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Abstract 
 
 

Fractal Fluctuations in the Cardiovascular Dynamical System: From the 
Autonomic Control to the Central Nervous System Influence 

 

Asif Sharif 

Doctor of Philosophy 

Department of Mechanical and Industrial Engineering, Ryerson University 

2010 

The fractal component in the complex fluctuations of the human heart rate represents a 

dynamic feature that is widely observed in diverse fields of natural and artificial systems. It is 

also of clinical significance as the diminishing of the fractal dynamics appears to correlate with 

heart disease processes and adverse cardiac events in old age. While the autonomic nervous 

system directly controls the pacemaker cells of the heart, it does not provide an immediate 

characterization of the complex heart rate variability (HRV). The central nervous system (CNS) 

is known to be an important modulator for various cardiac functions. However, its role in the 

fractal HRV is largely unclear.  

In this research, human experiments were conducted to study the influence of the central 

nervous system on fractal dynamics of healthy human HRV. The head up tilt (HUT) maneuver is 

used to provide a perturbation to the autonomic nervous system. The subsequent fractal effect in 

the simultaneously recorded electroencephalography and beat-to-beat heart rate data was 

examined. Using the recently developed multifractal factorization technique, the common 

multifractality in the data fluctuation was analyzed. An empirical relationship was uncovered 
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which shows the increase (decrease) in HRV multifractality is associated with the increase 

(decrease) in multifractal correlation between scale-free HRV and the cortical expression of the 

brain dynamics in 8 out of 11 healthy subjects. This observation is further supported using 

surrogate analysis.  

The present findings imply that there is an integrated central-autonomic component 

underlying the cortical expression of the HRV fractal dynamics. It is proposed that the central 

element should be incorporated in the fractal HRV analysis to gain a more comprehensive and 

better characterization of the scale-free HRV dynamics. This study provides the first contribution 

to the HRV multifractal dynamics analysis in HUT. The multivariate fractal analysis using 

factorization technique is also new and can be applied in the more general context in complex 

dynamics research. 
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Chapter 1 Introduction 
   

The beat-to-beat heart rate fluctuation of the human heart rate variability (HRV) has a 

fundamental scale-free dynamic component that is similarly observed in other natural systems. 

Examples are abundant, ranging from hydrodynamic turbulence [1], seismic wave activity [2], to 

social networking [3, 4],  DNA sequences [5], the structure of the universe [6], gait interval [7], 

and market dynamics [8], just to name a few. The scale-free component of HRV cannot be 

immediately related to such external factors as physical activity [9, 10] and is believed to reflect 

the intrinsic property of human physiology. This “endogenous” effect also bears important health 

implications because there is a correlation between the diminishing multifractality of HRV and 

the deterioration of health in certain heart disease conditions [11-13], and with old age [14-16]. 

The study of the scale-free dynamics in human HRV is therefore not only of fundamental 

significance, but it also has a practical importance for the better understanding of cardiovascular 

health.  

The fundamental cause for the abundance of scale-free dynamics in nature remains 

largely unclear. It may be that there is no general cause, but perhaps a case by case 

understanding of scale free dynamics. For example, it was shown that when the number of new 

trees introduced in a forest, exceed the number of trees set ablaze, the system enters a “critical 

state” [17]. In this state, the size and duration of forest fires have been shown to exhibit scale free 

fluctuation. 

It is possible to gain detailed characterization of the scale-free fluctuations using the 

fractal model. A fractal has a distinct appearance which implies a “self-duplicative process” into 

ever finer scales ad infinitum. Most fractals found in natural and large artificial systems exhibit 

the highly “heterogeneous,” multifractal scale-free structure with interwoven fractal subsets of 
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different characteristics [18, 19]. The scale-free component of human HRV is known to exhibit 

the multifractal property [11-13].  

Although the scale-free property of HRV has been a subject of intense study, its dynamic 

origin and potential functional purpose remain unclear.  While it is tempting to find clues from 

the vascular and respiratory functions, past studies actually concluded otherwise [20, 21]. Fortrat 

et al. [22] observed that changes in blood pressure variability (BPV) do not necessarily translate 

into HRV. In a prolonged, 42 day bed rest study, they showed that the dynamic pattern of BPV is 

distinctly different than that of HRV. Respiratory response, due to the cardiac-respiratory 

coupling known as the respiratory sinus arrhythmia mechanism, is a narrow band process in the 

high frequency range [23] and cannot explain the massive 1/f-like signal power from the beat-to-

beat heart rate data [24].  

One potential source for multifractal HRV that is of significant importance is the central 

nervous system (CNS). The central influence in cardiac functions is well established [25]. Not 

only does the CNS respond to demands from the cardiovascular system, it can also triggers 

efferent responses to affect the autonomic control of heart rate in such events as the anticipation 

of threat [23] and  the onset of exercise [26]. Whether there is a direct central influence on the 

HRV multifractal property is largely unclear. The literature on sleep [27] and mental exercise 

[28-30] suggests that such a link should exist. These past results are however based only on one 

(among infinite) scaling exponents of HRV. Furthermore, the specific CNS activity was not 

described in the studies. 

The objective of this research is to examine the potential brain-heart interaction in scale-

free HRV dynamics. It is hypothesized that there is a direct, measurable, central expression 

associated with multifractal HRV. It is assumed that a perturbation to the autonomic control of 
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the heart rate changes the brain-heart interaction that can be characterized by comparing the 

fractal properties of heart rate and brain activity data. In the analysis, the technical difficulty of 

comparing fractal properties must be addressed since different fractal generating mechanisms 

could have indistinguishable fractal appearance (and thus scaling exponents) due to finite 

resolution in the signal analysis [31]. In this research, the previously developed joint wavelet 

transform modulus maxima is extended to allow for estimating the fractal correlation between 

the heart rate and brain activity data. This novel technique considers the multifractal spectrum 

with infinite scaling exponents, which differentiates this study from the current literature.  

To test the hypothesis, human experiments were conducted. The central idea of the 

experimental design is the introduction of an orthostatic challenge to perturb the autonomic 

control of the heart rate using the head up tilt (HUT) maneuver. Both heart rate and brain activity 

data were collected as the independent variables for the experiments and their fractal correlation 

determined. It is shown that such a central link can indeed be identified and characterized. In 

addition, the well-established frequency domain measures are used to provide a preliminary 

reference to the physiological basis underlying the central correlate of multifractal HRV.  

To the best of the author’s knowledge, these new contributions have not been reported 

before. Based on the central-autonomic fractal element in HRV, this work provides a new 

research paradigm that allows for a more complete analysis of the complex fluctuation in the 

cardiovascular dynamical system. In what follows, the pertinent literature review on the 

functional and anatomical evidence of the central-autonomic interaction is first presented. The 

organization of the results is given in six chapters and is summarized in the last section. 
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1.1 Literature Review 
 

Neural control of the heart rate is mediated by the sympathetic (SNS) and the 

parasympathetic (PNS) branch of the autonomic nervous system (ANS) [11, 32, 33]. Under most 

physiological conditions, the activation of one branch is accompanied by the inhibition of the 

other [33]. The balance oscillates from the state of quiescence, when homeostatic negative 

feedback reflexes dominate via the PNS, to the state of excitation where the SNS activity 

predominates. The state of excitation is a response to either physical or psychological stress, 

when central excitatory mechanisms reinforced by peripheral positive feedback reflex enhance 

cardiovascular activity [34, 35].  

The effect from the specific ANS branch to the scale-free HRV has been studied using 

pharmaceutical methods. In particular, the administration of a chemical compound that blocks 

adrenaline (such as metoprolol), the main neurotransmission agent for the SNS, is known to have 

a minor influence on the HRV multifractality [10]. However, the administration of the compound 

atropine, which suppresses PNS activity, resulted in a marked loss of multifractality [10, 36].  

The PNS of the ANS therefore plays a critical role in “maintaining” the scale-free HRV 

dynamics. The critical structure of this effect appears to be related to the frontal cortex.  In 

animal studies, Horst et al. [37] identified command centres of PNS activity in the rodent CNS. 

Verberne et al. [38] further showed that the presence of an important structure of the central 

ANS network in the prefrontal cortex of rats particularly in the suppression of the [38][37]SNS 

activity. Pharmacological suppression in the frontal cortex activity in humans, resulted in a 

reduction of both heart rate and HRV [39]. Neuroimaging studies have provided evidence that 

the prefrontal cortex may have a direct link to PNS activity [40-42]. Taken together, these 
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pharmacological and neuroimaging studies lend support to the role of the prefrontal cortex in 

mediating PNS activity.  

The possible neural pathways that connect the prefrontal cortex to the heart may reside 

within the central ANS network as shown in Figure 1-1. The prefrontal, cingulate and insula 

cortex form an interconnected network with the amygdala, where information flows in both 

directions. The amygdala is thought to be a major point of integration from the higher brain 

centres to physiological responses, and can directly activate the SNS via the rostral ventrolateral 

medulla (RVLM) [43]. These connections have not been shown in the simplified Figure 1-1. It is 

thought to have projections to the paraventricular nucleus of the hypothalamus (PVN), and the 

pons, specifically the midbrain pariaqueductal gray (PAG) and parabrachial–pontine nuclei [44]. 

In the context of the neural pathway affecting the prefrontal cortex, it is thought to have 

excitatory effects on the neurons of the RVLM [25, 45]. The RVLM is under tonic inhibition by 

the caudal ventrolateral medulla (CVLM). Electrical stimulation of RVLM is associated with an 

increase in sympathetic activity [46]. SNS activity is mediated from the RVLM via preganglionic 

sympathetic efferents with cell bodies in the intermediolateral (IML) cell column. These 

efferents synapse with postganglionic sympathetic efferents that innervate the heart with the 

input from the CNS [23].  

The hypothalamus PVN, PAG, and the pons have been associated with inhibitory effects 

on the nucleus of the solitary tract (NTS) [23]. The NTS also has ascending input to these areas 

of the brain, particularly relevant in the arterial baroreceptor reflex.  The main innervation of the 

NTS comes from baroreceptors in the body [47]. It is involved in the inhibition of the RVLM via 

the CVLM [46]. PNS activity is mediated from the NTS to the dorsal vagal motor nucleus 

(DVN) and nucleus ambiguus (NA) to the heart via the preganglionic vagal efferents. 
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EEG and HRV [27].  Multifractality present in HRV from adults in wakefulness was present 

during rapid eye movement (REM) sleep but not in non-REM sleep [30]. Further evidence can 

be found in the changes of HRV properties reported with stress [55] and mental exercise [27-30]. 

In an animal study, Troncoso et al. [56] performed experiments to simultaneously analyze 

the EEG and HRV in response to light onset in awake rats. They found that light onset can 

induce a significant arousal in the brain with simultaneous enhancement of SNS activity in the 

HRV.  

Naturally, the question that arises, is “how much of the multifractal HRV is correlated to 

EEG in humans?” The current understanding of HRV and EEG correlation is limited to the 

frequency domain and has not addressed multifractal HRV. While the joint study of multifractal 

objects has been explored before [31, 57, 58], only recently has an effective estimation of joint 

multifractality been possible. In particular, a common multifractal factor (CMF) shared by all the 

fractal sources can be calculated based on a novel technique known as the multifractal 

factorization [59]. In this research, the multifractal factorization approach is extended to define 

and characterize a CMF in the heart rate and EEG fluctuations. 

1.2 Summary of Dissertation 
 

This dissertation is divided into 6 chapters. Chapter 2 details the experimental method, 

data collection and processing. The experimental data will be analyzed using spectral methods in 

the frequency domain and singularity methods in the time domain. Their underlying ideas, 

working principle and numerical implementations are described in Chapter 3. The time domain 

approach and results, as well as its association with the spectral components, represent the main 

contribution of this research. In particular, the previously developed numerical technique of joint 

wavelet transform modulus maxima (JWTMM) [60] provides the basis to formulate the novel 
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multifractal factorization approach. Extensive numerical experiments based on random cascades 

are conducted to verify the fractal correlation analysis.  

The application of these methods to the experimental data is arranged in the following 

two chapters. In Chapter 4, the results from the frequency domain analysis are shown. In Chapter 

5, the results of the multifractal correlation analysis between the experimental heart rate and 

brain wave data are shown. To test for statistical significance, surrogate analyses were also 

performed to show that the captured multifractal correlation is not accidental. Chapter 6 

discusses the results, and highlights the implications and limitations. Finally, the conclusions of 

the dissertation are summarized and possible future areas of research are identified. 



9 
 

Chapter 2  Experimental Investigation of Central and 
Autonomic Integration 

 

2.1 Background 
 

In this chapter, the experimental study of the CNS and ANS interaction is described. 

