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IMPROVED METHODS FOR DISTRIBUTION 

OF SUPERELEVATION  
 

Udai Hassein 

MASc., Department of Civil Engineering, Ryerson University, 2011 

 

Abstract 

 

The American Association of State Highway and Transportation Officials (AASHTO) 

provide 5 methods for distributing highway superelevation ( ) and side friction ( ). 

Method 1 (linear) is inferior to Method 5 (curvilinear).  AASHTO Method 5 deals with 

speed variations, but its complex mathematical calculation affects design consistency. 

Safety margin is the difference between design and maximum limiting speed. This thesis 

describes distribution of superelevation ( ) and side friction factor ( ) based on the EAU 

and SAU methods using AASHTO and two different curves from the unsymmetrical 

curve; the equal parabolic arcs ―EAU Curve‖ and a single arc unsymmetrical curve ―SAU 

Curve‖. The thesis also describes   and   distributions based on the optimization model. 

The EAU and SAU methods and Parametric Cubic Optimization Model improve 

highway design consistency based on safety margins. Examples show the methods and 

optimization model are superior to AASHTO methods.  
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Chapter 1: Introduction 

 

1.1 Research Background 

 

Three main elements are involved with highway geometric design: horizontal alignments, 

vertical alignments and cross section. Horizontal alignment has tangents such as straight 

paths with no curvature and has circular curves that are horizontal which connect 

tangents either with or without a transition spiral curve. Vertical alignments have flat 

tangents along with upgrade and downgrade tangents where parabolic curves connect. 

Other options of vertical alignments are unsymmetrical curves: EAU (Equal Arc 

Unsymmetrical vertical curve) curve and SAU (Single Arc Unsymmetrical vertical curve) 

curve. EAU curve contains two equal arcs and the curve has uneven horizontal 

projections for the tangents (Easa, 1994). The SAU curve has a single arc, which acquires 

the cubic function form, furthermore, the SAU curve lies above the flatter arc and under 

the sharper arc for the EAU vertical curve, therefore making it smoother (Easa, 2007). 

  

The highway curve is a very complex feature, indeed one of utmost complexity within 

our highways. Over half of the fatalities connected to collisions on rural highways are 

located on curved sections. Therefore, corresponding transition sections and the curves 

represent the most critical areas for safety improvements. Geometric design consistency 

of the highway is one of the more important roles for improving highway safety. Design 

consistency provides harmonized driving within sections of the road. Several methods 
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have been developed in distributing highway superelevation (e) and side friction (f) by 

AASHTO.  

 

The American Association of State Highway and Transportation Officials (AASHTO), 

prior to 2005, provided us with 5 methods for distributing highway superelevation (e) and 

side friction (f). AASHTO applies Method 2 and 5 for low speed and high speed, 

respectively, with distributing superelevation rates for speed variations, along with both 

urban and rural possibilities. Method 5 focuses on technical qualities for both Methods 1 

and 4, as well as distributing intermediate superelevation rates among them focusing on 

complex unsymmetrical parabolic curves. This aims to increase superelevation rates 

along with the safety margin of compliant speed variation which is unspecified in Method 

1; this also satisfies side friction factor within sharper curves from avoiding irregular 

driving that can be ingrained within Method 4.  

 

The goal is to improve highway safety in the geometry design by considering a system of 

curves and ensuring that the design consistency of the successive geometric elements act 

in a coordinated way so that they produce coordinated driver performance consistent with 

driver expectations (Lunenfeld & Alexander, 1990; Krammes et al., 1995). 

 

This thesis presents two main contributions. First, the thesis implements the EAU and 

SAU curves for distribution of superelevation, instead of the traditional unsymmetrical 

vertical curve used in AASHTO Method 5 to form the basis of the EAU and SAU 

Methods, respectively. Second, the thesis uses the general cubic curve designed for the   
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distribution and a component of the aggregate analysis, which is provided by Easa 

(2003), to form the Parametric Cubic Optimization Model. The EAU and SAU methods 

and Parametric Cubic Optimization Model use design speed of horizontal curves to 

improve highway design consistency based on safety margins. 

 

 The proposed model finds the best superelevation distribution for a specified highway 

data by utilizing the complete superelevation design area (of which AASHTO curves are 

a subset). The developed optimization model determines the best distribution of 

superelevation, where such an optimization model has an objective function subject to 

constraints.  

1.2 Research Objectives 

 

In the first section, the objective is: 

1) To show the improved methods for distribution of superelevation regarding 

highway design issues with the current superelevation distribution. This thesis 

will show two straightforward methods for determining superelevation rates of the 

highway curve design that takes into account the inconsistency within the design 

speed along with the friction factor; these methods can be utilized for both the 

evaluation of and design for current highway curves.  

2) To provide the methodology of determining the proposed methods for the 

superelevation rate utilized within the highway curve design. A relationship 

between the existing methods and the proposed methods will be completed using 

Tables and charts. 
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3) To present examples and show the difference and benefit between the proposed 

methods and AASHTO Method 5.  

 

In the second section, the objectives are: 

1) To determine a methodology that evaluates the AASHTO methods of 

superelevation distribution on a highway geometric design regarding safety. 

2) To evaluate the safety margin within the difference between the speed limit and 

the design speed from one curve to the next. 

3) To present the safety margin concept by formulation for the improved methods 

along with numerical examples showing its application. 

4) To develop a Parametric Cubic Optimization Model determining the best 

distribution of superelevation, where such an optimization model has an objective 

function subject to constraints that improve design consistency of highway based 

on the safety margin. 

5) To conclude that for evaluation purposes, the proposed methods and models apply 

means, standard deviation and coefficient of variation of safety margins to 

determine the best superelevation distribution design capable of use as a measure 

which reflects both safety and consistency. 

1.3 Thesis Organization   

 

This thesis is organized into 6 chapters.  

 Chapter 1 includes the outline and general purpose of this thesis.  
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 Chapter 2 presents a comprehensive literature review of highway geometric 

design. It also explains EAU and SAU vertical curve Equations, respectively. 

Furthermore, superelevation distribution methods utilized within highway 

consistency are discussed and present a useful backdrop for what follows.  

 Chapter 3 provides the existing methodology for superelevation design 

considerations and the evaluation of the AASHTO methods. A description of 

safety margin is analyzed. The safety margin concept is subsequently 

introduced. 

 Chapter 4 provides method developments of superelevation distribution, 

focusing on the proposed methods, the EAU Method, SAU Method and the 

Parametric Cubic Optimization Model.  

 Chapter 5 is the application and analytical solutions for the AASHTO 

Methods, EAU Method, SAU Method and the Parametric Cubic Optimization 

Model. Examples are given for superelevation distribution and safety margin. 

Comparisons of distribution superelevation and side friction for all methods 

and models are presented. 

 Chapter 6 provides a conclusion and future recommendations.  

The overview of the thesis organization is shown in Figure 1.1 
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Figure 1. 1 Thesis Organization 
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Chapter 2: Literature Review 

 

This chapter presents a comprehensive literature review of three main sections. The first 

section being highway geometric design that is based on three elements: horizontal and 

vertical alignments along with cross section. The second section is superelevation 

distribution methods, which is described by four sub-sections: AASHTO Methods, 

Fundamental subject, NCHRP 439 Assessment and the superelevation distribution 

approach by other international agencies. The third and final section is highway 

consistency, which is further explained by four sub-sections: highway geometric design 

consistency, choice of design speed and superelevation distribution to maximize design 

consistency of highway. 

2.1 Highway Geometric Design 

 

Highway geometric design involves three main elements: horizontal alignment, vertical 

alignment, and cross sections. Horizontal alignment focuses on straight tangents that 

connect together with circular horizontal curves; depending on whether they are 

accompanied by transitional spiral curves or not. Horizontal curves can be complex or 

simple curves. A complex curve is also known as a reverse curve, when it is composed of 

two consecutive simple curves within opposite directions, whereas it can be called a 

compound curve, when it is composed of two consecutive simple curves within a similar 

direction. 
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Vertical alignments focus on straight alignments, such as: flat, upgrade or downgrade 

alignments that are linked together with vertical curves. The vertical curves are typically 

parabolic curves, crest curves or sag curves. Additional alternatives of vertical alignments 

are comprised of unsymmetrical curves as well as reverse parabolic curves (Easa, 2002). 

Another alternative to vertical alignment is curvilinear alignment where aged rural 

highways contain a sequence of consecutive curves within short tangents. For highway 

design balance, the geometric elements should be designed to provide a continuous 

smooth and safe operation with speed that is to be practical within normal conditions of 

that roadway (AASHTO, 2004). Cross section specifies both the width along with the 

side slope for traveled ways. 

2.1.1 Horizontal Alignments  

 

Horizontal alignment is defined as ―…the configuration of the roadway as seen in plan 

and generally consists of tangent sections, circular curves, and in some instances spiral 

transitions.‖ (TAC, 2007) An important role in the roadway design process is a horizontal 

curve considering the relations between design speed, superelevation, side friction and 

curvature, which are important to the assembly of a design that is safe, efficient and 

consistent within driver expectations. Both horizontal and vertical alignment 

shortcomings can be dangerous. However, horizontal alignment is normally regarded as 

more serious, considering horizontal deficiencies establish discrepancies in design that 

reduce safety (TAC, 2007). Easa (2002) discussed a simple horizontal curve within radius 

R along with deflections angle i can be seen within Figure 2.1. The T and L elements can 

be calculated in terms of R and i as shown below: 
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                        T = R tan (i/2)        (2.1) 

L = π R (i/180)        (2.2) 

 

where, T = tangent distance; E = external distance; M = middle ordinate; C = length of 

Chord; and L = curve length 

Spiral transitions are applied occasionally to initiate the vehicle in a more gradual manner 

with the directional change. Vehicle stability contribution from spiral transitions has been 

discovered to be minimally relative (Harwood et al., 1994). NCHRP (2001) recommends 

AASHTO (2001) to provide further guidance to identify areas where spiral transitions 

curves result in safety benefits. 

 

Figure 2. 1  Geometry for Simple Horizontal Curves (Easa, 2002) 

 

It is quite common that drivers have a tendency to steer in a spiral path when they enter 

and exit a horizontal curve. NCHRP (2000) has discussed how the spiral transition curve 
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length has an effect on the operation of safety margin for the roadway. The main benefit 

of using a spiral transition curve was design consistency. Using spiral transition curves is 

not common practice within areas of North America. Both AASHTO (2004) and TAC 

(2007) recommend the use of transition curves within horizontal alignment design. But 

the guidelines, however, are not mandatory. Spiral transition curves, according to 

NCHRP (2000), were found to improve safety within sharp horizontal curves. They 

suggested that spirals should be used where the centripetal exceeded 1.3 m/  . 

 

Limited contribution for vehicle stability stated that use for spiral transition curve 

prevents further investigation herein. A spiral transition curve provides a gradual degree 

of curvature into the horizontal curve. Furthermore, the spiral curves contribute in 

reducing the lateral change encountered by a vehicle as it follows a horizontal curve. 

However, the ensuing effect for diminished lateral change within stability has not been 

measured (Glauz et al., 1991). Tangents and circular curves are assumed by horizontal 

alignments as the main components involved. Horizontal Alignment Design requires 

many consideration factors, such as location for major utilities, climatic conditions, 

topography traffic volume, safety and consistency (TAC, 2007).  

2.1.1.1 Theoretical Considerations  

 

In horizontal alignment, concerning highway balance design, every geometric element 

must, based on practical economical design, be safe, have constant operation at speeds 

that are likely observed within normal conditions of a roadway containing a majority of 

drivers. Essentially, this is achieved by using speed as the main design control. The 



11 

 

roadway curve design needs to be based on a relationship between curvature and design 

speed as well as a relationship between side friction and superelevation (roadway 

banking). As a vehicle is moving within a circular path, the vehicle experiences a 

centripetal acceleration towards the curvature centre. This acceleration is continued by 

part of the vehicle‘s weight associated with the side friction between the pavement 

surface and vehicle‘s tires, by the roadway superelevation, or from a combination of both. 

Centripetal acceleration is at times associated with centrifugal force. Conversely, this 

force is imaginary where motorists believe it is pushing them in an outward direction 

while cornering when, actually, motorists are feeling the vehicle actually being 

accelerated within an inward direction. However, for purposes of conceptual expediency, 

the centrifugal force is utilized to show vehicle stability illustrated in Figure 2.2. 

 

The relationships between curve radius, vehicle speed, side friction and superelevation 

are all very important to achieve a reliable design. According to AASHTO (2004), these 

relationships are connected to the laws of mechanics along with dynamics, however, it 

states ―the actual values for use in design depend on practical limits and factors 

determines more or less empirically over the range of variables involved.‖ The regulated 

horizontal relationships discussed earlier are dealt with in greater lengths within the 

following sections; however, brief details regarding vehicle handling, steering along with 

ride characteristics can prove to be useful in understanding the difficulty of achieving 

design factors and limits.  
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2.1.1.2 Side Friction Factor 

 

Researchers have shown there is centripetal acceleration (  ) that acts within a vehicle 

when it crosses a horizontal curve. This offsets the friction force among the pavement 

and tires along with a component for gravity, when the curve becomes superelevated. 

Lateral acceleration (  ) acting in a vehicle within a curve can be called the side friction 

factor. Based on the Policy on Geometric Design of Highways and Streets from 

AASHTO, this factor is the side friction demand factor along with the gravitational 

constant g, therefore (   =   ). When the curve becomes superelevated, frictional force is 

offset by gravity. Therefore, a third element for lateral acceleration as e enters within the 

equation. As shown within Figure 2.2, given that there are differences within speeds for 

different vehicles crossing a certain horizontal highway curve, an unstable force is placed 

on any vehicle within the curve. This offsets the friction among the pavement and tire and 

due to the thrusting of the tire side from the twists from the tire contact area along with 

the surface pavement. 

 

The relation between the forces acting at the center of gravity of the vehicle in motion is 

dependent on the curve radius, the vehicle speed, and the superelevation. The lateral 

acceleration    that acts on the vehicle can be obtained from Equation 2.3: 

 

     =    –           (2.3) 

 

where, 
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   = acceleration counter balanced by friction (   in m/  ) 

  = centripetal acceleration (  /gR) 

  = acceleration counterbalanced by gravity due to superelevation (g e/100), m/  ; 

e = superelevation rate in percent; 

f = side friction factor or side friction demand; 

v = vehicle speed, m/s; 

g = gravitational acceleration (9.81 m/  ); 

R = radius of curve in meter. 

 

A simple curve equation utilized within the highway design curve along with 

superelevation as shown in Equation 2.4 (more details in following section). 

 

  R =   
  

  
    

    
 
         (2.4) 

 

Both AASHTO (2004) and TAC (2007) concur the quantity (1− e ) is about equal to 1.0; 

therefore, it is usually dropping within the equation, and having to produce a more 

moderate value for R. The simple formula is shown as 

 

  R =   
  

      
         (2.5) 

where, 

v = speed (Km/h) 

g = force of gravity (9.81 m/   ) 



14 

 

e = superelevation rate (percentage) 

  = side friction factor (no unit) 

The above equation can be solved for e by mathematical transposition so that: 

 

    =   
  

  
 -          (2.6) 

 

Side friction factor is used limitedly within Equation of point mass in order to avoid 

lateral skidding and to afford comfort control. However, this analysis based on 2D 

explains for vehicle dynamics resting on horizontal alignments. 

