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Abstract

Title: Adaptive Echo Cancellation Analysis

Echo cancellation is a classic problem in DSP and digital communication. Adaptive echo 

cancellation is an application of adaptive filtering to the attenuation of undesired echo in 

the telecommunication network. This is accomplished by modeling the echo path using 

an adaptive filter and subtracting the estimated echo from the echo-path output.

In this project, the concept o f echo cancellation and echo cancellation systems are 

studied, simulated, and implemented in Matlab and TI TMS320C6711 DSK. The LMS, 

NLMS, Fast Block LMS and RLS algorithm are investigated for echo canceller and two 

double talk detection algoritlims: the Geigel algorithm and the normalized cross­

correlation algorithm are presented and combined with NLMS adaptive algorithm against 

double talk. Finally The adaptive echo cancellation system successfully developed by the 

NLMS and normalized eross-eorrelation DTD algorithms meet the general ITU G. 168 

requirements and show excellent robustness against double talk.
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Chapter 1 

Introduction

1.1 Adaptive Echo Cancellation

Echo is a phenomenon in which a delayed and distorted version of an original sound or 

electrical signal is reflected back to the source. In real life, echoes often occurrence 

among conversations. The echoes of speech waves can be heard as they are reflected 

from the floor, wall and other neighboring objects. In such a case when the reflected 

wave arrives a few tens of milliseconds delay after the direct sound, it can be heard as an 

obvious echo. These echoes are bothering and may unexpectedly interrupt a conversation. 

Thus it is desired to eliminate these echoes. In telephone communication, there are two 

main types o f echo: network and acoustic echoes. The network echo results from the 

impedance mismatch at points along the transmission line, for example, at the hybrids of 

a public switched telephony network (PSTN) exchange, where the subscriber two-wire 

lines are connected to four-wire lines. Acoustic echo is due to the acoustic coupling 

between the loudspeaker and microphone in hands-free telephone systems, for example, 

if  a communication is between one or more hands-free telephones (or speaker phones), 

then acoustic feedback paths are set up between the telephone's loudspeaker and 

microphone at each end. Acoustic Echo is more hostile than network echo mainly 

because o f the different nature of echo paths.

The solution to these echo problems is to eliminate the echo with an echo suppressor or 

echo canceller.



The problems with echo suppressor are:

• only one speaker can talk at a time

• clips speech

• take time to detect the beginning of speech

Now using adaptive filter to reduce the echo and increase communication quality is a 

common technology in communication system, but there are still some challenges :

•  many existing adaptive algorithms give different performance

• different adaptive algorithms need different parameter setting

• overcome double talk disturbance

This project focuses on the following achievements:

(1) Providing an easy approach to compare and review various adaptive algorithms 

based on their convergence rate, steady state ERLE and complexity o f implementation, 

etc.

(2) Supplying different pre-designed double talk detection methods that can be easily 

configured with different parameter to obtain the expected performance.

(3) Implementation of AEC and DTD algorithms to work practically and efficiently using 

smooth estimation and the pre-set parameters selected from experiments.

Adaptive cancellation of such acoustic echo has became very important in hands-free 

communication systems, e.g. tele-conference, video-conference and PC telephony 

systems.



Echo canceller is a better solution to the acoustic echo problem, which allows both

speakers to talk at the same time.

The Basic Structure of Adaptive Echo Canceller is shown in Figure 1.1 and the estimated

echo signal y{t) generated by an adaptive filter eliminates the echo signal y { t ) . The 

coefficients of the adaptive filter are adjusted by adaptive algorithm according to the 

estimation error signal e{t) .

x{t)

Echo PathAdaptive Filter

e(0

y(t)
+

+
u(t)

= y(t) + u{t)

Figure 1.1 Basic structure of adaptive echo canceller: far end signal x{t) , echo signal

y{t) , near end signal u{t) , received signal z{t) , estimated echo signal y{t) and error 
signal e{ t) .

1.2 Adaptive Filters

Adaptive usually deploys a traversal Finite Impulse Response (FIR) structure due to its 

guaranteed stability and the adaptation o f the FIR filter coefficients is controlled by an 

adaptive algorithm. The adaptive algorithm is the heart of an AEC, which decides the 

convergence behavior and tracking behavior o f the AEC. The tracking behavior indicates



how fast the adaptive filter can follow enclosure dislocations, whereas the convergence 

behavior is studied as an initial adjustment o f the adaptive filter to the impulse response 

of the room or car.

In Figure 1.2, w represents the coefficients o f the FIR filter tap weight vector, x(k) is the 

input vector samples, z”’ is the delay unit, y(k) is the adaptive filter output, is the 

desired echoed signal and is the estimation error at time k.

input

x(k)

Figure 1.2 Adaptive filter block diagram

The adaptive filter is used to calculate the difference between the desired signal and the 

adaptive filter output, . This error signal is fed back into the adaptive filter and its 

coefficients are changed algorithmically to minimize the cost function that is a function 

o f . In acoustic echo cancellation, the optimal output o f the adaptive filter is the value

of the unwanted echoed signal. When the adaptive filter output is equal to desired signal, 

the error signal becomes 0, in this ideal situation, the echo signal will be completely 

cancelled and the far end user will not hear his original speech returned to him.



1.3 Project Objective

In the project, the LMS, NLMS, Fast Block LMS and RLS algorithm are studied and 

alternatively used in adaptive acoustic echo canceller. The NLMS with two different 

Double Talk detection algorithms are integrated in the adaptive echo canceller against 

double talk. The performance and parameters of these adaptive algorithms such as filter 

length, step size and convergence speed are studied in details and the two Double Talk 

algorithms: detection algorithms: the Geigel algorithm and the normalized cross­

correlation algorithm are studied and simulated with NLMS algorithm in Matlab and TI 

TMS320C6711 DSK. The ITU G.168 standard is used to study the performance of the 

adaptive echo canceller.



Chapter 2 

Echo Cancellation Adaptive Methods

Most echo cancellers use variants of the LMS adaptation algorithm [1] [2][3]. The 

attractions of the LMS are its relatively low memory and computational requirements and 

its ease of implementation and monitoring. In practice, LMS adaptation has produced 

effective line echo cancellation systems.

2.1 LMS Algorithms

In Figure 1.1, the error signal is

(2.1.1)

and

y ,  = X l W = W X , (2 .1.2)

So,

g ,=  d , - x l w = d , - w " x , (2.1.3)

We can square to get the instantaneous squared error.

6^=d^+WX,xrW-2d,X|:W'■k ^ ^ k

E [ s l ] - E [ d l ] + W ^ E [ X , X l  ] W-2E[d, X [ ] W

(2.1.4)

(2.1.5)

Let R be defined as the autocorrelation matrix

R  =  E [ X i , X l ]  =  E  ^

XkXk
^ k - l ^ k

XkXk-1
X k - l ^ k - 1

X k - N + l ^ k  X k - N + l ^ k - 1

^kXk-N+1
^ k - l ^ k - N + l

1

X k - N + l ^ k - N + l  j

(2.1.6)
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Let P be similarly defined as the cross-correlation matrix

d k ^ k -
P - £ [ d ,X ,[ ]  = £ 7 ■ 1

ditaifc-jv+i
(2.1.7)

And the mean-square error can be designated by ^ and we can obtain the following 

expression:

M SE= # = E[ ]=E[d I ]+W ̂  RW-2PW (2.1.8)

Now it is clear that the mean-square error is a quadratic function of the weight vector 

W. When we expand this expression, the elements of W will appear in first and second 

degree only. If we have two weights, we can get the quadratic error function, or 

performance surface. ( the vertical axis represents the mean-square error and the 

horizontal axes the values of the two weights.) The point at the “bottom of the surface” is 

projected onto the weight-vector plane and then we can obtain the optimal weight vector 

W* or the minimum mean-square error point. And there is only a single global optimum 

in this performance surface. To search the performance surface for minimum point, we 

can do gradient methods:

V « ) £
dW

a^
awo dw^ dwN - \

T

=2RW-2P (2.1.9)

To obtain the minimum mean-square error, the weight vector W is set at its optimal value 

W* and where the gradient is zero.

V =0=2RW*-2P (2.1.10)

RW*=P (2.1.11)



Then the

W *=R -'P . (2.1.12)

To develop the Least Mean Square (LMS) algorithm, we take itself as an estimate of 

• Then, for each iteration in the adaptive process, we have a gradient estimate o f the 

form

'ds^
5Wo

• (2.1.13)

With this simple estimate o f the gradient, we can have

V, = W , + 2 / , « , X .  (2.1.14)

This is the LMS algorithm, ju is the gain constant that regulates the speed and stability of 

adaptation. The LMS algorithm can be implemented in a practical system without 

squaring, averaging, or differentiation and is simple and efficient. For each iteration the 

LMS algorithm requires 2N additions and 2N+1 multiplications (N is the filter length, N 

for calculating the output, one for 2p and an additional N for the scalar by vector 

multiplication).



2.2 NLMS Algorithms

When n  is optimized as described by u.(n) = ------- ^ --------- , a  e (0,2), 0<  B , (2.2.1)

P  guarantees that the denominator never becomes zero, while a  is a relaxation factor, the 

normalized LMS algorithm results. In this case, pi is time varying.

The echo canceller coefficients {m) are adapted to minimize the energy o f the echo 

signal on a telephone line. Assuming that the speech signals (m) and Xg (m) are 

uncorrelated, the energy on the telephone line from B to A is minimized when the echo

A echo  A echo

canceller output xa (m) is equal to the echo xb {m) on the line. The echo canceller 

coefficients can be adapted using the least mean squared error (LMS) adaptation 

algorithm or one of the most widely used algorithms for adaptation of the coefficients of 

an echo canceller is the normalized least mean square error(NLMS) method. The time- 

updated equation describing the adaptation of the filter coefficient vector is

w{m) = w(jn-V) + pi— —̂^ — ;-x^(m) (2.2.2)
e{m)

where x^ (m) = {m),...,x^ { m - N  + 1)] and x{m) = [x^ (m),..., x,,_, ( m -  N  + 1)] are the

input signal vector and the coefficient vector of the echo canceller, and e(m) is the 

difference between the signal and the echo line and the output of the echo synthesizer. 