Separate tests were conducted on the subjects in supine (SUP) position and the upright (UPR) 

position after the HUT maneuver. The immediate physiological response due to HUT is 

mediated by the arterial baroreceptor reflex. Specifically, when in UPR, blood is pooled in the 

lower extremities due to the gravitational force. This causes a reduction in the venous return to 

the heart and, in turn, lowers the wall pressure of the carotid sinus and aortic arch. These effects 

are picked up by baroreceptors in the walls and the response is first relayed to the NTS which 

inhibits the CVLM, and leads to a reduction in the inhibition of the RVLM [20, 61, 62]. For large 

angle HUT, this chain of events triggers the physiological effect of increasing SNS efferent 

outflow and reducing PNS activity leading to a faster heart rate [63]. Hence, these effects  can 

provide a known perturbation to the ANS and allows the systematic examination of a potential 

central component in fractal HRV. 

The linkage between cardiovascular system and CNS has broader implications with 

respect to HUT. Ishibashi et al. [64] reported an increase in the heart rate at lower tilt angles after 

HUT, when auditory reaction time tasks were used, implicating the CNS influence in heart rate 

regulation. The effect of the ANS on brain activity has been explored in syncope studies. 

Ammirati et al. [65] conducted simultaneous EEG and heart rate recordings in HUT and reported 

a shift of the EEG signal power to a lower frequency range during the onset of syncope event in 

patients diagnosed with impaired vasovagal function. Using a 20 electrode montage and placing 

the electrodes strategically, Mercader et al. [66] suggested that the source of this phenomenon 
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originates in the left temporal lobe area. At the developmental stage, Grieve et al. [67] showed in 

a HUT study with infants between 0 to 4 months of age, that there was an increase in EEG power 

in the 12-50Hz window in the left frontal, right frontal, and occipital regions. 

Given the extensive integration of the ANS in the higher brain centers [55], a HRV model 

including the central nervous system (CNS) provides a natural and appealing framework for 

further investigations. The strategy uses HUT to elicit a specific change in the ANS and 

simultaneously measure heart rate and EEG to analyze the cross “correlation” of their 

fluctuations.  

2.2 Experimental Method & Materials 

2.2.1 Subjects 
 

In the literature, the sample sizes of exploratory HUT and HRV studies range from six to 

thirty five subjects [21, 27, 64, 68-70]. In this work, thirteen young adult subjects (9 males and 4 

females. Age: 25.8 ±4.0 years old. Weight 69.5 ±11.2 kg. Height 172.4 ±8.4 cm) were recruited 

from the general university student population. Subjects with a history of mental health, 

cardiovascular, pulmonary or neurological conditions were excluded from the recruit. Subjects 

on medication and with a history of syncope were also excluded. The screening process relied 

mainly on the candidate’s response to the questionnaire in the interview and was accepted in 

good faith.1 The objectives, procedures, associated risks and risk management were described to 

each subject who then signed a consent form approved by the Ethics Board of Ryerson 

University [Appendix A]. Most subjects were dressed in casual wear during the experiment. 

There was no monetary compensation for their participation.  

                                                 
1 It was found that 2 of the subjects had additional medical conditions that were not disclosed at the time of the 
experiment. Their data will be specified in the results. 
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2.2.2 Protocol 
 

The experiment consisted of two parts conducted on two separate days at approximately 

the same time of the day (1~4 PM). The subjects were asked to maintain their normal daily 

activities, refrain from increased physical exercise, stimulants and have sufficient sleep two days 

prior to the recording sessions. The tests were conducted in a temperature controlled (22º C) 

shielded room under slightly dim lighting conditions (< 200 lx). During the test, subjects were 

asked to keep their eyes open, stay calm and relaxed.  

The first part of the experiment consisted of the “baseline” recording. The subjects were 

asked to remain in the SUP position on the tilt table.  The second part of the experiment is the 

HUT maneuver. Subjects were first put on the tilt table in the SUP position and allowed to settle 

down for ~10 mins before the HUT maneuver. They were then tilted to 75º UPR position. A 

registered nurse was present for this part of the experiment due to the potential for a syncope 

event. No case of syncope was recorded. The length of the SUP and UPR tests varied depending 

on the subjects, but they typically lasted for 40~50 mins.  

2.3 Data Measurement 

2.3.1 Background 
 

To characterize the potential central influence in HRV, the brain and heart rate dynamics 

were recorded simultaneously. In this section, the background of these measurements and the 

specifics used in the experiments will be described. 

The neural activity in the brain is physically carried out by the movement of ions in and 

out of the neuronal membrane. The movements produce electrical impulses known as the 

synaptic potential, which provides the means of communication between the neurons. Large 

numbers of neurons generating and conducting electrical impulses are detectable from the scalp 
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via the EEG recording. The recording involves placing electrodes on designated sites on the 

scalp. On average, the signal captured corresponds to cortical neuronal activity containing 107 to 

109 neurons directly beneath the electrode [54, 71, 72][71, 72]. 

 In this work, the bipolar measurement was used where the potential difference between 

adjacent electrodes are used to characterize the neuronal activities [72]. For this study, the 

electrodes were placed according to the International 10-20 system [73] at the frontal (FP1-FC3, 

FP2-FC4) sites. The gap between the electrode and the scalp was filled with low-impedance gel 

to facilitate conductivity (SIGNA Electrode Cream, Parker).  

The beating of the heart is a result of the de/re-polarization process of the heart muscle 

cells. After the electric stimulation arrives at the sinoatrial node, the pacemaker cells of the heart, 

a chain reaction is triggered that leads to the massive, synchronized, movement of ions (mainly 

Na+, K+) in and out of the membrane of the heart muscle cells.  While producing the muscle 

contraction of the myocardium, the massive ionic movement also results in measurable polarity 

difference that can be picked up by electrodes attached to the proper locations of the chest. [74].  

2.3.2 Instrumentation 
 

The recording device used in the experiment is a 16-bit ADC ambulatory recorder with a 

preset sampling rate at 256 Hz and, a hard-coded, band-passed filter (g.MobiLab, GTEC Inc, 

Austria); see Figure 2-1(a) .  The filter in the recorder effects a [0.01, 100] Hz pass-band to the 

raw ECG signal and a [0.01, 30] Hz pass-band to the raw EEG signal. Note that the sampling 

rate of the recorder allows a Nyquist frequency at 128Hz, which is sufficient to cover the 

bandwidth of ECG and EEG activities. The output from the electrode is connected to a Personal 

Desktop Assistant (PDA). Impedance was measured using an electrode impedance meter (Mod 

EZM4A, Grass Instrument Co. MA, USA) that sent a test current less than 1µA at 30Hz. The 
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body.  The RR interval (RRi) taken as the interval between two R waves, r(n), is used in the 

HRV analysis. Two channels of ECG were recorded from the two sets of electrodes attached to 

the chest and the RRi was extracted by cross-examining both sets to provide a greater level of 

assurance where r(n) is. All records were visually checked for artifacts after the cross-

examination. On average, 3779 uninterrupted RRi in SUP (mean ± SD: 0.964s ± 0.16s) and 5293 

RRi in UPR (mean ± SD: 0.673s ± 0.12s) were collected. 

 

Figure 2-2 ECG record. 
 

For the EEG, the 60 Hz AC is first filtered by a standard notch filter. Although the EEG 

captures electrical activity from the neurons in the CNS, it is often contaminated by artifacts of 

non-cerebral origin such as eye blinking, chin movement, and so on [76]. The most common type 

found in the long EEG recording is known as the electroocular artifact that is derived from eye 

blinking. There is extensive literature on effective ways to remove the electroocular artifacts [77, 

78]. In this work, the method of wavelet filter using stationary wavelet transform and adaptive 

thresholding was adopted. First, the stationary wavelet transform is applied to the contaminated 

signal. The time-scale adaptive system is based on Stein’s unbiased risk estimate (SURE). The 

optimal threshold is calculated by adaptively fine tuning the initial threshold value using a 
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gradient based adaptive algorithm. Finally, the inverse wavelet transform is applied to the 

thresholded wavelet coefficients to obtain EEG without the electroocular artifacts, e(s). The 

algorithm, as well as its effectiveness, has been well documented in the references [79, 80].  

To apply the stationary wavelet adaptive thresholding method, the mother wavelet chosen 

is the Coiflet 3 (Figure 2-3), as it resembles the EEG characteristics of an eye blink. The 

decomposition was done in six levels according to the dyadic scales. The thresholding was 

applied to the wavelet coefficients of the lowest 2 levels. They correspond to a frequency range 

of 0 to 2.3 Hz.  

 
Figure 2-3 Coiflet 3 

 
An example of a raw EEG segment contaminated with the large amplitude electroocular 

artifact (red curve) is shown in Figure 2-4(a). It is subsequently removed (blue curve) using the 

adaptive thresholding method. The approach is seen to work effectively and is able to retain the 

finer scale fluctuation in the raw EEG.  

In Figure 2-4(b) the segments of the RRi from SUP and UPR are shown. Notice the 

diminishing large amplitude fluctuation going from SUP to UPR due to the withdrawal of the 

PNS activity. The lower mean RRi in SUP is also indicative of the SNS activation leading to a 

faster heart rate. The analysis and result reported in this work are based on the RRi and artifact 

removed EEG described above. 
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Figure 2-4 (a) EEG from S6. The recorded EEG is in red, which show a significant peak of 
duration less than 1 sec, characteristic of saccadic eye movement. The result after removing the 
artifact is in blue. (b) RRi from S6 in SUP (blue) and UPR (red). The mean RRi are shown as 
dashed lines. 
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Chapter 3  Data Analysis   
 

In this chapter, the methods of analyses of the RRi and EEG are described. Both the 

spectral method in the frequency-domain and the fractal method in the time-domain are adopted. 

The frequency-domain approach is important for their better-known physiological correlates and, 

thus, provide a better understanding of our data in physiological terms. However, the spectral 

analysis does not describe the full detail of the RRi and EEG fractal fluctuation, nor is it able to 

capture the potential fractal correlation in their fluctuation. For these latter objectives, a novel 

technique was developed to extract fractal correlation in a jointly fluctuating time series. To the 

best of the author’s knowledge, this technique is by far the only multivariate fractal tool that is 

able to characterize the fractal correlation of the fluctuation of multiple time series. The 

numerical example of coupled cascades is given to demonstrate this idea. 

3.1 Frequency-Domain Methods 
 

The power spectrum of the RR interval, r(n) has been found to carry relevant 

physiological information in four major frequency bands: ultra low frequency (ULF), very low 

frequency (VLF), low frequency (LF), and high frequency (HF). The specific ranges of these 

bands are listed in Table 1 [11]; see also [81].  

Table 1 Spectral Components of HRV 

Variable Frequency Range

ULF ≤ 0.003 Hz 

VLF 0.003 – 0.04 Hz 

LF 0.04 – 0.15 Hz 

HF 0.15 – 0.4 Hz 
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The LF and HF components are of immediate importance to the current research due to 

their connection to the SNS and PNS activity [11, 82]. The study of ULF and VLF components 

remain difficult and inconclusive. In general, there is an intrinsic limit in analyzing very long 

time scale behavior in heart rate data, wherein different factors, such as the circadian rhythm, 

sleep cycles, can significantly shift the underlying dynamic regimes. The present study is further 

constrained to the limited time that a tilt test can be carried out. For these reasons, the dynamics 

in the ULF and VLF frequency bands are not studied in this research. 

It should be noted that r(n) does not have a natural time axis. If the time stamp is 

designated for each beat, one is faced with an unevenly spaced time series. For this reason, the 

frequency contents of r(n) cannot be directly obtained by applying the Fourier transform. This 

issue can be resolved by using the so-called Lomb periodogram, which was developed to 

estimate the frequency contents from unevenly sampled time series [83]. In a nutshell, the Lomb 

periodogram adopts a “best fit” approach by minimizing the square difference between the 

projection of the signal onto the basis function of the transform and the original signal. This is 

known as the Lomb power spectral density method and is explained in Appendix B [83].  The 

Lomb periodogram of r(ni), i = 1…N, is defined as 
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where r and 2 are the mean and variance of r(t), f is the frequency and the value of τ is derived 

from 



19 
 

  
 

 
1

1

sin 4
tan 4

cos 4

N

n
n
N

n
n

ft
f

ft


 











 (3.2) 

 Laguna et al. compared the Lomb method against the fast Fourier transform (FFT) and 

autoregressive estimate with linear and cubic interpolation on an integral pulse frequency 

modulation (IPFM) model. They showed that the Lomb method avoids the lowpass effect in the 

other methods when applied to unevenly sampled data [84]. Let RRi and its time stamp be r(n), 

1
( ) ( ), 1, 2,...,

n

l
t n r l n


   respectively. To track the subject’s ANS activity, r(n) is first 

segmented into intervals of K heart beats Rj = {r((j-1)K + 1), …, r(jK)}, j = 1, …, NK. Results 

reported in the following chapters are based on intervals of K = 128-beat with 50% overlap (64-

beat).  

