS

algorithm to calculate the filters tap weight to be used in the next iteration. If the filter is

60

claimed to converge, the DTD detector will start monitor if there is a double talk
situation. When double talk happens, the DTD detector inhibits the filter adaptation for a
hold time to avoid divergence of the adaptive algorithm. Finally the AEC output error
signal data is streamed out to a specified file using File /O function provided by CCS to

do further analysis [13][16][17].

3 Code Composer

Fle Edit View Project Debug Profier GEL Opton Tools PBC DSP/BICS Window Help
adFd I R RBR BN oz g B OAMA S

“{Asrlrurdias‘pjl v |[Debug

¥ (9 Fles

B3 b+ (1 GEL fies

(1 |= QO Profects #include <math.h>

-0 = g3 dstudies.pjt #include <stdio.h>

{0 céxdsk.cmd #include ¢stdlib.h>

o 1 DSP/BIOS Cor #include "filter.h

B 1 Generated Fies /s Defines

e - Z1inciude #define LOOP_LENGTH 2000
'8 cex.h #define FILTER_LENGTH 100

- " #define STEP_SIZE Se-5
& coxdsih #define SCALE $000.0

3 cexdskink.t #define GAIN 15
B) coxinterrug
Pl H fier.h <0 Teclare varianles
-y Ubraries float 1nput, echoed, af_output, error_signal:

float input_signal [LOOP_LENGTIH];

#] rs6701.0b float echoed_signal [LOOP_LENGIH];
- 2y Source float error_signal_array[LCOP_LENGTH]:
8 coxdskint.c s/int did_array (LOOF_LENGTH]:
[3
& float input_vector [FILTER_LENGTH]:

float input_vector_c[FILTER_LENGIH]:
float filter [FILTER_LENGTH]:

float filter_hold[FILTER_LENGTH]:
float rxy(FILTER_LENGIH]:

float step_size = STEP_SIZE:
float nstep_size;
short output:

00001E20 053C92E6
00001E24 00006000
! 00001E28 abort:
| ¥ 00001E28 00000000
H 00001E2C 00000190
00001E30 00008000
00061E34 00000000
00001E38 00000000 "

ARNAAITAA AnnANANN

i< i

short i, j, k.m:

soleclare variables for doukle talk detecticn

float tmp, sd=0.0. ak2=0.0, dv=0.0:
PR

LA mei13MATAd_A SoU~YTA_A elalaon.

For Help, press F1

Figure 7.2 CCS Workbech window
7.2.2 C6711 DSK Simulation Results
Using the CCS graphing function provided by CSS integration development
environment, the far end signal, received signal and the error signal of the echo
cancellation system can be viewed and shown in the following figures. As can be seen
that the real time adaptive echo cancellation system is successfully developed with the

NLMS and the normalized cross-correlation DTD algorithm.

61

(1) Steady state residual and residual echo level test

111 1333

v = 444 ! 1586 1778 1998
(999, -0.246875) Time Lin AutoScale
oi- 1 'l lﬂ M
1
-0.836]
167 i N . . _
S 0 222) 444 867 888 111 ?33 15156 T 1% 1999
(1319, 0.0148125) Time Lin Auto Scale

received signal

% Graphical Display

0.0121]

0.007247

0.00241]

el A

R+

-0.00724
-0.01214__ e et | . ——— e
[222 444 667 889 1111 1333 1556 1778 1999
(999, -0.00401494) Time Lin Auto Scale

error signal

Figure 7.3 Steady state residual and residual echo level test

Output Req.

