
Robust Video Event Recognition

by

Feifei Chen

Bachelor of Engineer, Zhejiang University, 2012

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Computer Networks

Toronto, Ontario, Canada, 2016

c©Feifei Chen 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for
the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for
the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

Robust Video Event Recognition

Master of Applied Science 2016

Feifei Chen

Computer Networks

Ryerson University

Abstract

Video Event Recognition is an important problem in video semantic analysis. In Video

Event Recognition, video scenes can be summarized into video event through understand-

ing their contents. Previous research has proposed many solutions to solve this problem.

However, so far, all of them only target high-quality videos. In this thesis, we find, with

the constraints in modern applications, that low-quality videos also deserve our attention.

Compared to previous works, this brings a greater challenge, as low-quality videos are

lacking essential information for previous methods to work. With the quality degraded,

technical assumptions made by previous works no longer stay intact. Thus, this thesis

provides a solution to address this problem. Based on the generic framework proposed by

previous work, we propose a novel feature extraction technique that can work well with

low-quality videos. We also improve the sequence summary model based on previous

work. As a result, comparing to previous works, our method reaches a similar accuracy

but is tested with a much lower video quality.

v

Acknowledgements

I would like to thank all the people who have supported me during the completion of this
thesis. Without their help, I would never complete this thesis. Meanwhile, I sincerely
appreciate all the people who have helped and supported me during my graduate study
in Canada. Their help made my study here an enjoyable experience.

First and foremost, I would like to express my deepest gratitude to my supervisor Dr.
Xiao-Ping Zhang, whose expertise and enthusiasm for research set an excellent example
for me. I appreciate all his inspiration, understanding, and patience. Thank you for
providing me such a great research atmosphere and thank you for sharing knowledge
with me.

Also, I am really grateful to Dr. Bobby Ma, Dr. Alagan Anpalagan, and Dr. Lian
Zhao. Thank you for the time, efforts, and contributions to my defense as well as this
work. For this work, I really appreciate JunFeng Jiang and Mike Qin for providing
training data. Manually recognizing video event is time-consuming and, yet, it is the
only way we can calculate the accuracy rate.

It has been a pleasure working with all my colleagues in Communications and Signal
Processing Applications Laboratory Lab (CASPAL), who are always willing to discuss
and share their knowledge with me.

A very special thanks goes to Dr. Bobby Ma, without whose professional advice
and encouragement, I would not have been able to complete my graduate study in the
Computer Networks program. Thanks again for giving me a chance to enjoy here and
meet with interesting people.

Finally, my heartfelt thanks to my parents for their continuous support, understanding
and encouragement.

vii

Contents

Declaration . iii
Abstract . v
Acknowledgements . vii
List of Tables . xiii
List of Figures . xv

1 Introduction 1
1.1 Motivation and Objective . 1
1.2 Example Applications . 3

1.2.1 Mobile Vision Video Event Recognition 3
1.2.2 Cloud Environment Video Event Recognition 4
1.2.3 Surveillance Video Event Recognition 5

1.3 Review of Previous Works . 5
1.3.1 ICAMHMM Video Event Recognition 5
1.3.2 ICAMHCRF Video Event Recognition 6
1.3.3 Sub-Graph Based Video Event Recognition 6

1.4 Our Insight and Main Contributions . 7
1.5 Organization of Thesis . 8

2 Background 9
2.1 Problem Formulation . 9

2.1.1 Pre-processing . 10
2.1.2 Problem Statement . 10

2.2 General Framework by Previous Work 11
2.3 Technical Details in State of Art Work 12

ix

2.3.1 Feature Extraction . 12
2.3.2 Sequence Summary Model . 14
2.3.3 Summary and Limitations . 16

2.4 Existing Tools in This Thesis . 17
2.4.1 Sparse Representation and Sparse Coding 17

3 Self-Taught Feature Extraction 19
3.1 The Need for Self-Taught Feature Extraction 20
3.2 Definition of Feature Function . 21
3.3 General Process . 21
3.4 Feature Training . 22
3.5 Feature Extraction . 25
3.6 Chapter Summary . 28

4 Hidden States Sequence Summary Model 29
4.1 Definition of Sequence Summary Model 30
4.2 Introducing Hidden States . 31
4.3 Constructing Hidden States . 33

4.3.1 Mathematical Property of Hidden States 33
4.3.2 Physical Meanings of Hidden States 34

4.4 Feature Extraction with Hidden States 35
4.4.1 Feature Training with Hidden States 36
4.4.2 Feature Function with Hidden States 38

4.5 Chapter Summary . 39

5 Experimental Results 41
5.1 Implementation . 41
5.2 Golf Video Benchmark . 42

5.2.1 Video Data Description . 42
5.2.2 Overall Results . 42
5.2.3 Confusion Matrix . 44
5.2.4 Hidden States Results . 44
5.2.5 Summary of Golf Video Benchmark 45

5.3 Table Tennis Teaching Video . 45

x

5.3.1 Video Data Description . 45
5.3.2 Overall Results . 46
5.3.3 Summary for Table Tennis Teaching Video 48

6 Conclusion and Future Work 51

Bibliography 54

xi

List of Tables

2.1 Example Video Events in Golf Videos . 10

3.1 Comparison of Video Qualities between Previous Work and Our Goal . . 20

5.1 Video Quality Degradation . 43
5.2 Accuracy Comparison . 43
5.3 Confusion Matrix . 44
5.4 Accuracy with respect to number of hidden states 45
5.5 Video Quality Degradation for Table Tennis Video 46
5.6 Events of Table Tennis Teaching Video 47
5.7 Confusion Matrix for Table Tennis Teaching Video 48

xiii

List of Figures

2.1 Example of Video Event Recognition Problem Statement 11
2.2 Graphical Representation of HCRF . 15
2.3 Graphical Representation of Simplified Model in Previous Work 16

3.1 General Process of our Feature Extraction Method 22
3.2 Feature Training Process . 23
3.3 Feature Extraction Process . 27

4.1 Example of Video Sub-Event . 35

xv

Chapter 1

Introduction

1.1 Motivation and Objective

There are many ways to analyze the semantic of a video. Among them, Video Event
Recognition has gained a lot of attention in recent years [1, 2, 3, 4, 5, 6]. Video Event
Recognition is a scene recognition problem. As a prerequisite, videos are first prepro-
cessed into a set of scenes. Each of these video scenes has a semantic meaning. Video
Event Recognition recognizes which type of semantic the scene expressed by looking at
the content of the scene.

Video Event Recognition has many application scenarios, making it a very worthwhile
problem to solve.

Some previous works[3, 4] use Video Event Recognition to recognize sporting events
in sports videos. These works both suggest that Video Event Recognition can accurately
recognize sporting events. Experiments have showed that Video Event Recognition can
accurately process ice hockey, golf, and bowling videos. Video events are recognized
and classified by the content of the video, which is the technical actions of the sport
movements and features. Taking golf videos as an example, video events are classified
into long drive (long shot), putting (short shot), and non-related (video events which are
not part of golf sports) events. With these recognized events, it is helpful to use these
statistics as feedback for athletes to improve their skills.

Aside from sports videos, surveillance videos are also an application scenario for Video
Event Recognition. Recognized events could reflect the status of the office: idle, busy

1

CHAPTER 1. INTRODUCTION

or meeting. This can be used to collect statistic information such as office utilization,
average work hours, and etc. Previous research also works on traffic surveillance videos
[2] to detect abnormal traffic activities.

From these past research, the data set and the accuracy has been widely focused on
high-quality videos. These videos are at least television quality, and some of them are
even higher quality videos, such as 720p. Therefore researchers assume target videos
sharing similar characteristics: clear resolution, clear texture, and colors. Most of these
assumptions remain true for sports videos at a television broadcast company, and in fact,
at such scenario, the qualities of these videos would get even higher with the trend of
modern video technology.

However, low resolution videos also deserve our attention. In a lot of scenarios, video
decoding/encoding and network transmission are constrained by energy consumption and
storage devices. These scenarios often occur with battery backed video capture devices
(such as smart phones, smart watches, or smart glasses); or long span videos (like days
of surveillance video) with a limited storage. In these cases, videos are produced and
transferred with very limited resources, and as a result, videos are of very low-quality.
We define videos that have the following properties as low-quality videos:

• They are greyscale instead of color

• They have very limited resolution

• They have very low frame rate

Most of low-quality videos are greyscale videos since these videos are often much
smaller than color videos. Limited resolution and low frame rate could result in a even
smaller video file, and moreover, according to some studies[7], it can significantly re-
duce energy consumption when capturing the video. For these videos, the limitations
of previous work begin to expose: thus, they often need good quality videos to make it
work.

While a lot of other existing computer vision algorithms are able to work with these
low-quality videos[8, 9, 10], to the best of our knowledge, Video Event Recognition is
still at the stage of assuming high-quality videos to extract features and do further
processing. How to recognize video events from low-quality videos is a major problem in
these scenarios.

2

CHAPTER 1. INTRODUCTION

This research is aiming at making Video Event Recognition system work under
lowquality videos. By being able to process videos with much lower quality, this will
open Video Event Recognition to a wider set of videos. This is a challenging task since
the technical assumptions made by previous work on high-quality videos no longer stand.
Low-quality videos contain less information than high-quality videos, therefore, making
new technical assumptions is much harder than before.

1.2 Example Applications

The impact of this thesis will benefit many modern applications. Moreover, these applica-
tions all have external constraints during video capturing or encoding, which forces Video
Event Recognition system to deal with low-quality videos. Here we list some examples
of such applications.

1.2.1 Mobile Vision Video Event Recognition

There is an evidence that mobile devices are becoming more and more popular in the past
decade. Starting from mobile phones, other cutting edge mobile devices such as smart
watches, smart glasses are also part of the mobile device family. These devices can capture
videos at any time, and are much more convenient than professional high resolution
cameras. With these devices, mobile computer vision becomes possible. However, these
devices usually have very limited computation, energy, and network resources.

Take a famous mobile video device as an example: Google Glass. Google Glass is
equipped with an OMAP 4430 processor, 2GB RAM and only a 570mAh battery. Al-
though Google Glass has a decent camera, it is impossible to do any HD-video processing
on this device. In the mobile vision environment, video technology is not the bottleneck,
instead, the hardware resources is.

However, a recent research[7] suggests it that these types of devices are still capable
of processing videos. By tweaking the image sensor and software system, this kind of
mobile device can process very low-quality, greyscale videos. This makes video processing
applications working on a portable device. The assumption made by this paper [7]is
that some video processing algorithms are robust and fast enough to process low-quality
videos, including object detection, face recognition, etc.

3

CHAPTER 1. INTRODUCTION

The objective of this thesis is focusing on bringing Video Event Recognition to low-
quality videos. With the work done in this thesis, it would be possible to recognize video
event on a portable mobile device, opening a new possibility for Video Event Recognition.