Similarly, EEG can be characterized via the correlation between specific spectral 

components and such physiological events as alertness, relaxation, and other cognitive functions. 

Of immediate importance to the current study is the theta, alpha and beta band property; see 

Table 2 [71]. These frequency bands reflect the general quality of attention (theta), focused 

relaxation (alpha) and alertness (beta) [85]. It is intuitive that these states can be altered by the 

HUT maneuver, and thus the frequency bands too. Indeed, Poupard et al. [86] showed that the 

alertness of healthy individuals is strongly correlated to the beta band power. In sleep deprived 

individuals, the postural change from SUP to UPR has the effect of enhancing alertness and the 

beta band power [87].   
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Table 2 Spectral Components of EEG. 

Variable Frequency Range 

Delta 0 – 4 Hz 

Theta 4 – 8 Hz 

Alpha 8 – 13 Hz 

Beta 13 – 30 Hz 

Gamma > 30 Hz 

 

In the data analysis of the EEG, the same segmentation approach in the RRi data is used. 

In particular, the EEG interval corresponding to the RRi segment is first identified. For each Rj, 

the corresponding EEG interval Ej = {e(ujΔt), …, e(vjΔt)} is identified, where e(s) denotes the 

sampled EEG,  ujΔt = t((j-1)K + 1) vjΔt = t(jK), and Δt = 1/256 sec. Since EEG is a continuous 

time process recorded at a fixed sampling rate, the traditional Fast Fourier transform (FFT) is 

applicable. In this study, the FFT is calculated using the Welch windowing method in the 

MATLAB scientific package [88]. The spectral power in theta, alpha and beta bands are 

estimated and normalized by the total EEG signal power of the interval. 

3.2 Fractal Analysis of Signal Fluctuation 
 

While spectral analysis provides the signal decomposition in the frequency domain, it 

does not characterize the nature of the signal fluctuation. As mentioned in the introduction, the 

fluctuation in physiological data typically exhibits fractal property and multiple scaling. To 

capture such a property, it is necessary to employ singularity analysis in the time-domain.  
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3.2.1 Singularity Analysis 
 

In general, the study of time series fluctuation has a very intuitive basis. Among others, 

the data fluctuation describes its “ability” of jumping from one value to the next. It is thus not 

surprising that the time-domain study of data fluctuation rests on the property of derivatives of 

the data viewed as a function. In technical terms, the study of function differentiability is called 

singularity analysis.  

Let x(t) be the data of interest. Treated as a function, its singular property can be 

measured by the so-called local Hölder exponent. Specifically, given C(t) > 0, α’ > 0, one can 

find an nth order polynomial Pn (t), n <  α, such that, for δ < δ0, the following inequality holds 

      t
nx t P t C

     (3.3) 

The Hölder exponent of x(t) is defined as the greatest exponent α for which (3.3) is valid. 

If x(t) is n times continuously differentiable at t, Pn(t) can be selected as the order n Taylor 

expansion of x at t and, therefore, α < n. According to the above definition, it is clear that the 

larger α(t) is, the smoother the function becomes and, thus, the lesser the degree of fluctuation. 

Similarly, a small α(t) means strong fluctuation. Of particular interest is the range where α < 1. It 

corresponds to a fluctuation that does not have a well-defined derivative. This particular 

exponent range applies to the RRi fluctuation in healthy humans. Note that α is a function of t. 

The range it covers also reveals important information about the fluctuation. The fluctuation 

characterized by a small α range implies “uniformity” in that the degree the time series fluctuates 

is more or less the same. However, if α covers a large range, the time series is said to be more 

complex where “mild” and “violent” fluctuations coexist, giving the appearance of strong 

intermittency.  
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3.2.2 1-D WTMM 
 

It is also important to note that (3.3) is a point-wise definition. This allows the singular 

property to be studied as a function of scale. The natural tool to accomplish this is by the wavelet 

transform: 

     1
,

t t
T x t a x t dt

a a 




      
    (3.4) 

In (3.4), Tψ[x](t,a) is called the wavelet coefficient of x(t’) at t’ = t and scale a, and ψ(t) is 

called the analyzing wavelet.  To capture local characteristics of x(t), it is necessary that the 

analyzing wavelet vanishes everywhere except locally at t = 0 [89]. Hwang and Mallat [19] 

proved that the wavelet coefficient Tψ[x](t,a) displayed in the time scale plan (t, a) registers a 

very distinct geometrical feature depending on the differentiability of the function x(t). In 

particular, it was shown that the singular property of a function is uniquely associated with the 

formation of the maxima of the modulus |Tψ[x](t,a)|. Given a range of scales, these modulus 

maxima form the so-called maxima lines. Bacry et al. [18] showed that the exponent α(t) can be 

estimated effectively using the wavelet transform modulus value along these maxima lines 

|Tψ[x]|.  

There is a deeper structure in the set of Hölder exponent {α}. Using WTMM, such a 

structure can be obtained by considering the analogy of the partition function in statistical 

physics. Specifically, let 

     , , ,
q

Z a q W x t a dt q    (3.5) 

Equation (3.5) is similar to the partition function of a statistical mechanical system with 

][xW  being compared to the exponential of the energy state and q to the inverse of temperature 
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of the canonical ensemble, see [90].  Denote the set of maxima lines at scale a by L(a) = 

{l1,l2,…lN(a)}. Bacry et al. [18] proved that 

    

 
; ~

i

qq
i

l L a

Z a q C a



   (3.6) 

where      ,sup ,
ii t a lC T x t a  is the supremum of the modulus maxima along the maxima  

line li, for all scales less than a and τ(q) is called the scaling function . Bacry et al. [18] further 

showed that the Legendre transform of τ(q) yields the singularity spectrum f (α) of the support {t, 

α(t) = α}:  

     minq q f


     (3.7) 

3.2.2  Joint WTMM  
 

For this research, it is essential to analyze the joint fractal fluctuation of RRi and EEG.  

The WTMM-based partition function approach (3.5) and the subsequent Legendre transform 

(3.7) provide one of the most reliable and systematic framework to analyze the (infinite) fractal 

subsets in multifractal objects. To achieve the same for multiple time series, the WTMM was 

extended for fractal analysis of one time series and a joint WTMM approach was developed to 

estimate the fractal correlation in multiple time series.  This extension has been found possible 

and can be carried out effectively [31].  

Consider xk (t) where k = 1, 2 and their respective sets of singularity exponents {αk}. Let 

the maxima lines of  kT x  at scale a be denoted as Lk (a), k =1,2. A natural extension of the 

existing WTMM analysis is to consider a joint partition function of the form:  

      1, 2,; , q p
r j s j

j

Z a q p C C  (3.8) 
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where    1, 2,,q p
r j s jC C  are the modulus maxima of the maxima lines 1, 1 2, 2,r sl L l L  . To realize 

(3.8), the maxima lines in Lk (a), k =1,2 must be paired up properly. The matching process is 

outlined in a flowchart in Appendix C. As in correlation analyses, the objective here is to 

characterize the property related to observing both singularity exponents α1 and α2 at a particular 

given time and scale. In terms of WTMM, such information should be contained in the modulus 

of the neighboring maxima lines. If the time coordinate of lk,j(a) is denoted by tk,j(a), this means 

the coefficients C1,r, C2,s paired up in (3.8) can be determined by 

    1, 2, 1, 2, 1, 2,min minr s r s r s
r s

t t t t t t  
      (3.9) 

When (3.9) cannot be met, the same process is repeated recursively for the unpaired coefficients, 

without any overlapping. Finally, the remaining unmatched coefficients are paired with a ‘0’ 

coefficient so that 

 
 
 

; ,0 ( ; )

;0, ( ; )

Z a q Z a q

Z a p Z a p




 (3.10) 

Note that these added ‘0s’ will not affect the partition function value for q, p > 0. Figure 3-1 is a 

visual illustration of (3.9).  

Once (3.8) and (3.9) are established, the subsequent singularity analysis can follow the 

1D case as developed by Bacry et al [18]. In particular, based on  
, ~ , , ,k

kC a r s 
   (3.8) can 

be given by 
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where P(α1,α2) and f(α1,α2) are the joint probability density function and Hausdorff dimension of 

the support of (α1,α2), respectively. Applying the standard argument of steepest descent in small 

a yields  

    ,; , ~ q pZ a q p a  (3.12) 

 

Figure 3-1 Pairing up of the WTMM coefficients. (a) Maxima lines of C1,r (b) Maxima lines of 

C2,s (c) Matched coefficients. Insertions of zeroes are denoted by empty circles and the dashed 

line shows the pairing of the coefficients. 

 
where   

     
1 2

1 2 1 2
,

, min , .q p q p f
 

        (3.13) 

From (3.13), it is seen that τ(q,p) and f(α1,α2) form a Legendre transform pair:  

2000 2100 2200 2300 2400 2500

4

6

8

10

12

14

a

t

2000 2100 2200 2300 2400 2500

4

6

8

10

12

14

a

t

2000 2100 2200 2300 2400 2500

0

0.2

0.4

0.6

0.8

1

(a)

(b)

(c)



26 
 

 
   

       
1 2 2

1 2 1 2

, / , , / ,

, , , ,

q p q q p q

f q p q q p p q p

   

    

     

  
 (3.14) 

where  

 1 2/ , /q f p f        (3.15)  

The matlab code used to compute the JWTMM partition function is given in Appendix D. 
 

3.3 Relative Multifractal Analysis 
 

There are robust and accurate tools, [18, 91-93] such as WTMM, for estimating the 

fractal property of time series, however, there is relatively little work on the study of correlation 

between fractal objects. Part of the difficulty is that fractality is a property of the entire 

probability density function and therefore depends on the moment of all orders. This is in 

contrast to the traditional correlation measure that is defined by second order statistics. Another 

difficulty lies in the fact that the fractal subsets in multifractal object are “intertwined” in a 

highly nontrivial way and, thus, cannot be “singled out” directly for comparison from the time 

series.  

The discussion of fractal correlation or a similar notion is not new. Essential to this idea 

is the distinguishability of the singularity spectra. At least for the class of multifractal process 

known as the cascade (see below), there is a positive answer in that no two multifractal spectrum 

f () can be exactly the same unless the underlying processes are generated by the same cascade 

[31]. However, the spectrum f () of a group of cascade processes can be made arbitrarily close 

to each other and, thus, cannot be distinguished in any finite precision device. For this reason, 

Levy-Lehel and Vojak [94] and Riedi and Scheuring [58] independently developed the ideas of 

using the singularity of one multifractal object to measure that of the other. Essentially, these 

authors provide the basis to measure the fractal correlation. The mathematical abstractions have 
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in fact an interesting link to the JWTMM technique introduced above. It turns out that the joint 

exponent τ(q,p) contains all the information about the fractal correlation developed by these 

authors. In this research, the setting known as the relative multifractality developed by Riedi and 

Scheuring [58] is mainly followed.  

Consider multifractal measures π and µ. Assume that the generation of singularities in 

π(µ) is related to that in µ(π). To be specific, measuring the multifractal property of π using µ 

will be considered. It will be shown that it naturally fits into the framework of the joint partition 

function approach of (3.8) introduced in the last section. 

First, recall the joint partition function of π is given by 

         
,

q pq p

A H A H

A A A A   
  

       (3.16) 

where H, H’ denote the generic partitions of the support and  denote the Lebesgue measure of 

the set. It is evident from (3.16), that the Lebesgue measure plays a fundamental role to measure 

the singularity. To examine the extent to which the singularity of π correlates with µ, the 

Lebesgue measure in (3.16) is replaced by using the second measure. For π measured by µ, one 

writes (after moving all to the left-hand-side) 

         ( )q t q
A A O A       (3.17) 

where the “big O” describes the order relationship O(|A|) → const. as |A|→0. Clearly t = τπ when 

µ(•) = |•|. Cole proved that there exists an upper bound, τπ/µ = sup {t(q)}, for which (3.17) holds 

[95]. Evidently, when is replaced by |•|, one recovers the partition function of a single measure 

: ( ) .q O a a      Following the same framework as in the fractal analysis of one time 

series, one can similarly define the multifractal spectrum of relative to , f (π/µ), via the 

Legendre transform of τπ/µ, where απ/µ (q) = dτπ/µ (q)/dq. The interpretation thus follows, namely, 
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the relative multifractal spectrum f (π/µ) is a function that characterizes the support of the 

singular behavior of the form .  