2.1.1.3 Vehicle Stability on Horizontal Curves 

 

There are many factors that go into vehicle cornering and behavior which makes the issue 

concerning stability fairly complicated. Highway safety is dependent upon normal 

conditions pertaining to weather, on how effective a vehicle can stay on the roadway and 

stay in their lane. As a vehicle passes through a curved alignment, the vehicle deals with 

centripetal acceleration acting towards the horizontal curve centre (AASHTO, 2004). 

Forces that counteract this type of acceleration involve the vehicle‘s weight, side friction 

and superelevation of the highway, developed at the pavement tire crossing point (Lamm 

et al. 1999).  

 

The design guides for both AASHTO (2004) along with TAC (2007) help to simplify 

cornering dynamics with a focus on reducing the vehicle travelling within a 2D 
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horizontal alignment to a point mass during analysis. With this, vehicle movements are 

tracked by tangential and radial directions of motion. Figure 2.2 shows force of the radius 

that is applied to a vehicle as it travels at a consistent speed around a steady horizontal 

curve radius.   

 

Vehicle motion dynamics within a curve have been recognized through much research. 

As a vehicle drives through a curve, centripetal acceleration powers the vehicle to the 

curve‘s centre. Two forces within a superelevated curve maintain the centripetal 

acceleration: 

1) Frictional acceleration between both the pavement and tires, 

2) Acceleration due to the vehicle component weight that is from the embankment is 

called superelevation (See Figure 2.2). 

 

 

Figure 2. 2 Dynamics of Vehicle Motion on Superelevated Curve (NYSDOT Report 2003) 
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The force interaction that is found within the centre of gravity for the vehicle within 

motion that relates with the curve radius, both the e and speed is utilized within the 

design for horizontal curves on a highway. A lateral force that pushes the vehicle outward 

is the centrifugal force F. This is due to the lateral change within the vehicle‘s direction 

when it passes through the curve. The effect for the centrifugal force creates a lateral 

acceleration that forces the vehicle to the centre of the curve consequently changing the 

velocity vector for the vehicle. Superelevation makes the centrifugal force perpendicular 

with the slope for the superelevated curve; this is defined as F in Figure 2.2. This force 

combined with the component for the vehicle weight (W typical to the pavement) totals 

the normal result between the tires of the vehicle. The outstanding portion for the force F 

is resolved within the slope with the superelevation then shown as F that is parallel with 

the slope. The vehicle weight can also be determined by two components; weight that is 

normal with slope and weight that is parallel with the slope defined as W parallel and 

weight normal to the slope. Figure 2.3 below shows these forces within which the relation 

to the friction factor, superelevation, and the curve radius (R) can be derived. 

  

Figure 2. 3 Free body diagram of the forces at the center of gravity of the vehicle in motion on a 

superelevated curve. 
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Based on the mechanics laws and from Figure 2.3, it is shown: 

 

  WN =W cos(a)       (2.7) 

  WP =W sin(a)        (2.8) 

  FN = F sin(a) = 
   

  
  sin(a)      (2.9) 

  FP = F cos(a) = 
   

  
  cos(a)      (2.10) 

 

Frictional force resting on the tires can be described as normal force multiplied by the 

friction factor:  

 

  (WN+FN)*f = W cos(a) * f + 
   

  
 sin(a) * f     (2.11) 

 

From Figure 2.3, 

 

  e = tan(a) = 
       

       
        (2.12) 

 

To avoid driving off the road and sliding involving vehicles that operate in designed 

speed, lateral forces need to be counterbalanced with the effect for the superelevation 

along with the frictional forces that are found on tires. Therefore, calculating forces 

within the slope, the following is determined: 

 



18 

 

  W cos (a) * f + 
   

  
 sin(a) * f =  

   

  
 cos(a) – W sin(a)  (2.13) 

 

This can be shown as: 

 

  
         

         
  
  

  
      = 

  

  
 - f       (2.14) 

  = tan (a)  
  

  
      = 

  

  
 - f      (2.15) 

 

Changing tan (a) within Equation 2.15 with e as shown in Equation 2.12, we get the 

following: 

 

       
  

  
    = 

  

  
 - f        (2.16) 

 

By calculating Equation 2.16 regarding R, the curve radius dependent on the 

superelevation, friction factor and the operating speed, we get the following for R: 

 

  R = 
  

  
   

    
 
         (2.17) 

 

The measure (1− ef) is about equal to 1.0; therefore, it is usually disregarded within the 

Equation, consequently creating a more conventional value for R. It is given as: 
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  R = 
  

      
         (2.18) 

where, 

v = speed (Km/h) 

g = force of gravity (9.81 m/   ) 

e = superelevation rate (percentage) 

f = side friction factor (no unit) 

The Equation above can be determined for e with mathematical transposition: 

 

  e = 
  

  
 - f        (2.19) 

  
  

  
 = f + e        (2.20) 

 

An exploitation of Equation 2.20 is described by both AASHTO (2004) and TAC (2007) 

geometric design guides. The basic relationship and point mass formula is considered in 

the guides into control vehicle operation resting on horizontal curves. Based on a 2D 

plan, the horizontal alignment is only considered without factoring any possible effect for 

vertical alignment. The main common exploitation for the formula of point mass is to 

isolate the R variable, to identify      for a specified vehicle speed, limiting the value for 

side friction factor and superelevation.  

 

The next instability mode contemplated is vehicle rollover. Figure 2.4 shows the 

overturning moment that is produced as a vehicle travels through a horizontal curve. 

When the overturning moment is lesser than resisting moment, the vehicles would 
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rollover. According to Figure 2.4, avoiding body rollover along with other contributing 

factors like wind, can be acknowledged mathematically as (Lamm et al., 1999): 

 

    
   

 
               ≤    

   

 
                (2.21) 

 

 

Figure 2. 4 Different forces and moments experienced by a vehicle negotiating a circular curve 

(TAC, 1999) 

 

Noting that        ;  

where, a = angle of roadway tilt, b = the horizontal distance between the outside of the 

vehicle‘s tire to the vehicle center of gravity,  h = the vertical distance (perpendicular to 

the pavement surface) between pavement surface to vehicle center of gravity, W=Q = 

vehicle weight force.  

Vehicle rollover is not accounted by North American design guidelines when heuristics 

for horizontal curves design are discussed. The simplified moment‘s summation within 

Equation 2.21 is not achieved for body roll. Under actual circumstances a transfer of 

vehicle weight into the tires resting on the exterior of the curve appears to move the 
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center of gravity of the vehicle in the direction of the exterior of the turn. The movement 

of the center of gravity of the vehicle decreases the moment arm of the gravitational force 

that proceeds to oppose rollover (Chang, 2001). 

 

Chang (2001) explained vehicle stability resting on horizontal alignment compelling into 

description vehicle body roll along with discovering that the rollover might be more 

critical as compared with lateral skidding once contemplating modern vehicles. 

Furthermore, the threshold of rollover is actually less than what is presently considered 

correct within the AASHTO (2004) or TAC (2007) guidelines. In addition, Chang (2001) 

suggests that the consequence of the mechanism of vehicles on minimum radius of 

horizontal curves can be included in current design criteria to achieve greater consistency 

between vehicle design and highway. 

 

Sliding or lateral skidding and vehicle rollover provide the two probable reasons for 

vehicle instability resting on horizontal alignments. There are several vehicle designs 

along with geometric simplifications prepared within current design guidelines with 

reference to these possible instabilities. Conceivably the most important issue is that the 

current design guidelines analysis are based on 2D alignment. Limiting values of design 

speed, side friction, central acceleration, and superelevation are all complemented 

together into an effort to present a satisfactory alignment.    

 

Ultimately, a compact vehicle could slide well before it starts to roll over and on to the 

pavement, especially in wet conditions. Vehicles such as sport utility vehicles (SUV), 
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vans and trucks have higher centers of gravity than compact vehicles and could roll over 

before they start to skid and slide, especially within drier conditions along with lower 

speeds. 

2.1.2 Vertical Alignments  

 

Highway alignment is influenced by the topography for the surrounding land. Horizontal 

alignment is affected by topography; however, there are 3 categories that are separated 

below that explain in more detail based on terrain (AASHTO, 2004): 

In level, sight distances of a highway tend to be long without major expense or 

construction difficulty. In rolling terrain, highway grade falls below and rises above the 

natural slopes consistency along with horizontal and vertical roadway alignment being 

restricted with occasional steep sections. In mountainous terrain, horizontal and vertical 

alignments require frequent longitudinal and transverse changes within ground elevation 

with regard to the street or road being abrupt, along with side hill excavation and 

benching.  

 

 Vertical alignment within a highway design is a 2D longitudinal profile cut through the 

centerline for a road vertically. Vertical alignment contains transition between tangents 

known as vertical curves and tangents or grades. A vertical curve is known as a parabolic 

function considering the rate for slope change tends to be constant (Mannering and 

Kilareski, 1998). Vertical curves are classified into two main categories: sag vertical 

curves and crest vertical curves. For both sag and crest curves, three entry and exit 

tangent situations can exist. Entry and exit tangents can both be positive, negative or have 
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opposite signs, where one is negative and the other is positive. Figure 2.5 shows sag and 

crest vertical curves of the various entry and exit combination grades. 

 

The vertical curves shown in Figure 2.5 are symmetric, meaning the distance of the 

beginning for the vertical curve (BVC) going to the point for vertical intersection (PVI) is 

equal to half the overall amount of the curve length (L). Furthermore, the distance of the 

PVI to that of the end for the vertical curve (EVC) is half of the curve length. BVC and 

PVC are similar and that EVC can also be referred to as PVT (point of vertical tangent). 

 

Figure 2. 5 vertical curve combinations (AASHTO, 2004) 

 

VPI, PVI, or PI, means vertical point of intersection, point of vertical intersection, or 

point of intersection, respectively. All three acronyms can be used interchangeably and 
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refer to a major intersection for the entry (  ) along with the exit (  ) grades. To 

differentiate in grade between entry and exit tangents, the letter A is typically used.  

Easa (1994) presented a new unsymmetrical vertical curve (EAU) of highways, which 

provides important advantageous features. In it, the curve has uneven horizontal 

projections for the tangents; however, its component of two equal parabolic arcs is 

efficiently connected within the common curvature point. Additionally, each arc contains 

a constant rate for change in grade. The rate of change of grades for the two arcs with 

regards to the EAU curve minimizes the difference and therefore presents an aesthetically 

pleasing and smooth ride. Furthermore, through this, not only the sight distance 

improves, but also the length requirement reduces, rider comfort increases, and the 

vertical clearance increases as compared to the traditional unsymmetrical vertical curve. 

These important features should make the EAU curve a significant element within 

vertical alignment design. 

 

Easa (2007) developed a new single-arc unsymmetrical vertical curve (SAU), involving 

highways, which acquires the cubic function form. The rate of change within grade of a 

curve fluctuates gradually among the curves‘ beginning and end. The SAU curve lies 

above the flatter arc and under the sharper arc for the EAU vertical curve, therefore 

making it smoother. Furthermore, the SAU curve marginally improves the sight distance 

of the highway. The offsets for the EAU and SAU curves are equal by the curve mid-

point, whereas the backward and forward offsets of SAU curve are not equal. 

Additionally, the SAU curve rate of change in grade at the mid-points is equal to the 

EAU curve average for the rate of change in grade for the two arcs.  
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2.1.2.1 Vertical Curve Equation 

 

Vertical curves are mostly parabolas that are usually centered between tangents that they 

join within the PVI or VPI. Vertical curves are explained mathematically with the 

following relationship:  

 

y = a   + b + c         (2.22) 

 

where, 

y = roadway elevation along the vertical curve 

x = distance from PVC or BVC ; (m) 

c = elevation at PVC or BVC since at x = 0, y = PVC elevation  

Defining terms a, and b, the first result for Equation 2.22 is needed. 

 

  
  

  
 = 2 a  + b        (2.23)  

  

Applying the periphery condition with PVC, x = 0, Equation 2.23 is, 

 

  
  

  
 = b =           (2.24)  

 

The second result for Equation 2.22 is the rate of change for the slope and is shown by,  
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 = 2a        (2.25) 

  

The rate of change of slope shown in Equation 2.25 can also be shown  

 

  
   

   
 = 

     

 
        (2.26)  

 

Equation 2.25 and Equation 2.26 can be simplified while calculating for a yield, 

 

  a = 
     

  
        (2.27) 

 

Replacing Equation 2.27 along with 2.24 in Equation 2.22 while letting c =    = 

elevation within PVC, results as:  

 

  y =  
     

  
    +      +         (2.28) 

  

Previously,   -   is equivalent to the geometric difference in grades. A, along with the 

design guides defining ‗K‘ factor that differentiates vertical curve compared to the rate of 

change in slope along with length as 

 

  K = 
 

     
 = 

 

 
        (2.29)  
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Replacing Equation 2.29 within 2.28 gives 

 

  y =  
  

  
  +      +          (2.30)  

 

Choosing a minimum curve length for K factor of a specific condition presents geometric 

control of vertical curves. Major situations can have vertical acceleration comfort, 

aesthetics or sight distance. In certain cases where multifaceted vertical alignment 

restraints do not ease the use for unsymmetrical or traditional vertical curves, what are 

then beneficial are the three-arc curves. The three-arc vertical curve was developed by 

Easa (1999), where three separate parabolic arcs are connected to the point for common 

curvature. It was also determined that the equivalent arc unsymmetrical vertical curve for 

the three-arc version was a special case. Traditional vertical curves were compared to the 

three-arc vertical curves and it showed that the three-arc curves were more 

accommodating in assuring difficult vertical clearance requirements and helped with 

sight distance (Easa, 1998). 

 

Vertical curves deal with traditional parabolic arc positioned within two vertical 

transitions. Transitioned vertical curve within vertical alignment is similar to using spiral 

transitions on a horizontal curve within a horizontal curve with the mathematical 

calculation being different (Easa and Hassan, 2000). The transitioned vertical curve 

formulae were developed to explain the rate of curvature, instantaneous elevation and 



28 

 

geometry. The transitioned vertical curve is ―especially useful for sharp vertical 

alignments‖ and was developed to maintain driver comfort.  

2.1.2.2 EAU Vertical Curve Equations  

 

Easa (1994) developed a new unsymmetrical vertical curve (EAU), with uneven 

projection for the tangents; however equivalent component parabolic arcs, providing 

improved clearance and sight distance versus traditional unsymmetrical vertical curves 

(TA). Additionally, in the EAU curve the rate of change of grade is minimized which 

increases the comfort of the rider thus resulting in higher aesthetics. Easa (1994) 

discusses a traditional unsymmetrical crest vertical curve, as shown in Figure 2.6. The 

curve has two parabolic arcs which have a common tangent by the point of common 

curvature (PCC). The intersection of the two tangents is where the PCC lies, also known 

as the point of vertical intersection (PVI). The two points of the vertical curve (BVC and 

EVC) are the beginning and end points having tangents with grades    and   . The 

geometric difference with Grade A equals |  -  |. For sag vertical curves (  -  ) is 

positive and for crest vertical curves, it is negative. The Absolute value for (  -  ) then 

is used where A is positive for sag vertical and crest vertical curves. Hickerson (1964) 

provides the rate of change of grades for the two arcs. 