Result

)

-37 dBm0

-44 dBmO

~46 dBmO

Table 7.1 Steady state residual and residual echo level test result

62

(2) Convergence test in the presence of background noise

S ‘ 800 1000 1200 1400 1600
(999, -0.210475) Time ‘Lin Auto Scale
far end signal

1800 1999

T T T U T v T AL R
£00 00 1000 1208 1400 1600 1800 1999
Time _ Lin Auto Scale

received signal

S o

XX Graphical Display

" 0.6119
0.00597]
VYo et e S Ty \LLMM
R g et
-0.005874
0.01193 e 1S I R ' '
0 200 400 600 800 1000 1200 1400 1600 1800 1999
(999, -0.00347283) Time Lin Auto Scale
error signal
Figure 7.4 Convergence test in the presence of background noise
Input | Noise Output Req. Matlab Result | Result = * .
-10 dBmO -30 dBm0 -30 dBmO -46 dBm0 -44 dBm0

Table 7.2 Convergence test in the presence of background noise test results

63

(3) Double talk test with low near end levels

|

______ ° - 333 667 00 1333 1867 1999
(999, -0.246875) Time Un Auto Scale
far end signal

T T o e St

&= Graphical Display

o 333 esr 1000 1333 1657 1999
(999, 0) Time Ln AutoScale |

0 333 e67 1000 1333 1667 1999
(99, -0.432443) (Time Ln Auto Scale |

received signal

64

‘ o ,' 333 ', 667 1000 1333 1667 1999
(999, 0) Time Lin Autagcgle R
double talk detection

Z3 Graphical Display

| i T T

0 333 667 1000 1333 1667 1999
(999, -0.00401494) Time Lin Auto Scale : '
error signal

Figure 7.5 Double talk test with low near end levels

Input

Near end

Output Req.

Matlab Result

-10 dBm0

-25 dBm0

-25 dBm0

-34dBmo0

-33dBm0 _

Table 7.3 Double talk test with low near end levels test results

(4) Double talk test with high near end levels

&= Graphical Display

-1.70

0

T

333 667 1000 1333 1667

f(999, -0.246875) Time

1999

"Ln |Auto Scale |

far end signal

65

TR e
ebirticy S0

Graphlcal Dlsplay

‘‘‘‘‘‘ o “3:'}3 667 1000 1333 1667 1999
(999, 0) Time Lin Auto Scale '

| nmA 3 et 1000 1333 1667 1999
(999, -0.432443) Time Ln AutoScale |

0]
-0.500-]
LS S — N
\] 333 667 1000 1333 1667 1999
(999, 0) Time Lin Auto Scale |

B3.5424 J]’
] I
-0.542 P F W{
o
8} 333 667 1000 1 333 1667 1999
(999, -0.00401494° Time Lin Auto Scale

error signal

Figure 7.6 Double talk test with high near end levels

Input Near end Output Req. | Matlab Result
-10 dBmO -10 dBmO -27 dBmO -35 dBmoO

Table 7.4 Double talk test with high near end levels test results

66

(5) Non-divergence on narrow-band signals

Time

1250 1500
Lin Auto Scale

— ——
1750 1999

T T T U T T
750 1060 1250 1600 1750 1999
Time Lin Auto Scale

0.00427

|

0.00213

2 Graphical Display

P —

e (e
YR

-0.60212
-0.00427, I . — . . -
)] 250 <00 750 1000 1250 1500 1750 _ _’«1999

'59'9‘9, 0) ' Time Lin Auto Scale

error signal
Figure 7.7 Non-divergence on narrow-band signals

Input Output Regq. Matlab Result
-10 dBm0 -27 dBm0 -32 dBmO

~34 dBm0

Table 7.5 Non-divergence on narrow-band signals test result

67

(6) Stability test

u;mllullllllﬂn JIIUJJI'JIIL’LUIHIIL

1333

Lin Auto Scale

1667

0.00130

-0.00130

gooze1l [N — -

0 333 667 1000 1333 1667 1999
(999, -4.068613e-4) Time Lin Auto Scale
error signal
Figure 7.8 Stability test
‘Input Output Req. ‘Matlab. Resiil %
-20 dBm0O -47 dBmO0 -48 dBm0
@ -10 dBmO input