To relate to the JWTMM technique introduced above, comparing (3.17) with (3.8) and 

(3.12) shows that τπ/µ 
can be obtained as the level set of τ(q, p) = 0 where  

     /p q        (3.18) 

Note that, by switching the role of q, p, the singular behaviour of µ can be gauged by π in 

a similar way. With the same arguments, one arrives at τµ/π defined by the same level set τ(q, p) = 

0 where q = –τµ/π (p). It may be useful to point out that  τπ/µ , τµ/π 
on the q × p plane are nothing 

but mirror images of the level set {τ(q,p) = 0 }about p = 0 and q = 0 axes, respectively. 

While the approach using the partition function provides the framework to study joint 

fluctuation of multifractal objects, it does not go beyond the traditional multifractal analysis. 

Combined with relative multifractal analysis, it is now possible to reveal additional details. 

Hereafter, τπ/µ (τµ/π) will be called the common multifractal factor (CMF of  () relative to (). 

Given the CMF, the fractal correlation of fractal objects can be formally defined and 

characterized. 

3.4 Multifractal Correlation 
 

In this section, the fractal correlation based on the CMF defined above will be defined. In 

particular, the width spectrum of the CMF, f(απ/µ), provides an effective parameter to measure the 

fractal correlation. First, consider a few important cases to motivate the idea. For identical π = µ, 

it is intuitive that the referenced measure is viewed completely “uniform” by the referencing 

measure. As a result, one expects a simple monofractal type of scaling relationship. In this case, 

the joint partition function is simply a re-parametrization: 

 / q  
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    ( ; , ) ( ) ( )
p q pq q pZ a q p I I I a          (3.19) 

i.e., τ (q, p) = τ (q + p). By definition, L(0) = {(q, p), τ(q, p) = 0} = {(q, p), τπ(q, p) = 0} = {q + p 

= 1}. Hence, the L(0) is given by the straight line q = 1 – p, and αA = 1. Applying the Legendre 

transform, one has a degenerate or a monofractal description: f(α) = 1 for αA = 1and f(α) = 0 

elsewhere. In general αA is bounded. For example απ/µ lies between απ when µ = |•| and 1/αµ when 

π = |•|. The former follows from the definition of the multifractal spectrum of π and the latter 

follows from (3.18) and the definition of the multifractal spectrum f (π/µ), via the Legendre 

transform of τπ/µ above. 

From the “monofractal” CMF for π = µ to the more general case discussed above, it is 

evident that, the stronger the correlation between π and µ is, the narrower f(αA) becomes and vice 

versa. Since CMF is derived from the same L(0), this statement holds regardless of the “point of 

view,” A = π/µ or µ/π. Thus, one can use the width of the multifractal spectrum of the CMF, 

f(αA), to measure the multifractal correlation in jointly fluctuating scale-free processes.  

          / /max minqW I q q        (3.20) 

where q Iq = [qmin , qmax]. A smaller W would be associated with stronger multifractal coupling 

and vice versa [59]. 

Consider two CMFs 1
/   and 2

/  . The functional difference can be used to quantify the 

difference in correlation between the CMFs.  

         

1 2
/ /

qI

p
q

dq

I

    








     
 (3.21) 

where Iq is the interval of q where both the CMFs are obtained. Switching the role of q and p, 

another value for the functional difference can be obtained 
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1 2
/ /

pI

q
p

dp

I

    








 (3.22) 

where Ip is the interval of p where both the CMFs are obtained. Numerically, ρp and ρq are not the 

same because Iq and Ip are different.  

3.5 Aggregation 
 

By embarking on the joint analysis of EEG and RRi, one must address the fundamental 

difference of the continuous-time EEG process and the discrete-time RRi process. To this end, 

the EEG is aggregated on a beat-to-beat basis so as to ‘compare’ with the RRi [96]. Let RRi and 

its time stamp be r(n), 
1

( ) ( ), 1, 2,...,
n

l
t n r l n


   respectively.  Let the selected EEG signal be 

e(s), s = Δt, 2 Δt,… and Δt = 1/256 sec, e(s) is aggregated based on t(n): 

 
( 1)

( )

( ) ( ) / ( ( 1) ( ))
t n

A
t n

e n e s t n t n
 

   
 
  (3.23) 

It is important to point out that the aggregation process (3.23) is not based on a fixed 

interval as done in the literature since r (n) = t (n+1) – t (n), the beat-to-beat RR interval, 

fluctuates. Numerical tests conducted in the past indicate that the scaling property of e(s) is still 

preserved in eA(n) within the normal range of r(t) [60]. While the aggregation is necessary in 

order to achieve the joint multifractal analysis with RRi, it could have additional benefit of being 

able to reduce the effect from unwanted artifacts, such as scalp muscle twitch, that appears as 

uncorrelated chance artifact in EEG. 
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3.6 Numerical Experiment – Coupled Binomial Cascade 
 

The coupled random binomial cascades studied by Meneveau et al. provide the most 

direct link between CMF and the multifractal correlation [57]. In this case, one can in fact go one 

step further to relate to the underlying generating mechanism. 

Consider the random binomial cascade π, referred to as the π-cascade, generated by 

deterministic weights p0  [0, 1] and p1 = (1 – p0). Let IH, H = h1, …hj denote the interval 

generated in the jth level construction where hi {0,1} and 2 i
ih  is the based-2 coarse-grained 

representation of any Hx I . By definition,  
1

.
j

J

H hj
I p


  Now consider a second binomial 

cascade μ, referred to as the μ-cascade, generated by weights m0, m1 and  
1 j

J

S rj
I m


 , S = 

s1, …sj. With the same addressing scheme, one can write the value of μ –cascade as μ(IH)) = 

1
( )

J

jj
m h

 . 

To couple the cascades, a parameter g and a uniform random variable γ in  0,1 are used. 

Let IL, IH be the offspring intervals created in the construction of the cascades. If γ < g the 

weights assigned to IL, IH for the μ-cascade will depend on exactly how the weights of the π-

cascade are assigned. In particular, if p0 is assigned to IL (IH) of the π-cascade, m0 will be 

assigned to IL (IH) of the μ-cascade and similarly for p1 and m1. If γ > g the weight assignment for 

the cascades will be completely independent from each other. This way, the fractal generating 

mechanisms of the cascades are completely dependent on each other when g = 1, and 

independent of each other when g = 0. When the cascades are completely dependent, it is 

expected that the singularities of π and µ will arise at exactly the same instant in time. When the 

cascades are generated independently, this coincidence is no longer valid. Numerical tests on 

various g values have been conducted and reported in a journal publication [31].  
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For the numerical experiment, 30 sets of data, each for g = 0, 0.3, 0.8, 1 were generated. 

The range of q used in the partition function was limited from -4 to +4 with increments of 0.5. A 

typical realization for g = 0.3 is shown in Figure 3-2. The first order Gaussian wavelet was used 

in the JWTMM outlined above to obtain the CMF. Typical maxima lines of the coupled cascades 

are shown in Figure 3-3.  

 
Figure 3-2 Coupled binomial cascade for g = 0.3. (a) p0 = 0.2, p1 = 0.8 and (b) m0 = 0.4, m1 = 
0.6. 
 

It is observed that the maxima lines are “organized” as expected: namely, they are mostly 

“aligned” when the fractal generation is completely dependent at g = 1 and begin to “mis-align” 

for g < 1. The systematic change of the maxima lines imply changes in the CMF in these cases, 

which results in the different width estimate of the corresponding f (αA) spectrum. This is 

demonstrated below, along with using the functional distance method.  

The joint partition functions are shown in Figure 3-4 (a). The power law scalings are 

found in all cases. The corresponding τ(q,p) is shown in Figure 3-4 (b). 
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Figure 3-3 Typical maxima lines from the π- (blue “”) and µ-cascades (red “•”) with coupling 

parameter g = 1.0, 0.3, 0.8, 0.0, (a) – (d) respectively. 

 
Figure 3-4 The joint partition function Z and the joint scaling exponent τ of coupled binomial 
cascades with g = 0.3. (a) Power law trend of the joint partition function Z(a,q,p). The fitted 
slopes are shown by the solid lines for (q,p) = (-1,1.5), (3.5,-1.5), (0.5, 0.5), (-1, 3.5) from top to 
bottom. (b) τ(q,p), the black line corresponds to L(0). 
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The averaged τπ/µ for each g value is shown in Figure 3-5(a). It is seen, as |q| gets larger, 

that the τπ/µ for different g begins to deviate from each other systematically. Their Legendre 

transform is shown in Figure 3-5(b).  

It is seen that the numerical results follow the reasoning in section 3.4 and show that a 

stronger coupling between the cascades leads to a curvier τπ/µ, and consequently, a narrower 

width of the f (α π/µ) Figure 3-6(a). The example demonstrates how the width of f (α π/µ), W(Iq) 

can be a useful indicator for the multifractal correlation in jointly fluctuating multifractal objects.  

 

 
Figure 3-5 (a) τπ/µ, “•”, “○”, “*”, “ ” correspond to g = 0, 0.3, 0.8, and 1 respectively. (b) f(α π/µ) 
of the same cascades in (a). 

 

To compute the functional difference (3.21) and (3.22), two binomial cascades without a 

random variable forming a completely dependent cascade such that g = 1, were created. The 

resulting τπ/µ was used as a reference to compute ρp and ρq and are shown Figure 3-6 (b) and (c). 

Both ρp and ρq metrics increase as the difference between the cascades increase. 
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Figure 3-6  (a) W(Iq), Iq = [0.3,-0.3] (“Δ”), [0.5, -0.5], (“ ”) and [1,-1] (“○”). (b) ρp, (c) ρq for 
coupled binomial cascades  
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Chapter 4  The Central Component and HRV in HUT – 
Frequency-Domain Assessment 

 
In this chapter, the result from the frequency domain approach applied to the fluctuation 

of RRi and EEG data is given. The main advantage of the frequency domain approach is the 

known physiological correlates of the RRi and EEG spectral properties that can provide the 

preliminary interpretation and reference for the results of this research. 

For the heart rate, changes in the LF range of the RRi are generally regarded as a 

quantitative marker for both SNS and PNS activities, and the HF component can be related to 

mainly the PNS activity [11, 82]. The origin of the LF component has been suggested by the 

“baroreflex resonance” hypothesis [97]. In this explanation, the LF originates from the so-called 

Mayer waves, when the baroreceptors sense blood pressure changes, which results in the 

subsequent ANS modulations on the circulatory system. These modulations undergo a 180º 

phase shift at the frequencies of approximately 0.1 Hz because of the delay characterizing neural 

modulations of peripheral resistances. This is believed to form a positive feedback loop, 

underlying the oscillation [98].  

The origin of the HF component of RRi has been less controversial than the LF 

component. In particular, it is largely believed to reflect PNS activity. Among others, the HF 

component in short-term recording also characterizes the important respiratory sinus arrhythmia 

resulting from the interaction between respiration and SNS activity [99]. In the controlled 

breathing protocol, RSA is more pronounced and is typically manifested in the narrow band 

characteristics of the HF range in the RRi frequency spectrum. In spontaneous breathing, where 

subjects are allowed to breath at his/her own pace and is used in the current protocol, the 

property of RSA for medium to long RRi record is less noticeable due to the power law broad 

band background of the spectrum [35]. According to the Task Force document by the European 
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Society of Cardiology and the North American Society of Pacing and Electrophysiology [11], the 

range [0.04, 0.15] Hz is considered to cover the LF range and [0.15, 0.4] Hz to the HF range.  

For the EEG data, there is a large volume of literature on the characterization of its 

frequency contents and the underlying cognitive functions; see the excellent book by 

Niedermeyer [71]. The reference to the states of alertness and relaxation that are likely provoked 

by the HUT maneuver are relevant to the current research. The specific frequency components in 

connection to these brain states have been identified by the so-called delta, alpha and beta 

rhythms.  

The alpha band is perhaps the most well-known of all. It is roughly defined in the [8,13] 

Hz of the frequency spectrum of EEG and is more pronounced when taken in the parieto-

occipital, occipital areas of the scalp [72]. The signal power in the alpha band was found to be 

reduced in the eyes open state and upon the presentation of visual stimuli [100-102, 102]. The 

neural origins of these oscillations have in fact been demonstrated by recordings at the cellular 

level [103]. Enhanced alpha rhythm has also been recorded during mental tasks in the 

frontoparietal network [104].  Recent studies have suggested the alpha state is more active than 

previously thought [105]. Furthermore, the origin of oscillations in the alpha band has been 

linked to thalamic-occipital interactions [Gomez]. 

Beta band activity is largely identified with the primary motor cortex, where oscillations 

involve pyramidal neurons projecting to the spinal cord. These oscillations are coherent with 

similar oscillations in corticomuscular recording, and are abolished during movement [106]. The 

function of beta band activity remains unclear, but recently it has been suggested that it is 

involved in sensorimotor integration [107].  It is generally associated with normal waking 

consciousness [108]. 
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Theta band activity originates from the cortico-hippocampal interactions [109]. Theta 

band activity in the hippocampus has been linked to mnemonic processes and spatial information 

processing. Aftanas et al. [110] reported persistent increase in theta band power during the 

presentation of emotional stimuli that induced sympathetic activation. 

