

Release Planning For Multi-tenant Software as a Service (SaaS) Applications

by

Mubarak Alrashoud

B.S. in Information and Computer Science, King Saud University, Saudi Arabia, 1996

M.S. in Computer Science, King Abdulaziz University, Saudi Arabia, 2008

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in the program of Computer Science

Toronto, Ontario, Canada, 2015

© Mubarak Alrashoud 2015

ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

Mubarak Alrashoud

iii

Release Planning For Multi-tenant Software as a Service (SaaS) Applications

Mubarak Alrashoud

Doctor of Philosophy program in Computer Science, 2015

Ryerson University

ABSTRACT

In multi-tenant Software as a Service (SaaS) applications, the providers are required to

regularly deliver new releases of the software in order to satisfy the evolving requirements of

tenants. The first step in a release development lifecycle is the release planning process.

This thesis formulates the problem of the "next release" planning for multi-tenant

Software as a Service (SaaS) applications. Two variables that influence release planning in SaaS

applications are introduced: the degree of commonality of features and the contractual

constraints. The commonality of a feature denotes the number of tenants that have requested that

feature. The contractual constraints denote the effects of service levels to which tenants have

subscribed on the release planning process.

Furthermore, this thesis proposes three novel approaches in order to tackle the problem of

the "next release" planning for multi-tenant SaaS applications. The first one is a prioritization

approach that employs a Fuzzy Inference System (FIS) engine in order to speed up the release

planning process and overcome the uncertainty associated with the human judgment. In this

approach, the human expertise, which is represented by fuzzy rules, is considered automatically

in the release planning process. The second and third approaches consider release planning as an

optimization problem. The second approach uses an exact optimization method (Binary Linear

iv

Programming (BLP)) in order to generate an optimal release plan, while the third approach uses

heuristic optimization method (Genetic Algorithm (GA)). All of the three approaches aim to

generate a plan for the next release that maximizes the degree of overall tenants’ satisfaction,

maximizes the degree of commonality, and minimizes the potential risk while taking into

account contractual, effort, and dependencies constraints.

 Moreover, the thesis presents an experimental study of the proposed approaches in order

to determine which approach is best suited to different sets of scenarios. In this experiment, the

performance of the proposed approaches is evaluated using four criteria: the overall tenants’

satisfaction, the commonality, the adherence to the risk, and the running time. Additionally, the

thesis presents an experiment that compares the proposed approaches with a compared model

that is selected from the literature.

v

ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my supervisor, Professor

Abdoloreza Abhari for his tremendous support, valuable advice, and for the time and effort that

he spent to make this thesis possible. His encouragement and guidance gave me the confidence

and motivation needed to finish this research. I would also like to express my gratitude to my

thesis committee members, Professor Alex Ferworn, Professor Andriy Miranskyy, Professor

Cherie Ding, Professor EIbrahim Bagheri, Professor Soosan Beheshti, Professor Vojislav Misic

for the time and effort they spent to review my thesis and for their helpful and useful advice and

comments. My sincere appreciation is extended to Professor Jean-Pierre Corriveau, Carleton

University, for agreeing to be in my committee and provide me with his valuable comments.

I am very grateful to my family for their support and patience. Without their assistance, I

would not have finished this thesis.

I thank King Saud University for financial support.

 Last but not least, I thank all the members of our research group in the distributed system

and multimedia processing (DSMP http://dsmp.ryerson.ca/) lab for their support

http://dsmp.ryerson.ca/

vi

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS .. xiv

CHAPTER 1: INTRODUCTION .. 1

1.1 Software as a Service (SaaS) .. 3

1.2 Problem Statement .. 9

1.2.1 Planning Objectives ... 9

1.2.2 Planning Constraints .. 10

1.3 Methodology and the Proposed Approaches .. 11

1.4 Contributions... 15

1.5 Thesis Outline ... 18

CHAPTER 2: LITERATURE REVIEW ... 20

2.1 SaaS Development Lifecycle .. 20

2.1.1 Discussion .. 24

2.2 The Nature of the Release Planning Process .. 27

2.2.1 Discussion .. 29

2.3 The Next Release Planning Problem .. 30

2.3.1 Discussion .. 31

2.4 The Approaches to Solve the Release-Planning Problem... 31

2.4.1 Integer Linear Programming-based (ILP) Solutions ... 31

2.4.2 Combination of Linear Programming and Genetic Algorithm 34

vii

2.4.3 Analytical Hierarchy Approach (AHP) ... 35

2.4.4 Constraint Programming (CP) ... 36

2.4.5 Fuzzy-theory-based Release Planning ... 36

2.4.6 Discussion .. 38

2.5 Some Tools for Constructing Release Plans ... 39

2.6 Fuzzy Theory in Software Engineering Decision-Making Problems 40

2.5.1 Discussion .. 40

2.7 Summary of the Chapter ... 41

CHAPTER 3: PROBLEM STATEMENT ... 42

3.1 Planning Objectives .. 45

3.1.1 Maximizing Tenants’ Satisfaction ... 45

3.1.2 Maximizing Commonality ... 50

3.1.3 Minimizing Risk .. 53

3.1.4 Discussion .. 58

3.2 Planning Constraints ... 58

3.2.1 Contractual Constraints ... 58

3.2.2 Effort Constraints ... 61

3.2.2 The Constraints of Dependencies among Features .. 62

3.3 Summary of the Chapter ... 64

CHAPTER 4: FUZZY INFERENCE SYSTEM-BASED APPROACH 66

4.1 Introduction ... 66

4.2 Preliminaries ... 67

4.2.1 Basics of Fuzzy Set Theory ... 67

4.2.2 Fuzzy Numbers Arithmetic .. 70

4.2.3 Linguistic Variables ... 71

viii

4.3 The Mamdani Fuzzy Inference Systems Process.. 72

4.3.1 The Database ... 73

4.3.2 The Rule Base .. 74

4.3.3 The Inference Process .. 75

4.4 The Proposed FIS-based Approach .. 77

4.4.1 Raw Data Collection .. 77

4.4.2 Preprocessing ... 82

4.4.3 Ranking .. 85

4.4.4 Release Planning Generation ... 88

4.5 Proof of Concept ... 92

4.6 Summary of the Chapter ... 97

CHAPTER 5: OPTIMIZATION BASED APPROACHES (BLP and GA) 98

5.1 Introduction ... 98

5.2 Binary Linear Programming ... 99

5.3 The Proposed BLP-based Approach ... 101

5.3.1 Release plan generation ... 101

5.4 Genetic Algorithm-based Approach ... 103

5.5 Proof of Concept ... 106

5.5.1 BLP-based Approach ... 106

5.5.2 GA-based Approach .. 108

5.6 Summary of the Chapter ... 108

CHAPTER 6: EXPERIMENTAL COMPARISON OF THE PROPOSED APPROACHES

... 110

6.1 Introduction ... 110

6.2 The Probability Distributions of Release Planning Data .. 110

6.3 Experimental Comparison of the Proposed Approaches .. 114

ix

6.3.1 Variable Number of Features and Constant Number of Tenants 115

Figure 6.2: The Degree of Overall Satisfaction (Variable Number of Features and

Constant Number of Tenants) ... 116

Figure 6.3: The Probability Distributions of the Degree of Overall Satisfaction 117

(Variable Number of Features and Constant Number of Tenants) 117

Figure 6.4: The Degree of Commonality (Variable Number of Features and Constant

Number of Tenants) .. 118

Figure 6.5: The Probability Distributions of the Degree of Commonality 119

(Variable Number of Features and Constant Number of Tenants) 119

Figure 6.6: The Degree of the Adherence to Risk .. 120

(Variable Number of Features and Constant Number of Tenants) 120

Figure 6.7: The Probability Distributions of the Degree of the Adherence to Risk 121

(Variable Number of Features and Constant Number of Tenants) 121

Table 6.4: Statistical Analysis of the First Group of Scenarios (Variable Number of

Features and Constant Number of Tenants).. 122

Figure 6.8: Running Time of the Three Approaches (Variable Number of Features and

Constant Number of Tenants) ... 123

6.3.1 Variable Number of Tenants and Constant Number of Features 124

6.4 The Similarity of the Release Plans Generated by the Proposed Approaches 133

6.5 Comparing the Proposed Approaches with an Approach from the Literature 135

6.6 Summary of the Chapter ... 140

CHAPTER 7: CONCLUSIONS AND FUTURE WORK ... 141

7.1 Conclusion .. 141

7.2 Future Work .. 145

file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992475
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992475
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992476
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992477
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992478
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992478
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992479
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992480
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992481
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992482
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992483
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992484
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992485
file:///E:/1%20Thesis%20Final/ThesisFinalSubmition.docx%23_Toc429992485

x

APPENDIX I: BRANCH AND BOUND ALGORITHM .. 146

APPENDIX II: POLLING METHOD .. 148

APPENDIX III: MEMBERSHIP FUNCTIONS OF THE FUZZY VARIABLES 150

APPENDIX IV: FUZZY RULES FOR FIS-BASED APPROACH .. 152

IV.1: IMPORTANCE_COMMONALITY_Aggregation Sub Module 152

IV.2: RISK EFFORT Aggregation Sub Module... 153

IV.3: Ranking Sub Module ... 154

APPENDIX V: LIST OF PUBLICATIONS .. 155

REFERENCES ... 156

xi

LIST OF TABLES

Table 1.1: Characteristic of SaaS Applications and their Effects on Release Planning 7

Table 1.2: The Stakeholders Participating in SaaS Next-Release Planning 12

Table 3.1: The Design Goals of the Variable of Release Planning in SaaS 65

Table 4.1: The Features List Requested by Each Tenant, the Compliance of SLA of Each Tenant

with the Features, and the Commonality of Features ... 93

Table 4.2: The Estimates of the Importance, Risk, and Required Effort of the Features 94

Table 4.3: AUGMENTEDIMPORTANCE Matrix, and WeightedE Vectors 95

Table 4.4: The Output of Ranking Process (RANK List) ... 96

Table 4.5: RANK List after Applying Dependencies Constraints .. 97

Table 5.1: EFFORT_Vector, RISK_Vector, WeightedE, and Commonality Vectors 107

Table 6.1: The Description of Dataset Samples.. 111

Table 6.2: Chi-square Tests for four Dataset Samples ... 112

Table 6.3: The Description of the First Group of Scenarios ... 115

Table 6.4: Statistical Analysis of the First Group of Scenarios .. 122

Table 6.5: The Description of the Second Group of Scenarios .. 124

Table 6.6: Statistical Analysis of the Second Group of Scenarios ... 131

Table 6.7: Statistics of the Similarity between the Proposed Approaches 134

file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142371
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142373

xii

LIST OF FIGURES

Figure 1.1: Multi-tenant SaaS Application Layers and Roles .. 5

Figure 1.2: Incremental Development for SaaS Applications ... 6

Figure 1.3: The Proposed FIS-based Approach .. 12

Figure 1.4: Ranking and Generating Release Plan Processes (FIS-based Approach) 13

Figure 1.5: The Stages of the Proposed Optimization Approaches (BLP and GA) 14

Figure 1.5: Release Plan Generation Processes in Binary Linear Programming 15

Figure 1.6: Thesis Outline... 19

Figure 2.1: The Development Lifecycle of SaaS Applications .. 26

Figure 3.1: Release Planning Variables .. 42

Figure 4.1: Example of a Fuzzy Set A .. 68

Figure 4.2: Fuzzy Numbers Arithmetic .. 71

Figure 4.3: Example of a Fuzzy Variable ... 72

Figure 4.4: Example of Mamdani FIS Process ... 77

Figure 4.5: The Proposed FIS-based Approach .. 78

Figure 4.6: The Raw Data Collection Process .. 79

Figure 4.7: The Preprocessing Process ... 82

Figure 4.8: Ranking Process ... 85

Figure 5.1: The Steps of Genetic Algorithm ... 104

Figure 6.1: Empirical, D-Uniform, Poisson, and Normal Distributions for Four Data samples .. 114

Figure 6.2: The Degree of Overall Satisfaction .. 116

file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142486
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142490
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142502

xiii

Figure 6.3: The Probability Distributions of the Degree of Overall Satisfaction 117

Figure 6.4: The Degree of Commonality .. 118

Figure 5.5: The Probability Distributions of the Degree of Commonality 119

Figure 6.6: The Degree of adherence to Risk .. 120

Figure 6.7: The Probability Distributions of the Degree of adherence to Risk 121

Figure 6.8: Running Time of the Three Approaches .. 123

Figure 6.9: The Degree of Overall Satisfaction .. 125

Figure 6.10: The Probability Distributions of the Overall Satisfaction .. 126

Figure 6.11: The Degree of Commonality .. 127

Figure 6.12: The Probability Distributions of the Degree of Commonality 128

Figure 6.13: The Degree of adherence to Risk .. 129

Figure 6.14: The Probability Distributions of the Degree of adherence to Risk 130

Figure 6.15: Running Time of the Three Approaches .. 132

Figure 6.16: Similarity between the Proposed Approaches .. 134

Figure 6.17: Comparison with the Compared Model (Degree of Overall Satisfaction) 138

Figure 6.18: Comparison with the Compared Model (Degree of Commonality) 138

Figure 6.19: Comparison with the Compared Model (Degree of adherence to Risk) 139

Figure 6.20: Comparison with the Compared Model (Running Time) .. 139

Figure I.1: Branch and Bound Algorithm .. 147

file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142503
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142504
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142505
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142506
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142507
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142509
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142510
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142511
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142512
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142513
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142514
file:///E:/1%20Thesis%20Final/PhD_Thesis_Mubarak_Final_GA_applyingModifications%2014.docx%23_Toc427142521

xiv

LIST OF ABBREVIATIONS

AHP Analytical Hierarchy Approach

BLP Binary Linear Programming

CP Constraint Programming

CRM Customer Relationship Management

CSP Constraint Satisfaction Problem

FIS Fuzzy Inference System

GA Genetic Algorithm

IaaS Infrastructure as a Service

ILP Integer Linear Programming

MISO Multi Input Single Output

NIST National Institute of Standards and Technology

OWA Ordered Weighted Averaging

Multi Input Single Output (MISO) PaaS Platform as a Service

QFD Quality Function Deployment

RP Release Planner

SaaS Software as a Service

SDP Service Delivery Platform

SEDS Software Engineering Decision Support

SLA Service Level Agreement

SPL Software Product Line

WS-BPEL Web Services Business Process Execution Language

1

CHAPTER 1: INTRODUCTION

When undertaking software engineering projects, many decisions must be made on

the basis of uncertain, incomplete, volatile, and/or conflicting information [1]. These

decisions must consider varied and even contradictory goals (such as performance, time to

market, and customer satisfaction). In addition, they have to take into account resources and

technical constraints [1]. Because of the complexity of software engineering processes,

human intelligence cannot deal with the range of interrelated and complex decision factors.

Therefore, computational intelligence must support human intelligence and knowledge in

the decision making process. The area of Software Engineering Decision Support (SEDS)

[2] has emerged to deal with decisions related to software engineering activities. SEDS is

concerned with providing decision makers with the necessary aids to analyze the available

alternatives and select those that are optimal (or near optimal). In SEDS, human knowledge

and intelligence, along with well-established methodologies from other disciplines, are

employed in order to manipulate hard and soft decision factors to reach the best possible

decisions [3].

The research described in this thesis is located under the umbrella of utilizing SEDS

in the engineering of multi-tenant Software as a Service (SaaS) systems. More precisely, it

deals with the problem of how SaaS managers can most effectively plan their next software

release. Release planning can be defined as the process of selecting the features that should

be implemented in a certain release (in this research, the next release of an SaaS application)

In this thesis, we propose a new formulation of the problem of the next release

planning for multi-tenant Software as a Service (SaaS) applications. After that, we propose

three novel approaches that support SaaS release managers in planning for the next release.

2

The objective of the proposed approaches is to maximize tenants' satisfaction, maximize

degree of commonality (selecting the features that are required by the highest number of

tenants), and minimize the risk, while taking into account the effort, technical, and

contractual constraints. The first approach exploits the simplicity and strength of Fuzzy

Inference System (FIS) in representing human knowledge to assign a rank for each software

feature. Hereafter, we call this approach FIS-based. Ranks of features represent their

priorities and importance. The features are prioritized according to their ranks. The features

with the highest ranks have better chance to be assigned to the next release. The novelty of

the proposed FIS-based approach is that it deals with uncertainty associated with human

judgments, which depend on approximation rather than exactness. FIS depends on the

concept of fuzzy reasoning which mimics the way of human reasoning by manipulating

human judgements using predefined linguistic rules. These rules use linguistic terms to

represent the knowledge of the domain experts. In all of the previously published works on

release planning, human expertise has been involved manually as the final step (when the

choice is made between alternatives that have been generated by release planning models).

Blending the human expertise automatically with release planning models is a more

appropriate way to address release planning problems for two reasons: 1) it allows human

expertise to influence the release planning models implicitly, which will increase the

applicability of these models, and 2) when there is a very large number of requirements and

stakeholders, it is of great benefit to be able to use an automatic method to consider human

knowledge (which can be expressed in linguistic terms) in determining the final solution.

Adjusting final solutions manually is very difficult in such situations. Moreover, FIS-based

approach is fast, simple, intuitive, and can be adjusted easily according to the changes in the

3

management's policies. For example, if the release management wants to consider the

importance of features more than other factors, the rules can be tuned in order to cope with

this policy. The second proposed approach considers the “next release” planning for multi-

tenant SaaS as an optimization problem. A release plan is represented as a vector of decision

variables 1 2 n where i . If i then the feature is assigned to the

next release; otherwise, it is postponed to a future release. This approach utilizes Binary

Linear Programming (BLP) in order to generate an optimal plan for the next release of an

SaaS application. BLP-based solution deals with release planning as an integer linear

programming with adding binary constraints on the problem variables. The third approach

considers the “next release” planning for Multi-tenant SaaS as an optimization problem, and

provides Genetic Algorithm-based (GA-based) solution (heuristic optimization). GA-based

approach depends on the concept of the evolution to better solutions through a set of

crossover, mutation operations on many generations. This thesis claims that each one of

these three approaches is suitable for certain circumstances. In order to determine that, we

conduct a set of experiments that measures the effectiveness of each approach under

different conditions.

The rest of this chapter is organized as follows: Section 1.1 presents the background

information about SaaS applications. The problem statement is sated briefly in Section 1.2.

Section 1.3 summarizes the methodology that is used in this research. The contributions and

the outline of the thesis are stated in sections 1.4 and 1.5 respectively.

1.1 Software as a Service (SaaS)

 The National Institute of Standards and Technology (NIST) defines cloud

computing as "a model for enabling ubiquitous, convenient, on-demand network access to a

4

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction" [4]. From this definition, one can infer

that cloud computing is an on-demand service where the cloud's consumers can reach the

computation resources without any direct interaction with the cloud provider. The

consumers can use heterogeneous devices and software interface to select, subscribe, and

immediately use the service. This makes cloud computing highly effective in saving

consumers time and effort. Cloud computing depends on the concept of resource pooling;

i.e., resources are pooled to serve multiple consumers using a multi-tenant model [5]. There

are three main cloud-computing models: infrastructure as a service (IaaS), platform as a

service (PaaS), and software as a service (SaaS). Cloud providers in IaaS have their own

physical resources, such as servers, storage, and processing time. Using virtualization

mechanisms, virtual resources are offered to cloud consumers [5,6]. In PaaS, a provider

offers ready-to-use programming and deployment resources, such as integrated development

environment (IDE), testing approaches, database management systems and deployment

approaches. Cloud consumers in PaaS can use these resources to build their applications

without any modification to the provided platform services. In SaaS, the cloud provider

offers software applications as a service to customers. In a multi-tenant SaaS application,

many tenants use a thin client (such as web browser) to access a SaaS application. This

application runs on a service delivery platform (SDP) (network, servers, end, etc.). The SaaS

provider leases resources from an SDP provider. In some cases, the SaaS provider owns the

SDP. SaaS software can be developed by a third party, which is called a SaaS developer.

For convenience, we assume in this thesis that “SaaS provider” refers to the organization

5

that develops and provides the software. Figure 1.1 shows the different roles and layers in

multi-tenant SaaS applications.

Using SaaS applications allows tenants to eliminate the expenses of establishing IT

infrastructure. They do not need to budget for huge up-front costs to purchase hardware,

software licenses, and other IT infrastructures components. At the same time, SaaS

providers can serve a huge number of customers using a single shared instance of an

application. This guarantees for SaaS providers a recurring amount of revenue with less

maintenance and management effort because they only maintain one codebase.

 Figure 1.1: Multi-tenant SaaS Application Layers and Roles

Popularity is a significant indicator of successful SaaS applications. Highly popular

software means that more customers are attracted; consequently, more profit is achieved.

Ongoing satisfaction of evolving tenants' needs can attract more tenants, and guarantee the

loyalty of the current ones [6]. In order to achieve that, SaaS providers frequently deliver

new and high quality releases of the application during its lifecycle, as show in Figure 1.2.

Each new release includes new or enhanced features. For example, Salesforce releases four

major versions of their CRM software annually [7]. The provided feature shall attract

highest possible number of tenants, which means SaaS providers shall include the features

that are important to tenants with considering the quality. However, sometimes because of

6

limitations in time and resources, technical constraints, and risk, SaaS providers can

implement fewer features than are requested by tenants. Therefore, SaaS providers must

decide which features will be assigned to the early releases, and which ones will be

postponed to later releases. Release planning is the process that carries out this planning

endeavor. Release plans are the output of the release planning process [8]. Each plan for a

release contains the features that will be implemented in that release. SaaS applications have

many distinctive characteristics that should be considered in release planning process. Table

1.1 shows these characteristics with their effects on the release planning process.

Release R-1

 Product Backlog

Release Planning
for Release R+1

Development
Process for

Release R +1

Release R+1

 Product Backlog

Release Planning
for Release R

Tenants’ Requests
For Adding or Enhancing

Features

Development
Process for
Release R

Release R

Tenants Use
SaaS Application

Tenants’
Requests

For Adding
or Enhancing

Features

Tenants Use
SaaS Application

Tenants Use
SaaS Application

 Features List for
Release R

 Features List for
Release R+1

......

Figure 1.2: Incremental Development for SaaS Applications

7

This research assumes that release management plans only for the next release. Next

release planning was introduced first in [108]. It deals with delivering a set of features that

will be implemented in the next release. The reason behind the assumption of planning for

the next release is that the extreme dynamics involved in SaaS applications, which greatly

increases the possibility of a wide range of changes being required within a short time

period.

Table 1.1: Characteristic of SaaS Applications and their Effects on Release Planning

SaaS Characteristics The Effects on the Release Planning Process

Software is shared among huge number of

tenants and accessed via internet.

1) Risk associated with data integrity and

security [9, 10].

2) The features that are requested by high

numbers of tenants are preferred to be

delivered in the early releases [6, 11];

therefore, the commonality of features

should be considered.

SaaS is offered in different service levels and

the tenants can change from a service level to

another service instantly [12].

The service level to which tenants

subscribe should be considered.

Seamless delivery of the software.

Release planning should be continuous,

fast, and for short period of time [13].

8

For example, during a short time period, new tenants with new needs may subscribe to the

SaaS application, and others who are already using the service may unsubscribe, which may

change the tenants list in a very fast base. Additionally, in huge SaaS applications, hundreds

of features may be added to the product backlog in a very short period. This means that the

state of the product backlog can extremely change. This increase the chance of changing the

priorities of features during the time between delivering a release and implementing a

release after.

The next release plan shall:

 Maximize the tenants’ satisfaction, by selecting the features that are important to

the highest possible number of tenants.