1.2.2 Cloud Environment Video Event Recognition

With the cloud environment becoming more and more common, large amount of compu-
tation and storage resources are available for video processing algorithms. This certainly
can help some video processing algorithms, such as Video Event Recognition, being faster
and/or more accurate.

The setup of this cloud environment is different than previous ones as well. Notice that
the cloud is connected with a massive number of thin-clients: most of these clients have
very weak computation resources such as laptops, mobile devices or even tiny sensors.
Unfortunately, video capturing, encoding, and even storage are originated from these
thin-clients, while video processing algorithms are running on the cloud.

In order to bridge the gaps between clients and cloud, developers usually do code
offloading[11, 12, 13, 14]. Code offloading means that the clients upload the input to
some part of code which could be running on the cloud. In the case of video processing,
the inputs are the videos that are captured by the clients, and the clients need to upload
the videos to the cloud for further processing.

Compared to other types of data flow in the network, videos are usually considered
very large to upload. First of all, from the data center’s perspective, this kind of data
costs a great deal of network resource usage. Second, from client’s perspective, such
a large amount of network transmission is often very expensive under mobile network.
Meanwhile, the larger the data is, the slower it is to upload. Usually, videos are first
degraded to low-quality videos for uploading.

Therefore, for the video processing algorithm, all the input videos to the cloud are
low-quality. With the work done in this thesis, Video Event Recognition is capable of
processing low-quality videos arriving at the cloud. This will open the Video Event
Recognition algorithm to the modern computational infrastructure.

4

CHAPTER 1. INTRODUCTION

1.2.3 Surveillance Video Event Recognition

Surveillance videos are another type of videos that are often low-quality. This is due
to two reasons. First, surveillance camera is recording images far away from the target.
The further the target is, the more blurry the image captured by the camera is. Sec-
ond, surveillance cameras usually generate days of surveillance videos, creating a storage
space bottleneck. As surveillance storage is less maintained, users want their surveillance
storage to last long enough before it gets full and needs to be replaced.

With the work done in this thesis, video events in the surveillance videos could be eas-
ily recognized, regardless of the low-quality which results from surveillance equipment’s
limit.

1.3 Review of Previous Works

1.3.1 ICAMHMM Video Event Recognition

ICAMHMM[3] (Independent Component Analysis Mixture Hidden Markov Model) is
proposed by Jian, et al. It is one of the early ground-breaking works aimed at Video Event
Recognition. It proposes a two-step framework for Video Event Recognition: feature
extraction and sequencing summary model. In both of the two steps it proposed, it uses
novel techniques to approach each step.

In feature extraction, by observing the color histogram distributions of some sports
videos, the authors observe that the distribution does not follow a Gaussian distribution,
which most of previous work assumes. Therefore, in the feature extraction step, the paper
uses ICA[15] (Independent Component Analysis) as a feature extractor. By running
ICA on color histograms, the paper is able to extract coefficients for each independent
components, and use these coefficients as the feature.

In the sequence summary model phase, the paper uses HMM (Hidden Markov Model)
as a sequencing model. HMM is a statistical model. The idea of using statistical model
is novel, because that allows the sequence summary model to learn from existing data.
Before recognizing video events, it uses some part of data to train the sequence summary
model. This allows the sequence summary model to be adaptive: the model can adapt
to the data set.

5

CHAPTER 1. INTRODUCTION

This is an early stage contribution towards Video Event Recognition. The solution
presented in this paper has a lot of limitations. First, the policies it chose might not
be optimal. For example, the follow up work proposes a new model ICAMHCRF, that
out-performs this work by simply switching the sequence summary model. Second, the
method is known to break under low-quality videos. The technical assumptions made by
the authors are by manually observing the patterns in the testing video, which made this
merely a domain specific knowledge rather than a model. These technical assumptions
might break when the testing video changes. For example, in the scope of this thesis,
the videos are low-quality videos, and these assumptions break.

1.3.2 ICAMHCRF Video Event Recognition

ICAMHCRF[4] is an improvement based on previous ICAMHMM work. It follows the
two-step framework that ICAMHMM paper presented, and also it uses the same feature
extractor – ICA as the first step.

The second step, known as the sequence summary model, instead of using HMM (Hid-
den Markov Model), it uses HCRF (Hidden States Conditional Random Field) model.
HMM is a generative model. It often suffers from over-fitting and sparseness issue. HCRF
is a smooth, regression model, which solves some issues of HMM. In general, HCRF model
often out-performs HMM model.

This paper suggests that simple improvements on the sequence summary model can
out-perform the ICAMHMM model. It shows that in ICAHMM model, some of choice
of policies are not optimal, and by optimizing these policies, accuracy of Video Event
Recognition can increase dramatically. However, it still ignores the limitations of the
ICAMHMM work. It does not improve the feature extraction phase, and the feature
extraction is still based on the author’s domain specific knowledge. At the same time,
this work does not fully exploit the full potential of the HCRF model. For example, in
this work, there is no multiple hidden states.

1.3.3 Sub-Graph Based Video Event Recognition

A more recent work[6] suggests that instead of considering the time sequence of the
videos, another solution to Video Event Recognition is to construct feature points and to

6

CHAPTER 1. INTRODUCTION

track how these feature points move. It follows a three-step procedure. The first step is
to extract features. Unlike ICAMHMM work, it does not extract feature scalar, instead,
it extracts feature points or key points in the frame. The second step is to construct a
graph to see how these points move. Third step is the query step. The query step will
check the similarity between graphs to recognize the type of events in the videos.

In the feature extraction step, it uses traditional SIFT algorithm to detect feature
points. In the graph construction phase, it constructs both per-frame graph and timeline
graph, and then uses a novel graph-comparing technique to recognize the graph and the
video events.

However, this method does not improve significantly compared to ICAHMM method,
and it under-performs compared to the ICAHCRF method. This method is not a sta-
tistical model either, making it hard to adapt to data set changes. A traditional graph
model replaces the sequence summary model, which makes the work a bit backwards to
modern tools and techniques. This work is also hard to improve, as SIFT, the feature
extractor, is a black box, rather than a model. This means that, when SIFT fails to
recognize good feature points, it is impossible to improve it.

1.4 Our Insight and Main Contributions

In Section 1.1, we mention that our objective is to recognition video event for low-quality
videos, and we explained the major challenge for such objectives is to find new technical
assumptions from low-quality videos. However finding new technical assumptions from
low-quality videos is much harder than before, for there is less information inside them
for us to observe.

This thesis gives an answer to this challenge: it is still possible. By looking at
these videos, humans are still able to recognize the events easily, so should computers.
Fortunately human vision system is better understood in recent research[16, 17, 18, 19].
The insight of this thesis is: algorithms should borrow ideas from human vision system
because human vision system is able to recognize video events in very low-quality videos.

The major contributions of this thesis are the following.
Self-taught Feature Extraction Inspired from unsupervised learning method and

human vision mechanism discovered by neuroscientist[19]. This thesis proposes a new

7

CHAPTER 1. INTRODUCTION

feature extractor that uses Sparse Coding to learn features. Instead of letting the video
experts be the feature extractor, the feature extraction in this thesis can make the com-
puter teach itself to extract features.

Introducing Hidden States for Sequence Summary Although previous research
[4] uses HCRF model, it does not leverage the hidden states for sequence summary. In
fact, in previous work, the number of hidden states is one, or, in other words, there is
no hidden state at all. This thesis shows, how to leverage hidden states for Video Event
Recognition in HCRF model, and how hidden states improve the overall accuracy.

With our solution, we can achieve similar accuracy comparing to previous works,
which are evaluated on high-quality videos. Our solution only need low-quality videos.

1.5 Organization of Thesis

In Chapter 2, we describe the background of this thesis. We first formalize the Video
Event Recognition problem by introducing formalized concepts and notations. Second,
under the well specified problem formulation, we discuss some technical details of previous
works. Third, we introduce some of the preliminaries of our work, including the existing
tools and frameworks we rely on.

In Chapter 3, we describe in detail on how our feature extraction works, why it
works, and why it is self-taught. We cover the details in both feature training and
feature extraction.

In Chapter 4, we introduce our improved sequence summary model. We introduce
the existing model used in ICAMHCRF work, and how we make improvements based
on it. We also highlight that some of these improvements need to change the feature
extraction as well.

In Chapter 5, we conduct experiments to prove that even though the video we are
processing is low-quality, we can still get similar accuracy compared to current state of
art work. We also evaluate our method on a newer data set, showing that our method
can be adapted to other types of videos.

In Chapter 6, we conclude our work and discuss future work for this research.

8

Chapter 2

Background

Video Event Recognition with low-quality videos presents a great challenge, since the
technical assumptions made by previous work no longer hold. In this chapter, we present
some backgrounds about Video Event Recognition, and also some technical assumptions
made by the previous work. In the last part of this chapter, we will also introduce some
of existing tools and frameworks we use.

2.1 Problem Formulation

Defined from an application level, video events are semantic moments in a video. A
moment is a scene in the video that has semantic meanings related to video contents.
Taking sports videos as an example, the video events would be the movements within
the game events: such as a player making a shot; or a team that makes a goal.

In technical terms, video consists of scenes. Each scene in the video will have a video
event to describe its content. This video event is pre-selected from a pool of possible
video events. Video Event Recognition system gives each scene a video event, selecting
from a pool of predefined video events. For example, in golf sports video, a video event
could be one of long drive, putting, and non-related (others). Table 2.1 gives a short
example of a video and there are three kinds of video events in it. In this way, with the
video event for each scene, we can tell the semantics of each scene.

In the following section, we will discuss Video Event Recognition system in more
detail. Firstly, what is the input to Video Event Recognition system. Secondly, how does

9

CHAPTER 2. BACKGROUND

long drive putting non-related

Table 2.1: Example Video Events in Golf Videos

the system works internally.

2.1.1 Pre-processing

Video Event Recognition recognizes at a scene level. As a prerequisite, a full video will
be, first, cut into scenes. This is usually referred as the pre-processing stage in Video
Event Recognition [20]. This process does not involve any video semantic recognition.
It simply cuts the videos into scenes by looking at the transition between frames. If the
transition is large enough, then it indicates that this might be a new scene. Previous
works have presented several methods [20, 21, 22, 23] to do this automatically. A scene
is the basic granularity for video events. Each scene will be recognized into one type
of video event. Video Event Recognition system is going to recognize these scenes by
looking at its content.

2.1.2 Problem Statement

As previous section mentions, the input of Video Event Recognition is a video scene. A
scene consists a lot of frames. To begin, let’s denote each frame i in the scene as xi, and
the scene itself as X = {x1, x2, ...}. In this thesis, we generally use a vector of all pixels
in the frame to represent frame xi , as defined in detail in section 2.3.1. However in the
problem statement, without loss of generality, frame xi could be considered as a symbol
representing the image in the frame. The task of Video Event Recognition is to give a
video event, which is denoted as y, to scene X. We pre-select a set of all possible video
events of the video as set Y , which y ∈ Y .