4.1 Relative EEG-ANS index 
 

To capture potential CNS, ANS interactions in the HUT maneuver, a new variable to 

measure the change in the frequency contents of one nervous system relative to the other is 

introduced as the  relative EEG-ANS index. 

Specifically, recall that the RRi and EEG data are first segmented, and the signal power 

of r(n) in LF, and HF are estimated using the Lomb method and the signal power of EEG (P) is 

estimated using the FFT (section 3.1). Let G = UPR or SUP, hereafter. As mentioned above, 

there is SNS activation and PNS withdrawal after the HUT maneuver. This can be characterized 

by the so-called sympatho-vagal index defined as  

      / /G G G
LF HF LF HFA j P j P j  (4.1) 

 
Recall from section 3.1, that j refers to the segment number. The HUT effect measured by 

the ANS activity alone is thus described / /
UPR SUP
LF HF LF HFA A . To characterize the CNS response 

under ANS perturbation, for b = theta, alpha, beta, and for d = LF, HF, LF/HF, the ratio of EEG 

spectral power and RRi spectral power as a relative EEG-ANS index is calculated: 

      , /G G G
b d b dR j P j A j  (4.2) 

where G G
LF LFA P  and .G G

HF HFA P  Since the HUT effect in ANS results in / /
UPR SUP
LF HF LF HFA A , 

 , /
UPR
b LF HFR j  tends to be small. A systematic change in ,

UPR
b dR  relative to the control in SUP 

implies CNS-ANS interaction and the potential CNS influence in HRV. In this research, the 
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increment of the averaged  , , /G G
b d b d Kj

R R j N  is used to characterize the HUT effect from 

the two nervous systems: 

 , , ,
UPR SUP

b d b d b dT R R   (4.3) 

A Tb,d ~ 0 implies a large EEG-ANS index in UPR as a result of a strong CNS response 

under the ANS perturbation and vice versa.  

4.2 Results 
 

The RRi and EEG data from a typical subject are shown in Figure 4-1.  In Figure 4-2, the 

normalized spectral powers P, of EEG and RRi for a typical subject are shown as they vary with 

each segment. It is clear that / /
UPR SUP
LF HF LF HFA A , which characterizes the expected increase of the 

sympatho-vagal index in HUT.  This realization holds for all the subjects, indicating the full 

effect of SNS activation and PNS withdrawal from the HUT maneuver (Table 3).  

Figure 4-3 shows the EEG – ANS indices  ,
G
b dR j  for S6. Given the EEG-ANS index, the 

Tb,d was calculated according to (4.3) for the same subject. To search for an indication of the 

central influence, a scatterplot was constructed and the subsequent regression analysis was 

conducted for Tb,d for different b, d combinations. After a systematic comparison, the 

combination involving the theta, beta, bands and theta, alpha reveals the strongest statistically 

significant correlation based on the regression fits and p < 0.01 see Figure 4-4(f), (g), (i) and the 

corresponding correlation coefficient and p values in Table 4.   
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Figure 4-1 Data Segments from S6. (a) RRi during SUP, (b) EEG during SUP, (c) RRi during 
UPR, (d) EEG during UPR. 
 

 

Figure 4-2 Normalized EEG spectral power of S6. (a) UPR
LFP  (black) and SUP

LFP  (blue), (b) SUP
thetaP , 

(c) UPR
thetaP , (d) UPR

HFP  (black) and SUP
HFP  (blue), (e) SUP

alphaP , (f) UPR
alphaP , (g) /

UPR
LF HFA  (black) and /

SUP
LF HFA  

(blue), (h) SUP
betaP , (i) UPR

betaP . The horizontal red lines are their respective means.  
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Table 3 Spectral Components of EEG and sympathovagal index for all subjects 
 

 A Ptheta Palpha Pbeta 
 SUP UPR SUP UPR SUP UPR SUP UPR 

 
S1 1.17±0.78 3.61±2.1 0.139±0.025 0.099±0.025 0.345±0.067 0.173±0.046 0.225±0.032 0.243±0.06 

 
S2 0.608±0.37 9.89±5.4 0.17±0.04 0.101±0.064 0.314±0.068 0.129±0.057 0.216±0.034 0.355±0.12 

 
S3 3.02±1.4 12.9±4.8 0.197±0.039 0.204±0.037 0.203±0.044 0.235±0.04 0.194±0.038 0.176±0.038 

 
S4 2.27±0.99 3.63±1.6 0.13±0.02 0.0867±0.015 0.109±0.06 0.0747±0.041 0.0534±0.033 0.0699±0.047

 
S5 0.723±0.53 13.6±5.7 0.138±0.028 0.164±0.024 0.478±0.056 0.389±0.057 0.155±0.033 0.161±0.028 

 
S6 1.03±0.52 7.86±4 0.132±0.032 0.14±0.027 0.238±0.065 0.222±0.043 0.209±0.048 0.162±0.04 

 
S7 2.51±1.3 7.36±4.2 0.194±0.054 0.137±0.032 0.272±0.14 0.537±0.055 0.155±0.078 0.109±0.016 

 
S8 0.966±0.67 1.47±0.68 0.193±0.071 0.173±0.034 0.47±0.13 0.332±0.058 0.126±0.023 0.206±0.025 

 
S9 1.21±0.51 14.4±6.5 0.141±0.036 0.183±0.037 0.517±0.1 0.393±0.078 0.141±0.043 0.168±0.031 

 
S10 0.58±0.31 9.85±6.3 0.214±0.03 0.236±0.028 0.259±0.03 0.273±0.033 0.215±0.038 0.209±0.019 

 
S11 1.12±0.41 8.54±3.7 0.158±0.041 0.148±0.032 0.279±0.1 0.353±0.099 0.253±0.08 0.201±0.044 

 
S12 1.17±0.42 12.6±5.7 0.161±0.027 0.105±0.035 0.353±0.063 0.295±0.082 0.175±0.034 0.231±0.049 

 
S13 0.477±0.21 1.27±1.2 0.0261±0.0059 0.222±0.031 0.0465±0.011 0.14±0.022 0.121±0.028 0.171±0.021 
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 , ,theta HF alpha HFT T  (4.4) 

 , / , /theta LF HF beta LF HFT T  (4.5) 

 , / , /theta LF HF alpha LF HFT T  (4.6) 

It is important to note that the reference to /
G
LF HFA is necessary to achieve the “data 

collapse” for (4.5). For example, the regression analysis shows a significant drop in correlation 

coefficient from r = 0. 8 to r = 0.05 when using only the increment of the EEG spectral 

component Tb vs Tb,LF/HF.  It is also important to point out that the /
G
LF HFA  trend does not directly 

translate into some of the linear trend observed above. These results derived from (4.4) ~ (4.6) 

have in fact a very specific meaning in the context of multifractal HRV. This is shown in the 

next chapter using the joint multifractal analysis. 

 

Figure 4-3 ,
SUP
b dR  (blue) and ,

UPR
b dR  (black) for S6. (a) ,

G
theta LFR , (b) ,

G
theta HFR ,  (c) , /

G
theta LF HFR , (d) 

,
G
alpha LFR , (e) ,

G
alpha HFR ,  (f) , /

G
alpha LF HFR ,  (g) ,
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beta LFR , (h) ,

G
beta HFR , (i) , /

G
beta LF HFR  
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Figure 4-4 Scatterplot of correlation relationships. S2, S6 S10 and S11 (green “•”) and the rest 
(blue “•” ). S5 (red “ ”) and S13 (red ‘o’) are marked separately. The regression line 
coefficients are shown in Table 4. 
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Table 4 Regression lines and correlation coefficients for Figure 4-4 
 

Figure 4-4  Regression line Correlation coefficient r, (p) 
(a) y = -0.9x + 0.04 0.62 (0.02) 

 
(b) y = 1.2x -0.18 0.47 (0.66) 

 
(c) y = 0.4x 0.65 (0.02) 

 
(d) y = 0.5x + 0.4 0.59 (0.03) 

 
(e) y = 0.75x + 1 0.47 (0.10) 

 
(f) y = 0.4x + 0.3 0.79 (0.00) 

 
(g) y = 0.9x + 0.02 0.80 (0.00) 

 
(h) y = 1.4x – 0.086 0.71 (0.01) 

 
(i) y = 0.4x + 0.01 0.78 (0.00) 

 
(j) y = -0.07x 0.05 (0.86) 

 
(k)  y = -1.5x 0.64 (0.02) 

 
(l) y = 0.1x 0.22 (0.47) 
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Chapter 5  The Central Component in HRV – Time-Domain 
Assessment 

 

In this chapter, the potential central component of the fractal HRV is studied using the 

time domain fractal analysis. The fractal behavior of RRi has also been investigated under the  

autonomic perturbation of HUT. Based on short term RRi recordings, Butler et al. reported a 

decrease in fractal dimension using the power law spectrum exponent [63, 111]. More recently, 

similar results have been provided using detrended fluctuation analysis [112, 113].  Given its 

multifractal nature, [114] these results only describe one (among infinite) scaling exponent in 

HRV and did not describe the full scope of multifractal HRV in HUT. Nevertheless, they imply 

that a qualitative change of the multifractal HRV takes place under the autonomic perturbation of 

HUT.  

Scale-free property in EEG recordings has been reported in both humans [115-119] and 

animals [120]. EEG recorded during epileptic seizures has been reported to be multifractal [121]. 

The scale-free characteristics of EEG were found to vary between individuals, age [122], 

qualitatively different brain states, between the REM and non-REM sleep [123], and exhibit self-

organized criticality in the switching dynamics between the EEG background fluctuation and 

(narrow band) alpha rhythm in healthy humans [105]. 

Given the extensive integration between ANS and CNS in the higher brain centers, it is 

plausible that the autonomic perturbation from HUT can induce variation in the multifractal 

HRV dynamics. Based on this premise, the objective of this chapter is to use time domain fractal 

tools to find clues of such a central influence. Specifically, a novel technique was developed to 

extract the common multifractality among time series showing fractal fluctuation. Evidence that 
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the question of a central multifractal connection can be answered affirmatively in the current 

HUT maneuver will be presented. 

5.1 Singularity Analysis 
 

In this section, separate analyses of the fractal property of RRi and EEG are given using 

WTMM as described in section 3.2.1. These results not only provide a rough classification of the 

signals, they also serve as an important reference for the joint multifractal analysis given in 

section 5.2 below. 

The RRi r(n), EEG, e(s) and the aggregated EEG eA(n) (3.23) from a typical subject are 

shown in Figure 4-4 below. 

 
Figure 5-1 Data segments from S6. (a) RRi SUP, (b) RRi UPR, (c) EEG SUP, (d) EEG UPR, (e) 
Aggregated EEG SUP, (f) Aggregated EEG UPR. 

 

The fractal properties of r(n) and eA(n) are analyzed using the WTMM approach 

described in Chapter 3.  The 3rd 4th and 5th Gaussian wavelets were used as the analyzing 

wavelet. These different Gaussian wavelets yielded only minor differences. In this section, the 
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results based on the 4th order Gaussian derivative wavelet for r(n) and the 3rd order Gaussian 

wavelet for eA(n) will be presented. The range of q was limited to [–2, 2] with increments of 

0.05. 

Figure 5-2 shows the typical wavelet modulus maxima lines of r(n) for S6. The 

multifractal spectra f (α) of r(n) for all the subjects are shown in Figure 5-3. The wavelet 

modulus maxima lines of eA(n) of the same subject is given in Figure 5-4.  The multifractal 

spectra f (α) of eA(n) for all the subjects are shown in Figure 5-5. 

 
Figure 5-2 The wavelet modulus maxima lines for r(n) shown in the time scale plane (n,a) for 
S6 in (a) SUP, (b) UPR. Scaling plot of the partition function Z(a;q) in (c) SUP and (d) UPR. 
The fitting ranges are bounded by the vertical dashed lines and the fitted slopes are shown by the 
solid red lines for q = 1.5, 0.5, 0 -0.5, -1.5 (top to bottom). 
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Figure 5-3 f(α) of RRi in SUP, (blue “”), and UPR (“red +”) for subjects S1 ~ S13 in (a) ~ (m), 
respectively. 

 

 
Figure 5-4 The wavelet modulus maxima lines for eA(n) shown in the time scale plane (n,a) for 
S6 in (a) SUP, (b) UPR. Scaling plot of the partition function Z(a;q) in (c) SUP and (d) UPR. 
The fitting ranges are bounded by the vertical dashed lines and the fitted slopes are shown by the 
solid lines for q = 1.5, 0.5 0, -0.5, -1.5, top to bottom. 
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Figure 5-5 f(α) of eA, in SUP (blue “”), and UPR (red “+”) for subjects S1 ~ S13 in (a) ~ (m), 
respectively. 
 