 

     = 
   

        
        (2.31)  

     = 
   

        
        (2.32)  

where, 
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   = rate of change of grades for the first arc, 

   = rate of change of grades for the second arc, 

A = algebraic difference in grad (in percent), 

   = length for the first arc, 

   = length for the second arc, and 

  = total length for the curve (         

 

   and    for both sag vertical curves and crest vertical curves will be positive. When    = 

   = L/2, Equations 2.31 and 2.32 present   =    =A/100L, the rate of change of grades 

for a symmetrical curve, r. In regards to an unsymmetrical vertical curve where   <   , 

  >r and   <r. This formula shows the first arc has a curvature that is larger (is sharper) 

than that of the symmetrical vertical curve, and the second arc has a curvature smaller (is 

flatter) than that of the symmetrical vertical curve. R is a parameter that describes the 

unsymmetrical vertical curve. It is characterized as the ratio for the length of the shorter 

tangent (or a shorter arc when dealing with a traditional curve) in regards to the total 

curve length. 

 

    = 
  

 
         (2.33) 

  

Conveying Equations 2.31 and 2.32, in terms of R equals: 

 

     = 
      

       
        (2.34)  
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     = 
  

           
        (2.35) 

  

For R = 0.5 Equations 2.34 and 2.35 provide:    =    = A/100 L, as the traditional curve 

diminishes to a symmetrical vertical curve. The EAU curve is derived from a common 

unsymmetrical vertical curve where the location of PCC is at a random point. 

 

Easa (1994) provided an EAU curve for a larger vertical clearance, illustrated in Figure 

2.6. The vertical clearance has the maximum difference appearing between the second arc 

for the traditional curve and the first arc for the EAU curve. The maximum difference of 

derivation for a crest vertical curve along with its location follows. Easa (1994) shows the 

      for the EAU curve can be explained as: 

 

      = 
       

      
 ,   <          (2.36)  

     = 
        

      
 ,   <          (2.37)  

 

the first arc and the second arc elevations for the EAU curve can be calculated from 

Equation (2.38) and (2.39), respectively: 

 

     =      + 
    

   
 - 

    
 

 
       (2.38)  

     =      - 
        

   
 - 

        
 

 
      (2.39)  

 



31 

 

 

Figure 2. 6 Traditional unsymmetrical and equal-arc unsymmetrical (EAU) vertical curves (Easa, 

2007) 

 

2.1.2.3 SAU Vertical Curve Equations  

 

Easa (2007) developed a new single-arc unsymmetrical curve (SAU) similar to the 

traditional (TA) and (EAU) unsymmetrical curves. The new single-arc unsymmetrical 

curve attaches two tangents within grades   , and    as well as tangent lengths   , along 

with   . Consider 2D, where the horizontal direction for the road is along with the x-axis 

and the vertical direction passing through PVC is alone with the y-axis, as shown in 

Figure 2.7. Easa (2007) proposes the development of the SAU curve by considering a 

crest vertical curve, although the results are also applicable towards sag vertical curves. 
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To determine curve constrains the universal equation of SAU curve is known by the 

consequent cubic polynomial: 

 

  y =   +    +     +          (2.40) 

 

Where  ,  ,  , and d are the determined constraints, and x, y are coordinates to any point 

(x, y) lying on the curve.  

       The elevation of PVC and  

       The elevation of PVT, is calculated as 

 

       =      +     +           (2.41) 

 

To establish the curve constraints, let us consider the elevations at the curve as limits, 

where y =       at x = 0 and y =       at x = L. Then, 

 

        =            (2.42) 

      =   +    +     +          (2.43) 

 

The curve slope at any point (x, y) is known through the first derivative for y within x of 

Equation (2.40), 

  
  

  
 =   +     +            (2.44) 
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While 
  

  
 =    , at x = 0 and 

  

  
 =    at x = L , consequently, from Equation (2.44) 

 

    =           (2.45) 

     =   +     + 3          (2.46) 

 

The grade (rate of change of the slope) is known from the second derivative for y as: 

 

  
   

   
 = 2  + 6         (2.47) 

 

Consent to grade (the rates of change of the slope) at x = 0 and x = L are indicated 

by      , and     , correspondingly. Subsequently, 

 

       =           (2.48) 

       =    +           (2.49) 

 

The third derivative for y from Equation (2.40) is specified by 

 

  
   

   
 = 6  =          (2.50) 

 

where, t is a constant. The second derivative of the parabola is constant, frequently 

referred to the rate of change in grade. The rates of change in grade for the existing 

unsymmetrical curve (TA) along each parabolic arc,   , and   ,or     and    , are constant. 
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Based on the Equations (2.42), (2.45), (2.48), and (2.50), the SAU curve constraints can 

be resolved and the SAU curve equation becomes 

 

  y =      +     +  
    

 
   + 

 

 
       (2.51) 

 

The constraints      and   can be resolved as functions for the given curve geometric 

variables. Writing the Equations (2.43) and (2.46), correspondingly, as 

 

  t = 
 

  
       -      -     –   

    

 
   )    (2.52) 

  t = 
 

  
 (    -    -       )      (2.53) 

 

 

 

Figure 2. 7 Geometry of the new single-arc unsymmetrical vertical curve (SAU); (Easa, 2007). 
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and solving Equations (2.52) and (2.53) of      and t, subsequently 

 

       = ( 
   

  
 ) (   – 2   )      (2.54) 

  t =  
  

  
      -   )       (2.55) 

 

based on Equation (2.49), 

 

       = ( 
   

  
 ) (   – 2   )      (2.56) 

 

The SAU curve is attractive since it generates the symmetrical parabolic curve as a 

particular case. Representing a symmetrical curve, where    =   = L/2, Equations (2.54)- 

(2.56) defer t = 0 and      =      = A/L = r, as predictable. Since the equation for the 

SAU curve is cubic, it is important to guarantee that the curve is convex among PVC and 

PVT of a crest curve (or concave of a sag curve). This requirement involves that the 

inflection point of Equation (2.51) does not remain between PVC and PVT. The distance 

between PVC along with the inflection point can be resolved by associating the second 

derivative from Equation (2.46) to zero. This distance corresponds to replacement for c 

and d, subsequently 

 

       =  
     

 
         (2.57) 

 

The requirement of convexity (or concavity) is 
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Figure 2. 8 Comparison of new and existing unsymmetrical vertical curves (Easa, 2007). 

 

L ≤  
     

 
          (2.58) 

 

Replacement for      and t of Equations (2.54) and (2.55) to Equation (2.58) and 

substitute      by L -   , the requirement becomes 

 

  
  

 
 ≥ 0.33        (2.59) 

 

2.1.3 Cross Section along with Superelevation 

 

The cross section is one of the principal elements within alignment and suitable 

consideration for this element absolutely contributes towards vehicle stability. Cross 

sectional design deals with several roadway features containing clearance with roadside 
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obstructions, when there is a median width, shoulder width and lane features of drainage 

and superelevation to change little. Careful consideration is required by the designer, but 

this discussion will be focused on the topic of superelevation.  

 

When vehicle stability is on horizontal or else combined alignments, superelevation and 

side friction factors are the most significant characteristic of cross section. On tangents, 

the duration of superelevation is identical with cross slope or cross fall. Cross slope is 

basically provided to guarantee tolerable drainage, for even if it presents a longitudinal 

slope on the roadway, there is no assurance that water will move around and pass through 

the segment of the lane into the shoulder along with ditch or gutter. 

 

Superelevation can be utilized on circular curves to minimize the magnitude for the 

centripetal force that proceeds on the vehicle (Lamm et al., 1999). Concededly, the 

vehicle travels on a horizontal curve that is subjected to the centripetal acceleration which 

is comparative with the vehicle speed. When the pavement surface is rotated to the curve 

center, it maximizes the vehicle stability and affords favourable pavement surface 

conditions. 

 

The section of suitable superelevation rates is significant and all kinds of probable 

environment conditions should be considered when choosing this rate. When a rate that is 

higher or sudden is preferred, it may delay vehicle safety within icy curves at awfully low 

speeds. Lamm et al.(1999) stated that maximum superelevation, minimum superelevation 

rates should also be within the limitation to guarantee vehicle stability along with safety 
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because higher rates can affect a vehicle to slide across a highway while a vehicle makes 

an effort to accelerate for a complete stop, or stop in icy conditions (Lamm et al., 1999). 

 

An assessment for the point mass equation associated along with maximum 

superelevation is required so that the variability depending on the type of terrain is taken 

into consideration along with predictable current environmental conditions. 

Superelevation higher rates reduce the side friction factor required to ensure vehicle 

stability at a certain design speed construction costs. Furthermore, when the horizontal 

radius curve is large, it can be very costly and unpractical to accomplish within 

mountainous terrain. 

 

There is positive superelevation when the surface of pavement is rotated to the center of 

the curve, and negative superelevation but less effect resting on vehicle stability. 

Negative superelevation explains the continuance of a normal crown for the pavement 

surface resting on a horizontal curve either if it is gone from the curve centerline, it is 

utilized ―…as a sound solution for road surface drainage in terms of economics and 

environmental compatibility.‖ (Lamm et al.,1999). 

2.2 Superelevation Distribution Methods 

  

Superelevation is the rotation or tilting for a highway within a horizontal curve to defy 

certain lateral forces occurring within weight, speed, motion and directional change for 

the vehicle. In addition, the superelevation is defined as the vertical distance between 

height points of the inner and outer edges belonging to railroad rails or highway 
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pavement.  The relationship belonging to friction forces and speed between the pavement 

and tires, the curve radius along with the superelevation rate was developed as a 

distribution method used within the design formulation for a horizontal curve from the 

1940s. This will be the basis for the vertical curve equation illustrated early in this 

chapter.  

 

A highway is superelevated when one side is raised within this way. The banking or 

rotation for the highway can be used for motor sports racing on speedways and also can 

be used in both urban and rural highways. A highway can rotate around a centerline as 

well as an inner edge or outer edge of the profile, otherwise a part of the cross slope of 

the highway can be rotated around the outer edge (ASHTTO, 2001). Then, the question 

arises: How much must the highway rotate in order to maintain the vehicles safety while 

crossing the horizontal curve within a highway that is close to a certain design speed 

without a slower vehicle sliding down a slope within a superelevated roadway? 

AASHTO recommends the maximum rates for superelevation for a highway can be 

controlled within four factors (more details in Chapter 3). The various maximum 

superelevation rates (    ), based on NCHRP439, present another situation, such as 

violation for driver's expectancy. It is due to these alternative maximum superelevation 

rates, an analysis from AASHTO states there are various superelevation rates that apply 

to each maximum superelevation rate required within the similar design speed. Therefore, 

the need to present a method for distributing superelevation rates to solve this dilemma is 

imperative. 
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2.2.1 AASHTO Methods 

 

In 1965, the Association of State Highway and Transportation Officials (AASHTO) 

published Geometric Design of Rural Highway. This guideline highlights 5 methods for 

superelevation distributions that have been used with curve designs over the past 40 

years. To allow the stability for this study, the 5 methods that are contained within 

AASHTO (2004), are stated as follows: 

 

Method 1 

 

Superelevation along with side friction is directly in proportion with the opposite radius 

(for example, a straight line connection is between 1/R = 1/     illustrated with curve 1 

within Figure 2.9.A.)  

The AASHTO (2004) as well offers the following information with regards to the first 

method  

A relationship for a straight-line involving superelevation along with an inverse for the 

curve radius found within Method 1 find that there are related relationships with both side 

frictions along with the radius of traveling vehicles that are within average running speed 

or the design speed. This method contains simplicity, logic and value. For a given 

highway, horizontal alignment has curves and tangents with different radii that are either 

equal to or greater than the allotted minimum radius of design speed (    ). Application 

for superelevation that has quantities that are precisely proportional with the inverse for 

the radius could, for vehicles that are driving at consistent speed, conclude that side 
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friction factors pertaining to straight-line deviation involving zero within tangents (not 

including cross slope) toward maximum side friction within minimum radius.  

 

This method could materialize to be the means for distributing side friction factor; 

however, its suitability varies with travel at constant speeds from each vehicle within a 

traffic stream, despite whether travel will be within a curve, intermediate design, an 

intermediate degree curve, and a design speed curve with minimum radius or a tangent. 

Consistent speed is always the goal for most drivers, which can be achieved within 

highways that are well designed with no heavy volumes; there becomes a focus that 

certain drivers will travel faster within flatter curves and tangents rather than within 

curves that are sharp, especially when being delayed without the opportunity for slower 

passing moving vehicles. This tends to show the desire for presenting superelevation 

rates of intermediate curves within excess for the results with Method 1. 

 

From the previous information, Method 1 deals with the variation within friction factor 

and with relation to the change within speed; conversely, the vehicles should drive and 

maintain a constant speed. This may not be possible because speed variations transpire 

repeatedly since drivers typically do not maintain a constant speed. As well, Method 1 

shows the physical state of a vehicle navigating through a superelevated curve. Nicholson 

(1998) shows Method 1 is expressed mathematically this way: 

 

     = 
     

 
     ;    = 

  

  
  -  

     

 
      ; (      ≤  R  ≤  ∞)                  (2.60) 
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It can also be expressed: 

     = 
     

           
  
  

  
 ;    = 

     

           
 
  

  
 ; (      ≤  R  ≤  ∞)            (2.61) 

 

It is shown, Method 1 contains the suggestion which states the centrifugal force that 

arises from both the superelevation and side friction when R is larger than      is similar 

as when R =      (Nicholson, 1998). 

 

Method 2 

 

Regarding Method 2, side friction states when a vehicle that is traveling within design 

speed has lateral acceleration constant within side friction on the curves up toward 

requiring      superelevation is applied until e reaches     . Within this method, first f 

then e is increased within inverse proportion into the radius of curvature, as illustrated 

with curve 3 in Figure 2.9.B.  

 

AASHTO (2004) provides the following information in Method 2: 

Method 2 utilizes side friction for sustaining lateral acceleration up toward the curvature 

that correlates within maximum side friction factor; hence sharper curves deal with 

maximum side friction factor. Concerning Method 2, superelevation is established once 

maximum side friction is used. Consequently, superelevation is not required for curves 

that are flat which require less maximum side friction regarding vehicles that travel with 

the designed speed (curve 2 within Figure 2.9A). Whenever superelevation is required, 

swift increases within maximum side friction and curves grow. Method 2 depends fully 
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on side friction availability, so it is to be utilized with highways and low-speed streets. 

This method is beneficial for urban streets with lower speeds where, due to certain 

limitations, frequent superelevation is not presented. 

 

This method has been implemented within the design for urban streets that contain low 

speed. This method is not capable of being used with higher speed of sharper curves due 

to its dependency for available friction. Dealing with high speed, drivers surpass the 

maximum friction with ease; the danger of skidding coupled with the loss of control will 

become higher when the curve becomes sharper. Nicholson (1998) shows Method 2 is 

mathematically illustrated by the following: 

 

    = 
  

  
 -      ;   =      ;(     ≤ R ≤    )                     (2.62) 

    = 0 ;    = 
  

  
 ;   (     ≤  R  ≤  ∞)                                                        (2.63) 

 

With the radius that is the smallest relying by side friction is: 

 

      = 
  

      
                                                                             (2.64) 

Method 3 

 

Superelevation states that when a vehicle is traveling at design speed, it has lateral forces 

that are constant with superelevation on curves toward requiring      . Regarding 

sharper curves, e remains        whereas side friction can then be used to maintain lateral 
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acceleration until f reaches      . Within this method, first e followed by f is increased 

within inverse proportion of the radius for the curvature. Nicholson (1998) shows Method 

3 is expressed mathematically: 

    =      ;   =  
  

  
  -     ; (      ≤  R  ≤     )                                 (2.65) 

and 

     =   
  

  
 ;      = 0 ;   (     ≤  R  ≤  ∞)                                                (2.66) 

 

With the radius that is the smallest relying on superelevation is: 

 

      = 
  

      
                                                                                          (2.67) 

 

AASHTO (2004) provides the following discussion on Method 3. 