10

CHAPTER 2. BACKGROUND

Video

Scenes

Video Events

... ...

Recognize Recognize Recognize

Long Drive Putting Non-Related

Scene: X

={ , , }

Figure 2.1: Example of Video Event Recognition Problem Statement

In order to give a video event for scene X, current state of art approach is to calculate
conditional probability: for each y ∈ Y , we calculate P (y|X). This means, under the
condition of such scene appearing, the probability of this scene being video event y.
Therefore, the Video Event Recognition system is to find y with the maximum P (y|X)
given scene X.

Figure 2.1 gives an example of Video Event Recognition. A video is first cut into
scenes, and each scene will describe one type of content. The task for Video Event
Recognition is, given each scene, we need to recognize the video event from a set of
preselected events Y . In this figure, Y = {Long Drive, Putting,Non−Related}.

2.2 General Framework by Previous Work

In this section, we show some technical details of previous work. According to the problem
statement we mentioned in Section 2.1.2, we now show that how previous work solve the
problem – how to model P (y|X) and how to find the y such that P (y|X) is optimal.

11

CHAPTER 2. BACKGROUND

Current state of art work [4] presents a framework for Video Event Recognition.
It consists of two stages: feature extraction and sequence summary model. Feature
extraction stage is to identify the semantic of each video frame, xi; sequence summary
model is to provide a way to model the conditional probability P (y|X) given a sequence
of frame, scene X.

The first step is feature extraction. Feature extraction is to transform the video frame
from pixel space into a higher semantic level. We denote frame i in a scene as xi, and y
as a type of video events, and y ∈ Y , where Y is a set of all possible video events. The
objective of extracting features from frame xi is to find a set of feature functions (K of
them in total) fk(xi, y) (k = 0, 1, 2, ..., K − 1), which represent how likely that frame xi
is video event y.

With these feature functions generated from the first step, the second step summa-
rizing a sequence follows. We can use feature functions to describe a frame in the scene.
These descriptions, as a sequence of frames in a scene, also forms a sequence. Each
feature function describes how close it is between each frame and each video event. A
sequence of these features need a summary. Therefore we define, by using feature func-
tions fk(xi, y) for all xi and y, we need to model the conditional probability P (y|X) ,
where X = {x1, x2, ...} is a scene or a sequence of frames.

2.3 Technical Details in State of Art Work

This section shows some technical details of current state of art work. Current state
of art work [4] follows the 2 step process framework: feature extraction and sequence
summary model.

2.3.1 Feature Extraction

Independent Component Analysis

In the above problem statements, video frame xi is an image. Image consists of pixels, but
pixel space data level is not high enough to express video semantics. Therefore, we need a
transformation from pixels level into a higher level data expression. The transformations
here are called feature extraction.

12

CHAPTER 2. BACKGROUND

Feature extraction for video frame is usually conducted under some transformations.
In current state of art work [4], pixels are first transformed into a 2D color histogram
matrix Hi.

Hi[r][g] = #pixels with color (r, g,_)
total # pixels

where 0 6 r, g < 256

So the size of matrix Hi is 256× 256. Any further transformations are based on this
color histogram matrix Hi.

Next step, previous work shows that the pattern in those color histogram still follows
locality, but exhibits non-Gaussian characteristics. This lead researchers to decompose
the low level histogram matrix Hi to get high level representation. Current state of art
work [4] performs ICA [15] (Independent Component Analysis) decomposition.

Suppose video frame xi is decomposed to the k components Ck , we write:

Hi = Mksk + µk, ∀k where xi ∈ Ck 0 ≤ k < K

This means, whenever a frame was decomposed into a set of components, it will be
expressed with: Mk the mixture matrix; sk the coefficient to this mixture; and µk, the
error to this mixture. Each of these parameters will be independent to each other. Given
this, consider the following probability:

P (xi|y) =
∑
k

P (xi|yCk)P (Ck|y)

This probability means given the video event y we assume to put on the whole scene,
what is the probability for this frame xi? To calculate this, since xi is fully decomposed,
we can sum up the conditional probability in all components. Notice that all parts before
the sum are independent from ICA’s perspective. Inspired from this, researchers come
up with K feature functions. For each frame xi , feature function which represents xi at
a higher level is:

fi,k(y, xi) = log(P (xi|yCk)P (Ck|y)) = log(sk)− log(|Mk|) + log(P (Ck|y))

The feature function consists of two parts. First part is P (xi|yCk), which is related

13

CHAPTER 2. BACKGROUND

to the frame content and can be represented through ICA into sk

|Mk|
. The second part is

the static weight of function fi,k, P (Ck|y), which is learned via a iterative process.
This is the first stage of Video Event Recognition system. Now the frame feature

function itself represents video semantic. However, what we want is the video semantic
over a sequence of these frames. How to calculate the final conditional probability P (y|X)
over a sequence frame, X. This will lead us to the next stage: sequence summary model.

2.3.2 Sequence Summary Model

Section 2.2, mentions that the second step of the general frame work is to model P (y|X)
for all video event y ∈ Y . Current state of art work uses HCRF [24] (Hidden state
Conditional Random Field) to model this.

Hidden States Conditional Random Field

HCRF is a regression model: it gives a generic equation on how the final probability
would be, and the equation contains number of parameters. In the training process,
an optimizer will find the best parameters with the lowest error rate. In this way, the
equation for probability fits with the training data. HCRF models the probability:

P (y|X) = 1
Z(X)

∑
h∈H

exp(ψ(y, h,X))

, where Z(X) and ψ(y, h,X)

Z(X) =
∑
y∈Y

∑
h∈H

exp(ψ(y, h,X))

ψ(y, h,X) =
∑

i,xi∈X
(
K∑
k=1

λkfk(y, hi, X) +
J∑
j=1

τjgj(y, hi−1, hi, X))

f and g are the feature functions. Their meanings are: for each frame i , the higher the
function value are, the more likely that frame i with hidden state hi is video event y. λk
and τj are the parameters of feature functions, and their values depend on the training
data. X is independent variable, and P (y|X) is the dependent variable. Video Event
Recognition system calculate P (y|X) for recognition purpose during testing. Meanwhile,

14

CHAPTER 2. BACKGROUND

y

h1 h2 hT

x1 x2 xT

Figure 2.2: Graphical Representation of HCRF

we have to perform a regression to estimate parameter λk and τj. This is usually referred
as optimization phase in HCRF.

Figure 2.2 shows the graphical representation of HCRF. HCRF summarizes the frame
sequence in video scene X into a video event y. HCRF model introduces hidden states h
as intermediate parameters. Classical HCRF model has two kinds of feature functions f
and g. The structure of HCRF enables HCRF to consider the correlations between video
frames when making the summary.

HCRF performs maximum likelihood for optimization. During the training process,
assume we know the video scene X is video event y. We calculate the likelihood L of
such input with the unknown parameters, and use L as a target function to maximize.
When L is at the maximum value, we choose the parameters as our best parameters.

Current state of art work [4] uses a modified HCRF model in sequencing model.
First, it removes the state transition function g. That is to say, feature function will not
take previous hidden states into account. Second, it removes hidden states completely
for simplicity. This speeds up the learning and training process, and had very limited
effect under high-quality videos due to its high frame rate. Therefore, the model used in
current state of art work is the following.

P (y|X) = 1
Z(X)exp(ψ(y,X))

, where Z(X) and ψ(y, h,X)

15

CHAPTER 2. BACKGROUND

y

x1 x2 xT

Simplified
HCRF

Figure 2.3: Graphical Representation of Simplified Model in Previous Work

Z(X) =
∑
y∈Y

exp(ψ(y,X))

ψ(y,X) =
∑

i,xi∈X
(
K∑
k=1

λkfk(xi, y))

Figure 2.3 shows the graphical representation of the simpilified model used in current
state of art work. First, state transition functions are removed. Second, hidden states
are removed from the model. This results in a much simpler model.

It also claims that, for maximum number of feature functions per-frame, K is non-
convex. To achieve the best result, K = 3, 4 is the optimal value state. That is to
say, this HCRF model will also have 3,4 parameters. The f is the feature function we
mentioned above, which is calculated using ICA decomposition.

2.3.3 Summary and Limitations

Several current state of art works [3, 20, 4] already setup a framework and have pushed
the accuracy of Video Event Recognition to usable states. Most of these works follow
these two stages. Their differences mainly focus on different policies on choosing features
or applying different sequencing models. Latest work [4] has showed accuracy of 73%
with the ICA feature extraction and HCRF sequencing model on golf sports videos.

However, none of the previous work has ever targeted on low-quality videos. Low-

16

CHAPTER 2. BACKGROUND

quality videos disable some of the technical assumptions that previous works have made
before. Low-quality videos are often greyscale and low resolution, leading significant
bias color histogram or no color histogram at all. Low-quality videos may not follow ICA
pattern due to pixel distortion. Lower frame rate also affects the current sequence model.

2.4 Existing Tools in This Thesis

2.4.1 Sparse Representation and Sparse Coding

Sparse Representation and Sparse Coding is a model proposed in 1996 [19]. At first,
it is invented to model the visual cortex signals recorded from the brains of monkeys.
Previous works on feature extraction all work on manually selected features, like color
histogram. Unlike them, Sparse Coding operates on raw pixels. For low-quality videos,
most of them are greyscale, and that simplifies this technique, since pixel colors are scalar
(greyscale), rather than 3-dimensional (RGB).

In this technique, Sparse Representation is a decomposition process, and Sparse Cod-
ing is an optimization learning process. The outcome of Sparse Coding process is a set
of vectors called base vectors. After this optimization learning process, Sparse Represen-
tation can decompose the input images into these base vectors with coefficients.

Sparse Coding

This is the prerequisite process for Sparse Representation. In this process, the computer
learns the feature extractor itself. The input to this process is training frames. Each
frame is a greyscale image. We extract all the pixels from the greyscale image and put
them in a vector a. For example, in one of our evaluation, the image is 36× 24, then the
length of vector a is 864.

Suppose that we have altogether N frames in a scene, and each vector has a length
of M . We gather all those vectors into a M × N matrix called A. We would like to
decompose matrix A (which is all of training images) into a product of two matrices, B
with size of M ×K and Z with size of K ×N , where K is a tunable parameter:

A = B · Z + ε s.t. minB,α{
1
2‖ε‖

2
F + ‖Z‖1}

17

CHAPTER 2. BACKGROUND

This decomposition process is a constraint based decomposition process. The target
for optimization is to make 0.5‖ε‖2

F +‖Z‖1 as minimum as possible. With this constraint,
we decompose A into B · Z. We call matrix B the base matrix, and the column vectors
in B the base vectors. We call matrix Z the coefficient matrix. If we look through image
by image: A = {a1, a2, ..., aN} (ai is a vector representing video frame). Then we have

ai =
K∑
k=1

zk,ibk + εi

This equation is viewed from each frame’s perspective. Which is to say, ai is linearly
represented by a set of vector B = {b1, b2, ..., bK}. We save the base matrix B as the
result of the learning process, and we gather all coefficients {z1,i, z2,i, ..., zK,i} into a vector,
defined as feature vector with respect to base matrix B.