It is important to observe that, even with the expected SNS activation and PNS 

withdrawal in the current HUT maneuver, the f() spectra of r(n) do not show a systematic trend 

going from SUP to UPR. These spectra suggest that SNS and PNS activities may represent only 

two of many “degrees-of-freedom” of the multifractal HRV dynamics. This observation is also 

significant since the f() spectrum of r(n) can be systematically altered by using particular 

chemical compounds to dampen the neurotransmission of ANS (such as atropine for PNS 

blockade and beta-blocker for SNS blockade). The missing of a systematic trending behavior 

indicates that the multifractal HRV has a different expression when both the SNS and PNS 

branches are active.  

To characterize the HUT effect, the finite width of f (α), ( ),G
EEG qW I ( ),G

RR qW I  qIq = [qmin, 

qmax], G = UPR or SUP, is calculated. According to the definition (Chapter 3), a large  

exponent interval means more complex fluctuation given by a wide range of singularity 

strengths. Thus, one can use these width estimates to define a complexity index 
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    /UPR SUP
v v q c qU W I W I  (5.1) 

where v  = eA or RRi. Equation (5.1) provides a convenient interpretation of the HUT effect: 

when Uv > 1, the current HUT maneuver results in a transition towards increased multifractal 

complexity, and vice versa.  

Figure 5-6 shows the UeA
 and URRi. Note that due to the limited time that a HUT test can 

be performed, the full width of f (α) cannot be obtained. The ratio Uv given above is found to be 

robust varying slightly with the Iq interval except for the S5 in Figure 5-6(a), and S3, S12, S13 in 

Figure 5-6(b). Note that for S5, S12 and S13, there is no qualitative change in Uv, which remains 

greater than 1.  Five subjects (S2, S5, S6, S10, S11 and S13) had URRi > 1, meaning a shift to 

more multifractal complexity for RRi with tilt. The remaining subjects indicate a transition to a 

narrower f (α) or reduced multifractal complexity. Five subjects (S2, S10, S11, S12, and S13) 

had UeA
 > 1, meaning a shift to more multifractal complexity in EEG.  

 
Figure 5-6 (a) UeA

 and (b) log(URRi). For Iq = [-0.5,0.5] (red “•”), Iq = [-1,1] (blue “”), and Iq = 

[-2,2] (green “”). 
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5.2 Relative Multifractal Analysis and Multifractal Correlation 

The comparisons made above are based on separate multifractal analyses of RRi and 

EEG data. Such a comparison can be made rigorous for certain processes in theory. However, 

different fractal structures can yield very similar appearance and makes such comparisons 

practically impossible due to finite resolution [31]. For this reason, it is important to employ the 

joint multifractal analysis and relative multifractality concept to directly analyze the fractal 

elements in multiple data sets (Chapter 3). The goal for this section is to present the results that 

describe the relative multifractality and fractal correlation between RRi and EEG. 

As described in Chapter 3, the joint multifractal analysis can be carried out using the 

JWTMM technique. To this end, the aggregated EEG and RRi were first integrated (Section 

3.2.2). JWTMM was then applied using the first and second order Gaussian derivative wavelets. 

Higher order Gaussian derivative, Daubechies family and Coiflet family wavelets were 

compared against the first and second order Gaussian derivative wavelet [31]. They were found 

to lead to more fluctuation in Z(a;q,p) and subject the estimation of τ(q,p) to more statistical error 

for large negative moments q1 and q2. At the present time, the author does not have any further 

insight as to why the lower order Gaussian derivative wavelet yields better results in JWTMM. 

In this dissertation, the results based on the first order Gaussian derivative wavelet are reported. 

The range of q, p are both limited to [–3, 3] with every increment of 0.2.  

The maxima lines and the scaling of the joint partition function from a typical subject are 

shown in Figure 5-7. Using the fractal property of eA(n) to measure the fractal property of r(n), 

one arrives at the CMF, τR/E , and the corresponding αR/E, f(αR/E) (section 3.4). These results from 

S6 are given in Figure 5-8. 
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Figure 5-7 The wavelet modulus maxima lines for r(n) (blue “”),  and eA(n) (red “•”) shown in 
the time scale plane (n,a) for S6 in (a) SUP, (b) UPR. Scaling plot of the partition function 
Z(a;q,p) in (c) SUP and (d) UPR. The fitting ranges are bounded by the vertical dashed lines and 
the fitted slopes are shown by solid lines for (q,p) = (-2,2), (2,2), (0,0),(2,-2),(-2,2) 
from top to bottom. 

 

In Figure 5-9, τR/E for all the subjects are shown. It is important to note that the τR/E  for 

S2, S6, S10, and S11 are almost flat implying a narrow f(αR/E). This observation will be revisited 

shortly. 
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Figure 5-8 Multifractal factorization result from S8. (a) τ (q,p) SUP, (b) τ (q,p) UPR. The black 
line in (a) and (b) is the location of L(0), (c) τR/E SUP (d) f(αR/E) SUP (e) τR/E UPR  and (f) f (αR/E) 
UPR. 
 

 
Figure 5-9 τR/E in SUP, (blue), and UPR (red) for subjects S1 ~ S13 in (a) ~ (m), respectively. 
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Figure 5-9, S2, S6, S10 and S11. This is expected since these subjects have a rather flat τR/E, 

which implies more monofractal-like property. 

From the same idea of complexity index used in section 5.1, consider the ratio of the 

width estimate of f (αR/E) in UPR and SUP,    / / //UPR SUP
R E R E q R E qU W I W I . Based on the 

interpretation given in section 3.4.2, the width and the multifractal correlation have a reciprocal 

relation. Hence, a large UR/E > 1 implies the transition towards more multifractal complexity 

from SUP to UPR. Shown in Figure 5-10(b) are the complexity index of all the subjects based on 

the CMF calculation for Iq = [-2 2], [-1 1], and [-0.5 0.5]. Due to their small / ( )UPR
R E qW I , S2, S6, 

S10, S11 also have a small /R EU and thus exhibit a stronger multifractal correlation in UPR 

compared to SUP.  

This result shown in Figure 5-10(b) has an interesting parallel to the multifractal HRV 

given in Figure 5-6. As shown earlier, these same subjects also experienced increased HRV 

multifractal complexity from SUP to UPR. Two other subjects S5 and S13 shown in Figure 5-6 

also exhibited increased HRV multifractal complexity from SUP to UPR but did not match the 

parallel as these other four subjects. However, it should be noted that the health issues of S5 are  

 
 

Figure 5-10 f(αR/E) results. (a) /
UPR

R EW  (red “•”) and /
SUP

R EW  (blue “o”), Iq = [-2, 2] (b) UR/E, Iq = [-

0.5, 0.5], (red “•”), Iq = [-1, 1], (blue “o”), Iq = [-2, 2] (black “ ”).  
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mentioned in Chapter 2 and that S13 is likely an outlier with higher than usual theta power 

(Figure 4-4). This subject also indicated sleepiness during the tilt test. 

5.2.2 Functional Distance 
 

In this section, the results based on the functional distance (3.31) between τR/E in SUP and 

UPR are presented. The result of a typical subject (S3) is shown in Figure 5-11. It is observed 

that the ρq and ρp yields very different results from the /R EU . In contrast to the case of binomial 

cascades shown in Figure 3-6(b) and (c), there is no consistency between ρq, ρp and UR/E. A 

closer look at the τR/E (Figure 5-9) and that of the binomial cascades (Figure 3-5) reveals the 

issue of normalization.  

Since the cascades were normalized to satisfy the condition of a probability measure, i.e., 

1    , there is, however, no such constraints imposed on the experimental data. In that 

light, it should be mentioned that the fractal correlation estimate /
G

R EW is based on the derivative 

of CMF, and is not influenced by the issue of normalization.  

 
Figure 5-11 Functional distance τR/E of S3 measured from (a) common q intervals, (b) common p 
intervals. The shaded region is where the functional norm is taken. (c) ρq for all 13 subjects based 
on (a).  (d) ρp for all 13 subjects based on (b). 
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5.3 Surrogate Data Analysis 
 

The multifractal correlation results should be shown to be “particular” and to not describe 

chance events. To this end, RRi and aggregated EEG surrogates are constructed and the results 

compared. Similar to a test of statistical significance, the surrogate analysis describes a 

systematic method to examine whether the observed property is genuine or a coincidence [124]. 

In this work, two algorithms were used to create surrogate data, random permutation (shuffle) 

and the iterated amplitude adjusted Fourier transform (iAAFT) method. They are first described 

in the following section and then analyzed by using the same procedure for the original data.  

5.3.1 Construction and Singularity Analysis 
 

Let x(t) be the data of interest. The shuffled surrogate is achieved by simply reordering 

x(t) along the time axis via random permutation. This results in removing any existing 

correlation in the data. For every r(n), eA(n) collected in SUP and UPR, 55 sets of randomly 

permutated RRi rs(n) and aggregated EEG eAs(n) were generated. Typical realizations of rs(n) 

based on S6 in SUP are shown in Figure 5-12 (a) and (b). The PSD of these surrogates are shown 

in Figure 5-13 (a) and (b). The appearance of the flat power spectrum indicates that the 

correlation in the data has been completely destroyed by the shuffling process.  

The amplitude adjusted Fourier transform (AAFT) method was derived based on the 

hypothesis that the non-Gaussian distribution is not a result of the system characteristics, but 

rather a manifestation of the measurement system [125]. The actual observation is thus a 

composition of the ‘distortion’ from the measurement and the original data; i.e., s(x) was 

observed, rather than x(t). The objective of AAFT is to build an alternative version of the 

observed data s(x), prx , which preserves all the underlying properties except that the amplitude 
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Figure 5-12 Surrogate data created from S6. (a) rAs(n) in SUP, (b) eAs(n) in SUP, (c) rpr(n) in 
SUP,  and (d) eApr(n) SUP. 
 

 
Figure 5-13 Power spectrum density of surrogates shown in Figure 5-12. The blue line is the 
PSD of the original data, and the red line is the PSD of the surrogates. (a) rS (n) from SUP, (b) eS 

(n) from SUP, (c) rpr (n)from SUP,  and (d) eApr(n) from SUP. 
 

1000 2000 3000 4000

180
200

220
240
260

r S
(n

)

n
0 1000 2000 3000 4000

-2

0

2

e S
(n

)

n

1000 2000 3000 4000

180
200

220
240

260

r pr
(n

)

n
0 1000 2000 3000 4000

-2

0

2

e A
pr

(n
)

n

(a) (b)

(c) (d)

-6 -4 -2 0
0

5

10

15

20

Frequency

P
ow

er

RRi

-6 -4 -2 0
-8

-6

-4

-2

0

Frequency

P
ow

er

Aggegated EEG

-6 -4 -2 0
0

5

10

15

20

Frequency

P
ow

er

-6 -4 -2 0
-8

-6

-4

-2

0

Frequency

P
ow

er

(a) (b)

(c) (d)



58 
 

distribution of prx being ‘restored’ to the Gaussian form. It is an attempt to invert the observation 

s(x) by rescaling the data into a Gaussian distribution. However, the procedure is biased to a 

flatter spectrum since the inverse of s(x) is not available [124]. The iterated AAFT (iAAFT) 

allows the adjustment of the spectrum and amplitude distribution to be made iteratively[126]. To 

summarize, the iterative procedure can be given in the following 7 steps: 

1) Obtain the squared amplitudes of the Fourier transform of x(t), 2
kX , k = 1,2,.. 

2) Create a random permutation of x(t) , 0
sx . 

3) Create the inverse Fourier transform, i
sx for i = 1, from the original squared amplitudes 2

kX  

but keeping the phase from 1i
sx  . 

4) Rank order i
sx  according to x(t). 

5) Obtain the squared amplitude of the Fourier transform of i
sx , 2

,k iX .  

6) Calculate the difference, di = 2 2
,k i kX X . 

7) Repeat step 3 to 6 for i = 2, 3… until di+1 >= di. 

The final iteration produces a surrogate i
sx  with a randomized phase and a similar PSD. 

For this method, 55 sets of iAAFT RRi rpr(n) and aggregated EEG eApr(n) are also generated. 