-l);p'sti. £

8 dBmO

Table 7.6 Stability test results

68

(7) Non-convergence, in-band signaling, and continuity check tones

1233 1667 1999
Lin Auto Scale |

o 333 667 1333 1667 1399
(999, -0.0492188) Time Lin Auto Scale B

YRR E AT s e e 4 9 T P T e R T e o 3 0

I= Graphical Display

333 667 1000 1333 16'677) 1999
§(599, -0.0492188) (Time ILin [Auto Scale

received signal

69

(999, -0.0492188) Time

Lin Auto Scale

1667 1999

error signal

Figure 7.9 Non-convergence, in-band signaling, and continuity check tones

-Far end/near end Input Variation Result
Requirement (NLP Enabled
2400/2400 Hz 12 dB meet req.

Table 7.7 Non-convergence, in-band signaling, and continuity check tones test results

7.3 Real time simulation summary

Test 1: Steady state residual and residual echo level test

‘Input

Output Req.

Result

Matlab Result

-10 dBmO

-37 dBm0

-44 dBm0

-46 dBm0

Test 2C: Convergence test in the presence of background noise

Input Noise Output Req. Matlab Result | Result
-10 dBmoO -30 dBmO -30 dBmO -46 dBmO -44 dBmO
Test 3: Performance under conditions of double talk

Test 3A

Input Near end Output Req. Matlab Result | Result
-10 dBmO -25 dBm0O -25 dBmoO -34dBm0 -33dBm0
Test 3B

Input Near end Output Req. Matlab Result | Result
-10 dBmO -10 dBm0 -27 dBm0 -35 dBm0O -30 dBmO

70

Test 6: Non-divergence on narrow-band signals

Input Output Regq. Matlab Result Result:
-10 dBmO -27 dBm0 -32 dBm0O -34 dBmO
Test 7: Stability test
Input Output Req. Matlab Result Result
-20 dBmO -47 dBm0 -48 dBm0 -58 dBmO
@ -10 dBmO input

Test 8: Non-convergence, in-band signaling, and continuity check tones

ar end/near end Input | Variation Result = &
e : T Requirement (NLP Enableﬂ)
, 2400/2400 +2 dB meet req.

Table 7.8 Real time simulation summary

71

Chapter 8

Conclusion

In this project, four adaptive algorithm LMS, NLMS, Fast Block LMS and RLS are
investigated and simulated using AEC Analysis and Design program in Matlab for echo
cancellation. Comparing these algorithms, NLMS is finally selected as the best algorithm
for the real time echo cancellation systems. In double talk detection, the Geigel algorithm
and the normalized cross-correlation DTD algorithm are separately integrated with
NLMS FIR filter against double talk and are studied in NLMS & DTD Analysis and
Design program in Matlab. The normalized cross-correlation DTD algorithm is selected
for double talk detection, since the results are much better. Through testing with ITU
G.168 standard, the performance of the adaptive echo cancellation system conforms with
the standard. In addition, the real time adaptive echo cancellation simulation by TI

TMS320C6711 also proves the selected algorithms and their settings are correct.

72

Chapter 9

Further Work

There are some possibilities for further development in this project, some of these are
as follows.

e The double talk detection algorithm still can be done further studies in the
simplified smoothing estimation algorithm area to improve the alarm accuracy
and reduce the computation complexity.

e The real time echo cancellation system is successfully developed using the TI
TMS320C6711 DSK. However, since this system is code in C language, if it is in
assembler, the system performance will be much improved and If the TI C5000
DSP using Fixed-Point Digital Signal Processor, the same performance can be
achieved with the lower cost.

e Instead of the DSK board, the adaptive echo cancellation system can use the
TMS320C6711 digital signal processor in a custom designed circuit by which will

also improve the whole system performance.

73

References

[1] C.F.N. Cowan, P.M. Grant, Adaptive Filiters, Prentice-Hall, New Jersey, 1985.

[2] Paulo S.R. Diniz, Adaptive Filtering, Algorithms and Practical implementation
Kluwer Academic Publishers, Boston, 1997.