The feature learning process actually learns a set of base vectors from the training
data. Noticing that the algorithm optimizes the error, and learns the base matrix itself.
This is why it is usually referred as self-taught learning.

Sparse Representation

Sparse Coding is the feature learning process. After the learning process, using the base
matrix we learned, we can generate the features. Given any input image, we extract all
of its greyscale pixels into a vector, denote as x. We want to linearly decompose x with
respect to the base matrix.

x =
K∑
k=1

αkbk + εx s.t. min{‖εx‖2 + ‖α‖1}

The constraint for vector decomposition is to minimize ‖εx‖2+‖α‖1. Similar to above,
we gather the coefficients αk into a vector α as the feature vector. Coefficients inside
the feature vector indicates that, for frame x, the similarity towards certain base vectors.
Notice that we are minimizing the ‖α‖1 for the coefficients, which indicates that frames
have rather high tendencies towards some base vectors.

18

Chapter 3

Self-Taught Feature Extraction

One of the major challenges to recognize video events on low-quality videos is to find new
technical assumptions to extract features. Previous works have pointed out some efficient
ways to manually extract features from certain types of high-quality videos. However,
these methods can hardly be applied to low-quality videos.

First, feature extraction method by previous work is a time-consuming manual pro-
cess. In previous work, the feature extraction step is based on domain specific knowledge.
To extract features, researchers from previous work must carefully examine all aspects of
features in the video frame, including colors, textures, or even SIFT key points. Although
this turns out to be an efficient method for high-quality sports videos at the moment,
repeating such a process for low-quality videos is a time-consuming process.

Second, low-quality videos present a greater challenge since the total amount of in-
formation is lacking. This makes manually finding features even harder. Taking color
features as an example, previous work extract features by looking at the color distribu-
tion of each frame. Here, however, in low-quality videos, the color might be distorted or
even not existing at all.

In table 3.1, we present a contrast on video qualities between our work and previous
work. We use the same video, but our quality is much lower. Table 3.1 shows a sample
video frame from both two kinds of videos. Previous work’s video was 352 × 240 with
24-bit True Color, while our goal is to recognize video with a resolution of 36× 24 only
and greyscale color.

Therefore, we believe, for low-quality videos, we need a novel method to extract

19

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

A sample frame of high-quality
videos that previous work uses

A sample frame of low-quality
videos in our evaluation

Table 3.1: Comparison of Video Qualities between Previous Work and Our Goal

features. In this chapter, we will present our first major contribution, self-taught feature
extraction.

3.1 The Need for Self-Taught Feature Extraction

Manually finding features to extract from low-quality videos is hard. However, before
we decide to solve this problem, we would like to affirm the question if this problem is
solvable and does this feature even exist in low-quality videos?

The answer to this question is yes! We manually inspect these low-quality videos
and find out that recognizing video events for a human is quite easy. This suggests two
things: firstly, even in these low-quality videos, there is still enough features existing.
Secondly, human beings seem to learn extracting features without finding the features.
Recognition is part of the human vision. Therefore, we ask the following questions:

Since finding features manually is hard, can computers learn the features on its own?
How does human’s vision system learn features from these low-quality video frames? Can
we borrow the ideas from human vision system to make computers teach themselves on
how to extract features from these low-quality videos?

Fortunately, neuroscientists have revealed the possible mechanism of human vision
system [19, 18], named Sparse Representation/Sparse Coding. In recent years, as com-
puters are getting faster, this mechanism has been adopted by many other systems
[9, 25, 26, 27] to solve problems in vision recognition. Our approach towards Video

20

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

Event Recognition for low-quality videos can simulate this mechanism, just as the way
that humans learn to see. The way that humans learn to see does not require any manual
feature findings, and it does not make any technical assumptions like colors, distribu-
tions, etc. Therefore, we call this mechanism being self-taught [28]. Thus, for us, we can
avoid the trouble of manually finding features from low-quality videos.

3.2 Definition of Feature Function

First of all, we need to formalize the first step, feature extraction. Feature extraction is
to transform the video frame from pixel level into a higher semantic level. We denote
frame i in a scene as xi. xi is a vector of all greyscale pixels in the frame i. For example,
if the frame is 36×24, then the length of vector xi is 864. We denote y as a type of video
event, and y ∈ Y , where Y is a set of all possible video events.

The objective of extracting features from frame xi is to find a set of feature functions
(K of them in total) fk(xi, y) (k = 1, 2, ..., K), which represents likelihood of frame xi
being video event y.

We would also like to constrain the value of function fk(xi, y) ∈ [0, 1). In the later
section, we will show that this constraint does not affect the final accuracy, as this feature
function will eventually be used to model a conditional probability.

3.3 General Process

In Section 2.4.1, we introduces the sparse coding and sparse representation model. Sparse
Coding is an optimization learning process. It optimizes a cost function and generates a
set of base vectors. Sparse Representation is a decomposition process: given a set of base
vectors, it can decompose the input vector into base vectors with coefficients. Inspired
from this, we would like to use Sparse Coding as a feature training process and Sparse
Representation as a learning process.

This process is explained in figure 3.1. Training scenes, along with their video events,
are processed first through the feature training process. The training process generates
a set of base vectors as the product. This step is self-taught: the computer teaches itself
to find what features to look for. The second step, when a testing frame needs a feature

21

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

Feature Training

Feature Extraction

Training
Scenes

Their Video
Events

+

Base Vectors

A Testing
Frame

Video Event

Similarity

1

2

Base Vectors describes what a frame look like of
certain types of video event

Figure 3.1: General Process of our Feature Extraction Method

function, it goes through a feature extraction process. The feature extraction process
needs to read the base vectors generated by the feature learning process. The feature
extraction finally outputs a feature function, which describes the similarity between a
testing frame and any video events.

3.4 Feature Training

In the feature training process, we need to teach a computer how a type of video event
looks. By using sparse coding technique, the computer will figure out what to learn
from these video frames. Therefore, in this feature training process, we would like to tell
the computer how each frame looks for each type of video events. To achieve this, we
need labeled-data. In the sequence summary model section, we will need labeled-data
for training as well.

Labeled-data in Video Event Recognition, also referred as the training scenes, is part
of the testing video that has video events manually marked. The training scenes are
usually part of testing videos as well. The purpose is to ensure the training is not biased.

22

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

Feature Learning

Training
Scenes

Their Video
Events

+

Scene1 ⇒ long drive

Scene2 ⇒ putting

Scene3 ⇒ long drive

SceneN ⇒ non-related

… ...

long drive putting non-related

Sparse Coding Sparse Coding Sparse Coding

Base Vector
For long drive

Base Vector
For putting

Base Vector
For non-related

1

2

Figure 3.2: Feature Training Process

The labeled-data is a set of scenes that already knows to have video events. Let’s denote
the training data as the following set

TrainingData = {(Xt1 , yt1), (Xt2 , yt2), (Xt3 , yt3)...}

, where for each training scene Xti , the known video event of it is yti . Each scene contains
many frames, we call these frames as training frames, and we also call the training frames
inside Xti belong to video event yti .

The feature training process is to let the computer know: for each video event y, how
do the frames belong to the video event y look. Therefore, the first step we would like to
do is to classify the training frames by its known video event. The step 1 in figure 3.2,
shows an example. We list a table that each column represents a video event and the
scenes that belong to it. We name all the training frames in the following convention: for
video event y, frame j, xyj is the jth frame among all frames that belong to video event

23

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

y.
The first step is the only step that needs for manual intervention: researchers have to

at least tell the computer how the frames look for each type of video events. Then the
computer could figure out what kind of features to look for to accomplish the recognition.

After this first step, the next step is the self-taught learning step. In this step, we
apply the Sparse Coding technique.

Recalling the sparse coding feature training process. The sparse coding process will
learn a base matrix itself from a set of training frames with the constraint that coefficients
of them must be l1 minimized. Supposing for each video event yj ∈ Y , we gather all the
video frames that belong to yj as a matrix Ayj , which is:

Ayj = {xyj

1 , x
yj

2 , x
yj

3 , ...}

As defined above, each video frame xyj

i is a vector and length of which is the size of
the video frame image. Therefore, Ayj is a matrix and the height of which is the size of
the video frames, the width of which is the number of training frames belonging to the
video event yj. Also, as defined above, for each video event yj ∈ Y , we will have such
matrix. So there are |Y| such matrices in total.

Next, for each of these matrices, we run a Sparse Coding process. Taking yj ∈ Y
again as an example, according to Sparse Coding, we have

Ayj = Byj · Zyj + εyj s.t. minB,α{
1
2‖ε

yj‖2
F + ‖Zyj‖1}

Similar to the definition in the Sparse Coding section, here, Byj is called the base
matrix and the height of which is the same as Ayj – the size of video frames. The width
of which is a tunable parameter, which we call as the degree of Sparse Coding, K. As we
have shown in the Sparse Coding section, another interpretation of the above equation
would be

x
yj

i =
K∑
k=1

z
yj

k,ib
yj

k + ε
yj

i

As you see, each frame that belongs to video event yj is decomposed into K – the
degree of Sparse Coding – base vectors with coefficients z. Sparse Coding generates the
base matrix Byj or a set of base vectors byj

k for each video event yj . So, in total, there

24

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

are |Y| ·K base vectors.
The physical meaning for these base matrices is simple. For each of these base ma-

trices, it is selected by Sparse Coding, and it is a summary of all the frames that belong
to video event yj from the training scenes.

The step 2 in figure 3.2 shows this process. We take the frames from each column
in the table that constructed by step 1, and then run Sparse Coding on each column.
Each column represents a video event, and therefore, the base vectors generated from
that column represent the video events.

The base vectors (or the base matrices) are the product of this feature training step.
The feature extraction is going to use these base vectors to extract features. We will
introduce the details in the next section.

3.5 Feature Extraction

The ultimate goal for feature extraction is to come up with a feature function. In this
section, we will show how to generate such feature function.

In the previous section, the data that feature learning processed is the training data.
The training data is labeled-data, and it has both training scenes and the known video
event associated with it. In this section, we need to extract features from arbitrary video
frames. Hence, we will work on the testing video. The testing video contains several
scenes as well. We call these scenes the testing scenes, and the frames inside them as
testing frames. Recalling the feature function definition is to find function f(xi, y) to
measure how likely that frame xi in a scene belongs to video event y. In this section, we
construct a set of feature functions fk(xi, y) to measure how likely is xi belong to video
event y, with any arbitrary testing frame xi. This section constructs K feature functions
in total, where K is a tunable parameter defined in the previous section, known as the
degree of Sparse Coding.