An example from a typical subject is shown in Figure 5-12 (c) and (d). The PSD of the 

iAAFT surrogates are shown in Figure 5-13 (c) and (d). For the rpr(n), it is clear that the 

surrogate exhibits a similar PSD. The PSD of eApr(n) shows the flatness bias in the lower 

frequency part of the spectrum associated with earlier methods [124] still exists with aggregated 

EEG. This is because di does not converge to 0 in the numerical method and further iteration 

does not cause a change in the values of i
sx . 
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5.3.2 Relative Multifractal Analysis 
 

All the surrogates are processed based on the same data analysis procedure for the 

original data. The range of q, p are both limited to [–3, 3] with increments of 0.2. The maxima 

lines and the scaling of the joint partition function from S6 are shown in Figure 5-14. The CMF 

associated with eAs(n) and rAs(n), eApr(n) and rApr(n) are shown Figure 5-15, for the same subject.   

 
Figure 5-14 The wavelet modulus maxima lines for r(n) (blue “”),  and eA(n) (red “•”) shown in 
the time scale plane (n,a) for S6 surrogates in (a) SUP shuffled, (b) UPR iAAFT. Scaling plot of 
the partition function Z(a;q,p) in (c) SUP and (d) UPR.  The fitting ranges are bounded by the 
vertical dashed lines and the fitted slopes are shown by the solid lines for (q,p) = (-2,2), (2,2), 
(0,0),(2,-2),(-2,2) from top to bottom. 
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data (blue “” and red “•”). This suggests that the fractal correlation observed in Figure 5-10 is 

likely to be a genuine property of the underlying data. 

 

 
Figure 5-15 Multifractal factorization result from S6 surrogates. (a) τ (q,p) from shuffled 
surrogate SUP, (b) τ (q,p) from iAAFT surrogate SUP, (c) τR/E from shuffled surrogate SUP, (d) f 
(αR/E) from shuffled surrogate SUP, (e) τR/E from iAAFT surrogate SUP, and (f) f (αR/E) from 
iAAFT surrogate SUP. 
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Figure 5-16 f (αR/E) results from surrogate data. Error bars are the standard deviation of the 
surrogates, SUP (blue “”), UPR (red “•”). (a) 

/
SUP

R EW from shuffled data, (b) 
/

SUP
R EW from iAAFT 

data, (c) 
/

UPR
R EW from shuffled data, (d) 

/
UPR

R EW from iAAFT data, (e) log(UR/E) from shuffled data, 

(f) log(UR/E) from iAAFT data. In (e) and (f), the error bars are the standard deviation of 
surrogates, and UR/E from original data (magenta “•”). 
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Chapter 6  Discussion and Conclusion 
 

 The main result of this research is the evidence of a central component that varies with 

HRV multifractal complexity. To the best of the author’s knowledge, the central influence on the 

multifractal property of HRV has not been described before. In this chapter, the current research 

findings are reviewed and discussed. Their implications are offered and limitations are noted. 

Finally, the conclusion and future research are given in the last section. 

6.1 Discussion of Results 
 

Based on the sympathovagal index /
Z
LF HFA  (Table 3), it is clear that all the test subjects 

experienced the HUT effect of SNS activation and PNS withdrawal [68, 127]. However /
Z
LF HFA  

did not completely capture the qualitative features of the subjects’ HRV multifractal complexity 

(Table 3). In contrast, the fractal correlation results provide a better parallel with the multifractal 

HRV property. Specifically, a closer examination of Figures 5-6(b) and 5-10(b) reveals that S2, 

S6, S10, and S11 had an increase in RRi multifractal complexity in UPR posture and a clear 

increase in multifractal correlation, as seen from the smaller width estimate of their f (αR/E). 

Similarly S1, S3, S4, and S8 had a decrease in RRi multifractal complexity after tilt and a 

decrease in multifractal correlation. Discounting the 2 subjects who revealed additional medical 

conditions after the test (see below), it was found that, in 8 out of 11 subjects, the increased 

(decreased) HRV multifractal complexity is correlated to a stronger (weaker) CNS-ANS 

multifractal correlation under the ANS perturbation of HUT. The consistent grouping of these 

subjects, one by the CMF based on EEG and RRi fluctuation and one by the RRi data, suggests a 

central-autonomic component in the HRV multifractal dynamics. In addition, judging from 

Figure 5-6, where no apparent relationship between the multifractality of RRi and aggregated 
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EEG can be found, it can be inferred that it is necessary to analyze the heart rate and brain data 

together in a multivariate approach. The main finding described above can further be supported 

by the results of the surrogate and spectral measures.  

The two types of surrogates used in this research continue to exhibit multifractality 

(Figure 5-15). This is consistent with the current literature [128]. However, the width estimates 

of the f(αR/E) of the RRi and EEG surrogates are clearly different. In particular, the width 

estimates of the fractal correlation between shuffled surrogates are similar among all subjects. 

They suggest the surrogates have a qualitatively different behavior compared to the original data. 

The unique characteristics captured by the fractal correlation measure were also present 

in the spectral increment analysis defined by the ratio of the EEG and HRV spectral components. 

In particular, the subgroup S2, S6, S10, S11 can once again be singled out. While showing strong 

central-autonomic fractal correlation, the spectral increments of this group are also more 

pronounced than the rest (Figure 4-4(g)), suggesting the potential link between the effect from 

UPR posture on the underlying multifractal complexity and central-autonomic fractal correlation. 

To the best of the author’s knowledge, there is little work on the multifractal HRV in 

HUT. The current approach differs from the literature by considering the multifractal spectrum 

with infinite scaling exponents. The HRV fractal property conducted in the past considered only 

one scaling exponent, such as the scaling exponent of the 1/f power law spectrum of RRi or the 

scaling exponent derived from the detrend fluctuation analysis see eg. [129] and references 

therein. Based on the fractal dimension defined by the power law spectral exponent of RRi, a 

number of studies reported a decrease of the fractal dimension in HUT [111-113, 130, 131], 

implying the transition towards a “simpler” fluctuation pattern. However, the fractal dimension 

so defined is a monofractal approach, which is not consistent with the multifractality in HRV. As 
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given in Figure 5-6(b), it is shown that it is in fact possible to have a range of multifractal 

“behavior.” Tulppo et al. reported relative constant HRV complexity in HUT using the 

approximate entropy measure [128]. However, approximate entropy is defined to characterize 

the overall irregularity of the signal, including an unstructured random noise component [132]. 

The current approach using fractal correlation targets only on the scale-free component of the 

fluctuation and appears to better describe the underlying HRV scale-free dynamics. 

The spectral analysis offers other interesting insights based on some of the known 

physiological correlates. Among the EEG spectral increments themselves (without dividing the 

HRV spectral indices), the theta, beta bands  (Figure 4-4 (j)) and theta, alpha bands (Figure 4-4 

(l)) are poorly correlated. Only the spectral increments between the beta and alpha bands show a 

significant negative correlation (Figure 4-4 (k)). The reciprocal change of these two EEG 

characteristics was also observed in healthy subjects who underwent mental tasks with increased 

SNS activity [133]. This is an intuitive interpretation since the beta band activity characterizes 

mostly cognitive processing and intense concentration, whereas the alpha band characterizes the 

opposite mental state of calm and relaxation. During HUT, there is an increase of alertness [130], 

which could contribute to the negative correlation between these two EEG bands. However, 

when normalized by the HRV spectral LF, HF components, the correlation between the beta, 

alpha spectral increments is much less significant than the other pairs, suggesting a weaker 

central-autonomic association with these two EEG bands.  

In contrast, the normalized spectral increments are significantly correlated when the theta 

band is involved. As mentioned above, S2, S6, S10, S11, who exhibit the stronger fractal 

correlation in the group (UR/E << 1), can once again be singled out in the corresponding spectral 

increment relationships. For example, this subgroup of subjects is immediately identified from 
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the Ttheta LF/HF and Tbeta,LF/HF relationship (Figure 4-4 (g)), followed by, after discounting subject 

S5 (see below), the Ttheta,LF/HF and Talphs,LF/HF relationship (Figure 4-4 (i)). There is some evidence 

that could support the present findings. Postural change to UPR has been shown to result in 

increased attention span and altered EEG theta band activity [85, 87]. These studies are 

consistent with the presence of the theta band in these relationships. In addition, Cole [134] has 

noted the increase of EEG beta band activity along with SNS activation in HUT, which supports 

the beta band activity in the present finding. 

Given the distinct reactivity from the group, S2, S6, S10, S11, it is tempting to find clues 

to relate the subjects’ characteristics to the findings reported in this thesis. Some similarity 

among the subjects was found showing transition towards increased HRV multifractal 

complexity and multifractal correlation from SUP to UPR: S2, S10, S11 are all trained athletes, 

representing various university sport teams. As part of their training routines, they were required 

to undergo endurance training. The effects of athletic training on the ANS control of the heart 

rate has been studied extensively in the past decades [135, 136], and are known to have different 

HRV fractal property [137]. Among the subjects showing transition towards decreased HRV 

multifractality with increased multifractal correlation, S7 and S12 reported that they meditate 

regularly. However, the reported negative correlation between theta band activity and SNS 

activity [138] and positive correlation with PNS activity [139] were not seen in this study. 

Subject S5 reported that he had undergone surgery requiring anaesthesia two days prior to the 

experiment. This subject went through the test without giving any prior notification. The subject 

was also under medication during the tests. This subject’s data were included for completeness. 

Subject S13 reported some “irregular heart rhythm” diagnosed in the past but the arrhythmia was 
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not considered significant. It should be noted that these two subjects were the only two who 

exhibited increased HRV multifractal complexity with reduced multifractal correlation2.  

6.2 Limitations of the current study 
 

A number of limitations exist in the design of the experiment. The number of subjects in 

the study is small. Increasing the number of subjects should provide better statistics to the 

present findings. Although the largest time scale of the analysis is limited by the length of time 

that the tilt test can be performed, for a typical test of 1 hour, it translates into a low frequency 

cut-off at 0.00028Hz which falls into the ULF range. In this case, the results are not expected to 

be affected by this intrinsic factor. However, the length of time that the test can be performed 

does influence the number of heart beats collected, which in turn affects the q-interval used to 

estimate the width of f (R/E). As with most fractal tools, this is because fractal correlation 

analysis relies on estimating a statistical measure to characterize the power law of the joint 

partition function. From that respect, it is desirable to extend the time of the test. However, it is 

conceivable that a prolonged HUT test can introduce additional psycho-physiological factors that 

are difficult to assess. This point will be elaborated in the Conclusion and Future work below. 

Except for subjects S5 and S13, who revealed existing medical conditions before the test, 

the relationship between the central-autonomic fractal correlation and HRV multifractal 

complexity applies to 8 of the remaining 11 subjects. The HRV fractal property is also known to 

vary with age [14-16] and is reportedly different male and female [140, 141]. It is plausible that 

these fundamental characteristics of HRV could have specific implications to the current 

findings. Whether the current result applies to broader demographics remain to be seen. 

                                                 
2 Subjects S5 and S13 were not included in the technical results reported in the Journal. 
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It is also of note that different breathing patterns can lead to different HRV fractal pattern 

[70, 142, 143]. One of the main considerations in the experimental design for the current 

research was to “facilitate” the fractal dynamics. In general, it is considered undesirable to 

provoke any particular rhythmic pattern that may disrupt the CNS and ANS reactivity. In 

particular, it was reported significantly different cardiac-respiratory phase synchrony during the 

REM (less synchrony) and non-REM (more synchrony) stages of the sleep [144]. This suggest 

breathing pattern can be an important variable in the investigation of central-autonomic fractal 

correlation with HRV. Moreover, controlled fixed-pace breathing may induce relaxation, which 

could potentially solicit certain rhythmic pattern in the EEG data. It is for these reasons that 

spontaneous breathing was considered more adequate to achieve the “free running” protocol for 

the current research objectives. 

6.3 Implications 
 

In a recent HUT study, repeated measurements of HRV did not yield reproducible fractal 

exponents [145]. Furthermore, there is no consensus in the literature on what a “healthy” scaling 

exponent should be [13, 146]. The previous models of HRV complexity did not examine the role 

of the central-autonomic coupling. As a result, such issues as irreproducibility reported in the 

literature pose a direct challenge to the validity of these models [147]. The current finding 

provides a logical and intuitive explanation that the mechanism underlying the central-autonomic 

coupling could hold the key for HRV complexity. Changes in the dynamical state of the brain 

may affect the central-autonomic coupling, and lead to differences in HRV fluctuation. 

The degree of variability in biological data has been deemed fundamental to the proper 

functioning of the underlying biological system. Hence, the current finding could provide the 

basis for further investigation between scale-free HRV and cardiovascular health. A weaker 
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central-autonomic coupling, which is found to correlate with reduced HRV multifractal 

complexity, may have implications on the “simpler” HRV pattern witnessed in certain heart 

disease processes. The precise origin of multifractal complexity within the CNS was not 

explored in this study. Further research with human models is necessary to characterize their 

precise connection. 