[3] D. P. Mandic, “A Generalized Normalized Gradient Descent Algorithm,” IEEE
Signal Processing Letters, vol. 11, pp. 115-118, February 2004.

[4] D. L. Duttweiler, “A twelve-channel digital echo canceler,” IEEE Trans. Com-
munication, vol. 26, pp. 647-653, May 1978.

[5] J. Benesty, D. R. Morgan, and J. H. Cho, “A new class of doubletalk detectors
based on cross-correlation,” IEEE Trans. Speech Audio Processing, vol. 8, pp. 168-
172, March 2000.

[6] J. H. Cho, D. R. Morgan, and J. Benesty, “An objective technique for
evaluating doubletalk detectors in acoustic echo cancelers,” IEEE Trans.
Speech Audio Processing, vol. 7, pp. 718724, Nov. 1999.

[7] P. Ahgren, “A new doubletalk detection algorithm with a very low computational
complexity,” Submitted to IEEE Trans. Speech Audio Proc., December 2003.

[8] J. Benesty, D. R. Morgan, and J. H. Cho, “A new class of doubletalk detectors based
on cross-correlation,” IEEE Trans. Speech Audio Processing, March 2000.

[9] H. Ye and B.-X. Wu, “A new double-talk detection algorithm based on the
orthogonality theorem,” IEEE Trans. Commun., vol. 39, pp.1542-1545, Nov. 1991.

[10] T. G ansler, M. Hansson, C.-J. Invarsson, and G. Salomonsson, “A double-talk
detector based on coherence,” IEEE Trans. Commun., vol.44, pp. 1421-1427, Nov. 1996.

[11] Michael L. Honig, David G. Messerschmitt, Adaptive Filters, Structures,
Algorithms and Applications, Kluwer Academic Publishers, Boston, 1984.

[12]C. Antweiler and M. Déorbecker, “Perfect sequence excitation of the
NLMS algorithm and its application to acoustic echo control,” Annales
des Telecommunications, no. 7-8, pp. 386-397, July—August 1994.

[13] Chassaing, Rulph, DSP applications using C and theT, MS320C6x DSK, John Wiley
and Sons, New York, 2002.

74

[14] P. Heitkamper, “An adaptation control for acoustic echo cancellers,”
IEEE Signal Processing Lett., vol. , pp. 170~172, June 1997.

[15] B. Farhang-Boroujeny, Adaptive Filters, Theory and Applications, John Wiley &
Sons, 1998.

[16] Texas Instruments: Code Composer Studio/ TMS320C6711, Documentation CD
accompanying theTMS320C6711 DSP Starter Kit, 2002.

[17] Dave Bell, “How to Begin Development With the TMS320C6711 DSP,” Texas

Instruments Application Notes, Available: http://focus.ti.com/lit/an/spra522/spra522.pdf,
March 1999.

75

APPENDIX A: MATLAB CODE

Ims_function.m
function [error_signal,desired_signal,ﬁlter_output,ﬁlter_current,mse,db]
=lms_function(input_signal,filter_size,step_size,impulse)

desired_signal = conv(input_signal, impulse);

% initialise adaptive filter

filter current = zeros(filter_size,1);
input_vector = zeros(filter_size, 1);
iterations=length(input signal);

q = waitbar(0,'LMS Filtering...");
for i=1:iterations

input_vector(1)=input_signal(i);

filter output(i)=dot(filter_current, input_vector);

error= desired_signal(i)-filter output(i) ;

filter current = filter_current + 2*step_size*error*input_vector;

for j=filter_size:-1:2
input_vector(j)=input_vector(j-1);
end

error_signal(i)=error;
cost(i)=error*error;

waitbar(i/iterations, q);
end

close(q);

ql = waitbar(0,'LMS Caculating MSE...");
for i=1:iterations-100
mse(i)=mean(cost(i:i+100));
waitbar(i/iterations, ql);
end
close(ql);

q2 = waitbar(0,'LMS Caculating attenuation in dB...");

for i=1:iterations-2500
db(i)=-20*loglO(mean(abs(desired_signal(i:i+2500)))'./mean(abs(error_signal(i:i+2500))));
waitbar(i/iterations, q2);

end

close(q2);