Regarding Method 3 that has been carried out for many years, sustaining lateral 

acceleration regarding superelevation when a vehicle is traveling within design speed can 

be presented for all curves that require maximum realistic superelevation, where 

maximum superelevation within sharp curves is present. Within this method, side friction 

within flat curves is not provided less than the vehicles travelling at both design speed 

and maximum superelevation, as illustrated within Curve 3 for Figure 2.9.B, along with 

suitable side friction increasing quickly when curves that have maximum superelevation 

become sharper. Furthermore, illustrated by Curve 3 in Figure 2.9.C, regarding vehicles 

that are traveling within average running speed, negative friction results from this with 

curves that have extremely flat radii to middle range for curve radii; once curves are 
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sharper, side friction then increases tremendously to the maximum equivalency of the 

curvature of the minimum radius. The difference within side friction regarding different 

curves may not be rational and could end up with irregular driving, with the average 

running speed or the design speed. 

 

The main issues regarding this method derive from the different curves having various 

side frictions dependent on how sharp the curve is. It also is not true physically, which 

states that there will be no side friction in between the pavement and the tires. Side 

friction is present within the tires due to it being a function for the weight of a car that is 

normal within the surface of the pavement. Friction allows a vehicle to corner, it allows it 

to brake, and allows the acceleration forces to transfer the forces to the pavement from 

the tires. Instead of using ―coefficient of friction‖ for dynamics, highway engineers will 

instead use ratios for lateral forces where the pavement resists. This type of lateral ratio is 

also known as ―friction factor.‖ (AASHTO, 1984).  

 

The friction factor needed to counter centrifugal forces can be reduced with vehicle 

braking (both accelerating and decelerating). When friction is utilized for sudden 

stopping, there will be little friction left to corner. Antilock Braking Systems (ABS) has 

helped improve this situation. The friction factor can also be dependent on any number of 

variables, such as, weight, vehicle speed, tire condition (tire pressure, tire temperature, 

wear), suspension, tire design (rubber compound, tread, sidewall stiffness, contact patch); 

pavement, along with any substance that is between the pavement and tire. As the friction 

factor starts to decrease when speed increases, several friction factor studies have been 
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conducted for various speeds (AASHTO, 2001). Friction factor decreases drastically once 

the tires begin to spin either slower and faster than that of the speed of the vehicle (for 

example, within a skid, tires spinning while trying to either accelerate or come to a full 

stop on the ice, as well, during a ―peel out‖ or ―burn out‖).  

 

Consequently, an improved method of the distribution method will take into account that 

the concurrent effect for the superelevation along with side friction within the vehicle 

passing a curve. The approach for Method 3 ends up with irregular driving done at the 

running speed and the design speed. This corresponding effect for the friction along with 

superelevation effects and the speed variation are illustrated in section 2.1.1.2 of this 

chapter. 

 

Method 4 

 

Method 4 is similar to Method 3, with the exception that Method 4 deals with running 

speed average instead of dealing with design speed.  

The AASHTO (2004) offers the following consideration regarding method 4. 

With Method 4, permeating the inefficiencies of Method 3 is the purpose, by utilizing 

superelevation at lower speeds than that of design speed. Method 4 has been utilized for 

average running speeds of which lateral acceleration can be constant by superelevation 

for curves that are flatter then superelevation for maximum rate. The average running 

speed presented in Table 2.1 is approximate, fluctuates at 78 to 100 [80 to 100] % for 

design speed. Curve 4 within Figure 2.9.A illustrates when utilizing this method, 
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maximum superelevation can be attained within the curvature range middle. Figure 2.9.C 

illustrates with average running speed that no side friction at this curvature is required, 

while side friction quickly increases within direct proportion of sharper curves. However, 

Method 4 has similar disadvantages to Method 3, yet those apply at smaller degrees. 

 

Similar comments within Method 3 are provided in Method 4 through the use for lower 

speed than that of design speeds; whereas this case shows the running speed average. In 

the two cases, physical friction effects, superelevation and speed variation are not done 

together. Results are all the same as with Method 3, irregular driving can arise with the 

running speed average along with the design speed. 

 

Table 2. 1 Average Running Speeds (AASHTO ,2004) 

 

 



48 

 

Method 2 Modified 

 

For the four methods of determining the superelevation and side friction, the second one 

only involves zero superelevation on infinite radius curves. In addition, the second 

method is also capable of modification to guarantee that a minimum superelevation is 

expressed. Nicholson (1998) shows how modified Method 2 mathematically can be 

explained: 

      =  
  

  
 -      ;     =      ; (     ≤ R ≤    )                   (2.68) 

      =       ;     = 
  

  
 -     ; (    ≤ R ≤  ∞)                     (2.69) 

 

where, 2m = "modified method 2." 

where the smallest potential radius to be used and minimum superelevation applied is  

      

      = 
  

             
                                                                              (2.70) 

 

Method 5  

 

Superelevation along with side friction has a curvilinear relationship with the opposite for 

the curve radius, within values between that for Methods 1 and 3. Method 5 utilizes a 

method of curvilinear distribution that depends upon the unsymmetrical parabolic curve 

of distribution of   which is tangent into two legs that define Method 4. Subtracting the 

value of f from design values for (  +  ) to make the curve equation less complex for  , 



49 

 

the final   distribution is obtained. The AASHTO clearly states the Method 5 

mathematical formulation. However, the comparison of the Method 5 results is included 

in chapter 5. AASHTO (1990) discusses that  , related with the degree for curvature ( ) 

for both the curve along with side friction, needs to assure 3 conditions which will be 

discussed in detail in chapter 3. Easa (1999) shows how Method 5 can be mathematically 

explained: 

 

      = 
  

      
                                                                           (2.71) 
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 ; 1/R  ≤  1/         (2.72) 

   =       
    

 
 

     

        
   

       

    
  

      

        
 
 

 ; 1/R>1/    (2.73) 

     = 
  

   
 -                                                                                            (2.74) 

 

The AASHTO (2004) provides the discussion of Method 5. 

To deal with overdriving, likely occurring within intermediate to flat curves, the 

approximate superelevation can be acquired by Method 4. Overdriving within certain 

curves deals with low risk where drivers may lose the control of their vehicle due to 

superelevation being maintained with lateral acceleration within average running speed, 

along with side friction available at greater speeds. Method 1, which eludes utilizing 

maximum superelevation of a significant part for the curve radii range. Regarding 

Method 5, involving curved lines (Curve 5 illustrated within a range for the triangle that 

ranges from curve 1 along with 4 within Figure 2.9.A) represent both superelevation 
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along with side friction distribution practically maintaining the advantages for Method 1 

and Method 4. Curve 5 has a practical distribution of superelevation along with having an 

unsymmetrical parabolic form within a range for curvature. 

 

Method 5 integrates the advantages for both Method 4 and Method 1 to generate a 

feasible superelevation distribution over a range for curvature with simply illustrating the 

best fit curve above a considerable region of space that is both practical and reasonable. 

Even though this provides a preferred result, the calculation is awkward, inflexible and is 

not easily utilized in practice; therefore, 14 different equations require solving to produce 

a design curve distribution. So, 10 tables and charts which are provided within the 

AASHTO are used for design. 

2.2.3 Fundamental subject within Superelevation Design 

 

There are two fundamental approaches related to superelevation distribution: 

(1) Superelevation within a limited way is used by friction factor for cornering 

similar to Method 2  

(2) Heavy dependency for superelevation and minimum friction factor required to 

deal with faster drivers, whereas slower drivers utilize superelevation for safety 

purposes. This prevents negative friction that could force drivers into steering 

against directions within the curve that may be risky and could result in irregular 

driving (NCHRP 439).  
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Figure 2. 9 Methods of Distributing Superelevation and Side Friction (AASHTO,2004) 
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This research presents a straightforward and proper approach towards superelevation 

distribution with the utilization for EAU Method and SAU Method. This combines 

advantages with Method 5 along with EAU and SAU curve, respectively, that accounts 

for speed variation within a vehicle passing through horizontal curve.  

2.2.4 Superelevation Distribution Approach by Other International Agencies 

 

NCHRP439 incorporates a review with 6 agencies internationally and noted that of the 6 

agencies, 4 have distribution methods capable of providing constant mathematical 

relationships between radius, design speed and superelevation or an equal plan. The areas 

are Canada, France, Germany, and the United Kingdom. Figures below (based on 

NCHRP439) illustrates a similarity with mathematical relationships between Canada and 

the United States. 

 

 

Figure 2. 10 Superelevation distribution methods recommended by several international agencies 

for high-speed facilities 
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The first line within the left side of the graph (Figure 2.10) shows the superelevation 

amount needed to connect centripetal acceleration that is associated within travel for a 

given curved path thus acting within upper limit control. With the exception of Canada 

and the United States, which use unsymmetrical parabolic curves, others then use linear 

relationships from superelevation rate and curvature. 

2.3 Highway Consistency 

 

Over half of the fatalities are connected to collisions on rural highways that are located 

on curved sections (Lamm et al., 1992). Therefore, corresponding transition sections and 

the curves represent the most critical regions for safety improvements. One of the main 

objectives that can improve safety on a highway, by considering a system for curves, 

should be geometric design consistency. Design consistency guarantees that successful 

geometric elements act in a coordinated way, so they produce coordinated driver 

performance consistent within driver expectations (Lunenfeld & Alexander, 1990; 

Krammes et al., 1995). 

 

Evaluating the methods for highway design consistency is classified in three categories: 

performance, speed, and safety (Gibreel et al., 1999). The performance section includes 

methods such as driver anticipation, driver workload, and other areas that influence driver 

performance (e.g., interchange design and aesthetics). Regarding the speed section, 

evaluating different geometric design consistency elements depends on operating speed. 

In the safety section, special attention is focused on the effects of superelevation design 

and side friction and vehicle stability.  
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2.3.1 Choices for Design Speed 

2.3.1.1 Traditional Design Speed Method 

 

The goal is to avoid any geometric inconsistencies by including consistency within the 

design speed right through the road section. The minimum radius is fixed once a design 

speed is chosen; AASHTO (Policy 1954) affirmed "there should be no restriction to the 

use of flatter horizontal curves ... where (they) can be introduced as part of an economic 

design." Conversely, Barnett (1936) saw "if a driver is encouraged to speed up on a few 

successive comparatively flat curves, the danger point will be the beginning of the next 

sharp curve," along with the AASHTO (Policy 1990) cautioned against having a 

continuous set of flatter curves, for drivers are willing to increase driver speed. 

 

Krammes et al. (1995) voiced concern towards design speed selection within the 

AASHTO guidelines, citing the 85
th

 percentile operating speeds are usually both greater 

and less than the design speed once the design speed was both lower and higher than 100 

km/h. Krammes et al. recommended as well that another concern was the traditional 

design speed concept only relates to both horizontal and vertical curves, while not 

applying to tangents. Krammes et al. (1995) finished with this: "the design speed concept 

. . . can ensure operating speed consistency only when the design speed exceeds the 

desired speed of a high percentile of drivers." 

 

Krammes et al. (1995) re-examined both the geometric design consistency practices and 

policies for a range of countries, those including five European countries, Canada, 
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Australia and the United States and recognized two very different approaches to 

improving design consistency. The most familiar is the speed-profile evaluation 

technique, which is utilized in Germany, Switzerland and France and which Krammes et 

al. (1995) also suggest utilizing within the United States. The other speed profile is the 

Australian speed-environment approach that is also utilized within New Zealand; it is the 

subsequent analysis basis for the effect on different methods in choosing superelevation 

along with side friction, within the highway alignment consistency. 

2.3.1.2 Speed-Environment Approach 

 

The speed-environment method by Rural (1993) entails calculating the 85
th

 percentile 

desired speed that can also be defined as a "speed environment." Both long and level 

tangents can be seen as desired speeds, with low traffic concentration where drivers do 

not have to deal with many other vehicles. McLean (1979) discovered that desired speeds 

were managed from the driver's opinion within the overall standard for the road section 

comprising of:  

1) The entire geometric standard (particularly horizontal curves). 

2) The road environment (mainly the terrain). 

 

Different from traditional design speed that connects with particular geometric elements, 

it is the speed environment that connects with the substantial road length containing both 

several tangents and curves and is steady within a segment of the road. A speed 

environment is measured within an existing section of the road that needs to be calculated 
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for newer roads that take into account both the range and the terrain for the horizontal 

curve radii in the road section (Rural, 1993). 

 

The design speed can be defined as "not less than the estimated 85
th

 percentile operating 

speed on a particular element within a given speed environment" and then utilized 

similarly to traditional design speed for the coordination of superelevation, side friction, 

radius and sight distance. Design speed of a given curve radius, calculated utilizing 

Figure 2.11 , is seen to differ within the speed environment. The design speed approaches 

the speed environment as the radius increases. 

 

 

Figure 2. 11 Estimation of design speed (Rural,1993) 

 

Figure 2.12 shows the relationship between both the speed environments of a road section 

along with the design speeds of the alignment elements in that section. This illustrates the 

operating speed frequency distributions of a tangent, a low radius curve and a medium 



57 

 

radius curve. The operating speed distribution of the tangent can also be the desired speed 

distribution (presuming low traffic concentration). Once radius decreases, drivers become 

more controlled by the geometry, therefore the operating speed distribution variance 

decreases. For the condition illustrated within Figure 2.12, the speed environment is 109 

km/h, when the design speeds (for example, the 85
th

 percentile operating speeds) of the 

low radius curve, medium radius curve and the tangent are 66, 87, and 109 km/h, 

respectively. The methods for speed-environment involve the design speed concept for 

tangents; this is merely the approximate 85
th

 percentile operating speed within the 

downstream tangent end. To make sure a practical level for consistency between 

consecutive alignment elements, Austroads (Rural, 1993) suggests that the curve design 

speed should not be higher than 10 km/h below the design speed for the previous tangent. 

 

 
Figure 2. 12 Representative Operating Speed Distribution (Nicholson, 1998) 
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2.3.2 Superelevation Distribution to Maximize Design Consistency of Highway 

 

Given that AASHTO methods are mainly supported with subjective analysis, Easa (2003) 

provided an objective approach that distributes superelevation utilizing mathematical 

optimization in maximizing design consistency. The difference between the design speed 

and the maximum limiting speed that corresponds to      is the definition of safety 

margin. Two analysis types are utilized: 

1. Aggregate analysis, 

2. Disaggregate analysis. 

 

Aggregate analysis is described as the objective function for the model minimizing total 

safety margin variation on the highway. Within disaggregate analysis; it is explained as 

the objective function for the model minimizing individual safety margin variations 

among adjacent curves. The definition of safety margin stems from Nicholson (1998) 

where he defines safety margin as "the difference between the speed at which maximum 

permissible design side friction is being called upon by the driver (sometimes called safe 

speed) and the design speed". Easa presented an optimization model that eliminates trial 

and error when determining the necessary e by examining the total e distribution area 

among AASHTO Method 2 along with 3 in determining the best e. Even though the 

model provides results that are approximately similar with Method 5, which is the ideal 

AASHTO distribution method, the method can be utilized for professional practice. 

However, required influential optimization computer software is needed to present a 

solution. Furthermore, a complex calculation method presents higher f than that of 
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Method 5 and utilizes a discrete function that is different from the dynamic equation of 

vehicle motion within a horizontal curve.  