The development of the novel technique JWTMM to measure the CMF allows the 

simultaneous fractal correlation analysis of multiple fractal signals. As mentioned in the 

introduction, scale free fluctuation is abundant in nature. In some systems, multiple variables 

have been shown to exhibit scale free fluctuations and this technique can be extended to study 

the fractal correlation between them. For example, in hydrodynamic turbulence this technique 

can be potentially extended to study the fractal correlation between dissipation of kinetic energy 

and vorticity. 

6.4 Conclusion and Future Work 
 

In this study, it was shown that the CNS modification in terms of the cortical neuronal 

activity measured by the EEG can have a direct expression in the multifractal HRV complexity. 

To the best of the author’s knowledge, this is the first study to uncover the effect. In addition the 

data seem s to suggest that the theta band can play a significant role leading to a stronger central-

autonomic coupling after HUT. Although this research does not address a causal relationship, the 

CMF result and its parallel with the transition of HRV multifractal complexity in HUT imply the 

paradigm which depicts a HRV model, not as predominantly described in the framework of ANS 

activity, but as a dynamical system driven by the overall nervous system.  

The results of this work lead to some possible avenues of future research. New 

experiments should be designed to investigate the effects of physical activity and meditation on 
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central-autonomic coupling. Experiments that consider the changes in the central-autonomic 

coupling of at risk or diseased individuals may have diagnostic value in medicine. 

Additional protocols can be considered such as controlled breathing and eyes closed 

state. These modifications are likely to add a different type of perturbation to the ANS, and 

would further facilitate the study of CNS influence on scale-free HRV.  
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Interview Questionnaire 
  
 
Please answer the following questions briefly but accurately. You 
can choose not to answer (please indicate). 
 
 
1) Do you meditate? If so, how long have you been meditating? 
 
 
 
 
 
2) Do you have any known allergies to metals or other materials? We will 
apply gel and attach electrodes to your scalp to measure the electrical 
activity in your brain. 
 
 
 
 
3) Have you been taking any medication on a long-term basis? If so, please 
briefly explain its effect. 
 
 
 
 
4) Do you have any known neurological disorder? 
 
 
 
 
 
5) Do you have a history of, or recently diagnosed, heart problems and high 
blood pressure? 
 
 
 
 
 
 
6) Have you had any experience of syncope during a pro-long period in 
upright position? Please go back as early as you can to your best ability. 
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Before-Test Questionnaire 
 
 
Please answer the following questions to the best of you abilities: 
  
 
1) Recall your sleeping patterns for the last two days. 
 

 Day – 1 Day – 2  

Wake up time   

Sleep time (light off)   
 
 
2) Did you consume more than your usual amount of coffee, or nicotine 
(cigarettes, cigars etc) in the past 2 days? Also, is there any stress factor 
that you can identify, such as an upcoming test, or a significant event? 
 
 
 
 
3) Did you drastically increase your physical activity in the past 2 days, such 
as joining a sport club, or start a new physical training? 
 
 
 
 
 
4) Have you been taking any drug/medication in the past few days? 
 
 
 
 
5) Please provide the following information: 
 
 
Age:   Sex:  M  /  F  Height:    Weight:    
 
 
 
Signature _____________________________ Date ______________ 
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Appendix B Lomb Method 
 

Let x(t) be the data of interest. The coefficients that represent x(t) after transformation are 

    i ic x t f t dt   (A.1) 

 
where  if t  is the basis set of the Fourier transform. The square error is defined as 

       2

i i ie c x t c f t dt   (A.2) 

 
Minimization of (A.2)  in its discrete form for unevenly sampled data,  nx t leads to the 

minimization of: 

       2

n i nx t c i f t  (A.3) 

 
which results in  
 

 
   

  2

n i n
i

i n

x t f t
c

f t



 


 (A.4) 

 
where if

  is  the complex conjugate .if  This is known as the generalized Lomb method. 

Subsequently the signal power is defined as 
 
    i i n i nP c x t f t   (A.5) 
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Appendix C Pairing of WTMM Coefficients       
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Appendix D JWTMM Matlab Code 

function [pf,lscal] = jmmpf(x,y,ig, q,p, indx) 
  
% This function computes the joint multifractal measure as outlined by 
% Lin et al. (2007). x and y are the outputs of multifractal2.c, and q and 
% p are the moments. The multifractal spectra of x is given by a(q,0), and 
% the multifractal spectra of y is given ap(0,p). 
% indx contains the index of all the good data without cutoff, e.g. [1 20; 
% 25 50; 80 100] means that data from 1 to 20 is good, 25-50 is good, 
% 80-100 is good and so on. 
 
  
  
[M,pM,scal,mwbox] = wtmm(x,length(x),ig); 
[N,pN,scal,mwbox] = wtmm(y,length(y),ig); 
[nscal, npt] = size(M); 
  
indx(:,1) = indx(:,1) + mwbox; 
indx(:,2) = indx(:,2) - mwbox;  
  
nq = length(q);    
np = length(p); 
sf = zeros(nq,np,nscal); 
lscal = log(scal); 
  
for iscal = 1:nscal 
    coeff1 = null(1); 
    coeff2 = null(1); 
    for i = 1:size(indx,1); 
        Midx = find(pM(iscal,:)>indx(i,1) & pM(iscal,:)<indx(i,2)); 
        Nidx = find(pN(iscal,:)>indx(i,1) & pN(iscal,:)<indx(i,2)); 
        [tcoeff1,tcoeff2,posarr] = 
matchcoeffs(M(iscal,Midx),pM(iscal,Midx),N(iscal,Nidx),pN(iscal,Nidx)); 
        coeff1 = [coeff1 tcoeff1]; 
        coeff2 = [coeff2 tcoeff2]; 
    end 
     
    for iq = 1:nq 
        for ip = 1:np 
            tmp = coeff1.^q(iq).*coeff2.^p(ip); 
            id = find(~isinf(tmp)& tmp~=0 & ~isinf(log(coeff1)) & 
~isinf(log(coeff2)) ); 
            sf(iq,ip,iscal) = sum(tmp(id)); 
            mu = tmp(id)./sf(iq,ip,iscal); 
            pf(1,iq,ip,iscal) = sum(mu.*log(coeff1(id))); 
            pf(2,iq,ip,iscal) = sum(mu.*log(coeff2(id))); 
            pf(3,iq,ip,iscal) = sum(mu.*log(mu)); 
            pf(4,iq,ip,iscal) = log(sf(iq,ip,iscal)); 
        end         
    end 
end 
  
  



76 
 

% ***************************************************************** 
  
function [coeff1, coeff2, posarr]=matchcoeffs(M, posM, N, posN) 
%Take out the zeros at the end of the rows 
coeff1 = null(1); 
coeff2 = null(1); 
posM = posM(find(posM ~= 0)); 
posN = posN(find(posN ~= 0)); 
% setting up the matched position array 
posarr = matchpos(posM,posN); 
nposarr = size(posarr); 
%matching the coefficients 
for i = 1:nposarr(2) 
    if (posarr(1,i)==0) 
        coeff1(i) = 0; 
    else 
        coeff1(i) = M(posarr(1,i)); 
    end     
    if (posarr(2,i)==0) 
        coeff2(i) = 0; 
    else 
        coeff2(i) = N(posarr(2,i)); 
    end     
end 
  
 
function [stats]= getstats (pf, nq, np, lscal);  
  
%Getting the slope and fstat, stored in stats 
for i = 1:3 
    for ip = 1:np 
        for iq = 1:nq 
            ytmp = squeeze(pf(i,iq,ip,:))';  
            stats(i,iq,ip) = regstats(ytmp,lscal,'linear','beta'); 
        end 
    end 
end 
  
  
function [wc,wcx,scal,max_wbox] = wtmm(x,npt,ig) 
% *** Important parameters: results of jmm is based entirely on 
% *** timews, ratio, maxscal, dscal 
timews=8; 
ratio=1/8; 
minscal=2; 
maxscal=ratio*.5*(npt-1)/timews; 
dscal=2^0.05; 
nscal=fix((log2(maxscal)-log2(minscal))/log2(dscal)); 
scal=minscal*dscal.^[0:nscal-1]; 
max_wbox=fix(timews*maxscal); 
  
 
[c,c0,dc0]=WCmodulus_gaus(x,npt,scal,max_wbox,timews,ig); 
[nr,nc]=size(c); 
wc=zeros(nr,nc); 
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wcx=zeros(nr,nc); 
maxwc=zeros(1,nc); 
maxwcx=zeros(1,nc); 
  
id=(max_wbox+1):(npt-max_wbox-1); 
id0=id+1; 
idp1=id0+1; 
idm1=id0-1; 
for i=1:nscal 
    % find local max; NOT yet the max along max-line! 
    idmx=find((((c(i,id0)-c(i,idm1))>0) & ((c(i,idp1)-
c(i,id0))<0))==1)+1+max_wbox; 
    nmax=length(idmx); 
    wc(i,1:nmax)=c(i,idmx); 
    wcx(i,1:nmax)=idmx; 
    if i==1 
       nmxl(i)=nmax; 
       maxwc(1:nmax)=wc(i,1:nmax); 
       maxwcx(1:nmax)=wcx(i,1:nmax); 
    else 
       for k=1:nmax 
           dd=abs(wcx(i,k)-maxwcx(1:nmxl(i-1))); 
           id=find(dd==min(dd)); 
           if length(id)>1,id=id(1);end 
           m21(k,:)=[k id]; 
       end 
       m22=zeros(nmax,2); 
       %differences here 
       for k=1:nmax 
           dd=abs(maxwcx(m21(k,2))-wcx(i,1:nmax)); 
           id=find(dd==min(dd)); 
           if length(id)>1,id=id(1);end 
           if id==m21(k,1) 
              m22(k,:)=m21(k,:); 
           else 
              m22(k,:)=[0 0]; 
           end 
       end 
       m22(find(sum(m22')==0),:)=[]; 
       [nr1,nc1]=size(m22); 
       nmxl(i)=nr1; 
       wcx(i,1:nr1)=wcx(i,m22(:,1)); 
       wc(i,1:nr1)=wc(i,m22(:,1)); 
       wc(i,1:nr1)=max(wc(i,1:nr1),maxwc(m22(:,2))); 
       wc(i,nr1+1:end)=0; 
       wcx(i,nr1+1:end)=0; 
       maxwc(1:nr1)=wc(i,1:nr1); 
       maxwcx(1:nr1)=wcx(i,1:nr1); 
    end 
end 
  
 
 
function [c,c0,dc0]=WCmodulus_gaus(x,npt,a,max_wbox,timews,ig) 
  
nscal=length(a); 
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Nx = npt-2*max_wbox-1; 
c0 = zeros(nscal,npt); 
dc0 = zeros(nscal,npt); 
idbx = max_wbox+1:npt-max_wbox-1; 
for i = 1:nscal 
    half_wbox=fix(timews*a(i)); 
    [psiax,dpsiax] = getwlet(a(i),half_wbox,ig); 
    for b = idbx 
        id = [b-half_wbox:b+half_wbox]+1; 
        c0(i,b) = sum(x(id).*psiax(id-b+half_wbox)); 
        dc0(i,b) = sum(x(id).*dpsiax(id-b+half_wbox)); 
    end 
    c0(i,:)=c0(i,:)./a(i); 
    c(i,:)=abs(c0(i,:)); 
end 
  
% ************** END WCmodulus_gaus ***************** 
  
function   [psiax,dpsiax]=getwlet(a,half_wbox,ig) 
  
g1=inline('-exp(-.5.*t.^2).*t','t'); 
dg1=inline('-t.*exp(-.5.*t.^2).*(t.^2-2)./s','t','s'); 
g2=inline('exp(-.5.*t.^2).*(t.^2-1)','t'); 
dg2=inline('exp(-.5.*t.^2).*(t.^4-4.*t.^2+1)./s','t','s'); 
g3=inline('t.*exp(-.5.*t.^2).*(3-t.^2)','t'); 
dg3=inline('-t.*exp(-.5.*t.^2).*(t.^4-7.*t.^2+6)./s','t','s'); 
g4=inline('exp(-.5.*t.^2).*(t.^4-6.*t.^2+3)','t'); 
dg4=inline('exp(-.5.*t.^2).*(t.^6-11.*t.^4+21.*t.^2-3)./s','t','s'); 
  
t=([0:2*half_wbox]-half_wbox)./a; 
  
switch ig 
    case 1 
        psiax=g1(t); 
        dpsiax=dg1(t,a); 
    case 2 
        psiax=g2(t); 
        dpsiax=dg2(t,a); 
    case 3 
        psiax=g3(t); 
        dpsiax=dg3(t,a); 
    case 4 
        psiax=g4(t); 
        dpsiax=dg4(t,a); 
    otherwise 
        disp('no data'); 
        return; 
end 
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