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ABSTRACT 

Security Constrained Stochastic Power System Scheduling Algorithms - 

with Wind Electric Generators 

Peng Yu 

Doctor of Philosophy 

Electrical and Computer Engineering 

Ryerson University, 2013 

Power systems worldwide are embracing diverse supply mixes that incorporate a significant 

portion from renewables such as wind and solar energy. Wind energy is characterised by 

reliable equipment, but with an output that is uncertain and intermittent. In addition to 

equipment unreliability (system N-1 criterion), output uncertainties of wind electric generators 

(WEGs) introduce risk into daily power system schedules. This risk from the uncertainty of 

output from WEGs can be quantified as expected energy not served (EENS). Furthermore, the 

introduction of new forms of generation changes the methods of operating transmission 

systems, further necessitating the use of transmission security constraints in power systems 

optimization algorithms. 

 This dissertation explores new approaches to stochastically model the real power output of 

WEGs and to efficiently tackle AC transmission system security constraints for power system 
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optimization algorithms such as optimal power flow (OPF) and day-ahead unit commitment 

(UC). 

 Usually, normal probabilistic distribution is used to model uncertainty in short-term wind 

power output forecast and compute EENS. In this dissertation, a new triangular approximate 

distribution (TAD) model is proposed which is a linear approximation of normal probabilistic 

distribution to model short-term wind power output forecast and compute EENS. This TAD 

model is used to formulate a practical risk-constrained fast OPF for transmission systems to 

simultaneously minimize: 1) risk due to uncertainties in power output from WEGs, and 2) the 

total operating cost. 

 The integration of new energy resources causes transmission systems to operate in new, 

challenging, and often unforeseen operating states. Thus, it is imperative that UC algorithms 

incorporate AC transmission system security constraints and stochastically model output of 

WEGs to ensure reliable operation of transmission systems. As a first step, a successive mixed 

integer linear programming (MILP) method is proposed for AC transmission system security 

constrained unit commitment (SCUC) challenge. Fuzzy sets theory is used to model infeasible 

constraints in this MILP formulation.  

As a next step, the TAD model of WEGs is integrated into the MILP formulation of SCUC 

to create a fast security and risk constrained probabilistic UC algorithm. The two UC 

algorithms are tested on large systems. 
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CHAPTER 1 

INTRODUCTION 

 

Modern power systems are changing to integrate increasing amounts of renewable energy 

sources. Many jurisdictions, such as the European Union, have aggressive targets to generate 

20% of their supplies from renewable energy sources by the year of 2020 [1]. Renewable 

energy sources with the most mature technologies are that of wind and solar energy. Hence, 

there is a huge focus on ensuring that the current power system analysis and optimization 

algorithms accommodate these technologies [2]. 

Wind energy is widely utilized in the world because it is one of the most safe, 

environmentally friendly, and renewable energy resources. By the end of the year 2011, 

international wind power capacity had reached 239 GW [3], as shown in Figure 1.1. Wind 

generator installations are growing rapidly, especially in China, USA, Germany, Spain, and 

India, which cumulatively represent 74 % of the global installed wind capacity, as shown in 

Figure 1.2. Although these nations enjoy environmental and economic benefits from green 

energy, independent system operators (ISO) encounter challenges while managing daily power 

system operations with significant amounts of renewable energy due to their uncertainty, 

variability and such other characteristics. 
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Fig. 1.1 World total wind energy installed capacity in 11 years 

 

Fig. 1.2 Wind power installed capacity (MW) of leading nations in 2011 
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As more wind electric generators (WEG) are being installed and used in power systems with 

complex transmission systems, unpredictable nature of wind energy increases the risk of 

possible power shortages that will consequently result in failure to supply contracted loads. 

The uncertainties in power output of WEGs create additional risks in the near-term optimal 

generation schedule when incorporating WEGs into electric power systems. ISOs require 

flexible and accurate scheduling techniques when using WEGs alongside all other kinds of 

generators in the short-term time frame (from a few hours up to 24 hours) to contend with the 

risk introduced by the uncertainties involved in this renewable energy source. 

In addition, most power systems are faced with adapting their energy supply mix to 

accommodate an increasing amount of wind energy. Transmission systems, which were 

planned in the past to operate with conventional power generation, must now connect and 

operate with renewable energy sources as well on a significant scale. This change causes 

transmission systems to operate in new states that were not seen before. Thus, it is very 

important that ISOs take into account AC transmission network constraints in their daily power 

system scheduling algorithms.  

Many techniques and methodologies are used to model wind power output in power system 

optimization algorithms. For example, the risk of failing to supply the contracted load can be 

quantified as expected energy not served (EENS). In this dissertation, the probabilistic aspect 

of wind power will be explored, modeled, and incorporated in power system optimization 

algorithms such as optimal power flow (OPF) and day-ahead unit commitment (UC). The 

probabilistic models of power output of WEGs and the associated EENS formulae will be 

discussed in the next section. 
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1.1  Probabilistic Modeling of Power Output of Wind Electric Generators  

Since the late 1980s, the process of incorporating WEGs into optimization algorithms to 

manage the daily operation of power systems has been developed extensively in academic 

research [4]. Reference [5] reviews many wind power forecasting techniques, which can 

generally be divided into two main categories: 1) physical prediction methods or 2) traditional 

statistic methods (or called learning approaches).   

While physical prediction models are designed using weather and geographic data at the 

location of the WEGs, traditional statistic methods are used to probabilistically represent wind 

power output by linking historical data of power output with weather parameters to forecast 

future power output, performing a one-step conversion usually described as a ‘black box’ [5]. 

These probabilistic models of WEG power output based on traditional statistical methods have 

been more widely used in power system optimization algorithms than the physical prediction 

models. 

Probabilistic models of wind energy such as the Weibull distribution [6]-[9] and normal 

probabilistic distribution [10]-[12] are commonly used to represent forecasts of wind power. 

The Weibull distribution is used for long-term probabilistic wind speed representation. The 

normal probabilistic distribution is used for short-term, one hour to a day ahead, to represent 

wind power forecasting error. Furthermore, probabilistic models are used to quantify possible 

EENS values that arise from probable shortfall of power output of WEGs from forecasts. Such 

models are very important to understand the influence of the variability of wind power on all 

aspects of optimally operating power systems. 
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This dissertation focuses on short-term power system optimization algorithms. This research 

has used a probabilistic model of wind power based on normal probabilistic distribution to 

represent the power output of WEGs in power system optimization algorithms, as it is the best 

method to effectively describe the energy forecast in this time horizon. The details of 

probabilistic modelling of power output of WEGs and the formula used to compute the EENS 

value are presented below. 

1.1.1 Normal Probabilistic Distribution 

The normal probabilistic distribution is characterized by two parameters: mean value and 

standard deviation (σ) [13]. The mean value represents the expected value of wind power 

output in this forecast from a WEG. The standard deviation value indicates the possible 

variation from the expected power output. Figure 1.3 shows a typical probability density 

function (PDF) curve for a normal probabilistic distribution with possible wind power output 

from a WEG. 

The PDF is a nonlinear exponential function of wind power (1.1).  

2

2

2

2
1 σ

PGPG

e
πσ

pd







 −−

=
 
                                 (1.1) 

This formula represents the probability density of wind power at a value of PG. The area 

under the curve of the PDF is equal to 1, denoting all possible wind power values that can be 

supplied by the WEG in that hour. The risk of failure for a WEG to supply a certain value of 

power output can be computed using the PDF of the normal probabilistic distribution 

associated with wind power output forecast, and the risk can be quantified as an EENS value.   

5 
 



 

 

Fig. 1.3 Probability density function curve of wind power 
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In the hatched area, the WEG cannot supply the amount of power (PG). The EENS value 

that quantifies risk of failure to supply a power output of PG can be computed by multiplying 

the hatched area in Figure 1.4 with its corresponding PG [6]. After computing the EENS value, 

sufficient reserves could be scheduled for the system to overcome such a risk. 

 

 

Fig. 1.4 Risk quantity using normal probabilistic distribution of wind power 
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into large-scale optimization formulations of OPF or day-ahead UC is very challenging. 

Furthermore, this challenge is compounded when the number of WEGs is large.  

1.2  Challenges in probabilistic modeling of wind electric generators 

As presented in last section of this chapter, the PDF of power output from WEGs and the 

EENS function are formulated as an exponential function and an integration function of wind 

power respectively. Due to the nonlinear and stochastic characteristics of the probabilistic 

models of power output of WEGs based on normal probabilistic distribution function, it is 

difficult to incorporate them into OPF and day-ahead UC algorithms.  

Sampling methods, the Monte Carlo simulation [8][11], and the Latin Hypercube simulation 

techniques [10][12] can be utilized to produce wind power output scenarios. Using mean 

values of forecasts and standard deviations, a large set of random numbers is generated to 

represent possible power output values. The probability of each possible power output can be 

computed by using these random outputs. The optimum system output is determined and the 

system security is analyzed using this large set of possible WEG power outputs. However, 

these methods are besieged with a huge volume of data sets and are computationally challenged. 

Further, this discrete approach cannot fully characterize the stochastic distribution pattern of 

wind power output.  

In order to probabilistically represent output of WEGs in OPF and UC formulations, 

researchers can resort to the classical enumeration technique [14], which is not a stochastic 

sampling method. Consider a power system with ‘n’ WEGs. Power output of each WEG can 

be represented by a normal PDF that is divided into ‘m’ segments. The number of executions 
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in a classical enumeration technique required to compute the probabilistic output is equal to 

mn (as detailed in Appendix A). Through this expression, it can be clearly seen that as the 

number of WEGs increases, the number of executions will increase exponentially and become 

computationally cumbersome. 

The use of this classical enumeration technique for computing probabilistic output is difficult 

for offline applications, while probabilistic OPF and probabilistic UC algorithms are 

computationally even more demanding as they are meant for real-time and near real-time 

applications that incorporate stochastic information of power output of WEGs.  

Hence, in view of these shortcomings of the existing methods reported in the literature, an 

accurate probabilistic model of power output of WEG needs to be developed to effectively 

minimize the EENS value of WEGs and its associated costs in daily power system optimization 

algorithms, such as probabilistic OPF and probabilistic UC. 

1.3  Review of Probabilistic Optimal Power Flow   

The OPF algorithm [15] is an important optimization tool for short-term generation 

scheduling and determination of locational marginal prices (LMP). This topic has been 

extensively researched over the last 50 years, with researchers developing formulations to 

determine optimal solutions by minimizing total operation costs and/or total system real power 

losses. The OPF algorithm computes the optimal real power generation schedule to ensure that 

generation costs are kept to the minimum while maintaining bus-wise power balance and 

enforcing transmission network limits and other operational constraints [15]-[25].  

Figure 1.5 shows a typical generation scheduling process utilized by one of the ISOs in North 
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America [6].  

 

 

Fig. 1.5 Generation scheduling process used by one ISO 

 

The OPF algorithm is mainly used for near-real-time and real-time dispatch (5 minutes to a 

few hours ahead), shown as the right part of the generation dispatch procedure in Figure 1.5. 

Data of system demands and intermittent generations are updated between each OPF solutions 

to increase accuracy. Available generation units are dispatched using the OPF algorithm to 

supply the actual demand in order to satisfy immediate system needs.   

Traditionally, the OPF algorithm has been developed using nonlinear programming (NLP) 

technique [26]-[29] and successive linear programming (SLP) technique [30], [31]. However, 

methods based on SLP technique have become more widely adopted in commercial grade 

implementation due to their robustness in finding optimal solutions. 
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The probabilistic OPF is an important extension of the OPF algorithm that accounts for 

uncertainties in power systems [32]. Two different research directions have emerged in the 

area of probabilistic OPF while modeling uncertainty [33]:  

1) The first approach solves OPF formulations using probabilistic analysis methods such as 

the First-Order Second-Moment method [34], the Cumulant method [35], and the Two-Point 

Estimate method [36], etc. These methods consider median values of uncertain variables to 

solve a chosen deterministic OPF formulation. The optimal state determined for the median 

case along with other probabilistic information such as variance, cumulants, etc. are then used 

to estimate uncertainty in the optimal solution. 

2) The other approach is to directly include probabilistic information in the objective 

function and constraints and solving them using conventional methods [37] [38].  

Currently, both research directions model the uncertainties of inputs through random-based 

techniques, such as the Monte Carlo simulation [32], but these techniques are either time 

consuming or lose accuracy when applied in practical situations. Hence, there is an urgent need 

in the field for a practical fast probabilistic OPF method. 

As an important consideration in parallel to OPF, the UC algorithm must also incorporate 

the probabilistic model of WEGs to improve accuracy and efficiency in daily operation. A 

review of the probabilistic UC algorithm is presented in the following section. 
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1.4 Review of Probabilistic Unit Commitment   

Day-ahead UC is performed to generate pre-dispatch schedule for the next block of time, 

such as 24 hours. In the UC process, generation units are committed to ensure that the system 

has an adequate amount of energy sources for the next 24 hours and that the optimal generation 

schedule is feasible with respect to inter-temporal constraints such as minimum up times, 

minimum down times and ramp rate limits. These inter-temporal constraints bind all the 24 

hourly economic dispatch solutions. On the dispatch day, the committed generation units are 

re-dispatched every hour using a real-time OPF algorithm to meet the real-time demand.  

The UC process is usually formulated as a quadratic or a mixed integer programming (MIP) 

problem with linear and nonlinear constraints. A large number of techniques and methods have 

been applied to solve this problem [39]-[42]. As progress has been made on computational 

methods, optimization solvers, and hardware availability, the industry standard has progressed 

towards the use of MIP to obtain a robust and efficient solution method [43].  

In 1999, Pennsylvania, Jersey and Maryland (PJM) — an ISO operating in the USA — 

field-proved the advantage of using MIP to solve its day-ahead UC problem compared with 

older optimization engines such as Lagrangian relaxation method, demonstrating the 

significant economic benefit of using MIP. Since 2004, PJM has implemented this MIP-based 

method to schedule its day-ahead market. Subsequently, most other major ISOs in USA such 

as California ISO, Midwest ISO, and ISO-New England use this method. Others such as New 

York ISO and Southwest Power Pool are also planning to update their day-ahead UC algorithm 

to use a MIP-based optimization engine.  
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An important variant of the MIP model is the mixed integer linear programming (MILP) 

model that only addresses linear objectives and constraints. It has recently drawn the attention 

of researchers [44] and is currently being utilized by some ISOs in their optimization software 

[43]. In order to align the efforts of this research with the current state-of-the-art industrial 

practice and to effectively manage the demanding requirements of modern power systems, the 

MILP formulation is used in this dissertation to model day-ahead UC problems. 

In power systems with high wind energy penetration, ISOs require accurate and 

computationally efficient techniques and tools, which probabilistically model power output of 

WEGs to solve the day-ahead UC problem. Similar to probabilistic OPF algorithms, a 

probabilistic UC formulation must account for wind power and its uncertainties. 

The problem of incorporating WEGs into probabilistic UC has been investigated by many 

researchers. Typically, Monte Carlo simulation and Latin Hypercube simulation methods are 

used to produce wind power output scenarios for probabilistic UC [8], [10]-[12]. However, 

these methods consider WEGs as non-dispatchable units and multiple deterministic problems 

are solved for different scenarios of wind power output. These methods are computationally 

burdensome and are not practical for real-time or near real-time power system operations. 

In order to maximize profit, WEGs must meet their forecasted power outputs. As an 

operational safeguard, reserves are simultaneously scheduled to counter the risks caused by 

uncertainties in wind power. This approach requires that a practical probabilistic UC algorithm 

has the capacity to minimize both costs and risks, but such a requirement cannot be explicitly 

performed by scenario-based methods. Hence, a probabilistic UC algorithm is needed that 
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incorporates advanced probabilistic wind power models to minimize the total generation cost 

and minimize the total risk of failure to provide pre-arranged power loads.   

In addition, in order to provide a valid starting state to a near real-time OPF algorithm, a day-

ahead UC algorithm must have the capability to produce a solution that is transmission network 

feasible. Therefore, a UC algorithm must produce an optimal solution that is feasible with 

respect to transmission network constraints. Accordingly, security constrained unit 

commitment (SCUC) methods that incorporate AC transmission security constraints are 

reviewed in the next section. 

1.5  Review of Security Constrained Unit Commitment 

The complex numerical challenge of the SCUC problem with AC transmission security 

constraints (AC-SCUC) has been studied extensively over the past four decades [45]. In recent 

years, advances in computational hardware and software tools have enabled more powerful 

algorithmic development in solving this challenge. Researchers have published a few works to 

solve the AC-SCUC problem using techniques such as Benders’ decomposition, which 

decompose the problem into master and slave sub-problems [46]-[53].  

The AC-SCUC algorithm using Benders’ decomposition technique is shown in Figure 1.6.  

The master problem is usually decision-making, which produces unconstrained generation 

schedules. The security constraints are solved in sub-problems using a power flow algorithm 

or an OPF algorithm. Benders’ cuts are created from violated constraints to be incorporated 

into the master problem if one or more sub-problems are not feasible. The master problem is 
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resolved with these additional constraints. This process continues until the optimal solution of 

the master problem satisfies all constraints. 

In Benders’ decomposition methods, the master and slave problems are solved back and 

forth to obtain a feasible solution. The UC problem and security constraints are independent 

of each other. 

 

 

Fig. 1.6 Benders’ decomposition 

 

A few other works have incorporated power flow equations and transmission security 

constraints directly into the SCUC formulation. In these cases, the authors used DC power flow 

equations to constrain UC in a mixed integer linear programming (MILP) formulation [6] [54] 

and solved the SCUC problem using MILP engines. However, the DC power flow equations 
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are an approximation of AC power flow equations, as they are dependent upon a large set of 

assumptions, as detailed in Appendix A. Other authors transformed the MIP-based UC 

problem into a nonlinear convex problem by relaxing integer variables [55]; however, this 

method encounters difficulties due to the infeasibility caused by status variables being 

converted back to integers in the final stage of finding a practical solution. Thus, some other 

method must be used after solving the relaxed SCUC problem, or researchers risk more 

computational burden and loss of system optimality. 

Furthermore, transmission contingency and outage planning problems in SCUC were studied 

by researchers using Benders’ decomposition technique [56]-[58]. Due to the limitation of such 

techniques, these authors considered scenarios in which feasible transmission solutions could 

be obtained, but did not achieve results capable of effectively scheduling generation in weak 

transmission systems, where there is currently no feasible solution to alleviate all transmission 

constraint violations.  

Hence, a robust and flexible AC-SCUC formulation that directly includes AC transmission 

system is needed for day-ahead UC algorithm, to find the optimal solution with the least 

operating cost and that is transmission system feasible. This method must also have the 

capacity to handle infeasibility caused by severe conditions resulting from transmission 

outages.  