The normalized quanity x(m)^x^(w) is the energy of the input speech to the adaptive 

filter. The scalar pi is the adaptation step size, and controls the speed of convergence, the 

steady-state error and the stability of the adaptation process.

Each iteration of the NLMS algorithm requires 3N+1 multiplications (N is filter length), 

this is only N more than the standard LMS algorithm.



2.3 Fast Block LMS Algorithm

In the normalized LMS algorithm, the filter coefficients of a finite-duration impulse 

(FIR) filter are adapted in the time domain. Because the Fourier transform maps time- 

domain signals into the frequency domain and the inverse Fourier transform provides the 

inverse mapping that takes the signals back into the time domain, it is workable to 

perform the adaptation of filter coefficients in the frequency domain, which is called 

frequency-domain adaptive filtering.

In a block-adaptive filter, shown in Figure 2.1, the input data sequence x(n) is sectioned 

into L -point blocks by means of a serial-to-parallel converter, and the blocks of input 

data so produced are applied to an FIR filter o f length M  , one block at a time. The 

coefficients o f the filter are updated after the collection of each block of data samples, so 

that adaptation o f the filter proceeds on a block-by-block basis rather than on a sample- 

by-sample basis as in the conventional LMS algorithm.

filter o u tu p t y(n)
in p u t s ig n a l x(n)

B l o c k  F I R  
F i l t e r

SelectU n block  inputB lo ck  input

B lock 
co rre la tio n , 

w e ig h t u p d a te
B lock  input

e rro r s ig n a l

Figure 2.1 Block-adaptive filter

10



The Fast Block LMS algorithm represents a precise frequency-domain implementation of 

the block LMS algorithm and its convergence properties are identical to those of the 

block LMS algorithm.

Fast Block LMS Algorithm is based on Overlap-Save Sectioning (Assuming Real- 
Valued Data).

Initialization:
w(0) = 2M by 1 zero vector (2.3.1)
Pi(0) = S; (2.3.2)
where the S; are small positive constants and i = 0,...,2M —1

Notations:
0 = M by 1 zero vector
FFT = fast Fourier transformation
IFFT = inverse fast Fourier transformation
a  = adaptation constant

Computation: For each new block of M  input samples, compute:

Filtering
U{k) = d i a g { F F T [ u { k M - M ) , . . . , u { k M +  M - \ ) f )  (2.3.3)

_ŷ (A;) = the last M elements of IFFT [U{k)W{k)'\ (2.3.4)

Error estimation
e(k) = d ( k ) - y { k )  (2.3.5)

E(k) = FFT (2.3.6)■ 0 

/ W .
Signal-power estimation

Pi(k) = yPi{k -  \) + (I -  y)\Ui(k)\^ , i = 0,1,....,2M - 1  (2.3.7)

D{k) = diag[P^~'(k),P~' (k),...,P2M-i '(^)] (2.3.8)

Filter coefficient adaptation

^(k)  = the first M  elements of IFFT[Z)(A:)C/"(^)E'(Æ^)] (2.3.9)

W{k + l) = W(k) + aFFT (2.3.10)

11



Choice of Block Size:

The block size L in relation to the length M of the adaptive filter. There are three possible 

choices that can be chosen, each with its own practical implications:

• L = M  which is optimum choice

• L < M  advantage of reduced processing delay and if  the block size smaller

than the filter length, the adaptive filtering algorithm computationally is still 

more efficient than the conventional LMS algorithm.

•  L>  M  increased redundant operations in the adaptive process, because the

estimation of the gradient vector now uses more information than the filter 

itself.

In the fast block LMS algorithm there are 5 FFT transforms, requiring approximately 

2M log(2M) real multiplications each, and also other 16M operations (when updating the 

parameters, computing the errors, element-wise multiplications of FFT transformed 

vectors), so the total is lOM log(2M) + 16M = lOM log(M) + 26M.

12



2.4 RLS algorithm

The Recursive Least Square (RLS) algorithm is used to minimize the cost function: 

f  = (2.4.1)
k = \

Where k—1 is the time at which the RLS algorithm starts and is a small positive 

constant very close to, but smaller than 1.

Unlike the LMS algorithm and its derivatives, the RLS algorithm directly considers the 

values of previous error estimations. In fact, it is impossible to use all previous values of 

the estimation error from the start o f the algorithm with the cost equation in real FIR 

implementation for the computation complexity. In practice, only a finite number of 

previous values are considered, this number corresponds to the order of the RLS FIR 

filter, N.

y„ (^) = i.n)x{k) , e„ ik) ^ d { k ) -  (k) (2.4.2)

d(n) = [d(l) ,d(2) . . .d(n)f  , e(n) = [e„(l),e„(2)...e„(n)f (2.4.3)

e(n) = d{n) — y(n)  (2.4.4)

(k) = (n )Àe(n)  = d^ k d  -  2 9 l  w + w"' w (2.4.5)
k = \

where 9x(n) = x (n ) A d ( n ) ,  0;i(n) = x{n) A(n)x^(n)

w(n) = 0 ^ " ’(n) 9x(n)  (2.4.6)

Find the inverse matrix using recursive form,

Ô a"* (n) = A ( « - ! )  + x{n)x^(n)  = r ' (Oa"‘ (« -1 )  -  k(n)x^  («) 0 a ”‘ (n - 1))

(2.4.7)

13



where = ^------- «(»)
1+ r V ( « ) (!)-'(«- 1)a:(«) («M «)

d i { n ) = k G x { n - \ )  + x{n)d{ri) (2.4.8)

so RLS algorithm filter weight update vector

w(n) = 0 ;i“’(«) ^a(«)

- o r '(n - 1) 0 A ( n - l ) -  k(n)x^  O L ' (n -1 )) 0 a (« -1 )  + k{n)d{n)

= w{n -1 )  + k{n) e„-i (n) (2.4.9)

where e«-i (n) = d ( n ) -  w^(n -  l)z(«)

Each iteration of the RLS algorithm requires 4N^2 multiplication operations (N is the 

filter length).

14



Chapter 3 

Double Talk Detection Algorithms

During double-talking periods, there exists the other end speaker’s adaptive signal v(«) 

which acts as a very large interference to the adaptive filter. If the adaptive filter 

continues to adjust its coefficients during double-talking periods, the adaptive filter will 

be greatly disturbed and will quickly diverge from its convergence state. Therefore, 

double-talk detectors are used in adaptive voice echo cancellers to detect the double- 

talking periods, and the adaptive filter coefficients adjustment is prohibited during these 

periods to prevent the echo canceller from being disturbed by the other end speaker’s 

signal. Double-talk detection plays a very important part in adaptive acoustic echo 

cancellation. The basic requirement for a double-talk detector is that it can detect double- 

talking quickly and accurately and it should also have the ability to distinguish the 

double-talking conditions from echo path variations and quickly track variations in the 

echo path.

3.1 The Geigel algorithm

A simple approach is to measure the power o f the received signal and compare it to the 

power o f the far-end signal; as shown in Figure 1.1, z{t) is the received signal, x(t) is 

the far end signal, this is the Geigel algorithm [4] and the decision variable is defined as

dn(.‘ ) = -------------------------   (3 .1.1)
max{|x(f) !,...,!%(r-M + l)}

15



If  d(j (0  is larger than some preset threshold, , it is treated that Double Talk is 

occurring, otherwise not. The Geigel detector is computationally simple and need little 

memory, but the choice of is not easy to obtain good performance.

3.2 Norm alized cross-correlation algorithm

As shown in Figure 1.1, the power of the received signal can be written as

R,{t)h, + crl(t) (3.2.1)

where (t) = E{x ,x f  } is the L x L covariance matrix o f the far-end signal, 

crj (0  is the power of the near-end signal, 

cx̂  {t) is the power of the received signal, 

hi is room acoustic response.

As y(t)  = h j x , , (3.2.2)

Then r^{t) = E{x,y{t)] = , (3.2.3)

Yielding,

h , = R : \ t y ^ ( t )  (3.2.4)

So,

. (3.2.5)

When there is no near-end signal is present, v(?) = 0, then z(t) = y{t)  and

cr"(0  - {t)r ( f) , with (0  = E{x,z{t)} (3.2.6)X \ xy'

The detection variable is d(t)  = i k M , (3.2.7)
(0 (0

16



where h is the estimated room acoustic response and (t) is the estimated cross­

correlation between the far-end signal and the received signal.

The nominator is the power of the received signal if no near-end signal is present. The 

denominator is the actual power of the received signal. Thus, if no near end signal is 

present, » 1, otherwise d{t)< \ . The Double Talk decision is formed as d{t) < T„, 

double talk present, otherwise not.

When there is no near-end talk, it is known that the decision variable d is =1 for v=0 and

d < I for V when there exist near-end talk. To calculate the deeision variable d , in

implementation, we use the following smoothed estimate:

x̂z (0  = ccTxz (f -1 )  + (1 -  a)X{t)z{t)  (3.2.8)

a]  (0  = acy] (r -1 )  + (1 -  a)z{t)-  (3.2.9)

where a  is a smoothing factor which lies in (0,1). In experiment, a. is set to be 0.9 and

L - \

(f) = 2 ^ ( ( -  k)z{t -  k ) , (3.2.10)
k=0

using a L length sliding window, the (t) can be estimated [5] [6][7][8].

17



3.3 Evaluation procedure of double detectors

comp

threshold

Figure 3.1 Voice activity detector

c o m p

Figure 3.2 DTD test procedure diagram

Th

ANDActivity
Detector

Activity
Detector

DTD
method

In the DTD methods discussed in the previous section, the role of threshold T is essential 

to the performance. However, there hasn’t been a systemic approach to select the value of 

T. In the paper [6] [9][10], an objective technique is proposed for evaluating doubletalk 

detectors in acoustic echo cancellers. It view DTD as a binary detection problem and use 

it in actual operating environments. The general characteristics o f a binary detection 

scheme are as follows.