76

nlms_function.m
function [error_signal,desired_signal,filter_output,filter_current,mse,db]
=nlms_function(input_signal,filter_size,impulse)

iterations = length(input_signal);
desired_signal = conv(input_signal, impulse);

% initialise adaptive filter

filter current = zeros(filter_size,1);
input_vector = zeros(filter_size, 1);
g = waitbar(0, Filtering...");

for i=1:iterations

input_vector(1)=input_signal(i);
filter_output(i)=dot(filter _current, input_vector);
error= desired signal(i)-filter output(i);
step_size=1/(dot(input_vector, input_vector)+0.00001);
filter_current = filter_current + step_size*error*input_vector;
for j=filter_size:-1:2
input_vector(j)=input_vector(j-1);

end
error_signal(i)=error;
cost(i)=error*error;
ss(i)=step_size;
waitbar(/iterations, q);

end

close(q);

ql = waitbar(0,'Caculating MSE...");

for i=1:iterations-100
mse(i)=mean(cost(i:i+100));
waitbar(i/iterations, q1);

end

close(ql);

g2 = waitbar(0,'Caculating attenuation in dB...");

for i=1:iterations-2500
db(i)=-20*lo g10(mean(abs(desired_signal(i:i+2500)))'./mean(abs(error_signal(i:i+2500))));
waitbar(i/iterations, q2);

end

close(q2);

77

flms_function.m
functionferror_signal,desired signal, filter_output.filter_coeff,mse,db}=
flms_function(input_signal filter_size,step_size,estimated |_power,impulse,lambda)

% initialization

FILTER_COEFF = zeros(2*filter_size, 1);

input_length = length(input_signal);

desired_signal = conv(input_signal, impulse);
block_length = floor(input_length/filter_size)*filter_size;

input_signal = input_signal(1:block_length);
desired_signal = desired_signal(1:block_length);

input_signal = input_signal(:);
desired signal = desired_signal(:);

error_signal = desired_signal;
Blocks = block_length/filter_size;
q = waitbar(0,'Fast LMS Filtering...");
% loop, FLMS
for k=1:Blocks-1
INPUT_SIGNAL = fft([input_signal((k-1)*filter size+1:(k+1)*filter_size)],2*filter_size);

filter_output = ifft(INPUT_SIGNAL.*FILTER_COEFF);
filter_output = filter output(filter_size+1:2*filter_size,1),

desired_vec = desired_signal(k*filter_size+1:(k+1)*filter_size);

error_signal(k*filter size+1:(k+1)*filter_size,1) = desired_vec-filter_output;

ERROR_VEC = fft([zeros(filter_size,1);error_signal(k*filter_size+1:(k+1)*filter_size)],2*filter_size);
estimated power=lambda*estimated_power+(1-lambda)*abs(INPUT_SIGNAL)."2;

DESIRED VEC = 1./(1+estimated_power);

phivec = ifft DESIRED_VEC.*conj(INPUT_SIGNAL).*ERROR_VEC,2*filter_size);
phivec = phivec(1:filter_size);

FILTER COEFF = FILTER_COEFF+step_size*fft([phivec;zeros(filter_size,1)),2*filter_size);
error_signal = real(error_signal(:));

filter coeff = ifft(FILTER_COEFF);
filter coeff = real(filter_coeff(1:length(FILTER_COEFF)/2));
filter_output=real(filter_output(:));

waitbar(k/(Blocks-1), q);
end
close(q);

78

cost=error_signal.*error_signal;

ql = waitbar(0,'Fast LMS Caculating MSE...");

iterations=length(cost);

for i=1:iterations-100
mse(i)=mean(cost(i:i+100));
waitbar(i/iterations, ql);

end

close(ql);

q2 = waitbar(0, Fast LMS Caculating attenuation in dB...");

iterations=length(desired signal);

for i=1:iterations-2500
db(i)=-20*log10(mean(abs(desired_signal(i:i+2500)))'./mean(abs(error_signal(i:i+2500))));
waitbar(i/iterations, q2);

end

close(q2);