We notice that the base vectors generated from feature learning process are the sum-
mary made by the computer from frames of a certain type of video events. Therefore,
we would like to make our feature functions to measure how similar the testing frame
is compared with the base vectors we learned. If we can measure this similarity as a
real number between [0, 1), then we can use this measurement as the feature functions.

25

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

Recalling that these base vectors are generated by Sparse Coding, which means any train-
ing frames can be sparsely decomposed into these base vectors. If the testing frames are
similar to the training frames, then the testing frames can also be sparsely decomposed
into these base vectors.

In the section 2.4.1, we give a brief introduction on sparse representation. Here we
will show how we leverage the coefficients from Sparse Representation to construct our
feature functions.

In Sparse Representation, we will decompose all the input vectors into base vectors
and minimize the l1 norm of the coefficients. Therefore, the first thing we need to do is
to select the base vectors for Sparse Representation. In the feature learning process, it
generates |Y| ·K base vectors. For each video event, it generates K vectors, and here we
need to construct K feature functions. To construct a feature function f , we take one
base vector from each video event. Therefore, for any testing frame x, we have:

x =
∑
yj∈Y

αyj ,kb
yj

k + εx s.t. min{‖εx‖2 + ‖α‖1}

, where k = 1, 2, 3, ..., K. b
yj

k is kth base vector that is summarized from video event
yj. That is to say: input testing frame x is decomposed into |Y| parts with base vectors
from all possible video events. Step 1 in figure 3.3 shows this process. As it shows
the decomposition on input testing frame x is done with 3 base vectors as an example.
Each base comes from all different video events. In total, we can have K of these
decompositions.

In this way, we collect coefficients from this decomposition, αk = [α1,k, α2,k, ..., α|Y|,k].
We refer αk as a feature vector. Later in this section, we will generate feature functions
from the feature vectors.

As the Sparse Representation is a linear decomposition process, the coefficient of that
base vector represents the similarity between the testing frame and the base vector. The
larger the coefficient for that base vector is, the similar the video frame to that base
vector is. Intuitively, we can just use the coefficients as the feature functions, such as:

fk(xi, y) = αy,k

However, this has a major flaw, if the base vectors that generated from sparse coding

26

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

long drive putting non-related

x

lon
g d

rive 1

p
u

ttin
g 1

n
on

-related
 1

+ +

1,1 2,1 3,1

x=

lon
g d

rive 2

p
u

ttin
g 2

n
on

-related
 2

+ +

1,2 2,2 3,2

x=

lon
g d

rive K

p
u

ttin
g K

n
on

-related
 K

+ +

1,K 2,K 3,K

x=...

f1(x,y) f2(x,y) fK(x,y)...

Figure 3.3: Feature Extraction Process

are not normalized. There exists such a case that xi and y0 are similar, but since all
elements in the by0

k are very large, αy,k turning out to be very small. This corner case
suggests us that the feature function should be constructed from metrics that’s normal-
ized.

Noticing that this is a linear decomposition, and also, the l1 norm of αk is minimized,
which suggests that coefficients are highly discriminative between each other: most of
them are very small and close to zero, while few of them are non-zero. Those non-zero
coefficients indicates that the input testing frame is similar with these base vector. This
phenomenal inspires us to use the error as a measurement of similarity.

Supposing we would like to know the similarity between the input testing frame and
the video event y. We only need to pick out the coefficient for base vector byk –αk,y and
treat rests of base vectors as errors. Consider the following function:

fk(xi, y) = 1− ‖xi − αy,kb
y
k‖2

‖xi‖2

The ‖xi−αy,kb
y
k
‖2

‖xi‖2
part in the feature function is an error function. The smaller the

error is, the closer xi is to video event y. Therefore, we use 1 to subtract that. Now the

27

CHAPTER 3. SELF-TAUGHT FEATURE EXTRACTION

error function is between [0, 1). The larger it is, the more likely that testing frame xi
belongs to video event y. We complete describing this process as figure 3.3. There are
three steps involved. As a testing frame x inputs the feature extraction phase, firstly, we
rearrange the base vectors. Secondly, by doing Sparse Representation, we decompose x.
Lastly, according to the coefficients from sparse representation, we construct our feature
function fk. In total, there are K of these feature functions for each frame.

3.6 Chapter Summary

In this chapter, we describe one of our major contributions of this thesis. To overcome the
difficulties of finding features from low-quality videos, we solve this problem in a different
way. We use self-taught learning tools to solve this problem: let the computer itself find
out what it needs to learn. We first present the feature learning process. Through this
process, we give computer “a direction to learn features”. We use Sparse Coding as a tool
and construct our own strategy for learning features. The intermediate results, which
are generated from this process, are referred as the base vectors. Base vectors are the
summary of frames in a type of video event.

Next, we show that, by using the base vectors, which are generated from training
scenes, we are able to construct K feature functions for later use. We call the coefficients,
which are constructed from Sparse Representation, as feature vectors. We also make sure
the feature functions are generated from normalized metrics to avoid corner cases.

Figure 3.3 shows a complete picture of the whole feature extraction process. The
whole process is novel and effective, and it makes no pre-assumptions on the video qual-
ities.

28

Chapter 4

Hidden States Sequence Summary
Model

Previous chapter introduced feature functions that can transform the video frame from
pixel space into higher level semantics. The high level semantics in Video Event Recog-
nition system is the similarity between a testing frame and a video event. The more a
testing frame looks like a video event, the larger the feature function value is.

However, this only covers the model of each frame. Recall the goal of Video Event
Recognition is to recognize the video event of a scene, where a scene has multiple frames.
Therefore, we need a summary model that can summarize these frames. As in previous
sections, we are able to transform frames from pixel space into feature space. The next
step is to summarize these features from these frames in a scene, and recognize the
appropriate video event for this scene.

In section 2.2, we mention that previous work has already proposed a general frame-
work for Video Event Recognition. Last chapter covers the first part of this general
framework – feature extraction step. This chapter is going to cover the second part – the
sequence summary model.

Previous works [3, 4] have proposed several sequence summary models. We mention
some of them in section 2.3. The current state of art work [4] uses HCRF (Hidden states
Conditional Random Field) model as sequence summary model and shows that this
model has very good accuracy on Video Event Recognition. However, a major challenge
showe up. Feature extraction for low-quality videos cannot produce very representative

29

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

features. Although in the last section, we use our novel feature extraction technique to
improve the feature extraction process, this is still causing a trouble for accuracy. This
trouble, in turns, affects the sequence summary model, demanding more accuracy, and
adaptive sequence summary model compared to previous work.

Based on the sequence summary model which is used in the current state of art work
[4], we improve its sequence summary model. By adding semantic hidden states to the
model, we are able to build a solid, adaptive and accurate sequence summary model for
Video Event Recognition.

4.1 Definition of Sequence Summary Model

First, we would like to formalize the problem statement of sequence summary model in
this chapter. In Video Event Recognition, as the second step, sequence summary model
collects all the features for all the frames inside the scene as a feature sequence and
summarizes this feature sequence into a video event.

Similar to the definition in the feature extraction process, we need to separate between
training scenes and testing scenes. Training scenes are labeled-data, for they contain
training frames, and each training scene is known as belonging to a certain video event.
Similar to denotation in the previous chapter, we denote the scene as X, and the i th
testing frame in a testing scene as xi. Given one video event y, for each frame xi , we
could generate K feature functions in total: f1(xi, y) ,f2(xi, y) ,...,fK(xi, y). By using
these sequences of features, we would like to measure a conditional probability: P (y|X),
which is given X , for any video event y, finding out the conditional probability. The
higher this probability is, the more likely this testing scene X is recognized as video event
y.

So the key question is how to come up with a model to model the condition probability
P (y|X) from the sequence of these features. Previous state of art work uses a statistical
learning model called HCRF (Hidden States Conditional Random Field). We cover some
of the background about HCRF in section 2.3.2. It is a regression model. First it gives
a generic distribution of this conditional probability P (y|X). The generic distribution
contains a lot of parameters. Then, through its training process, it optimizes an error
function to estimate these parameters.

30

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

Training scenes are used for training the HCRF model, to generate a concise con-
ditional probability P (y|X). Testing scenes are testing data, and they contain testing
frames. The goal is to recognize their video events, through calculating the conditional
probability P (y|X) we trained.

4.2 Introducing Hidden States

The original HCRF model is proposed with hidden states, however, in the model of the
current state of art work, it trims away the hidden states. Recalling that in section 2.3.2,
we mention the model that is used in the current state of art work.

P (y|X) = 1
Z(X) exp(ψ(y,X))

, where Z(X) and ψ(y,X)

Z(X) =
∑
y∈Y

exp(ψ(y,X))

ψ(y,X) =
∑

i,xi∈X
(
K∑
k=1

λkfk(xi, y))

In the model used in current state of art work, fk(xi, y) are the feature functions.
Current state of art work uses ICA (Independent Component Analysis) to construct
feature functions. λk are the regression parameters to HCRF model. They are the
weights among feature functions. As described in section 2.3.2, these parameters will be
estimated during training process in HCRF model. There are two intermediate functions
Z and ψ . Z is a normalization factor, which make sure HCRF models a probability. ψ
is a sum of all feature functions with their weights.

Unlike the original HCRF model, the current state of art model used in Video Event
Recognition contains no hidden states. In other words, the model in previous work is
a weaker form. It is likely due to two reasons. Firstly, to add hidden states into this
model, we must have a clear definition of hidden states. Previous work seems to ignore
the effort on this part. Secondly, for the scenario in previous works, since the videos are
high-quality, the feature function can usually present very precise results. This in turn

31

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

shows that by adding hidden states to improve the sequence summary model might not
be necessary.

In fact, in current state of art work, it suggesting K = 3, 4 is to be able to achieve
the optimal accuracy, while in a lot of HCRF applications [29, 24], usually end up with
K being around 10 ∼ 20. This suggests that in the current state of art work, sequence
summary model is not a bottleneck.

However, with the drop of the video quality in our applications, the need for a more
accurate sequence summary model became more and more important. To solve this
problem, we would like to realize the full potential of HCRF model, by adding hidden
states into it. Firstly, like the approach of previous work, we would like to use our
feature function as the state function in HCRF model. Also, similar to previous work,
we currently do not have any state transition functions. As a result, we will just use
feature functions as the state functions. Secondly, we would like to add hidden states to
the existing model. Ideally, we would like to have:

P (y|X) = 1
Z(X)

∑
h∈H

exp(ψ(y, h,X))

, where Z(X) and ψ(y, h,X)

Z(X) =
∑
y∈Y

∑
h∈H

exp(ψ(y, h,X))

ψ(y, h,X) =
∑

i,xi∈X

K∑
k=1

λkfk(xi, h, y)

Compared to model from previous work, two parts of the model change. The first
part is that we introduce hidden states to HCRF. Aside from the set of all possible video
events Y , similar to this, we introduce a new set of possible hidden states set H . The
second part is the feature functions now changing. It now takes in a new parameter: h.