18



Probability o f  False Alarm ( P^): Probability of declaring detection when a target is not 

present.

Probability o f  Detection { P^)'. Probability o f successful detection when a target is 

present.

Probability o f  Miss ( P^- l -P^y .  Probability o f detection failure when a target is present.

(3,3.1)
 ̂ N

a: * v /^ ; c  • V (3.3.2)

= 1 - •  V / «V (3.3.3)

19



Chapter 4 

Matlab Simulation & Analysis

4.1 Adaptive algorithms

Graphical User Interface

In this project, the command ‘guide’ is used in MATLAB v6.5 to make the Graphical 

User Interface (GUI) of the AEC Analysis and Design program to help study different 

AEG algorithms. The GUI of the program can be seen in Figure 4.1.

gui_algorithm

AEC Analysis and Design v1.0
A E C A I g o r i t h m

Stm t sim ulatingv o i c e  F i l e  , m B k w a v L e a k y  F a c t o r  0 1

<S I M S  r  F a s t  I M S

r  N L M S  r  R L S

F o r g e t t i n g  F a c t o rF i l t e r  L e n g t h  | 1 0 2 <  S t e p  S i z e  0 . 0 0 7 Statu s

T i m e ( s )  290.070 s

LVS. icna LWS. filUr 90trfrc*nîB

LVS: r r .* ir  K k #  » *rrof.V S  flltê?

'  LUS. a 1t* n w iio n  In cB2 5 3  3 .9  4LVS. tttot s e r a i
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Figure 4.1 AEC Analysis and Design program GUI 

In this program, user can choose:

1. AEC Algorithm

a. LMS algorithm

b. NLMS Algorithm
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c. Fast LMS Algorithm

2. Input signal file (wav format)

3. Filter Length

4. Step Size

5. Leaky Factor

6. Forgetting F actor

4.1.1 LMS

The Figure 4.2 shows the desired signal, adaptive output signal, estimation error and 

mean square error for the LMS algorithm with FIR Filter length of 1000, step size of

0.007.

filtaicr

21



-

"4*"— # !»■»*<> I #  '#1*'" 1̂#" f¥>i

Figure 4.2 LMS algorithm
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Figure 4.3 LMS echo signal attenuation 

The average attenuation for LMS FIR filter is —18.16dB.
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Figure 4.4 LMS FIR filter impulse response

4 .1 .2  N L M S

The Figure 4.5 shows the desired signal, filter output signal, estimation error and mean 

square error for the NLMS algorithm with FIR Filter length of 1000.
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Figure 4.5 NLMS algorithm

c t o s t r o c i  s s t g n m

Figure 4.6 NLMS echo signal attenuation

The average attenuation for NLMS FIR filter is -27.99dB
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Figure 4.7 NLMS FER filter impulse response 

4.1.3 Fast Block LMS

The Figure 4.8 shows input signal, the desired signal, filter estimation error and mean 

square error for the FLMS algorithm with FIR Filter length o f 1000.

I f - » |3 - L r t  s i o r k a l

d e s i r o c i  s i g n a l

if- ■ " i
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Figure 4.8 Fast Block LMS algorithm
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Figure 4,9 Fast Block LMS FIR filter impulse response
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Figure 4.10 Fast Block LMS FIR filter echo signal attenuation 

The average attenuation for NLMS FIR filter is -5.33dB.

4.1.4 RLS

The Figure 4.11 shows the desired signal, filter output signal, estimation error and mean 

square error for the RLS algorithm with FIR Filter length of 1000 and À = 1.

"i o o o o
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Figure 4.11 RLS algorithm

Figure 4.12 RLS FIR filter impulse response
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Figure 4.13 RLS echo signal attenuation 

The average attenuation for RLS algorithm is -33dB.

4.2 NLM S and DTD Algorithms

The NLMS & DTD Analysis and Design program is another GUI program made by 

‘guide’ to study NLMS and DTD performance, and shown in Figure 4.14.

V  gui_nlms_dtd_algorithm

 N L M S  &  D T D  A l g o r i l h m -----------------

C  N L M S  a  G i e g e l  D T D  a l g o r i t h m  

N L M S  & N C C  D T D  a E g o r i t h m

NLMS & DTD Analysis and Design v1.0

F i l t e r  L e n g t h  [ l 0 2 4  N C C  l o w  l im i t  f 0  9  c o v e r g e  h o l d ( s )  f  0 . 1 1 2 5 Start sim ulating

G e i g e l T h  f T  ^  N C C  h i g h  l i m i t  | l  0 5  D T  h o l d ( 5 )  1 0 . 0 3 7 5

riôô
NLMS & NCC: ‘ i r  gr-j gg ra l N Ll'3 & NCC: « s tir r jlM  i g r j i

IfH'i fH**"

N L I/5 S s e eNLMS I NCC: fa 'fe r :  &y««SCrj!

« s
NLMS £ NCC: filter r t i s o n i tNLMS i, NCC. r « r  e rd  s e r a i

*30 » »  g.))
NLMS £ NCC. ERIE

e 5 T3
NLVS & NCC: rr-gaSLffri se ^ a l

A E C  A n a ly s is  a n d  D e s ig n

Figure 4.14 NLMS & DTD Analysis and Design program GUI
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In this program, user can choose:

1. NLMS & DTD Algorithm

a. NLMS and Giegel DTD algorithm

b. NLMS and normalized cross-correlation (NCC) DTD algorithm

2. Filter Length

3. Geigel Threshold

4. Geigel Length

5. NCC low limit

6. NCC high limit

7. Converge hold time

8. Double Talk period hold time

4.2.1 The Geigel DTD algorithm

The Figure 4.15 shows the far end signal, far end echo signal, near end signal with DTD 

detection, received signal, error signal, filter impulse response, and ERLE for N L M S  &  

Geigel DTD algorithm.

O

O
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Figure 4.15 NLMS & Geigel DTD algorithm 

The Geigel DTD miss alarm rate is Pm=\- 21715 / 33368=35%. and its false alarm rate is

Pÿ= 15559/96009=16%.
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4.2.2 NLMS and normalized cross-correlation DTD algorithm

The Figure 4.16 shows the far end signal, far end echo signal, near end signal with DTD 

detection, received signal, error signal, filter impulse response, and ERLE for . NLMS 

and The normalized cross-correlation DTD algorithm.
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Figure 4.16 NLMS and the normalized cross-correlation DTD algorithm

The miss alarm rate is Pw =l-30118/ 33368=0.1=10% and the false alarm rate is Pf= 

2432/96009=2.5%.
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4.3 Matlab Simulation Summary

The ERLE (Echo Return Loss Enhancement) is used o assess the quality of an echo 

cancellation filter. ERLE, a function of the discrete-time index n, is defined as the ratio o f  

the instantaneous power of signal d(n) and the instantaneous power of the residual echo 

e(n):

ERLEin)  =

LMgorithm Average ERLE Multiplication (Filter Lengtb:L()

LMS -18.16 dB 2N+1

NLMS -27.99 dB 3N+1

Fast LMS -5.3 dB 10 Nlog2N+26N

RLS -33 dB 4N^2

Table 4.1 Algorithm summary 

The LMS algorithm belongs to the class of stochastic gradient algorithms and it’s the 

simplest one. The mean square error of LMS in Figure 4.2 shows that the LMS filter’s 

impulse response converges to the actual impulse response as the average value of the 

cost function decreases so that the filter could more accurately emulate the desired signal 

and more effectively cancel the echo signal. LMS is easily to be implemented and if  the 

step size is correctly selected, it is stable. In Figure 4.5, the error signal and mean square 

error o f the Normalized Least Mean Square (NLMS) algorithm is obviously smaller than 

those o f LMS and has faster convergence speed than that of the LMS algorithm. The 

NLMS differs from the standard LMS algorithm in the sense that it varies the step size 

according to the power level of the far-end signal. Thus the convergence speed is 

independent o f the input signal power. The average echo signal attenuation o f  NLMS
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algorithm is —27.99 dB and is much better than the LMS average echo signal attenuation 

—18.16 dB. Due to the presence of feedback in the NLMS algorithm, there exists a 

possibility o f it becoming unstable. The stability of the algorithm depends on the step 

seize parameter /5. For the NLMS algorithm, the step size |S should satisfy: 0</3<2 and the 

fastest convergence occurs when (3=1. Since NLMS algorithm is easier to be 

implemented and the computation is not very intensive, as well as good echo cancellation 

performance, it is widely used in real time adaptive echo cancellation.

Figure 4.8 shows the Fast LMS error estimation signal is larger, the average echo signal 

attenuation is on ly—5.3 dB, but its converge speed is faster and computation complexity 

is lighter. The RLS algorithm is more effective than all other algorithms. Figure 4.11 

shows its error estimation signal is also very small and its mean square error quickly 

approach to zero and its average echo signal attenuation is -33 dB, but each iteration of 

the RLS algorithm requires 4N^2 multiplication operations, it is more intensive 

computation so that in practice it is not popular to be implemented.

From Figure 4.11 and Figure 4.2, we can see that RLS algorithm has a much better 

convergence rate that the LMS algorithm, but it comes out with more computational 

complexity. In addition, echo cancellation generally requires large FIR order and thus the 

RLS algorithm is not suitable for real time implementation.

Figure 4.15 shows the simulation results of the NLMS FIR filter combined with The 

Geigel DTD algorithm. When the near-end speaker is silent, the FIR has a good 

performance to cancel the echo signal and keep the error signal in very low level. When 

both the near-end and the far-end are active - the Double Talk is occurring, the error 

signal not only contains the echo estimation error, but also the near-end signal.
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At this time, the Geigel DTD algorithm will detect the DT period and not update the filter 

coefficients to prevent the echo canceller from being disturbed by the near end speaker’s 

signal. From the miss alarm rate and false alarm rate, the Gegel algorithm is not very 

accurate to detect double talk.