79

rls_function.m
function [error_signal,desired__signal,ﬁltcr__output,ﬁlter_current,mse,db]
=rIs__ﬁ.1nction(input_signal,ﬁlter_size,lambda,impulse)

desired_signal = conv(input_signal, impulse);
iterations=length(input_signal);

% initialise adaptive filter

filter prev = zeros(filter_size,1);
input_vector = zeros{filter_size, 1);
psi_inv_prev = eye(filter_size);
intermediate= zeros(filter_size, 1);
gain = zeros(filter_size, 1);

q = waitbar(0, RLS Filtering...");
for i=1:iterations
input vector(1)=input_signal(i);
intermediate = psi_inv_prev*input_vector;
gain = (1/(lambda+dot(input_vector, intermediate}))*intermediate;
filter _output(i)=dot(filter_prev, input_vector);
error= desired_signal{i)-filter_output(i);
filter_prev = filter_prev + gain*error;
psi_inv_prev = (1/lambda)*(psi_inv_prev - gain*((input_vector')*psi_inv_prev));

for j=filter_size:-1:2
input_vector(j)=input_vector(j-1);

end

error_signal(i)=error;

cost(i)=error*error;

waitbar(V/iterations, q);

end

close(q);

ql = waitbar(0,'RLS Caculating MSE...");
for i=1:iterations-100
mse(i)=mean(cost(i:i+100));
waitbar(i/iterations, gql);
end
close{ql);

q2 = waitbar(0,'RLS Caculating attenuation in dB...");

for i=1:iterations-2500
db(i)=-20*log10(mean(abs(desired_signal(i:i+2500)))'./mean(abs(error_signal(i:i+2500))));
waitbar(Viterations, q2);

end

close(q2);

db_avg=mean(db)

end

80

nlmsGeigel function.m
function [e,xF ,xE,V,y,S,th,db,holdRec]qﬂmsGeigel_function(L,TG,geigLen,hold_time)

farendThres = 3.5¢6;

hstart=0,
thold=0;
isHold=0;
stillHold=0;

% Load data files.

xF = readData('Far,pcm');

XE =readData('FarEcho.pcm');
v =readData(Near.pcm');
y=xE+v;

xF=xF(10e+4:end);
y=y(10e+4:end);

% Initialize adaptive filter

e = zeros(size(xF)); % Error signal.

s = zeros(size(xF)); % Estimated echo signal.
state = eps*ones(L,1);

th =state;

th0 = state;

dG = zeros(size(xF));

% show if last sample was detected as DT.
wasDT =0;
noDTcounter = 0;

loopLen = length(xTF);
holdRec = zeros(size(xF));

q = waitbar(0,NLMS & Giegel DTD Filtering...");
for k=1:loopLen,
% Update the filter state.
if k>1,
state(1:end) = flipud(xF(k-L+1:k));
end
s(k) = state’ * thO; % Estimated echo value.
e(k) = y(k) - s(k); % Prediction error.

if (k-20000) > L

% Geigel DTD.

dG(k) = abs(y(k))/ max(abs(xF(k-geigLenk)));
end

if dG(k) > TG
hstart=1;
stillHold=1;
else
stillHold=0;
end

81

if hstart==1
thold=thold+1;
if thold < hold_time
isHold =1;

if stillHold
thold=0;
end

else
hstart=0;
thold=0;
isHold=0;
stillHold=0;

end
end

if isHold ~=1
% Update the step-size parameter using NLMS.
normState = state'*state;
mu = 1/(normState + 1e3);

end

if{ normState > farendThres & isHold ~=1)
th = th + mu * e(k) * state;

end
if isHold
th = thO;
else
thQ = th;
end

holdRec(k)=isHold;

waitbar(k/loopLen, q);

end
close(q);

ql = waitbar(0, NMLS & Giegel DTE calculating REL...");

for i=1:loopLen-2500

db(i)=-20*log10(mean(abs(y(i:i+2500)))"./mean(abs(e(i:i+2500))));
waitbar(i/(loopLen-2500), ql);

end
close(ql);

end

82

nimsNCC _function.m

function [e,xF,XE,v,y,s,th,db,holdRec]=nimsNCC_function(L,dt_low,dt_high,cv_hold,dt_hold)
L =1024; - —HoTeA-
farendThres = 3.5¢6;