1.6 Objectives of the Study 

In order to stochastically model power output of WEGs and integrate those models into 

power systems optimization algorithms such as OPF and UC, and to solve practical 
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optimization problems with AC transmission system constraints while minimizing costs and 

risks, the following objectives have been chosen for this dissertation:  

1) Create a new triangular approximate distribution (TAD) model to stochastically represent 

wind power output and use this TAD model of WEGs to develop a simple method to 

compute forecast errors to quantify expected energy not served (EENS) by WEGs. 

2) Develop a fast probabilistic OPF algorithm using the TAD model of WEGs and solve using 

the successive linear programming (SLP) technique. 

3) Model the AC transmission system and related constraints in a mixed integer linear 

programming (MILP) security constrained unit commitment (SCUC) formulation. Solve 

this formulation using the SLP technique and use elements of fuzzy set optimization 

technique to improve computational efficiency and hasten convergence.  

4) Integrate the TAD model of WEGs into an MILP formulation of SCUC algorithm to create 

a fast security and risk constrained probabilistic unit commitment method. 

The outline of this dissertation is given as below. 

1.7 Chapter-wise Outline of the Dissertation 

This dissertation is organized in the following chapters: 

In Chapter 2, the proposed TAD model of WEGs is presented and compared with normal 

probabilistic distribution function. An expression of EENS using the TAD model of WEGs is 

derived and presented. Effects of standard deviation on EENS value are also studied and 

presented. 
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In Chapter 3, a linear programming (LP) formulation of the fast probabilistic OPF algorithm 

with the TAD model of WEGs is developed and reported. The SLP technique used to solve 

this formulation is presented. Several sizes of power systems are tested with the proposed fast 

probabilistic OPF method with the TAD model of WEGs and reported. 

In Chapter 4, a security-constrained MILP formulation of the UC problem with full AC 

transmission system representation is presented. Fuzzy set optimization and SLP techniques 

are used to solve the formulation. A complete solution method for this proposed formulation 

is presented in this chapter. Tests on various power systems and test results are presented and 

discussed. 

In Chapter 5, a fast probabilistic unit commitment algorithm with transmission security 

constraints to minimize costs and risk is proposed. The TAD model of WEGs is integrated into 

a MILP formulation of the UC problem to create this probabilistic optimization formulation. 

An algorithm for solving this proposed probabilistic, security constrained UC formulation to 

minimize operation costs and risk from uncertainty is reported. Tests on various systems and 

their results are reported. 

 In Chapter 6, conclusions and possible future research directions are presented.   

1.8 Chapter Summary 

The major motivations and methodologies of this PhD research have been presented in this 

chapter. Certain key publications reported in literature for OPF and UC were reviewed in this 

chapter. Probabilistic aspect of wind energy, their importance in power systems optimization 
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and basic probabilistic models were presented. The detailed procedures and accomplishments 

of this research will be presented and discussed in the chapters that follow.  
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CHAPTER 2  

TRIANGULAR APPROXIMATE DISTRIBUTION MODEL 

OF WEGS 

 

The triangular approximate distribution (TAD) model of wind electric generators is proposed 

in this chapter. The TAD model approximates the probability density function (PDF) of normal 

probabilistic distribution that is most often used to model short-term forecast of wind power. 

The time horizon is typically from one hour to 24 hours into the near future. Thereafter, this 

TAD model is used to develop an expression for a cumulative distribution function (CDF). The 

CDF expression developed using the TAD model quantifies the probability of uncertainty in 

the forecast and it is extended to develop an expression for the expected energy not served 

(EENS) resulting from the uncertainty of real power output of WEGs. The EENS function 

using normal probabilistic distribution is given in the first section of this chapter, and is then 

compared to the expression of EENS that is developed from the TAD model. 
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2.1 EENS of WEGs using Normal Distribution  

The PDF of wind power forecast is a normal distribution. It can be expressed as an 

exponential function of the best forecasts ( nPG ) of the nth WEG and corresponding standard 

deviation value (σn) as shown below: 
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                         (2.1) 

Integrating from zero to a particular power output of the WEG (PGn), the CDF of wind power 

may be defined as below. 
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The value of cpn in equation (2.2) represents the probability that the power output of the nth 

WEG is lower than the particular power output value (PGn). It may also be considered as the 

probability that the particular power output (PGn) cannot be supplied by this WEG.  

In the real-time operation, actual power (PGAct) supplied by the WEG may not same as the 

power scheduled an hour ahead (PGSch). EENS can be estimated as the following (2.3): 
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However, as the view from the scheduling point, the actual power supplied in the real-time 

is not known and it is set to zero for simplicity. Therefore, the expression of EENS can be 

modified as (2.3.1). 
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As an approximation, that is an upper bound of above, the power generation, PGn is moved 

out of the integral to give: 
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The modified EENS can be computed by multiplying power output (PGn) with the 

probability (cpn) that cannot supply the amount of power online. 

 It is observed that the modified EENS is a nonlinear integration function of wind power. 

Owing to its nonlinearity, such a function is not suitable for LP and MILP optimization 

formulations. Hence, the TAD model of WEGs is proposed to replace this complex nonlinear 

function so that it is amendable to linear optimization techniques. Details of the TAD model 

are given in the following sections. 

2.2 Triangular Approximate Distribution versus Normal Distribution 

The same best forecast value ( nPG ) and its corresponding standard deviation (σn) are taken 

for the nth WEG. Considering the interval from ( nn  σ.  PG 52− ) to ( nn  σ.  PG 52+ ) on the 
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PDF curve of a normal probabilistic distribution, the area under the curve is nearly equal to 1.0 

(0.988), which means that almost all the possible wind output values for a particular hour are 

captured within this interval of the PDF curve. This same interval in the TAD model also has 

an area close to 1.0 (0.997). The value of 2.5 was determined by rounding π2 . Due to this 

similarity, the TAD model is used to represent the probabilistic distribution of wind power 

forecast as shown in Figure 2.1. In addition, the probability of wind power not available can 

be computed and compared with normal PDF. This is presented below.  

 

 

Fig. 2.1 TAD Model and the PDF curve of normal distribution 
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2.3 Probability calculation using the TAD model 

 As shown in Figure 2.1, the TAD model is triangular. Its area is approximately equal to 1.0 

for the interval from ( nn  σ.  PG 52− ) to ( nn  σ.  PG 52+ ). This TAD model is used to develop 

an expression for the probability of wind power that quantifies unavailability. In order to 

develop an expression for the probability of WEGs, one can divide the TAD model into two 

parts, as shown in Figure 2.2.  

 

 

Fig. 2.2 Probability calculation of the TAD model 
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The triangle ABC has two equal halves — named ABD and BCD — and each has an area 

of 0.5. Using simple geometry, the following observations may be made: 

The slope of the left side for the nth WEG is given by Kn and it is equal to: 

WGn
σ.

πK
n

n ∈∀=  
52

21
2                                    (2.4) 

Further, the minimum and maximum possible values of the nth WEG’s power output in the 

TAD model can be expressed as a function of the mean value ( nPG ) and standard deviations 

(σn) as below:   

WGn σ.PGPG nnn ∈∀−= 52    (minimum)                      (2.5) 

WGn σ.PGPG nnn ∈∀+= 52     (maximum)                     (2.6) 

The value of probability for a given wind power (PGn) of the nth WEG is equal to the area 

of the portion of the triangle with the base from nPG  to PGn. There are two possibilities: one 

is when nn PGPG ≤  and the other is when nn PGPG > . The two cases are discussed as the 

following text. 

1) nnn PGPGPG ≤≤ : Consider an example: the WEG is being operated at a particular point 

of power output (PGn = PGa), such that output of the WEG is less than the mean value 

( nn PGPG ≤ ). In this case, the value of probability is equal to the area of the triangle on the 

left of PGn (shown in Figure 2.2). The probability is equal to the area of the shaded triangle on 
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the left of PGa (Area_a) that is a part of the triangle ABD. The probability may be computed 

as: 

( ) WGnPGPG. Kcp nan
T
n ∈∀−=   2

1 2

                            
(2.7) 

When PGn is at the mean value ( nPG ) of the WEG, the probability is equal to 0.5, which is 

the area of the triangle ABD. In this case, the part of the right side triangle BCD that contributes 

to the value of the probability is zero. 

2) nnn PGPGPG ≤< : Consider another example of PGn = PGb, such that nn PGPG > . The 

probability contains areas of triangle ABD (equal to 0.5) and the trapezoid from nPG  to PGb 

(Area_b). Thus, the value of the probability is equal to the area of the triangle ABC minus the 

triangle area on the right of PGb up to nPG . In this case, the value of the probability of the 

WEG may be computed using the following equation (2.8). 

( ) WGnPGPG. Kcp bnn
T
n ∈∀−−=   2

11
2

                        
(2.8) 

For example, consider a WEG with a forecasted power output (mean value, PG ) equalling 

50 MW and a corresponding standard deviation (σ) equalling 5 (10% of PG ). The value of 

probability of power output forecast from the WEG can be calculated by either integrating the 

PDF of normal probabilistic distribution or using the TAD model. The results are compared in 

Figure 2.3. 

Equations (2.7) and (2.8) have been applied to this calculation process. Comparing two CDF 
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curves, the TAD model gives an accurate estimate of the probability of the wind power output 

forecast. The probability values computed using the original PDF of normal distribution 

(dashed line) and the TAD model (solid line) are very close to each other. The absolute value 

of the maximum deviation between the CDF curves of the TAD model and the normal 

distribution is 0.02. Taking advantage of this similarity, the TAD model can be used to develop 

an EENS function for WEGs. The method to compute EENS is presented in next section. 

 

 

Fig. 2.3 Probability of wind power computed by normal distribution and the TAD model 
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2.4 Estimating EENS using the TAD model 

With given mean values ( nPG ) and standard deviations (σn), the real power output from 

WEGs can be stochastically dispatched around their best forecasts. For a chosen output PGn 

from the nth WEG, the value of probability (computed using Equation 2.7 or 2.8) quantifies the 

probability that the nth WEG may not be able to supply power output PGn into the grid. One 

can find out the EENS for the nth WEG as below. 

By substituting (2.7) and (2.8) into equation (2.3), the EENS function can be written as the 

following patterns using the TAD model: 

1). nnn PGPGPG ≤≤  

( ) WGn .PGPG. PGPG. PG.KE nnnnnnn ∈∀+−= 223 22
1                    (2.9) 

2).  nnn PGPGPG ≤<  

( ) WGn .PGPG. PGPG. PG.KPGE nnnnnnnn ∈∀+−−= 223 22
1

              (2.10) 

One can observe from (2.9) and (2.10) that the EENS formulae of a WEG are functions of 

its real power output (PGn). Further, the value of standard deviation (σn) helps to define the 

lower (2.5) and upper (2.6) bounds of wind power output in the TAD model. The effects of 

standard deviation are discussed further in the following section. 
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2.5 Influence of Wind Uncertainty on EENS value  

Depending on different forecasting conditions and operating points, the values of standard 

deviation or uncertainty can vary. The standard deviation affects the shape of wind power PDF 

and the corresponding EENS value. Figure 2.4 shows plots of EENS of a WEG versus power 

output computed with different standard deviation values.  

 

 

Fig. 2.4 EENS of wind power around the mean value (50MW) 
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The expected wind power output is assumed to be 50 MW, and values of 4.5, 5.0, and 5.5 

are used as various standard deviation values. The EENS value increases progressively with 

the value of standard deviation when the power output of the WEG is below its mean power 

output of 50 MW (refer to Region I of Figure 2.4). On the contrary, when the output of WEG 

is greater than the mean value of 50 MW, EENS value decreases progressively with increasing 

values of standard deviation (see Region II of Figure 2.4). In this case, a larger value of 

standard deviation has a smaller EENS value.  

Depending upon the value of EENS, system reserves need to be secured to compensate for 

the possible shortfall in generation, which ultimately depends upon the operating point and 

standard deviation of a wind power forecast. A numerical analysis of these values is given in 

next section. 

2.6 Case study on effects of standard deviation 

In order to demonstrate the influence of wind variability, a 2-unit system is created with one 

conventional generator (CEG) and one WEG. The energy price of the CEG is $20.00/MWh 

and the spinning reserve cost is $10.40/MWh. The expected power output (mean value) of the 

WEG is 50 MW with a price of $2.00/MWh. The total demand is 200 MW. Ten percent (10%) 

of the demand and 60% of EENS quantify the risk and are compensated by the spinning reserve. 

Three standard deviation (σ) values (4.5, 5.0, and 5.5) are used in the stochastic model of wind 

power output. Transmission security constraints are ignored for this case.  

The objective of the optimization problem is to minimize the total operation cost (TC), which 

includes the cost of the CEG, the reserve cost, and the energy cost of the WEG. 
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Minimize: 

 TC = ( ) ( )∑∑
∈∈

⋅+⋅+⋅
WGn

nn
CGn

nnnn PGbwSRrcPGbc
                    

(2.11)   

Subject to the following two constraints: 

1) Real power balance: PDPG
n

n =∑
                          

(2.12) 

 Sufficient real power (PG) must be provided from both the CEG and the WEG to meet the 

electrical demand (PD) in a particular time period of study (in this case, losses are ignored). 

Furthermore, the reserve is scheduled from the CEG to counter the risk of uncertainties leading 

to any shortfall of generation, as shown below.  

2) Spinning reserve requirement as factors of total demand and EENS: 

PD βE SR
WGn

n
CGn

n ⋅+⋅≥ ∑∑
∈∈

α
                             

(2.13) 

 Where α is equal to 0.6, and β is equal to 0.1. The spinning reserve is scheduled to counter 

possible risks, including uncertainty of wind power (quantified by EENS) and possibility of 

any generator failure to supply the scheduled load (represented by partial demand). However, 

inter-temporal constraints are not considered in this case. 

The formulation (2.11) to (2.13) is solved for various value of wind power output. A graph 

showing variations in the total cost versus wind power is shown in Figure 2.5. Since energy 

from the WEG is cheaper than that from the CEG, the total energy cost deceases when 

scheduling more power from the WEG. However, scheduling more power from the WEG 
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increases reserve cost due to increasing EENS values. At system operating points where 

reserve cost is more expensive than generation costs, the total cost increases.  

 

 

Fig. 2.5 Total cost changes with different σ for the 2-unit system 
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Further, a lower value of EENS requires lesser spinning reserve when accounting for 

shortcomings of the WEG.  

In this case, with a larger standard deviation in its generation output, the system would have 

the capacity to consume more power from the WEG. Therefore, the total optimal cost decreases 

progressively with a larger standard deviation, as shown by the dashed line in Figure 2.5.  

2.7 Chapter Summary 

The function for EENS is nonlinear by nature. Incorporating this function would require 

constructing a nonlinear formulation of OPF and a mixed integer nonlinear formulation of day-

ahead UC.  

Nonlinear formulations are computationally less robust than linear functions, especially for 

formulations including integer variables. It is therefore much more difficult to find the optimal 

solution for large practical systems using such nonlinear mixed integer formulations.  

In order to overcome this difficulty, the nonlinear EENS function needs to be linearized for 

the OPF and day-ahead UC. The TAD model is therefore proposed as a highly accurate 

approximation of the nonlinear EENS function. The use of the TAD model for OPF 

applications are presented in the next chapter.  
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CHAPTER 3 

A PRACTICAL FAST PROBABILISTIC OPF METHOD 

USING THE TAD MODEL 

 

Optimal power flow (OPF) algorithm is an important scheduling tool used in the daily 

operation of power systems. It minimizes the total operation cost (TC) while optimally 

scheduling power output of online generators. Additionally, near-real time OPF is used to 

optimally schedule reserve capacities from conventional electric generators (CEGs) to counter 

possible N-1 contingencies, which are referred as the failure of single equipment [70], and 

other uncertainties.  

In this chapter, TAD model of WEGs is used to quantify EENS value due to wind generator 

output uncertainties and incorporated into a linearized formulation of OPF. Reserves in the 

OPF formulation are procured as a function of N-1 contingency requirement in addition to a 

fraction of EENS value computed through the TAD model. This proposed OPF formulation is 

solved using the successive linear programming (SLP) technique. Further, case studies are 

reported and their results are discussed.  
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3.1 Problem formulation of fast Optimal Power Flow 

The objective of the fast OPF algorithm is to minimize the total cost (TC) of real power 

generation while satisfying bus-wise power balance equations, limits on generator capacities, 

limits on bus voltage magnitudes, etc. The term TC includes the cost of energy from CEGs and 

WEGs and the cost of spinning reserves. This work assumes that WEGs bid into the electricity 

market. Reserve is purchased in OPF algorithm at a lower rate than scheduled real power 

generation. 

Therefore, by including the cost of wind energy, the TC for the fast OPF algorithm can be 

formulated as below to determine the optimal generation schedule. The objective is to 

minimize: 

TC = ( ) ( )∑∑ ∑
∈∈

⋅++







⋅+⋅+

WGn
nnn

CGn m
nnnmnmn PGbwawSRrcPMbcac

             
(3.1)  

In the cost function (3.1), acn ($) is the fixed cost for the nth CEG; bcnm ($/MWh) is the 

incremental energy price for CEGs; and rcn ($/MWh) is the price of reserved energy supplied 

by CEGs. WEGs also have fixed costs of awn ($) and incremental energy prices of bwn ($/MWh) 

respectively. Minimization of the objective function is subject to the following constraints: 

Power balance constraints: 

Real power balance:   ( ) i  δ, V  PT PDPG ii
NIn

n
i

∀+=∑
∈

               (3.2) 

Reactive power balance: ( ) i  δ, V  QT QDQG ii
NIn

n
i

∀+=∑
∈

               (3.3) 
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The power balance equations (3.2) and (3.3) ensure that the OPF algorithm can schedule 

sufficient real and reactive power to meet all real-time demands. ( )δ, VPTi  and ( )δ, VQTi  are 

functions of voltage magnitudes and phase angles that equal the total real and reactive powers 

flowing from the ith bus to all connected transmission lines and transformers respectively (as 

detailed as equations A.1 and A.2 in Appendix A). In addition, real and reactive power outputs 

of generators are limited by the physical capacities as formulated in equations (3.4), (3.5), 

(3.6), and (3.7).  

Generator real power output limit: 

Real power in segments (CEGs only):   CG,mn PMPM nmnm ∈∀≤≤0          (3.4) 

                    CGn PMPG
m

nmn ∈∀= ∑           (3.5) 

 In equations (3.4) and (3.5), real power generation of each CEG comprises of ‘M’ segments. 

Energy costs of segments are assumed to be increasing where the first segment costs the least 

and the Mth segment costs the most. Thus, power in every segment (PMnm) is bounded by its 

segment capacity. These linear cost coefficients of segments constitute piece-wise cost 

function of a generator that it is amendable to a LP solver. The total generation of CEGs can 

be computed by summing up segment-wise power output of all generators. Real and reactive 

powers are limited in ranges according to unit capacities.  