2.4 Summary 

 

Below are important points regarding the literature review of the three main sections, 

highway geometric design, superelevation distribution methods and highway consistency: 

 Highway geometric design: 

o In the horizontal alignment element, the focus is on vehicle motion 

dynamics within superelevated horizontal curves. 

o In the vertical alignment element, the benefit is to discuss the derivative of 

EAU and SAU curve equations. 

o In the cross section element along with superelevation, the emphasis 

contributes toward vehicle stability.   

 Superelevation distribution is based on the AASHTO Methods: AASHTO 

Method 2 is suitable for low speed urban streets and AASHTO Method 5 is 

suitable for high speed urban streets.   

 Highway Consistency:  

o In highway geometric design consistency, the objective is to improve 

highway safety, by considering a system for curves.  

o In choice of design speed, the goal for traditional design speed method is 

to avoid any geometric inconsistencies by including consistency within the 

design speed right through the road section; in addition, the goal for the 
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speed environment approach involves calculating the 85
th

 percentile 

desired speed that can also be defined as ―speed environment.‖   

o In safety margin, the objective is to maximize design consistency of the 

highway using superelevation distribution. 
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Chapter 3: Existing Methodology for Superelevation Design 

 

This chapter provides the methodology for superelevation design considerations and the 

superelevation for AASHTO Method 5. Furthermore, a description for superelevation of 

a system of curves and safety margin are also presented.  

3.1 Superelevation Design Considerations  

 

Superelevation rates applied towards a range of curvature of each design speed are used 

within highway design. One extreme is maximum superelevation rate created to 

determine the maximum curvature of each design speed, which may be different for 

various highway conditions. Regarding the other extreme, superelevation is not needed 

for tangent highways or highways with flatter horizontal curves. For curvature between 

both extremes along with a specified design speed, the superelevation (e) should be 

selected in a proper manner where there is a sensible relation between the applied 

superelevation rate and the side friction factor. 

3.1.1 Maximum Superelevation  

 

AASHTO recommends that maximum rates for superelevation assumed for highways can 

be controlled with four factors: 

1) Climate conditions – deals with the quantity and the frequency of ice and snow. 

2) Terrain Condition - deals with whether or not the terrain will be rolling, 

mountainous or flat. 
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3) Determining the area – determining whether it is either urban or rural. 

4) Frequency for extremely slow moving vehicles – there are vehicles that may be 

affected by high superelevation rates. Slow moving vehicles that are on a very 

icy road may slide down a slope with a superelevated road that is high, while a 

vehicle that is moving fast along a rural road could turn over within a 

superelevated road that is low. 

Significance for these factors leads to the conclusion that there is no one maximum 

superelevation rate that is commonly relevant. Thus, utilizing one maximum 

superelevation rate in a region with comparable climate conditions along with land use 

being attractive promotes design consistency. Furthermore, AASHTO has concluded, 

there is "no single maximum superelevation rate that is universally applicable and that a 

range of values should be used". However, there are some recommendations regarding 

maximum superelevation rates provided: 

1) 4% to 6% of design for urban highways within areas has no constraints. 

2) 8% of areas have both snow and have ice. 

3) 10% to 12% of areas have no snow or no ice. 

 

Design consistency deals with the consistency for highway alignment along with its 

related design element dimensions. This consistency allows for drivers to increase their 

awareness-reaction skills to develop expectancies. Non-consistent design elements with 

related types of roadways might counteract a driver‘s expectancy, and thus will result in a 

higher driver workload. Rationally, there is a comparison between driver workload, 
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design consistency along with motorist safety having ―consistent‖ designs that are related 

with safer highways and lower workloads. 

3.1.2 Minimum Superelevation  

 

According to the AASHTO (Policy 1990) guide, "no superelevation is needed for tangent 

highways or highways with extremely long-radius curves." Furthermore, the Austroads 

(Rural 1993) guide affirms "it will usually be found desirable to superelevate all curves at 

least to a value equal to the normal crossfall on straights, unless the radius of an 

individual curve is so great that it can be regarded as a straight, and normal crossfalls (or 

adverse superelevation) used." 

 

If normal crossfall in the tangent is maintained within a circular curve, outside of the 

curve could experience steady superelevation. The issue may exist for those that are 

inside the curve; when a vehicle is driving very fast, the driver may cross the centerline 

and experience a change within superelevation to an opposing superelevation. This could 

explain the likelihood for a driver not maintaining control by increasing a significant 

condition that may not be reliable within a lenient street. One way to avoid this is to have 

minimum superelevation       > 0. 

3.1.3 Maximum Side Friction Factors  

 

Due to the maximum available side friction factor, horizontal curves are unable to be 

designed. As an alternative, when used in design, there should be a ratio where maximum 
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side friction factor is used for both comfort and safety of most drivers. Side friction factor 

levels that represent bleeding, lacking skid-resistant traits or glazed pavements should not 

influence design because these conditions that are avoidable regarding geometric design 

based within a suitable surface condition capable of being achieved is done at reasonable 

cost (AASHTO, 2004). 

 

Based on both experience and data, AASHTO has developed reliable side friction factor 

values, which can be used concerning highway curvature design. These values tend to 

typically be dependent on improved relationships involving both side friction factor and 

design speed (Alberta Infrastructure, 1999). Maximum safe values for each design speed 

are illustrated within the Table 3.1. 

3.1.4 Minimum Radius 

 

The minimum radius can be a limiting value for curvature of a certain design speed that is 

calculated based on the maximum side friction factor for design (limiting value for f) and 

the maximum rate for superelevation. Utilizing sharper curvature for a design speed 

could mean superelevation past the considerable limit or could mean operation within tire 

friction along with lateral acceleration past the considered comfort area by many drivers. 

The minimum radius for curvature is a very important control value to determine 

superelevation rates involving flatter curves (AASHTO, 2004). The minimum radius for 

curvature,     , is calculated precisely from the shortened curve formula as shown  

within section 2.1.1.3 (Equation 2.18 ). This calculation can determine     : 
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       = 
  

                    
       (3.1) 

Where, 

V = vehicle speed (Km/h) 

e = superelevation rate (percentage) 

f = side friction factor (no unit) 

      = minimum radius for horizontal curve 

3.1.5 Choice of Design Superelevation and Side Friction 

 

Easa et al. (2003) explain the variables utilized within the calculation for the minimum 

horizontal curve radius adopting the PM model, which include vehicle speed (V), 

minimum curve radius (    ), maximum side friction (    ), acceleration of gravity (g) 

and maximum superelevation (    ) along with the side friction, and can all be defined 

within the design guides between the vertical and horizontal forces. Moreover, it is this 

ratio between the component for the vehicle weight and the side (or radial) friction force 

that is perpendicular with the pavement. 

 

Easa et al. (2003) discusses the effect for superelevation that needs raising the radius. As 

illustrated, regarding      = 0.06 was shown to be typically more than what was required 

for      = 0.04, particularly for lower speeds. It can be explained regarding the 

conservative rates for side friction utilized within the design guides, particularly for low 

speeds. It is those conservative rates that could result in unlikely design radii related with 

higher superelevation. To provide an example, for      = 0.04 and with V = 60 km/h, the 
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understood      = 0.15 (TAC, 1999), along with      =150 m. Conversely, for      = 

0.06 along with the similar design speed,       = 130 m (86.7% of      needed for      

= 0.04). If the definite side friction (keeping the similar safety margin) was higher than 

     (0.18), then      can be 130 along with 120 m for      = 0.04 and 0.06, in that 

order, for similar V = 60 km/h. Therefore,       needed for      = 0.06 is 92.3% for the 

required      = 0.04. The variation within load distribution for different tires increases 

with a similar increase within superelevation, whereas the load increases within the inner 

tires then decreases within the outer tires. The difference within load distribution ends up 

with more disparity within side friction demands for certain truck tires. 

3.2 Superelevation Distribution based on AASHTO Method 5  

 

AASHTO (2004) discussed urban highways, rural freeways and high-speed urban streets 

that account for speed being reasonably uniform and high, horizontal curves tend to be 

superelevated with successive curves usually balanced to make for a transition that is 

smooth-riding from one particular curve to the next. The drivers with higher speed are 

not as comfortable within lateral acceleration in curves. Varying radii involving a series 

of curves with a balanced design are presented with the suitable distribution for both e 

along with f values, for selecting a suitable superelevation rate within the range of the 

maximum superelevation to the normal cross slope. 

 

Figure 3.1 illustrates the suggested side friction factors of urban and rural highways along 

with highways and high-speed urban streets. They present a practical safety margin of the 
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various speeds. Maximum side friction factors differ precisely with design speed with a 

range of 0.40 at 15 km/h to 0.08 at 130 km/h. Dealing with the maximum allowable side 

friction factors based on Figure 3.1, Table 3.1 provides the minimum radius of each five 

maximum superelevation rates. Method 5, as explained before, is suggested for the 

distribution of e and f of all curves that have radii higher than the minimum radius for 

curvature in urban highways and rural highways along with high-speed urban streets. 

Uses for Method 5 are explained within the following text and Figure 3.2. 

 

The procedure of development for Method 5 superelevation distribution is illustrated and 

the side friction factors depicted as a solid line within Figure 3.1, which symbolize 

maximum   values chosen as design of each speed. When these particular values are used 

within combination with the suggested Method 5, it determines   distribution curves of 

the various speeds. Deducting the computed value of (0.01 e + f) from the computed f 

values within design speed (V), the confirmed e distribution is then attained (Figure 3.2).  

 

Figure 3.2 elaborates on the different methods for distribution involving e along with f 

over a set of curve ranges available. Even though Method 5 is currently used by 

AASHTO, this does not mean other methods do not apply or else there is no room to 

maneuver. An example of the developed superelevation using Method 5 is shown in 

Figure 3.3 for e = 10%.   
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Figure 3. 1 Side Friction Factors based on Design (AASHTO, 2004) 

 

  

Figure 3. 2 Method 5 Procedure for Development for Superelevation Distribution (AASHTO, 

2004) 
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Table 3. 1 Minimum Radius that use Limiting Values for both e and f (AASHTO, 2004) 
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Figure 3. 3 Design Superelevation Rates for Maximum Superelevation Rate of 10 Percent 

(AASHTO, 2004) 

 

Table 3. 2 Minimum Radii for Design Superelevation Rates, Design Speeds, and      = 10% 

(AASHTO, 2004) 
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3.3 Analytical Formulas 

 

AASHTO (2004) explains that both e and f distributions involving Method 5 can result in 

a basic curve formula, ignoring the (1 – 0.01ef) term mentioned earlier within this 

chapter, utilizing the following series of equations: 

 

          = 
  

     
        (3.2) 

Where, 

         = V = design speed, km/h; 

       = e = maximum superelevation (percent); 

        = f = maximum allowable side friction factor; 

       = R = minimum radius, meters; 

      = R = radius at the Point of Intersection, PI, with legs (1) and (2) for the f 

distribution; parabolic curve (R within the point for intersection of 0.01      along with 

 (0.01e + f) R); 

        = running speed, km/h 

then: 

       = 
  
 

                    
       (3.3) 

and 

      = 
  
 

         
         (3.4) 
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Because               –               = h, at point     the calculations diminish to 

the following: 

 

      =  
             

 

  
   -               (3.5) 

 

whereas,     = PI counterbalance from the 1/R axis. 

Also, 

     =                  (3.6) 

 

whereas,    = slope for leg 1 and 

 

     =  
        

 

    
 

 

   

        (3.7) 

 

where,    = slope for leg 2. 

 

The calculation of the middle ordinate (MO) for an unsymmetrical vertical curve is as 

follows: 

 

     = 
           

        
       (3.8) 

 

where,    = 1/    and    = 1/     – 1/   . 
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Then: 

 

     = 
 

   
  

 

    
 

 

   
   

     

 
           (3.9) 

 

whereas, MO = middle ordinate for the f distribution curve, and 

 

              = 
                    

 
      (3.10) 

 

in which R = radius at any point. 

Utilizes the general vertical curve equation: 

 

  
 

  
 =  

 

 
 
 

        (3.11) 

 

with 1/R measured from the vertical axis. 

with 1/R ≤ 1/   , 

 

    =    
   

 
 
 

 + 
  

 
       (3.12) 

 

where,     = f distribution at any given point 1/R ≤ 1/   ; and 

 

  0.01   =             -         (3.13) 
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Where, 0.01    = 0.01 e distribution at any given point 1/R ≤ 1/   . 

For 1/R > 1/    , 

 

     =    

 

    
 
 

 

 

    
 

 

   

 

 

+     +     
 

 
 

 

   
     (3.14) 

 

where,     = f distribution at any given point 1/R > 1/    ; and 

 

  0.01   =             -         (3.15) 

 

where, 0.01    = 0.01 e distribution at any given point 1/R >1/   . 

3.4 Evaluation of the AASHTO methods 

 

Side friction and superelevation regarding Above-Minimum Radius Curves, it is stated 

from Austroads (Rural, 1993) that "it is usual to adopt radii greater than (the minimum 

values) and to reduce superelevation and side friction below their maximum values," 

however, no advice was given regarding the proportions for the centripetal force, which 

could be offered from sideways friction and superelevation (Nicholson, 1998). 

With radii that are greater than minimum radius, design superelevation along with side 

friction is less than its maximum values. Regarding a certain design speed (     ,     , 

and      ), AASHTO provided five methods of neutralizing the centrifugal force with 

the use for e along with f, or both (AASHTO, 2004). These five methods include:  
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1) Side friction and superelevation are precisely proportional with the inverse for 

radius R (otherwise, the curve degree). That is, e depends linearly beginning at 0 

from R = ∞ (curve degree equals zero) to      by R = (maximum curve degree), 

and also for f; 

2) For a vehicle driving within the design speed, the centrifugal force can be offset 

within the direct proportion with side friction upon curves to those needing       .  

Involving sharper curves, f stays at       while e then is utilized within direct 

proportion involving the increase within curvature until e =       ; 

3) For a vehicle driving within the design speed, the centrifugal force can be offset 

within direct proportion with superelevation upon curves to those needing       . 

Involving sharper curves, e stays at      while f then is utilized within direct 

proportion involving the increase within curvature until f =       . 

4) It similar to Method 3, apart from it being based on running speed average as 

opposed to design speed; as well as 

5) The side friction and superelevation differ with the opposite of the radius within a 

curvilinear method, providing values between both Methods 1 and 3. 

AASHTO suggests utilizing Method 5. 

The AASHTO guideline offers a difference between those methods that are based on 

running speed average that is basically the distance traveled that is divided by the average 

running time (the time that the vehicle is within motion), along with the methods that are 

based on design speed. If design speed is determined to be the 85
th

  percentile operating 

speed within the circular curve, little validation, if any, is needed for sustaining the 

difference between those methods that are based on speed unspecified for design 
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purposes along with the definite operating speeds, therefore, there are the five methods 

discussed by Nicholson(1998) . 

3.4.1 Method 5 Evaluated by Nicholson 

 

AASHTO (1990) discusses that e, related with the degree for curvature (D) for both the 

curve along with side friction, needs to assure 3 conditions: 

1) e = 0 when D = 0 (or R = ∞); 

2) e =      when  D =      (or R =     ); and 

3) 
  

  
 = 0 when D =      (or R =     ); 

Nicholson (1998) described that the degree of curvature D is inversely proportional to the 

radius R, such that their product equals 5,729.58, and is thus subject to an upper bound 

 

       =  
                      

  
      (3.16) 

 

Nicholson (1998) explained that both the e and f distributions involving Method 5 can 

result in the symmetrical vertical curve formula, utilizing the following series of 

Equations: 

For (     ≤ R ≤ ∞) 

 

             =      
    

 
 2- 

    

 
       (3.17) 

    = 
  

  
 -       

    

 
 2- 

    

 
     (3.18) 
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The assumption of the symmetrical vertical curve of AASHTO Method 5 superelevation 

distribution is not correct. The equation should be an unsymmetrical vertical curve 

equation (Easa, 1999).  