% Load data files.

xF = readData('Far.pcm');

xE = readData('FarEcho.pcm' };
v =readData(Near.pcm');

y = xE+v;

% Initialize adaptive filter

¢ = zeros(size(xF)); % Error signal,

s = zeros(size(xF)); % Estimated echo signal.
state = eps*ones(L, 1);

th = state;

th0 = state;

dG = zeros(size(xF));

% show if last sample was detected as DT.
wasDT =0;
noDTcounter = 0;

loopLen = length(xF);
dtm=zeros(size(xF));
rxy=zeros(L,1);

isDT=0;

dv=1;

converge Counter=zeros(1000,1);
convergeFlag=0;

xy=0;

i=0;

startFlag=0;

isCoverge=0;
wasCoverge=0;

hstart=0;

thold=0;

isHold=0;

holdRec = zeros(size(xF));
stillHold=0;

q = waitbar(0,NMLS & NCC: Filtering...");
for k=1:loopLen,
% Update the filter state.
ifk>1,
state(1:end) = flipud(xF(k-L+1:k));
end

s(k) = state' * tho; % Estimated echo value.
e(k) = y(k} - s(k); % Prediction error.

if k>2*L & rxy=—=0
for m=0:L-1,

83

rxy=rxy-+{lipud(xF(k-m-L+1:k-m)).*y(k);
end

ss=rxy'*th;

end
ifk>2*L

xy=0.9*rxy+0.1*state(1:end). *y(k);
§5=0.9*ss+0. 1 *y(k)*y(k);

ak2=rxy'*th;
akl=ss;

dv=ak2/akl;
dNCR(k)=dv;
if convergeFlag ~=1

if dv > dt_low & dv < dt_high
isCoverge=1;
startFlag=1;

else
isCoverge=0;

end

if startFlag & i==0
i=it+1;
end

if startFlag & wasCoverge & isCoverge

i=it+l;

if i>cv_hold
convergeFlag=1
k
for m=0:L-1,

rxy=rxy-+flipud(xF(k-m-L+1:k-m)).*y(k);

end

ss=Txy'*th;
end
else
start=0;
i=0;
end

wasCoverge=isCoverge;

end

84

if convergeFlag

if (dv <(dt_low-0.15) | dv > (dt_high+0.25))
hstart=1;
stillHold=1;

else
stillHold=0;

end

end
end

% Update the step-size parameter using NLMS,

if hstart==1
thold=thold+1;
if thold < dt_hold
isHold =1;

if stillHold
thold=0;
end

else
hstart=0;
thold=0;
isHold=0;
stillHold=0;

end
end

if isHold ~=1
normState = state'*state;
mu = 1/(normState + 1e3);
end

if(normState > farendThres & isHold ~=1)
th =th + mu * e(k) * state;

end
if isHold
th = thQ;
else
thO = th;
end

holdRec(k)=isHold;

waitbar(k/loopLen, q);

end

close(q);

ql = waitbar(0,NLMS & NCC: calculating ERLE...";

for i=1:loopLen-2500 ’
db(i)=-20*log10(mean(abs(y(i:i+2500)))"./mean(abs(e(i:i+ .
waitbar(i/(loopLen-2500), q1); an(abs(eti:i+2500)));

end

close(ql);

86

APPENDIX B: TI CCS CODE

nlms_adfilt result.c

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "filter.h"