Real power in units (CEGs and WEGs):  n    PGPGPG nnn ∀≤≤
           

(3.6) 

Generator reactive power output limit:  CGn    QGQGQG nnn ∈∀≤≤         (3.7) 
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Spinning reserves must be scheduled from CEGs to ensure stability of system operation.  

Spinning reserve constraints:   

Spinning reserve requirement:  MR SR
CGn

n ≥∑
∈                    

(3.8) 

In (3.8), MR is the minimum system reserve requirement, which is decided by the system’s 

operational philosophy. For the N-1 contingency criterion, the value of MR is determined by 

the capacity of largest online generation units [59]. The spinning reserve supplied by a 

particular CEG is limited by its generation capacity, scheduled generation and 10 minutes 

ramping speed (R10).  

Spinning reserve capacity: { } CGn PGPG,  R   SR nnnn ∈∀−≤ 10min        
     

(3.9) 

Spinning reserve criteria:   PD βEαSR
i

i
WGn

n
CGn

n ∑∑∑ ⋅+⋅≥
∈∈                

(3.10) 

Shortfall in real power from potential failure of any generator is compensated by spinning 

reserve. The total cost (3.1) is influenced by the uncertainty of power output of WEGs in terms 

of their EENS values. To quantify the overall possible risks of generation shortfall, a fraction 

(α) of EENS value (due to uncertainty of supply from WEGs) and a fraction (β) of the total 

system hourly demand ∑PDi (due to equipment unreliability) are accounted for in equation 

(3.10).  

In order to study the effect of output uncertainty of WEGs, α is altered while β is kept 

constant at 10%. The maximum available wind power generation is estimated through wind 

forecasts and a portion is scheduled by weighing their benefits with reserve costs required to 
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counter their EENS values [6]. The EENS of a given power output of a WEG can be computed 

using (2.3) in Chapter 2. Furthermore, the fast OPF is constrained by AC transmission security 

constraints.  

Line and Transformer power flow MVA limit:  l   SFSF ll ∀≤≤0              (3.11) 

Transmission line and transformer power flows are constrained by their MVA limits. The 

MVA line and transformer flow (SFl) is a function of bus voltage phasors of the buses 

connected to both ends of the lth line or transformer (as detailed in Appendix A). Both 

directions of line/transformer flows are considered in (3.11). Bus voltage magnitudes and 

phase angles are also constrained for all buses in the system.  

Bus voltage limit: Voltage magnitude:  i    VVV iii ∀≤≤                 (3.12) 

         Voltage phase angle: i    i ∀≤≤− πδπ                  (3.13) 

In the above formulation from (3.1) to (3.13), EENS function, power balance equations, and 

the MVA line/transformer power flow constraints are nonlinear. Accordingly, the SLP 

technique is used to solve this nonlinear optimization challenge presented in (3.1) to (3.13). 

The fast OPF formulation is linearized around the current operating point (X0). This linearized 

formulation, as presented in the next section, is optimized to find the optimal changes in the 

decision vector ∆X to minimize the corresponding change in the total operating cost ∆TC. The 

decision vector of the linearized formulation ∆X = [∆PG ∆SR ∆VG], which are changes in real 

power generation, spinning reserve, and voltage magnitudes of generator buses. The 

continuous variables are updated with these optimal changes [X = X0 + ∆X]. Using the update 
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decision vector X, the state of the power system (V, δ) is estimated by solving bus-wise power 

balance equations. This process of linearizing, solving the LP formulation, updating the state 

and solution of power balance equations is repeated several times until the optimal solution is 

found. The linearized formulations of EENS function and the fast OPF are shown in next 

section. 

3.2 Linear formulation of EENS and fast OPF  

As discussed in Chapter 2, the formulation of EENS function (2.3) using the normal 

probabilistic distribution is a nonlinear exponential function of real power output of WEGs. 

The exponential function of EENS is difficult to incorporate into the formulation of the fast 

OPF for either online or offline optimization. However, taking advantage of geometric 

similarity, the TAD model can accurately model the normal probabilistic distribution of WEGs 

output forecast, (2.9) and (2.10).  

3.2.1 Linearized function of EENS using the TAD model 

Applying Taylor’s expansion and reducing (2.3) to a first order expression, the incremental 

EENS function can be written as below: 

WGn PGJEPE nnn ∈∀∆⋅=∆                               (3.14) 

The sensitivity matrix, which relates change in the power output of WEGs to change in 

corresponding EENS, is derived below by considering the two cases in Chapter 2: 
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1). nnn PGPGPG ≤< 0  

( )[ ]2020 43
2
1

nnnnn
n

n
n PG. PGPG. PG.K

dPG
dE

JEP +−==                   (3.15) 

2). nnn PGPGPG ≤< 0                              

( )[ ] PG. PGPG. PG.K
dPG
dE

JEP nnnnn
n

n
n

2020 43
2
11 +−−==                   (3.16)   

Depending upon the current power output ( 0
nPG ) of a WEG, the value of the sensitivity 

matrix (JEPn) is estimated by using either (3.15) or (3.16). The linear incremental function of 

EENS is incorporated into the linearized fast OPF formulation. The complete formulation is 

given in the following section. 

3.2.2 Complete formulation of fast probabilistic OPF with the TAD model 

Consider the current operating point X0. The aim is to determine optimal change ∆X to 

minimize change in total cost (∆TC). Using (3.1) to (3.13) and changing continuous variables 

in to their incremental forms, one gets an incremental LP formulation as the following: 

Minimize ∆TC in terms of incremental variables, ∆X = [∆PG ∆SR ∆VG]: 

∆TC = ( ) ∑∑ ∑
∈∈

∆⋅+







∆⋅+∆⋅

WGn
nn

CGn m
nnnmnm PGbwSRrcPGbc                      (3.17) 

Optimization of this objective is subject to the following linear constraints: 
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Power balance equations: 

Incremental real power balance equation:      iV JPV. δJPD. PG
iNIn

n ∀∆+∆=∆∑
∈

     (3.18) 

Incremental reactive power balance equation: iVJQV. δJQD.QG
iNIn

n ∀∆+∆=∆∑
∈

      (3.19) 

JPD, JPV, JQD, and JQV are sub-matrices of the transmission system Jacobian matrix. They 

are derivatives of real and reactive power with respect to voltage phase angles and magnitudes. 

The Jacobian matrix is evaluated at the current voltage phasor values ([V0, δ0]) in each iteration. 

All linear and nonlinear constraints are transformed into incremental linear constraints. 

Generator real power output limit: 

Real power in segments (CEGs only):  CG,mn PMPMPM nmnmnm ∈∀≤∆+≤ 00      (3.20) 

                   CGn  PMPG
m

nmn ∈∀∆=∆ ∑           (3.21) 

Real power in units:          n PGPGPGPG nnnn ∀≤∆+≤ 0           (3.22) 

Generator reactive power output limit: 

CGn QGQGQGQG nnnn ∈∀≤∆+≤ 0                          (3.23) 
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Spinning reserve constraints: 

Spinning reserve capacity: 

( ) CGn PGPGPG, SR  SRSR
m

nmnmnnnn ∈∀








∆+−≤∆+ ∑ 00 10min
              

(3.24) 

Spinning reserve requirement:  ( )  MR SRSR
CGn

nn ≥∆+∑
∈

0

                  
(3.25) 

Reserve criteria:   ( ) ( ) ∑∑∑ ⋅+∆+⋅≥∆+
∈∈ i

i
WGn

nn
CGn

nn PDβEEαRSRS 00           (3.26) 

Line power flow limit:  l SFSFSF lll ∀≤∆+≤ 00                     (3.27) 

Bus voltage limit: 

Voltage magnitude:   i VVVV iiii ∀≤∆+≤ 0                       (3.28) 

Voltage phase angle:   i  ii ∀≤∆+≤− πδδπ 0                      (3.29) 

Control variables, ∆PG (for all generators) and ∆VG (for conventional generators only), are 

bounded within a narrow range to ensure that the linear model is valid. Accordingly, limits are 

imposed on the control variables as below: 

n    PGPGPG nnn ∀+≤∆≤−                               (3.30) 

CGn    VGVGVG nnn ∈∀+≤∆≤−                             (3.31) 
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The LP model of the fast OPF (3.17) to (3.31) is set up at current operating point X0 and 

solved yielding the optimal change in decision vector ∆X. On updating the decision variables 

X = X0 + ∆X, power balance equations are solved to determine the state of the system (δ, V) 

using the Newton Raphson technique. Locational marginal prices (LMP) at all buses can be 

obtained by dual variables corresponding to power balance equations in the incremental LP 

formulation. The complete algorithm of the proposed fast OPF method that incorporates the 

TAD model of WEGs is presented in the following section.  

3.3 Algorithm of fast OPF with the TAD model of WEGs 

The steps used by the proposed fast OPF algorithm are same as that of SLP. The algorithm 

aims to solve the problem defined in (3.1) to (3.13). The algorithm uses a starting state as the 

current state X0 to set up and compute an incremental model (3.17) to (3.31). This model is 

solved to determine optimal changes in the incremental decision vector ∆X. The continuous 

decision vector (X = X0 + ∆X) is updated and AC power balance equations are solved to 

determine the state of the power systems (V, δ). The steps of setting up of LP model, its solution, 

updating the decision vector and determination of the state are a set of steps that are 

successively repeated until the optimal solution is reached. 

An explanatory flowchart for the algorithm is presented in Figure 3.1. The detailed steps are 

shown below. 
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Fig. 3.1 Flowchart of proposed OPF method with TAD model 
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Step 1:  Solve AC power balance equations using the current state X0. 

Step 2:  Set up an incremental LP model, (3.17) to (3.31), by using the proposed TAD model 

of WEGs. 

Step 3:  Solve the incremental LP model, (3.17) to (3.31), to determine the optimal changes 

in X: ∆X = [∆PG ∆SR ∆VG].  

Step 4:  Update X = [PG SR VG]. 

Step 5:  Solve the AC power balance equations to determine the updated state (δ, VL, QG). 

Step 6:  Repeat steps 2 to 5 until violations are removed and ∆TC is insignificant. 

The set of steps 2 to 5 constitute one LPMOVE. This set is repeated until the constrained 

optimal solution is reached. To test this solution, two cases are studied using the proposed fast 

OPF with the TAD model in the next section. 

3.4 Test results and discussions 

A modified IEEE 30-bus system and a modified IEEE 118-bus system are used to test the 

proposed fast OPF algorithm with the TAD model. The details are given in the following 

sections. 

3.4.1 Modified IEEE 30-bus System 

The transmission network and load data of the IEEE 30-bus system can be found in [60]. 

The price data of CEGs is given in Appendix B. The system has 6 generators on buses #1, #2, 
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#5, #8, #11, and #13. Three WEGs are installed on buses #26, #29, and #30 for testing purposes. 

The expected power outputs (mean values) of the three WEGs are 20 MW, 30 MW, and 50 

MW respectively. The value of standard deviation is assumed as 10% of the expected power 

outputs; a value commonly adopted by many researchers [10] and [47]. 

The use of the SLP method to implement the fast OPF algorithm with the TAD model is 

compared to the classical enumeration technique. The enumeration technique is applied on the 

nonlinear formulation of (3.1) to (3.13) to obtain the optimal working point of the system. In 

the enumeration method, the PDF of each WEG is divided into 10 segments. Each segment 

has an expected output and a corresponding probability of occurrence. Considering all possible 

combinations of outputs from the three WEGs, 1,000 scenarios are created. One thousand 

EENS values, which cover all possible cases for the IEEE 30-bus system with three WEGs, 

are computed separately by solving (3.1) to (3.13). By solving the nonlinear formulation 1,000 

times corresponding to each scenario, one can find the scenario with the minimum total cost 

among these 1,000 scenarios, shown in Figure 3.2.  

This minimum cost scenario and its associated LMPs will be used to verify the result of the 

proposed fast OPF with the TAD model of WEGs. The algorithm for the enumeration method 

is given in Appendix A. The spinning reserve cost of a CEG is assumed as 15% of the energy 

bidding prices in the highest power output segment. In this simulation, the value of α is equal 

to 0.6.  
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Fig. 3.2 Costs of 1000 scenarios of 30-bus system 

 

The total operating cost for the system was calculated for 1,000 scenarios generated by the 

enumeration method. This process of computing 1,000 scenarios considering only three WEGs 
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least cost is used to verify the proposed method.  
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reach the optimal solution. This optimal solution is very close to the least cost scenario obtained 

by the enumeration method as shown in Table 3.1. It is noted that the reserve requirement 

without considering EENS is 56.58 MW (3.10). The final total costs and EENS are nearly 

identical for both of the methods. It must be noted that the computation time for the proposed 

algorithm with the TAD model of WEGs shall increase only marginally when increasing the 

number of WEGs. 

 

Table 3.1 Total Costs and Execution Times of Two Methods for the 30-Bus System 

Method 
Cost 

($) 

EENS 

(MWh) 

Scenarios [Min cost] - 

enumeration 

LPMOVEs - TAD 

Execution time 

(Seconds) 

Reserve 

(MW) 

Enumeration 2,943.27 71.39 1,000 [340] 893.18 99.41 

TAD 2,935.84 73.96 7 2.05 100.96 

Note: Reserve requirement without EENS is 56.58 MW (3.10) 

 

Figure 3.3 shows the LMPs of real power at all buses in the IEEE 30-bus system. The result 

of the 340th scenario of the enumeration technique is compared with the results obtained using 

the proposed fast OPF algorithm with TAD model. This graph demonstrates that the proposed 

fast OPF algorithm with the TAD model of WEGs is accurate.  
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Fig. 3.3 Comparison of real power LMPs at all buses of the 30-bus system 

  

 Figures 3.4 and 3.5 show the effects of varying the value of α on the total operating cost, 
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that the factor α is the portion of EENS value carried as spinning reserve by the system, and 

that EENS value depends upon the total output from the WEGs in the system. As the value of 

α increases for a given WEG output, a higher amount of reserve is required to counter the same 

EENS, which would raise the total costs (3.1). To address this rise in costs, the fast OPF 

algorithm minimizes the total costs by optimally scheduling WEGs while countering the cost 

of risk due to their output uncertainty, quantified by EENS.  
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Fig. 3.4 Total cost and output of WEGs with different α for the 30-bus system 

 

Fig. 3.5 Reserve cost and EENS with different α for the 30-bus system 
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Reserve cost is affected not only by values of EENS (from WEGs) but also the reserve 

providers (CEGs). With a decrease of wind power generation, CEGs must supply more power 

to meet the unchanged demand. This causes cheap CEGs losing reserve capacity.  Reserves 

are scheduled from expensive generators, and reserve cost increases. On the contrary, when 

wind generation reduces, the amount of reserve reduces, as well as the total reserve cost. These 

conflicting actions explain why reserve cost increases to a peak and then reduces as the value 

of α increases, shown in Figure 3.5.   

For the proposed fast OPF method with the TAD model of WEGs, it takes only a few seconds 

to complete the analysis and produce the graph in Figures 3.4 and 3.5. In contrast, using the 

enumeration technique would require more than one hour to collect the results necessary to 

produce graphs of Figures 3.4 and 3.5. This advantage in computational time highlights the 

practical online applicability of the proposed fast OPF method with the TAD model of WEGs. 

The application of the proposed method for a larger system is given in next section. 

3.4.2 IEEE 118-bus System 

The modified IEEE 118-bus system is used to demonstrate the applicability of the proposed 

fast OPF algorithm with the TAD model of WEGs for larger systems. The detailed 

transmission network, load, and bidding information of this IEEE 118-bus system can be found 

in [46]. The costs of CEGs are linearized to fit the LP formulation, as detailed in Appendix B. 

Three conventional units are replaced by WEGs on buses #10, #80, and #89 for testing 

purposes. The expected power outputs of the three WEGs are all given as 300 MW with 

standard deviations of 30. 
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Similar to what was done for the IEEE 30-bus system, one thousand (1,000) scenarios were 

generated based on the outputs of the three installed WEGs, and sixty percent of EENS is 

carried by reserves (α = 0.6). The lowest cost appears at the 994th scenario, shown in Figure 

3.6. 

 

 

Fig. 3.6 Costs of 1000 scenarios of 118-bus system 
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Table 3.2 presents and compares the minimum costs and execution times of these two 

methods. The least cost also appears in the 994th scenario of the enumeration method, which 

requires a significant amount time to achieve. The execution time of the fast OPF with the 

TAD model is far less than that of the enumeration method. The expected reserve without 

considering EENS is 410.64 MW. 

 

Table 3.2 Total Costs and Execution Times of Two Methods for the 118-Bus System 

Method 
Cost 

($/hour) 

EENS 

(MWh) 

Scenarios [Min cost] – 

Enumeration 

LPMOVEs - TAD 

Execution 

time 

(Secs) 

Reserve 

(MW) 

Enumeration 49,162.87 800.98 1,000 [994] 51,908.07 891.23 

TAD 49,156.92 809.65 9 6.55 896.43 

Note: Reserve requirement without EENS is 410.64 MW (3.10) 

 

Figure 3.7 gives the real power LMPs at all buses. The dashed line represents LMPs 

computed by the proposed OPF method with the TAD model of WEGs and the solid line 

represents LMPs calculated using the enumeration technique at the 994th scenario. Once again, 

the solutions they have produced are a very close match, which demonstrates the accuracy of 

the proposed method. 
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Fig. 3.7 Comparison of real power LMPs at all buses of 118-bus system 
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7.50

8.88

10.25

11.63

13.00

1 10 19 28 37 46 55 64 73 82 91 100 109 118

LMP($/MWh)

Buses

LMP using 
enumeration 

LMP using 
TAD 

54 
 



 

Fig. 3.8 Total cost and WEGs’ output with different α values of the 118-bus system 

 

 

Fig. 3.9 Reserve cost and EENS with different α values of the 118-bus system 
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Similar to the case of 30-bus system. With increasing of α values, the reserve cost increases 

to a peak and then decreases, as shown in figure 3.9. Considering the execution time, it is clear 

that the proposed fast OPF algorithm with the TAD model exhibits superior performance as 

compared to the enumeration approach. The proposed fast OPF algorithm with the TAD model 

can clearly save a great deal of computational time, which becomes more apparent for larger 

systems (Table 3.2).  

This advantage in computational time highlights the practical fast applicability of the 

proposed fast OPF method with TAD model. The effect of varying standard deviation for both 

systems is discussed in next section. 

3.4.3 Effect of wind variability  

As discussed in Chapter 2, the value of standard deviation affects the working status of 

WEGs in the system operation (see Figures 2.4 and 2.5). For the same amount of power output 

from a WEG, a larger standard deviation value has a lesser EENS value when the WEG power 

output is more than the mean forecast. Furthermore, a lower value of EENS requires lesser 

spinning reserve to safeguard the system. This allows the system to consume more power from 

the WEG if it has a larger standard deviation in its generation output. Therefore, the total 

optimal cost decreases progressively with a larger standard deviation.  