3.4.2 Method 5 Evaluated by Easa 

 

Easa (1999) explains that both the e and f distributions involving Method 5 can result in 

the unsymmetrical vertical curve formula. The reproduction for ‗‗AASHTO Method 5‘‘ 

provided in Nicholson (1998) is not actually that of the AASHTO Method 5. This debate 

portrays the reproduction of AASHTO Method 5 (that distributes superelevation, e, along 

with side friction, f, utilizing an unsymmetrical parabolic curve) and observes the 

conclusion where this method is not as good as Method 1 (which is a linear distribution). 

 

Nicholson (1998) affirmed that the   versus   relationship that was presented within 

Figure III-6 (A) within the 1990 AASHTO guide (Policy 1990), and Figure III-7 (A) 

within the 1994 AASHTO guide (Policy 1994), assures three conditions as discussed in 

section 3.4.1. Based on these conditions, Equations (3.17 & 3.18) were both correct. 

However, these calculations suggest a symmetrical parabolic curve involving the   

distribution having a midpoint at     /2 along with a slope that is equivalent to zero 

where D =     . This varies from AASHTO Method 5 that is characterized with an 

unsymmetrical (two-arc) parabolic curve guaranteeing the e curve be tangent with the (e 

+ f ) line within R = ∞ (D = 0). 



78 

 

The symmetrical description could result within the e curve lying on top of the (e + f ) 

line thus producing negative values for f. This is notably true as the ratio t =     /(    + 

    ) becomes greater than 0.5 and R becomes larger than 2     . Involving t = 0.5, 

Equations (3.17 & 3.18) are exact due to the unsymmetrical curve being lessened to a 

symmetrical curve. Regarding t = 0.5, problems regarding negative values for f may not 

occur, thus the symmetrical curve may not digress from that of the unsymmetrical curve. 

 

Within AASHTO Method 5, the unsymmetrical (US) curve was first created for the f 

distribution, where the e distribution can be seen (Figure 3.2). The unsymmetrical curve 

deals with two parabolic arcs associated within the point of intersection (1/   ), whereas 

    is the radius analyzed utilizing Equation (3.19) where e =      and f = 0. 

Disregarding the difference between average running speed and design speed, and 

utilizing the basic principles for unsymmetrical vertical curves (Hickerson, 1964), side 

friction, f, can result in: 

 

      
  

  
           (3.19) 

      = 
  

      
                                                                             (3.20) 

 

For 1/R  ≤        

 

   =      
        

    
         (3.21) 

 



79 

 

For 1/R  >        

 

   =       
    

 
 

     

        
   

       

    
  

      

        
 
 

    (3.22) 

Then, the superelevation,   , is set by 

 

     = 
  

   
 -                                                                                             (3.23) 

 

For      =     , is shown that    along with    for Equation (3.19)–( 3.23) is decreased 

to    along with    within the symmetrical curve for Equation (3.17 & 3.18). 

3.5 Superelevation Design based on Safety Margin 

 

Nicholson (1998) defined safety margin as the difference involving design speed ( ) and 

the limiting speed (  ). The    is the speed where   equals      as well as the   variable 

is the design superelevation. In regards to a circular curve that contains radius   along 

with design superelevation  , limiting speed is shown by 

 

     =  
         

       
        (3.24) 

 

where, VL= limiting speed (Km/h), R= radius of a curve (m) 

Nicholson (1998) contemplates a vehicle driving along a curve for constant radius R, with 

specified superelevation e. If the design speed ( ) is more that the vehicle‘s speed, design 
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maximum side friction factor      would be more than the friction  , and as f approaches 

     then the travel speed approaches  . The speed by which   is equal to      is 

deemed a limiting speed (represented by   ), thus, the side friction factor will exceed 

     when a vehicle is traveling in excess of   .  

 

The limiting speed of a particular radius   along with superelevation   is evidently equal 

to or greater than the design speed (equal only when design   =     ). The limiting speed 

   can be projected with the ball-bank indicator and can frequently be termed as a "safe 

speed" (Policy 1990), however this is not a suitable term, as it means that it is not safe to 

surpass    , when actually it is quite possible to surpass    safely. This is due to the 

value for      being utilized, for design tends to be typically less than the available side 

friction factor, so when a speed larger than    will involve requiring a side friction factor 

larger than     , the available side friction factor might not be exceeded. The amount 

where limiting speed exceeds design speed indicates a lower bound of safety margin 

alongside the demanded friction that exceeds the friction available. Therefore, the design 

safety margin equals       . 

 

The available side friction may differ both temporally (for example, from one time 

towards another time, within the same curve) to spatially (for example, from one curve 

towards another, within the same time). Temporal differences within the available side 

friction factor are frequently due to changes within weather patterns and are therefore 

predictable, and the most realistic way towards minimizing the whole difference is to 

reduce the spatial differences by offering a spatially consistent road surface. 



81 

 

Safety margin variation occurs from the differences between friction demanded by 

drivers and within the available friction. The geometric design may slightly affect the 

available side friction, however, it may affect the friction demand (and therefore the 

safety margin), by changing the behaviour of drivers (especially their speed preference). 

Provided the tendency of certain drivers to drive similarly as fast as possible, the function 

of expectancies within affecting driver behaviour, along with the effect that current 

experiences have towards those expectancies, the objective is to maximize the 

consistency based on the safety margin        from the one curve to the next. This will 

reduce any driver tendency of increasing speed, as previous curves were passed with 

increasing speeds without having any feeling towards losing control, and to reduce the 

likelihood of expectations being breached. 

 

For example, consider a series of four curves that are equal with comparable design 

speeds (  ,   ,   , along with   ) along with limiting speeds (   ,     ,    , along with 

   ), where     <     <     however     <    . There may involve driver discomfort 

when the design speed increases. There is usually little outlook for loss of control; it is 

only when the speed exceeds the limiting speed, that there is a real outlook for loss of 

control within various situations. Certain drivers might be equipped to deal with a little 

discomfort, as long as they sense not having any loss of control, then certain drivers may 

decide to increase speeds once they proceed during the initial three curves that are in line 

within an increase in limiting speeds of those curves. They may also presume the limiting 

speed for the fourth and remaining curve (   ) which is either greater than (or is equal 
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to) the third curve, and then select a speed that is greater than    . As a result, there 

could be a loss of control within the fourth curve. 

 

As the previous situation illustrates, containing comparable design speeds of consecutive 

curves is not adequate; the margins (and therefore the limiting speeds) within consecutive 

curves need to be similar. Wherever curve radii are larger than that of the minimum 

radius, the side friction and superelevation are selected so the safety margin becomes 

balanced (for example, the difference for the margin among the curves becomes small). 

 

Easa (2003) developed an Optimization Model which, assuming a highway section under 

consideration, deals with   circular horizontal curves having different radii, the curves 

are combined to   groups having similar radii. Group   contains a radius    , curve 

frequency   , design speed   , maximum side-friction        , design superelevation    , 

design side friction    and minimum radius        , where   = 1,2,..., . Both the 

minimum along with maximum superelevations for the highway segment become 

designated with      and      . In order to resolve both    and    (decision variables), it 

is necessary to know    ,   ,   ,        ,     ,      and       . 

 

It should be kept in mind that the previous rotation symbolizes the wide-scale case and 

that the maximum side friction and design speed (along with the minimum radius) differ 

within the curve radius of a certain speed environment, based on the Australian design 

standards (Rural, 1993). Regarding AASHTO standards, such that     ,      and   are 
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similar for a certain highway section and        =     ,        =      and    =  , for 

every  . 

3.5.1 Aggregate Analysis 

 

Regarding highway design consistency, it is attractive to reduce the variance for the 

safety margin. Given that the variance is nonlinear within the decision variables, 

including it precisely within the objective function is not possible. As an alternative, the 

maximum safety margin becomes reduced and this could minimize the variance. Thus, 

the objective function can be displayed as: 

 

  Minimize Z =          (3.25) 

 

where Z = objective function along with M = maximum safety margin. The mean safety 

margin m is equal to or greater than an attractive minimum value,      . Stated as, 

 

    ≥              (3.26) 

 

other constraints related within the objective function: 

 

     ≤    ,           (3.27) 

    =  
      
 
   

    
 
   

        (3.28) 

     =      -   ,          (3.29) 
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where,   = safety margin for Curve Group;    = design speed for Curve Group   ; along 

with the sum for    =  . The constraints for Equation (3.29) includes the limiting speed 

for Curve Group,     . The limiting speed formula was provided initially from Equation 

(3.24), however, it cannot be used directly within the optimization model due to Equation 

(3.24) being a nonlinear function for the decision variables   and   . To alleviate this 

concern, Equation (3.24) is linearized. Thus, considering for Curve Group  , Equation 

(3.24) is shown as: 

 

     =  
         

       
    

  

      
 
   

     (3.30) 

 

Observing that               [1+(x/2)] for small  , then 

 

     =  
         

       
    

  

        
  ,        (3.31) 

 

Table 3. 3 Accuracy of Approximation of Equation (3.31) for Practical Parameter Values of 

AASHTO (Easa, 2003) 
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that is linear within the decision variables    and     . The approximation for Equation 

(3.31) accurate as the ratio (   /       ) is less than 1.5. For instance, a ratio that equal 

1.5, the value in brackets in Equation (3.31) =1.75 related with the precise value of 1.58  

(with a difference of a value of 10.7%). Table 3.3 illustrates the realistic values for the 

ratio (     /    ) from Table III-6 AASHTO 2001). The major difference is 9.1%, thus 

the estimate will be correct for all the real cases. Within Table 3.3, the ratios symbolize 

(     /    ) corresponding to     , thus flatter curves having   ,      will contain 

ratios that are smaller and thus a more accurate reading for Equation (3.31). Design 

superelevation    , based on Equation (3.5), is shown 

 

     = 
          

 

  
 -    ,                                                                              (3.32) 

 

The last constraints are related within the maximum side friction        along with the 

maximum and minimum superelevation      and      

 

     ≤          ,          (3.33) 

     ≥        ,           (3.34) 

     ≤        ,          (3.35) 

 

The objective function for Equation (3.25) along with the constraints for Equation (3.26)-

(3.35) symbolizes a linear optimization model. A model summary is provided within 

Table 3.4. The model contains (7K+2) constraints, embodied by all the values that apply 
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to seven constraints for i along with the two constraints of m. The model contains (4K+2) 

decision variables, categorized by four variables having a subscript   (   ,       , and   ) 

as well as two variables,   and  . The linear optimization model for Table 3.4 can be 

solved utilizing existing optimization software, one being LINDO (Schrage, 1991a, b). 

This software deals with large problems, connecting 800 constraints and 4,500 variables. 

 

Table 3. 4 Linear Optimization Model (Discrete   ); (Easa, 2003) 
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3.5.2 Disaggregate Analysis 

 

The optimization model for Table 3.4 minimizes the maximum deviation focusing on the 

system for horizontal curves in total, including curve radii along with the frequencies of 

occurrence. These models could be helpful when designing superelevation within the 

aggregate level, particularly once the highway segment contains many curves. To 

effectively maximize highway consistency within the disaggregate level, considering 

individual horizontal curves is important along the series on the highway. This 

information allows modeling for the safety margin variations between adjacent curves, 

along with finding superelevation distribution which minimize these variations. 

 

The horizontal curves on the highway segment are signified by 1, 2,...,  , where the 

value of   is defined by the amount of curves. Then, the variation difference between 

both the safety margins for curve   and the initial curve   = 1, is shown: 

 

      =      -      ,          (3.36) 

whereas,   = 2, 3,...,  . Since    can be either negative or positive, the objective function 

can be displayed where it minimizes the maximum absolute variation considering the 

horizontal curve system. 

The associated constraints and objective function for the relative variation model is: 

 

  Minimize Z =          (3.37) 
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subjected to 

 

    
  ≤     ,           (3.38) 

    
  ≤     ,           (3.39) 

     -      +   
  -   

  = 0 ,         (3.40) 

 

whereas,   = maximum variation for safety margin. As stated within Equation (3.40), for 

any particular   , either    
  equals zero (if    <     ) or   

  equals zero (if    >     ) 

while the other will be positive. The relative variation model constraints are similar in 

Table 3.4, except Equation (3.25) that is replaced with Equations (3.37)–(3.40). 
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Chapter 4: Development of New Methods and Model for Superelevation 

Distribution 

 

This chapter presents the development of two new categories for superelevation and side 

friction distribution; the first category is a single curve, which focuses on two proposed 

methods: superelevation distribution based on EAU and SAU curve equations, 

respectively. The second category is a system of curves which concentrates on two 

proposed methods and a model, superelevation distribution based on EAU, SAU curve 

equations, and parametric cubic curve, respectively. Furthermore, an analysis of the 

safety margin is provided for the second category, which is the system of curves. 

4.1 Introduction 

  

EAU equal parabolic arc unsymmetrical curve equations and SAU single arc 

unsymmetrical curve equations form the basis of EAU and SAU Methods, respectively, 

and together combine to define the proposed methods, which improve highway design 

consistency based on the safety margin. Furthermore, it describes the   and   

distributions considering a cubic distribution of   values with specific mathematical 

shape that follow a general cubic curve with a constraint determined by the optimization 

model. The optimization model for design consistency of highway is a mathematical 

procedure consisting of three parts: objective function, decision variables, and 

constraints. This is accomplished using the design speed of a horizontal curve, while 
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factoring in the extent for the curve which maximizes highway design consistency, based 

on the safety margin. 

The terminology of the two categories is based on the ―single curve‖ and ―system of 

curves‖, as shown in Figure 4.1. The ―single curve‖ elements are: 

 Superelevation distribution based on EAU curve equations 

 Superelevation distribution based on SAU curve equations 

The ―system of curves‖ elements are: 

 Superelevation distribution based on EAU curve equations and safety margin 

analysis presented. 

 Superelevation distribution based on SAU curve equations and safety margin 

analysis presented. 

 Superelevation distribution based on parametric cubic curve model and safety 

margin analysis presented. 

 

Figure 4. 1 Development of Proposed Methods  
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Additionally, the EAU and SAU vertical curve Equations have been explained in Chapter 

2, the basis for both the EAU and the SAU curves which were developed by Easa (1994) 

and Easa (2007), respectively.  

 

Since the beginning of superelevation distribution, the distribution methods have been a 

complex concern requiring an alternative procedure of design and evaluation. The 

development of superelevation is meant to maximize highway consistency, based on the 

safety margin, affording an excellent opportunity to develop better techniques of 

superelevation distribution. Furthermore, the proposed methods can be solved by 

mathematical software, such as Lingo. Pertaining to the Parametric Cubic Model, Lingo 

is one of the programming systems utilized to resolve decision variables subjected to 

assured constraints for a specified objective function. The objective function maximizes 

design consistency based on the safety margin, which affects safety as well as 

performance in terms of superelevation distribution. The safety margin depends on the 

superelevation distribution. The decision variables are represented within four variables 

and a subscript   (    ,    ,     , and     ) along with the two variables   and   to satisfy 

the constraint.  