// Defines
#define LOOP LENGTH 2000
#define FILTER_LENGTH 100

// Declare variables

float input, echoed, af output, error_signal;
float input_signal[LOOP_LENGTH];

float echoed_signal[LOOP_LENGTH];
float error_signal array[LOOP_LENGTH];
/fint dtd_array[LOOP_LENGTH];

float input_vector[FILTER _LENGTH)];
float input_vector_c[FILTER LENGTH];
float filter{ FILTER LENGTH];

float filter_hold[FILTER LENGTH];
float rxy[FILTER_LENGTH];

float nstep_size;
short output;

short i, j, k,m;

//Declare variables for double talk detection
float tmp, sd=0.0, ak2=0.0, dv=0.0;
int hstart=0, stillHold=0,isHold=0, thold=0, isNLP=0;

// Procedure for determining dot product of two arrays
float dotp (float af], float b[])
{
float suml, sumbh;
suml=0;
sumh=0;
for(j=0; j<FILTER_LENGTH; j+=2)
{
suml += a[j] * b[jl;
sumh -+= a[j+1]*b[j+1];
}
return (suml+sumbh);

}

//Procedure for determining dot product of one array and one value
void dotpv(float af], float b)

87

for(j=0; j<FILTER_LENGTH; j+=1)

a[j]=afj] * b;

}

void dotVectorSum(float a[], float b[])
{

for(j=0; j<FILTER_LENGTH, j+=1)

{
a[jl=afj] + b{j];

void copyVector(float a[], float b[1){
for(G=0; j<FILTER_LENGTH; j+=1)

a[jlI=b(];

void decideDTD(){
copyVector(input_vector_c,input_vector);
dotpv(input_vector_c,echoed);
dotpv(input_vector_c,0.1);
dotpv(rxy, 0.9);
dotVectorSum(rxy, input_vector_c);

sd=0.9*sd+0.1*echoed*echoed;

ak2=dotp(rxy, filter);
dv=ak2/sd;

if{dv<0.75 || dv>1.35){
hstart=1;
stillHold=1;
telse{

stillHold=0;
}

if (hstart=—1){

88

thold=thold+1;

if (thold < 80){
isHold =1;
if (stillHold=1){
thold=0;
}

else{
hstart=0;
thold=0;
isHold=0;
stillHold=0;

doFiltering()
{

for(k=0;k<LOOP_LENGTH;k++){
input=input_signal[k]; // newest input cast to float
input_vector[0] = input; // put sample
echoed=echoed signal[k];

//calculate output of adaptive filter
af_output=dotp(filter, input_vector);

// calculate error value
error_signal = echoed-af output;

if(isNLP==1){
error_signal= error_signal*0.01;
}
error_signal_array[k]=error_signal;
decideDTD();
/fdtd_array[k]=isHold,;

if(isHold!=1){
/I calculate variable step size
nstep_size=1/(dotp(input_vector, input_vector)+0.0001);
/lupdate tap weights

for (i=0; i<FILTER_LENGTH; i++)
{

filter[i] = filter[i] + nstep_size*error_signal*input_vector[i]; [/calculate taps

89

}
for (i=FILTER_LENGTH-1; i>=1; i--)
{
input_vector[i]=input_vector[i-1]; //shift vector
}

if(isHold==1){
for(m=0; m<FILTER_LENGTH;m++){
filter[m]=filter_hold[m)];
}

}else{
for(m=0; m<FILTER_LENGTH;m++){
filter_hold[m]=filter[m)];
}

}//for loop end

// This is main procedure executed on start up of program
main()
{

// Initialise variables

error_signal=0.0;

echoed=0.0;

af_output=0.0;

nstep_size=0;

isSNLP=0;

for (i=0; i<FILTER_LENGTH; i++) // initialise filter, input vector
{

input_vector[i]=0.0;
rxy[i]=0.0;

for (i=0; i<FILTER_LENGTH; i++) // initialise filter, input vector

{

filter[i]=filter current[i];
}
doFiltering();

90