 Consider the tenants’ decision weights (the importance, volume of trade, or

loyalty of each tenant to the SaaS application).

 Maximize the degree of commonality, by selecting the features that are required

by the highest possible number of tenants).

 Minimize the risk of delivering low-quality release by selecting the features that

have the lowest possible risk.

 Fulfill the dependencies constraints among features (for example, perhaps for

technical reasons a feature can only be delivered after a feature).

 Fulfill contractual constraints, which are documented in the service level

agreement (SLA) of each tenant.

 Fulfill the effort constraint by ensuring that the total effort required to implement

the generated release plan is less than or equal to the available effort.

9

 This thesis considers all of these factors in the problem statement and the proposed

approaches.

1.2 Problem Statement

 Given a set of tenants let be a family of

sets of features that are requested by the tenants, where represents a set of features which

are requested by a tenant i. Let

 = 1 2 n be the unified set that contains

all features, where is the total number of features, and

 and is the

cardinality of the set . It is required to find ^ which is a set of features that represents

the release plan for the next release, such that ^ *
. ^

 can be defined by its

characteristic function F^: * such that

) =

A release plan ^
 shall achieve three objectives: 1) maximizing the tenants’ satisfaction; 2)

maximizing the degree of commonality; and 3) minimizing the risk. A release plan ^
 shall

satisfy three constraints: 1) the dependencies among features, 2) contractual constraints

(which are documented in the service level agreement of each tenant), and 3) the effort

constraint by ensuring that the total effort required to implement the generated release plan

is less than or equal to the available effort. These objectives and constraints are stated more

formally in the next two sections.

1.2.1 Planning Objectives

 ^
 shall maximize the degree of overall satisfaction of all tenants. The degree of a

tenant’s satisfaction is calculated by the function
 , where

 is the

10

desired release plan to i (the features that achieve the maximum degree of satisfaction to

tenant i). The degree of overall satisfaction () can be calculated as the additive

weighting of the degree of satisfactions of the tenants.

 where is the decision weight of a tenant and is the number of tenants.

 ^
 shall maximize the degree of commonality; that is, it shall include the highest possible

number of features that are required by the highest possible number of tenants. The

commonality of the release plan is calculated by the function

Furthermore,
shall minimize the potential risk by including the features that have the

lowest possible risk. There are many risk factors that shall be considered when planning for

the next release of an SaaS application. These factors are described in details in section

3.1.3. The most significant risk factor in SaaS applications is the data integrity and security.

Let be the function that calculates the degree of adherence to

the risk factor. The risk of
 can be calculated by the function where

1.2.2 Planning Constraints

A release plan
shall fulfill the contractual constraints. Let S1 S2 Sp}

represents the levels of service of an SaaS application. Different tenants can subscribe to

11

different levels of service. Each service level i can be considered as a set of features that

are included, or can be included in that level. Let be a function that

returns the service levels that will include the feature such that is the power set of .

Let i be the function that returns the service level to which the tenant i has

subscribed. Then shall satisfy the following constraint:

 j j

which means for each feature assigned to the next release, at least the SLA of one tenant

must comply with that feature. The features that comply with the service levels of high

number of tenants have higher chance to be included in the next release. The effect of this

constraint on the release plan process is discussed in details in section 3.2.1. Effort is

another significant factor that shall satisfy [8]. The required effort to implement the next

release shall be less than or equal to the available effort. Formally,

 such that is the total effort needed to implement the

selected features, and is the effort that release management can afford.

The dependencies constraints [8] are technical constraints that significantly affect the

content of a release plan . This thesis considers two types of dependencies:

 Coupling :Two features or more are described as “coupled” when they should be

delivered in the same release.

 Precedence :One feature i precedes another feature j when i should be

delivered (or at least implemented and tested) prior to feature j.

1.3 Methodology and the Proposed Approaches

12

In order to address the problem of the next release planning for SaaS applications,

three approaches are proposed: The first proposed approach is the FIS-based approach. As

Figure 1.3 shows, FIS-based approach consists of the following processes:

 Raw data collection: In this stage, the estimates that are provided by

stakeholders about the different release planning factors are collected. As Table

1.2 shows, three types of stakeholders are involved in this process: tenants,

development team, and release managers. Each type of stakeholder provides

certain types of information. For example, development team is the party

responsible for estimating risk of features [14], release management is

responsible for determining the decision weights of tenants [8] and the required

and available efforts [15], and tenants (customers) provide the estimates of the

importance of features [1].

Raw Data
Collection

Preprocessing
Release Plan

Generation

Release Plan

Ranking

Table 1.2: The Stakeholders Participating in SaaS Next-Release Planning

Figure 1.3: The Stages of the Proposed FIS-based Approach

13

 Preprocessing: This intermediate stage performs the required manipulation in

order to make the raw data ready for the ranking process. The following sub-

processes are performed during this stage:

 The compliance of contractual constraints is considered when calculating the

commonality and the importance of each feature.

 The weighted importance of each feature is calculated.

The output of preprocessing stage is two augmented data structures (vectors) that

contain the following information:

 A vector containing the weighted importance of the features.

 A vector containing the commonality of the features after considering the

contractual constraints.

 Ranking: As shown in Figure 1.4, the FIS-based approach employs the

knowledge obtained from experts (represented by fuzzy rules) in order to rank

each feature.

WeightedImportance
of Features

Risk of Features

 Required Effort of
Features

Ranked Features
(Dependencies are not

considered in this
stage)

Release Plan Generation

Available Effort Release Plan for the
next Release

 Fuzzy
Inference

System
Module

Commonality of features Release Mangers

Dependencies

 Figure 1.4: Ranking and Generating Release Plan Processes (FIS-based Approach)

14

 Release Plan Generation: In this process two steps are performed:

 The ranks of the features are tuned in order to satisfy dependencies

constrains. For example, if a feature is a precedent of feature , the

rank of feature shall be greater than or equal to the rank of feature .

 The features are sorted according to their ranks. The features that have

highest ranks are assigned to the next release plan. Note that the

dependencies constraints are fulfilled in the previous step. The effort

constraint is taken into account in this step; such that, the total required

effort of the selected features is less than or equal to the available effort.

Figure 1.4 shows the inputs and the output of release plan generation

process.

The second and third proposed approaches are optimization approaches. Two

optimization methods are used: BLP and GA. As Figure 1.5 shows, both approaches consist

of the following processes:

Raw Data
Collection

Preprocessing

Release Plan

Generation

(Optimization
Process)

Release Plan

 Raw data collection: this process is the same as the one in the FIS-based

approach.

Figure 1.5: The Stages of the Proposed Optimization Approaches (BLP and GA)

Approach

15

 Preprocessing: this process is the same as the one in the FIS-based approach.

 Release Plan Generation: Figure 1.6 shows the inputs to this process. In the

BLP-based approach, the optimization capability of BLP is utilized in order to

assign the most promising features to the next release plan. The next release plan

is represented as a vector of decision variables 1 2 n where i

 . If i then the feature is assigned to the next release; otherwise, it

is postponed to a future release. In the GA-based approach, GA with binary

variables is used to optimize release-planning process. BLP and GA approaches

used the same objective function and problem variables. GA is used in order to

speed up the optimization process. More details about these approaches are

presented in Chapter 5.

WeightedImportance of
Features

Risk of Features

Final Required Effort
of Features

Available Effort

Binary Vector that
Represents Next Release

Plan

Release Plan Generation
(BLP or GA)

Commonality of features

Dependencies

1.4 Contributions

This research provides novel approaches to tackle release planning problems in SaaS

applications. In an SaaS application many tenants use thin client to use an application

 Figure 1.6: Release Plan Generation Processes in Binary Linear Programming

16

running on cloud infrastructure. Tenants can subscribe or unsubscribe to SaaS applications

easily and instantaneously; therefore, release management shall highly consider the

satisfaction of tenants in order to maintain their loyalty, while at the same time fulfilling the

needs of other tenants (new or less important ones) in order to increase the popularity of

SaaS applications. In addition, the dimension of data integrity and security is very crucial

when SaaS providers want to deliver new release of their applications [9, 10]. This risk

factor must be considered by the release management because it can significantly affect the

success of SaaS applications. Furthermore, SaaS providers can obtain the tenants' comments

and criticisms very fast, which can enormously increase the list of the required features in a

short period of time. Moreover, SaaS providers usually offer their application in different

types of service levels. Tenants can change their service level immediately. Therefore, when

planning for the next release, the service level agreements of tenants shall be verified.

The following are the key contributions provided by this thesis:

1. Formulating the problem of the “next release” planning for multi-tenant

Software as a Service (SaaS) applications. The main goal of this formulation is

being simple and fast enough to address release planning problem with huge

number of features and tenants. Two new factors are suggested by this thesis:

 Commonality of features: In order to maximize tenants’ satisfaction and

increase the efficiency of release planning, the features that are requested by

highest number of tenants are preferred to be assigned to the next release.

 Consideration of the service level agreement: In order to meet the SLA, when

a tenant requests to add or modify a feature, the SaaS provider should verify if

the functional and non-functional aspects of this feature comply with the SLA

17

of that tenant. If that tenant is not eligible to have this feature, then his vote

for this feature is omitted unless he subscribes to the required service level.

2. Providing three novel approaches that generate next release plans for SaaS

systems:

 Fuzzy-inference-system-based (FIS-based) approach, which is fast, simple,

intuitive, and depends on fuzzy reasoning in order to deal with uncertainty

associated with human judgments. In FIS, the knowledge of the experts is

converted to fuzzy rules. Then, the estimates that are provided by stakeholders

about the uncertain attributes of the features are manipulated using these rules

in order to generate a rank for each feature. This rank of a feature shows its

priority among other features. As a part of this approach, two algorithms are

proposed in order to satisfy the dependencies constraints among features.

These two algorithms are responsible for adjusting ranks of features in order

to apply the influence of the dependencies constraints.

 Binary Linear Programming-based (BLP-based) approach: This approach

considers release planning as an optimization problem with binary variables.

In BLP-based release planning, we aim to maximize the degree of tenants’

satisfaction and degree of commonality, and minimize the degree of potential

risk. The dependencies and effort constraints are dealt with in this approach as

inequality and equality constraints.

 Genetic Algorithm-based (GA-based) approach: This approach utilizes

genetic algorithm in order to optimize release planning. When the number of

features is huge, the optimization of release planning process using GA-based

18

approach is faster than using BLP-based approach. The same objective

function and constraints that are used in BLP-based approach are used in the

GA-based approach.

3. Finding out the situations in which each approach is suitable to be used. The

proposed approaches are validated, using different scenarios, from the

perspective of the degree of the overall tenants' satisfaction, the degree of the

commonality of release plans, the degree of the adherence to the risk, and the

scalability. Additionally, In order to find out the probability distribution that can

fit the data about the importance of features in release planning process, a

statistical analysis is conducted on datasets collected from the literature. This

study helps researchers in the field of release planning to validate their models

using the proper synthetic data.

1.5 Thesis Outline

The thesis is organized as follows: Chapter 2 presents a comprehensive review of the

range of issues related to release planning for SaaS systems. It discusses the development

lifecycle, and methodologies that are used in SaaS development. It explains the importance

and the location of the release planning process during SaaS development. In addition, it

presents the nature of release planning processes and explains previous approaches to their

development. Chapter 3 states in detail the problem statement and the variables that govern

the release planning process in multi-tenant SaaS applications. Chapter 4 introduces the

proposed FIS-based approach. Chapter 5 presents the BLP-based and GA-based release

planning approaches. In Chapter 6, the results of experiments are discussed. Chapter 7

19

includes conclusions and recommendations of issues for further study. Figures 1.7 depicts

the structure of the thesis.

Release Planning for
Multi-tenants SaaS

Systems

Literature Review
(Ch 2)

Problem Statement
(Ch 3)

Fuzzy Inference
System-based

Approach (Ch 4)

Optimization-based
Approaches

(Ch 5)

Experimental
Comparison of the

Proposed
Approaches

(Ch6)

Conclusions and
Future Studies

(Ch 7)

Figure 1.7: Thesis Outline

20

CHAPTER 2: LITERATURE REVIEW

This chapter presents the research, studies, and tools that are related to this thesis.

The chapter includes four sections:

1) The development lifecycle of SaaS applications: This section explores works that

discuss the processes that are performed to develop, deliver, and maintain SaaS applications.

2) The nature of the release planning process: This section shows that the release-

planning problem is an ill-defined, uncertain decision-making problem.

 3) The next release planning problem: This section the works in the literature about

next release planning are explored.

4) State-of-the-art models and approaches for solving release-planning problem:

This section presents the solutions and approaches along with the tools that have been

proposed to generate software release plans.

2.1 SaaS Development Lifecycle

 As explained in the many papers that explore the development cycle of SaaS

applications, most SaaS-application developers rely heavily on Agile and

incremental/iterative development methodologies. According to the Agile manifesto [16],

Agile methodologies concentrate on having working software over comprehensive

documentation, maximize the value of individuals, and have less planning and high

responses to the software change. The following processes can be applied iteratively in

order to deliver a SaaS product in a set of continuous releases [17, 18]: 1) Envisioning,

during which the scope and goal of the application are determined, 2) Planning, during

which the schedule, budget, and quality-assurance and control procedures are determined, 3)

21

selecting delivery platform (SDP), where the reliability, availability, scalability, and

performance of different cloud SDPs are evaluated, after which a specific SDP is selected to

host the SaaS application, 4) The development of the application, which involves all

development activities (analysis, design, implementation, testing and deployment), and 5)

Operation, where the SaaS is operational and customers can subscribe according to a certain

service level agreement and use the service. In [18], the authors discuss the design criteria of

SaaS applications. They divide these criteria into two groups: the special characteristics of

SaaS applications (such as supporting commonality, internet-based operation, etc.), and the

properties of SaaS applications (such as availability, scalability, security, and reusability).

Furthermore, in that research the traditional development process is used to identify the

activities that are required during the creation of SaaS applications. In addition, the authors

discuss the importance of maximizing reusability via commonality/variability analysis. They

define commonality "as the number of potential applications which need a specified feature

such as a component or a service" [18]. They state that it is more advantageous if the

features with high commonality are included in the target SaaS application. In [19], the

authors state that the uniqueness of SaaS applications requires that new processes be added

to traditional development processes. These new processes include establishing pricing

policies, SDP evaluation, and close consideration of customization and configuration. In

[20], the techniques of software product line (SPL) are exploited in order to model the

variability in SaaS applications. The variability in SaaS can be customer-driven, which

matches the external variability model of SPL, or it can be realization-driven, which is

similar in its principle to the internal variability of SPL.

22

Scrum [21] is used in the development of many SaaS applications. Scrum is an Agile

methodology that develops software in a set of Sprints (iterations). In each Sprint, new

functionalities are added to the software product. The first step in Scrum is the planning

phase which carries out the definition of a new release based on currently known backlog. In

[13], continuous Scrum (which is an extension of Scrum development [21]) is used to build

a SaaS product. As in the regular Scrum development, the product is developed in series of

Sprints. Each Sprint lasts three weeks. Three types of activities are performed during a

Sprint: fixing bugs, minor enhancements, and key enhancements. As many software

products may be developed at the same time, the Sprints of one product may overlap with

the Sprints of other products. The Sprint is divided into three stages: planning, development,

and quality assurance. Accordingly, the development team is divided into three sub-teams.

Each sub-team is specialized to carry out a specific phase of the Sprint. At a certain point,

the three sub-teams may work in three different overlapped Sprints. For example, while the

first sub-team is working on the planning of Sprint k, the second sub-team is working on the

development of Sprint k-1 and the third sub-team is working on quality assurance of Sprint

k-2. The authors in [22] relate their expertise of developing a SaaS application using Scrum

in a small software industry. Because of unrealistic estimates, the team could not deliver the

first release in the specified time. For the later releases, due to the experience gained from

the first release, the estimates were more accurate.

Extreme Programming (XP) [23] is an Agile methodology that considers the

following principle in the software development: rapid iterations, rapid feedback, rigorously

tested code, team courage, high communication with customers, and simple design. In [24],

new concepts and techniques are added to the current XP practices, in order to address the

23

challenges associated with SaaS applications. For example, an information page is used by

the project parties (development team and customers) to track the current status of the

project. Customers can add or change requirements using this online page. The concurrent

version system is also used in [24]. This system is a tool that allows the members of the

development team to share their knowledge and expertise by adding new solutions,

suggestions, or recommendation. A tracker tool is also used, which allows the project parties

to track the history of changes on the diagrams and algorithms.

In [25], Agile manufacturing along with Toyota’s lean manufacturing system are

used to improve the quality of seamless delivery in SaaS applications. For example, the

Poka Yoke “mistake-proofing” concept is used. This concept states that the possibility of

mistakes is decreased by automating the number of reproducible repeated tasks, which

reduces the effort needed to track the dependencies between different tasks and activities in

the development environment. An additional level of quality is provided to the application

by using the Jidoka “stop the line” practice. Jidoka is concerned with fixing the error when

it happens, and is automated through the use of human heuristics. The third concept is

Kaizen, which is a principle of continuous improvement during the entire life of the

application. Applying these principles can increase the quality of the delivered SaaS

application.

In [26], the authors discuss how to use a service delivery platform (SDP) to build an

SaaS application. In [6], the authors address the evolving nature of the SaaS applications;

more specifically, how SaaS providers can handle the issue of tenant-driven evolution,

where the SaaS providers change the SaaS according to the needs of tenants. SaaS providers

try to maximize the commonality of requirements of different tenants in order to minimize

24

the cost of upgrades to applications. However, there are still specific tenants’ needs that

should be fulfilled. A fixed set of customization options to tenants sometimes is not enough

to address the tenant-driven evolution; therefore, the authors present some techniques that

can be used to change the SaaS according to the needs of tenants.

In [27], the authors state that in order to satisfy tenants’ needs, SaaS applications

shall provide a set of variant points that can be modified according to each tenant’s needs.

For example, tenants shall have the ability to configure some fields in a user interface. In

addition, the concept of a “variability describer” is introduced. A variability describer sets

out the locations, constraints, and dependencies of the different variation points. The

concept of a variability describer is incorporated to the Web Services Business Process

Execution Language (WS-BPEL) [28] process model. WS-BPEL is a language for

specifying business process behavior based on Web Services. In [29], the five levels of

customization of the SaaS applications to the tenants are discussed. These levels include:

GUI, workflow, service, data, and QoS, which is represented by the SLA. In addition, [29]

sets out the methods that are used for customizations; these include: source code,

configuration, and workflow composition. After that, a tenant-based, semi-automated

customization approach is proposed.

2.1.1 Discussion

In this section, we concentrate on two main points: the appropriateness of Agile

methodologies to the development of SaaS applications, and the location of the release-

planning process in the development lifecycle of a SaaS application.

2.1.1.1 Agile Development of SaaS Applications

25

From above illustration we can infer that the following points must be considered

when SaaS applications are developed:

● Popularity is a significant indicator of the success of a SaaS application.

● To maintain the popularity of the application and increase the profit, different

tenants’ needs must be satisfied while continuing to place a priority on quality.

● To fulfill the evolving and new requirements of the tenants, SaaS providers must

frequently deliver new releases of the software.

To build a successful SaaS application, it is essential to use the appropriate

development methodology. Agile is a paradigm that has been increasingly used in recent

years. One major aspect of Agile development that should be considered is that Agile

delivers the application in a set of short releases. Each new release is a working version of

the software with additional features. At the beginning of development of each release,

release planning must be conducted in order to select the features that will be included in

that release. We can see that there is compatibility between the nature of SaaS applications

(which should be developed envisioning short lifecycles and stressing high quality) and

Agile methodologies (which concentrate on delivering high quality products in a set of short

releases). Also we can see from above literature that the release planning process is a key

aspect of the development of a SaaS application.

2.1.1.2 SaaS Development Lifecycle

According to [17, 18, 19], the development lifecycle of SaaS applications consists of

the following processes (see Figure 2.2):

1. Envisioning: The senior management of the SaaS provider studies new markets,

new business opportunities, and the feasibility of offering the service.

26

2. Analysis: The following tasks are performed:

a. Domain exploration: The service domain is explored and analyzed in order

to specify the initial set of features that will attract the targeted clients;

b. Cloud provider selection: The SaaS provider chooses a cloud provider from

which to lease infrastructure and platform resources.

c. Commonality and variability analysis: The commonality analysis shows

the common features that tenants share. These features are usually encountered in

the common codebase of the SaaS application.

d. Release planning: Depending on resources and technical constraints, the

most promising set of features is selected to be implemented in the next release.

Envisioning Envisioning Domain
Analysis

Domain
Analysis

Cloud
infrastructure

selection

Cloud
infrastructure

selection

Requirements
analysis

Requirements
analysis

Commonality
analysis

Commonality
analysis

Release
Planning

ConstructionConstruction

Deployment Deployment operationoperation
Use

Tenants
Requests for

Adding/
Enhancing
Features

 Figure 2.1: The Development Lifecycle of SaaS Applications

27

3. Construction: This phase includes the design, the implementation, and the testing of

the service.

4. Deployment: The SaaS application is deployed onto the cloud infrastructure.

5. Operations: According to a pricing policy, the tenants start subscribing to the service

and have the authorization to use it.

6. Requirements Elicitation: during the use of the service, the tenants send their requests

for additions or modifications of features. They also submit their evaluations about the

service. The feedback can be provided using linguistic terms which allows the tenants

to qualitatively and naturally express their opinions about the provided service, and

about their future needs. In addition, the requirements of market (such as new

promising features) are gathered.

We can call the steps 1, 2a, 2b the start-up stages. The steps from 2c to 6 are applied

periodically when developing a new release of the SaaS application. It is clear that release

planning process is a key process in SaaS development, and the effectiveness of this process

increases the possibility of maintaining or increasing tenants’ satisfaction.

2.2 The Nature of the Release Planning Process

Release planning is a decision-making problem that has high degree of uncertainty.

The release management team is required to make decisions about assigning sub-sets of

features to a sequence of releases using uncertain, human-based information. In [30], it is

stated that when planning a software release in an Agile environment, management has

difficulties in making decisions because of the high degree of uncertainty associated with

the business value and the size of each user story, and the available resources. Carlshamre

[31] and Ruhe et.al [32] consider release planning as a “wicked planning problem.”

http://link.springer.com/search?facet-author=%22P%C3%A4r+Carlshamre%22

28

“Wicked problems” are defined as those that are difficult or impossible to completely

formalize because of their incomplete, ambiguous, and contradictory attributes.

Furthermore, there are no crisp ("true" or "false") solutions for release planning; instead, the

solutions of release planning can be categorized as "good" or "bad" solutions. Moreover, the

constraints that govern release planning can be “hard constraints,” such as budget and

technology, or “soft constraints” such as risk and resource consumption [32]. Ruhe and

Saliu [33] describe release planning as an ill-defined problem; hence, it is necessary for the

suggested solutions to combine mathematical models with human knowledge and expertise.

Al-Emran et al. [34] state that the uncertainty in operational release planning can arise from

many factors, including the arriving features while the release is developed, the effort

required to deliver the features, and the availability and productivity of human resources

(developers).

In XP, a user story (or a story) is informal way that users describe their requirements

to the development team. To estimate the effort required to implement a story, story points

are used. A story point [35] is a metric that measures the complexity and difficulty needed

to deliver a feature. For example, a feature that requires 4 story points is double in difficulty

and complexity the feature that requires 2 story points. Logue et al. in [36] state that release

planning in XP is an uncertain problem. The authors enumerate and discuss some factors

that cause this uncertainty. These factors include: the velocity of the development team

(how many story points can be completed during an iteration), story size (how many story

points or ideal working days are needed to implement and deliver a story), and the business

value of the stories that are included in the release.