For cross-correlation double talk detection algorithm, at the beginning, the decision

variable is simplified as d (/) =

where <Tz(0 -  CTz(t - 1) + (ï) -  (t -  L)

(Tz (t) = <Tz (f -1 )  + z(t) y(t) -  z(t -  L) y{t -  L)

When double talk is presented, Figure 5.1 shows the filter output error signal is not 

correct and Figure 5.2 displays the double talk detection is not accurate. Through 

introducing the smoothed estimate and adjusting the smooth factor that described in 3.2, 

the better results can be achieved.

error s i^ œ l

Figure 4.17 Error signal
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Figure 4.18 Double talk detection 

Figure 4.16 shows the simulation results of the NLMS FIR filter combined with the 

selected normalized cross-correlation DTD algorithm described in 3.2. In no Double Talk 

period, the filter echo cancellation keep the same as the Geigel DTD algorithm. Figure 

4.16 shows the normalized cross-correlation DTD has a better decision in distinguishing 

DT period. Though it causes more intensive computation, the miss alarm rate is 10% and 

the false alarm rate 2.5% is much better than Geigel algorithm.
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Chapter 5 

Adaptive Echo Canceller with DTD Structure

5.1 Adaptive Echo Canceller with DTD

Based on above adaptive algorithm analysis and DTD studies, the NLMS algorithm and 

normalized cross-correlation DTD algorithm are finally selected in designing the AEC as 

shown in Figure 6.1.

Far End

NLP

DTD

Echo
Path

Adaptive
Filter

A daptive E ch o  C an celler  with DTD

Figure 5.1 Adaptive echo canceller with DTD 

The adaptive filter is based on the normalized least mean square (NLMS) algorithm and 

in the NLMS coefficient update equation (2.2.2),

e{m)
w{m) = w(jn - 1 )  -(-//■

the variable jj is the step size, which is usually between (0, 2) to maintain the system 

stable.
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The length o f the adaptive filter depends on the reverberation time constant o f the room. 

The system is working with sample rate of 8KHZ and the predicted echo path is about 

128msec. Thus adaptive filter length will be set as:

Filter length = echo path * sample rate /1000 = 1024.

With the equations (3.2.7), (3.2.8) and (3.2.9) of the normalized cross-correlation DTD 

algorithm, the smoothing factor a is set to be 0.9 in the equations (3.2.8) and (3.2.9) 

from experiments. Thus the received decision variable is a good estimate o f the theory 

value only after the adaptive filter converge, as well as , cr, become good statistical

estimates. Hence the adaptive filter has to converge first to make this DTD algorithm 

effective. However, it won’t cause much problem; because the adaptive algorithm takes 

relative short time to converge and remain converge most o f the time. Initially, the DTD 

has to be switched off until the adaptive filter first time converges. To detect the 

convergence o f the adaptive filter, we still use the same decision variable d. We know 

that the decision variable d is about 1 only when the adaptive has converged and there is 

no double-talk. Hence, the convergence is claimed when the decision variable d 

approaches 1 and remaining approaching 1 for a certain time. The range o f approaching 1 

is set to be (0.9, 1.05) and the certain time is set to be 0.125 second in practice. In this 

project, the AEC takes about 25472 samples to converge and the convergence time is 

calculated as:

Initial Convergence Time= 25472/8000=3.2 sec.

Once the convergence is claimed, we switch on the DTD. After that DTD monitors the 

decision variable d  and it claims double-talk occurs when the decision variable d  is out o f 

the range (0.75,1.35). Once double talk is declared, the detection is held for a minimum
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period o f time. While the detection is held, the filter adaptation and non-linear processor 

is frozen. After the hold time, the DTD resumes monitoring again. The hold time is 

necessary due to the noisy behavior of the detection statistic and is set to 38 ms in 

implementation.

5.2 Non-linear processor

Since the residual echo is inevitable for the non-linearity o f the echo path, the non-linear 

processor (NLP) is used to degrade the residual echo to an inaudible level. Only during 

single talk, NLP is active and it is controlled by the DTD. The NLP in this project is set 

as a controlled attenuator, which attenuates the echo during single-talk by 20dB.
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5.3 Software Workflow

s ta r t

N o Yes
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End
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Adaptation o f filter 
coeffic ien ts

Inhibit adaptation

Adaptation of filter 
co effic ien ts

Initialize NLMS & DTD 
variables

load Far end & M easu red  
Signal

Figure 5.2 Adaptive echo canceller with DTD software workflow
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Chapter 6

ITU G.168 Test Cases

The International Telecommunications Union (ITU), as well as the European 

Telecommunication Standard Institute (ETSI) regulated the specifications o f telephone 

systems. The ITU-T recommendations: G.167 specifies the performance requirements o f 

acoustic echo control devices. G. 165 specifies the requirements o f network echo 

canceller. G.168 is an enhanced version and specifies the new requirements of digital 

network echo canceller.

6.1 Test 1: Steady state residual and residual echo level test

The G.168 Requirements for Test 1: In the Table 6.1 below, “L(Rin) Input”, are the 

various input levels. “L(Res), NLP Dis, Output Req.” are the requirements per G.168 

(2000). “Sample” column is for the users to record their test results.

L(Rin) L(Res), NLP Dis Result L(Res), NLP enab
Input Output Req. Output Req. (NLP Enabled)

-10 dBmO -37 dBmO -46.15 dBmO -65 dBmO -66.15 dBmO

Table 6.1 Test 1 results

error signal
Figure 6.1 Test I 
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6.2 Test 2A and 2B: Convergence test with NLP enabled and disabled

6.2.1 Test 2A: Convergence test with NLP enabled

The G.168 Requirements for Test 2A: the echo path delay is considered as time “zero”. 

For 50 ms beyond the echo path delay, the EC is required to do no better than the 

minimum ERL of 6 dB. Between 50 ms and 1 sec, the performance o f the EC must 

increase from the minimum of 6 dB to up to 20 dB. Beyond 1 sec, the EC performance is 

dependent on the input signal level and should be 55 dBmO or greater for input signal 

levels o f 0 dBmO and -10  dBmO.

Time (ms) L (Rin)-L (Ret) 
(NLP Enabled)

Result
(NLP Enabled)

0 6dB 48 dB
5 0ms-Is 6 dB~20 dB 50 dB
ls+ @-10dBm0 55dB 57 dB

Table 6.2 Test 2A results 

6.2.1 Test 2B: Convergence test with NLP disabled

The G.168 Requirements for Test 2B: the echo path delay is considered time “zero”. 

From 0 to 50 ms, the EC is not required to perform, therefore the 6 dB minimum 

requirement (equal to the minimum ERL). Between 50 ms to 1 sec, the EC is required to 

increase its performance to 20 dB of loss and maintain at least this requirement for up to 

10 sec. Beyond 10 sec, the requirement is dependent on signal level.

Time
"L:

L (Rin)-L (Ret) 
(NLP Disabled)

0 6dB 8.8 dB
50ms-Is 6 dB~20 dB 9 dB -2 0  dB
Is-lOs 20 dB 40 dB
10s+ (%-lOdBmO 27dB 42dB

Table 6.3 Test 2B results 
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6.3 Test 2C: Convergence test in the presence of background noise

The G.168 Requirements for Test 2C Convergence Test with NLP Enabled (part (a)).

The columns are interpreted as follows. “L(Rin) Input” is the input signal level. There are 

three separate files provided for levels -0  dBmO, -10 dBmO, and -20  dBmO. The “Noise 

Level L(Rin) —15” is the noise level mixed in along with the echo. Note that the 

maximum level o f the noise is -30 dBmO. “L(Ret) Requirement” is the appropriate 

requirement from G.168 (2000) specification.

L(Rin) Noise Level L(Ret) Result >
Input L(Rin)-15 Requirement ( N L P # # #
-10 dBmO -30 dBmO -30 dBmO -46 dBmO

Table 6.4 Test 2C(a) results

error signal
Figure 6.2 Test 2C(a)

The G.168 Requirements for Test 2C Steady State Test with NLP Enabled (part 

(b)). The columns are interpreted as follows. “L(Rin) Input” is the input signal level. The 

“Noise Level -55 dBmO” is the noise level mixed in along with the echo. “L(Ret) 

Requirement” is the appropriate requirement from G.168 (2000) specification.

Dffiput
Noise Level L(Ret)

Requirement ( N L P r n # m r  T

-10 dBmO -55 dBmO -38 dBmO -46 dBmO

Table 6.5 Test 2C(b) results
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error signal
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Figure 6.3 Test 2C(b)

The G.168 Requirements for Test 2C with NLP disabled (part (c)). The columns are 

interpreted as follows. The input requirements with NLP disabled are similar to those for 

NLP enabled. The corresponding requirements are given in the column “L(Ret) 

Requirement”.

L,(Rin)
input

Noise Level 
L(Rin)-15

L(Ret)
Requirement

Sample
(NLP Disabled)

-10 dBmO -30 dBmO -30 dBmO -37 dBmO

Table 6.6 Test 2C(c) results

error signal
Figure 6.4 Test 2C(c)
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6.4 Test 3: Performance under conditions of double talk

6.4.1 Test 3 A: Double talk test with low near end levels

The G.168 Requirements for Test 3 A: the requirement as given in the Table 6.7 below 

is such that the residual echo level should be equal to lower than the doubletalk level. The 

convergence occurs during the periods when the echo and doubletalk signals do not 

overlap.

L(Rin)
Input

Low Near-End 
L(Rin)-15

Level L(Res) 
Requirement

Result
(NLP Disabled)

-10 dBmO -25 dBmO -25 dBmO -34 dBmO

Table 6.7 Test 3A results

0 . 6

far end signal

X 1 o'*

O

- 0.8

1 O

fare end echoed signal
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-2000 

-2 5 0 0
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error signal
Figure 6.5 Test 3A

6.4.2 Test 3B: Double talk test with high near end levels

The G.168 Requirements for Test 3B: notice that the doubletalk level should be at 

least as great as the input level. The residual echo requirement is relaxed by 10 dB from 

the steady state requirements.