Table 3.3 shows the results of the 30-bus and 118-bus systems with varying standard 

deviation values from 5% to 15% of mean value ( PG ). In (3.10) and (3.26), the value of α is 

kept constant at 0.6. In these two systems, the total optimal costs decreases when standard 

deviation increases. 
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Table 3.3 Total cost with different σ for 30 and 118-bus systems 

 σ (=% PG ) 5% 10% 15% 

30-bus 
WEG(MW) 105.01 108.67 115.08 

Total cost ($) 2,945.26 2,935.84 2,927.05 

118-bus 
WEG(MW) 963.17 1024.51 1081.02 

Total cost ($) 49,378.88 49,156.92 48,970.52 

  

Using the proposed fast OPF algorithm with the TAD model of WEGs, one can easily 

analyze a system with various standard deviation values and obtain the optimal solution. 

Without the proposed tool, performing such an analysis is very cumbersome and extremely 

time consuming. This demonstrates the value and benefit of the proposed fast OPF algorithm 

with the TAD model of WEGs. 

3.5 Chapter Summary 

The TAD model of WEGs and the EENS function are incorporated into a fast OPF algorithm, 

which minimizes the total schedule costs including the cost of offsetting EENS by purchasing 

reserves to counter uncertainty. The proposed method uses the SLP technique to determine the 

optimal solution. 

The proposed fast OPF method with the TAD model of WEGs is used to schedule modified 

IEEE 30-bus and 118-bus systems. Results from these studies are compared with the classical 

technique of enumeration. The comparison shows that the two methods produce very close 
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results. However, the execution time for the proposed method is in the order of a few seconds 

while the enumeration technique requires computational time in the order of 103 to 105 seconds 

for a system with three WEGs. While the proposed technique remains stable in terms of time 

requirements for a large number of WEGs, the enumeration technique is unreasonable for use 

in real time, as its execution time increases exponentially. 

These results clearly demonstrate the benefits of the proposed method: its accuracy in results 

and execution time advantage over enumeration technique. The benefits make the proposed 

OPF method suitable for practical applications.  

As a next step, the benefits of using the TAD model of WEGs for large dimensioned 

problems such as the SCUC problem are explored in later chapters. In order to build a risk 

constrained SCUC method using TAD model of WEGs, it is necessarily to model full AC 

transmission security constraints as a first step. A successive fuzzy MILP method for SCUC 

with AC transmission constraints is discussed in the next chapter.  
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CHAPTER 4 

SUCCESSIVE FUZZY MILP METHOD FOR AC 

SECURITY CONSTRAINED UNIT COMMITMENT 

 

Modern power systems are facing a major change in their generation portfolio by connecting 

increasing amounts of renewable sources. One example is the province of Ontario, Canada, 

which operates according to the Green Energy Act [61]. This Act, through directive, has forced 

this power system to change its process for operation; formerly designed to work with fossil 

and nuclear fuel plants, this power system must now adapt to incorporate new renewable 

energy sources, which causes it to function in challenging operational states. Thus, it is highly 

desirable for the day-ahead security constrained unit commitment (SCUC) formulation to 

consider 24 sets of AC power balance equations – one for each hour − in a 24-hour scheduling 

period.  

The SCUC algorithm is an essential tool for independent system operators (ISO) in their 

daily operations. It must have the ability to schedule generation during transmission network 

contingencies and to plan for short-term transmission maintenance outages. In this work, the 

proposed SCUC algorithm provides a near-optimal generator schedule for short-term 
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electricity market, enforces transmission security constraints by fuzzy sets and minimizes 

transmission system MVA limit violations resulting from contingency and planned outage 

conditions. 

The challenge of the fast OPF problem with WEGs was discussed in Chapter 3. The SCUC 

formulation considers 24 sets of those OPF formulations (one for each hour), considers 

ON/OFF status of generators and inter-temporal constraints such as ramp rate limits and 

up/down time limits. Thus, the SCUC is a much more complicated problem than the fast OPF 

because of its mixed integer feature, inter-temporal constraints and much high dimensionality.  

In this chapter, a successive fuzzy MILP technique is proposed to tackle the SCUC problem 

with AC security constraints (AC-SCUC). It successively solves a fuzzy MILP formulation 

while updating integer and continuous variables. Several sizes of systems with severe 

transmission outages are examined. The details of the proposed fuzzy MILP method are 

discussed in the following sections. 

4.1 Fuzzy MILP Method for AC-SCUC 

Taking advantage of the fuzzy optimization technique, the AC-SCUC problem with violated 

security constraints can be solved in an infeasible region caused by transmission contingency 

or short-term planned transmission element outage. A fuzzy MILP formulation is solved 

successively while updating integer and continuous variables. The proposed fuzzy MILP 

formulation and approach is a variant of the SLP technique. The SLP technique is very efficient, 

it has been used to solve OPF formulations for several decades [62], and it has been 
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successfully used to solve MILP formulations [63][64]. Several variants of the SLP have been 

investigated in the literature [65].  

In addition to all other constraints of a conventional UC formulation, AC transmission 

system model and related constraints are enforced in the formulation reported in [44]. However, 

such AC transmission constraints are not directly formulated into UC algorithm by 

decomposition methods reported in literature. The AC transmission network-related 

constraints include: 1) real and reactive power balance equations at all the buses for all the 

hours, 2) line flow MVA limits, 3) limits on bus voltages, and 4) limits on reactive power 

outputs of generators.  

The proposed AC-SCUC formulation poses a very large mixed integer nonlinear 

optimization challenge, and determining its solution using commercial solvers is very difficult. 

To address this challenge, this AC-SCUC formulation is linearized into an incremental MILP 

model. Further, fuzzy set theory is used to model infeasible constraints to allow the method to 

determine an optimal solution. 

The process of formulating the MILP with AC transmission system constraints is a large and 

complex problem. Finding a feasible starting point may not be always easy, especially for the 

cases with severe transmission outages. To overcome this difficulty and to allow the proposed 

algorithm to start from an infeasible operating state, a special computing method is used to 

transform MILP formulation into a fuzzy MILP formulation. This fuzzy MILP model is solved 

using the MILP technique to minimize violations of constraints [66] while optimizing real 

power generation. The algorithm iterates successively until all constraint violations are 

removed (or minimized in cases with no feasible solution) and the optimal state is reached for 
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a short-term (24-hour) generation schedule. The use of the MILP engine to solve the fuzzy 

MILP model in successive iterations makes the algorithm very reliable and computationally 

efficient. The details of this formulation are provided in the following sections. 

4.2 Deterministic formulation of AC-SCUC 

As discussed in Chapter 1, the day-ahead SCUC challenge is to schedule all the generators 

in the system for 24 hours before the dispatching day to minimize the total operation costs. 

The solution must satisfy constraints that limit the operation of generators and the connecting 

transmission network.  

In order to isolate the characteristics of the AC transmission security constraints and the 

effects caused by transmission outages, WEGs are not considered in this chapter but will be 

dealt with in the next chapter – using the TAD model of WEGs proposed in Chapter 2.   

The objective function of AC-SCUC is given in (4.1): 

Minimize: TC= ( )∑ ∑ ∑
∈









⋅+⋅+⋅+⋅

t CGn
tnntnn

m
tnmnmtnn SUscSRrcPMbcUac

           

(4.1) 

 Two sets of variables, Utn and SUtn, are enforced as integer values of either 0 or 1. They 

represent operational status and start-up status for the nth generator on the tth hour. Fixed costs 

(acn) for generators are borne by the system when they are turned on. Energy outputs of 

generators are segmented with each segment having its own price (bcnm). The cost of spinning 

reserve is obtained by multiplying reserve prices (rcn) by the corresponding scheduled capacity 

reserves. The price of start-up status (scn) is also included in the objective function.  
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 By considering variations of time and linear segments of energy production, the UC 

formulation is a three-dimensional problem. The objective is subject to hourly and inter-

temporal constraints. 

1) Hourly constraints 

Power balance equations:  

Real power:     t, i) ,δ(VPT PDPM tttiti
GIin m

tnm ∀=−∑ ∑
∈

                (4.2)  

Reactive power:  t, i) ,δ(VQT QDQG tttiti
GIin

tn ∀=−∑
∈

                    (4.3) 

 In power balance equations (4.2) and (4.3), ),δ(VPT ttti  and ),δ(VQT ttti  are the power 

flowing into the connected transmission system from the ith bus in the tth hour. These are 

functions of bus voltage phase angles and the magnitudes of all buses connected by 

transmission lines to the ith bus in the tth hour, as detailed in Appendix A. These power balance 

equations ensure that sufficient real and reactive power is scheduled to supply bus-wise 

demand and transmission losses. In addition to the OPF formulation discussed in the last 

Chapter, integer variables are used this AC-SCUC formulation to account for generator status.  

Generator status of CEGs (integer variables):   CGt,n    U tn ∈∀≤≤ 10         (4.4) 

Start-up status of CEGs (integer variables): { } CGt, n   , UU   SU ,nt-tntn ∈∀−= 0max 1    (4.5) 

 Additional constraints are added for variables Utn and SUtn to enforce integer values with 

values of 0 or 1. A commercial software package MOSEK® is used to handle integer variables 
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for this work [6]. All continuous variables, such as real power generation, are bounded within 

their respective limits. 

Generator real power output limit: 

Power limit in segments:    CG,mn PMPM nmnm ∈∀≤≤0                (4.6) 

               CGn PMPG
m

nmn ∈∀= ∑                  (4.7) 

 Real power generation outputs are segmented into ‘M’ portions for the MILP formulation 

and are limited by respective segment bounds. 
 

Power limits of all generator units: 

CGt,n    PGUPMPGPGU ntn
m

tnmtnntn ∈∀⋅≤







=≤⋅ ∑                       (4.8) 

WGt,n    PGPGPG ntnn ∈∀≤≤
                           

(4.9) 

System reserve constraints: 

Minimum spinning reserve:  t    MR SR t
CGn

tn ∀⋅≥∑
∈

γ                (4.10) 

Spinning reserve capacity: 

{ } CGt,n  PGUPG , R   SR tntnnntn ∈∀−⋅≤ 10min                   (4.11) 
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System reserve criteria: 

( ) t  MR.PUSR t
Gn

ntn
CGn

tn ∀≥−+ ∑∑
∈∈ 10

101
                       

(4.12) 

 The factor γ in (4.10) is the fraction of total hourly reserve to be scheduled by spinning 

reserve [59]. In this formulation, the reserve requirement is determined by the capacity of the 

largest online units. Quick start units (P10), which are offline and can be available in 10 

minutes, are considered as additional reserve resources in (4.12).  

 Transmission networks are secured by AC security constraints, which include hourly line 

flow MVA limit, hourly reactive power generation limits, and hourly bus voltage constraints. 

Transmission line flows:  t, l  SF),δ(VSF ltttl ∀≤≤0                     (4.13) 

Reactive power outputs of generators:  t,n QG U QGQGU ntntnntn ∀⋅≤≤⋅        (4.14) 

Voltage limits: 

Voltage magnitude:   t, i   V V V itii ∀≤≤                             (4.15) 

Voltage phase angles:  t, iπ    δ-π ti ∀≤≤                          (4.16) 

 In addition to the above hourly constraints, the SCUC problem is also restricted by inter-

temporal constraints over a 24-hour time horizon, as given below. 
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2) Inter-temporal constraints 

Ramp Rate:  CGt,nRPGPGR n,nt-tnn ∈∀≤−≤− 6060 1                  (4.17) 

 The ramp rate constraint restricts the capability of CEGs to raise or reduce generation for 

the next hour.  

Minimum up/down time constraints: 

Up time: 

{ } [ ] CG, n,NH-t  tNH,UTU).UTU(U n

}UT{NH, t

ts
snntn,nt

n

∈∈∀++−≤−− ∑
+

+=
+ 2111max

min

2
1

    
(4.18) 

Down time: [ ] CG, n,NH-t  DTU).DTU(U n

}DT{NH, t

ts
snn,nttn

n

∈∈∀≤+− ∑
+

+=
+ 21

min

2
1         (4.19) 

Initial condition constraints:  

Up time: [ ] CG, n-IC,UT  t    ; then UIC & UTIf IC nntnnnn ∈∈∀=+>> 110
     

(4.20) 

Down time: [ ] CG, nIC,DTt ; then U-IC & DTIf IC nntnnnn ∈+∈∀=>< 100
     

(4.21) 

 Due to economical and mechanical considerations on CEGs, these units are limited by 

minimum up/down constraints. A CEG must remain online (or offline) for a specific minimum 

time period, as it is not economically and mechanically safe to switch large generators on and 

off intermittently. Such intermittency is particularly dangerous for large nuclear generators. 
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In the above formulation, the set of power balance equations and transmission line flows of 

the transmission network are nonlinear equations. Hence, the problem poses a mixed integer 

nonlinear programming (MINP) challenge.  

This AC-SCUC challenge with AC transmission security constraints is dimensionally 

challenging even for small systems, and very hard to solve using any commercial mixed integer 

nonlinear programming solver. Alternatively, this research proposes to solve the AC-SCUC 

challenge by linearizing the MINP formulation and successively solving it using a robust 

mixed integer linear programming (MILP) solver. This linearized formulation of AC-SCUC is 

provided in the next section. 

4.3 Linearization (MILP formulation) of AC-SCUC 

The AC-SCUC problem has a control vector X = [PG, U, SU, SR, VG], including real power 

generation, generator status, start-up status, system reserves, and voltage magnitudes on 

generator buses. This problem also has a dependent Vector Y = [δ, VL, QG, SF], consisting of 

voltage angles on all buses, voltage magnitudes on load buses, reactive power output of 

generators, and MVA line flow. The NMIP optimization problem is linearized to formulate an 

incremental MILP problem using the current state (X0, Y0). The objective function of the MILP 

AC-SCUC is to minimize change in the total operating costs (∆TC) in terms of the incremental 

variables: ∆X = [∆PG, ∆U, ∆SU, ∆R, ∆VG] and ∆Y = [∆δ, ∆VL, ∆QG, ∆SF]: 

Objective: Minimize ∆TC: 

∑ ∑ ∑
∈









∆+∆+








∆+∆

t CGn
tnntnn

m
tnmnmtnn SU.scR.rcPM.bcU.ac                 (4.22) 
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This objective is subject to the following linearized equality and inequality constraints: 

Linear AC power balance equations:  

Generator buses (real and reactive power): ( ) t,i V,δPT PM ttti
GIin m

tnm ∀∆∆∆=∆∑ ∑
∈

     (4.23) 

                     ( ) t,i  V,δQT QG ttti
GIin

tn ∀∆∆∆=∆∑
∈

      (4.24) 

Load buses (real and reactive power):    ( ) t,i   V,δPT  ttti ∀∆∆∆=0           (4.25) 

                     ( ) t,i   V,δQT ttti ∀∆∆∆=0           (4.26) 

Generator status:              CGt,n    UU tntn ∈∀≤∆+≤ 10 0
       (4.27) 

Start-up variables:    

( ) ( ){ } CGt, n   , UUUU    SUSU ntnttntntntn ∈∀∆+−∆+=∆+ −− 0max ,1
0

,1
00           (4.28) 

Generation limit:   CG,mt,n    PMPMPM nmtnmtnm ∈∀≤∆+≤ 00             (4.29) 

CGt,n PMPG
m

tnmtn ∈∀∆=∆ ∑                    
(4.30) 

( ) ( ) ( ) CGt,n    PGUUPGPGPGUU ntntntntnntntn ∈∀⋅∆+≤∆+≤⋅∆+ 000

            
(4.31) 

( ) WGt,n    PGPGPGPG ntntnn ∈∀≤∆+≤ 0

                        (4.32) 
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Spinning reserve constraints: 

( ) ( ) ( ){ } CGt,n  PGPGUUPG , R  SRSR tntntntnnntntn ∈∀∆+−∆+⋅≤∆+ 000 10min

       

(4.33) 

( ) t   MR SRSR t
n

tntn ∀⋅≥∆+∑ γ0

            
                (4.34) 

( ) ( )( ) t  MR.PUUSRSR t
Gn

ntntn
CGn

tntn ∀≥∆+−+∆+ ∑∑
∈∈ 10

00 101                  (4.35) 

Linear MVA line flow constraints:  t, l  SF)V,δ(SF  SF ltttltl ∀≤∆∆∆+≤ 00        (4.36) 

Linear reactive power limit: 

( ) ( ) t,n QG UUQG QGQGUU ntntntntnntntn ∀⋅∆+≤∆+≤⋅∆+ 0                   (4.37) 

Bus voltage limits: 

Magnitude:    t, i   VV V V ititii ∀≤∆+≤ 0                       (4.38) 

Phase angles:   t, i    titi ∀≤∆+≤− πδδπ 0                       (4.39) 

Ramp rate: ( ) ( ) CGt,nRPGPGPGPGR n,nt-nttntnn ∈∀≤∆+−∆+≤− − 6060 1
0

,1
0

       
(4.40) 

Minimum up/down time constraints: 

( ) ( )[ ] ( ) { }

[ ] CG, n,NH-t

 tNH,UTUU.UTUUUU n

}UT{NH, t

ts
sntnntntn,ntnt

n

∈∈∀

++−≤∆+−∆+−∆+ ∑
+

+=
++

21

11max
min

2

00
1

0
,1     (4.41) 
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( ) ( )[ ] ( )
[ ] CG, n,NH-t

 DTUU.DTUUUU n

}DT{NH, t

ts
snsnntntn,ntnt

n

∈∈∀

≤∆++∆+−∆+ ∑
+

+=
++

21

min

2

00
1

0
,1

             

(4.42) 

Initial conditions: [ ] CG, n-IC,UT t  U; then IC & UTIf IC nntnnnn ∈∈∀=∆+>> 100
   

(4.43) 

[ ] CG, nIC, DTt U; then  -IC & DTIf IC nntnnnn ∈+∈∀=∆>< 100
  

(4.44) 

Hourly and inter-temporal constraints are linearized around the current operating state. 