29

Ruhe [37] state that release planning can be considered as a multi-criteria/ multi-

person decision-making problem. Different stakeholders who have different requirements

and different (and sometimes contradictory) objectives need to participate in the planning

endeavor. In addition, the planning effort must take into account many decision criteria,

such as value, quality, cost, and time. In [8], Greer et al. state that release planning can be

seen as an optimization problem, where the release management intends to construct release

plans for future releases in a way that: 1) minimizes the penalties that will arise from not

meeting the dependencies constraints (coupling and precedence) among requirements, and

not satisfying the requirement priorities of the different stakeholders, 2) maximizes the

benefits of satisfying the dependencies and priorities factors, and 3) stratifies the resources

constraints. Similarly, Akker et al. [38] deal with release planning as an optimization

problem, where the planning process aims to maximize the projected revenue using

available resource.

2.2.1 Discussion

 The release-planning problem can be seen from different views:

 It is a multi-person/multi-criteria decision-making problem. Many decision makers

participate in the planning effort, including management, developers, and

customer representatives. In addition, many factors (criteria) need to be taken into

account when planning a release, such as the business value of the planned release,

the risk, the available and required resources, the decision weight of the

stakeholders, and the technical and managerial constraints.

 It is a problem of “decision making under uncertainty.” The uncertainty in release

planning happens because of many factors, including incomplete and ambiguous

30

information, human factors (expertise and knowledge of the developers and

customers), and dynamics of the market.

 It is a multi-objective optimization problem. The release management tries to plan

the future releases in a way that maximizes certain objectives, such as

stakeholders' satisfaction, release value, and quality, and minimizes other

objectives such as risk and cost, while satisfying certain managerial and technical

constraints.

 It is a prioritization problem. The release management can prioritize the

requirements according to certain criteria (stakeholders’ satisfaction, release

value), and then assign the requirements with the highest priorities to the early

releases.

2.3 The Next Release Planning Problem

The next release planning was introduced in [108]. In this type of release planning,

release management plan just for the next of the software. In [109], multi-objective next

release planning problem is discussed. The authors consider that problem as search-based

problem. They consider two conflicted objectives: maximize customer satisfaction and

minimize required cost. After that, the results of an empirical study about the suitability of

weighted and Pareto optimal genetic algorithms, together with the Non-dominated Sorting

genetic algorithms (NSGA-II) algorithm are presented. In [110], three state of the art multi-

objective metaheuristics (two genetic algorithms, NSGAII and MOCell, and one

evolutionary strategy, PAES) are applied to solve the next release planning problem. Two

objectives are considered: maximizing customers' satisfaction and minimizing the cost. The

31

result of experiments shows that NSGA-II has generated the highest number of optimal,

MOCell has produced the widest range of different solutions, and PAES is the fastest.

2.3.1 Discussion

 In this research, we select to plan for the next release due to the nature of SaaS

applications. In SaaS applications, the tenants' needs are evolved quickly because the

number of tenants may change in a very short period of time because of the simplicity in

subscribing to or unsubscribing of the applications; consequently, the features in the product

backlog can also change in a very short period of time. This may change the priorities of

features during the lifecycle of one release. Hence, we find that it is more efficient if the

planning is performed only for the next release.

2.4 The Approaches to Solve the Release-Planning Problem

In this section, we illustrate the different models, approaches, and tools different

researchers have proposed for solving release-planning problems. We will discuss five main

techniques from the literature:

 Integer linear programming

 Combination of linear programming and genetic algorithm

 Analytical Hierarchy approach (AHP)

 Constraint programming

 Fuzzy logic

2.4.1 Integer Linear Programming-based (ILP) Solutions

In this approach, the release planning is considered as an optimization problem [32,

36]. It is required to assign a set of features to a sequence of releases in a way that

32

maximizes some objectives such as value, priority, stakeholders’ satisfaction and profit, and

minimizes other objectives such as risk and cost. In its general form, release planning can be

formalized as follows:

Given a set of features it is required to assign these features to a sequence

of releases in a way that maximizes certain objectives while

taking into account certain constraints . A decision vector is defined as

 is an integer, , and is the number of the next release

(release is already delivered). If then the feature is assigned to the release .

For example, if we are planning only for the next release and our objective is to maximize

the overall stakeholders' satisfaction while taking into account resource constraints, then the

problem can be formalized as: such that

subject

 and denotes the overall stakeholders' satisfaction of feature ,

 denotes the required resources to deliver feature , and denotes the

available resources to deliver the release (in this case, the next release). Much research

has approached release planning as a linear programming problem. Ruhe et al. [33]

introduce two approaches for planning software releases. The first approach (which they call

“the art of release planning”) depends on human skills and capabilities to tackle the

33

problems and resolve conflicts. The second approach (which they call “the science of

release planning”) employs integer linear programming to generate optimal solutions. Akker

et al. [38] present an integer linear programming-based model (ILP-based) with its

corresponding tool to help release management to conduct release planning. The inputs to

their model are: a set of requirements, the estimates of their revenue along with the required

resources, and the managerial steering mechanism that depends on what-if analysis. Freitas

et al. [39] compare some metaheuristics approaches (genetic algorithm and Simulated

Annealing) with the exact optimization approach (such as simplex method) when generating

release plans. The comparison shows that exact optimization has achieved better results

(higher value of the objective function); however, exact optimization takes more time to find

the solutions. Ullah et al. [40] study release planning in software product line (SPL)

development. They state that because of the special characteristics of SPL, new variables

must be involved in the release planning process (for example, resolving the conflicts

between the requirements of core assets and the requirements of various products). They use

ILP to formalize and optimize the solution of release planning. Li et al. [41] exploit ILP to

generate optimal solutions for release-planning problems. The objective is to select the

requirements that maximize the projected revenue while considering the constraints of

available resources and the allocated time. The authors propose two models to achieve their

goals. The first model carries out the scheduling of the development processes. This model

concentrates on minimizing the project duration. The second model combines requirement

selection and the development teams scheduling in order to find the optimal (maximum)

revenues value. Akker et al. [38] employ ILP to help requirements engineers to plan for the

next release. The input to their model includes the requirements, estimated revenue per a

34

unit of requirement, and available resources. Some flexibility is added to the planning effort

in order to deal with related factors such as team composition, team members' transfers from

a project to another project, extension of deadlines and hiring external resources.

2.4.2 Combination of Linear Programming and Genetic Algorithm

In this approach, release planning is formalized as an integer linear programming

problem; however, because it is difficult and too expensive to explore all feasible solutions

using traditional linear programming techniques [42], genetic algorithm (GA) is used to find

the optimal or near-optimal solutions. GA [43] emulates the evolution phenomenon in

biological life. The feasible solutions are represented as chromosomes. Solutions are

evaluated by calculating the value of their fitness functions. If the desired solutions are not

found, another generation (iteration) is created by applying reproduction, crossover and

mutation operations. The new generation is evaluated again, and this loop keeps going until

the desired solution is reached. Greer et al. [8] utilize a combination of ILP and GA to solve

release planning problems. They consider three factors: technical precedence, conflicts of

stakeholders’ priorities, and available resources. They propose an approach for solving

release planning problem that they call EVOLVE, which depends on ILP in formalizing the

problem and uses the strength and practicality of genetic algorithms to generate the

solutions. Ruhe et al. [37] have added more capabilities to the EVOLVE method by

proposing EVOLVE*, which consists of three main phases: 1) modeling, where the problem

is formalized as an ILP problem 2) exploration, where a genetic algorithm is used to

produce a set of potential solutions and 3) consolidation, where the solutions produced in

Stage 2 are evaluated by the release management. Depending on their expertise, the

management members select (and may adjust) the most promising solution manually.

35

EVOLVE* produces two release plans for two future releases in order to be elastic for any

market changes. In addition, EVOLVE* tries to maximize stakeholders’ satisfaction. Ngo-

The et al. [32] propose EVOLVE+, which is an approach that takes into count both hard and

soft constraints and objectives in the planning process. Hard constraints are those that can be

evaluated accurately (such as budget), while soft constraints are vague and difficult to

measure using a crisp evaluation (such as risk). EVOLVE+ utilizes ELECTRE (which is a

multi-criteria decision-aid method) to generate several potential solutions. The final decision

regarding a solution is made by release management. Ngo-The et al. [44] discuss the

resource-allocation problem in operational release planning. They study how to allocate

available human resources to the tasks that are required to deliver a set of features that have

already been assigned to the release under consideration. Their allocation process also takes

into account the different degrees of productivity of the members of the development team.

The authors present an approach which they call it OPTIMIZERASORP in order to tackle

this issue. OPTIMIZERASORP utilizes the strength of ILP and GA to plan the resource

allocation.

2.4.3 Analytical Hierarchy Approach (AHP)

The Analytical Hierarchy Approach (AHP) [45] is a decision-making technique that

is used in multi-criteria decision-making processes. To apply AHP, four steps are

performed: 1) determine the objectives, the decision criteria, and the possible alternatives, 2)

calculate the values of the relative importance of the decision criteria. These values are

captured in a vector, 3) they determine preferences regarding each alternative criterion over

others in order to calculate the value of the relative ranks of each alternative. These values

are stored in a matrix, and 4) calculate the weight of each alternative by multiplying the

36

vector from stage 2 by the matrix from stage 3. Karlsson et al. [46] present an AHP-based

approach for prioritizing software requirements. Cost and value are the prioritization

criteria. AHP’s pair-wise comparison is used to measure the relative value and the relative

cost of each requirement. Then, the requirements are plotted on the cost-value diagram. The

cost-value diagram is divided into three regions: high-priority requirements (low cost and

high value), medium-priority requirements (medium cost and medium value), and low-

priority requirements (high cost and low value). In [47], fuzzy AHP is used in order to deal

with the uncertainty associated with stakeholders' concerns in the process of requirements

prioritization. Requirements prioritization is considered as multi-person decision making

problem where many stakeholders participate in the prioritization process. Instead of using

crisp numbers, triangular fuzzy numbers are used in the comparison matrix provided by

each stakeholder.

2.4.4 Constraint Programming (CP)

A constraint satisfaction problem (CSP) " is a problem that is composed of a finite

set of variables, each of which is associated with a finite domain, and a set of constraints

that restricts the values that the variables can simultaneously take" [48]. Regnell et al. [49]

consider release planning as a CSP. Priorities and dependencies between features are

formulated as relations among release-planning variables (feature priorities, stakeholder

preferences, and resource availability). They use these relations and variables to solve

release planning using CP.

2.4.5 Fuzzy-theory-based Release Planning

Fuzzy set theory [50] has been used to interpret and represent uncertainty [51, 52]. In

the context of decision making, when the objectives and/or the constraints are fuzzy and

37

uncertain, we can say that the decision is made in a fuzzy environment [53]. Because release

planning is considered as an "under-uncertainty decision making" problem, some research

works have used fuzzy theory-based approaches to model it. Shen [54] extends EVOLVE*

to FUZZY-EVOLVE*. The available and the required resources are represented as fuzzy

numbers. In addition, the objective function is considered as a fuzzy membership function.

Fuzzy aggregation is applied to the fuzzy objective function and fuzzy resource constraints

in order to find the release plan that achieves the optimal degree of satisfaction. Although

FUZZY-EVOLVE* considers the fuzziness of the available and the required resources, it

does not consider human expertise in the planning process. In other words, fuzzy logic is

just used to reflect the fuzziness in the input data and not in the process itself. In this thesis,

the fuzzy logic is used to represent the human knowledge that is incorporated implicitly in

the planning process. The fuzziness is involved internally in the planning process. Ngo-The

et al. [55] define two dependency among requirements: 1) coupling, in which two or more

requirements should be developed in the same release; and 2) precedence relationship, in

which a requirement should be developed (and sometimes delivered) prior to the other

requirement(s). In early phases of the software project, it is difficult to define these relations

precisely. Therefore, representing these dependencies as fuzzy relationships helps to capture

the uncertainty associated with their definitions. Additionally, fuzzy membership functions

are used to calculate the degree to which dependences constraints are satisfied. Ngo-The

et.al. [56] state that there is an uncertainty in estimates of available effort and required

effort. Additionally, uncertainty can be present in defining the objectives that are related to

cost, benefit, and quality; hence, they use fuzzy logic.

38

2.4.6 Discussion

In this section we discuss the proposed models from two different angles: the

variables that control release planning, and incorporating human knowledge.

 The variables that control release planning

When undertaking release planning, many decisions must be made on the basis of

uncertain, incomplete, volatile, and/or conflicting information. These decisions must

consider varied and even contradictory goals (such as business value, profit, stakeholders'

satisfaction, quality, and delivery time). In addition, they have to take into account many

hard and soft constraints. Hard constraints include technical constraints, budget and cost,

and resources. Soft constraints include factors involving human influence, risk, resource

consumption, and quality. In addition to these factors, contractual constraints must be

considered. Contractual constraints , which are hard constraints, are those related to the

contract between the development organization and the customer about the level of service

and support that will be available after the software is delivered.

 Incorporating human knowledge

In all of the previously published works about release planning, human knowledge

and expertise have been involved only in the final step – when the choice is made between

alternatives that have been generated by the computational models. When there are huge

number of features and stakeholders, it is difficult to compare between the generated release

plans. Thus, it is more practical in such cases to automatically incorporate human expertise

in the computational model. The difference between the FIS approach presented in this

thesis and the fuzzy approaches in [54,55,56] is that, in this thesis, the fuzzy logic is used as

a means to represent experts' knowledge in the planning process. The planning is performed

39

according to a set of rules that reflect the perspective of the experts. In other words,

practically, experts' knowledge is considered as the function that is used in the planning

process. In [54,55,56] the fuzzy logic is used to reflect the fuzziness associated with the

inputs, and there are no fuzzy reasoning involved. The other difference is that this thesis

uses fuzzy reasoning to prioritize the features according to certain inputs, while in the

previous works, an optimization approaches are used with fuzzy inputs.

2.5 Some Tools for Constructing Release Plans

In this section, we introduce some tools that are used for planning software releases.

Release Planner (RP) [57] helps software organizations to carry out the release planning

process. RP is implemented as an optimization approach, and it covers a wide range of

activities related to software planning; for example, it allows the users to maintain a features

repository, to apply a proactive what‐if‐analysis, and to generate reports. In [49], MiniZinc

[58] is utilized to solve release planning as a CSP. MiniZinc is a special case of Zinc

language. Zinc allows defining variables, domains, and use predicates to represent the

constraints on the variables. ScrumDo [59] is a planning tool for Scrum development. It

allows the management to create repositories of stories (features), and assign them to certain

iterations. The data about stories includes: estimated effort, the priority, the developers’

information, and the tasks that are required to implement the story. AgileTrack [60] is a tool

for managing XP projects. It allows for the creation of stories and their associated tasks, the

planning of iterations, the planning of a release depending on iterations’ plans, and the

tracking of the development process. VersionOne [61] is a tool for managing Agile projects.

Similar to other tools, it allows the user to create new releases with their attributes such as

duration, velocity, and the required and available resources.

40

2.6 Fuzzy Theory in Software Engineering Decision-Making Problems

In this section, we review the research that has used fuzzy theory to tackle decision-

making problems in software engineering. Lee [62] uses fuzzy theory to build a multi-

person decision-making model for evaluating risk during software development activities.

Bajaj et al. [63] employ fuzzy theory to estimate the effort needed to implement a software

component. Wang and Li [64] develop a multi-group decision-making model that employs

fuzzy sets to make decisions related to the selection of software-configuration items. Chen

[65] proposes an algorithm that utilizes fuzzy theory to evaluate the rate of aggregative risk

during software development. This algorithm does not require fuzzy assessment matrices for

attributes. Also, it avoids the complexity of a defuzzification process that depends on the

centroid method. Kwong and Bai [66] use fuzzy AHP to compute the weight of the

importance of customers’ requirements in the quality function deployment (QFD) method.

Praynlin and Latha [67] use an Adaptive Neuro Fuzzy Inference System (ANFIS) in the

analysis phase to estimate the effort required in the software development process.

Amindoust and Saghafinia [68] use FIS to handle the uncertainty and the subjective

judgment of the decision makers when they want to select suppliers in manufacturing and

service industries. Kutlu et al. [69] use FIS to evaluate the jobs in an organization in order to

help the management to build an appropriate pay structure based on the value of the work to

the organization. Palomares et al. [70] use ordered a weighted averaging (OWA) operator (a

fuzzy aggregation operator) to build a consensus system for large multi-person decision-

making problems.

2.5.1 Discussion

In software engineering, "uncertainty is inherent and inevitable" [71]. The

uncertainty can arise in the problem domain or the solution domain, or as a results of human

http://www.scopus.com/authid/detail.url?authorId=55936123500&eid=2-s2.0-84902687903
http://www.scopus.com/authid/detail.url?authorId=24461971300&eid=2-s2.0-84902687903

41

perception [71]. In this environment of uncertainty, any decision must be undertaken with

unknown probabilities of the outcome of the available alternatives. This occurs in many

software projects because of the limited information (historical data) or the uniqueness of

the software under development. In those cases, human reasoning and approximation are

used. Human reasoning is expressed using linguistic terms that reflect the perception of the

evaluator/decision makers. Perception cannot be represented or measured using crisp values.

Any values provided for the attributes of the decision-making problem are an approximation

of reality [72]. It is important to map these approximate values to their corresponding

linguistic values. This mapping can be performed using membership functions and fuzzy

rules aggregation, which are the components of FIS. FIS considers decision attributes as

qualitative rather than quantitative, which makes it an appropriate method for handling

uncertainty [73]. One of the contributions of this thesis to the literature is that we use FIS to

synthesize human knowledge and heuristics, and to measure the degree of membership of

each estimated value to certain fuzzy sets. These fuzzy sets represent the terms used by

humans in the estimation.

2.7 Summary of the Chapter

SaaS applications are developed using Agile methodologies due to the compatibility

between the nature of SaaS applications and Agile methodologies. Release planning is a

core process in Agile development; hence, it is a significant process in SaaS development.

Release planning can be considered as a multi-criteria, multi-person, uncertain decision-

making problem. It can be solved using optimization or prioritization techniques. Many

variables that control release planning have high degree of uncertainty. This uncertainty can

be dealt with using fuzzy theory.

42

CHAPTER 3: PROBLEM STATEMENT

This chapter introduces the variables and the problem statement that govern release

planning for multi-tenant SaaS applications. As Figure 3.1 shows, the variables of release

planning in SaaS are divided into two groups:

Release
Planning
Problem

Objectives Constraints

Max Tenants’
Satisfaction

Max
Commonality

Min Risk Contractual Effort Dependencies

 Figure 3.1: Release Planning Variables

 The objectives that the release planning process will maximize or minimize. The

current research considers three objectives: maximizing tenants’ satisfaction,

maximizing tenants’ commonality, and minimizing the risk of the release under

consideration.

 The release planning constraints which include

 Contractual constraints, which are related to the level and quality of

services that a SaaS provider guarantees to his tenants. These are usually

documented in the service level agreement document (SLA).

43

 Dependencies constraints, which are related to the technical dependencies

between features. The current research takes into account two types of

technical constraints: coupling, precedence.

 Effort constraints, which are the constraints related to the available and

required effort to deliver the next release.

 As Figure 1.2 shows, at the beginning of the planning of each release, different

tenants ask for adding, fixing, or enhancing features. A feature is "a set of logically related

requirements that provide a capability to the user and enable the satisfaction of business

objectives" [74]. A feature can be seen as a bridge between the problem domain and the

solution domain. From the perspective of tenants, the importance of features can be

classified as either mandatory or optional. “Mandatory features” are those which tenants

need to have, and they are related to the core business logic or to the quality of service

(QoS) attributes of the product. For example, in human resource (HR) systems, the ability to

add information about an employee is a mandatory feature. A security system is a

mandatory feature in SaaS applications. “Optional features” are those that tenants want to

have in their applications, but if they are not included, there will be no negative effects on

the functionalities or the QoS of the product. For example, in HR systems the capacity to

generate reports about the productivity of employees might be considered an optional

feature. Usually, conflicts occur among the stakeholders about the importance of features.

These conflicts are resolved by the release planning process, where release management

should consider all the perspectives of the different stakeholders. In release planning

process, the release managers are required to select the features that will be included in the

next release. If management has adequate resources, it will include all the requested features

44

in the next release; however, most often, the resources available to management are limited,

which means it must select just a subset of the required features.

Let be the set that represents the tenants who subscribe to the

SaaS application. While using the SaaS application, the tenants send requests to

management to add or modify some features. Let be a family of

sets of features that are requested by the tenants, where represents the features which are

requested by a tenant . For example, for a tenant , can be denoted as

 =

 such that i is the total number of features that are requested by .

Let

 be the unified set that contains all features, where is the

total number of features, such that

 and is the cardinality of the set .

The release management is required to plan the next release by selecting the features that

achieve the highest possible degree of tenant satisfaction, and the lowest possible degree of

risk. In the planning endeavor, release management must consider resource limitations as

well as technical and contractual constraints. Let ^
 be a set that represents the release plan,

such that ^

 , where ^ * and . We define

* as

the characteristic function of the set ^
such that

) =

Because release planning is a continuous process in SaaS applications [13], it is more

efficient for the release management to plan only the next release. This will cope with the

nature of SaaS applications, which are extremely volatile due to the dynamics of the market.

For example, because it is easy to subscribe or unsubscribe to the service, many tenants may

45

join or leave the service in a short period of time, which may significantly change the

features list at the beginning of each release.

3.1 Planning Objectives

SaaS providers aim to maximize tenants' satisfaction and commonality (selecting the

most common features), and to minimize risk.

3.1.1 Maximizing Tenants’ Satisfaction

The success of a SaaS application can be measured by its popularity. Popularity can

be achieved by incessantly meeting the expectations of tenants [6, 75]. Reaching a minimum

level of tenant satisfaction requires managers to include an acceptable number of the most

important features requested by that tenant in the next release. The maximum degree of

tenant satisfaction is attained by including all of the features that the tenant has requested in

the next release. The definition of importance varies from a context to other. "Importance

could, for example, be combination of urgency of implementation, importance of a

requirement for the product architecture, strategic importance for the company, etc." [76]. In

[8, 14,76] , the importance of a feature is determined on the basis of two criteria:

 Business value, which is the expected value that the feature will add to the

business of the tenant. Let be the function that captures the value of

feature from the perspective of tenant [8].

 Urgency, where the importance of the feature is associated with the time frame

within which the feature is released. In some cases, a tenant asks for a new feature

as soon as possible in order to meet some unexpected changes in the market or fix

46

unexpected bug in the system. Let be the function that captures

the priority of feature from the perspective of tenant [8].

In this thesis, we assume that importance is a combination of value and priority. Let

 be a function that returns the importance of features from the perspective of a

tenant i, such that , i j ,
+

(positive integers), and are the lowest and the highest possible degrees of importance

respectively. Depending on the definition of the value and the priority of a feature, we

define as follows:

where and α is a weighting factor that controls

the weights of the and functions, and In this research, unless

stated to the contrary, we assume that . As stated earlier in Chapter 2, release

planning is considered as multi-person decision making problem. According to [77], in a

multi-person decision making process, the decision result is influenced by the decision

weights of the decision makers. Therefore, in release planning of multi-tenant SaaS

applications, tenants are given different weights where the opinions of certain tenants are

considered more seriously than other tenants because of their business volume or loyalty.