L ^ n )
Input

Doubletalk
N>JL(Rin)

Level L(Ret) 
Requirement ( N L P ^ I ^ b a i # ^ K

-10 dBmO -10 dBmO -27 dBmO -35 dBmO

Table 6.8 Test 3B results
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Figure 6.6 Test 3B
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6.5 Test 3C: Double talk test under simulated conversation

The G.168 Requirements for Test 3C: in the Table 6.9 below, note that the table 

continues, i.e. there are actually eight (8) columns. The doubletalk signal is applied 

simultaneously with the input signal. The resultant signal is divided into 5 periods (refer 

to G.168 (2000) spec) and denoted as ti, ti, t3, t4, and ts. The requirements for these 

different periods are given in the table below.

L(Rin)
Input

Doubletalk Level 
N Performance

t2(Req.) Result

-10 dBmO -10 dBmO no peaks>N meets req.

t3(Req.)
Performance

Result t4(Req.) Result

-65 dBmO -52 dBmO no peaks>N+6 dBmO meets req.

Table 6.9 Test 3C results

0 . 2;

i e1 oo X 1 o'*
far end signal

O

far end echoed signal
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near end signal
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error signal
Figure 6.7 Test 3C

6.6 Test 4: L eak rate  test

The G.168 Requirements for Test 4: the requirements for the residual echo level are 

relaxed by 10 dB from the requirements for steady state in Test 1 and 2.

L(Rin)
Input

L(Ret)
Requirement (NLP Disabled)

-10 dBmO -27 dBmO -25 dBmO

Table 6.10 Test 4 results

far end signal
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error signal

Figure 6.8 Test 4 

6.7 Test 5: Infinite return loss convergence test

The G.168 Requirements for Test 5: the requirements are such that any spurious 

response vanishes to less than 20 dB below the input level by 1 sec after the echo path is 

cut o ff and to less than 27 or 25 dB below the input level by 10 sec after the echo path is 

cut off.

X(Rln) L(Rin) -  L(Res) Sample "
Input Requirement (NLP Disabled)

-10 dBmO >20 dB after 1 sec 
>27 dB after 10 sec

meet req.

Table 6.11 Test 5 results

far end signal
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received signal
Figure 6.9 Test 5

6.8 Test 6: Non-divergence on narrow-band signals

The G.168 Requirements for Test 6: the requirements for this test for the residual 

echo are relaxed by 10 dB versus the steady state residual echo requirements for Tests 1 

and 2.

L(Ret)
Final Requirement (NLP DisabI^^^^^V:‘'f^ S

-10 dBmO -27 dBmO -32 dBmO

Table 6.12 Test 6 results

far end signal
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Figure 6.10 Test 6

6.9 Test 7: Stability test

The G.168 Requirements for Test 7; note that the requirements for this test are 

actually more stringent than that for steady state.

L(Rin)
Input

L(Res), NLP dis 
Output Requirement

Result 
(NLP I

n a i n

-10 dBmO (1 kHz) -38 dBmO -48 dBmO

Table 6.13 Test 7 results

far end signal

error signal
Figure 6.11 Test 7
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6.10 Test 8: Non-convergence, in-band signaling, and continuity check tones

The G.168 Requirements for Test 8: in this test, the signal applied at near end signal must 

remain uncancelled, while the echo of far end signal should be cancelled. The variation at 

filter output as compared to input should be within ± 2 dB.

Far end/near end Input Variation
Requirement

Result ? C -  ̂
(NLP Enabled)

2400/2400 ±2 dB meet req.

Table 6.14 Test 8 results

far end signal

K
received signal
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Figure 6.12 Test 8

6.11 Summary

Test 1: Steady state residual and residual echo level test

L(Rin)
Input

L(Res), NLP Dis 
Output Req.

Result L(Res), NLP enab 
Output Req. (NLP Enabled)

-10 dBmO -37 dBmO -46.15 dBmO -65 dBmO -66.15 dBmO

Test 2A and 2B: Convergence test with NLP enabled and disabled 

Test 2 A

Time (ms) L (Rin)-L (Ret) 
(NLP Enabled)

Result
(NLP Enabled)

0 6dB 48 dB
50ms-Is 6 dB -20dB 50 dB
ls+ (%-lOdBmO 55dB 57 dB

Test 2B

# 1  : "  '

L (Rin)-L (Ret) 
(NLP Disabled)

Result

0 6dB 8.8 dB
50ms-Is 6 dB~20 dB 9 dB -2 0  dB
Is-lOs 20 dB 40 dB
10s+ @-10dBm0 27dB 42dB
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Test 2C; Convergence test in the presence o f background noise

Test 2C(a)

L(Rin)
Input

Noise Level 
L(Rin)-15

L(Ret)
Requirement

Result , \  , 5, 
(NLP Enabled)

-10 dBmO -30 dBmO -30 dBmO -46 dBmO

Test 2C(b)

L(Rin)
Input

Noise Level L(Ret)
Requirement

Result
(NLP Enabled)

-10 dBmO -55 dBmO -38 dBmO -46 dBmO

Test 2C(c)

L(Rin)
Input

Noise Level 
L(Rin)-15

L(Ret)
Requirement

Sample
(NLP Disabled)

-10 dBmO -30 dBmO -30 dBmO -37 dBmO

Test 3: Performance under conditions of double talk 

Test 3 A

L(Rin)
Input

Low Near-End 
L(Rin)-15

Level L(Res) 
Requirement

Result
(NLP Disabled)

-10 dBmO -25 dBmO -25 dBmO -34 dBmO

Test 3B

L(Rin)
Input

Doubletalk
N>L(Rin)

Level L(Ret) 
Requirement

Result
(NLP Disabled)

-10 dBmO -10 dBmO -27 dBmO -35 dBmO

Test 3C

L(Rin)
Inbut

Doubletalk Level 
N Performance

t2(Req.) Result

-10 dBmO -10 dBmO no peaks>N meets req.

t3(Req.)
Performance

Result t4(Req.) Result

-65 dBmO -52 dBmO no peaks>N-»-6 dBmO meets req.
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Test 4: Leak rate test

L(Rin)
Input

L(Ret)
Requirement (NLP Disabled)

-10 dBmO -27 dBmO -25 dBmO

Test 5: Infinite return loss convergence test

L(Rin)
Input

L(Rin) -  L(Res)
Requirement (NLP Disabled)

Sample

-10 dBmO >20 dB after 1 sec 
>27 dB after 10 sec

meet req.

Test 6: Non-divergence on narrow-band signals

L (m n) L(Ret)
Final Requirement

Result
(NLP Disabled)

-10 dBmO -27 dBmO -32 dBmO

Test 7: Stability test

L(Rin)
Input

L(Res), NLP dis 
Output Requirement

Result
(NLP Disabled)

-10 dBmO (1 kHz) -38 dBmO -48 dBmO

Test 8: Non-convergence, in-band signaling, and continuity check tones

Far end/near end Input Variation
Requirement

Result
(NLP Enabled)

2400/2400 ±2dB meet req.

Table 6.15 Test result summary
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Chapter 7

Real time simulation

7.1 TI TMS320C6711 DSK

The TI TMS320 floating-point family includes C3x, C4x, and C67x. Each generation o f 

the TMS320 series has a unique central processing unit (CPU) with a variety o f memory 

and peripheral configurations. In this project, the TMS320C6711 DSK is chosen to the 

real-time AEG simulations.

The TI TMS320C6711 DSK is a digital signal processing development kit used to 

prototype DSP applications targeted for the C6711 family o f processors. It has a 3.5-mm 

audio IN jack and 3.5-mm audio OUT jack, with ADC and DAC executed onboard. The 

AD535 codec works at a fixed sample rate o f 8kHz. The DSK also includes 16MB o f 

synchronous dynamic RAM and 128 KB flash ROM and the 150-MHz C6711DSP is 

capable o f  executing 900 million floating-point operations per second (MFLOPS).

The DSK board is connected to a PC via a parallel port. The program files can be created 

in TI code composer studio on the PC, and then loaded onto the DSK [16].

7.2 C6711 DSK Simulation using Code Composer Studio

7.2.1 Simulation Procedure Introduction

CCS IDE firom TI is easy to use development environment allows DSP designers o f all 

experience levels to move quickly through each phase o f the application development 

process including design, code and build, debug, analyze and optimize. The fully 

integrated development environment includes, real-time analysis capabilities, easy to use
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debugger, C/C++ Compiler, Assembler, linker, editor, visual project manager, simulators, 

XDS560 and XDS510 emulation drivers and DSP/BIOS support.

MIC

S p e a k e r

TI TMS320C6711 DSK PC and n  Code 
Composer Studio

Figure 7.1 Adaptive echo cancellation implementation block diagram 

The real-time acoustic echo cancellation system has been implemented as shown in figure 

8.1. A microphone is used to input a voice signal from the user, this is then fed into the 

Texas Instrument TMS320C6711 development board. Based on human voice frequency 

range and adaptive echo cancellation system performance consideration, the sampling 

rate 8 KHz is used in the AD535 codec. The echo cancellation system use the normalized 

LMS algorithm and the normalized cross-correlation DTD algorithm detailed in previous 

sections. At each new sample time the input is sampled and input to memory and these 

memory audio data can be output to a file. In this project, there are two audio data files 

that contain these samples are loaded into memory as far end signal and received signal, 

and the CCS development workbench window is show in the Figure 8.2. The step size 

value for this iteration of the NLMS algorithm is then calculated by inverting the dot 

product o f the input vector and a small constant should be included in the denominator to 

avoid zero divides. The output of the adaptive filter is then calculated by the dot product 

o f the input vector and the current filter tap weight vector. This output is then subtracted 

firom the desired signal to determine the estimation error value, e(n). This error value, the 

step size value and the current FIR tap weight vector are then input to the NLMS 

a lg o r ith m  to calculate the filters tap weight to be used in the next iteration. If  the filter is
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claimed to converge, the DTD detector will start monitor if  there is a double talk

situation. When double talk happens, the DTD detector inhibits the filter adaptation for a 

hold time to avoid divergence of the adaptive algorithm. Finally the AEC output error 

signal data is streamed out to a specified file using File I/O function provided by CCS to 

do further analysis [13][16][17].