Reserve constraints are enforced to guarantee adequate generation capacity. In (4.24) – (4.26), 

the bus wise linear functions tiPT∆  and tiQT∆  are formed using the system Jacobian, one for 

each hour. In matrix form, they are defined as follows, where [J1]t, [J2]t, [J3]t, and [J4]t are the 

appropriate parts of the system Jacobian for the tth hour: 

[ ] [ ] t   VJδJ  PT ttttt ∀∆⋅+∆⋅=∆ 21                           (4.45) 

[ ] [ ] t   VJδJ  QT ttttt ∀∆⋅+∆⋅=∆ 43                           (4.46) 

The change in the MVA line flow, (4.36), can be expressed as a linear relation, as shown 

below: 

[ ] [ ] lt   VJVLδJDL  SF ttlttltl ,∀∆⋅+∆⋅=∆                        (4.47) 

In (4.47), [ ]tlJDL  and [ ]tlJVL  are sensitivity matrices related to bus voltage magnitudes and 

phase angles, and they are evaluated at the current state.  
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Additionally, constraints are added so that the summation of (Utn+∆Utn) results in an integer 

value of 0 or 1 for generator status. Similarly, constraints are added so that the sum of 

(SUtn+∆SUtn) results in an integer value of 0 or 1 for generator start-up. 

This MILP model is solved to determine the best change to cost (∆TC) in order to minimize 

total operational cost (TC0+∆TC). The optimal change (∆X) determined by the MILP are used 

to update the control vector (X = X0 + ∆X). The dependent vector (Y) is updated by solving 

bus-wise power balance equations using Newton-Raphson technique, or using an OPF if 

violations exist on reactive power control variables. This process of formulating the MILP 

model, obtaining a solution of control variables, and updating the state of dependent variables 

by solving Power Flow/OPF constitutes an LPMOVE (Figure 4.6). This process is repeated 

until the optimal solution is reached.  

In each LPMOVE, the MILP formulation and its solution produces the optimal changes in 

the continuous and integer variables, ∆X = [∆PG, ∆U, ∆SU, ∆SR, ∆VG] and  

∆Y = [∆δ, ∆VL, ∆QG, ∆SF], such that the change in the total operating cost (4.22) ∆TC is 

minimized while all the operating and control constraints are satisfied.  

This formulation (4.22) – (4.44) is large and numerically challenging, as it combines 24-

hourly solutions via inter-temporal constraints. Often, a small violation renders the entire 

solution infeasible. Furthermore, under conditions of contingency or planned transmission line 

outage, violations on transmission constraints are significant and unavoidable. In order to solve 

the problem from an infeasible state, a fuzzy optimization process is used to minimize 

operating costs (4.1) and simultaneously minimize constraint violations. Accordingly, the 

objective (4.22) and violated constraints are transformed into fuzzy models. Thereafter, the 
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MILP formulation (4.22) – (4.44) is transformed into a fuzzy MILP formulation. The fuzzy 

model of violated constraints ensures that the solution remains feasible and violations are 

minimized. These fuzzy objective and constraint equations developed for the linear 

formulation are described in the following section.  

4.4 Fuzzy Constraints for AC-SCUC 

The linear formulation of AC-SCUC is transformed into a fuzzy MILP formulation by 

creating fuzzy models of the objective and violated constraints, while retaining other 

constraints intact.  

Solving the power balance equations (by power flow or OPF) for 24 hours may show 

violations of line flow limits and voltage magnitude limits. Although it may not be possible to 

eliminate violations of all constraints in a single LPMOVE process, intelligent optimization 

methods such as the fuzzy optimization technique have been used to overcome infeasibility 

and to provide a pragmatic algorithm. The fuzzy sets theory is a very effective and widely used 

tool to handle engineering problems with conflicting drivers [6], [64]-[66]. The incremental 

cost function (4.21), line flow constraint (4.35), and bus voltage magnitude constraint (4.37) 

are transformed into fuzzy constraints, as shown below.  

4.4.1 Fuzzy set of objective function 

A fuzzy set of cost function (4.22) is defined by creating a set of values for ∆TC such that: 

TCTCTC ∆≤∆≤∆ . The satisfaction for this fuzzy set is defined below (also refer to Figure 

4.1): 
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( )
TCTC

XTCTCμTC
∆−∆

∆−∆
=  

                              
(4.48) 

The values of TC∆  and TC∆  are computed by assessing the minimum and maximum 

values of control vectors (∆PG, ∆U, ∆SU, ∆SR, ∆VG) and using them in (4.22). 

  

 

Fig. 4.1 Fuzzy set of Total Cost increment 

 

4.4.2 Fuzzy set of Line Flow Limit Constraint  

The MVA line flow is transformed to a fuzzy constraint when it violates constraint (4.36) in 

the current state ( 0
tlSF ) of the lth line (two directions) in the tth hour. The value of line flow 

before optimization is 0
tlSF  and after optimization is ( )tltl SFSF ∆+0 . With an upper limit 

1.0 
µTC 

∆TC 

Fuzzy Satisfaction 

ΔTCΔTC
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violation, ( ltl SFSF ≥0 ), a fuzzy set is defined for the variable ∆SFtl such that it satisfies

00
tltltll SFSFSFSF ≤∆+≤ . The satisfaction function is defined as Figure 4.2: 

( ) ( )
( ) ( ) t,l  

SFSF
SF  

SFSF
SFSFSFμSF

ltl

tl

ltl

tltltl
tl ∀

−
∆−

=
−

∆+−
= 00

00

                        
(4.49) 

 

 

Fig. 4.2 Fuzzy set for Line Flow Limit Constraint 

 

 4.4.3 Fuzzy sets of Voltage Limit Constraint  

When a load bus voltage magnitude in the current state ( 0
tiV ) of the ith bus in the tth hour 

violates constraint (4.38), it is transformed into fuzzy constraints, as shown below. The value 

of voltage magnitude before optimization is 0
tiV  and after optimization is titi VV ∆+0 . 

1.0 
µSFtl 

SFtl 

Ideal Constraint 

Enforcement 

1.0 

0.0 

SF0tl 

 

 
Fuzzy Satisfaction 

lSF
∆SFtl 
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1) Upper Limit Violation: ( iti VV ≥0 ) 

A fuzzy set is defined for the variable ∆Vti such that it satisfies 00
tititii VVVV ≤∆+≤ . The 

satisfaction function is defined as Figure 4.3: 

 ( ) ( )
( ) ( ) NLBt,i  

VV
V  

VV
VVVμVLU

iti

ti

iti

tititi
ti ∈∀

−
∆−

=
−

∆+−
=

00

00

                
(4.50) 

 

 

Fig. 4.3 Fuzzy set for Load Bus Voltage Upper Limit Constraint 

 

2) Lower Limit Violation: ( 0
tii VV ≤ ) 

A fuzzy set is defined for the variable ∆Vti such that it satisfies: itititi VVVV ≤∆+≤ 00 . The 

satisfaction function is defined as Figure 4.4: 

1.0 

µVLUti 

Vti 

Ideal 

Constraint 

Enforcement 

1.0 

0.0 

V0ti 

Fuzzy 

Satisfaction 

iV

∆Vti 
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( ) ( )

( ) ( ) NLBt,i 
VV
V  

VV
VVVμVLL

tii

ti

tii

tititi
ti ∈∀

−
∆+

=
−

−∆+
= 00

00

                
(4.51) 

 

 

Fig. 4.4 Fuzzy set for Load Bus Voltage Lower Limit Constraint 

 

4.4.4 Fuzzy objective  

A variable (λ) is defined as equal to the minimum of all satisfaction functions:  

λ = minimum {µTC, µSF, µVLU, µVLL}                         (4.52) 

The fuzzy MILP model is formulated as below. By maximizing fuzzy objective λ the total 

cost is optimized, subject to the enforcement of constraints. Therefore, the fuzzy MILP is 

formulated as below: 

Maximize:  λ,                                      (4.53) 

1.0 

µVLLti 

Vti 

Ideal Constraint 

Enforcement 

1.0 

0.0 

V0ti 

 

Fuzzy 

Satisfaction 

iV
∆Vti 
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Subject to (4.23) – (4.44). 

The above formulation is set up and solved to determine optimal values of ∆X. The state X 

is updated and the dependent vector Y is determined using power flow/OPF. These steps 

constitute one LPMOVE step (see Figure 4.5). These LPMOVE steps are repeated until the 

optimal solution is reached and violations are removed. The complete algorithm is discussed 

in the next section. 

4.5 Algorithm of Successive Fuzzy MILP SCUC 

The algorithm of the proposed method is presented in Figure 4.5. As a first step in solving 

the proposed AC-SCUC challenge, a starting state is obtained by solving a UC formulation 

with DC network constraint (DC-SCUC) as well as a 24-set of power balance equations, such 

that the starting state has a set of 24 operating states.  

The DC-SCUC is solved using an MILP technique by an efficient commercial optimization 

engine, and power balance equations are satisfied using Newton Raphson power flow method 

to obtain line flows, bus voltages and reactive power generation values for the period of 24 

hours as the starting state of AC-SCUC. This starting state may not be optimal or network 

feasible or neither, especially under certain transmission line outages.  

If the DC-SCUC cannot be solved for the original physical transmission line capacities with 

transmission contingency or line outage conditions, a virtual capacity is assumed (e.g., 1.5 

times of capacity on the line) and used to obtain a feasible solution of DC-SCUC. The target 

of the proposed method is to minimize violations on transmission lines and to control such 

violations within a range of 20% overload when possible. 
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Fig. 4.5 Flowchart of the proposed AC-SCUC algorithm 
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In the situations in which the power balance algorithm fails to converge in any hour, or 

reactive power generation violations exist, an additional OPF is solved. The detail of the OPF 

formulation used here is provided in Appendix A. 

Thereafter, to minimize the total schedule cost while considering all constraints, a set of steps 

called LPMOVE is iteratively performed to reach the optimal solution. Each LPMOVE 

includes the steps of 1) formulating and solving the fuzzy MILP model, 2) updating variables 

using the optimal incremental values obtained from the fuzzy MILP solution, and 3) solving 

24 sets of power balance equations with the updated state X using power flow or OPF. The 

program is terminated when the violation of each line flow is less than a small tolerance and 

total cost is minimized. The proposed successive fuzzy MILP formulation of AC-SCUC is 

tested on three systems with different transmission outage states. The details are described in 

next section. 

4.6 Test Results and Discussions 

In this section, the results of the tests are presented. Three systems are chosen as follows:  

1) 6-bus transmission network with 7 transmission lines over a 3-hour time span.  

2) A modified IEEE 57-bus transmission network with 76 transmission lines on a 24-hour 

time horizon.  

3) The IEEE 118-bus transmission network with 186 transmission lines on a 24-hour time 

horizon. 
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The six-bus system is chosen to illustrate features of the method and its merits, whereas the 

IEEE 57-bus and 118-bus systems are chosen to show how the method performs for medium 

and large sizes of systems with more complex transmission networks.  

4.6.1 6-bus system 

The 6-bus, 3-generator system has been chosen for a 3-hour time horizon. The generator cost 

data is altered such that Generator #1 (CEG1) is the least expensive and Generator #3 (CEG3) 

is the most expensive (see Appendix C for data). The 6-bus system is network capacity 

constrained. The Generator #2 (CEG2) at bus #2 is connected via five transmission lines to bus 

#4. As bus #2 has no load, the output of CEG2 must flow through the lines between buses #2 

and #4 and is constrained by the capacity of these lines. In this study, the capacity of lines 

between buses #2 and #4 is limited to 210 MVA (42 MVA per line). Three different states are 

studied using the proposed successive fuzzy MILP formulation and are described in detail 

below. 

1) No transmission line outage 

All five lines are working properly in this state. Without transmission line outage, the total 

capacity of the transmission connection between bus #2 and bus #4 is 210 MVA. Thus, there 

is no violation on the lines. The proposed algorithm is working towards minimizing total 

operation cost. The starting state is obtained by solving DC-SCUC with assumed losses, 3% 

of total demand. After solving the AC-SCUC problem, the actual loss (1.45% of demand) is 

less than the assumed value, which reduces the cost. The convergence characteristic of this 

case is shown in Figure 4.6. Each LP represents one LPMOVE. 
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Fig. 4.6 Convergence characteristic of the 6-bus with no transmission outage 

 

2) One transmission line is out of service 

If transmission outage occurs among the lines between bus #2 and bus #4, the total network 

capacity is lower, and transmission violation will appear. One line outage is considered in this 

case. With one line out of service, the transmission capacity drops to 168 MVA.  

The DC-SCUC is solved with transmission capacity of 168 MVA. After load flow and OPF, 

the starting state shows large violation on the lines. The proposed method minimizes 

transmission line violation and adjusts generation (see Figure 4.7).  
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Fig. 4.7 Convergence characteristic of the 6-bus with one connection out 

 

With one line out of service, transmission constraints are violated due to insufficient 

transmission capacity. A fuzzy set of MVA line flow limit is built (4.49). The fuzzy objective 

maximizes the least fuzzy membership satisfaction functions (4.52), which is the fuzzy set of 

transmission line MVA constraint. In this case, the total cost is increased during the process of 

removing transmission line violations and is reduced after the violations are cleared. 
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 3) Two transmission lines are out 

In order to study the advantage of fuzzy constraints, one additional transmission line is 

planned for outage in this section. With two lines out of service, the remaining capacity of the 

transmission connection between bus #2 and bus #4 becomes 126 MVA (3 lines remaining). 

In this case, the DC-SCUC is unable to obtain a feasible solution. The starting state is obtained 

using DC-SCUC by increasing the line capacity to 1.5 times the rated value assuming that 50% 

overload is allowed for all lines to obtain a feasible DC-SCUC solution. After solving power 

flow and OPF, the transmission line violation is extremely large — 10 times larger than the 

second case with one line outage.    

Figure 4.8 shows the convergence characteristics of the algorithm and that there is a line 

flow violation in the starting state, but this violation cannot be cleared. The advantage of the 

proposed algorithm is its ability to control limit violations within acceptable range of overload 

(20%) for a short-term transmission emergency outage planning when possible and 

minimization of violations. This case study helps to validate the basic model, demonstrating 

the extent of its performance and capability. Details of this case are given in Table 4.1.  

 The final generation schedule and transmission line flows of the three cases are given in 

Table 4.2. The most expensive generator (CEG3) is turned on to reduce the generation of CEG2 

and minimize line violations. 
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Fig. 4.8 Convergence characteristic of the 6-bus with two connections out 

 

Table 4.1 Details of 6-bus System with transmission outage in 3 hours 

System 6-bus  Integer Variables 18 

Computer Windows/64-X86  LPMOVEs 4 

Constraints 175  Total Schedule Cost ($) 7,602.26 

Variables 100  Executing Time (Sec) 3.32 
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Table 4.2 Generation Schedules of 6-bus system in the final LPMOVE of 3 cases  

Generator 

Power output 

with no line outage 

Power output 

with 1 line out 

Power output 

with 2 lines out 

Hr #1 Hr #2 Hr #3 Hr #1 Hr #2 Hr #3 Hr #1 Hr #2 Hr #3 

Gen #1 

 

MW 150 150 150 150 150 150 150 150 150 

MVar 13 21 19 9 43 23 18 45 20 

Gen #2 
MW 103 155 129 103 149 129 103 134 121 

MVar 56 71 61 60 66 57 51 67 56 

Gen #3 
MW - - - - 5 - - 21 9 

MVar - - - - -17 - - -22 3 

Total cost ($) 7253.17 7321.83 7,602.26 

Transmission 

line capacity 

(MVA) 

210 168 126 

Power flow 

(MVA) 
118 170 143 120 163 141 115 149 133 

Overflow ratio 

(%) 
- - - - - - - 19 6 
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4.6.2 IEEE 57-bus system 

The modified IEEE 57-bus power system has 26 generator buses, 31 load buses, and 76 

transmission lines [6]. In order to show the effects of line outages and the advantage of the 

proposed fuzzy security constraints, the transmission line between bus #8 and bus #9 are 

altered into a multiple-line connection (3 lines). The capacity of each line is set as 100 MVA. 

Two different states are studied using the proposed successive fuzzy MILP method and are 

described in detail below. 

1) No transmission line outage 

By assuming all the lines are working properly, the total capacity is 300 MVA on the 

transmission connection between buses #8 and #9.   

Similar to the tests for the 6-bus system, the DC-SCUC and AC power balance equations are 

solved for the starting state. With sufficient transmission line capacity, there is no violation. 

The proposed method minimizes total cost only, as shown in Figure 4.9.    

2) One transmission line is out of service 

Another case is studied with one line out of service. The network capacity between bus #8 

and bus #9 drops to 200 MVA and violations appear in the remaining transmission lines 

between these two buses. Total cost and violations are shown in figure 4.10.  
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Fig. 4.9 Convergence characteristic of the 57-bus without outage 

 

Fig. 4.10 Convergence characteristic of the 57-bus with one line out 
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With one line outage, there is not enough capacity to transfer power out from bus #8. The 

DC-SCUC cannot be solved with this line capacity. Similar to the third case of the 6-bus system, 

the starting state is obtained by increasing the line capacity by 1.5 times (300 MVA). After 

solving the power balance equations and OPF, the transmission line violation is still large. 

After four LPMOVEs, the largest violation on the transmission lines can be reduced to 5% 

overload, as shown in Figure 4.10.  

Table 4.3 presents the problem details for the IEEE 57-bus system with transmission outage 

in the 24-hour study duration. 

 

Table 4.3 Details of 57-bus System with transmission outage in 24 hours 

System IEEE 57-bus  Integer Variables 1,248 

Computer Windows/64-X86  LPMOVEs 4 

Constraints 13,503  Total Schedule Cost ($) 385,996.03 

Variables 7,105  Executing Time (Sec) 200 

 

Line power flows for the starting state and the final LPMOVE are compared in Table 4.4. 

The overflow ratio is reduced from 20-40% to 2-4% of the total transmission capacity on the 

lines.   
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Table 4.4 Transmission line MVA flows of 57-bus system for two states 

R
at

e 
= 

20
0 

M
V

A
 

Hours hr#1 hr#2 hr#3 hr#4 hr#5 hr#6 hr#7 hr#8 

Starting 

State 

Line flows  

(MVA) 
289 288 290 289 286 280 270 242 

Overflow Ratio  

(%) 
45 44 45 45 43 40 35 21 

Final 

LP 

Line flows  

(MVA) 
206 206 206 206 206 206 205 203 

Overflow Ratio 

(%) 
3 3 3 3 3 3 3 2 

Hours hr#9 hr#10 hr#11 hr#12 hr#13 hr#14 hr#15 hr#16 

Starting 

State 

Line flows 

(MVA) 
236 235 230 235 235 238 233 231 

Overflow Ratio 

(%) 
18 18 15 18 18 19 17 16 

Final 

LP 

Line flows  

(MVA) 
202 202 202 202 202 203 202 202 

Overflow Ratio  

(%) 
1 1 1 1 1 2 1 1 

Hours hr#17 hr#18 hr#19 hr#20 hr#21 hr#22 hr#23 hr#24 

Starting 

State 

Line flows 

(MVA) 
238 239 241 238 235 240 257 280 

Overflow Ratio 

(%) 
19 20 21 19 18 20 29 40 

Final 

LP 

Line flows  

(MVA) 
202 203 203 202 202 203 204 206 

Overflow Ratio  

(%) 
1 2 2 1 1 2 2 3 
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4.6.3 IEEE 118-bus system 

The same IEEE 118-bus test system that was used in Chapter 3 is also used for this case 

study. The system has 54 generators, 65 load buses, and 186 transmission lines. By inspecting 

the system data, it is shown that bus #10 is connected through only one transmission line to 

bus #9. In addition, a generator with large capacity is installed on bus #10.  