This change improves the model accuracy in general. This model is more flexi-
ble as well. First, it allows feature functions being able to be less accurate, for the∑
h∈H exp(ψ(y, h,X)) part in P (y|X) will smooth the non-representative features. Sec-

ond, it makes the regression model more powerful, as the regression contains more pa-
rameters.

32

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

In the next two sections, we will first introduce how to construct these hidden states,
and explain their physical meanings. Then, we will show the modifications we need to
improve the feature functions, and how to add a new parameter h to the feature functions.

4.3 Constructing Hidden States

The ideal model we have in mind is a HCRF model with hidden states. All possible hidden
states is collected in a set H . However, to construct such model, we need to setup the
proper hidden states. In order to do this, first, we need to know, from a structural point
of view, what are the hidden states. Once we understanding the structure, we are able
to create meaningful hidden states.

4.3.1 Mathematical Property of Hidden States

First recalling our model for P (y|X) is the following.

P (y|X) = 1
Z(X)

∑
h∈H

exp(ψ(y, h,X))

We notice that P (y|X) is a sum over all possible h ∈ H. Therefore if we consider
P (y, h|X) as

P (y, h|X) = 1
Z(X) exp(ψ(y, h,X))

Then P (y|X) becomes clearer, because

P (y|X) =
∑
h∈H

P (y, h|X)

If we notice the definition of Z and ψ:

Z(X) =
∑
y∈Y

∑
h∈H

exp(ψ(y, h,X))

ψ(y, h,X) =
∑

i,xi∈X

K∑
k=1

λkfk(xi, h, y)

33

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

We could find that variable y and h always turn up together in pair. Supposing we
let η = (h, y) ∈ H × Y , we can denote our model with hidden states as the following
form.

P (y|X) =
∑
h∈H

P (η|X)

P (η|X) = 1
Z(X)

∑
h∈H

exp(ψ(η,X))

, where Z(X) and ψ(y, h,X)

Z(X) =
∑

η∈H×Y
exp(ψ(η,X))

ψ(η,X) =
∑

i,xi∈X

K∑
k=1

λkfk(xi, η)

Comparing the P (η|X) with the sequence summary model in current state of art
work, we find that this is exactly the same model. This implies the following facts of
current state of art model: to recognize video event among |Y| video events, adding
|H| hidden states to this model is equivalent to applying this model to recognize among
|H × Y| video events.

This mathematical fact of hidden states implies that the hidden states we proposed
can be transformed into existing model with a different parameter. Existing model can
be reused as a component in our hidden states model.

4.3.2 Physical Meanings of Hidden States

This mathematical property of hidden states suggests that hidden states in themselves
have no difference to a video event. Adding |H| hidden states only simply extends the
number of all possible video events from |H ×Y| . Therefore, we can view hidden states
as video sub-events: The video events inside a video event. The existence of hidden
states indicates that all video events, are a process of change and contain several stages.
These stages are called sub-events, and we define the sub-events relatively to the major
video event as hidden states h ∈ H . The idea is the unique point that hidden states can

34

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

y

(y,h1)=η1 (y,h3)=η3(y,h2)=η2

Figure 4.1: Example of Video Sub-Event

be leveraged to improve accuracy.
Figure 4.1 gives an example from real videos. In this figure we show an example that

a video event consist of several sub-events (|H| = 3). This video event is a long drive
video event. By using the mechanism we mention before, we are able to divide the video
event into different video sub-events: 1. a player hit the ball; 2. the ball flying in the
sky; 3.the ball hit the ground. The hidden states combined with the video events form a
video sub-event, which belongs to set H× Y .

4.4 Feature Extraction with Hidden States

In previous sections, we showed what the model with hidden states could be used for
Video Event Recognition. In the original HCRF model [24], the hidden states are implicit.
In both training and testing of HCRF model, the hidden states are summed away. This
means that there is no need to modify the training or testing algorithm on the sequence
summary model. In this section, we discuss about, by adding hidden states, how it will

35

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

affect our feature extraction step.
As we summarize in section 4.2, there are two parts of changes by introducing hidden

states. The first is the sequence summary model itself. Second, it adds a new parameter
to the feature function f . Now the feature functions have to be aware of hidden states.

In this section we modify our feature extraction step to make it aware of hidden
states. This change involves in both feature training and feature function.

4.4.1 Feature Training with Hidden States

Recalling in the feature training step. We collect all the training scenes and gather
them as the labeled-data for training. The labeled-data, or the training scenes, can be
considered as the following format:

TrainingData = {(Xt1 , yt1), (Xt2 , yt2), (Xt3 , yt3)...}

Considering the frames inside each training scene, frames from one training scene
belonging to the same video event. The training data can be written as the following.
You can view the training data as a set of tuples containing testing frame and its video
event.

TrainingData = {(xt1 , yt1), (xt2 , yt2), (xt3 , yt3)...}

We gather all the video frames that belong to video event yj as a matrix Ayj , which
is:

Ayj = {xyj

1 , x
yj

2 , x
yj

3 , ...}

Then apply Sparse Coding to learn a set of bases.

Ayj = Byj · Zyj + εyj s.t. minB,α{
1
2‖ε

yj‖2
F + ‖Zyj‖1}

, where xyj

i means a training frame from any scene belonging to video event yj .
This process currently are not aware of hidden states. That means that the base

matrix or base vectors it generates are all belonging to major video event yj without
being aware of the video sub-events, or the hidden states. To solve this problem, we

36

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

Algorithm 4.1 Video Sub-Event Selection During Feature Training

SubEvent(training_scene, major_video_event, number_hidden_states) {
Frame last_frame = null
PriorityQueue Q
foreach Frame x in training_scene:

double difference = L2Norm(PixelVector(x) - PixelVector(last_frame)
)

Q.add(tuple(difference, x))
last_frame = x

for i = 0 to number_hidden_states:
difference, x = Q.pop()
Print("sub-event detected at frame " x)

}

would like to have the training data include the information of hidden states.

TrainingData = {(xt1 , ηt1), (xt2 , ηt2), (xt3 , ηt3)} = {(xt1 , yt1 , ht1), (xt2 , yt2 , ht2), (xt3 , yt3 , ht3)...}

, where ηti = (hti , yti), yt1 is the major video event for each frame xt1 , and ht1 is the minor
video sub-event for frame xt1 . We already have yt1 from the training scenes, therefore,
the frames. Next, we need to know the minor video sub-event for each frame.

Inspired from video boundary detection, we realize that we can cut the training scenes
into sub-scenes. Since we already know the major video event for training scenes. If we
apply a video shot boundary detection algorithm to it, the training scenes will break into
several video sub-events.

Similar to the way that previous work applied in video boundary detection. We
calculate the frame difference between each training frames in the training scene. Rather
than cutting the training scenes into sub-scenes by a fixed threshold, we are able to sort
these frame differences in ascending order. Next, we pick the top |H| frame differences,
and cut right at these timeline positions. As the pseudo-code in algorithm 4.1 shows.

In this way, each training frame with known video events are cut into sub-scenes.
These sub-scenes could be used as training data for video sub-event. Therefore, we
assign the hidden states h to each frames in the training video. In this way, we construct
the training data in the form of:

37

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

TrainingData = {(xt1 , yt1 , ht1), (xt2 , yt2 , ht2), (xt3 , yt3 , ht3)...} = {(xt1 , ηt1), (xt2 , ηt2), (xt3 , ηt3)}

Once we constructed this form, we are able to use the feature training method ex-
plained in section 3.4, by simply replacing variable y with variable η . First, we collect
all the frames that belong to each η = (h, y) ∈ H×Y , which means frames that belong
to major video event y and minor video sub-event h. Then we run Sparse Coding to
learn a set of base vectors. This will generates |H| · |Y| ·K base vectors, where K is the
degree of Sparse Coding and the length of each base vector is the size of video frame,
since η ∈ H × Y .

4.4.2 Feature Function with Hidden States

In this section, we will show the detail feature functions with hidden states involved.
Since we transform the model with the hidden states into an existing model with no
hidden states with video events η ∈ H × Y , the targeting feature functions could also
transform from fk(xi, h, y) into feature functions fk(xi, η) , which are exactly the same
form as the model in the previous work.

In the previous feature extraction process in section 2.3.1, we use the bases generated
from feature learning process to sparsely decompose testing frames. By using the coeffi-
cients from the decomposition, we are able to construct the feature functions. Now with
the hidden states, the number of base vectors grows from |Y| ·K to |H| · |Y| ·K, we can
still run the Sparse Representation decomposition first. For any testing frame x

x =
∑

ηj∈H×Y
αηj ,kb

ηj

k + εx

=
∑
hj∈H

∑
yj∈Y

αhj ,yj ,kb
hjyj

k + εx s.t. min{‖εx‖2 + ‖α‖1}

Compared with the feature extraction in section 2.3.1, we only change the denotation
of vector base b since there are |H| · |Y| ·K of them now. Base vector bhjyj

k means that
it is the kth base vector that generated by Sparse Coding from frames which have major
video event yj and minor video sub-event hj . The coefficients generated from this Sparse

38

CHAPTER 4. HIDDEN STATES SEQUENCE SUMMARY MODEL

Representation process are denoted as αhj ,yj ,k . These coefficients are gathered in a vector
called α.

Similarly, we construct the feature function as the following:

fk(xi, h, y) = f(xi, η)

= 1− ‖xi − αη,kb
η
k‖2

‖xi‖2

= 1− ‖xi − αh,y,kb
h,y
k ‖2

‖xi‖2

In this way, we construct the feature functions fk(x, h, y) that can be used in our
hidden states model.

4.5 Chapter Summary

In this chapter, we first introduce the importance of a hidden state sequence summary
model for Video Event Recognition. The need for this model is initiated from the fact
that the quality of these videos are dropping significantly. We first show that, by adding
a hidden states h, we can make the model more flexible. Then, to find the physical
meaning of the hidden states, we show the mathematical properties of such hidden states.
Motivated by these properties, we construct the hidden states as video sub-events.

After introducing video sub-events, we realize that they also introduce new parameters
for feature extraction. We then show that, by using the mathematical properties we
mentioned before, the only thing is to make simple adjustment to the feature extraction
process. This adjustment only introduces a boundary cutting on the training data to
construct video sub-events, and this adjustment will result in a larger number of base
vectors. This shows that the mathematical properties we find is both simple and useful.

In summary, we introduce the hidden states into the current state of an art model
as a major contribution of this thesis. Combined with the feature extraction mentioned
in chapter 3, we improve both the model accuracy and flexibility. These improvements
together make Video Event Recognition on low-quality videos possible.