' Code Composer

FBe Edit Ve.v Project Debug Profiler GEL Opton Tools P6C DSP,•'BIOS Window Help

a Gâ: B
j c l s lu d i e s .p j t  " ^ j P e b u g

^  Af Û ^ S 3 [ | ] [ 3 S i i

t î̂ : â  Files
n u CJ GEL files

I -  Q  Projects

-11: ^  dstu d ie& p jt
ID C6xdsk.cmd
Cl DSP/BIOS Cor

■ LJ Generated RIe;
■ -  CJ Include

[il c6x.h
H  c6xdsk.h
JO cSxdskinit.l
J ]  cSxinterrup
jg  fücer.h

- Cl Libraries
ii] rTs6701.lb

- Cl Source
i ll  c6xdskln)t.(

< >

'sidJ
INmAUZING CPU

, M a at?
# a a

n im s d td  re su lC c

► I___
# i n c l u d e  < m ath .h >  
# i n c l u d ©  < s t d i o . h >  
^ i n c l u d e  ( s t d l i b . h )  
# i n c l u d e  " f i l t e r . h '

/ /  D o f 1 n & s  
# d e f i n e  LOOP.LENGTH 2000 
# d e f i n e  F I LTER_LEN(?rH 100 
# d e f i n e  STEP_SI2E 5 e - 5  
# d e f x n e  SCALE SOOO.O 
# d e f i n e  GAIN 15

c i ' i r e
F l o a t  i n p u t ,  e c h o e d ,  a f _ o u t p u t ,  e r r o r _ $ i g n a l  
F l o a t  in p u t_ s ig n a l [L O O P _ L E N G T H ] ;
F l o a t  e c h o e d _ s i g a a l  [L00P_LEINGTH1 ; 
f l o a t  e r r o r _ s ig n o l _ a r r a y [ L O O P _ L E N G T H ] ; 

i itd_array[LOOP_LENGTH] ;

f l o a t  i n p u t_ v e c to r [ F IL T E R _ L E N ( n H ]  : 
f l o a t  in p u t_ v e c to r _ c { F IL T E R _ L E N G T H ] ; 
f l o a t  f i l te r [F IL T E R _ L E N G T H ]  
f l o a t  f i l t e r _ h o ld ( F I L T E R _ L E N G T H ]  
f l o a t  rxy[FILTER_LENGTH];

OOODIEIC 0 2 2 6 0 9 4 0  | |
0000 1 E2 0  053C92E6 
00001 E24 0 0 0 0 6 0 0 0  
00001E 26  a b o r t :
00001E 28  0 0 0 0 0 0 0 0  
00001E2C 0 0 0 0 0 1 9 0  
00001E 30  0 0 0 0 6 0 0 0  
000G1E34 0 0 0 0 0 0 0 0  
Ü0001E3B 0 0 0 0 0 0 0 0

f l o a t  s t e p _ s i z 0  -  CTEP_SI2E;  
f l o a t  n s t e p _ s i z e ;  
s h o r t  o u t p u t ;

D e c l a r e  v e r i ' ^ k l e s  f o r  do uLl  
f l o a t  t m p ,  s d - O . D .  a k 2 - 0 . 0 ,  d v -Q .O ;

Ln I , c o l lFor Help, press Fi

Figure 7.2 CCS Workbech window

7.2.2 C6711 DSK Simulation Results

Using the CCS graphing function provided by CSS integration development 

environment, the far end signal, received signal and the error signal o f the echo 

cancellation system can be viewed and shown in the following figures. As can be seen 

that the real time adaptive echo cancellation system is successfully developed with the 

NLMS and the normalized cross-correlation DTD algorithm.
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(1) Steady state residual and residual echo level test

0 . 8 5 2 -

- 0 . 8 5 2 -

222

(999, -0.246875)
1 3 3 3  1 5 S 6  1 7 7 8  1 9 9 9

Lin Auto Scale
far end signal

0 . 8 3 6 -

- 0 . 8 3 6 -

0 222 444 €67 689 1111 1333 1556 1778 1999

(1319 ,0 .0148125) Time Lin Auto Scale

received signal

GGraphical Display
0.0121

0 . 0 0 7 2 4

0.00241

- 0 . 0 0 2 4 1 -

- 0 . 0 0 7 2 4 ;

- 0 .0121 :

0  2 2 2  4 4 4  6 6 7  8 8 9  1 1 1 1  1 3 3 3  1 5 5 6  1 7 7 8  1 9 9 9

(999, -0.00401494)_____________________ Time______________ Lin Auto Scale_____________

error signal

Figure 7.3 Steady state residual and residual echo level test

iB&iPut O utpu t Req. Result
-10 dBmO -37 dBmO | -44 dBmO -46 dBmO

Table 7.1 Steady state residual and residual echo level test result
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(2) Convergence test in the presence o f background noise

aaaa

0 . 8 4 8 -

0 . 8 4 8 -

200

(999, -0.210475)
1 4 0 0  1 6 0 0  1 8 0 0  1 9 9 9

Lin Auto Scale
far end signal

1 . 6 9

1 . 02 -

0 . 3 3 9

- 0 . 3 3 9

- 1.02 

- 1 . 6 9 . _L
0 200 

(999, -Û.372184)
4 0 0 6 0 0 B O O 1000 1200 

Time

1 4 0 0  1 6 0 0  1 8 0 0  1 9 9 9

Lin Auto Scale

received signal

Graphical Display
0 . 0 1 1 9

0 . 0 0 5 9 7

0 . 0 0 5 9 7

0 . 0 1 1 9

0  2 0 0  4 0 0  6 0 0  B O O  1 0 0 0  1 2 0 0  1 4 0 0  1 6 0 0  1 8 0 0  1 9 9 9

(999, -0.00347283)_______________________________Time______________ Lin Auto Scale

error signal
Figure 7.4 Convergence test in the presence of background noise

l itp u t Noise Output Req. Matlab Result Resiilt 7
-10 dBmO -30 dBmO -30 dBmO -46 dBmO -44 dBmO

Table 7.2 Convergence test in the presence of background noise test results
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(3) Double talk test with low near end levels

S5 Graphical Display
1 . 7 0  

0 . 8 5 2 -

0-
- 0 . 8 5 2 -  

- 1 . 7 0 j

0  3 3 3  6 6 7
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I- iiniiXj

Iff
1 0 0 0  1 3 3 3  1 6 6 7  1 9 9 9
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far end signal

E Graphical Display
0 . 9 1 5

0 . 4 5 &

- 0 . 4 5 8 -

- 0 . 9 1

(999, 0)
3 3 3  6 6 7  1 0 0 0  1 3 3 3  1 6 6 7  1 9 9 9

Time Lin Auto Scale I

near signal

0 . 8 3 6 -

0 . 8 3 6 -

Lin Auto Scale(999, -0.432443) jTime

received signal
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Graphical Display
1.00

0.500-

-0.500-

- 1.00.
333 667 1000 1333
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1667 1999
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m a m

0 333 667

(999,-0 .00401494) iTlme
1000 1333 1667 1999

Lin Auto Scale

error signal

Figure 7.5 Double talk test with low near end levels

Input Near end Output Req. Matlab Result
-10 dBmO -25 dBmO -25 dBmO -34dBmO -33dBmO

Table 7.3 Double talk test with low near end levels test results

(4) Double talk test with high near end levels

eGraphical Display

0.568-

- 0 . 5 6 8 -

-1.70:

Lin Auto Scale(999, -0.246875)

far end signal
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G raphical Display
1 . 6 3

0 . 8 1

0-

- 0 . 8 1 5 -

- 1 . 6 3 .

a .

°  6 6 7  1 0 0 0  1 3 3 3  1 6 6 7  1 9 9 9

Ç 9 9 9 , 0 )______________ T im e    u n  A u to  S c a le  ;

near end signal

l — M
9 . 5 5 7

0 . 5 5 - 7
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i s a æ
1.63

0.542

-0.542

-1.63
333 667

(999, -0.00401494) Time
1000 1333 1667 1999

Lin Auto Scale
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Figure 7.6 Double talk test with high near end levels

Input Near end Output Req. Matlab Result mÊÊBÊÊi
-10 dBmO -10 dBmO -27 dBmO -35 dBmO ■30 dBmO 1

Table 7.4 Double talk test with high near end levels test results
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(5) Non-divergence on narrow-band signals

OBixi
0562-

-0.523

(999, 0)
1250 1500
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1750 1999

far end signal

0 , 5 2 9

0 . 2 6 5
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received signal

Graphical Display
0.00427

0.00213-

0.0021 >

00427
1000 1250 1500 1750 1999

Lin Auto Scale(999, 0)

error signal

Figure 7.7 Non-divergence on narrow-band signals

Input Output Req. Matlab Result R®SU Ï
-10 dBmO -27 dBmO -32 dBmO -34 dBmO

Table 7.5 Non-divergence on narrow-band signals test result
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(6) Stability test
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Figure 7.8 Stability test

Input Output Req. MaUab R a O m  ,  "

-20 dBmO -47 dBmO -48 dBmO 
@-\Q  dBmO input

-58 dBmO

Table 7.6 Stability test results
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(7) Non-convergence, in-band signaling, and continuity check tones
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Figure 7.9 Non-convergence, in-band signaling, and continuity check tones

Far end/near end Input Variation
Requirement

Result
(NLP E nable#^  ^

2400/2400 Hz ±2dB meet req.