One more transmission line is added between bus #10 and bus #9 to build a multiple-line 

connection (2 lines) for testing purposes. The capacity of each line is set as 200 MVA. For 

simplicity, the lower and upper limits of voltage magnitude are taken as 0.95 p.u. and 1.10 p.u. 

for all buses. Similar to the tests for the IEEE 57-bus system, two different states are studied 

using the proposed successive fuzzy MILP method and are described in detail below. 

1) No transmission line outage 

The DC-SCUC and AC power balance equations are solved for the starting state. Without 

transmission outage on the lines between buses #10 and #9, the total capacity of this connection 

is 400 MVA. With sufficient transmission capacity for the generator connected to bus #10, 

there is no violation on the lines between bus #10 and bus #9. The total cost has been minimized 

for this system by the proposed method as shown in Figure 4.11.    
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Fig. 4.11 Convergence characteristic of the IEEE 118-bus without outage 

 

2) One transmission line is out of service 

The case study with one line outage has been examined for the IEEE 118-bus system. The 

transmission capacity between buses #10 and #9 drops to 200 MVA and violations appeared 

in the remaining transmission line between these buses.  
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With one line outage, there is an insufficient transmission capacity to transfer power through 

the line between bus #10 and bus #9, and huge line flow limit violations appear in the system. 

The largest line power flow between the buses #10 and #9 in 24 hours is calculated as 278 

MVA, which is 39.4% overflow. After 4 LPMOVEs, the largest violation in 24 hours drops to 

210 MVA, which is 4.9% over the line capacity. The convergence characteristics of the total 

cost and line violations are shown in Figure 4.12.  

 

 

Fig. 4.12 Convergence characteristic of the IEEE 118-bus with one line out 
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Table 4.5 presents the optimal schedule with a total operation cost of $855,660.89 for 24-

hour study duration with the IEEE 118-bus system. A summary for this chapter is given in the 

next section. 

 

Table 4.5 Details of 118-bus System with transmission outage in 24 hours 

System IEEE 118-bus  Integer Variables 2,592 

Computer Windows/64-X86  LPMOVEs 4 

Constraints 28,532  Total Schedule Cost ($) $855,660.89 

Variables 14,737  Executing Time (Sec) 408 

 

4.7 Chapter Summary 

This chapter proposes a successive MILP algorithm for AC security constrained unit 

commitment (AC-SCUC) with fuzzy enforcement of security constraints. The AC-SCUC 

challenge, a nonlinear mixed integer optimization problem, is linearized to form a MILP model 

while retaining hourly and inter-temporal constraints. The MILP model is transformed into a 

fuzzy MILP model to overcome infeasibility. 

On solving the fuzzy MILP model, the algorithm yields optimal incremental changes to the 

schedule. The process of setting up the fuzzy MILP model, solving it, and updating the 

schedule and solution of 24 sets of power balance equations comprises one LPMOVE step. 
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These LPMOVE steps are iterated successively until the optimum is reached and all violations 

are removed or minimized (for a weak network).  

The method is shown to work well on small (6-bus), medium (57-bus), and large (118-bus) 

sized systems with correspondingly more complex transmission networks. It produces optimal 

solutions in less than 7 minutes for larger systems with insufficient transmission capacity, 

especially during transmission contingency or planed outage.  

In this chapter, the SCUC with AC security constraints is successfully solved with the 

proposed method. WEGs are not considered in this proposed method. To account for the 

integration of WEGs, a fast security and risk constrained probabilistic unit commitment 

method using the TAD model of WEGs is proposed in the next chapter.  
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CHAPTER 5 

FAST SECURITY AND RISK CONSTRAINED 

PROBABILISTIC UNIT COMMITMENT METHOD USING 

THE TAD MODEL OF WIND GENERATORS  

 

The TAD model of WEGs and its use in the OPF algorithm are discussed in Chapters 2 and 

3 respectively. Due to the geometric similarity between isosceles triangles and normal 

probabilistic distribution curve, this TAD model of WEGs can closely represent the 

probabilistic nature of power output from WEGs. The TAD model is described using a set of 

simple linear equations that lends itself to flexible and efficient computation in comparison to 

the more complex nonlinear model of normal probabilistic distribution function. Moreover, the 

SCUC problem with AC network security constraints (AC-SCUC) studied in the previous 

chapter can be formulated into a fuzzy MILP problem and solved successively to find the 

optimal generation schedule with the minimum total cost and the least system violations. In 

this chapter, the TAD model is used to represent the probabilistic nature of WEGs in the SCUC 

problem. This will enable the SCUC formulation to account for the uncertainty of WEGs using 

linear models to accurately quantify the probabilistic behavior of WEGs. The details of this 

proposed method are provided in the following sections.  
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5.1 Security and Risk Constrained Probabilistic UC Algorithm 

A security and risk constrained probabilistic unit commitment (SRCPUC) algorithm is 

proposed using the TAD model of WEGs taking the transmission network constraints into 

account. The proposed algorithm is solved using MILP technique. CEGs are committed to 

provide sufficient reserve to counter the risk from the uncertainty of output from WEGs and 

possible N-1 contingencies. This risk is quantified by an EENS function and computed using 

the TAD model. For the purposes of comparison, the classical enumeration technique is used 

to produce scenarios of real power output of WEGs and to verify the result of the proposed 

SRCPUC algorithm with the TAD model of WEGs.  

 Similar to the procedure in Chapter 4, the SRCPUC problem with WEGs is solved in two 

steps: 

1)  In the first step, a deterministic SCUC formulation is solved with mean values of 

forecasted WEG power output. This MILP formulation yields a base case solution (starting 

state). In this solution process, reserves to counter EENS are assigned considering mean power 

output from WEGs.  

2)  In the second step, an incremental formulation of SRCPUC is developed to minimize 

scheduling costs while also minimizing EENS. This incremental formulation is successively 

solved while updating control and dependent vectors until the optimal solution is achieved. 

5.1.1 Deterministic MILP Formulation of SCUC with WEGs 

 The objective is to minimize the total cost (TC) including the operating cost, the reserve cost, 
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the start-up cost of CEGs and the energy cost of WEGs, as shown in the following equations. 

Objective: minimize TC for 24 hours: 

TC = 
( )∑ ∑

∑ ∑ ∑

∈

∈

++









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(5.1) 

 The cost of wind power is added in the objective function, which is not considered in (4.1) 

in Chapter 4. This SCUC formulation is constrained by hourly and inter-temporal constraints, 

referring to equations (4.2) – (4.21) in Chapter 4. In order to show the influence of involving 

WEGs into the SCUC process and to avoid complexity, the AC security constraints are 

simplified into DC security constraints. A few assumptions are made for DC transmission 

network constraints:  

1) The system is lossless;  

2) The magnitude of voltages at all buses are equal to 1.0 p.u.; and 

3) Reactive power is ignored. 

The deterministic SCUC challenge with DC security constraints can be formulated as a 

MILP task [6]. Only simplified constraints, comparing to chapter 4, are given as the following: 

DC Power balance:  ∑∑ =
i

i
n

n PDPG
                          

(5.2) 
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The DC power balance equations are derived from equations (4.2) and (4.3) using 

assumptions above. Reactive power limits (4.14), voltage magnitude limits (4.15), and voltage 

phase angle limits (4.16) are ignored in this case. 

DC transmission line flow limit: t,l    PLPDP.ΘPL l
i

ti
GIin

tnkil ∀≤















−≤ ∑ ∑

∈        
(5.3) 

Using the DC load flow method, real power line flows can be computed using net real power 

injection at buses. The DC transmission line constraint is linear by nature. The matrix kiΘ  is 

constructed from the system susceptance matrix as detailed in Appendix A. The upper and 

lower bounds of real power flows are taken as lSF± (AC line flow MVA limits). 

In addition, power limits and constraints for the output of WEGs are enforced in the SCUC 

problem. The generation limits of WEGs are assessed using same method in Chapter 2 (i.e., 

equations 2.5 and 2.6, which are functions of mean values and standard deviations). For a real 

power output from WEGs equaling PGtn, one may calculate an EENS value to quantify the 

risk of uncertainty, for which details are provided in Chapter 2 (i.e., equations 2.1 to 2.3). In 

this case, PGtn is set to equal the mean value ( tnPG ) without considering its probabilistic 

behavior. 

Power limit WEGs:  WGt,n    PGPG tntn ∈∀=                    (5.4) 

EENS:        WGt,n  PG.cpE tntntn ∈∀=                   (5.5) 
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To solve objective (5.1), CEGs must provide sufficient reserve to carry the risk resulting 

from the uncertainty of WEGs, which is not considered in (4.10) in Chapter 4, and possible N-

1 contingencies. One portion of demand, quantifying the unreliability of equipment (N-1 

contingencies) is also covered by total system reserves. Quick-start units are supplemental 

reserve capacity sources to be scheduled in (5.6).  

Total system reserve constraint: 

( ) t Eβ. PDα . .PUSR
WGn

tn
i

ti
Gn

ntn
CGn

tn ∀+≥−+ ∑∑∑∑
∈∈∈ 10

101
                 

(5.6) 

 Using the same work conducted in Chapter 3, the values α and β are chosen as 0.1 and 0.6. 

Unit status Utn and start-up status SUtn are restricted as integer variables with the values of 0 or 

1.   

After solving the MILP SCUC formulation with forecasted wind power, a base case solution 

(starting state) is obtained that considers wind generation equal to the forecasted values. The 

inclusion of WEGs’ output into the schedule influences the total cost directly in objective (5.1) 

and indirectly by altering the value of EENS (5.5), which in turn necessitates the additional 

procurement of adequate reserves in (5.6). Therefore, making wind generation a problem 

variable by allowing it to vary and including (5.5) into (5.1) causes the model to become an 

inter-temporal nonlinear mixed integer optimization challenge. This problem, encompassing 

(5.1) and (5.5), is solved using SLP technique as outlined below.  
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5.1.2 Formulation of SRCPUC with TAD model 

The SCUC formulation of (5.1) is transformed into an incremental formulation of SRCPUC 

by using the incremental linear relation between changes in real power output of WEGs and 

changes in the EENS value. This relation captures the probabilistic behavior of WEGs. Also, 

reserves are purchased from CEGs to counter possible risk. Accordingly, the optimization 

process chooses the best values of WEGs’ outputs to minimize the total cost, taking into 

account the benefits of WEGs and their risks. The objective of the SRCPUC formulation is to 

minimize change in TC in terms of incremental variables (∆TC). 

Objective: minimize: 

∆TC =    
( )
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           (5.7) 

Subject to the following incremental linear equality and inequality constraints: 

DC power balance:   t   PG
n

tn ∀=∆∑ 0
                           

(5.8) 

By ignoring transmission losses and considering no change on demand, the sum of increment 

of real power generation must remain unchanged. Total real power generation from all 

generators must be bounded within their respective limits. 

Power limit WEGs:   ( ) WGt,n    PGPGPGPG ntntnn ∈∀≤∆+≤                 (5.9) 
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EENS:         WGt,n PG. JEPE tntntn ∈∀∆=∆                 (5.10) 

The sensitive matrix JEPtn is computed by the TAD model, using the current state of wind 

power output. 

System reserve constraint: 

( ) ( )( ) ( ) t  EEβ. PDα . .PUUSRSR
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ti
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(5.11) 

DC line flow constraint:  ( ) t,l    PLPDPP.Θ l
i
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(5.12) 

In addition, constraints (4.26)-(4.33) and (4.39)-(4.43) in Chapter 4 are enforced in the 

proposed SRCPUC algorithm. Those constraints are mainly considered for CEGs, as they are 

not directly linked with WEGs. 

It is important to note that (5.10) relates the output of WEGs to total EENS. This EENS is 

used as an element to compute the net reserves required in (5.11). These reserves appear in 

objective (5.7) and affect the cost of the schedule. Hence, when a larger amount of wind is 

scheduled, it would lead to a bigger EENS value, requiring a larger amount of reserves and 

creating a higher cost.  

 The same assumptions are made for DC transmission network security constraints as in the 

last section. Restrictions are applied on (Utn+∆Utn) and (SUtn+∆SUtn) to ensure integer 

variables with the values of 0 or 1. This formulation of SRCPUC with the TAD model can be 

readily solved using the MILP technique. 
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 The SRCPUC problem with the TAD model is solved successively until the TC can no longer 

be significantly reduced. The algorithm of the proposed method is given in next section.  

5.2 Algorithm of SRCPUC 

 Figure 5.1 shows the algorithm of the proposed SRCPUC problem with the TAD model. 

The steps of this problem are as follows: 

1)  With forecasts of wind generation, the SCUC model (5.1) is solved to establish the base 

case (starting state). 

2)  An incremental formulation of SRCPUC with TAD model of WEGs is set up using the 

base case from step 1.  

3)  The incremental formulation is solved using the MILP technique, obtaining the optimal 

changes in integer and continuous variables. 

4)  All variables are updated and the costs are computed. It is checked if change in TC is 

significant. 

5)  Steps 2 to 4 constitute an LPMOVE. These LPMOVEs are successively repeated until the 

total cost can no longer be significantly reduced.  

Several systems are chosen and tested using the proposed SRCPUC algorithm with the TAD 

model. The results are discussed in the following sections. 
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Fig. 5.1 Flowchart of the proposed SRCPUC algorithm with TAD model  
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5.3 Test Results and discussions 

 In this section, the results of the test cases are presented. Systems of different sizes are 

chosen as follows:  

1)  A 6-bus system with 3 CEGs and 1 WEG over a 3-hour time span.  

2)  The IEEE 118-bus system with 53 CEGs and 1 WEG on a 3-hour time horizon.  

3)  The IEEE 118-bus system with 51 CEGs and 3 WEGs for 24 hours.  

 The small system is chosen to illustrate key features of the method and demonstrate its 

benefits, whereas the large system is chosen to show how the method performs for a larger and 

more complicated system with multiple WEGs. 

To test the proposed method, a classical technique taking into account nonlinear PDF of 

normal probabilistic distribution was also developed and implemented. The method is 

explained in detail in Appendix A. In brief, the method considers several combinations of 

WEG outputs. For each combination, this method uses the nonlinear PDF of normal 

probabilistic distribution to computes an EENS value and solves the optimization challenge of 

(5.1). This is called classical enumeration technique. By comparing all solutions obtained using 

classical enumeration technique, the least costing solution is chosen as the optimal solution. 

All results computed using the proposed SRCPUC method with the TAD model are compared 

with those obtained using the classical enumeration technique. 
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5.3.1 6-bus system with 1 WEG in 3 hours 

 The same 6-bus system has also been used in Chapter 4 to solve the AC-SCUC problem. 

The diagram and complete system data is given in Appendix B. The system has three CEGs 

and one WEG supplying three loads. The WEG is installed at the bus #4. The system has a 

transmission network with 7 lines. 

In the 6-bus system, the CEG #1 is the least expensive unit and the CEG #3 is most expensive. 

The energy price of the WEG is set between the costs of CEG #2 and CEG #3 for test purposes. 

The transmission capacity of line #4, which connects bus #2 and bus #4, is constrained at 55 

MW. When examining a normal distribution, the standard deviation (σ) of the short-term wind 

power forecast is taken as 10% of the mean output of the WEG for the three-hour duration of 

this test. 

Table 5.1 shows the optimized generation scheduling solution from the proposed SRCPUC 

algorithm with the TAD model of WEGs. Comparing the final optimized result to the starting 

state, one can make the following observations: 

 1) The least expensive unit, CEG #1, is scheduled to its full capacity in all three hours. 

2) Owing to the transmission constraint of line #4, the generation of CEG #2 is limited to 55 

MW in hour #3, but the forecast output (mean value) of the WEG is not sufficient to meet the 

supply demand. Therefore, the most expensive unit, CEG #3, must be turned on at the starting 

state.   
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Table 5.1 Generation scheduling and total cost in the proposed SRCPUC Algorithm 

SRCPUC 

Starting State  

(base case) 

Power in MW 

LPMOVE I 

Power in MW 

LPMOVE II 

Power in MW  

G
en

er
at

io
n 

sc
he

du
lin

g 
(M

W
) 

H
ou

r #
1 

CEG #1 150 150 150 

CEG #2 20 30 40 

CEG #3 0 0 0 

WEG 80 70 60 

H
ou

r #
2 

CEG #1 150 150 150 

CEG #2 50 55 55 

CEG #3 0 0 0 

WEG 100 95 95 

H
ou

r #
3 

CEG #1 150 150 150 

CEG #2 55 55 55 

CEG #3 10 5 0 

WEG 60 65 70 

Cost of the WEG ($) 3,900.00 3,750.00 3,675.00 

Cost of reserves ($) 317.60 182.34 132.00 

Cost of CEGs ($) 4,597.47 4,677.47 4,679.83 

Total cost ($) 9,120.07 8,914.82 8,786.83 
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3) Energy from the WEG is cheaper than that of CEG #3, but more expensive than that of 

CEG #2. The WEG is curtailed in hour #1 and hour #2, but then has more power scheduled in 

hour #3. The WEG is operated below its mean values in hours #1 and #2, but above the mean 

value in hour #3.  

4) The generation cost of CEGs increases but the total cost is reduced. Less power is 

scheduled from the WEG and reserve cost reduces. 

The above results are compared with those of the classical enumeration technique. A detailed 

explanation of the classical enumeration technique and its usage in this paper is provided in 

Appendix A. 

The final generation schedule and total cost obtained by the proposed SRCPUC algorithm 

with the TAD model of WEGs are compared with the results of the classical enumeration 

method in Tables 5.2 and 5.3. The normal distribution curves of the WEG are divided equally 

into 11 segments. The total number of scenarios is [(11)1]3 (=1331), referring to Appendix A. 