39

Chapter 5

Experimental Results

5.1 Implementation

We implement our technique in C++. We use armadillo library[30] for matrix compu-
tations, and mlpack library[31] for Sparse Representation and Sparse Coding. mlpack
uses an algorithm that Lee proposed[32] in 2007 for Sparse Representation and Sparse
Coding. We use CRFSuite library to implement HCRF[24]. CRFSuites[33] provides
basic CRF[29] functionality and uses L-BFGS[34] algorithm to optimize the regression
parameters.

Videos are manually pre-processed into scenes. In our implementation, we store the
boundary between scenes as a file. Then, we extract frames from the video into a set of
JPEG image files.

To take advantage of multiple CPUs, the internal implementation for feature extrac-
tion, feature function calculation are highly parallelized using OpenMP. Our implemen-
tation has two modes: the training mode and the testing mode. The training mode
includes both feature training and sequence summary model training. First, the training
process loads frames from the training scenes with their video events, runs the feature
learning process, and generates base vectors to a file. Second, using these base vectors,
we run feature extraction on the training frames to construct and train the sequence
summary model.

The testing mode of our program reads all the frames in the testing scene. In each
testing scene, we read the base vectors and use these base vectors to extract features.

41

CHAPTER 5. EXPERIMENTAL RESULTS

Using these features, we apply the sequence summary model to recognize video events.
As the performance is not a major aspect that this thesis targets, we only perform

a very quick measurement. Our implementation is fast enough, and memory allocation
becomes the bottleneck. It takes around 8 hours to train and test a 1-hour golf video in
total. After we solve the memory allocation bottleneck by using tcmalloc library from
Google, then the time to train and test the same video drops to 4-6 hours.

5.2 Golf Video Benchmark

To compare our work with the current state of art work. We reuse the same video as
previous work used. We further process the video to lower the quality of the video. There-
fore, the semantic content of the video is the same. However, our algorithm processes
the lower quality video.

5.2.1 Video Data Description

The video is the recording of Turtle Bay Golf Championship in 2001. The total length
is 58 minutes. The original video is a rather high-quality video. It’s a TV broadcast
video. The resolution is 360 × 240, and original fps is 30 frames per second, but for
experimental purpose, both previous research and our work make some adjustments on
this video. Details of the actual video used are described in table 5.1.

In table 5.1, we also include sample frames and their sizes. Our goal, processing
low-quality videos, can result in size reduction on each frame for around 112 times.
Combining with the saving on frame rate, we could reduce the total video size to 224
times. Imagining that Video Event Recognition is deployed in a cloud or surveillance
application, this level of video quality could save 224 times of transmission bandwidth.

5.2.2 Overall Results

Accuracy

The golf video consists of 3 types of events, putting, long-drive, and non-related. The
classification between these events depends on the players’ action inside the video. There

42

CHAPTER 5. EXPERIMENTAL RESULTS

Specification Video Previous Work Video in our evaluation
Frame Rate 24 12

Color 24 Bit Color Grey Scale
Resolution 352×240 36×24

Sample Frame
Size of Sample Frame 124 KB 1.1 KB

Table 5.1: Video Quality Degradation

are 207 events in total. We use 164 of them for training, and 43 of them for testing.
Testing scenes do not include the training scenes.

GMHMM[35] ICAMHMM[3] ICAMHCRF[4] This Work
Video Quality High High High Low

Accuracy 56.93% 70.79% 73.28% 72.09%

Table 5.2: Accuracy Comparison

As table 5.2 shows, our solution can produce similar accuracy compared to previous
work, but our work is tested on low-quality version of this video, which all previous works
fail to work on 1. The low-quality version of this video is only 2.5MB. It is 200 times
smaller than the original high-quality version.2

In this experiment, we set the degree of Sparse Coding K to 4 and the number of
hidden states |H| to 3. We findK to 4 to be an experience number. Same as previous
work, this parameter needs to be tuned on a case by case basis. In the later section, we
will show that |H| = 3 is optimal for this video, as well as suggesting that for low-quality
videos, we need hidden states, i.e. it is better to have |H| > 1.

1At least, the greyscale video will lead all previous work to generate constant features for all different
frames.

2The original golf video is already compressed in MPEG format.

43

CHAPTER 5. EXPERIMENTAL RESULTS

long drive putting non-related
long drive 2 1 1
putting 0 28 5

non-related 5 0 1

Table 5.3: Confusion Matrix

5.2.3 Confusion Matrix

Behind the accuracy rate, we perform a more detailed analysis. Here, we construct a
confusion matrix. A confusion matrix is a table like table 5.3. Columns and rows are
video events in the video. For a testing scene, the column means the correct video event,
while the row means the answer our algorithm gives. The number in the cell means how
many times of such testing scenes occur. Taking table 5.3 as an example: in cell 1,1, its
value is 2, meaning there are two testing scenes, that supposed to be long drive, and our
program gives the correct answer.

Table 5.3 shows the confusion matrix we performed using this video. We find this
confusion matrix looks highly similar to previous work. However, there is one difference.
It is that non-related video event is easy to confuse with the others. We believe that this
phenomenon is due to the low resolution and colorless properties of low-quality videos:
its data pattern tends to confuse naturally.

5.2.4 Hidden States Results

In this section, we measure our improvement to the sequence summary model. As we
mentioned above, the number of hidden states |H| needs to be tuned on a case by case
basis. For the video in this experiment, we show that |H| = 3 is a rational choice of
this parameter. Adding hidden states will boost accuracy compared to previous work’s
model, which only had |H| = 1.

In table 5.4, we show, for this video, |H| = 3 can reach the highest accuracy. We find
that adding hidden states can easily out-perform the sequence summary model without
hidden states, which is the first row in table 5.4.

44

CHAPTER 5. EXPERIMENTAL RESULTS

Size of Hidden States Accuracy
|H| = 1 62.8%
|H| = 2 67.4%
|H| = 3 72.1%
|H| = 4 69.7%

Table 5.4: Accuracy with respect to number of hidden states

5.2.5 Summary of Golf Video Benchmark

In this section, we reuse the same video content that previous work uses to compare
with previous work. While producing similar accuracy, our algorithm can process the
low-quality version of the video, and thus, being more robust than previous works.

5.3 Table Tennis Teaching Video

To show that our method can also process other types of videos, we evaluate our method
on another video. Similar to above, we further process the video into low-quality video
for evaluation.

5.3.1 Video Data Description

The video is a table tennis teaching video. It teaches the audience how to play table
tennis. The total length is 1 hour 13 minutes. The original video is a medium quality
video. It is TV broadcast quality, but some parts of the video are taken in the early 90s.
The resolution is 480 × 360, and the original fps is 30 frames per second. We further
reduce the quality of the video into an even lower quality. See table 5.5 for further
technical specifications.

In table 5.5, we include the sample frames and their sizes. For this video, each frame
is around 160 times smaller than the original video. Combining with the savings in
frame rate, low-quality version of the video could save 480 times of total transmission
bandwidth.

45

CHAPTER 5. EXPERIMENTAL RESULTS

Specification Original Video Further Degradation in Our Experiements
Frame Rate 30 8

Color 24 Bit Color Greyscale
Resolution 480× 360 60× 40

Sample Frame
Size of Sample Frame 337.3 KB 2.1 KB

Table 5.5: Video Quality Degradation for Table Tennis Video

5.3.2 Overall Results

Accuracy

The table tennis teaching video consists of 2 types of general events: training and match.
The training event means that the coach in the video is demonstrating some table tennis
techniques. The match event is an example of the introduced technique. It takes partial
video clips of the real matches as examples. However, among all the match events, some
match events are different from each other dramatically. This is because: in this video,
the example video clips are from several different matches. Each of these matches differs
from each other drastically: color backgrounds of these matches are completely different;
the playing styles of these matches are different as well. Therefore, we define the teaching
video consisting of 5 types of events: training, match-ding, match-kong, match-persson,
match-prean. The match events are separated from each other by different matches.
Names of the events are named after the players in the match. In table 5.6, we list all
the video events of this video, and also show a sample frame for each video event.

We manually label 67 video events from this video. Similar to above, we use 45 of
them for training and 22 of them for testing. Testing scenes do not include the training
scenes.

Similar to above tuning stage, we tune the following parameters:

• We use two of hidden states: |H| = 2

46

CHAPTER 5. EXPERIMENTAL RESULTS

Event Sample Frame Description

training

The coach is demonstrating a table
tennis technique

match-ding

Example match between Wang,
Tao and Ding, Song.

match-kong

Example match between Wang,
Liqin and Kong, Linghui.

match-persson

Example match between Wang,
Tao and Jörgen Persson.

match-prean

Example match between Wang,
Liqin and Carl Prean.

Table 5.6: Events of Table Tennis Teaching Video

47

CHAPTER 5. EXPERIMENTAL RESULTS

training match-ding match-kong match-persson match-prean
training 13 0 2 0 1

match-ding 0 1 1 1 0
match-kong 0 0 2 0 0

match-persson 0 1 0 0 0
match-prean 0 0 0 0 0

Table 5.7: Confusion Matrix for Table Tennis Teaching Video

• We set degree of Sparse Coding to 4: |K| = 4

With these parameters, our overall accuracy is 72%.

Confusion Matrix

Similar to before, we analyze the confusion matrix for table tennis video as well. Table
5.7 is the confusion matrix:

As we mention above, the video consists of two video events: match and training.
Since some of the training scenes are vastly different from each other, we divide them
into 4 match events. From the confusion matrix we find: our technique can recognize the
difference between training and match events quite accurately. Given 13 training events,
we never falsely recognize any of them into any match events. However, for match events,
we find some matches are easy to confuse with other match events using our method.
In the confusion matrix, we find match-ding and match-persson constantly mixing up in
two cases. We also find that, for some matches, it is difficult to distinguish them between
match and training. For example, match-kong constantly mixes up with the training
event.

Overall, the false answers by our method are mostly between two different match
events. There are only 3 cases that we mis-recognized between a match event and a
training event. If we were only to recognize between the training and the match event,
then, our overall accuracy could reach around 86%.

5.3.3 Summary for Table Tennis Teaching Video

In this section, we use an alternative video for testing. Previous work has not tested this
video, and we are the first researchers testing our method on teaching videos. We show

48

CHAPTER 5. EXPERIMENTAL RESULTS

that our method could also work well on this kind of videos.
We find that our technique can accurately detect the difference between training and

example match events, although we have difficulties recognizing exactly which match it is
for an example match. We show the overall accuracy is 72% amongst 5 video events, but
if we were to recognize just between the training and the match events, then the accuracy
is around 86%. This suggests that our method can do a very good job in recognizing the
major differences in the video events.

49

Chapter 6

Conclusion and Future Work

We contribute a novel solution for Video Event Recognition on low-quality videos. This
enables Video Event Recognition to work on a wider set of videos. This thesis contributes
a novel feature extraction step and a novel improvement to existing sequence summary
model.