Hence, in order to measure the actual importance of a feature, the provided estimates about

the importance of features are associated with tenants’ decision weights [8, 76]. The

decision weight of a tenant determines his importance to the SaaS provider, and is

determined by the management [8]. There are many ways to determine the decision weights

of the tenants. For example, in [8], AHP is used to calculate the relative importance of the

47

tenants. Each tenant is given a real value in the interval . In [14], a scale from to is

used. In this research we define i as a function that returns the decision weight of the

tenant such that: i and

 . i can be calculated depending

on tenants' business volume or loyalty. We will not elaborate in how to calculate i

because it is out of the scope of this research. In order to reflect the decision weight of a

tenant on the importance of various features, we define i j

(positive real numbers) as the function that calculates the importance of the feature i from

the perspective of the tenant j while taking his decision weight into consideration, such that

 i j i j According to [37], when planning for the

next release, management aims to maximize the degree of tenants' satisfaction. In other

words, we can say that the quality of the generated release plan can be evaluated by

calculating the satisfaction of each tenant and the overall satisfaction of all tenants. Let i

denote the degree of satisfaction for tenant i. We define

as a function that calculates the degree of satisfaction for a tenant as follows:

such that is the power set of returns if an element is a membership of a set

and returns if it is not, and In this calculation,
 is the release plan that is

generated by fulfilling technical, contractual and effort constraints, and making i the only

decision maker, which means that i . In other words,
 is only generated

according to the perspective of i. Note that
 is just used to measure the degree of

satisfaction of a tenant about the generated release plan (). Equation 3.3 calculates the

48

ratio of the cumulative importance of the features that are found in the set
 to the

cumulative importance of the features that in the set
 . If

 , then the degree of

satisfaction of tenant is and if
 then degree of satisfaction is .

Example 3.1: Assume that * ^
 = ,

 , , , .

It is required to calculate the degree of satisfaction of tenant .

The degree of satisfaction of tenant) can be calculated as follows:

 …

 =

 8+9+8=25

 2

 = 0.36.

The overall satisfaction () can be calculated as the additive weighting of the

degree satisfactions of the tenants.

The maximum value can take is , which means that the degree of satisfaction is

100%. The lowest value is , which means a degree of satisfaction of

Example 3.2: Assume that we have two tenants whose decision weights are 0.3 and 0.7, and

whose degrees of satisfaction are 0.8 and 0.6 respectively, then

 , which means the degree of overall satisfaction is

Algorithm 3.1 shows how to calculate the degree of satisfaction of each tenant and the

degree of overall satisfaction.

49

Algorithm 3.1

50

Analysis of Algorithm 3.1: From the algorithm, it can be observed that the growth rate of

running time of Algorithm 3.1 depends on two inputs: which represents number of

features, and which represents number of tenants. Therefore, the time of Algorithm 3.1

can be denoted as a function of and . Let be the function that represents the

growth rate of running time of the algorithm. We can observe that there are one outer loop

with iterations and inner loops with iterations for each (in the worst cases). Also,

there are two functions: sort with complexity ()
1
 since the quick sort is used, and

 2
 function with complexity (). Depending on this, the worst-case

time of Algorithm 3.1 is as follows:

3.1.2 Maximizing Commonality

When planning for the next release, it is more efficient to select the features that are

common by the highest possible number of tenants [6, 18]. This helps the release

management to fulfill the requests of more tenants with less effort. We define the

commonality of a feature as follows:

where is an integer, and . Let
 be the release plan

produced by fulfilling technical, contractual, and effort constraints, and achieves the highest

1
 The Complexity of sort function in Matlab (Matlab documentation http://www.mathworks.com/help/matlab/

)
2
 This function call algorithms 4.2 and 4.3 which are shown in Chapter 4

51

possible degree of commonality. We defined the degree of the commonality of a release

plan ^
as follows:

Equation 3.5 calculates the ratio of the cumulative commonality of the features that found in

the set
 to the cumulative commonality of the features that in the set

 .

If
 , then the degree of commonality of is 1 (100%), and if

 then

the degree of commonality is 0.

Example 3.3: Assume that *

 , , .

The degree of commonality of is calculated as follows:
 =

 = 0.66.

Algorithm 3.2 shows how to find the degree of commonality of a release plan

Analysis of Algorithm 3.2: From the algorithm, it can be observed that the growth rate of

running time of Algorithm 3.2 depends on the number of features (. It can be observed

that there are loops with iterations for each. Also, there are two functions: sort with

complexity () since the quick sort is used, and 3 function with

complexity (). Depending on this, the worst-case time of Algorithm 3.2 is as follows:

 is the dominant function in this algorithm.

3
 This function call algorithms 4.2 and 4.3 which are shown in Chapter 4

52

Algorithm 3.2

53

3.1.3 Minimizing Risk

According to [78], risk is a factor that release management tries to minimize when

planning for the next release. The risk can be defined as “a measure of the probability and

severity of adverse effects inherent in the development of software that does not meet its

intended functions and performance requirements" [79]. In the release-planning context, the

risk of a feature is the possible negative effects of the implementation of that feature on the

quality, delivery time, and cost of the release under consideration. The risk of each feature

must be estimated before planning is undertaken. Release management aims to minimize the

risk of the overall release by selecting those features that have the lowest possible risk. The

potential risk of a feature can be estimated by analyzing the following risk factors:

 Data related risk: According to [80] data security and integrity is the highest

possible risky factor in SaaS applications. Therefore, the negative effects of features

on the security of SaaS applications must be carefully considered. "A new model

targeting at improving features of an existing model must not risk or threaten other

important features of the current model" [9]. According to [9,10], the following are

the key security aspects that should be carefully taken into account in SaaS

applications:

 Data security: SaaS providers must apply strong encryption and very restricted

authorization techniques on tenants' data

 Network security: Secure data flow must be ensured in order to prevent

leakage of important tenants' information. This can be achieved by applying

strong network traffic encryption techniques. .

54

 Data integrity: SaaS providers must ensure the validity and consistency of data.

This issue becomes more critical when all tenants use the same database

instance. "The lack of integrity controls at the data level (or, in the case of

existing integrity controls, bypassing the application logic to access the

database directly) could result in profound problems. Architects and developers

need to approach this danger cautiously, making sure they do not compromise

databases’ integrity in their zeal to move to cloud computing" [9].

 Data access: SaaS providers must ensure that a user can only access the

components that he is authorized to use. For example, in many multi-tenant

SaaS applications, all tenants use the same database instance, which increases

the probability that a tenant can access to an unauthorized data. "Role Based

Access Control" is a technique that can be used.

 For each feature, all of these security and data integrity factors shall be analyzed

carefully. The features that have high risk on data integrity and security should have

low chance to be assigned to the next release.

 Software components' related risk: The criticality of the components that will be

modified when the feature is implemented should be considered. Usually, the critical

components are those that comprise the codebase of the SaaS application. According

to [13], SaaS providers try to avoid customizations that lead to changes in the

codebase because of the severe potential consequences. Instead, configuration is used

as possible. Additionally, the severity of the consequence may be even greater if the

component that will be changed is tightly coupled with other components. Moreover,

the quality of the component that will be modified when the feature is implemented

55

should be considered. According to [76], the quality of a component can be measured

by analyzing the defects of that component in the previous releases. If a feature is

related to software components that had many issues in the previous release, then the

risk of implementing this feature may cause other issues for those components. More

information about the effects of quality of components on estimates of feature risks

can be found in [76].

 Features' attributes related risk: In this factor, the risk is associated with the degree

of complexity, ambiguity, incompleteness, and volatility of the requirements of which

the feature consists. Increasing the level of one or more of these factors leads to more

risk [81].

 Development team related risk: The low level of expertise of the members of the

development team can be considered as a source of risk [82]. For example, in some

cases it may be necessary to adopt new technology (such as new programming

language) in order to implement certain features. Special training may be necessary in

order to make the development team familiar with this technology, and such training

requires additional time and effort.

In order to estimate the risk of a feature, we must measure the risk exposure of that feature.

Let , , , be the risk exposures () that are related to data integrity and

security, software components' quality, the attributes of the requirements that compose the

features, and development team expertise respectively. Then we define the risk exposure of

a feature as follows:

56

where α, β, γ, ε are the weighting factors, which give either more or less weight to each

source of the risk of a feature , and α + β + γ + ε =1. Using the definition of the risk

exposure () that stated in [83], the risk of any of these risk sources can be denoted as

follows:

 such that denotes the source of

risk (. is the probability of the occurrence of the risk

from the source when feature is implemented, and is the potential

consequences of that risk. We assume that i as in [78], where denotes

no risk, and denotes the highest possible risk. The risk estimation of a feature is assumed

to be an agreed-upon value that is provided by the designer and development team as stated

in [14]. The quality of the projected release plan can be evaluated by measuring the degree

to which it considers the risk factor. Maximum adherence to the risk factor is desired. Let

 be the release plan produced by fulfilling technical, contractual, and resource

constraints, and by completely considering the risk factor, which means guaranteeing that

the features with the lowest risk are assigned to the next release. We define the adherence to

the risk factor () as follows:

 is the ratio of the number of features in

 to the number of

features in
 . We say that a release plan has completely adhered to the risk factor when

 = 1.

57

Example 3.4: Let
 1 5 7 11 15 17 and

 17 4 7 10 5 2 .

Adherence to the risk factor can be calculated as

 = 33%.

Algorithm 3.3 shows how to calculate the degree of adherence to risk of a release plan

Analysis of Algorithm 3.3: From the algorithm, it can be observed that the growth rate of

running time of Algorithm 3.3 depends on the number of features (. From the algorithm, it

Algorithm 3.3

58

can be observed that there are two loops with iterations for each. Also, there are two

functions: sort with complexity () since the quick sort is used, and

 4
 function with complexity (). Depending on this, the worst-case

time of Algorithm 3.3 is as follows:

 is the dominant function in this algorithm.

3.1.4 Discussion

The challenge for release management is that most of time the above three objectives

are in conflict with one another. For example, it is typical to find that a feature that is very

important to the tenants is also very risky. Furthermore, many tenants may require a feature

that has significant impact on a critical component of the codebase, which may negatively

affect the functionality or performance of other components. Therefore, a trade-off must

often be undertaken in order to generate an effective release plan.

 3.2 Planning Constraints

This section presents three types of constraints that must be taken into account in a

planning endeavor: contractual, effort, and dependencies among features.

3.2.1 Contractual Constraints

Contractual constraints are related to the level and quality of services that a SaaS

provider guarantees to his tenants [5]. The service level agreement (SLA) is the document

that includes all the descriptions and limitations of the service. Usually, tenants differ in

their QoS criteria; for example, one tenant may place a high priority on receiving a low-

4
 this algorithm is shown in Chapter 4

59

priced service regardless of the performance, while other tenants may give high

consideration to the performance regardless of the cost. Thus, SaaS providers offer different

levels of service with different pre-defined SLAs. Each SLA is associated with a certain

level of the service [12, 84]. The release management needs to take the SLA of tenants into

account when planning for the next release. Tenants’ requests to add (or enhance) a feature

are verified against their SLAs. If the feature that is required by a tenant is compliant with

his SLA, then his estimate of the importance of this feature is counted; otherwise, he will be

notified that he needs to upgrade to the service level that includes this feature. If he agrees to

do the upgrade, then his estimate for the importance of this feature will be considered;

otherwise, it will be ignored (set to 0). For example, suppose a SaaS application is offered at

two different levels: standard and premium. The standard level allows its subscribers to

make changes to the user interface (UI), but does not allow any changes in the business

logic. On the other hand, the premium level allows the subscriber to add functionalities to

both UI and business logic interfaces. Requests by standard-level tenants that relate to

additions or enhancements to business logic functions will not be included in the planning.

Formally, let 1 2 p be the set that represents the levels of service of the SaaS

application. We represent each level of a service i as a set of the features that are offered

(or allowed to be offered) by this level of service, so that

 such that

 and

 means feature of the service level . In addition, we define the

operator "≤" on the set S, such that i k i k, which means the upper service level

includes all the features of the lower service levels. Let i be a function

that returns the levels that will include the feature i, such that is the power set of the

set S. Also, let i be the function that returns the service level to which the

60

tenant i has subscribed. Depending on the two functions above, the following constraint

must be satisfied by the generated release plan:

which means that for each feature assigned to the next release, at least the SLA of one tenant

must comply with of the level that will include the feature. The contractual constraint

implies that the estimate of the importance of features provided by a tenant that is not

eligible to have this feature is omitted. Formally,

such that (is the negation operation. Depending on (3.9), we define the function

 , which is the function that returns the importance of a feature from the

perspective of a tenant taking into account contractual constraints.

The aim of is to count the estimates of only the tenants whose

SLAs comply with the requested features. Moreover, the commonality function is re-defined

in order to fulfill the contractual constraint as:

 considers the compliance of a feature to the SLA of tenants in the

calculation of the commonality of a feature.

In summary, the SLA of each tenant is considered in the calculation of the

importance of each feature; such that, the estimate of the importance of a feature provide by

a tenant that is not eligible to have this feature will be omitted. In addition, when a tenant

61

has a request to add a feature and he is not eligible to have this feature, his request will not

be considered in calculating the commonality of that feature.

3.2.2 Effort Constraints

 Estimating available and required effort is an essential task in release planning [8,

33, 37, 14]. First, let us define two terms that will be used in this section:

 Story points [35]: An abstract relative metric that measures the complexity

and difficulty needed to deliver a feature. For example, a feature that requires 4 story

points is double in difficulty and complexity to the feature that requires 2 story

points.

 Velocity [35]: The number of story points that the development team can

finish in a time-boxed period (for example 2 weeks). In XP, term iteration is used to

denote this time-boxed period.

In order to measure the available effort, the following steps are performed:

 Set the beginning and ending dates of the release

 Set your velocity (it can be obtained from previous releases)

 Calculate the number of iterations (an iteration is a period of weeks)

 –

 Calculate available effort as:

62

The release managers are responsible for estimating the available and required effort [76].

They shall select the features whose total required effort fits the available effort. Formally,

the following constraint must be satisfied by the generated release plan:

such that
 represents the effort needed to implement a feature

 measured by story points. It is important to point out that story points are derived using

different techniques [35]:

 Expert opinion: the estimates depend on intuition and expertise.

 Analogy: the feature is estimated with other features, which means relative

estimation is performed between the features.

 Disaggregation: a feature is split into smaller features, which will be easier to

estimate.

 Planning poker: where the all three of the above techniques are used to

estimate the effort. Planning poker requires many developers to work

together in the estimation endeavor.

3.2.2 The Constraints of Dependencies among Features

The dependencies among features require significant consideration in the release

planning process. According to [85], most features depend on one another in many ways.

There many times of constraints such as either or, at least one, at most one, coupling and

precedence [85]. Many research about release planning consider the last two types of

constraints [8,14,32,33,37,40]. Therefore, In current research, we consider only these two

63

types of constraints in order to maintain simplicity of the proposed formulation and be

compatible with other release planning works.

3.2.2 .1 Coupling

Two features or more are coupled when they should be delivered in the same release.

This can occur for several reasons. For example, if we have features 1 and 2, then the

following scenarios can make these two features coupled:

 The importance of delivering the two features together (in the same release) is

more than the sum of the importance of the features if each one is delivered

separately (in different releases).

 The effort needed to deliver the two features together is less than the sum of the

effort if they are delivered individually.

 Each one of the two features cannot be functional without the existence of the

other feature, which means 1 2 is functional.

When planning for the next release, the coupling constraints shall be satisfied. Formally, let

 be a binary relation,

such that i j i

 j , is the characteristic function of the release plan set (, as defined in

equation (3.1). This relation denotes that either the two features assigned to the next release

or both of them are assigned to a future release.

3.2.2 .2 Precedence

A feature i precedes a feature j when i should be delivered (or at least

implemented and tested) prior to feature j. There are many reasons why a feature should

precede other features, as in the following scenarios:

64

 j cannot be functional without the existence of i, which means

 j i

 Marketing policies play a significant role in the precedence between features.

For example, it is common in software industries to deliver features in different

releases in order to keep their customers attracted to their product.

 There are two types of precedence: weak and strict. In a weak precedence, i and j can be

implemented in the same release; however, j should not be implemented in an earlier

release than i. In strict precedence, i and j cannot be implemented in the same release,

and i should be implemented in an earlier release than j. Formally, we define these

relations as follows: 1) as a binary relation

such that

 i j i ≥ j , and 2)

 as a binary relation such that i j i j .

For the purpose of this research, we assume that the precedence between features is of the

first type (weak precedence). For simplicity, we call this relation .

3.3 Summary of the Chapter

Planning for the next release for multi-tenant SaaS applications aims to maximize

stakeholders' satisfaction, to maximize commonality of features, and to minimize the

potential risk. In addition, release planning shall consider effort constraint, where the

required effort to implement the selected features shall be equal to or less than the available

effort. Additionally, release planning shall comply with the contractual constraints.

Moreover, release planning shall take dependencies constraints into account. In this thesis,

we consider two dependencies constraints: 1) coupling and 2) precedence. Table 3.1 shows

65

all the variables discussed in this chapter with the design goals and motivation of including

them in the release planning for multi tenants SaaS applications

Table 3.1: The Design Goals of the Variable of Release Planning in SaaS

Problem Variables Type Design Goals

Tenants satisfaction objective Popularity of SaaS applications is a significant indicator of

the of success of the software [6]. It can be increased by

maximizing tenants' satisfaction.

Risk Objective The high quality of software can increase its popularity.

High quality means including all the required functional

requirements while considering the non-functional

requirements such as security and performance. Postponing

the features that have risk on non-functional or functional

requirements to later releases increase the quality of the

software.

Commonality Objective selecting the features that are required by the highest

possible number of tenants helps the release management to

fulfill the requests of more tenants with less effort.

 Contractual constraints Constraint SaaS are offered is different service levels, which makes it

important to fulfill the needs of tenants according to their

SLA.

Effort (required and

available)

Constraint SaaS providers have limitations in effort that prevent them to

fulfill all the requested features. Therefore, they select subset

of features while taking into account their effort limitations.

Dependencies

constraints

Constraint Most of features depend on one another in different ways.

The quality of the delivered release can decrease if features

are implemented with violating their dependencies since the

functionalities of these features may not be completed.

66

CHAPTER 4: FUZZY INFERENCE SYSTEM-BASED APPROACH

4.1 Introduction

Chapter 3 explored the variables that affect the release planning process for SaaS

applications. Most of these variables are subject to uncertainty, for two reasons [34, 86]

 Insufficient knowledge about the features on the part of stakeholders: For

example, a developer may estimate the risk of a feature as "low," when in fact

it is not, or a tenant may consider a feature as “highly urgent,” when in fact it

can be postponed to a later release;.

 The nature of features: Some features are ambiguous or poorly analyzed,

making them difficult to evaluate accurately.

Because of this uncertainty, release planning problems cannot be resolved without human

intuition. As stated in [32] "Any formalized computational technique in isolation is

unlikely to determine meaningful results because only a subset of the reality can be taken

into account." Many existing approaches to release planning use human expertise as a final

stage in order to tune the solutions that have been generated by computation models [37].

Those approaches may be practical in systems with limited numbers of features and

stakeholders. However, such approaches are not feasible in the development of many SaaS

applications, where thousands of tenants located in different locations participate in the

planning endeavor. Therefore, it is imperative that a system be created that will allow

release management to automatically and implicitly incorporate human expertise into the

formulized solution of release planning problems. In many decision making applications

[87, 88], linguistic rules have proved highly effective in capturing human expertise. In

linguistic rules, the antecedents and premises are described using linguistic terms. These

67

terms can be considered as an approximation of the values that the estimated factors can

take. In the current work, we use Mamdani types FIS [89] to build the linguistic rules, and

then we synthesize the stakeholders’ input using these rules in order to produce a rank for

each feature. The features with the highest ranks have the greatest chance of being

assigned to the next release.

The rest of this chapter is organized as follows: The preliminaries of fuzzy set theory

are presented in Section 4.2. The process of Mamdani FIS is described in Section 4.3.

Section 4.4 presents the proposed approach. The applicability of the proposed approach is

illustrated by a proof-of-concept example in Section 4.5. The summary of the chapter is

stated in Section 4.6.

4.2 Preliminaries

4.2.1 Basics of Fuzzy Set Theory

Fuzzy set [50] is a generalization of crisp set. The elements of a crisp set in the

universe of discourse can be characterized using characteristic function as:

µA(x) =

 (4.1)

In a fuzzy set, the characteristic function is generalized to the membership function. Within

a set , the different elements have different grades; a higher grade means a higher degree

of membership. A fuzzy set is defined using its membership function as:

 (4.2)

such that A shows the membership degree of element to . can be described as

follows:

68

 A =

 (4.3)

Example 4.1: Assume a fuzzy set (shown in Figure 4.1) is defined using the following

membership function:

 A =

 (4.4)

We can see that A = , A = , and A = , which means that the elements

 and are members of in degrees of , , and respectively.

Figure 4.1: Example of a Fuzzy Set A

µA(x)

X= 4

1

0
U 6 12

69

The operations such as the complement union, and intersection of basic crisp

sets can be generalized to fuzzy sets. If are fuzzy sets in a universe of discourse then

the following operation are defined:

Complement: A
c µA

c µA
c µA

Union: µA B(x) A B A B

Intersection: A∩B A∩B A B

Fuzzy subset, equality, support and core of fuzzy sets are defined as follows:

Fuzzy subset: A B

Fuzzy sets equality: A B

Support of a fuzzy set: A

Core of a fuzzy set A

A fuzzy singleton is a fuzzy set whose support is a single point in the universe of discourse.

The height of a fuzzy set is the maximum grade of membership in , which is

defined as: A .

 is a normal fuzzy set when

 is a convex fuzzy set if A A A

A fuzzy number [90] is a normal and convex fuzzy subset in the universe of discourse

(real numbers). A fuzzy number can be identified by the tuple and the

membership function as follows:

 (4.5)

70

such that
 and

 . The height of the fuzzy number

is . If , then is a normal fuzzy number. The characteristics of are as

follows:

 is continuous.

 is monotonic increasing on and monotonic decreasing on

When , then becomes a trapezoidal fuzzy number. becomes a triangular fuzzy

number if it is trapezoidal and .

The
(-cut of is a subset of such that A

If is a trapezoidal fuzzy number then we can write

 .

4.2.2 Fuzzy Numbers Arithmetic

In fuzzy numbers arithmetic [90], the interval arithmetic on the -cut of fuzzy

numbers is used as the arithmetic on fuzzy numbers. Let denote any of the four main

arithmetic operations (+, , and let and be two linear fuzzy numbers; then

 such that . This Equation is not applicable when

 and . Let and are trapezoidal fuzzy numbers that are defined as follows:

 [A A A A B B B B , then the four basic operations are applied as

follows:

 A B A B

 A B A B

 A B A B A A B A B A B A B A B

71

 Example 4.2: Figure 4.2 shows the four arithmetic operations for fuzzy numbers

 Figure 4.2: Fuzzy Numbers Arithmetic

4.2.3 Linguistic Variables

A linguistic variable [91] is one in which the values are linguistic terms (words).

This is the natural way in which humans express their knowledge about most variables in

their daily life. As stated in [91] "A particularly important area of application for the

0 5 10 15
0

0.5

1
A+B

 A

B

A+B

0 5 10 15
0

0.5

1
 A-B

 A

B

A-B

0 5 10 15
0

0.5

1
A*B

 A

B

A*B

0 5 10 15
0

0.5

1
A / B

A

B

A/B

72

concept of a linguistic variable is that of approximate reasoning, by which we mean a type

of reasoning which is neither very precise nor very imprecise". For example, “distance” is a

linguistic variable that can take linguistic values in the set {close, not far}. "A linguistic

variable can be defined by a quintuple in which is the name of the

variable, is the values set (term-set) of , is the universe of discourse, is a

syntactic rule which produces the term-set and is the semantics rule which

associates each linguistic value to its meaning" [91]. The base variable for a linguistic

variable is a numerical variable that can take numbers (real, integer, etc.).