Table 7.7 Non-convergence, in-band signaling, and continuity check tones test results

7.3 Real time simulation summary

Test 1: Steady state residual and residual echo level test

Input Output Req. Result Matlab Result
-10 dBmO -37 dBmO -44 dBmO -46 dBmO

Test 2C: Convergence test in the presence o f background noise

Input Noise Output Req. Matlab Result Result
j -10 dBmO -30 dBmO -30 dBmO -46 dBmO -44 dBmO

Test 3: Performance under conditions of double talk 

Test 3 A

Input Near end Output Req. Matlab Result Result
-10 dBmO -25 dBmO -25 dBmO -34dBmO -33dBmO

Test 3B

Input Near end Output Req. Matlab Result Result
-10 dBmO -10 dBmO -27 dBmO -35 dBmO -30 dBmO
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Test 6: Non-divergence on narrow-band signals

Input Output Req. Matlab Result
-10 dBmO -27 dBmO -32 dBmO -34 dBmO

Test 7: Stability test

Input Output Req. Matlab Result Result
-20 dBmO -47 dBmO -48 dBmO 

@ -10 dBmO input
-58 dBmO

Test 8; Non-convergence, in-band signaling, and continuity check tones

end/near end Input Variation Result
Requirement (NLP Enabled)

2400/2400 ±2dB meet req.

Table 7.8 Real time simulation summary
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Chapter 8 

Conclusion

In this project, four adaptive algorithm LMS, NLMS, Fast Block LMS and RLS are 

investigated and simulated using AEC Analysis and Design program in Matlab for echo 

cancellation. Comparing these algorithms, NLMS is finally selected as the best algorithm 

for the real time echo cancellation systems. In double talk detection, the Geigel algorithm 

and the normalized cross-correlation DTD algorithm are separately integrated with 

NLMS FIR filter against double talk and are studied in NLMS & DTD Analysis and 

Design program in Matlab. The normalized cross-correlation DTD algorithm is selected 

for double talk detection, since the results are much better. Through testing with ITU 

G.168 standard, the performance of the adaptive echo cancellation system conforms with 

the standard. In addition, the real time adaptive echo cancellation simulation by TI 

TMS320C6711 also proves the selected algorithms and their settings are correct.
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Chapter 9 

Further Work

There are some possibilities for further development in this project, some o f these are 

as follows.

• The double talk detection algorithm still can be done further studies in the 

simplified smoothing estimation algorithm area to improve the alarm accuracy 

and reduce the computation complexity.

• The real time echo cancellation system is successfully developed using the TI 

TMS320C6711 DSK. However, since this system is code in C language, if  it is in 

assembler, the system performance will be much improved and If the TI C5000 

DSP using Fixed-Point Digital Signal Processor, the same performance can be 

achieved with the lower cost.

• Instead o f the DSK board, the adaptive echo cancellation system can use the 

TMS320C6711 digital signal processor in a custom designed circuit by which will 

also improve the whole system performance.
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APPENDIX A: MATLAB CODE

Im sJ'unction.m
function [error_signal,desired_signal,filter_output,filter_current,nise,db]

=lnis_function(input_signal,filter_size,step_size,impulse)

desired_signal = conv(input_signal, impulse);

% initialise adaptive filter 
filter current = zeros(filter_size,l); 
mput_vector = zeros(filter_size, 1); 
iterations=length(input_signal);

q = waitbar(0,'LMS Filtering...'); 
for i= l iterations

input_vector( 1 )=input_signal(i) ;
filter_output(i)=dot(filter_current, input vector);
error= desired_signal(i)-filter_output(i) ;
filter current = filter_current + 2*step size*error*mput_vector;

for j=filter_size;-1:2
input_vector(j)=input_vector(j-l);

end

error_signal(i)=error;
cost(i)=error*error;

waitbar( i/iterations, q); 
end
close(q);

ql = waitbar{0,'LMS Caculating MSB...'); 
for i= 1 : iter ations-100

mse(i)=mean(cost(i:i+100)); 
waitbar( i/iterations, ql); 

end
close(ql);

q2 = waitbar(0,’LMS Caculating attenuation in dB...'); 
for i=l:iterations-2500

db(i)=-20*logl0(mean(abs(desired_signal(i:i+2500)))'./mean(abs(error_8ignal(i:i+2500)))); 
waitbar( i/iterations, q2); 

end
close(q2);
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nlms_Junction.m
function [errcr_signal,desired_signal,filter_output,filter_current,inse,db]

=nlms_function(input_signal,filter_size,mq)ulse)

iterations = length(inputsignal);
desired signal = conv(input_signal, impulse);

% initialise adaptive filter 
filtercurrent = zeros(filter_size,l); 
inputvector = zeros(filter_size, 1); 
q = waitbar(0,'Filtering...');

for i=l; iterations

input_vector( 1 )=input_signal(i);
fIlter_output(i)=dot(filter_current, input vector);
error= desiredsignal(i)-fllteroutput(i) ;
step_size=1 /(dot(input_vector, input_vector)+0.00001) ;
filtercurrent = filtercurrent + step_size*error*input_vector;
for j=filter_size:-1:2

input_vector(j )=input_vector(j -1 ) ; 
end
error_signal( i)-error; 
cost(i)=error*error; 
ss(i)=step_size; 
waitbar( i/iterations, q ); 

end
close(q);

ql = waitbar(0,'Caculating MSE...'); 
for i=l:iterations-100 

mse(i)=mean(cost(i:i+100)); 
waitbar( i/iterations, ql); 

end
close(ql);

q2 = waitbar(0,'Caculating attenuation in dB...'); 
for i= l :iterations-2500

db(i)=-20*logl0(mean(abs(desired_signal(i;i+2500)))'./mean{abs(error_signal(i:i+2500)))); 
waitbar( i/iterations, q2); 

end
close(q2);
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flm s_function.m
fiinction[en-or_signal,desired_signal, filter output,mter_coeff,mse,db]=

flnis_function(input_signal,filter_si2e,step_size,estimated_power,m]pulse,lambda)

% initialization
FILTER COEFF = zeros(2*filter_size,l); 
inputlength = length(input_signal); 
desired_signal = conv(input_signal, impulse);

block_length = floor(input_length/filter_size)*filter_size;

inputsignal = input_signal(l;block_length); 
desired_signal = desired_signal( 1 :block_length);

inputsignal = input_signal(:); 
desired signal = desired_signal(;);

errorsignal = desiredsignal;

Blocks = block length/filter size;

q = waitbar(0,'Fast LMS Filtering...');
% loop, FLMS 
for k=l;Blocks-l

INPUTSIGNAL = fft([input_signal{(k-l)*filter_size+l:(k+l)’'‘filter_size)],2*filter_size);

filter_output = ifft(INPUT_SIGNAL.*FILTER_COEFF); 
filteroutput = filter_output(filter_size+l:2*filter_size,l);

desired_vec = desired_signal(k*filter_size+l :(k+l)*filter_size);

error_signal(k*filter_size+l ;(k+l)*filter_size,l) = desired_vec-filter_output;

ERRORVEC = fft([zeros(filter_size ,l);error_sign a l(k *filter_size+ l:(k + l)* filter_size)],2 '''filter_size);  

estim ated _pow er= lam bd a*estim ated_p ow er+(l-lam bd a)*ab s(IN P U T _SIG N A L ),^2;

DESIRED VEC = l./{l+estimated_power);

phivec = ifft(DESIRED_VEC.*conj(INPUT_SIGNAL).*ERROR_VEC,2*filter_size); 
phivec = phivec(l:filter_size);

FILTERCOEFF = FILTER_COEFF+step_size*fft([phivec;zeros(filter_size, 1 )],2'*filter_size); 

error signal = real(error signal(:)); 

filtercoeff = ifft(FILTER_COEFF);
filtercoeff = real(filter_coeff(l:length(FILTER_COEFF)/2)); 
filter_output=real(filter_output(;));

waitbar(k/(Blocks-l), q); 
end
close(q);
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cost=error_signal.*error_signal;
q l =  waitbar(0,'Fast LMS Caculating MSE...');
iterations=length(cost);
for 1= 1 iterations-100

mse(i)=mean(cost(i;i+100)); 
waitbar( i/iterations, ql); 

end
close(ql);

q2 = waitbar(0,'Fast LMS Caculating attenuation in dB...');
iterations=length(desired_signal);
for i= l :iterations-2500

db(i)=-20*logl0(mean(abs(desired_signal(i:i-i-2500)))'./mean(abs(error_signal(i;i+2500)))); 
waitbar( i/iterations, q2); 

end
close(q2);
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risJ'unction.m
fimction[error_signal,desired_sigiial,filter_output,fîIter_current,mse,db] 

=rls_function(input_signal,fi]ter_size,lambda,inçulse)

desired signal = conv(input_signal, impulse); 
iterations=length(input_signal) ;

% initialise adaptive filter 
filter__prev — zeros(filter_size, 1); 
input_vector = zeros(filter_size, 1); 
psi_inv_prev = eye(fîlter_size); 
intermediate= zeros(filter_size, 1); 
gain = zeros(filter_size, 1);

q = waitbar(0,'RLS Filtering...'); 
for i=l: iterations

input vector( 1 )=input_signal(i);
intermediate = psi_inv_prev*input_vector;
gain = (l/(lambda+dot(input_vector, inteimediate)))*intermediate;
fïlter_output(i)=dot(filter_prev, input vector);
error= desired_signal{i)-filter_output(i);
filter_prev = fîlter_prev + gain*error;
psi_inv_prev = (l/lambda)*(psi_inv_prev - gain*((input_vector')*psi_mv_prev));

for j=fîlter_size;-l -.2
input_vector(j )=input_vector(j -1 ) ; 

end
error_signal(i)=error;
cost(i)=error*error;

waitbar( i/iterations, q);

end
close(q);

ql = waitbar(0,'RLS Caculating MSE...'); 
for i= 1 : iterations -100

mse(i)=mean(cost(i:i+100)); 
waitbar( ^iterations, ql); 

end
close(ql);

q2 = waitbar(0,'RLS Caculating attenuation in dB...'); 
for i= l :iterations-2500 

db(i)=-20*logl0(mean(abs(desired_signal(i:i+25G0)))'./mean(abs(error_signal(i:i+2500)))); 
waitbar( ^iterations, q2); 

end
close(q2);

db_avg=mean(db)

end
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nlmsGeigel_function.m
function [e,xF,xE,v,y,s,th,db,holdRec]=nlmsGeigel_flmction(L,TG,geigLen,hold_time)

farendThres = 3.5e6;

hstart=0;
thold=0;
isHold=0;
stillHold=0;