By using our novel feature extraction method, we are able to let a computer learn the
features on their own from these very low-quality videos (as low as 36 × 24 pixels). We
carefully construct the feature functions so that the feature functions produce normalized
features. We improve the sequence summary model used in previous work. By adding
in hidden states to previous model, we are able to get similar accuracy on a much lower
quality videos as compared to previous work.

In our experiments, we find that even for very low-quality videos, we are able to
get similar accuracy compared to previous work, which uses a high-quality video that is
100 times clearer. This thesis has achieved its overall goal of providing similar accuracy
while eliminating the need for high-quality video. Through detail analysis, we find that
low-quality video presents a greater potential challenge, which is that non-related video
events are easier to confuse with each other and other types of video events. We are the
first researchers on this topic to make such an observation and discovery. We believe
further research could lead to a better understanding of such phenomenon in the future.
This thesis not only opens Video Event Recognition to a newer data set, but also, more
importantly, opens a new door for potential applications. For example, if we consider that
Video Event Recognition deployed as a cloud service, the total network transmission could

51

CHAPTER 6. CONCLUSION AND FUTURE WORK

be drastically reduced due to the fact that we can operate on very low-quality videos.
Data transmission can be reduced from hundreds of megabytes to merely a couple of
megabytes. Our Video Event Recognition could also be built into a surveillance system
that captures videos far way from the target.

The work presented by this thesis is extensible in three directions.
The first thing is to realize these potential applications. In the process of realizing

these applications, we will find new constraints in real-life environments. Taking mobile
vision as an example, accuracy is less of a concern compared to energy and battery issues,
since video processing takes too much of the computational resources. Spending extra
energy to optimize for a little accuracy, those improvements might not be worthwhile in
that case. This work is similar with the above situations, as we also assume that video
quality could be a limiting factor in the real-life environments. We believe, with the new
constraints added in, the way we make the trade-off will shift, and the technique to solve
these constraints will be different. To discover and solve these constraints, similar work
will need to be conducted in the future.

The second direction is to extend our algorithms. So far we have been using Sparse
Coding and Representation to extract features, and we have been using HCRF model for
sequence summary. Both of these steps have plenty of room for further improvements.
This thesis is a pioneering work to solve the low-quality issues of Video Event Recognition.
The frameworks and models are not optimized to their limits yet. Optimizing the current
model is one way. For example: in the feature extraction step, we could consider using
a more powerful model like autoencoder [36], which is an improvement based on sparse
coding. In sequence summary models, we could also add state transition functions to
represent the temporal locality. Leveraging these existing models and pushing them into
a limit could be one way to explore this direction in the future.

Another future direction is to question the generic framework of Video Event Recog-
nition proposed by previous work. It is not quite sure if this framework is optimal or even
generic. Facing new challenges like video quality, it might be worthwhile to invent new
frameworks and models. Especially, combined the two-step framework into a one-step
model is another way to explore this direction.

The third direction is to apply this work to other topics. Almost all of tools and
models used by us and existing works have been applied in other topics, such as speech
and natural language recognition. The work done in this thesis is aimed to solve Video

52

CHAPTER 6. CONCLUSION AND FUTURE WORK

Event Recognition only. We showed that, our work has high tolerance to video quality.
This suggests, our work is fairly insensitive to background errors. While in topics like
speech and natural language recognition, one of the biggest challenges is the background
errors. Applying the work done in this thesis might be one direction to solve these
challenges in other areas.

Therefore we conclude that, this thesis reaches its goal to recognized video events
from low-quality videos, by proposing a novel method. The goal of this thesis has great
potential for new applications in Video Event Recognition. The method itself, not only
new but also has plenty of room for improvements in future research. The work presented
in this thesis also has potential applications in other areas.

53

Bibliography

[1] Y. Feng, X. Wu, H. Wang, and J. Liu, “Multi-group adaptation for event recognition
from videos,” in Pattern Recognition (ICPR), 2014 22nd International Conference
on, pp. 3915–3920, Aug 2014.

[2] V.-T. Vu, F. Bremond, G. Davini, M. Thonnat, Q.-C. Pham, N. Allezard, P. Sayd,
J.-L. Rouas, S. Ambellouis, and A. Flancquart, “Audio-video event recognition sys-
tem for public transport security,” in Crime and Security, 2006. The Institution of
Engineering and Technology Conference on, pp. 414–419, June 2006.

[3] J. Zhou and X.-P. Zhang, “An ica mixture hidden markov model for video content
analysis,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 18,
pp. 1576–1586, Nov 2008.

[4] X. Wang and X.-P. Zhang, “An ica mixture hidden conditional random field model
for video event classification,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 23, pp. 46–59, Jan 2013.

[5] P. Mingtao, W. Yafei, and Z. Meng, “Video events recognition by scene and group
context,” Communications, China, vol. 10, pp. 165–171, Nov 2013.

[6] N. Ben Aoun, M. Mejdoub, and C. Ben Amar, “Bag of sub-graphs for video event
recognition,” in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE In-
ternational Conference on, pp. 1547–1551, May 2014.

[7] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl, “Energy charac-
terization and optimization of image sensing toward continuous mobile vision,” in
Proceeding of the 11th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’13, (New York, NY, USA), pp. 69–82, ACM, 2013.

55

BIBLIOGRAPHY

[8] S.-D. Wei and S.-H. Lai, “Robust face recognition under lighting variations,” in
Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Con-
ference on, vol. 1, pp. 354–357 Vol.1, Aug 2004.

[9] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recognition via
sparse representation,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 31, pp. 210–227, Feb 2009.

[10] P. Viola and M. Jones, “Robust real-time face detection,” in Computer Vision, 2001.
ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 2, pp. 747–
747, 2001.

[11] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “Maui: Making smartphones last longer with code offload,” in Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’10, (New York, NY, USA), pp. 49–62, ACM, 2010.

[12] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen, “Comet:
Code offload by migrating execution transparently,” in Presented as part of the 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
(Hollywood, CA), pp. 93–106, USENIX, 2012.

[13] I. Zhang, A. Szekeres, D. Van Aken, I. Ackerman, S. D. Gribble, A. Krishnamurthy,
and H. M. Levy, “Customizable and extensible deployment for mobile/cloud ap-
plications,” in Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, (Berkeley, CA, USA), pp. 97–112, USENIX
Association, 2014.

[14] J. Li, K. Bu, X. Liu, and B. Xiao, “Enda: Embracing network inconsistency for
dynamic application offloading in mobile cloud computing,” in Proceedings of the
Second ACM SIGCOMM Workshop on Mobile Cloud Computing, MCC ’13, (New
York, NY, USA), pp. 39–44, ACM, 2013.

[15] A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms and appli-
cations,” Neural Netw., vol. 13, pp. 411–430, May 2000.

[16] B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” 2004.

56

BIBLIOGRAPHY

[17] E. P. Simoncelli and B. Olshausen, “Natural image statistics and neural representa-
tion,” Annual Review of Neuroscience, vol. 24, pp. 1193–1216, 2001.

[18] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a
strategy employed by v1?,” Vision Res, vol. 37, pp. 3311–25, 1997.

[19] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images,” Nature, vol. 381, pp. 607–609, 1996.

[20] J. Zhou and X.-P. Zhang, “Video shot boundary detection using independent com-
ponent analysis,” in Acoustics, Speech, and Signal Processing, 2005. Proceedings.
(ICASSP ’05). IEEE International Conference on, vol. 2, pp. 541–544, March 2005.

[21] H. Zhang, A. Kankanhalli, and S. W. Smoliar, “Automatic partitioning of full-motion
video,” Multimedia Syst., vol. 1, pp. 10–28, Jan. 1993.

[22] R. Zabih, J. Miller, and K. Mai, “A feature-based algorithm for detecting and clas-
sifying scene breaks,” in Proceedings of the Third ACM International Conference on
Multimedia, MULTIMEDIA ’95, (New York, NY, USA), pp. 189–200, ACM, 1995.

[23] A. Hanjalic, “Shot-boundary detection: unraveled and resolved?,” Circuits and Sys-
tems for Video Technology, IEEE Transactions on, vol. 12, pp. 90–105, Feb 2002.

[24] A. Quattoni, S. Wang, L. Morency, M. Collins, and T. Darrell, “Hidden conditional
random fields,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 29, pp. 1848–1852, Oct 2007.

[25] S. Dai, Y. Zhan, Q. Mao, and S. Zhang, “A video semantic analysis method based on
kernel discriminative sparse representation and weighted knn,” in Green Computing
and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CP-
SCom), IEEE International Conference on and IEEE Cyber, Physical and Social
Computing, pp. 879–886, Aug 2013.

[26] J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representation for image
restoration,” Image Processing, IEEE Transactions on, vol. 23, pp. 3336–3351, Aug
2014.

57

BIBLIOGRAPHY

[27] X. Gao, N. Wang, D. Tao, and X. Li, “Face sketch – photo synthesis and retrieval us-
ing sparse representation,” Circuits and Systems for Video Technology, IEEE Trans-
actions on, vol. 22, pp. 1213–1226, Aug 2012.

[28] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: Transfer
learning from unlabeled data,” in Proceedings of the 24th International Conference
on Machine Learning, ICML ’07, (New York, NY, USA), pp. 759–766, ACM, 2007.

[29] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in Proceedings
of the Eighteenth International Conference on Machine Learning, ICML ’01, (San
Francisco, CA, USA), pp. 282–289, Morgan Kaufmann Publishers Inc., 2001.

[30] C. Sanderson, “Armadillo: C++ linear algebra library.” http://arma.

sourceforge.net/contact.html.

[31] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A. Mehta, and A. G.
Gray, “MLPACK: A scalable C++ machine learning library,” Journal of Machine
Learning Research, vol. 14, pp. 801–805, 2013.

[32] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding algorithms,” in
Advances in Neural Information Processing Systems 19 (B. Schölkopf, J. Platt, and
T. Hoffman, eds.), pp. 801–808, Cambridge, MA: MIT Press, 2007.

[33] N. Okazaki, “Crfsuite: A fast implementation of conditional random fields.” http:
//www.chokkan.org/software/crfsuite/.

[34] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound
constrained optimization,” SIAM J. Sci. Comput., vol. 16, pp. 1190–1208, Sept.
1995.

[35] L. Xie, S.-F. Chang, A. Divakaran, and H. Sun, “Structure analysis of soccer video
with hidden markov models,” in Acoustics, Speech, and Signal Processing (ICASSP),
2002 IEEE International Conference on, vol. 4, pp. IV–4096–IV–4099, May 2002.

[36] Y. Bengio, “Learning deep architectures for ai.,” Foundations and Trends in Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009.

58

http://arma.sourceforge.net/contact.html
http://arma.sourceforge.net/contact.html
http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/