4.2 Improved Superelevation Distribution for a Single Curve 

 4.2.1 Distribution Using Fixed Curves (EAU Method)  

 

The proposed method is a mathematical procedure for superelevation distribution based 

on Method 5 by AASHTO (2004) and EAU curve Equations developed earlier by Easa 
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(1994), as illustrated in Figure 4.2. This section describes the derivation of the proposed 

method. Side friction factors and superelevation distribution rates are all very important 

when designing appropriate horizontal highway alignments. Dealing with laws of 

mechanics, superelevation rates, e, needed by drivers to cope with turning along a 

horizontal curve, are formulated as: 

 

        = 
  

     
           (4.1) 

 

whereas,   = turning radius (m),   = vehicle speeds (km/h), and   = side friction factor. 

Practical design values exist regarding upper limits for   and, for example,      along 

with     , taking into account many conditions associated with driving comfort, safety, 

pavement, traffic and weather. In accordance with AASHTO, traveling at an accurate 

design speed, the minimum turning radius, for example,      (m) can be resolved such 

that both      and      are chosen according to AASHTO (2004): 

 

       = 
  
 

                    
       (4.2) 

 

whereas,    = design speed of curve (km/h). This value functions as a maximum value of 

limiting both side friction factors and superelevation rates past what is considered 

realistic for either comfort or the operation by drivers, conversely, utilizing radius larger 

than      permits both superelevation rates and side friction factors in having design 
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values that are beneath their upper limits. The radius of the point at the intersection,     , 

can be obtained from Equation (4.3) according to AASHTO (2004), 

 

      = 
  
 

         
         (4.3) 

 

where,    is the Point of Intersection, with legs (1) and (2) for the f distribution parabolic 

curve, and     = running speed (km/h), the PI counterbalance from 1/R axis is shown in 

Figure 4.2 can be obtained from Equation (4.4) according to AASHTO (2004) 

 

      =  
             

 

  
   -               (4.4) 

 

The slope for leg (1),    =    in AASHTO can be obtained from the Equation (4.5) 

 

     =                 (4.5) 

 

And the slope for leg (2),     =    in AASHTO can be obtained from the Equation (4.6) 

 

     =  
        

 

    
 

 

   

        (4.6) 

 

The algebraic difference in grade (in percent), A, the length for the first arc,   , the length 

for the second arc,    , and the total length for the curve,   ,which can be obtained from 

Equations (4.7) to (4.10) , respectively.  
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    =    -            (4.7) 

     = 
 

   
        (4.8) 

     = 
 

    
 - 

 

   
        (4.9) 

    =    +           (4.10) 

 

Using the EAU vertical curve equations: 

The curve parameters of the proposed EAU vertical curve equations:  

 

    = 
 

 
         (4.11)  

 

The parameter that describes the unsymmetrical curve,      , can be obtained from 

Equation (4.12) which was developed by Easa (1994): 

 

       = 
  

 
        (4.12)  

 

     is characterized as the ratio for the length of the shorter tangent (or a shorter arc 

when dealing with a traditional curve) in regards to the total curve length. The rate of 

change of grades for the first arc,    , the rate of change of grades for the second arc,    , 

for the EAU curve, can be determined from Equations (4.13) , and (4.14), respectively 

(Easa, 1994): 

 

      = 
          

  
 ,   <         (4.13)  
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     = 
           

  
 ,   <         (4.14) 

 

where,   value is measured from the vertical axis, and when   ≤ L/2, the first arc 

elevations for the EAU Curve, as    =    can be determined as follows (Easa, 1994): 

 

     =       + 
    

 

 
       (4.15)  

 

noting that     = 0 for   ;   

    =   distribution at any given point   ≤ L/2; and 

 

     = 
  

     
             (4.16) 

 

where,    =   distribution at any given point   ≤ L/2. 

when   > L/2  , the second arc elevations for the EAU curve, such as    =    can be 

obtained by the following (Easa, 1994): 

 

     =      -          + 
        

 

 
     (4.17) 

 

noting that     =      for   ; 

where,     =   distribution at any given point   > L/2  ; and 

 

     = 
  

     
            (4.18) 
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where,    =    distribution at any given point   > L/2. 

The summary of EAU Method is given in Table D.1 (Appendix D) and can be solved by 

mathematical software such as Lingo. 

 

Figure 4. 2 Development Procedures for Superelevation Distribution of EAU Method (     = 

8%) 

 

4.2.2 Distribution Using Fixed Curves (SAU Method) 

   

The proposed method is a mathematical procedure for superelevation distribution based 

on Method 5 by AASHTO (2004) and SAU curve equations developed earlier by Easa 

(2007), as shown in Figure 4.3. This section describes the derivation of the proposed 
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method. When designing suitable horizontal alignment of highways, superelevation rate 

distribution (or the equivalent turning radii/curvatures) along with side friction factors are 

all very important. Dealing with laws of mechanics, superelevation rates,   are needed by 

drivers to cope with turning along a horizontal curve. The SAU Method of 

superelevation, using Equations (4.2) to (4.10), determines the curve parameters, such as:  

     ,     ,     ,    ,    ,   ,    ,    ,  , and x from Equation (4.11). Using the SAU 

vertical curve equations: 

The parameter that describes the single-arc unsymmetrical curve (SAU)   equally to a 

constant, and the rate of change of the slope,       can be obtained from the Equations 

(4.19) and (4.20), respectively, which were developed by Easa (2007): 

 

       = ( 
   

  
 ) (   – 2   )      (4.19) 

  t =  
  

  
      -   )       (4.20) 

 

where,   value is measured from the vertical axis, and when   ≤ 1/   , or   > 1/     the 

arc elevations for the SAU curve, as   =  , can be determined following Easa (2007) as : 

 

     =      +  
    

 
   + 

 

 
        (4.21) 

 

Noting that      = 0 for  ;  

where,        The elevation of PVC, 

   = distribution at any given point   ≤ 1/   , or   > 1/    , and 
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    = 
  

     
            (4.22) 

 

where,   = distribution at any given point   ≤ 1/   , or   > 1/   . 

The summary for the SAU Method is given in Table D.2 (Appendix D) and can be solved 

by mathematical software such as Lingo. 

 
Figure 4. 3 Development Procedures for Superelevation Distribution of SAU Method (     = 

8%) 

 

4.3 Improved Superelevation Distribution for a System of Curves  

 

Following Easa‘s (2003) research, assuming a highway section is under consideration, 

and deals with   circular horizontal curves having different radii, the curves are 

combined to   groups having similar radii. Group   contains a radius    , curve 

frequency   , design speed   , maximum side friction        , design superelevation   , 
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design side friction    and minimum radius        , where   = 1,2,..., . Both the 

minimum and maximum superelevations for the highway segment become designated 

with      and      . In order to resolve both    and   , variables    ,   ,   ,        , 

    ,      and        need to be known.  

 

It should be kept in mind that the previous rotation symbolizes the wide scale case and 

that the maximum side friction and design speed (along with the minimum radius) differ 

within the curve radius of a certain speed environment based on the Australian design 

standards (Rural, 1993). Regarding AASHTO standards,     ,      and   are similar for 

a certain highway section and        =     ,        =      and    =  , for every  . 

4.3.1 Distribution Using System of Curves (EAU Method) 

 

The proposed method is a mathematical procedure for superelevation distribution based 

on Method 5 by AASHTO (2004) and EAU curve Equations developed earlier by Easa 

(1994). This section describes the proposed method. When designing suitable horizontal 

alignment of highways, superelevation rate distribution (or the equivalent turning 

radii/curvatures) along with side friction factors are all very important. Dealing with laws 

of mechanics, superelevation rates   are needed by drivers to cope with turning along a 

horizontal curve. The EAU Method of superelevation, using Equations (4.2) to (4.18) , 

determines the curve parameters, such as:       ,     ,     ,    ,    ,    ,    ,  , A, x, 

      ,    ,    ,    ,    ,    , and   . The summary for the EAU Method of system of 
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curves is given in Table D.3 (Appendix D) and can be solved by mathematical software 

such as Lingo. 

4.3.2 Distribution Using System of Curves (SAU Method) 

 

The proposed method is a mathematical procedure for superelevation distribution based 

on Method 5 by AASHTO (2004) and SAU curve Equations developed earlier by Easa 

(2007). When designing suitable horizontal alignment of highways, superelevation rate 

distribution (or the equivalent turning radii/curvatures) along with side friction factors are 

all very important. Dealing with the laws of mechanics, superelevation rates   are needed 

by drivers to cope with turning along a horizontal curve. The SAU Method of 

superelevation, using Equations (4.2) to (4.11) , determines the curve parameters, such 

as:       ,     ,     ,    ,    ,    ,    ,  , A, x, and using Equations (4.19) to (4.22) , 

determines the curve parameters, such as:        ,   ,   , and  . The summary for the SAU 

Method of system of curves is given in Table D.4 (Appendix D) and can be solved by 

mathematical software such as Lingo. 

4.3.3 Safety Margin Computation 

 

Based on Nicolson (1998),    is the speed where   equals      as well as the   variable 

is the design superelevation. In regards to a circular curve that contains radius   along 

with design superelevation  , the limiting speed is shown in Equation (3.24), which is 

based on the constant development by AASHTO (1/127     0.00787). Based on 

Nicholson (1998), the safety margin can be calculated in Equation (4.23). 
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     =      -    ,          (4.23) 

 

where,   = safety margin for curve Group ;     = design speed for Curve Group   ; the 

limiting speed (  ); the sum for    =  ; Easa (2003) discusses the constraints for 

Equation (4.23) and includes the limiting speed for Curve Group,     , and  Equation 

(3.18) is linearized. Therefore, Curve Group  , is shown as: 

 

     =  
         

       
    

  

        
  ,        (4.24) 

 

The Mean of safety margin for EAU Method can be calculated following Easa (1999; 

2003): 

       =  
      
 
   

    
 
   

       (4.25) 

           =  
    
 
             

      
 
   

     (4.26) 

     =                  (4.27) 

                        (4.28) 

 

where,      = Mean of the safety margin;           = Variance of the safety margin ; 

   = Standard Deviation of the safety margin,    = Coefficient of Variation of the safety 

margin. The    thus has no units. It can be displayed as a decimal or a percentage. If the 

value of    for a given dataset is small, then the values are clustered together resulting in 

a small   . However, if the dataset    is high, the values become dispersed and provide 

a high value for the   . The coefficient of variation (as shown in Equation 4.28), CV, is 
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utilized as a measure reflecting safety and consistency. Therefore, a smaller CV involves 

a larger mean (improved safety) as well as a smaller standard deviation (improved 

consistency). The EAU Method improves the design consistency by focusing on the 

system for horizontal curves in total, including curve radii along with the frequencies of 

occurrence. The summary of EAU Method is given in Table D.3 (Appendix D), which 

can be solved by mathematical software such as Lingo. 

 

The SAU Method could be helpful when designing superelevation within the SAU curve 

Equation, particularly if the highway segment contains many curves. To effectively 

improve highway consistency within the SAU Method and to consider the SAU curve 

Equation, it is important to determine first the cubic polynomial Equation finding and 

then the best superelevation distribution, followed by the many horizontal curves on the 

highway. This information allows for representation of the safety margin along with 

horizontal curves in total which improves the design consistency. The horizontal curves 

on the highway segment are signified by 1, 2,...,  , where the value of   is defined by 

the number of curves. Then, the limiting speed (   ), can be determined from Equation 

(4.24) which was developed earlier by Easa (2003), but safety margin (  ) can be 

determined from Equation (4.23) which was developed earlier by Nicolson (1998). The 

Mean, Variance, Standard Deviation, and Coefficient of Variation of safety margin can 

be calculated in Equation (4.25)-(4.28). The proposed methods improve the design 

consistency, based on the safety margin. The summary of SAU Method is given in Table 

D.4 (Appendix D), which can be solved by mathematical software such as Lingo. 



103 

 

4.3.4 Distribution Using Parametric Cubic Model 

 

The general cubic curve is designed for the   distribution along with a component of the 

aggregate analysis (Quadratic Model), which is provided by Easa (2003), forms the 

Parametric Cubic Optimization Model of the safety margin. Similar to Easa‘s research 

(2003) regarding highway design consistency, it is attractive to reduce the variance for 

the safety margin. Given that the variance is nonlinear within the decision variables, 

including it precisely within the objective function is possible. As an alternative, 

minimizing the maximum safety margin could minimize the variance. Thus, the objective 

function can be displayed as: 

 

 Minimize Z =          (4.29) 

 

where Z = objective function and M = maximum safety margin. The mean safety margin 

is equal to or greater than an attractive minimum value,       stated as, 

 

      ≥              (4.30) 

 

other constraints related within the objective function: 

 

    ≤    ,           (4.31) 

 

where,   = safety margin for Curve Group; The    formula was provided in Equation 

(4.23);    = design speed for Curve Group   ; along with the sum for    =  . The 

constraints for Equation (4.23) includes the limiting speed for Curve Group,     . The 

limiting speed formula was provided in Equation (4.24). 
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Design side friction factor    (the derivation is described in Appendix B) and 

superelevation    , can be calculated as: 

 

   =      
      

  
  –  

          

      
  

    

  
 
 

-  
  

         
 

      
   

    

  
 
 

,     (4.32) 

    = 
          

 

  
 -    ,                                                                    (4.33) 

 

The last constraints are related within the maximum side friction        along with the 

maximum and minimum superelevation      and      

 

    ≤          ,          (4.34) 

    ≥        ;           (4.35) 

    ≤        ,          (4.36) 

 

The Mean, Variance, Standard Deviation, and Coefficient of Variation of the safety 

margin can be calculated from Equations (4.25)-(4.28). The objective function for 

Equation (4.29) along with the constraints for Equations (4.30)-(4.36) symbolizes a 

nonlinear optimization model. The model contains (92) constraints. The model contains 

(6) decision variables, categorized by four variables having a subscript   (   ,       , and 

  ) as well as two variables,   and  . A summary of the nonlinear optimization model in 

Table 4.1 can be solved utilizing existing optimization software like Lingo. 
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Table 4. 1 Optimazation Model for Superelevation Distribution Using Parametric Cubic Curve   

       _____________________________________________________________ 

Minimize Z =           (1) 

   =      
      

  
  –  

          

      
  

    

  
 
 

-  
  

         
 

      
   

    

  
 
 

,     (2) 

   = 
          

 

  
 -    ,                            (3)                                                              

    =  
         

       
    

  

        
  ,                     (4) 

   =      -   ,           (5) 

     ≥                (6) 

   ≤    ,            (7) 

   ≤          ,           (8) 

   ≥        ,            (9) 

   ≤        ,           (10) 

   ,   ,   ,    ≥ 0        (11) 

 ,       ≥ 0         (12) 

     =  
      
 
   

    
 
   

         (13) 

         =  
    
 
             

      
 
   

        (14)           

________________________________________________________________ 

 

4.4 Lingo Program (Optimization Software) 

 

According to the Lingo user manual (2010), Lingo is a thorough tool that is designed to 

make, solve and build mathematical optimization models more efficiently and easily. 

Lingo offers a fully integrated suite that provides an influential language to express 

optimization models, a full-suite for editing along with building problems, besides a set 

of quick in suite problem solvers able to easily solve most classes for optimization 

models. Lingo has many solvers for both nonlinear and linear (nonconvex & convex), 

quadratically constrained, quadratic and integer optimization. In this study, the following 

solvers have been used. Lingo provides both a broad nonlinear solver along with 
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nonlinear/integer means. The nonlinear choice is needed to utilize the nonlinear 

capabilities for LINDO API. 

 

The global solver merges a sequence for range bounding (for example, convex analysis 

and interval analysis) along with range reduction techniques (for example, constraint 

propagation and linear programming) with a branch-and-bound outline to determine 

established global solutions towards non-convex non-linear programs. Conventional 

nonlinear solvers can get caught at both local and suboptimal solutions. Utilizing the 

global solver alleviates this. 