These scenarios are used to generate output values of WEGs. A thousand three hundred and 

thirty one (1331) sets of generation schedules are computed and compared to find the least cost 

scenario. The generation schedule of the scenario with the lowest cost is identified and is then 

verified by comparing these results to the proposed SRCPUC algorithm with the TAD model 

of WEGs.  
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Table 5.2 Results of proposed SRCPUC method with TAD model of WEGs compared to the 

classical enumeration method (MW) 

Method 

Time: Hour #1 Time: Hour #2 Time: Hour #3 

Classical 

(MW) 
SRCPUC  

Method (MW) 

Classical 

(MW) 
SRCPUC  

Method (MW) 

Classical 

(MW) 

SRCPUC  
Method 
(MW) 

CEG #1 150 150 150 150 150 150 

CEG #2 40 40 55 55 53 55 

CEG #3 0 0 0 0 0 0 

WEG 60 60 95 95 72 70 

Demand 250 300 175 

 

Table 5.3 Costs, EENS, reserve, and execution times of the 6-bus system 

Wind power 

representation 
Total cost ($) EENS (MWh) 

Reserve** 

(MW) 

Execution time 

(seconds) 

Classical 8836.96 100.05 142.53 272.89 

TAD model 8786.83 96.34 140.39 0.49*  

*Including the time (0.16 seconds) to produce the starting state 

** Total reserve required without considering EENS is 82.5 MW 
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The proposed SRCPUC algorithm with the TAD model of WEGs took 0.49 seconds to solve 

the problem. It provided a more economical solution through a continuous optimization 

platform in comparison to discrete 1331 scenarios based optimization that were used in the 

classical enumeration technique. The SRCPUC method shortens the computational time 

without lowering the quality of the final solution. Further, the classical enumeration technique 

took 272.89 seconds to find the solution. Comparing the computational times and optimal 

solution, benefits of the proposed method are obvious.  

5.3.2 118-bus system with 1 WEG in 3 hours  

 The 118-bus system that has already been used in Chapters 3 and 4 is used here for this study 

with only minor adjustments. These changes are: 1) the price of spinning reserve is set as 10% 

of energy cost; 2) one CEG has been replaced by a WEG at bus #80; 3) three hours duration is 

considered for this case; 4) the hourly power forecasts of the WEG are assumed as 320 MW, 

280 MW, and 300 MW in the three hours; 5) standard deviations are taken as 10% of forecasted 

values; and 6) The price of energy from the WEG equal a fixed price of $70 (aw) and an 

incremental energy price of $10/MWh (bw). 

Figure 5.2 and Figure 5.3 show the changes of the total cost resulting from these adjustments, 

as well as the generation cost of CEGs, the cost of the reserve, and the generation cost of the 

WEG. In summation, the total cost has been reduced by 0.86% in 2 LPMOVEs of the proposed 

SRCPUC algorithm with the TAD model of WEGs, even though the generation cost of CEGs 

increase. Also, less reserve is needed as a result of the reduction in generation by the WEG. 
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Fig. 5.2 Total cost and cost of CEGs of 118-bus with 1-WEG in 3 hours 

 

Fig. 5.3 Reserve cost and cost of the WEG of 118-bus with 1-WEG in 3 hours 
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For the purpose of comparison, the classical enumeration technique has also been used for 

the formulation of (5.1). Same as in the case study of the 6-bus system, the normal distribution 

curves of wind power forecasts are split into 11 segments. One thousand three hundred and 

thirty one (1331) scenarios are generated and the MILP formulation of SCUC (5) is solved for 

each scenario. The results of these formulations are compared in Table 5.4. 

 

Table 5.4 Costs and execution times of the 118-bus system with one WEG 

Wind power 

representation 
Total cost ($) EENS (MWh) 

Reserve** 

(MW) 

Execution time 

(seconds) 

Classical 102,833.56 62.84 944.90 3,290.08 

TAD model 102,700.85 203.98 1029.59 5.86* 

*Including the time (4.96 seconds) to produce the starting state 

** Total reserve required without considering EENS is 907.2 MW 

 

Both the proposed SRCPUC algorithm with the TAD model of WEGs and the classical 

enumeration technique provide comparable optimal solutions, however, the execution time of 

the classical enumeration technique is about 1 hour whereas the proposed method takes only 

5.86 seconds. One could examine more segments in normal distribution curves of WEGs to 

increase the accuracy of the classical enumeration technique, but this method would 

exponentially increase the execution time. In contrast, the proposed SRCPUC algorithm with 

TAD model of WEGs examines a continuous solution domain to provide the optimal solution. 
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5.3.3 118-bus system with 3 WEGs in 24 hours 

In this case study, the number of WEGs is increased to three. Two more CEGs are replaced 

by WEGs at buses #10 and #89 in the IEEE 118-bus system. The price data of these WEGs is 

given in Appendix B.  

In order to apply the classical enumeration technique with the formulation (5.1), one must 

segment the normal distribution curves of WEGs. If each distribution curve is split into 11 

segments, the classical enumeration technique would create (113)24 scenarios to span across all 

possible outputs of the three WEGs in 24 hours. This is an extremely demanding computational 

challenge, which is not possible to implement on a desktop computer. However, the proposed 

SRCPUC algorithm with the TAD model of WEGs has no such difficulty; it can fully represent 

wind power probabilistic characteristics within a few seconds. 

Independent forecasts of wind power output over a 24-hour time horizon are assumed and 

given in Appendix B. The standard deviations are assumed as 10% of forecasted values for all 

the three WEGs in all 24 hours. Convergence curves of costs are given in Figure 5.4 and Figure 

5.5.  

The details of the tested 118-bus with 3 WEGs are shown in Table 5.5. Starting with the 

solution of SCUC (5.1), the proposed SRCPUC algorithm with the TAD model of WEGs 

solves the large complicated problem in 26.16 seconds 
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Fig. 5.4 Total cost and cost of CEGs of 118-bus with 3 WEGs in 24 hours 

 

Fig. 5.5 Reserve cost and cost of the 3 WEGs of 118-bus in 24 hours 
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Table 5.5 Result of 118-bus System with 3 WEGs in 24 hours 

Case 118-bus  Constraints 14,074 

Number of WEGs 3  Variables 7,416 

Wind power ratio (%, hourly average) 37.7  Integer Variables 2,448 

Total Schedule Cost ($) 749,331.64  Execution Time (Sec) 143.41* 

*Including the time (117.25 seconds) to produce starting state 

 

In this case, the system consumes around 38% energy from the WEGs in each hour. This 

demonstrates how the proposed method can make a significant contribution to renewable 

energies in power systems and is computationally efficient for practical systems with more 

wind power penetration. 

In addition, studies have been conducted for the 118-bus system with different standard 

deviation values to demonstrate the effects of standard deviation in system scheduling. This 

test assumes that all WEGs have same standard deviation value and the value of standard 

deviation changes among 5%, 10%, and 15% of mean values ( PG ). The total cost and wind 

energy for 24 hours are computed using three different standard deviation values and the results 

are given in Figure 5.6.    
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Fig. 5.6 Total cost and wind energy with various standard deviation (118-bus, 3-WEG, 24-

hour) 
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proposed SRCPUC algorithm.    
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5.4 Chapter Summary 

This chapter proposes the SRCPUC algorithm with the TAD model of WEGs as this TAD 

model can accurately represent probabilistic energy forecasts from WEGs. Furthermore, the 

TAD model is linearized around the current operating point in the solution algorithm and is 

used to create the incremental SRCPUC formulation. The proposed SRCPUC algorithm 

minimizes the total operation cost that includes cost of energy and cost of risk. 

The proposed SRCPUC algorithm with the TAD model has been tested on 6-bus and IEEE 

118-bus test systems with probabilistic models of WEGs. Comparisons have been made 

between the performance of the proposed SRCPUC algorithm and the classical enumeration 

technique applied to the SCUC formulation. 

From the results, it can be seen that the proposed SRCPUC algorithm with the TAD model 

is as accurate as the classical enumeration technique that relies on nonlinear normal 

probabilistic distribution models. However, the comparison of execution time shows that the 

proposed method is vastly superior to classical enumeration technique as the execution time 

does not increase for the proposed method significantly when incorporating more WEGs. In 

contrast when more WEGs are incorporated, the execution time for the classical enumeration 

technique grows exponentially. 

Using the proposed method, the effects of standard deviation have been examined for large 

systems. This dissertation has demonstrated the benefit of using the proposed SRCPUC method 

to compute the effect of standard deviation of wind energy forecast on the total schedule cost. 

The proposed SRCPUC method with TAD model of WEGS is computationally efficient, 
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operationally flexible, and numerically accurate, with the capacity to handle practical 

transmission systems with large wind power penetration.   
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

General conclusions and the key contributions of this dissertation work are summarized in 

this chapter. Recommended future research in power system optimization studies as it relates 

to this dissertation is also discussed. 

6.1 Conclusion and Major Contributions 

The following targets have been achieved and are presented below as key research 

contributions: 

1)  The TAD model of WEGs was proposed from and compared against the regular normal 

probabilistic distribution function. The TAD model provides high degree of accuracy by very 

closely following the normal probabilistic distribution. The TAD model possesses flexible and 

simple algebraic features in formulating the EENS function and effectively quantifying the 

risks caused by uncertainties in energy forecast of WEGs.  

2)  The TAD model has been linearized and successfully used in an hour-ahead stochastic 

OPF algorithm. The use of TAD model of WEGs in OPF algorithms enables computationally 

feasible scheduling and operation of WEGs in near real-time while ensuring that power 
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systems meet their forecasted demands. The computational time for solving a probabilistic 

OPF formulation that minimizes both cost and risk has been significantly reduced when 

compared to the conventional classical enumeration method. 

3)  An AC-SCUC challenge has been successfully solved using an iterative successive linear 

programming (SLP) technique considering a fuzzy MILP formulation. The proposed method 

considers full AC transmission system model and constraints in the UC formulation. It also 

determines the optimal generation schedule even in the presence of transmission system 

outages, surpassing other more complex techniques in academic literature that use 

decomposition and linear approximation methods, which cannot account for transmission 

infeasibility. Further, the proposed method optimally schedules generation to minimize line 

flow violations where a violation free optimal solution is unavailable. 

4)  An MILP formulation for a fast security and risk constrained probabilistic unit 

commitment (SRCPUC) method with TAD model of WEGs is proposed that can optimally 

schedule generation to minimize costs and risk from WEG output uncertainty.  The method 

models transmission system using DC model. The proposed method can be used to effectively 

manage large systems for a long period of planning horizon. These features cannot be 

accomplished by using the conventional classical enumeration technique. The SRCPUC 

algorithm is proposed and solved using the SLP technique. The SRCPUC algorithm also 

provides the unique and beneficial feature of computing the effect of standard deviation of 

wind energy forecast on the total schedule cost, which other methods cannot do. 
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Overall, these algorithms and methods are very practical for real electricity market 

applications. Many ISOs, such as Independent System Operator (IESO) in Ontario, are seeking 

new methods to manage wind power. 

6.2 Recommendations 

A number of future directions for related research activities could be explored: 

1) Revise the TAD model for other distribution models. 

Many PDFs of distribution models are not symmetric, such as Weibull distribution. The TAD 

model cannot be used to approximate such distribution models. Some revisions are required to 

fit distribution models with asymmetric PDFs. 

2)  Seek miscellaneous stochastic representation of WEGs for long-term power system 

optimization.   

The behaviors of wind power in a short-term are usually modeled using stochastic 

distribution functions. However, probability density functions cannot comprehensively 

represent wind power for long-term forecasts. Therefore, miscellaneous stochastic techniques, 

such as Chaos theory, could be explored to model wind power for long-term forecasts in power 

system operation.  

3)  Study economic aspects and market dynamics of current electricity markets to develop 

new framework for future electricity markets. 
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Major electricity markets in North America and Europe are deregulated. Energy bidding 

systems and reserve markets are being developed, taking renewable energy into account as 

self-committed units. With increased consumption of wind energy, more economic aspects and 

market dynamics should be investigated for wind power scheduling. 

4)  Study the characteristics of smart grids to revise and update OPF/SCUC problem 

formulations to fit smart grids. 

With more electric devices and machines such as electric vehicles and efficient energy 

storage units being designed and used in daily life, power system are facing a major shift  from 

the traditional distribution system into a smart system with embedded intelligence and 

localized autonomy. New functions and features must eventually be integrated into the 

OPF/SCUC processes to fit such a new environment. 
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APPENDIX A 

FUNDAMENTALS AND TECHNIQUES 

 

A.1 Classical Enumeration Method 

In the classical enumeration method, WEGs are treated as a self-scheduled resource and all 

possible outputs of WEGs’ and corresponding EENS are computed offline. 

Figure A.1 shows the normal probabilistic distribution (PDF) of one WEG. The dashed curve 

is the original probability density function created using the forecasted mean value of wind 

power, the bars represent 10 possible outputs of the WEG, and the dotted line is the 

probabilities of the ten power output values.  

Combinations of all outputs of WEGs are taken to represent wind power scenarios in the 

system, as shown in Figure A.2. The EENS value of a scenario is computed by summing En of 

every WEG. 
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Fig. A.1 Probability density and cumulative distribution functions in classical enumeration 

method 
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Fig. A.2 Scenarios production of power outputs of WEGs for OPF/SCUC process 
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The OPF/SCUC is solved once for each scenario. In the example below, considering ‘n’ 

WEGs with ‘m’ possible outputs in ‘t’ hours (t=1 for OPF), the number of scenarios equal (mn)t. 

Of these scenarios, OPF/SCUC is used to compute optimal schedules for each scenario. The 

optimal schedule with the least cost is chosen for the classical enumeration method. The 

algorithm of classical enumeration is shown in Figure A.3. 

 

 

Fig. A.3 Flowchart of the classical enumeration  
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A.2 Power Balance Equations 

Transmission network constraints must be enforced in the OPF and UC problems to provide 

a network feasible solution while scheduling real power generation. Power balance equations, 

which are discussed as the following, are the basis for developing security constraints.  

A.2.1 AC Power Balance Equations 

Figure A.4 shows the net power injection of a practical bus in a power transmission system. 

The net power injection from the bus into the connected transmission lines, which is the 

function of bus voltage phase angles and magnitudes, must be equal to total power generation 

subtracted by the total demand on the bus. To solve these balance equations, reactive power 

generations, transmission line power flows, and bus voltage phase angles and magnitudes can 

be calculated.  

( ) ( ) i  θδδ.Y.V VV,PT ijji

NB

j
ijjii ∀−−= ∑ cosδ

                         
(A.1) 

( ) ( ) i  θδδ.Y.V VV,QT ijji

NB

j
ijjii ∀−−= ∑ sinδ                        (A.2) 

In equations (A.1) and (A.2), V is voltage magnitude of the ith bus, and δ is the corresponding 

voltage phase angle. Yij is an element of the bus admittance matrix Y, and θij is the phase angle 

of Yij. After solving the power balance equations, bus voltage and reactive power generation 

can be obtained. 
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Fig. A.4 Net power injected into the transmission system by the ith bus 

 

These power balance equations are called AC power balance equations and consider both 

real and reactive powers. These power balance equations can be solved by using load flow 

methods.  

The load flow analysis, also called power flow, is a common computation technique used to 

analyze AC power balance equations [67]. Many methods, such as the Newton Raphson 

method, the fast decoupled method, and the Gauss Seidel method have been developed and 

successfully applied to solve power balance equations. A simplified method, derived from but 

also independent from AC power balance equations, is discussed as below.  
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A.2.2 DC Power Balance Equations 

DC power balance equations, solved by using the DC power flow method, are a simplified 

version of the AC Power balance equations. They are developed by assuming that all voltage 

magnitudes are constant and equal to a value of 1.0 per unit. Transmission line resistance, 

transmission losses, reactive power loads, and reactive power flows are completely ignored 

[67]-[69].  These assumptions are practically valid in transmission systems with large line 

reactance (X) values and low line resistance (R) values. With a high X/R ratio in transmission 

systems, the real power flow mostly depends upon the bus voltage phase angles. With all of 

these assumptions, the real power balance equations can be simplified into linear functions of 

bus voltage angles and susceptance matrix.  

δB'PT ⋅=                                       (A.3) 

In the (A.3), symbols P and δ represent vectors of bus real power injections (excluding slack 

bus) and voltage phase angles (excluding slack bus). The slack bus phase angle is used as the 

reference, and is assumed to be zero. B’ is the susceptance matrix in the bus frame of reference, 

with resistance in the transmission lines set to zero ohms and ignoring all shunt elements.  

Although DC load flow is a less rigorous method and ignores voltage magnitude variations, 

it provides a very fast, linear, and direct calculation method in comparison with the full AC 

load flow method. The linear aspect of DC power balance equations is very computationally 

attractive, particularly when solving large-scale problems by employing linear optimization 

techniques. 
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A.3 Formulations of Transmission Security Constraints 

The transmission security constraints are derived from power balance equations. As 

mentioned in the previous section, the power balance equations can be categorized into AC/DC 

power balance equations. The general power balance equations are functions of bus voltage 

magnitudes and phase angles.  

A.3.1 AC Transmission Security Constraints 

The AC transmission security constraints are developed from the full AC power balance 

equations, which include both real and reactive power flows. The total power injection from a 

particular bus into a transmission system is a function of all bus voltage magnitudes and phase 

angles related to the bus. The power balance equations can be written in the following patterns.  

Real power balance:   iPTPDPG iii ∀=−  
                      

(A.4) 

Reactive power balance: iQTQDQG iii ∀=−   
                         

(A.5) 

Transmission line power flows can also be calculated using bus voltage magnitudes and 

phase angles with transmission line elements (line and shunt admittances). The π model of 

transmission line is used to compute line power flows, as shown in Figure A.2.  

The transmission line flow from bus i to bus j can be written as the following equations.   

Line power flow: 

ll, i  SFSF lli ∈∀≤≤0                                  (A.6) 
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( ) ( ) ljll, i  VSBVVSLSF iilijijilili ∈∈∀+=  ,,,,, δδδ                     (A.7) 

Reactive power generation and bus voltage must be constrained within their bounds. In the 

day-ahead UC problem, reactive power has to be restricted by unit status (i.e., on-line or off-

line), which is an integer variable.  

Reactive power generation limit:  

For fast OPF:  CGn QG QGQG nnn ∈∀≤≤                        (A.8) 

For day-ahead UC: CGt,n QG U QGQGU ntntnntn ∈∀⋅≤≤⋅               (A.9) 

 

 

Fig. A.5 π model of a transmission line between bus i and j 
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Bus voltage limit: 

i V VV iii ∀≤≤                                    (A.10) 

iπ  δπ i ∀≤≤−                                   (A.11) 

Compared to these security constraints, the DC transmission security constraint is a 

simplified version of the above equations. It is an approximation method to analyze the AC 

transmission system. Approximations are made for DC transmission security constraints, and 

the details are discussed in the next section. 

A.3.2 DC Transmission Security Constraints 

In a practical AC power transmission system, transmission line resistance is far smaller than 

line reactance. Thus, the line resistance can be ignored in system analysis. Voltage magnitudes 

are assumed to be at or close to unity p.u. for all buses, and reactive power generation is 

neglected. 