% Load data files.
xF = readData{ 'Far.pcm' );
xE = readData( 'FarEcho.pcm' );
V  =  readData( 'Near.pcm' ) ;  

y = xE + v; 
xF=xF( 1 Oe+4 : end) ; 
y=y(10e+4:end);

% Initialize adaptive filter
e = zeros( size(xF) ); % Error signal.
s = zeros( size(xF) ); % Estimated echo signal.
state = eps*ones(L,l);
th = state;
thO = state;
dG = zeros( size(xF) );

% show if  last sample was detected as DT. 
wasDT = 0 ; 
noDTcounter = 0;

loopLen = length(xF); 
holdRec = zeros{ size(xF) );

q = waitbar(0,'NLMS & Giegel DTD Filtering...'); 
for k=l:loopLen,

% Update the filter state. 
ifk>L,

state(l:end) = flipud(xF(k-L+l:k)); 
end
s(k) = state' * thO; % Estimated echo value.
e(k) = y(k) - s(k); % Prediction error.

if(k -20000)> L  
% Geigel DTD.
dG(k) = abs( y(k) )/ max( abs(xF(k-geigLen:k) ) ); 

end

ifdG (k)>T G
hstart=l;
stillHold=l;

else
stillHold=0;

end
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if  hstart= l 
thold=thold+l; 
if  thold < hold time 

isHold =1;

ifstillHold
thold=0;
end

else
hstart=0;
thold=0;
isHold=0;
stillHold=0;

end
end

if  isHold ~=1 
% Update the step-size parameter using NLMS. 
norrnState = state'*state; 
mu = l/(  normState + le3 ); 

end

if( normState > farendThres & isHold ~=1) 
th = th + mu * e(k) * state; 

end

if isHold 
th = thO; 

else 
thO = th; 

end

holdRec(k)=isHold;

waitbar( k/loopLen, q ); 
end
close(q);

ql = waitbar(0,'NMLS & Giegel DTE calculating REL...'); 
for i= l :loopLen-2500

db(i)=-20*logl0(mean(abs(y(i;i+2500)))'./mean(abs(e(i:i+2500)))); 
waitbar( i/(loopLen-2500), ql ); 

end
close(ql);

end
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nlm sNCC^function. m
function [e,xF,xE,v,y,s,th,db,holdRec]=nlmsNCC_function(L,dt_low,dt high,cv hold,dt hold) 
L = 1024; ~  -
farendThres = 3.5e6;

% Load data files.
xF = readData( 'Far.pcm' );
xE = readData( 'FarEcho.pcm' );
V  = readData( 'Near.pcm' );

y = xE+v;

% Initialize adaptive filter
e = zeros( size(xF) ); % Error signal.
s = zeros( size(xF) ); % Estimated echo signal.
state = eps*ones(L, 1);
th = state;
thO = state;
dG = zeros( size(xF) );

% show if  last sample was detected as DT. 
wasDT = 0 ; 
noDTcounter = 0;

loopLen = length(xF);
dtm=zeros(size(xF));
rxy=zeros(L,l);
isD T -0;
dv=l;
converge Counter=zeros( 1000,1) ;
convergeFlag=0;
rxy=0;
i=0;
startFlag=0;
isCoverge=0;
wasCoverge=0;
hstart=0;
thold=0;
isHold=0;
holdRec = zeros( size(xF) ); 
stillHold=0;

q = waitbar(0,'NMLS & NCC: Filtering...'); 
for k=l : loopLen,

% Update the filter state. 
ifk>L,

state(l:end) = flipud(xF(k-L+l:k)); 
end

s(k) = state' * thO; % Estimated echo value.
e(k) = y(k) - s(k); % Prediction error.

if  k>2*L & r x y = 0  
for m=0:L-l,
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rxy=rxy+flipud(xF(k-m-L+l:k-m)).*y(k);
end

ss=rxy'*th;

end

ifk > 2 * L

rxy=0.9*rxy+0.1 *state(l :end).*y(k); 
ss=0.9*ss+0.1 *y(k)*y(k);

ak2=rxy'*th;
akl=ss;

dv=ak2/akl;

dNCR(k)=dv;

if convergeFlag ~=1

if  dv > dt low & dv < dt high 
isCoverge=l; 
startFlag=l; 

else
isCoverge=0;

end

if  startFlag & i = 0  
i=i+l; 

end

if  StartFlag & wasCoverge & isCoverge 
i=i+l;
if i>cv_hold 

convergeFlag=l 
k
for m=0:L-l,

rxy=rxy+flipud(xF(k-m-L+1 :k-m)). *y(k); 
end

ss=rxy'*th;

end
else

start=0;
i=0;

end

wasCoverge=isCoverge;

end
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if  convergeFlag

if  (dv <(dt_low-0.15) I dv > (dt high+0.25)) 
hstart=l; 
stillHold=I; 

else
stillHold=0;

end

end

end

% Update the step-size parameter using NLMS.

ifh sta r t= l
thold=thold-H; 
if  thold < dt hold 

isHold =1;

if  stillHold
thold=0;
end

else
hstart=0;
thold=0;
isHold=0;
stillHold=0;

end
end

if  isHold ~=1
normState = state'*state; 
mu = l/(  normState 4- le3 ); 

end

if( normState > farendThres & isHold ~=1) 
th = th + mu * e(k) * state; 

end

if  isHold 
th = thO; 

else
thO = th; 

end

holdRec(k)=isHold; 

waitbar( k/loopLen, q );
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end
close(q);

ql = waitbar(0,'NLMS & NCC: calculating ERLE...'); 
for i= l :loopLen-2500

db(i)=-20*logl0(mean(abs(y(i:i+2500)))'./mean(abs(e(i:i+2500))));
waitbar( i/(loopLen-2500), q l ); 

end
close(ql);
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APPENDIX B: TI CCS CODE

nlms_ adfilt_ result, c

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "filter.h"

// Defines
#define LOOP_LENGTH 2000 
#define FILTER LENGTH 100

// Declare variables
float input, echoed, af output, error signal; 
float input_signal[LOOP_LENGTH]; 
float echoed signal[LOOP LENGTH]; 
float error_signal_array[LOOP_LENGTH] ; 
//int dtd_array[LOOP_LENGTH];

float input vector[FILTER LENGTH] ; 
float input vector_c[FILTER_LENGTH]; 
float filter[FILTER_LENGTH]; 
float filter_hold[FILTER_LENGTH]; 
float rxy [FILTERLENGTH] ;

float nstep size; 
short output;

short i, j, k,m;

//Declare variables for double talk detection
float tmp, sd=0.0, ak2=0.0, dv=0.0;
int hstart=0, stillHold=0,isHold=0, thold=0, isNLP=0;

// Procedure for determining dot product o f two arrays 
float dotp (float a[], float b[])
{

float suml, sumh;
suml=0;
sumh=0;
for(j=0; j<FILTER_LENGTH; j+=2)
{

suml += a[j] * b[j]; 
sumh += a[j+l]*b[j+l];

}
return (suml+sumh);

}

//Procedure for determining dot product of one array and one value 
void dotpv(float a[], float b)
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forG=0; j<FILTER_LENGTH; j+= l)  
{

aD']=aD] *b;

}

}

void dotVectorSum(float a[], float b[])
{

forO=0; j<FILTER_LENGTH; j+= l)  
{

a[j]= a[j] +b[j];

}

void copyVector(float a[], float b[]){

for(j=0; j<FILTER_LENGTH; j+= l)  
{

a|j]=b[j];

}

void decideDTD(){
copyVector(mput_vector_c,iQput_vector); 
dotpv(input_vector_c,echoed); 
dotpv(iiiput_vector_c,0.1 ) ; 
dotpv(rxy, 0.9);
dotVectorSum(rxy, input_vector_c);

sd=0.9*sd+0.1 *echoed*echoed;

ak2=dotp(rxy, filter); 
dv=ak2/sd;

if(dv<0.75 II dv>1.35){ 
hstart=l; 
stillHold=l;

}else{

stillHold=0;
}

if  (h star t= l){
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thold=thold+l ;

if (thold < 80) {
isHold =1; 
i f ( s tillH o ld = l){  

thold=0;
}

}
else{

hstart=0;
thold-0;
isHold=0;
stillHold=0;

doFilteringO
{

for(k=0;k<LOOP_LENGTH;k++) {

input=input_signal[k]; / / newest input cast to float
input_vector[G] = input; // put sample

echoed=echoed_signal[k] ;

//calculate output o f adaptive filter 
af_output=dotp(filter, input vector) ;

// calculate error value 
errorsignal = echoed-af_output;

if( isN L P = l){
error_signal= error signal*0.01 ;

}

error_signal_array[k]=error_signal;

decideDTD();

//dtd_array[k]=isHold;

if(isHold!=l){
// calculate variable step size
nstep_size=l/(dotp(input_vector, mput_vector)+0.0001);

//update tap weights
for (i=0; i<FILTER_LENGTH; i++)

 ̂ filter[i] = filter[i] + nstep_size*error_signal*input_vector[i]; //calculate taps
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}

for (i=FILTER_LENGTH-l; i>=l; i - )
{

input_vector[i]=mput_vector[i-l]; //shift vector
}

if( isH o ld = l){
for(m=0; m<FILTER_LENGTH;m-H-){ 

filter[m]=filter_hold[m];
}

}else{
for(m=0; m<FILTER_LENGTH;m++) { 

filter_hold[m]=filter[m] ;
}

}

}//for loop end

// This is main procedure executed on start up of program 
main()
{

// Initialise variables
error_signal=0.0;
echoed=0.0;
af_output=0.0;
nstep_size=0;
isNLP=0;

for (1=0; i<FILTER_LENGTH; i++) // initialise filter, input vector
{

input_vector[i]=0.0;
rxy[i]=0.0;

}

for (i=0; KFILTER LENGTH; i++) // initialise filter, input vector
{

filter[i]=filter_current[i] ;

}

doFilteringO;

}
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