Example 4.3: As figure 4.3 shows, distance is the fuzzy variable that may take two fuzzy

values . These two values are restrictions on the base value (distance

in).

Figure 4.3: Example of a Fuzzy Variable

4.3 The Mamdani Fuzzy Inference Systems Process

A fuzzy inference system (FIS) process can be described as a function that receives

input and maps it to output depending on certain rules. The main characteristic of the FIS

process is that it mimics the human way of reasoning, meaning that a set of linguistic

Compatibility (x)

1

0
Distance2 Km 5 Km

Close Not Far

7 Km

73

variables interact with each other to generate the output [92]. There two well-known FIS

types: Mamdani [89] and Sugeno [93]. The consequence in Mamdani is a fuzzy variable that

takes fuzzy variables (linguistic terms), and defuzzification is used in order to calculate the

output. In Sugeno, the consequence is a linear function, and the output is calculated using

the weighted average of the firing strength of the rules. We have used Mamdani in this

research due to the following reasons:

 Mamdani has the ability to acquire the human knowledge in an intuitive and

human-like manner [94].

 "Mamdani has expressive power, easy to formalize, intuitive and

interpretable nature of the rules, and widely used in decision support

applications" [95].

 "Mamdani fuzzy model is more interpretative than Sugeno fuzzy models

from a human perspective" [96].

 Mamdani is more transparent than Sugeno from the perspective of

representing human knowledge. Therefore, Mamdani models are usually

used in modeling human expert knowledge [97].

In order to design a Mamdani FIS, two components must be defined.

4.3.1 The Database

 The database component contains the parameters relating to the input and output

variables. For example, the database includes the name of the input and output variables, the

linguistic values that input variables can take, and the meaning (parameters) of these

linguistic terms. In detail, the main artifacts of the database component are as follows:

74

 Linguistic variables that are defined in the universe of

discourses respectively. For the purpose of this research, we

assume that . In Multi Input Single Output (MISO) FIS, there

are many input variables and only one output variable; i.e.

 which represents the output variable of the FIS module.

 Linguistic terms contained in such that is a

set of linguistic terms associated with the linguistic variable .

) which is a set that contains the semantics of linguistic terms. The

semantics of linguistic terms are the fuzzy number associated with each

linguistic term (see the definition of linguistic variables in section (4.2.3)). Each

term in) is associated with a fuzzy number in). This fuzzy number

represents the semantics of the term . In other words,)

 such that is the meaning of

 The parameters that define the fuzzy numbers. For example, if is a

trapezoidal fuzzy number, and represents the semantics of , then the database

contains the values of of . The parameters of fuzzy numbers can

be determined in several ways, such as direct rating, polling, interval

estimation, membership function exemplification, pairwise comparison, and

reverse rating [97].

4.3.2 The Rule Base

 The rule base contains the IF-Then fuzzy rules. An IF-Then fuzzy rule can take the

form of: where , and are the

sets that contain the linguistic terms for the variables and respectively. Fuzzy rules are

75

evaluated by turning them into fuzzy implications. A fuzzy logic implication is a

generalization of a crisp logic implication. A fuzzy implication can be denoted by the

function such that , and

 are the result of the defuzzification processes of and respectively. The

defuzzification process is discussed in detail in the next section.

4.3.3 The Inference Process

Assume that a FIS has input variables and one output variable ,

and receives crisp inputs in the universe of discourses

respectively. Let be the number of the rules such that

 . A rule

 can be defined as follows:

 (4.6)

such that
 represents the premise number in the rule k,

 and is T-norm or T-conorm

operators. We will use T-norms operator. The following processes are

applied in order to map inputs to an output using FIS:

 Evaluation of the output (conclusion) of each rule: We define) as the a

function that calculates the output of the rule where

)

 (4.7)

 is the fuzzificaztion process. This process aims to find how much the base

variable
 (which is crisp) is a member of the fuzzy set and is a linguistic

term that (the linguistic variable) can take. The inner calculates the firing

strength of the rule. The outer applies the implication operation of the rule. The

76

output of the implication is a fuzzy set that results from truncating the fuzzy set in

consequence of the rule. The variable represents the support value of the

membership function .

 Aggregating all the rules: The output of the previous step is fuzzy sets that

represent the conclusions of rules. In the aggregation process those generated

fuzzy sets are unified in one set; let us call this set which can be defined as follows:

that means:

 Defuzzification: In this step, we calculate the result of the inference process,

which is obtained by calculating the centroid of

Example 4.4: Assume importance, risk, and rank of software features are three

linguistic variables. The terms of these to variables are defined as follows:

 .

Assume the fuzzy rules are defined as follows:

 .

 .

 .

(4.9)

77

Figure 4.4 shows the process of the FIS when the and

4.4 The Proposed FIS-based Approach

As Figure 4.5 shows, the proposed approach consists of four processes: raw data

collection, preprocessing, ranking, and release plan generation. The output of a process is

considered as the input of the next process.

4.4.1 Raw Data Collection

As Figure 4.6 shows, in this process, the release management collects and organizes

the data about the variables that control the planning for the next release. The data is

collected through eight different processes (the boxes with bold borders in Figure 4.6). The

output of the “Raw Data Collection” process is comprised of the following eight data

structures:

 Tenants’ decision weights: Each tenant is given a decision weight. This

weight represents the importance of this tenant to the SaaS provider. For

example, tenant weight may be calculated depending on tenant loyalty or

Figure 4.4: Example of Mamdani FIS Process

78

volume trade. Release management obtains the information about decision

weights from the tenants' profiles. Let be an elements vector that contains

the decision weights of the tenants, such that contains the decision weight

of the tenant The decision weights of the tenants are normalized to 1, which

means

Data
Collection

Development
Team Profiles

Management

Tenants

Tenants Profiles

Features
Repository

Development team

PreProcessing

 IMPORTANCE (Importance of features from the
perspectives of tenants

 W (Decision weights of tenants)
 RISK_Vector (Risk of features)
 D (Dependencies among features)
 EFFORT_Vector (Required effort for features)
 Avail_E (Available effort)
 S (Compliance with service level of tenants)
 COMMONALITY (Commonality of features)

Ranking

W
e

ig
h

te
d

_
E

Release
Planning

Generation

RANK

Release Plan for
the Next Release

IMPORTANCE
W
S

Ranking

 Figure 4.5: The Proposed FIS-based Approach

79

Features
Repository

Evaluate The
importance of

Features

Tenants

IMPORTANCE

Management

Development team
Evaluate The Risk

and Required
Effort of
Features

RISK_Vector

Tenants
Profiles

Determine
Compliance

between tenants
requests and

their SLAs

S

EFFORT_Vector

Determine
Dependencies

among Features

D

Calculate
Commonality of

Features

COMMONALITY

Calculate the
Decision Weights

of Tenants

W

Determine
Available Effort

Avail_E

Development
Team Profiles

IMPORTANCE

 Figure 4.6: The Raw Data Collection Process

 Compliance between tenants’ requests and their SLAs: As stated in Section

3.2.1, the SLAs of the tenants must be considered in the planning process. A

request of a tenant to include a feature in the next release must be validated

against the SLA of that tenant. The requests of tenants can be obtained using a

user interface that is usually part of SaaS applications. Let be the

function that returns the service levels that will include the feature , and

 is the function that returns the service level to which the tenant i

has subscribed, then we have to validate that (see

80

Section 3.2.1.). To capture the data about the features and their compliance to

the SLAs of the tenants, we define as matrix, such that

 .

 Importance of the features: Each tenant provides his or her estimate about the

importance of each feature. A user interface can be used to obtain the estimates of

tenants about the importance of features. As defined in Chapter 3, is the

estimate of the feature from the perspective of tenant , where and

 . As in [8], we assume that the estimates are provided in the range from

1 to 9 where 1 and 9 are the lowest and the highest degrees of importance

respectively. We define as matrix, such that

 Risk of the features: The risk of each feature is estimated. We assume that the risk

of a feature is an agreed-up-on estimate provided by the members of the

development team. As shown in Chapter 3, is the function that captures the

risk exposure of a feature . We assume that the highest possible degree of risk

takes the value 9 while the lowest take the value 1. We define as

elements vector, such that and .

 Required and Available Effort: As explained in Chapter 3, is the

function that captures the effort of a feature . We assume that the estimate of the

required effort of a feature is provided in the form of real numbers, and represents

the required person/days to implement that feature. We define as

 elements vector, such that and

81

 . The available effort is captured as a crisp value at the beginning of

each release planning. The steps for calculating are stated in Section 3.2.3.

 Dependencies among features: As stated in Section 3.2.3, we consider two

types of dependencies: coupling and precedence. If and are coupled, then

they should be included in the same release, and if precedes then the former

feature will be implemented before the later one. As described in Section 3.2.2, the

dependencies among features can be due to managerial or technical issues.

Therefore, those dependencies are defined in tandem by release management and

the development team. Let be a n matrix that represents the dependencies

among features, such that the element is defined as follows:

 Commonality of the features: As stated in Section 3.1.2, the commonality of a

feature shows the number of tenants that have valid requests for this feature. We

define as an elements vector that includes the commonality of

features. An element of the vector is defined as follows

 =), such that) is

the function that calculates the commonality of a feature with taking into account

the contractual constraint; i.e. the request of a tenant for adding a feature will not

(4.10)

82

be considered in the commonality calculation if that tenant is not eligible to have

that feature.

4.4.2 Preprocessing

In this process, some of the data structures that resulted from the previous step are

augmented in order to prepare them for the next process. As Figure 4.6 shows, the inputs for

this stage are:

 (The importance of features from the perspectives of tenant)

 (The decision weights of tenants)

 (The compliance between the features and the SLA of the tenants)

W

IMPORTANCE

S

Calculating the
weighted

importance of
each feature

WeightedE

Figure 4.7: The Preprocessing Process

The output of this process is the vector. contains the importance

of features with considering the decision weights of tenants. The following steps are

performed at this process:

 Calculating the weighted importance of each feature

83

First, we define as matrix that includes

the importance of features from the perspectives of tenants while taking into

account the service levels of the tenants. An element of this matrix is defined as

follows:

 As we can see from this Equation, if a features is not complied with the SLA

of a tenants then the estimates of will not be counted for a feature , which

means that

Using and (the decision weights of the

tenants), we can calculate the weighted importance vector. The weighted

importance of a feature is a real number that shows the overall importance of

that feature by taking into account the decision weights of all tenants. The

tenants with higher decision weights have more effect on the value of the

weighted importance of a feature. The weighted importance of the features are

included in a vector which we call such that

(is matrix and is vector.).

Algorithm 4.1 shows the data collection and the Pre-processing processes.

Analysis of Algorithm 4.1: From the algorithm, it can be observed that the growth rate of

running time of Algorithm 3.3 depends on the number of features (and the number of

tenants The worst-case time of Algorithm 4.1 is as follows:

84

Algorithm 4.1

85

4.4.3 Ranking

The ranking process employs a FIS engine to generate a rank for each feature. As

Figure 4.8 shows, the inputs to this process are:

 , , and vectors.

The output is matrix, which we call .

RISK_Vector

COMMONALITY

IMPORTANCE
COMMONALITY

Aggregation
(L 1.1)

EFFORT RISK
Aggregation

 (L 1.2)

Rank
Calculation

R
A

N
K

[i,2]

RANK

WeightedE

EFFORT_Vector

Aggregated Value 1

Aggregated Value 2

FISRANKING

RANK[i,3]

RANK[i,1]=i
RANK[i,2]=FISRANKING(WeightedE[i],COMMONALITY[i],RISK_Vector[i],EFFORT_V

ector[i])
RANK[i,3]=EFFORT_Vector[i]

 Figure 4.8: Ranking Process

86

The first column of contains features IDs (we use integer numbers in), the

second column contains ranks of the features, and the third column contains the required

effort of the features. The core component in "Ranking" process is the FIS engine, which we

call It can be considered as a function that receives inputs about a feature

and generate a rank for that feature. The rank of a feature is a real number that shows the

priority of the feature with taking into account the importance of that feature from the

perspectives of the tenants, the risk associated with the feature, the required effort to

implement the feature, and the commonality of the feature. The fuzzy rules play the major

role in determining the rank of features. For example, if the fuzzy rules give the importance

of features higher consideration than the risk, then the features with higher importance value

will be given higher ranks regardless of the risk. This shows that the perspectives of the

designer of the FIS engine is the main player in FIS approach. The elements of is

defined as follows:

 and

 .

The artifices of are defined as follows:

 Four input linguistic variables: and

 Each linguistic variable is associated with an input vector.

The linguistic terms of these four variables and their meaning (parameters of the

membership functions) are assumed to be identified by the domain experts. In order

to deal with the disarmaments that may occur between the experts in defining the

87

membership functions, we use polling method. Using the polling method

guarantees that the beliefs of the experts about the elements of the universe of

discourse are interpreted in the membership functions. Polling method is explained

in more details in Appendix II.

 IF-THEN fuzzy rules: The rules shall be constructed in a way that increases the

final rank of the highly important and high commonality features, and minimizes

the rank of high risk and high effort features. The if-then fuzzy rules are in this

context are generated by the domain experts. We assume that all disagreements in

building IF-then fuzzy rules are resolved, and the provided rules represent the

opinion of all experts. When designing fuzzy rules, the likelihood of exponential

increase in the total number of rules is a significant issue that should be taken into

account. In our case, the maximum number of rules can be

A huge number of rules "may damage the transparency and interpretation of FIS as

humans are incapable of understanding and justifying hundreds or thousands of

fuzzy rules and parameters" [98]. Therefore, it is necessary to use one of the

techniques for rules reduction. In this thesis, we chose the hierarchical fuzzy

inference system [99], in which the fuzzy system is built in a hierarchical manner.

Hierarchical fuzzy rules have proved to reduce the number of rules without

affecting the approximation ability of the FIS [100]. In the hierarchy of fuzzy units,

the outputs of lower levels are the inputs for higher levels. There are many

88

structures of hierarchical fuzzy systems, including incremental, aggregated, and

cascaded structures, and combinations of these three. More details about

hierarchical fuzzy system are found in [98]. In our proposed model, we aggregate

the inputs related to the development team and management using one FIS sub-

module, and we aggregate the inputs related to the tenants using another FIS sub-

module. After that, the outputs of these two intermediate FIS sub-modules are

aggregated using a third FIS sub-module, which generates a rank for the feature

under consideration. More precisely, as Figure 4.8 shows, consists

of three FIS sub-modules:

 Risk-Effort aggregation (Level 1.1): The input to this module is the risk

and effort of a feature .

 Importance-Commonality aggregation (Level 1.2): The input to this

module is the weighted importance and the commonality of a feature

 Rank calculation (Level 1.1-Level 1.2 aggregation): the two outputs of

previous level are aggregated in order to generate the initial rank for the

feature

After applying the ranking process on all the features, we end up with the list, which

is the input to the final process, "Release planning generation."

4.4.4 Release Planning Generation

The first step in this process is that the values of the matrix are tuned in order

to satisfy the dependencies constraints. For coupling constraints, the ranks of the features

that are coupled are adjusted to have the same rank, which means (

 . Algorithm 4.2 shows how this adjustment is applied.

89

Algorithm 4.2

Analysis of Algorithm 4.2: From the algorithm, it can be observed that the growth rate of

running time of Algorithm 4.2 depends on the number of features (. The worst-case time

of Algorithm 4.2 is as follows:

In order to satisfy the precedence constraints, it is required to adjust the ranks in a

way that makes the superior features have higher ranks than dependent features, which

means . This guarantees that is

assigned to the next release if and only if is already assigned. Algorithm 4.3 shows how to

adjust the ranks of the features in order to satisfy the precedence constraints.

90

 Algorithm 4.3

Analysis
5
 of Algorithm 4.3: From the algorithm, it can be observed that the growth rate of

running time of Algorithm 4.3 depends on the number of features (. The worst-case time

of Algorithm 4.3 is as follows:

 .

After that, a greedy approach is applied; that is, the features with the highest rank are

added to the release plan. This process is continued for as long as the available effort is not

5
 is a function that finds the minimum difference between any two elements of a vector.

The complexity of this function is

91

exceeded. In algorithmic form, the release planning generation process is shown in

Algorithm 4.4.

Algorithm 4.4

Complexity of Algorithm 4.4: From the algorithm, it can be observed that the growth rate

of running time of Algorithm 4.3 depends on the number of features (. The worst-case

time of Algorithm 4.4 is as follows:

92

In the next section, the applicability of the proposed approach is illustrated,

using a proof-of-concept example.

4.5 Proof of Concept

Assume we have 20 features that are requested by five tenants. The release

management estimates the available effort as equal to 40 person-days. In order to use the

proposed FIS-based release planning approach to build the plan for the next release, we

apply the following stages:

1) Raw data collections

Using the profiles of the tenants, the release management calculates the decision

weights . For each feature, the

release management specifies the tenants who asked for that feature. The first part

of Table 4.1 shows the features that are requested by each tenant. Each column

 in this part of the table represents the characteristic function of the set (the

set that represents the features that are requested by tenant). If i is requested by

 j then the cell ; otherwise, it equals . Using the profiles of the tenants,

the release management determines the validity of tenants' requests. The second

part of Table 4.1 shows the compliance of the SLA of each tenant with the

features (matrix). Using the second and third steps, the commonality of each

feature is calculated () which shown in the third part of Table

4.1. The development team and release management specify the dependencies

among features. In this example, we assume that the dependencies are defined as

follows:

93

Each tenant provides his estimates about each feature. Also, the development team

provides the estimates about the required effort and the risk. The first part of Table

4.2 shows the matrix. The second and third parts of table 4.2 show

the and the

Table 4.1: The Features List Requested by Each Tenant, the Compliance of SLA of

Each Tenant with the Features, and the Commonality of Features

94

Table 4.2: The Estimates of the Importance, Risk, and Required Effort of the Features

2) Preprocessing

In this stage, we generate the , which the vector that contains the

weighted importance of features. In order to generate vector, the following

steps are applied:

I) Generating matrix by applying element wise

multiplication between and S matrix. The first part of Table 4.3

shows the

II) Generating by multiplying by

(the decision weights of the tenants). The second part of Table 4.3 shows the

 in this example.

95

 Table 4.3: AUGMENTEDIMPORTANCE Matrix, and WeightedE Vectors

3) Ranking

 The ranking process is a structured hierarchical FIS engine. As Figure 4.8 shows,

this FIS engine () is composed of three modules. We use Matlab Fuzzy

Logic Toolbox to build . Four experts participate in defining the membership

functions of the input and output variables. Appendix III shows the data collected from

these experts using polling method. Appendix IV shows the IF-then fuzzy rules used in

these fuzzy modules. The output of Ranking process is list as shown in table 4.4.

The features are sorted according to their ranks.

96

Table 4.4: The Output of Ranking Process

 (RANK List before Applying Dependencies Constraints)

4) Release Planning Generation

During this stage, first algorithms 4.2 and 4.3 are used in order to tune the ranks of features

to reflect the dependencies constraints. Table 4.5 shows the list after tuning the

ranks of features. The last step is to apply algorithm 4.4 to select the features that will be

implemented in the next release. In our example, those features are:

97

Table 4.5: RANK List after Applying Dependencies Constraints

4.6 Summary of the Chapter

Release planning cannot be performed in isolation from human influences. Because

of the human factors, release planning can be considered as an under-uncertainty decision-

making problem. Therefore, human expertise must be taken into consideration while at the

same time dealing with uncertainty. This chapter proposes a FIS-based approach that

automatically incorporates human expertise with the computational solutions, and considers

the uncertainty factors. The proposed approach is composed of four main processes:

collection of raw data, preprocessing, ranking, and release planning generation. The

dependencies among features are considered by adjusting the ranks of features; such that,

the coupled features have the same rank and, in the precedence constraints, the superior

features have higher ranks than dependent features. The effort constraint is taken into

account by applying a greedy approach when features are assigned to a release plan; such

that, the features list are sorted according to their ranks and then the features are assigned to

the release plan until the total effort of the assigned features are equal to the available effort.

98

CHAPTER 5: OPTIMIZATION BASED APPROACHES (BLP and GA)

5.1 Introduction

This chapter proposes two optimization approaches for generating the next release

plan for multi-tenant SaaS applications. The first one is a BLP-based approach. In many

earlier studies about release planning, integer linear programming (ILP) has been applied to

solve release-planning problems [33, 38, 101]. BLP is a special case of ILP, where the

variable takes only binary values. BLP [102] can be used in selection problems, where the

decision makers have many alternatives and they want to eliminate the inappropriate ones.

BLP can also be used in yes/no problems, where the solution is a set of selected choices.

Since we are planning for only the next release, we can make release planning more specific

by restricting the decision variable on the set {0, 1}. Therefore, a BLP approach is suited to

planning the next release in SaaS applications, where the SaaS provider needs to select a

subset of features from among all those requested. However, it can be very expensive to find

optimal solution using BLP; especially, when there is huge number of variables. Therefore,

in the third approach we use GA, which is a heuristic optimization technique, in order to

reduce the cost of release planning process. GA has been used in many studies to generate

software release plans [8, 32, 37, 44]. The proposed optimization approaches help the

release management to plan the next release in a way that maximizes tenants’ satisfaction

and release commonality, and minimizes the risk of having insecure and low-quality

releases. In addition to those objectives, the proposed approaches takes into account the

effort, the compliance of tenants requests with their SLA levels, and the dependencies

constraints.

99

This chapter is organized as follows: Section 5.2 presents the general BLP model.

Section 5.3 introduces the BLP-based approach. Section 5.4 presents the GA-based

approach. Section 5.5 shows applicability of the proposed approaches using a proof-of-

concept example. Section 5.6 presents the summary of the chapter.

5.2 Binary Linear Programming

Let be the objective function that we want to minimize. Then the

standard form of binary linear programming (BLP) problems is as follows:

 such that

subject to :

1) inequality constraints

2) equality constraints

3) .

If we want to maximize the objective function then we rewrite the objective function as

In order to simplify the inequality constraints we convert them to equality constraints by

adding a slack variable , such that the inequality constraints can be rewritten as

100

The objective function and equality and inequality constraints can be represented using

matrices and vectors as follows:

such that is raw vector and is

column vector.

subject to:

1) inequality constraints, which can be written as where is matrix,

 is column vector, and is a column vector. Note that is the number

of constraints and is the number of variables.

2) equality constraints, which can be written as , where is

matrix, is column vector, and is a column vector. Note that is

the number of constraints and is the number of variables.

In BLP, one possible way to find the optimal solution is to enumerate all possible

solutions and then to choose the one that is optimal in maximizing (or minimizing) the

objective function. The problem with this strategy is that the number of possible solutions

increases exponentially with the increasing of number of variables. If there are variables,

then there are
possible solutions. The branch-and-bound algorithm addresses this

problem [102]. Branch and bound is a "divide and conquer" strategy, which divides feasible

regions into smaller, controllable regions. These new regions are divided recursively into

smaller regions until the optimal solution is attained. This algorithm is described in more

details Appendix I.

101

5.3 The Proposed BLP-based Approach

The proposed BLP-based approach consists of three processes: raw data collection,

preprocessing, and release plan generation. The output of a process is considered as the

input of the next process. The raw data collection stage is the same as is defined in Section

4.3.1. The preprocessing is the same as is defined in Section 4.3.2. The output of these two

processes: , , , , and (which

is the matrix that has the dependency among features).