The transmission line real power flow between bus i and bus j is limited within transmission 

line flow capacity and it can be calculated using the following equations: 

l    PLPLPL lll ∀≤≤                                (A.12) 

ll,jl, i 
x

δδ
PL

ij

ji
li ∈∈∀

−
=                                  (A.13) 

 By re-arranging equation (A.3), the voltage phase angle on buses can be computed by 

multiplying the inverse of B’ to real power injection at buses.  
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∑ ∀⋅=
k

kiki i PTBIδ                                 (A.14) 

( ) ll,jl, i PTΘPTBIPTBI
xx

δδ
PL

k
klk

k
kjk

k
kik

ijij

ji
li ∈∈∀⋅=








⋅−⋅=

−
= ∑∑∑1          (A.15) 

The line power flow of DC transmission security constraints, equation (A.12), can be re-

written in terms of real power generation in equation (A.16). 

ll,jl, i PDPGΘPL
k

k
GIn

nlkli
k

∈∈∀



















−⋅= ∑ ∑

∈

                    (A.16) 

The coefficient matrix ‘ Θ ’ is independent of real power output (PGn), and it can be 

calculated using the transmission line reactance and susceptance matrix. The equation (A.16) 

is an LP function of real power generation.  

From equations (A.12) to (A.16), one may observe that the DC transmission security 

constraints are linear, and that they can be appropriately incorporated into an LP formulation 

and an MILP formulation. However, owing to simplification assumptions applied for the AC 

to DC conversion, the DC transmission security constraints could be less accurate than AC 

transmission security constraints. Therefore, it is important to consider the AC transmission 

security constraints in OPF and day-ahead UC. 

A.4 Successive Linear Programming 

The Successive Linear Programming (SLP) is a very efficient tool that has been used for the 

OPF algorithm for several decades [62]. This tool was successfully applied in MILP 
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formulations [63] [64], which are the bases of the UC problem in the current research work. 

Several variants of the SLP have been investigated in the literature [65]. The linear 

programming (LP) and MILP formulations are solved successively till optimality is achieved. 

A.5  Fuzzy Sets Theory 

Fuzzy sets theory is a mathematical technique that allows modeling of imprecise or 

conflicting engineering problems. In certain cases, impreciseness arises due to semantic 

uncertainty. In such problems, one commonly applies these processes: fuzzification, fuzzy 

rules/inference, and defuzzification. The fuzzy optimization procedure is another aspect of 

fuzzy sets theory. It provides a framework for handling optimization problems. It transforms 

the objective and the constraints into satisfaction functions of fuzzy sets.  

The optimum result is achieved by maximizing the intersection of the satisfaction functions 

of the problem that are subject to other crisp constraints of the problem. Optimization of this 

formulation can be achieved by using an amenable optimization technique [66]. 

The AC transmission network constraints are complex in the MILP formulation. Getting a 

feasible solution is important for the SLP method. The use of fuzzy models of violating 

constraints is very useful for achieving a feasible solution. The fuzzy models allow for a 

relaxed enforcement of constraints, and as such they have been incorporated in the MILP 

solution technique to retain the robustness of the MILP technique [6]. 
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A.6  OPF used in Fuzzy MILP AC-SCUC 

The OPF algorithm has already been applied in the fuzzy MILP AC-SCUC problem in 

Chapter 4. It is only performed when the power flow method fails to converge or violations 

occur on reactive power generation. The objective is to minimize the total change in real power 

generation of online generators in an hour: 

Minimize: t   P
GONtn

tn ∀∆∑
∈

;                                    (A.17) 

It is subject to:  

(1) Power balance constraints,  

(2) Voltage limits,  

(3) Real power generation limits, and 

(4) Reactive power generation limits. 
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APPENDIX B 

DATA OF TEST SYSTEMS 

 

B.1 Six-Bus System with One WEG 

The 6-bus system has already been tested in Chapter 4 and 5 for the SCUC problem. Figure 

B.1 shows the 6-bus system with one WEG. The diagram is used for the AC-SCUC problem 

in Chapter 4 by removing the WEG and increasing a multiple-connection line between Buses 

#2 to #4.  

 

Fig. B.1 Six-bus Power System with one WEG  

CEG 
#1 

CEG 
#2 

CEG 
#3 

BUS #1 

BUS #2 
BUS #4 

BUS #6 

BUS #2 

BUS #5 

Line #2 

Line #3 
Line #1 

Line #4 

Line #7 

Line #6 

Line #5 

WEG #1 
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Table B.1 CEG data of the 6-bus system 

Gen # Bus # ac ($) 
bc1 

($/MWh) 

1PG

(MW) 

bc2 

($/MWh) 

2PG

(MW) 

bc3 

($/MWh) 

3PG

(MW) 

PG

(MW) 

PG

(MW) 

1 1 271.00 4.00 50 5.00 75 6.00 25 10 150 

2 2 132.00 8.50 50 9.50 100 11.00 750 10 900 

3 5 7.60 21.00 10 22.00 20 23.00 20 5 50 

Gen # 
sc 

($/start) 

rc 

($/MWh) 

UT 

(hrs) 

DT 

(hrs) 

IC 

(hrs) 

P10 

(MW) 

R10 

(MW) 

R60 

(MW) 

nQ

(Mvar) 

nQ

(Mvar) 

1 500.00 0.60 3 3 3 0 150 150 -50 250 

2 300.00 0.11 3 2 -2 0 900 900 -50 140 

3 5.00 2.30 0 0 -1 50 50 50 -50 300 

 

Table B.2 WEG data of the 6-bus system 

W
EG

 #
1 

Bus # aw ($) bw ($/MWh)  

4 100 15  

Forecasts Hour #1 Hours #2 Hour #3 

 PG (MW) 80 100 60 

σ (MW) 8 10 6 
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Table B.3 Load data of 6-bus system 

Load 

# 

Bus 

# 

Hour #1 Hours #2 Hour #3 

PD 

(MW) 

QD 

(Mvar) 

PD 

(MW) 

QD 

(Mvar) 

PD 

(MW) 

QD 

(Mvar) 

1 4 71.43 50 85.72 60 78.57 55 

2 3 64.28 21.43 77.14 25.71 70.72 23.57 

3 6 114.29 78.57 137.14 94.29 125.71 85.43 

 

Table B.4 Network data of the 6-bus system 

Line # From Bus To Bus Number of lines R (p.u.) X (p.u.) B (p.u.) MVA 

1 1 4 1 0.035 0.225 0.013 300 

2 1 5 1 0.025 0.105 0.09 300 

3 1 6 1 0.04 0.215 0.011 300 

4 2 4 1 0 0.035 0 * 

5 5 3 1 0 0.042 0 300 

6 4 6 1 0.028 0.125 0.007 300 

7 5 6 1 0.026 0.175 0.009 300 

* The capacity of transmission line between bus 2 and bus 4 is alternated for different test 

purposes.  
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B.2 IEEE 30-Bus System 

The detailed transmission system data can be found in [60]. The price data of CEG and WEG 

data are listed in the following tables. The system is tested for the OPF algorithm in Chapter 

3.  

Table B.5 CEG data of IEEE 30-Bus System 

Gen # 
bc1 

($/MWh) 

1PG   

(MW) 

bc2  

($/MWh) 

2PG  

(MW) 

bc3  

($/MWh) 

3PG  

(MW) 

G1 2.00 84 2.10 58 2.20 108 

G2 3.00 50 3.20 50 3.40 50 

G3 8.00 50 8.30 50 8.60 50 

G4 10.00 34 10.40 8 10.80 33 

G5 20.00 7 20.50 2 21.00 1 

G6 50.00 7 50.60 2 51.20 1 

Gen # ac ($) 
PG  

(MW) 

PG   

(MW) 

R10  

(MW) 

PGSTEP  

(MW) 

VSTEP  

(p.u.) 

G1 10.00 25 250 900 25 0.01 

G2 10.00 25 150 900 15 0.01 

G3 10.00 25 150 900 15 0.01 

G4 10.00 25 75 900 10 0.01 

G5 10.00 5 10 900 2 0.01 

G6 10.00 5 10 900 2 0.01 
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Table B.6 WEG Data of IEEE 30-Bus System 

Gen # aw($) bw ($/MWh) PG  (MW) σ PGSTEP (MW) 

WEG1 10.00 5.00 20 2 2 

WEG2 10.00 4.00 30 3 3 

WEG3 10.00 2.50 50 5 5 

 

B.3 IEEE 118-Bus System 

The transmission network and CEG data of modified IEEE 118-bus system are available in 

[46]. The costs of CEGs are linearized in Table B.9 to fit the LP/MILP formulation. 

 

Table B.7 WEG Data of IEEE 118-Bus System in 3 hours 

Gen # Bus # aw ($) bw ($/MWh) PG  (MW) σ PGSTEP (MW) 

WEG1 10 80.00 5.00 300 30 30 

WEG2 80 70.00 6.00 300 30 30 

WEG3 89 70.00 7.00 300 30 30 
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Table B.8 Forecasted output of WEGs in the 118-bus system (MW) in 24 hours 

W
EG

 #
1 

Hour #1 Hour #2 Hour #3 Hour #4 Hour #5 Hour #6 

313 269 312 292 318 284 

Hour #7 Hour #8 Hour #9 Hour #10 Hour #11 Hour #12 

280 292 309 302 350 285 

Hour #13 Hour #14 Hour #15 Hour #16 Hour #17 Hour #18 

292 281 320 343 288 273 

Hour #19 Hour #20 Hour #21 Hour #22 Hour #23 Hour #24 

298 268 344 260 340 306 

W
EG

 #
2 

Hour #1 Hour #2 Hour #3 Hour #4 Hour #5 Hour #6 

264 255 344 349 349 317 

Hour #7 Hour #8 Hour #9 Hour #10 Hour #11 Hour #12 

319 311 306 259 286 339 

Hour #13 Hour #14 Hour #15 Hour #16 Hour #17 Hour #18 

272 323 251 328 321 277 

Hour #19 Hour #20 Hour #21 Hour #22 Hour #23 Hour #24 

313 333 261 299 260 328 

W
EG

 #
3 

Hour #1 Hour #2 Hour #3 Hour #4 Hour #5 Hour #6 

272 261 286 345 327 275 

Hour #7 Hour #8 Hour #9 Hour #10 Hour #11 Hour #12 

303 326 309 322 348 296 

Hour #13 Hour #14 Hour #15 Hour #16 Hour #17 Hour #18 

263 329 335 255 323 318 

Hour #19 Hour #20 Hour #21 Hour #22 Hour #23 Hour #24 

274 327 269 270 255 282 
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Table B.9 CEG data of IEEE 118-Bus System 

Gen # 
bc1 

($/MWh) 

1PG   

(MW) 

bc2  

($/MWh) 

2PG  

(MW) 

bc3  

($/MWh) 

3PG  

(MW) 

G1 13.13 13.33 13.35 8.33 13.52 8.33 

G2 12.13 13.33 12.35 8.33 12.52 8.33 

G3 13.13 13.33 13.35 8.33 13.52 8.33 

G4 10.67 266.67 14.50 116.67 16.83 116.67 

G5 10.67 166.67 13.00 66.67 14.33 66.67 

G6 12.17 16.67 12.40 6.67 12.53 6.67 

G7 11.50 50.00 12.25 25.00 12.75 25.00 

G8 12.13 13.33 12.35 8.33 12.52 8.33 

G9 13.13 13.33 13.35 8.33 13.52 8.33 

G10 10.17 166.67 12.50 66.67 13.83 66.67 

Gen # ac ($) 
PG  

(MW) 

PG  

(MW) 

R10 

(MW) 

PGSTEP 

(MW) 

VSTEP 

(p.u.) 

G1 130 5 30 30 5 0.005 

G2 120 5 30 30 5 0.005 

G3 130 5 30 30 5 0.005 

G4 80 150 500 500 30 0.005 

G5 90 100 300 300 30 0.005 

G6 120 10 30 30 5 0.005 

G7 110 25 100 100 17 0.005 

G8 120 5 30 30 5 0.005 

G9 130 5 30 30 5 0.005 

G10 85 100 300 300 30 0.005 
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Table B.9 CEG data of IEEE 118-Bus System (Cont’) 

Gen # 
bc1 

($/MWh) 

1PG  

(MW) 

bc2  

($/MWh) 

2PG  

(MW) 

bc3  

($/MWh) 

3PG  

(MW) 

G11 9.83 183.33 12.50 83.33 14.17 83.33 

G12 13.15 15.33 13.38 7.33 13.53 7.33 

G13 12.15 15.33 12.38 7.33 12.53 7.33 

G14 11.50 50.00 12.25 25.00 12.75 25.00 

G15 12.15 15.33 12.38 7.33 12.53 7.33 

G16 11.50 50.00 12.25 25.00 12.75 25.00 

G17 15.15 15.33 15.38 7.33 15.53 7.33 

G18 14.15 15.33 14.38 7.33 14.53 7.33 

G19 12.50 50.00 13.25 25.00 13.75 25.00 

G20 11.17 116.67 13.00 66.67 14.33 66.67 

Gen # ac ($) 
PG  

(MW) 

PG  

(MW) 

R10 

(MW) 

PGSTEP 

(MW) 

VSTEP 

(p.u.) 

G11 80 100 350 350 30 0.005 

G12 130 8 30 30 5 0.005 

G13 120 8 30 30 5 0.005 

G14 110 25 100 100 17 0.005 

G15 120 8 30 30 5 0.005 

G16 110 25 100 100 17 0.005 

G17 150 8 30 30 5 0.005 

G18 140 8 30 30 5 0.005 

G19 120 25 100 100 17 0.005 

G20 100 50 250 250 30 0.005 
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Table B.9 CEG data of IEEE 118-Bus System (Cont’) 

Gen # 
bc1 

($/MWh) 

1PG  

(MW) 

bc2  

($/MWh) 

2PG  

(MW) 

bc3  

($/MWh) 

3PG  

(MW) 

G21 12.17 116.67 14.00 66.67 15.33 66.67 

G22 12.50 50.00 13.25 25.00 13.75 25.00 

G23 13.50 50.00 14.25 25.00 14.75 25.00 

G24 12.00 100.00 13.50 50.00 14.50 50.00 

G25 12.00 100.00 13.50 50.00 14.50 50.00 

G26 13.50 50.00 14.25 25.00 14.75 25.00 

G27 11.07 206.67 14.20 106.67 16.33 106.67 

G28 11.53 206.67 13.80 106.67 15.27 106.67 

G29 8.57 153.33 11.70 73.33 13.83 73.33 

G30 10.47 46.67 11.10 16.67 11.43 16.67 

Gen # ac ($) 
PG  

(MW) 

PG  

(MW) 

R10 

(MW) 

PGSTEP 

(MW) 

VSTEP 

(p.u.) 

G21 110 50 250 250 30 0.005 

G22 120 25 100 100 17 0.005 

G23 130 25 100 100 17 0.005 

G24 110 50 200 200 30 0.005 

G25 110 50 200 200 30 0.005 

G26 130 25 100 100 17 0.005 

G27 90 100 420 420 30 0.005 

G28 100 100 420 420 30 0.005 

G29 65 80 300 300 30 0.005 

G30 100 30 80 80 14 0.005 
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Table B.9 CEG data of IEEE 118-Bus System (Cont’) 

Gen # 
bc1 

($/MWh) 

1PG  

(MW) 

bc2  

($/MWh) 

2PG  

(MW) 

bc3  

($/MWh) 

3PG  

(MW) 

G31 11.17 16.67 11.40 6.67 11.53 6.67 

G32 12.13 13.33 12.35 8.33 12.52 8.33 

G33 11.10 10.00 11.25 5.00 11.35 5.00 

G34 10.50 50.00 11.25 25.00 11.75 25.00 

G35 9.50 50.00 10.25 25.00 10.75 25.00 

G36 9.67 266.67 13.50 116.67 15.83 116.67 

G37 10.50 50.00 11.25 25.00 11.75 25.00 

G38 10.17 16.67 10.40 6.67 10.53 6.67 

G39 12.50 350.00 17.50 150.00 20.50 150.00 

G40 9.67 266.67 13.50 116.67 15.83 116.67 

Gen # ac ($) 
PG  

(MW) 

PG  

(MW) 

R10 

(MW) 

PGSTEP 

(MW) 

VSTEP 

(p.u.) 

G31 110 10 30 30 5 0.005 

G32 120 5 30 30 5 0.005 

G33 110 5 20 20 4 0.005 

G34 100 25 100 100 17 0.005 

G35 90 25 100 100 17 0.005 

G36 70 150 500 500 30 0.005 

G37 100 25 100 100 17 0.005 

G38 100 10 30 30 5 0.005 

G39 90 200 650 650 30 0.005 

G40 70 150 500 500 30 0.005 
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Table B.9 CEG data of IEEE 118-Bus System (Cont’) 

Gen # 
bc1 

($/MWh) 

1PG  

(MW) 

bc2  

($/MWh) 

2PG  

(MW) 

bc3  

($/MWh) 

3PG  

(MW) 

G41 12.12 12.00 12.28 4.00 12.36 4.00 

G42 12.30 30.00 12.70 10.00 12.90 10.00 

G43 10.67 166.67 13.00 66.67 14.33 66.67 

G44 13.67 166.67 16.00 66.67 17.33 66.67 

G45 9.67 166.67 12.00 66.67 13.33 66.67 

G46 13.12 12.00 13.28 4.00 13.36 4.00 

G47 12.50 50.00 13.25 25.00 13.75 25.00 

G48 11.50 50.00 12.25 25.00 12.75 25.00 

G49 13.12 12.00 13.28 4.00 13.36 4.00 

G50 12.33 33.33 12.75 8.33 12.92 8.33 

Gen # ac ($) 
PG  

(MW) 

PG  

(MW) 

R10 

(MW) 

PGSTEP 

(MW) 

VSTEP 

(p.u.) 

G41 120 8 20 20 4 0.005 

G42 120 20 50 50 9 0.005 

G43 90 100 300 300 30 0.005 

G44 120 100 300 300 30 0.005 

G45 80 100 300 300 30 0.005 

G46 130 8 20 20 4 0.005 

G47 120 25 100 100 17 0.005 

G48 110 25 100 100 17 0.005 

G49 130 8 20 20 4 0.005 

G50 120 25 50 50 9 0.005 
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Table B.9 CEG data of IEEE 118-Bus System (Cont’) 

Gen # 
bc1 

($/MWh) 

1PG  

(MW) 

bc2  

($/MWh) 

2PG  

(MW) 

bc3  

($/MWh) 

3PG  

(MW) 

G51 11.50 50.00 12.25 25.00 12.75 25.00 

G52 11.50 50.00 12.25 25.00 12.75 25.00 

G53 10.50 50.00 11.25 25.00 11.75 25.00 

G54 10.33 33.33 10.75 8.33 10.92 8.33 

Gen # ac ($) 
PG  

(MW) 

PG  

(MW) 

R10 

(MW) 

PGSTEP 

(MW) 

VSTEP 

(p.u.) 

G51 110 25 100 100 17 0.005 

G52 110 25 100 100 17 0.005 

G53 100 25 100 100 17 0.005 

G54 100 25 50 50 9 0.005 
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