5.3.1 Release plan generation

The aim of release-plan generation is to optimize feature selection. The process aims

to select the features that maximize tenants' satisfaction and commonality and minimize the

risk, while taking into account the effort, the compliance of tenants’ requests with their SLA

levels, and dependencies constraints. The output of release plan generation process is the

desired release plan which is represented as a vector of decision variables 1 2 n ,

where i If i , then the feature is assigned to the next release; otherwise, it is

postponed to a future release. This is equivalent to = , where the

characteristic function of the set is (represents the release plan for the next release

(see Chapter 3)). Depending on these decision variables, we can define the BLP model for

release planning in SaaS as follows:

such that

 subject to

102

The objective function (Equation 5.7) shows that element-wise multiplication is applied on

 and vectors, which means that increasing the value of

6 or will increase the chance that a feature will be

included in the next release. Also, we can see that we divide the result of this multiplication

by , which means that increasing the will decrease the

chance that will be included in the next release; in other words, the risky requirements

should have a lower chance of being included in the next release. is a scale factor. If

 , then more emphasis is given to the importance and commonality of features. If

 , then more emphasis is given to risk. Unless stated to the contrary, we assume

that . The effort and dependencies constraints are dealt with using equality and

inequality constraints. Equation (5.8) represents the effort constraint. The total required

effort for the selected features (which means the associated decision variables are set to)

is less or equal to the available effort Equations (5.10,5.11) represent the

dependencies constraint. If then and shall be included in the same release

which means are the decision variables associated with the features

 , respectively). Also if then shall precede , which means

6
 [i] denotes the element i of an array

103

5.4 Genetic Algorithm-based Approach

 Genetic algorithms emulate the process of biological evolution in the natural life

[43,]. The theory of biological evolution state that the population of species is improved

during time. The new generations are an improvement of previous ones. From a population,

only fit (healthy) organism can survive and participates in producing future generations. The

offspring have mixed traits from the parent (previous generation) by the operations of

crossover of parent’s chromosomes. Each chromosome consists of gens and each gen

contains a trait. Genetic Algorithm (GA) is population-based search algorithm that search

for the optimal or near optimal solutions by producing a sequence of generations [42].

Figure 5.2 shows the steps of GA. At the beginning of GA, random population is generated.

Two factors shall be balanced when determining the population size: 1) obtaining high

quality solutions (more optimality), which is increased when the population size is

increased, and 2) the computation time, which is less when low population size is used. In

this context, each individual in the populations is represented using binary numbers,

where refers to the number of variables (the length of vector). We use the

default population size in Matlab (200 individuals). In the second step of GA, each solution

in the population is evaluated using the fitness function (the objective function). If the

optimal solution is found, the algorithm ends and returns the solution; otherwise, the fit

solutions (the ones that have achieved the highest values of the fitness function) are selected

for the reproduction process. Reproduction process involves two operations: crossover, and

mutation. Crossover is the process of selecting two parents and combines the gens of these

two parents. There are three basic types of crossover: one point, two points, and uniform

crossovers. More details about crossover found in[104]. For examples if

104

 and then the result of one point crossover can

be . Mutation is the process of altering some gens values in order to avoiding

trapping at a solution in the local optima. For example, the result of previous crossover

operation can be changed to 111101. Mutation is performed according to mutation

probability. The value of mutation probability depends on the type of the problem. The

algorithm keeps running until the termination condition is reached. The termination

condition can be related to predefined elapsed time, predefined number of iterations, or

when there is no improvement in the produced solutions.

Start

Create Random
Population

Evaluate Fitness of Each
Solution (Value of Fitness

Function)

Termination
Condition

Return Solution Yes

Select The Best SolutionsNo

Crossover Operation

Mutation

5.1: The Steps of Genetic Algorithm

105

 In the case of the problems that restrict variables to integers, additional operations

are added to the traditional GA algorithm. According to [104], the following operations are

added:

 After crossover and mutation operations, the real values of the produced solution are

truncated to integers.

 The fitness function is calculated by adding the penalties of the constraint violations

to the objective function if the solution is in the invisible regions; otherwise, the

value of fitness function is set to the value of the objective function.

 Equality constraints must be transformed to inequality constraints. Each equality

constraint is replaced with two inequality constraints. For example, is

replaced with these two constraints: and .

As in the BLP-based approach, the proposed GA-based approach for release

planning consists of three processes: raw data collection, preprocessing, and release plan

generation. The raw data collection and the preprocessing stages are the same defined in

Sections 4.3.1 and 4.3.2. In the release plan generation process, we use the objective

function defined by equation (5.7) and constraints defined by equations (5.8, 5.9, and 5.10)

in order to evaluate the fitness of solutions.

In the next section, we present a proof-of-concept example to show the applicability

of the BLP-based and GA-based approaches.

106

5.5 Proof of Concept

Recall the example that is used in Section 4.5. In it, 20 features are requested by five

tenants whose decision weights are define as , and the

available effort is 40 person-days. The dependencies among features are defined by these

two set and . As stated

above, the raw data collection and preprocessing are the same as the one defined for the

FIS-based approach. Table 6.1 shows the ,

and vectors.

5.5.1 BLP-based Approach

In the BLP approach, the coupling relationship is represented using equality

constraints that can be written as (matrix and vector represent the

equality constraints). Since we have only one coupling relationship, the dimension of is

 and is one element vector, which means and

 The precedence relationship and the effort constraint are represented using

inequality constraints that can be written as (matrix and vector represent the

inequality constraints). The dimension of is and is a 5-elements vector since we

have four precedence constraints and one effort constraint.

We use , which is a Matlab function that solves binary integer programming

problems. is called in the following form:

107

such that , (.*) and (./) are

element-wise multiplication and division operations. Note that has been built to

solve minimization problems; hence, we multiply by -1 in order to make the problem

a maximization problem.

Table 5.1: EFFORT_Vector, RISK_Vector, WeightedE, and Commonality Vectors

Vector contains binary values that represent the release plan. If is equal to 0, then

will be assigned to the next release; otherwise, it will be assigned to future releases. In this

example, the output of is , which

means that the features that are assigned to the next release are:

108

 .

5.5.2 GA-based Approach

The same data in Table 5.1 is used to run GA approach. The same objective function

is used. As stated in Section 5.4, there are no equality constraints in GA with integer

variables. Hence, the coupling relationship is represented using two inequality constraints.

Depending on that, the dimension of becomes and becomes 7-elements vector

since we have four precedence constraints, one effort constraint, and two more constraints

for coupling. We use , which is a Matlab function for genetic algorithm. is called in

the following form:

 such that is a handle to the fitness function, is the number of

variable which in this example , and represent inequality constraints, and are

vectors that includes the lower and higher bounds of the variables, which are in our problem

 and , is a vector contains the indices of the integer variables, which are in our

problem all the variables. is a structure that defines the parameters of the

function. We use the default parameters for the function. The output of function

is , which means that the features that are

assigned to the next release are: .

5.6 Summary of the Chapter

Release planning is an optimization problem. We propose a BLP-based and a GA-

based approach in order to generate a plan for the next release in a way that maximizes

tenants’ satisfaction and release commonality, and minimize the risk of having insecure, low

quality, and over-time releases. In addition to those objectives, the proposed approach takes

109

into account the effort, the compliance of tenants' requests with their SLA levels, and

dependencies constraints. Bothe of the proposed approaches consists of three processes: raw

data collection, preprocessing, and release planning generation. The generated release plans

by both approaches are represented using vectors of binary values where each element of a

vector represents a feature. If an element of this vector is set to then the corresponding

feature is selected, and if it is set to then the corresponding feature is not selected.

In the next chapter, we compare FIS-based and BLP-based approaches. Four

measurements are used to compare the three approaches: degree of tenants' satisfaction,

degree of commonality, adherence to the risk factor, and growth in running time.

110

CHAPTER 6: EXPERIMENTAL COMPARISON OF THE PROPOSED

APPROACHES

6.1 Introduction

This chapter evaluates and compares the proposed FIS-based, BLP-based, and GA-

based approaches. The experiments presented in this chapter use different scenarios in order

to compare the effectiveness of the three approaches from the perspective of the degree of

overall tenants’ satisfaction, the degree of commonality, the degree of the adherence to the

risk factor, and the running time required to generate release plans. We want to figure out

the situations in which each approach is suitable to be used. Since we could not find enough

suitable real data for the experiments, we use synthetic data that are generated using the

potential probability distributions.

This chapter is organized as follows: Section 6.2 provides statistical analysis of the

data of some previous release planning approaches. Section 6.3 presents the results of a

comparative study among the three approaches in different scenarios. Section 6.4 discusses

the similarity between the release plans that are produced by the three approaches. Section

6.5 presents the results of a comparison between the proposed approaches and the release

planning approach presented in [33]. Section 6.6 presents the summary of the chapter.

6.2 The Probability Distributions of Release Planning Data

The aim of this process is to find the distribution models for the data collected from

tenants about the importance of features. This helps us to generate more general cases

simulated data for validating the proposed approaches. Four datasets are used from different

resources. Table 6.1 shows the description of these datasets.

111

Table 6.1: The Description of Dataset Samples

 Sample

Size

Source Data Type max min mean Standard

deviation

DS1 [57] integer

DS2 [105] Integer

DS3 [57] integer

DS4 [57] integer

Chi-square test is used to compare the hypothesis distribution models with the

empirical distribution (obtained from data samples). We test three null hypotheses: the data

about importance of features can be generated using 1) discrete uniform, 2) Poisson, or 3)

normal distributions. Chi-square test can be described as follows: Assume that we have an

experiment that has possible outcomes that can be categorized to categories. Let be

the observed frequencies in the data category , is the expected frequency in the data

category , and then if
 then the null hypothesis is correct; otherwise, it is

rejected, where:

and
 can be obtained from Chi-Square distribution table. denotes the significance level.

In this test, we use significance level of 0.05. Table 2 shows the Chi-square test results for

the test of the three hypotheses. It is clear that the first null hypothesis is accepted for all

datasets, while the remaining hypotheses are rejected. This confirms that discrete uniform

112

distribution can be used to generate the data about the importance of features. Figure 6.1

(a,b,c,d) shows the empirical, discrete uniform, Poisson, and normal distributions.

Table 6.2: Chi-square Tests for four Dataset Samples

In order to generate the data for testing the proposed release planning approaches, a discrete

uniform distribution-based random number generator is used to produce the data about the

importance of features. Matlab function is used. Because we do not have enough

sample data for the other variables, normal distribution-based random number generator is

used as in [106].

 (D-uniform) (Poisson) (Normal)

Dataset1 11.61077 57.11578283

39.9708497

15.507

Dataset2 14.28 33.98434777

24.00955583

15.507

Dataset3 14.19465 81.822

47.46957

15.507

Dataset4 15.17652 30.90713

26.38032

15.507

113

114

Figure 6.1: Empirical, D-Uniform, Poisson, and Normal Distributions for Four Data samples

6.3 Experimental Comparison of the Proposed Approaches

The effectiveness of the proposed approaches is compared by using four

performance metrics: the degree of overall tenants’ satisfaction, degree of commonality,

degree of adherence to the risk factor, and the running time to generate the release plans. In

this experiment, Matlab is used to implement FIS-based, BLP-based, GA-based approaches.

The Matlab code is run using two groups of scenarios. In the first group, we fix the number

of tenants and change the number of features. In the second group, we fix the number of

features and change the number of tenants. We assume in all scenarios that the available

effort takes a random value is in the range of 30% to 70% of the total required effort

i.e., .

The compliance of service levels of tenants with the features is assumed to be in the range

of 30% to 70% (for example, if the number of tenants is and a feature complies with

115

tenants, then we say the degree of compliance of is 60%). These ranges of required effort

and the degree of compliance of service levels are chosen because we want to test cases in

which the available effort is very limited, and the cases in which the available effort is in the

acceptable level. Furthermore, we want to cover the highest possible scenarios regarding the

service levels of tenants. We generate many release plans (a release plan is the output of

iteration). At the end of each iteration, we measure the degree of overall satisfaction, the

degree of commonality, the degree of the adherence to the risk, and the time for each

approach (FIS, BLP, and GA). We aim from these scenarios to figure out the effects of

numbers of features and tenants on the performance of the proposed approaches, and we

want to find the circumstances that suit each one of the three approaches.

Table 6.3: The Description of the First Group of Scenarios

Scenario # Number of Iterations

(release plans)

Number of tenants Number of features

1 500 5 20

2 500 5 50

3 500 5 100

4 100 5 700

6.3.1 Variable Number of Features and Constant Number of Tenants

 Table 6.3 shows the description of the first group of scenarios. In this group, the

number of features is changed while the number of tenants is fixed.

116

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Figure 6.2: The Degree of Overall Satisfaction (Variable Number of Features and Constant Number of Tenants)

)

117

Figure 6.3: The Probability Distributions of the Degree of Overall Satisfaction

(Variable Number of Features and Constant Number of Tenants)

Scenario 1 Scenario 2

Scenario 3
Scenario 4

118

Scenario 1 Scenario 2

Scenario 3 Scenario 4

 Figure 6.4: The Degree of Commonality (Variable Number of Features and Constant Number of Tenants)

119

Scenario 1 Scenario 2

Scenario 3
Scenario 4

Figure 6.5: The Probability Distributions of the Degree of Commonality

(Variable Number of Features and Constant Number of Tenants)

120

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Figure 6.6: The Degree of the Adherence to Risk

(Variable Number of Features and Constant Number of Tenants)

121

Scenario 1
Scenario 2

Scenario 3 Scenario 4

Figure 6.7: The Probability Distributions of the Degree of the Adherence to Risk

(Variable Number of Features and Constant Number of Tenants)

122

Scenario Overall satisfaction Commonality Adherence to Risk

1

 Mean Standard

Deviation

CI

FIS 0.593 0.104 [0.584, 0.602]

BLP 0.561 0.103 [0.552, 0.57]

GA 0.637 0.099 [0.628,0.646]

 Mean Standard

Deviation

CI

FIS 0.616 0.112 [0.603,0.63]

BLP 0.605 0.110 [0.595,0.61]

GA 0.676 0.104 [0.667,0.68]

 Mean Standard

Deviation

CI

FIS 0.541 0.128 [0.53, 0.55]

BLP 0.569 0.125 [0.558, 0.58]

GA 0.476 0.121 [0.465,0.47]

2

 Mean Standard

Deviation

CI

FIS 0.603 0.093 [0.592, 0.614]

BLP 0.593 0.093 [0.584,0.601]

GA 0.588 0.092 [0.58, 0.6]

 Mean Standard

Deviation

CI

FIS 0.620 0.095 [0.611,0.6

3]

BLP 0.628 0.097 [0.62,0.64]

GA 0.624 0.096 [0.615,0.6

32]

 Mean Standard

Deviation

CI

FIS 0.547 0.108 [0.54, 0.56]

BLP 0.561 0.103 [0.551, 0.57]

GA 0.556 0.099 [0.547, 564]

3

 Mean Standard

Deviation

CI

FIS 0.595 0.083 [0.59 0.6]

BLP 0.593 0.085 [0.585 0.6]

GA 0.586 0.084 [0.58, 0.6]

 Mean Standard

Deviation

CI

FIS 0.617 0.085 [0.61, 0.62]

BLP 0.637 0.090 [0.63, 0.645]

GA 0.627 0.088 [0.62, 0.63]

 Mean Standard

Deviation

CI

FIS 0.557 0.096 [0.55, 0.57]

BLP 0.559 0.095 [0.55, 0.58]

GA 0.555 0.090 [0.55, 0.56]

4

 Mean Standard

Deviation

CI

FIS 0.591 0.082 [0.57, 0.61]

BLP 0.594 0.083 [0.58, 0.61]

GA 0.576 0.082 [0.56, 0.6]

 Mean Standard

Deviation

CI

FIS 0.615 0.082 [0.6, 0.63]

BLP 0.640 0.085 [0.62, 0.66]

GA 0.615 0.086 [0.6, 0.63]

 Mean Standard

Deviation

CI

FIS 0.564 0.090 [0.56, 0.57]

BLP 0.560 0.088 [0.55, 0.57]

GA 0.559 0.080 [0.55, 0.57]

 Table 6.4: Statistical Analysis of the First Group of Scenarios (Variable Number of Features and Constant Number of Tenants)

123

Figure 6.8: Running Time of the Three Approaches (Variable Number of Features and

Constant Number of Tenants)

 Figures 6.2 and 6.3 show the cumulative averages and the probability distributions of the

degree of overall satisfaction of the release plans generated by the three approaches in each

scenario. We can see from these figures and second column of Table 6.4 that GA has

slightly achieved a higher degree of overall satisfaction than other approaches when the

number of features is small, and BLP is slightly higher when there are a huge number of

features. In general, the three approaches are comparable from the perspective of the degree

overall satisfaction in most of scenarios. Figures 6.4 and 6.5 show the cumulative averages

and the probability distributions of the degree of commonality of the three approaches. We

can see from these figures and the third column of Table 6.4 that when there is a small

number of features, GA has slightly achieved better results, and when there is huge number

of features, BLP is slightly better. In general, there are no noticeable differences among the

three approaches from the perspective of the degree of commonality. Figures 6.6 and 6.7

show the cumulative averages and the probability distributions of the degree of adherence to

risk. We can notice that when there is the number of features is small BLP has achieved

124

better results than other approaches, and when there are huge number of features FIS has

better results than other approaches. In general, the three approaches have approximately

achieved comparable results in this measurement. In addition, we can conclude from this

experiment that changing number of features has no clear influences on the performance of

the three approaches from the perspectives of degree of overall satisfaction, commonality,

and adherence to risk, which means that while the number of features is increased, all of the

three approaches have almost the same performance from the these three metrics. However,

the performance of the three approaches from the perspective of time is different. We run

more points between 50 and 700 features in order to see how the running time grows by

increasing the number of features. As Figure 6.8 shows, the time of BLP has extremely

grown in after exceeding 350 features. We can also see that FIS is clearly the fastest. The

time in FIS has slowly grown by increasing the number of features. When there are 700

features, the FIS is six times faster than BLP and 3 times faster than GA. GA is two times

faster than BLP.

6.3.1 Variable Number of Tenants and Constant Number of Features

Table 6.5 shows the description of the second group of scenarios.

Table 6.5: The Description of the Second Group of Scenarios

Scenario# Number Release Plans Number of tenants Number of features

5 500 20 100

6 500 50 100

7 500 100 100

8 500 700 100

125

Scenario 5 Scenario 6

Scenario 7 Scenario 8

Figure 6.9: The Degree of Overall Satisfaction

(Variable Number of Tenants and Constant Number of Features)

126

Figure 6.10: The Probability Distributions of the Overall Satisfaction (Variable Number of Tenants and

Constant Number of Features)

Scenario 5 Scenario 6

Scenario 7
Scenario 8

127

Scenario 5 Scenario 6

Scenario 7 Scenario 8

 Figure 6.11: The Degree of Commonality (Variable Number of Tenants and Constant Number of Features)

128

Scenario 5 Scenario 6

Scenario 7
Scenario 8

 Figure 6.12: The Probability Distributions of the Degree of Commonality (Variable Number of Tenants and

Constant Number of Features)

129

Scenario 5 Scenario 6

Scenario 7 Scenario 8

 Figure 6.13: The Degree of the Adherence to Risk (Variable Number of Tenants and Constant Number of

Features)

130

Scenario 5
Scenario 6

Scenario 3 Scenario 4

 Figure 6.14: The Probability Distributions of the Degree of the Adherence to Risk (Variable Number of Tenants and

Constant Number of Features)

131

Scenario Overall satisfaction Commonality Adherence to Risk

5

 Mean Standard

Deviation

CI

FIS
0.592 0.082

[0.56, 0.60]

BLP
0.597 0.081

[0.59, 0.6]

GA
0.589 0.080

[0.58,0.6]

 Mean Standard

Deviation

CI

FIS
0.603 0.082

[0.6, 0.61]

BLP
0.606 0.083

[0.6,0.61]

GA
0.597 0.082

[0.59,0.6]

 Mean Standard

Deviation

CI

FIS
0.546 0.094

[0.54, 0.55]

BLP
0.547 0.092

[0.54, 0.56]

GA
0.548 0.088

[0.54,0.56]

2

 Mean Standard

Deviation

CI

FIS
0.581 0.086

[0.57, 0.59]

BLP
0.584 0.085

[0.58,0.6]

GA
0.576 0.083

[0.57, 0.58]

 Mean Standard

Deviation

CI

FIS
0.587 0.085

[0.58,0.6]

BLP
0.587 0.085

[0.58,0.6]

GA
0.580 0.083

[0.57,0.59]

 Mean Standard

Deviation

CI

FIS
0.553 0.098

[0.54, 0.56]

BLP
0.556 0.095

[0.55, 0.56]

GA
0.555 0.087

[0.55, 56]

3

 Mean Standard

Deviation

CI

FIS
0.579 0.082

[0.57, 0.59]

BLP
0.580 0.082

[0.57, 0.59]

GA
0.572 0.080

[0.57, 0.58]

 Mean Standard

Deviation

CI

FIS
0.583 0.082

[0.575, 0.59]

BLP
0.582 0.083

[0.575, 0.6]

GA
0.574 0.081

[0.57, 0.58]

 Mean Standard

Deviation

CI

FIS
0.558 0.094

[0.55, 0.57]

BLP
0.560 0.093

[0.55, 0.57]

GA
0.560 0.086

[0.55, 0.57]

4

 Mean Standard

Deviation

CI

FIS
0.587 0.084

[0.58, 0.6]

BLP
0.587 0.083

[0.58, 0.6]

GA
0.584 0.082

[0.58, 0.6]

 Mean Standard

Deviation

CI

FIS
0.588 0.084

[0.58, 0.6]

BLP
0.587 0.083

[0.58, 0.6]

GA
0.584 0.082

[0.58, 0.6]

 Mean Standard

Deviation

CI

FIS
0.548 0.097

[0.54, 0.56]

BLP
0.551 0.093

[0.54, 0.56]

GA
0.550 0.091

[0.54, 0.56]

 Table 6.6: Statistical Analysis of the Second Group of Scenarios (Variable Number of Tenants and Constant Number of

Features)

132

 Figure 6.15: Running Time of the Three Approaches (Variable Number of Tenants

and Constant Number of Features)

Figures 6.9 to 6.14 show that the degree of overall satisfaction, commonality, and

adherence to risk are not affected by changing the number of tenants. We can observe that

all of these three metrics have not considerably changed by the changes in the number of

tenants. We can also see that they roughly have the same results from the perspectives of

these three metrics. Figure 6.15 shows that the time of the three approaches has not changed

by increasing the number of tenants. We can conclude that the number of tenants has no

influences on the three approaches from degree of overall satisfaction, commonality,

adherence to risk, and time.

The next section explains why the three approaches have achieved comparable

results in the degree of overall satisfaction, commonality, and adherence to risk.

133

6.4 The Similarity of the Release Plans Generated by the Proposed Approaches

In this section, we measure the similarity of the release plans that are generated by

the FIS-based, BLP-based and GA-based approaches. Let
 ,

 , and
 be the release

plans generated by the three approaches using the same inputs. That means, we feed the

three approaches with data about importance, risk, commonality, available and required

effort, dependencies, compliance with the service levels, and tenants' decision weights, and

generate three release plans (a release plan from each approach). It is required to figure out

how much these release plans are similar to each others. Each
 ,

 ,
 } is

represented using a a vector of decision variables 1 2 n where i

and is the number of the candidate features (If i then the feature is

assigned to the next release; otherwise, it is not. Let
 ,

 ,
 are the decision

vectors associated with the release plans generated by the three approaches. The similarity

between two release plans
 and

 can be measured using hamming distance as follows:

Such that is the hamming distance between the two vectors.

Example: 6.1: Suppose ,
 , and

 , then

 , which means the release plans that are generated

by FIS and GA approaches are similar to the degree of .

Figure 6.16 and Table 6.6 show the average similarity between the release plans

generated by the proposed approaches in different scenarios. The lowest degree of similarity

134

is (the second scenario). This high degree of similarity among the proposed

approaches explains why the results of the degree of overall satisfaction, commonality, and

adherence to risk of these three approaches are close to each other.

Figure 6.16: Similarity between the Proposed Approaches

Table 6.7: Statistics of the Similarity between the Proposed Approaches

 FIS-GA FIS-BLP GA-BLP

20 features

mean 0.75 0.84 0.779

SD 0.0171 0.014 0.0212

CI [0.745, 0.754] [0.835, 0.84] [0.77 , 0.78]

50 features

mean 0.738 0.739 0.772

SD 0.1002 0.0907 0.0782

CI [0.71, 0.77] [0.71,0.76] [0.75, 0.8]

100 features

mean 0.806 0.832 0.865

SD 0.0313 0.0323 0.0361

CI [0.8, 0.81] [0.82, 0.84] [0.86, 0.88]

700 features

mean 0.7498 0.839 0.779

SD 0.01697 0.01386 0.0203

CI [0.745, 0.754] [0.835, 0.84] [0.77,0.78]

135

6.5 Comparing the Proposed Approaches with an Approach from the Literature

In this section, we compare the proposed approaches to a GA approach that uses the

fitness function that has been presented in [33] (hereinafter, we call this model the compared

model). The compared model is chosen according to three criteria: 1) It is a well- known

model and it has high similarity with many release planning models in the literature. 2) It is

the closest model to the proposed formulation. 3) It is easy to implement. We run four

Matlab modules with the same inputs: BLP, FIS, and two GAs modules with the same

parameters but with different fitness functions. The first GA uses the proposed fitness

function define by equation (5.7), and the second GA uses the fitness function in the

compared model. The fitness function in that model is denoted as follows:

where

such that:

 is the number of releases for which we are planning,

 is interpreted as feature is assigned to the release number ,

 is the weight of release ,

 is the weight of stakeholder , and ,

 is the value of feature to the stakeholder ,

 the priority of a feature for a stakeholder in a release .

136

In this research, since the planning is just performed for the next release, the first three

parameters will take the following values:

 (next release and future releases).

 , (for the next release and for future releases).

 and (because the planning is only for the next release, all the weight is

given to it).

Depending on these values, the fitness function in (6.3) can be rewritten as follows:

137

The problem constraints in the compared model are similar to the proposed approaches in

dependencies and effort constraints. However, compared model does not include service

level constraints.

The four modules are run for iterations using the same inputs in each iteration.

In each iteration, we measure the degree of overall satisfaction, commonality, and adherence

to risk. We use random data for features and tenants in this experiment. As

Figures 6.17 and 6.18 show, the proposed approaches have achieved better results than the

compared model in the degree of overall satisfaction and commonality (approximately

for overall satisfaction and for commonality). Note that the calculations of the degree of

overall satisfaction and commonality take into account the service levels of the tenants. The

compared model does not consider this factor when it generates release plans. It aims only

to maximize the additive value of the multiplication between the priorities and values of the

selected features regardless of the compliance with the service levels of the tenants.

Therefore, the compared model may select features that do not have high degree of

compliance with the service levels, which is reflected on the values of the degree of overall

satisfaction and commonality.

Figure 6.19 shows that the proposed approaches have clearly shown better results

(about higher) in the degree of adherence to risk. This result is obtained because the

proposed approaches consider the risk, overall satisfaction, and commonality

simultaneously when the features are assigned to a release plan, while the compared model

does not consider the risk.

138

Figure 6.17: Comparison with the Compared Model (Degree of Overall Satisfaction)

 Figure 6.18: Comparison with the Compared Model (Degree of Commonality)

139

Figure 6.19: Comparison with the Compared Model (Degree of adherence to Risk)

Moreover, in order to show the growth of running time when the number of features

is huge, we run an experiment with features and tenants for release plans.

Figure 6.20 shows clearly that the proposed FIS approaches has achieved better results in

running time than the compared model (5 times faster), and the proposed GA also has

achieved better results than the compared model (3 times faster) while the compared model

has achieved better results than the proposed BLP (1.5 times faster).

Figure 6.20: Comparison with the Compared Model (Running Time)

0

50

100

150

200

250

300

350

400

FIS BLP GA Compared Model

A
ve

ra
ge

 T
im

e
 (

Se
co

n
d

s)

140

6.6 Summary of the Chapter

In general, the proposed approaches are comparable from the perspectives of the

degree of overall satisfaction, commonality, and adherence to risk. GA approach is slightly

better in the degree of overall satisfaction and commonality when the number of features is

small. The BLP approach has achieved higher values than the other two approaches in the

degree of overall satisfaction and commonality when the number of features is huge. The

BLP has achieved better results in the degree of adherence to risk when the number of

features is small. FIS has achieved better results than the other approaches in this

measurement when there are a huge number of features. Changing the number of features or

tenants does not have noticeable impact on the performance of the three approaches from

the perspective of these three metrics. However, the running time of BLP has exponentially

grown when the number of features exceeds certain threshold. FIS has shown good

performance in the running time. The running time in FIS has slowly grown with increasing

the number of features. The time in GA has grown by increasing number of features, but this

growth in GA is not as significant as in BLP. In addition, the experiments show increasing

number of tenants does not have any negative effects on the running time of the three

approaches. The three approaches have shown high degree of similarity in the generated

release plans. This explains why the first three metrics are roughly similar for the three

approaches. In order to validate the proposed approaches, they are compared to a compared

model that has been selected from the literature. The proposed approaches have shown

slightly better performance in the degree of overall satisfaction and commonality, and they

have achieved much better results in the degree of adherence to risk. Moreover, the running

time in the proposed FIS and GA is faster than the running time in the compared model.

141

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

Release planning is a core process in the development cycle of multi-tenant Software

as a Service (SaaS) applications. The aim of release planning is to assign the most promising

features to the release under consideration. Effective release planning can increase the

satisfaction of tenants by delivering those features that are important for most of the tenants

with high degree of quality. In SaaS applications, It is more efficient to plan only for the

next release due to their extreme dynamics, which increase the probability of there being

significant changes in tenants’ needs over short periods of time. The variables that control

SaaS applications include: the importance of each feature as perceived by the different

tenants, the decision weights of the tenants, the potential risks along with the required effort

that are associated with each feature as estimated by the members of the development team,

the available effort allocated to deliver the release as estimated by release management, the

technical dependencies among features, contractual constraints which contained in SLA

documents, and the degree of commonality of features.

This thesis has provided a formulation for release planning problem for muti-tenant

SaaS applications. This formulation aims to I) maximize the degree of tenants’ satisfaction

by selecting the features that are important to the highest possible number of tenants, II)

maximize the degree of commonality by selecting the features that are required by the

highest possible number of tenants , and III) minimize the potential risk by selecting the

features that have the lowest possible risk. These three objective shall be achieved while

taking into account I) contractual constraints where for any feature that is included in the

142

next release plan there shall be at least one tenant who is eligible to have this feature. II)

effort constraint where the required effort to implement the next release shall be less than or

equal to the available effort, and III) dependencies constraints where some features have

dependent relationship with other features. Two type of dependencies are considered:

coupling where it is more beneficial if two features or more delivered in the same release,

and the precedence where some features shall be delivered prior to other features.

This thesis proposed three release planning approaches to tackle the "next release"

planning problem in SaaS applications. The first approach employs a Fuzzy Inference

System (FIS) in order to utilize human expertise to aggregate the evaluations that are

provided by the stakeholders and generate a rank for each feature. The rank of a feature

represents its priority among other features. After that, two algorithms are applied in order

to adjust the ranks of the features to satisfy precedence and coupling constraints. Then, the

features are sorted and prioritized using a greedy approach. The features with the highest

ranks are assigned to the next release. In the proposed FIS-based approach, linguistic rules

are used to implicitly consider human expertise in the planning endeavor. The FIS-based

approach consists of four processes: raw data collection, preprocessing, ranking, and

release-plan generation. The second approach is an exact optimization approach that utilizes

Binary Linear Programming (BLP) in order to optimize the planning process. The BLP-

based approach consists of three processes: raw data collection, preprocessing, and release

plan generation. The release plan is generated as a set of binary decision variables. Each

variable is associated with a feature. If a decision variable is set to 1, then its corresponding

feature is assigned to the next release; otherwise, it is postponed to future releases. The

third approach is a heuristic optimization approach that employs GA. The objective function

143

and the constraints that are defined for the BLP approach are used as the fitness function for

the GA approach. Because binary variables are used, some restrictions are applied on the

proposed GA approach. For example, the equality constraints are transformed to inequality

constraints.

In order to validate the effectiveness and efficiency of the proposed approaches, and

find out the scenarios that are suited to each approach, experiments are conducted in order to

investigate the following aspects: I) The impact of increasing number of features on the

performance of the proposed approaches, II) The impact of increasing number of tenants on

the performance of the proposed approaches, and III) the performance of the proposed

approach when it is compared to the compared model that has been selected from the

literature. The experiments show that the proposed approaches have in general comparable

performance from the perspective of the degree of overall satisfaction, commonality, and

adherence to risk. In more details, The BLP-based approach has shown slightly higher

values in the degree of overall satisfaction and commonality than the other two approaches

when the number of features is huge. Also it has shown better results compared to the other

approaches in the degree of adherence to risk when the number of features is small. The

GA-based approach has shown better results than the other two approaches in the degree of

overall satisfaction and commonality when the number of features is small. The similarity

test shows that there is high similarity between the release plans that are generated by the

proposed approaches, which explains the high similarity in the values of the degree of

overall satisfaction, commonality, and adherence to risk. In addition, the experiments show

that the running time in BLP has exponentially grown when the features exceeds certain

threshold, which makes BLP not the best choice when there are huge number of features and

144

the time is important factor in the release planning. Also, the time in GA has grown by

increasing the number of features, but it is not as considerable as the growth in BLP. The

FIS approach has shown promising results in running time. The running time in FIS has

grown very slowly with increasing the number of features which makes FIS approach

suitable when the time is an important factor in the planning process.

The proposed approaches are compared to a model that has been selected from the

literature. They have achieved better performance in the degree of overall satisfaction and

commonality. The reason behind this result is that when the degree of overall satisfaction

and commonality are calculated, the service levels of the tenants are taken into account. The

compared model tries to maximize the additive value of the multiplication between the

priorities and values of the selected features regardless of the compliance with the service

levels of the tenants. Therefore, the compared model may select features that do not have

high degree of compliance with the service levels, which is reflected on the values of the

degree of overall satisfaction and commonality. Furthermore, the proposed approaches have

achieved much better results regarding the degree of adherence to risk. The reason behind

this results is that the proposed approaches consider the risk, overall satisfaction, and

commonality simultaneously when the features are assigned to a release plan, while the

compared model does not consider the risk. Moreover, the growth of running time of the

three approaches is compared with the compared model. The experiment shows that the

proposed GA and FIS approaches have achieved better results in the running time than the

compared model, while the BLP approaches is significantly slower than the compared

model selected from the literature.

145

7.2 Future Work

As a further line of research, the process of collecting raw data for release planning

in SaaS application can be investigated. For example, it would be of significant interest to

conduct a study to investigate the use of sentiment analysis to measure the degree of

tenants’ satisfaction about the delivered release of an SaaS application. This data could then

be used as input to the planning of the next release. Additionally, the effect of the

architecture of SaaS applications on release planning can be investigated. For example, how

to consider a request from a tenant for a feature that is provided by a third party.

Additionally, the applications of computation with words [72] can be used. The

stakeholders’ estimates about the attributes of features can be obtained using linguistic

terms. In this way, stakeholders can naturally and qualitatively express their opinion about

software features. Moreover, the factor of reliability of information can be considered. This

can be achieved by adding another variable that measures the reliability of the provided

estimates. In order to address the reliability of information, the application of Z-numbers

[107] can be used. A Z-number is made up of two linguistic terms. Each term is associated

with a fuzzy number. The first component of a Z-number represents a restriction on the

values that the evaluated object can take. The second component is a measure of the

reliability (sureness) of the first component. Using Z-numbers allows the release

management to consider the reliability of stakeholders' estimates in the release planning

process.

146

APPENDIX I: BRANCH AND BOUND ALGORITHM

In BLP, one possible way to find the optimal solution is to enumerate all possible

solutions and then to choose the one that is optimal in maximizing (or minimizing) the

objective function. The problem with this strategy is that the number of possible solutions

increases exponentially with the increasing of number of variables. If there are variables,

then there are
possible solutions. The branch-and-bound algorithm addresses this

problem [102]. Branch and bound is a "divide and conquer" strategy, which divides feasible

regions into smaller, controllable regions. These new regions are divided recursively into

smaller regions until the optimal solution is attained. The algorithm starts by "branching"

process. In this process, a binary search tree is created. For each variable two branches

are created (. Figure I.1 shows a binary search tree with three variables. After

that, at each node, the algorithm solves the problem as a linear programming problem by

relaxing the constraints to , where and is the number of

variables. In order to find optimal solution using the branch-and-bound algorithm, the

following steps are applied:

1. Set current integer solution= .

2. At any node, solve the problem as an LP problem and let =the value of the

objective function.

3. If the variables are binary, and is more optimal than current integer solution

then current integer solution= .

4. From the solution, pick a variable that does not have an integer value (0

 , and create two branches (new regions that represent possible solutions) by

creating two constraints,

147

5. Check the feasibility of the new regions (the new braches) and prune (remove) the

branch if it does not satisfy the problem constraints.

6. Go to 2.

7. Return the values of current integer solution.

x1

x1=1 x1=0

x2
x2

x2=1 x2=0

x3
x3 x3

x3

x2=1 x2=0

x3=1 x3=0 x3=1 x3=0
x3=1 x3=0

x3=1 x3=0

possible solution

solve the LP problem

Figure I.1: Branch and Bound Algorithm

148

APPENDIX II: POLLING METHOD

In polling method, the expert is asked the following question: "do you agree that is

 ", where is a point in the universe of discourse and is a linguistic term. In other words,

each expert is asked to describe the points in the universe of discourse using predefined

linguistic terms. After that is calculated as the proportion of positive answers over

the total number of answers. Let is a set that represents the experts

who will participate in defining the membership functions of a linguistic variable . In order

to use polling method, the following steps are applied:

 Define the linguistic values (terms) that the variable can take. For example,

can take any value in the set

 Each expert describes each element in the universe of discourse using terms

in . For this purpose, we define ,) where

and For example, suppose , , and

the expert describes number 4 as medium, then we write ,)

=

 For and , can be calculated as follows:

where z is the number of experts, and

Example II.1 : is a variable that represents the importance of features,

such that ,

 Assume that the experts are asked this question:"describe number 3 from the

perspective of the importance of software features using the terms in

149

 . Assume that in the following table three experts provide their

answers about the degree of importance that number three represents.

Using Equation (II.1), we can see that , ,

 Low medium high

e1

e2

e3

150

APPENDIX III: MEMBERSHIP FUNCTIONS OF THE FUZZY VARIABLES

Defining the membership functions of (the importance of features)

 Defining the membership functions of (the risk of features)

Universe of

discourse

Expert1 Expert2 Expert3 Expert4

1 VL VL VL VL

2 VL VL VL VL

3 L L L L

4 M L L M

5 M M M M

6 M M M H

7 H H H H

8 VH VH H H

9 VH VH VH VH

10 VH VH VH VH

Universe of

discourse

Expert1 Expert2 Expert3 Expert4

1 VL VL VL VL

2 VL VL VL VL

3 L L L VL

4 M L M L

5 M M M M

6 M M M M

7 H H H H

8 H VH H H

9 VH VH VH VH

151

Defining the membership functions of (the required effort of features)

Universe of

discourse

Expert1 Expert2 Expert3 Expert4

1 VL VL VL VL

2 L VL L VL

3 L L L L

4 M L L M

5 M M M M

6 H M M H

7 H H H H

8 H H H VH

9 VH VH VH VH

10 VH VH VH VH

Defining the membership functions of (the required effort of

features)

Universe of

discourse

Expert1 Expert2 Expert3 Expert4

0% -10% VL VL VL VL

11% -20% L L VL VL

21% - 30% M M L L

31% - 40%% M M M M

41% -50% M H H M

51% - 60% H H H H

61%- 70% H VH H H

71- 80% VH VH VH VH

81-90% VH VH VH VH

90-100% VH VH VH VH

152

APPENDIX IV: FUZZY RULES FOR FIS-BASED APPROACH

IV.1: IMPORTANCE_COMMONALITY_Aggregation Sub Module

1. If (WImportance is VLI) and (Commonality is VLC) then (TEvaluation is VLE)

2. If (WImportance is VLI) and (Commonality is LC) then (TEvaluation is VLE)

3. If (WImportance is VLI) and (Commonality is MC) then (TEvaluation is LE)

4. If (WImportance is VLI) and (Commonality is HC) then (TEvaluation is ME)

5. If (WImportance is VLI) and (Commonality is VHC) then (TEvaluation is ME)

6. If (WImportance is LI) and (Commonality is VLC) then (TEvaluation is VLE)

7. If (WImportance is LI) and (Commonality is LC) then (TEvaluation is LE)

8. If (WImportance is LI) and (Commonality is MC) then (TEvaluation is LE)

9. If (WImportance is LI) and (Commonality is HC) then (TEvaluation is ME)

10. If (WImportance is LI) and (Commonality is VHC) then (TEvaluation is HE)

11. If (WImportance is MI) and (Commonality is VLC) then (TEvaluation is LE)

12. If (WImportance is MI) and (Commonality is LC) then (TEvaluation is ME)

13. If (WImportance is MI) and (Commonality is MC) then (TEvaluation is ME)

14. If (WImportance is MI) and (Commonality is HC) then (TEvaluation is HE)

15. If (WImportance is MI) and (Commonality is VHC) then (TEvaluation is HE)

16. If (WImportance is HI) and (Commonality is VLC) then (TEvaluation is ME)

17. If (WImportance is HI) and (Commonality is LC) then (TEvaluation is ME)

18. If (WImportance is HI) and (Commonality is MC) then (TEvaluation is HE)

19. If (WImportance is HI) and (Commonality is HC) then (TEvaluation is VHE)

20. If (WImportance is HI) and (Commonality is VHC) then (TEvaluation is VHE)

21. If (WImportance is VHI) and (Commonality is VLC) then (TEvaluation is ME)

22. If (WImportance is VHI) and (Commonality is MC) then (TEvaluation is HE)

23. If (WImportance is VHI) and (Commonality is HC) then (TEvaluation is VHE)

24. If (WImportance is VHI) and (Commonality is VHC) then (TEvaluation is VHE)

25. If (WImportance is VHI) and (Commonality is LC) then (TEvaluation is ME)

The meanings of the symbols used in the rules are as follows:

WImportance the weighted importance for features

Commonality the commonality of the features

TEvaluation Tenant related evaluation

VLI Very Low Importance

LI Low Importance

MI Medium Importance

HI High Importance

VHI Very High Importance

VLC Very Low Commonality

LC Low Commonality

MC Medium Commonality

HC High Commonality

VHC Very High Commonality

VLE Very Low Evaluation

LE Low Evaluation

ME Medium Evaluation

HE High Evaluation
VHE Very High Evaluation

153

IV.2: RISK EFFORT Aggregation Sub Module

1. If (Risk is VLR) and (Effort is VLE) then (DevEval is DVHE)

2. If (Risk is VLR) and (Effort is LE) then (DevEval is DVHE)

3. If (Risk is VLR) and (Effort is ME) then (DevEval is DHE)

4. If (Risk is VLR) and (Effort is HE) then (DevEval is DME)

5. If (Risk is VLR) and (Effort is VHE) then (DevEval is DME)

6. If (Risk is LR) and (Effort is VLE) then (DevEval is DVHE)

7. If (Risk is LR) and (Effort is LE) then (DevEval is DHE)

8. If (Risk is LR) and (Effort is ME) then (DevEval is DHE)

9. If (Risk is LR) and (Effort is HE) then (DevEval is DME)

10. If (Risk is LR) and (Effort is VHE) then (DevEval is DLE)

11. If (Risk is R) and (Effort is VLE) then (DevEval is DHE)

12. If (Risk is R) and (Effort is LE) then (DevEval is DME)

13. If (Risk is R) and (Effort is ME) then (DevEval is DME)

14. If (Risk is R) and (Effort is HE) then (DevEval is DLE)

15. If (Risk is R) and (Effort is VHE) then (DevEval is DLE)

16. If (Risk is HR) and (Effort is VLE) then (DevEval is DHE)

17. If (Risk is HR) and (Effort is LE) then (DevEval is DME)

18. If (Risk is HR) and (Effort is ME) then (DevEval is DLE)

19. If (Risk is HR) and (Effort is HE) then (DevEval is DLE)

20. If (Risk is HR) and (Effort is VHE) then (DevEval is DVLE)

21. If (Risk is VHR) and (Effort is VLE) then (DevEval isDME)

22. If (Risk is VHR) and (Effort is LE) then (DevEval is DME)

23. If (Risk is VHR) and (Effort is ME) then (DevEval is DLE)

24. If (Risk is VHR) and (Effort is HE) then (DevEvl is DVLE)

25. If (Risk is VHR) and (Effort is VHE) then (DevEval is DVLE)

The meanings of the symbols used in the rules are as follows:

Risk the risk of features

Effort the required effort for features

DevEval Development team evaluation

VLR Very Low Risk

LR Low Risk

R Medium Risk

HR High Risk

VHR Very High Risk

VLE Very Low Effort

LE Low Effort

ME Medium Effort

HE High Effort

VHE Very High Effort

DVLE Very Low Evaluation

DLE Low Evaluation

DME Medium Evaluation

DHE High Evaluation

DVHE Very High Evaluation

154

IV.3: Ranking Sub Module

1. If (DevEval is VLD) and (TEval is VLT) then (Rank is VLR)

2. If (DevEval is VLD) and (TEval is LT) then (Rank is VLR)

3. If (DevEval is VLD) and (TEval is MT) then (Rank is LR)

4. If (DevEval is VLD) and (TEval is HT) then (Rank is MR)

5. If (DevEval is VLD) and (TEval is VHT) then (Rank is HR)

6. If (DevEval is LD) and (TEval is VLT) then (Rank is VLR)

7. If (DevEval is LD) and (TEval is LT) then (Rank is LR)

8. If (DevEval is LD) and (TEval is MT) then (Rank is MR)

9. If (DevEval is LD) and (TEval is HT) then (Rank is MR)

10. If (DevEval is LD) and (TEval is VHT) then (Rank is HR)

11. If (DevEval is MD) and (TEval is VLT) then (Rank is LR)

12. If (DevEval is MD) and (TEval is LT) then (Rank is LR)

13. If (DevEval is MD) and (TEval is MT) then (Rank is MR)

14. If (DevEval is MD) and (TEval is HT) then (Rank is HR)

15. If (DevEval is MD) and (TEval is VHT) then (Rank is VHR)

16. If (DevEval is HD) and (TEval is VLT) then (Rank is LR)

17. If (DevEval is HD) and (TEval is LT) then (Rank is MR)

18. If (DevEval is HD) and (TEval is MT) then (Rank is HR)

19. If (DevEval is HD) and (TEval is HT) then (Rank is VHR)

20. If (DevEval is HD) and (TEval is VHT) then (Rank is VHR)

21. If (DevEval is VHD) and (TEval is VLT) then (Rank is MR)

22. If (DevEval is VHD) and (TEval is LT) then (Rank is MR)

23. If (DevEval is VHD) and (TEval is MT) then (Rank is HR)

24. If (DevEval is VHD) and (TEval is HT) then (Rank is VHR)

25. If (DevEval is VHD) and (TEval is VHT) then (Rank is VHR)

The meanings of the symbols used in the rules are as follows:

DevEval Development team evaluation

TEval Tenant related evaluation

Rank Initial Ranks of features

VLD Very Low Development team related evaluation

LD Low Development team related evaluation

MD Medium Development team related evaluation

HD High Development team related evaluation

VHD Very High Development team related evaluation

VLT Very Low Tenants related evaluation

LT Low Tenants related evaluation

MT Medium Tenants related evaluation

HT High Tenants related evaluation

VHT Very High Tenants related evaluation

VLR Very Low Rank

LR Low Rank

MR Medium Rank

HR High Rank

VHR Very High Rank

155

APPENDIX V: LIST OF PUBLICATIONS

[1] M. Alrashoud and A. Abhari, "Perception-Based Software Release Planning," Intelligent

Automation & Soft Computing, Taylor & Francis, vol. 21(2), pp. 175-195, 2015.

[2] M. Alrashoud, L. Ahmed and A. Abhari, "Binary linear programming-based release

planning for multi-tenant business SaaS," in Proceedings of the International Conference

on Computer Science & Software Engineering, Montreal, 2014, pp. 118-125.

[3] M.Alrashoud, M.AlMeshary, A.Abhari, " Automatic Validation for Multi Criteria

Decision Making Models in Simulation Environments," in Communications and Networking

Simulation Symposium (CNS), Spring Simulation Multi-Conference, SpringSim2015, 2015,

in press.

http://www.tandfonline.com/loi/tasj20?open=21#vol_21

156

REFERENCES

[1] G. Ruhe, Product Release Planning: Methods, Tools and Applications. Alberta, Canada,

CRC Press, 2010.

[2] G. Ruhe and S. L. Pfleeger, "Software engineering decision support," in 40th Annual

Hawaii International Conference On System Sciences, Hawaii , HICSS 2007, 2007, pp. 282-

282.

[3] G. Ruhe, "Software engineering decision support–a new paradigm for learning software

organizations," in Advances in Learning Software Organizations, Springer, pp. 104-113,

2003.

[4] P. Mell, T. Grance, The NIST definition of cloud computing, Computer Security

Division, Information Technology Laboratory, National Institute of Standards and

Technology, Gaithersburg, MD. 2011

[5] T. Erl, R. Puttini and Z. Mahmood, Cloud Computing: Concepts, Technology, &

Architecture. Pearson Education, 2013.

[6] B. Sengupta and A. Roychoudhury, "Engineering multi-tenant software-as-a-service

systems," In Proceedings of the 3rd International Workshop on Principles of Engineering

Service-Oriented Systems , New York, PESOS '11, NY, USA, 2011, pp. 15-21.

[7] C. Fry and S. Greene, "Large scale Agile transformation in an on-demand world," in

Agile Conference, Washington, DC, AGILE, 2007, pp. 136-142.

[8] D. Greer and G. Ruhe, "Software release planning: an evolutionary and iterative

approach," Information and Software Technology, vol. 46, pp. 243-253, 2004.

[9] S. Subashini and V. Kavitha, "A survey on security issues in service delivery models of

cloud computing," Journal of Network and Computer Applications, vol. 34, pp. 1-11, 2011.

157

 [10] H. Takabi, J. B. D. Joshi and G-J.Ahn, "Security and Privacy Challenges in Cloud

Computing Environments," IEEE Security & Privacy, vol. 8, pp. 24-31, 2010.

[11] H. J. La and S. D. Kim, "A systematic process for developing high quality SaaS cloud

services," Lecture Notes in Computer Science, vol. 5931, pp. 278-289, 2009.

[12] T.Unger, R.Mietzne, and F. Leymann, "Customer-defined service level agreements for

composite applications," Enterprise Information Systems, vol. 3, pp. 369-391, 2009.

[13] W.Sun, X.Zhang, C. J. Guo, P.Sun and H.Su, "Software as a service: Configuration and

customization perspectives," in Congress on Services Part II, IEEE SERVICES-2., 2008,

pp. 18-25.

 [14] O.Saliu, G.Ruhe, "Software release planning for evolving systems,"Innovations in

Systems and Software Engineering, vol. 1, pp. 189-204, 2005.

[15] S. Jantunen, L. Lehtola, D. C. Gause, U. R. Dumdum and R. J. Barnes, "The challenge

of release planning," IEEE Fifth International Workshop on Software Product Management,

Trento., IWSPM, 2011, pp. 36 - 45.

 [16] K. Beck et al (2001), "Manifesto for Agile Software Development", Available on line

http://agilemanifesto.org/.

[17] G. Kulkarni, P. Chavan, H. Bankar, K. Koli and V. Waykule, "A new approach to

software as service cloud," in 7th International Conference On Telecommunication Systems,

Services, and Applications (TSSA), 2012, pp. 196-199.

 [18] H. J. La and S. D. Kim, "A systematic process for developing high quality SaaS cloud

services," Lecture Notes in Computer Science, vol. 5931, pp. 278-289, 2009.

[19] C. -. Guo, W. Sun, Z. -. Jiang, Y. Huang, B. Gao and Z. -. Wang, "Study of Software as

a Service Support Platform for Small and Medium Businesses," Lecture Notes in Business

Information Processing, vol. 74, pp. 1-30, 2011.

http://link.springer.com/journal/11334
http://link.springer.com/journal/11334
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6035880
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6035880
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6035880

158

 [20] R. Mietzner, A. Metzger, F. Leymann and K. Pohl, "Variability modeling to support

customization and deployment of multi-tenant-aware software as a service applications," in

ICSE Workshop on Principles of Engineering Service Oriented Systems, PESOS, 2009, pp.

18-25.

[21] K. Schwaber, "Scrum development process," in OOPSLA'95 Workshop Proceedings

on Business Object Design and Implementation: Springer-Verlag, 1997, pp. 117-134.

 [22] M. Block, "Evolving to Agile: A story of Agile adoption at a small SaaS company," in

Agile Conference (AGILE), 2011, 2011, pp. 234-239.

 [23] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change.

Addison-Wesley Professional, 2000.

[24] S.Tariq, M.Mohsin N. Saleemi and F.Saleemi, "Enhancement of XP for Cloud

Application Development," Journal of Emerging Trends in Computing and Information

Sciences, vol. 3, pp. 295-301, 2012.

 [25] R. Benefield, "Agile deployment: Lean service management and deployment strategies

for the SaaS enterprise," in 42nd Hawaii International Conference on System Sciences,

HICSS '09, 2009, pp. 1-5.

[26] G.Carraro, F. Chong, and E.Pace “, "Efficient Software Delivery Through Service-

Delivery Platforms," The Architecture Journal, Microsoft MSDN Architecture Center,

available on https://msdn.microsoft.com/en-us/library/bb735303.aspx,2007.

 [27] R. Mietzner and F. Leymann, "Generation of BPEL customization processes for SaaS

applications from variability descriptors," in IEEE International Conference on Services

Computing, SCC 2008, 2008, pp. 359-366.

159

 [28] J. Diane, E. John, "Web services business process execution language version 2.0,"

OASIS standard, available on

https://www.oasisopen.org/committees/tc_home.php?wg_abbrev=wsbpel, accessed on 2007.

[29] W. -. Tsai and X. Sun, "SaaS multi-tenant application customization," in IEEE 7th

International Symposium on Service-Oriented System Engineering, SOSE 2013, 2013, pp. 1-

12.

 [30] K. Logue and K. McDaid, "Handling uncertainty in Agile requirement prioritization

and scheduling using statistical simulation," in Agile Conference, AGILE'08, 2008, pp. 73-

82.

 [31] P. Carlshamre, "Release planning in market-driven software product development:

Provoking an understanding," journal of Requirements Engineering, vol.7, pp. 139-151,

2002.

[32] G. Ruhe, "A systematic approach for solving the wicked problem of software release

planning," journal of Soft Computing, vol. 12, pp. 95-108, 2008.

 [33] G. Ruhe and M. O. Saliu, "The art and science of software release planning," IEEE

Software, vol. 22, pp. 47-53, 2005.

[34] A. Al-Emran, P. Kapur, D. Pfahl and G. Ruhe, "Studying the impact of uncertainty in

operational release planning–An integrated method and its initial evaluation," Information

and Software Technology, vol. 52, pp. 446-461, 2010.

[35] M. Cohn, Agile Estimating and Planning. Prentice Hall, 2005.

 [36] K. Logue and K. McDaid, "Agile release planning: Dealing with uncertainty in

development time and business value," in Proceedings - Fifteenth IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems, ECBS 2008,

2008, pp. 437-442.

160

[37] G. Ruhe and A. N. The, "Hybrid intelligence in software release

planning," International Journal of Hybrid Intelligent Systems, vol. 1, pp. 99-110, 2004.

 [38] M. van den Akker, S. Brinkkemper, G. Diepen and J. Versendaal, "Software product

release planning through optimization and what-if analysis," Information and Software

Technology, vol. 50, pp. 101-111, 2008.

[39] F. G. Freitas, D. P. Coutinho and J. T. Souza, "Software next release planning approach

through exact optimization," International Journal of Computer Applications, vol. 22, pp.

1-8, 2011.

[40] M. I. Ullah and G. Ruhe, "Towards comprehensive release planning for software

product lines," in Proceedings of the First International Workshop on Software Product

Management, IWSPM'06, 2006, pp. 51-55.

[41] C. Li, M. van den Akker, S. Brinkkemper and G. Diepen, "An integrated approach for

requirement selection and scheduling in software release planning," Journal of

 Requirements Engineering, vol. 15, pp. 375-396, 2010.

[42] K. Deb and K. Pal, "Efficiently solving: A large-scale integer linear program using a

customized genetic algorithm," Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3102, pp.

1054-1065, 2004.

 [43] H. Holland, Adaptation in Natural and Artificial systems, University of Michigan

Press, Ann Arbor, 1975.

 [44] An Ngo-The and G. Ruhe, "Optimized Resource Allocation for Software Release

Planning," IEEE Transactions On Software Engineering , vol. 35, pp. 109-123, 2009.

[45] T. L. Satty, The analytic hierarchy process. New York: McGraw Hill, 1980.

161

[46] J. Karlsson and K. Ryan, "A cost-value approach for prioritizing requirements," IEEE

Software, vol. 14, pp. 67-74, 1997.

[47] P. Bajaj and V. Arora. "Multi-person decision-making for requirements prioritization

using fuzzy AHP," ACM SIGSOFT Software Engineering Notes, vol 38, pp. 1-6. 2013.

 [48] E. Tsang, Foundations of Constraint Satisfaction. Academic Press, London and San

Diego, 1995.

 [49] B. Regnell and K. Kuchcinski, "Exploring software product management decision

problems with constraint solving-opportunities for prioritization and release planning," in

Fifth International Workshop On Software Product Management (IWSPM), 2011, pp. 47-56.

 [50] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.

 [51] M. Laviolette and J. W. Seaman Jr., "The efficacy of fuzzy representations of

uncertainty," IEEE Transaction on Fuzzy Syst, vol. 2, pp. 4-15, 1994.

 [52] L. A. Zadeh, "Generalized theory of uncertainty (GTU) - Principal concepts and

ideas," journal of Advances in Soft Computing, vol. 37, pp. 3-4, 2006.

 [53] R.Bellman and L. A. Zadeh, "Decision-Making in a Fuzzy Environment," journal of

Management Science, vol. 17, pp. b-141-b-164, 1970.

 [54] W. Shen, "Software release planning with fuzzy objectives and constraints," M.S.

thesis, Dept of Electrical and Computer Engineering, University of Calgary, Calgary,

Canada, 2005.

 [55] An Ngo-The and M. O. Saliu, "Fuzzy structural dependency constraints in software

release planning," in the 14th IEEE International Conference on Fuzzy Systems, FUZZ

'05, 2005, pp. 442-447.

 [56] An Ngo-The, G. Ruhe and W. Shen, "Release planning under fuzzy effort constraints,"

in the Third IEEE International Conference On Cognitive Informatics, 2004, pp. 168-175.

162

 [57]Expert Decisions Inc, ReleasePlanner, available on

https://www.releaseplanner.com/rpApp/, 2004.

[58] Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack, "Minizinc:

Towards a standard cp modeling language," Lecture Notes in Computer Science, C.

Bessiere, Ed. Springer Berlin /Heidelberg, vol. 4741, pp. 529-543, 2007.

[59] ScrumDo available on http://www.scrumdo.com/, 2015.

 [60] AgileTrack Software, LLC, AgileTrack, available on http://agiletracksoftware.com/,

2014.

[61] VersionOne Inc, VersionOne SaaS application, available on

http://www.versionone.com/, 2002.

[62] H. -. Lee, "Group decision making using fuzzy sets theory for evaluating the rate of

aggregative risk in software development," journal of Fuzzy Sets System, vol. 80, pp. 261-

271, 1996.

[63] N. Bajaj, A. Tyagi and R. Agarwal, "Software estimation: a fuzzy approach," ACM

SIGSOFT Software Engineering Notes, vol. 31, pp. 1-5, 2006.

 [64] J. Wang and Y. Lin, "A fuzzy multi-criteria group decision making approach to select

configuration items for software development," journal of Fuzzy Sets System, vol. 134, pp.

343-363, 2003.

[65] S. -. Chen, "Fuzzy group decision making for evaluating the rate of aggregative risk in

software development," journal of Fuzzy Sets System, vol. 118, pp. 75-88, 2001.

[66] C. K. Kwong and H. Bai, "A fuzzy AHP approach to the determination of importance

weights of customer requirements in quality function deployment," Journal of Intelligent

Manufacturing, vol. 13, pp. 367-377, 2002.

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.expertdecisions.com%2F&ei=ZbdrVYuXMZL1oAS564OQCg&usg=AFQjCNEtSBwWT4bdLGFoBrRTGrlGlTYmIg&bvm=bv.94455598,d.aWw
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAAahUKEwjX1bb09ZTHAhXC4oAKHcuCDJk&url=http%3A%2F%2Fwww.springer.com%2Fbusiness%2B%2526%2Bmanagement%2Fproduction%2Fjournal%2F10845&ei=N5HDVZdewsWDBMuFssgJ&usg=AFQjCNGQIPFLYi8uS9_SM1tJHxD0ZbeZFw&bvm=bv.99556055,d.bGg
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAAahUKEwjX1bb09ZTHAhXC4oAKHcuCDJk&url=http%3A%2F%2Fwww.springer.com%2Fbusiness%2B%2526%2Bmanagement%2Fproduction%2Fjournal%2F10845&ei=N5HDVZdewsWDBMuFssgJ&usg=AFQjCNGQIPFLYi8uS9_SM1tJHxD0ZbeZFw&bvm=bv.99556055,d.bGg

163

 [67] E. Praynlin and P. Latha, "Software development effort estimation using

ANFIS," journal of Information (Japan), vol. 17, pp. 1325-1337, 2014.

[68] A.Amindoust and A.Saghafinia, "Supplier evaluation using fuzzy inference

systems," Studies in Fuzziness and Soft Computing, vol. 313, pp. 3-19, 2014.

[69] A. C. Kutlu, H. Behret and C. Kahraman, "A fuzzy inference system for multiple

criteria job evaluation using fuzzy AHP," Journal of Multiple-Valued Logic and Soft

Computing, vol. 23, pp. 113-133, 2014.

 [70] I. Palomares, R. M. Rodríguez and L. Martínez, "An attitude-driven web consensus

support system for heterogeneous group decision making," journal of Expert System

Applications, vol. 40, pp. 139, 2012.

[71] H. Ziv, D. Richardson and R. Klösch, "The uncertainty principle in software

engineering," the 19th International Conference on Software Engineering (ICSE'97), 1997.

 [72] L. A. Zadeh, "From computing with numbers to computing with words. From

manipulation of measurements to manipulation of perceptions," IEEE Transactions on

Circuits and Systems I: Fundamental Theory and Applications, vol. 46, pp. 105-119, 1999.

[73] T. Elsayed, "Fuzzy inference system for the risk assessment of liquefied natural gas

carriers during loading/offloading at terminals," journal of Applied Ocean Research, vol. 31,

pp. 179-185, 2009.

 [74] K. E. Wiegers and J. Beatty, Software Requirements. Microsoft Press, 2013.

 [75] "The 7 secrets of SaaS startup success," Salesforse white papers, available on

https://www.salesforce.com/assets/pdf/misc/WP_7Secrets_0408.pdf, 2008.

[76] O. Saliu and G. Ruhe, "Supporting software release planning decisions for evolving

systems," in Proceedings of the 2005 29th Annual IEEE/NASA Software Engineering

Workshop, SEW'05, 2005, pp. 14-24.

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAAahUKEwjRuLi-9pTHAhUCuxQKHZRxD9Q&url=http%3A%2F%2Fwww.journals.elsevier.com%2Fapplied-ocean-research%2F&ei=0pHDVdGHDoL2UpTjvaAN&usg=AFQjCNE-NNTu_JTN0aazHU2UD4JM8K9kfQ&bvm=bv.99556055,d.bGg

164

 [77] Z. Yue, "An extended TOPSIS for determining weights of decision makers with

interval numbers," journal of Knowledge-Based System. vol 24, pp. 146-153. 2011.

 [78] G. Ruhe and D. Greer, "Quantitative studies in software release planning under risk

and resource constraints," in International Symposium on Empirical Software Engineering,

ISESE 2003, 2003, pp. 262-270.

 [79] C. Chittister and Y. Y. Haimes, "Risk associated with software development: a holistic

framework for assessment and management," IEEE Transaction on System. Man Cybern,

vol. 23, pp. 710-723, 1993.

 [80] A. Benlian and T. Hess, "Opportunities and risks of software-as-a-service: Findings

from a survey of IT executives," journal of Decision Support System, vol 52, pp. 232. 2011.

 [81] A. Sharma and D. S. Kushwaha, "A Complexity measure based on Requirement

Engineering Document,"International Conference on Computer and Communication

Technology (ICCCT), 2010, pp 608-615.

[82] V.Viji, J. Dhanalakshmi, and S. Sahadev., "Software team skills on software product

quality," Asian Journal of Information Technology, vol. 8, pp. 8-13, 2009.

 [83] B. W. Boehm, "Software risk management: principles and practices," IEEE Software,

vol. 5, pp. 32-41, 1991.

[84] L.Wu, S. K. Garg and R. Buyya, "SLA-based resource allocation for software as a

service provider (SaaS) in cloud computing environments," in 11th IEEE/ACM

International Symposium On Cluster, Cloud and Grid Computing (CCGrid), 2011, pp. 195-

204.

 [85] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell and J. Natt och Dag, "An

industrial survey of requirements interdependencies in software product release planning,"

in Fifth IEEE International Symposium on Requirements Engineering, 2001, pp. 84-91.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5616735
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5616735
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5616735

165

[86] C. Ebert and J. De Man, "Requirements uncertainty: Influencing factors and concrete

improvements," in 27th International Conference on Software Engineering, ICSE

2005,2005, pp. 553-560.

 [87] S. Cateni, M.Vannucci and V. Colla, "Industrial multiple criteria decision making

problems handled by means of fuzzy inference-based decision support systems," in 4th

International Conference on Intelligent Systems Modelling & Simulation (ISMS), 2013, pp.

12-17.

[88] H. Vasudevan, N. C. Deshpande and R. R. Rajguru, "Multi criteria decision making

using fuzzy inference system: A case in manufacturing," in International Conference on

Control, Instrumentation, Communication and Computational Technologies (ICCICCT),

2014, pp. 1280-1286.

 [89] E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy

logic controller," International Journal of Man-Machine Studies, vol. 7, pp. 1-13, 1975.

 [90] A.Kaufmann, and M. M. Gupta, Introduction to Fuzzy Arithmetic: Theory and

Applications. Arden Shakespeare, 1991.

 [91] L. A. Zadeh, "The concept of a linguistic variable and its application to approximate

reasoning—I," journal of Information Science, vol. 8, pp. 199-249, 1975.

 [92] T. J. Ross, Fuzzy Logic with Engineering Applications. England: Willy, 2005.

 [93] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to

modeling and control," IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-

15, pp. 116-132, 1985.

 [94] M. Setnes, R. Babuska, U. Kaymak and H. R. van Nauta Lemke, "Similarity measures

in fuzzy rule base simplification," IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol.28, pp. 376-386. 1998.

166

 [95] A. Hamam and N. D. Georganas. "A comparison of mamdani and sugeno fuzzy

inference systems for evaluating the quality of experience of hapto-audio-visual

applications," IEEE International Workshop on Haptic Audio visual Environments and

Games, HAVE 2008, 2008, pp 87 - 92.

 [96] W. L. Tung and C. Quek, "A mamdani-takagi-sugeno based linguistic neural-fuzzy

inference system for improved interpretability-accuracy representation," in IEEE

International Conference on Fuzzy Systems., FUZZ-IEEE,2009, pp. 367-372.

 [97] A. Sancho-Royo and J. L. Verdegay, "Methods for the Construction of Membership

Functions," International Journal of Intelligent Systems, vol. 14, pp. 1213-1230, 1999.

 [98] W.Di, X. Zeng, and J. Keane, "A survey of hierarchical fuzzy systems," International

Journal of Computational Cognition, vol. 4, pp. 18-29, 2006.

 [99] R. R. Yager, "On a hierarchical structure for fuzzy modeling and control," IEEE

Transactions on Systems, Man, and Cybernetics, vol. 23, pp. 1189-1197, 1993.

 [100] C. Wei and L. Wang, "A note on universal approximation by hierarchical fuzzy

systems," journal of Information Science, vol.123, pp. 241-248, 2000.

 [101] J. M. Van Den Akker, S. Brinkkemper, G. Diepen and J. Versendaal, "Determination

of the next release of a software product: An approach using integer linear programming," in

Proceeding of the 11th International Workshop on Requirements Engineering, 2005, pp.

119-124.

 [102] J. W. Chinneck, PRACTICAL OPTIMIZATION: A GENTLE INTRODUCTION.

Carleton University, 2012.

[103] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms. Springer

Science & Business Media, 2007.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5247842
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5247842
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5247842

167

 [104] K.Deep, K. P.Singh, M.L. Kansal, and C. Mohan, "A real coded genetic algorithm for

solving integer and mixed integer optimization problems," journal of Applied Mathematics

and Computation, vol.212, pp. 505–518, 2009.

[105] A. Al-Emran, D. Pfahl, and G. Ruhe, "Decision support for product release planning

based on robustness analysis," in 18th IEEE International Requirements Engineering

Conference, 2010, pp. 157-166

[106] L. M. Laird, M. C.Brennan, Software Measurement and Estimation: a Practical

Approach .Wiley-IEEE Computer Society Press, 2006.

[107] L. A. Zadeh, "A Note on Z-numbers," journal of Information Science, vol. 181, pp.

2923-2932, 2011.

[108] A.J.Bagnall, A.J. Rayward-Smith, and I.M. Whittley, "The next release

problem," Information and software technology, vol. 43, pp.883-890.2001.

 [109] Z. Yuanyuan, M. Harman, and S.A. Mansouri, "The multi-objective next release

problem," Proceedings of the 9th annual conference on Genetic and evolutionary

computation. ACM, 2007, pp.1129-1137.

[110] J.J.Durillo, Y. Zhang, E.Alba, M.Harman, and A.J.Nebro, "A study of the bi-objective

next release problem," Empirical Software Engineering, vol.16, pp. 29-60, 2011.

http://refworks.scholarsportal.info/refworks2/?r=references|MainLayout::init
http://refworks.scholarsportal.info/refworks2/?r=references|MainLayout::init