4.5 Summary 

 

Below are important points regarding the development of proposed methods and an 

optimization model for superelevation distribution: 

 Improved superelevation distribution for single curve: 

o The single curve category is based on two methods, the first method is 

superelevation distribution based on EAU curve equations, which is 

illustrated in the Table D.1. 

o The second method is superelevation distribution based on SAU curve 

equations, shown in the Table D.2. 

 Improved superelevation distribution for a system of curves: 
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o The system of curves category is based on two methods and a model, the 

first method is superelevation distribution based on EAU curve equations 

and safety margin analysis, depicted within the Table D.3. 

o The second method is superelevation distribution based on SAU curve 

equations and safety margin analysis, illustrated in the Table D.4. 

o The model is the superelevation distribution based on parametric Model 

model, shown in the Table 4.1. 
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Chapter 5: Applications and Results  

 

When designing suitable horizontal alignment of highways, both the distribution of side 

friction factors and superelevation rates (or equivalent turning radii/curvatures) are 

critical. The purpose of this chapter is to illustrate the numerical examples and results that 

highlight two significant categories. The first category is a single curve, which 

demonstrates an improvement regarding the distribution of side friction factor and 

superelevation rates based on two methods, the EAU and SAU Methods. The second 

category is a system of curves that will illustrate the side friction factor and 

superelevation distribution of two proposed methods and an optimization model (the 

EAU Method, SAU Method and the Parametric Cubic Model), to improve the design 

consistency based on the safety margin. For evaluation purposes of a single curve, the 

percentage change in superelevation and side friction for a single value of horizontal 

curve radius exists between the two methods, the EAU and SAU Methods, and AASHTO 

Method 5. When evaluating a system of curves, all the methods apply Means (), 

Standard Deviation (SD) and Coefficient of Variation (CV) of the safety margin in 

determining the best superelevation distribution design that can be utilized as a measure 

reflecting both the safety and consistency. 

5.1 Data Selection  

 

The horizontal curve radius (centreline of the roadway) was obtained as the curve radii. 

To determine the distribution of superelevation, calculations are illustrated in the 

following examples. 
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 Examples 1, 2 and 3 show the distribution of superelevation rate results based on 

AASHTO Method 5, the EAU Method and SAU Method, respectively highlighted 

in this chapter. A review for the input data is illustrated in Table 5.1.  

 

Table 5.1 Parameters for Developing of Superelevation Distribution used for Examples 1, 2 and 3 

VD 
km/h 

VR 
km/h 

e max 
% 

f max 

 

Rmin 
(m) 

RPI 
(m) 

hPI 

 
L1 

 
L2 

 
g1 

 
g2 

 
M.O. 

 

20 20 8 0.18 12.11 39.35 0.000 0.025 0.057 0.000 3.148 0.028 

30 30 8 0.17 28.33 88.54 0.000 0.011 0.024 0.000 7.083 0.027 

40 40 8 0.17 50.37 157.40 0.000 0.006 0.014 0.000 12.592 0.027 

50 47 8 0.16 81.98 217.31 0.011 0.005 0.008 2.290 19.675 0.025 

60 55 8 0.15 123.18 297.58 0.015 0.003 0.005 4.525 28.332 0.023 

70 63 8 0.14 175.29 390.45 0.019 0.003 0.003 7.327 38.563 0.022 

80 70 8 0.14 228.95 482.04 0.024 0.002 0.002 11.805 50.368 0.021 

90 77 8 0.13 303.56 583.27 0.029 0.002 0.002 17.086 63.747 0.019 

100 85 8 0.12 393.50 710.76 0.031 0.001 0.001 21.839 78.700 0.018 

110 91 8 0.11 501.19 814.64 0.037 0.001 0.001 30.056 95.227 0.015 

120 98 8 0.09 666.64 944.79 0.040 0.001 0.000 37.745 113.328 0.012 

130 102 8 0.08 831.27 1023.49 0.050 0.001 0.000 51.124 133.003 0.008 

 

 Examples 4, 5, 6 and 7 are similar to the examples utilized by Nicholson (1998), 

Easa (1999) and Easa (2003) in terms of the best resolution focusing on the results 

from the AASHTO methods. It contains a single carriageway rural highway 

within rolling terrain expected to contain 20 circular horizontal curves, having 

radii    = 100, 150, 200, 250, 300, 350 m along with equivalent frequencies    = 

3, 4, 6, 4, 2, 1. The design guide of Australia recommends a 90 km/h speed 

environment having design speeds    = 71, 76, 78, 80, 81, along with 82 km/h. 

The      and      values then are both 0.02 and 0.10, respectively. The        
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values are all 0.30, 0.28, 0.27, 0.26, 0.25, and 0.24. Minimum radius,     , is 

determined utilizing Equation (4.2).  

 

Table 5. 2 Input data for examples 4, 5, 6 and 7
 a
  

Curve  R  q V VR emax fmax Rmin V2/gR emin Rme Rfo Reo 

No. (m)   (km/h) (km/h)                 

1 100 3 71 63.90 0.1 0.3 99 0.40 0.02 124.04 132.31 396.93 

2 150 4 76 66.50 0.1 0.28 120 0.30 0.02 151.60 162.43 454.80 

3 200 6 78 68.25 0.1 0.27 129 0.24 0.02 165.19 177.43 479.06 

4 250 4 80 70.00 0.1 0.26 140 0.20 0.02 179.98 193.82 503.94 

5 300 2 81 70.88 0.1 0.25 148 0.17 0.02 191.34 206.65 516.61 

6 350 1 82 71.75 0.1 0.24 156 0.15 0.02 203.63 220.60 529.45 

a
 Minimum mean of safety margin,      = 10 km/h 

 

For the purposes of simplicity, the curve and path radius are equal. Supposing a minimum 

superelevation valued at 0.02, the lowest radii utilizing minimum superelevation,     , is 

determined utilizing Equation (2.70), where the lowest radii that depends on friction 

solely,     , along with superelevation solely,     , is analyzed utilizing both Equations 

(2.64) and (2.67) respectively, providing the values highlighted within Table 5.2. For 

each radius greater than 100 m, the radius surpasses the minimum radius; consequently, 

there is flexibility within the proportions for the centripetal force given by side friction 

and superelevation. The input data mentioned in Table 5.2 is used to illustrate the results 

for AASHTO methods, the EAU Method, the SAU Method and the Parametric Cubic 

model (optimization model). 
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5.2 Superelevation Distribution for Single Curve 

5.2.1 Numerical Example 1 (AASHTO Method 5 – Single Curve) 

 

Similarly to AASHTO (2004), here are examples for Method 5 where the procedures for 

calculating   with a design speed of 80 km/h along with an      of 8 percent is,    = 70 

km/h,      = 0.14 (highest allotted side friction factor). The results are as follows:      

= 228.945,     = 482.038,     = 0.02449,    = 11.805,    = 50.368,    = 0.00207,    = 

0.00229,   = 0.00437. The middle ordinate (  ) is 0.02090. The e distribution value of a 

radius can be determined by obtaining the             value and deducting either the 

   or    value (Figure 5.1). Therefore, the   distribution value of   =     would result in 

            =   
 /127   = 0.1045 minus an    = 0.045, which gets   = 0.059. This 

value multiplied by 100 (converting the value to a percent) would be   = 5.9 %, then 

rounded up to the nearest 2/10ths, relates to an   value of 6.0 %. The e value is calculated 

for   = 482.038 m at 80 km/h design speed within Table 5.3. Table 5.3 shows all the 

calculations of the distribution of the superelevation based on AASHTO Method 5 using 

emax 8% with speed ranges from 40 km/h to 130 km/h. 

 
Figure 5. 1 Design Side Friction Factor and Superelevation Rate for Method 5 (     = 8%) 
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Table 5. 3 Method 5 of Design Superelevation Rates for Different Radii (     = 8%) 

Design 

Speed 

(km/h) 

40 50 60 70 80 90 100 110 120 130 

Radius (m) e e e e e e e e e e 

7000 0.2 0.2 0.3 0.4 0.5 0.7 0.8 0.9 1.1 1.2 

5000 0.3 0.3 0.5 0.6 0.8 0.9 1.1 1.3 1.5 1.6 

3000 0.4 0.6 0.8 1.0 1.2 1.5 1.8 2.1 2.4 2.7 

2500 0.5 0.7 0.9 1.2 1.5 1.8 2.1 2.5 2.9 3.2 

2000 0.6 0.8 1.1 1.5 1.8 2.2 2.6 3.0 3.5 3.9 

1500 0.8 1.1 1.5 1.9 2.4 2.8 3.4 3.9 4.6 5.1 

1400 0.9 1.2 1.6 2.1 2.5 3.0 3.6 4.1 4.9 5.5 

1300 0.9 1.3 1.7 2.2 2.7 3.2 3.9 4.4 5.2 5.9 

1200 1.0 1.4 1.8 2.4 2.9 3.4 4.1 4.7 5.6 6.3 

1000 1.2 1.6 2.2 2.8 3.4 4.0 4.8 5.5 6.5 7.4 

900 1.3 1.8 2.4 3.1 3.7 4.4 5.2 6.0 7.1 7.9 

800 1.5 2.0 2.7 3.4 4.1 4.8 5.7 6.6 7.6 8.0 

700 1.7 2.3 3.0 3.8 4.5 5.3 6.3 7.2 8.0 

 600 1.9 2.6 3.4 4.3 5.1 6.0 7.0 7.7 

  500 2.3 3.0 3.9 4.9 5.8 6.7 7.6 8.0 

  400 2.7 3.6 4.7 5.7 6.6 7.5 8.0 

   300 3.5 4.5 5.6 6.8 7.6 8.0 

    250 4.0 5.1 6.3 7.4 8.0 

     200 4.6 5.8 7.0 7.9 

      175 5.0 6.2 7.4 8.0 

      150 5.4 6.7 7.8 

       140 5.6 6.9 7.9 

       130 5.8 7.1 8.0 

       120 6.0 7.4 8.0 

      110 6.3 7.6 

      
 

 100 6.6 7.8 

      
 

 90 6.9 8.0 

        80 7.2 8.0 

        70 7.5 

         60 7.9 

         50 8.0 

         40 

          30 

          20 
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5.2.2 Numerical Example 2 (EAU Method – Single Curve) 

 

Based on the equations in Table D.1 (Appendix D), the EAU Method applies the 

following input data where the procedures for calculating e with a design speed of 80 

km/h along with an      of 8 percent is,    = 70 km/h,      = 0.14 (highest allotted side 

friction factor). The results are as follows,      = 228.945,     = 482.038,     = 

0.02449,    = 11.805,    = 50.368,   = 38.563,    = 0.00207,    = 0.00229,   = 

0.00437,      = 0.47495,    = 9713.344,    = 7944.303. The e distribution value of a 

radius can be determined by obtaining    and    values and deducting either the    or    

values, respectively (Figure 5.2). Therefore, the   distribution value is determined when 

  =     resulting in    = 0.045 and    = 0.059. This value multiplied by 100 (converting 

value to a percent) then rounded up to the nearest 2/10ths becomes 5.91 %. Table 5.4 

shows all the calculation of the distribution of the superelevation based on EAU Method 

using emax 8% with speed ranges from 40 km/h to 130 km/h. 

 

 

Figure 5. 2 Design Side Friction Factor and Superelevation Rate for EAU Method (     = 8%) 
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Table 5. 4 EAU Method of Design Superelevation Rates for Different Radii (     = 8%) 

Design 

Speed 

(km/h) 

40 50 60 70 80 90 100 110 120 130 

Radius (m) e e e e e e e e e e 

7000 0.2 0.2 0.4 0.4 0.5 0.7 0.8 0.9 1.1 1.2 

5000 0.2 0.3 0.6 0.6 0.8 0.9 1.1 1.3 2.3 1.7 

3000 0.4 0.6 0.9 1.0 1.2 1.5 1.8 2.1 3.7 2.8 

2500 0.5 0.7 1.1 1.2 1.5 1.8 2.1 2.5 4.5 3.4 

2000 0.6 0.8 1.4 1.5 1.8 2.2 2.6 3.0 5.6 4.3 

1500 0.8 1.1 1.8 1.9 2.4 2.8 3.4 4.0 7.4 5.8 

1400 0.9 1.2 1.9 2.1 2.5 3.0 3.6 4.2 7.9 6.3 

1300 0.9 1.3 2.1 2.2 2.7 3.2 3.9 4.5 8.5 6.8 

1200 1.0 1.4 2.2 2.4 2.9 3.4 4.1 4.8 

  1000 1.2 1.6 2.6 2.8 3.4 4.0 4.8 5.6 

  900 1.3 1.8 2.9 3.1 3.7 4.4 5.2 6.2 

  800 1.5 2.0 3.2 3.4 4.1 4.8 5.7 6.8 

  700 1.7 2.3 3.6 3.8 4.5 5.3 6.3 7.5 

  600 1.9 2.6 4.2 4.3 5.1 6.0 7.0 

   500 2.3 3.1 4.9 4.9 5.8 6.7 7.9 

   400 2.8 3.7 5.8 5.7 6.6 7.6 

    300 3.6 4.6 7.2 6.7 7.5 8.3 

    250 4.2 5.3 8.2 7.2 7.7 

     200 4.9 6.0 

        175 5.4 6.5 

        150 6.0 6.9 

        140 6.2 7.0 

        130 6.5 7.1 

        120 6.7 7.1 

        110 6.9 

         100 7.1 

         90 7.3 

         80 

          70 

          60 

          50 

          40 

          30 

          20 
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5.2.3 Numerical Example 3 (SAU Method – Single Curve) 

 

Based on the equations in Table D.2 (Appendix D), the SAU Method applies the 

following input data where the procedures for calculating e with a design speed of 80 

km/h along with an      of 8 percent is,    = 70 km/h,      = 0.14 (highest allotted side 

friction factor). The results are as follows,      = 228.945,     = 482.038,     = 

0.02449,    = 11.805,    = 50.368,   = 38.563,    = 0.00207,    = 0.00229,      = 

10155.604,   = -607520.746. The e distribution value of a radius can be determined by 

obtaining   value and deducting the   value, respectively (Figure 5.3). Therefore, the   

distribution value is determined when   =     resulting in   = 0.045 and   = 0.059. This 

value multiplied by 100 (converting the value to a percent) then rounded up to the nearest 

2/10ths becomes 5.9 %. Table 5.5 shows all the calculation of the distribution of the 

superelevation based on SAU Method using emax 8% with speed ranges from 40 km/h to 

130 km/h. 

 

Figure 5. 3 Design Side Friction Factor and Superelevation Rate for SAU Method (     = 8%) 
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Table 5. 5 SAU Method of Design Superelevation Rates for Different Radii (     = 8%) 

Design 

Speed 

(km/h) 

40 50 60 70 80 90 100 110 120 130 

Radius (m) e e e e e e e e e e 

7000 0.2 0.2 0.3 0.4 0.5 0.7 0.8 0.9 1.1 1.2 

5000 0.2 0.3 0.5 0.6 0.7 0.9 1.1 1.3 1.5 1.7 

3000 0.4 0.6 0.8 1.0 1.2 1.5 1.8 2.1 2.5 2.9 

2500 0.5 0.7 0.9 1.2 1.5 1.8 2.1 2.5 3.0 3.5 

2000 0.6 0.8 1.1 1.5 1.8 2.2 2.6 3.1 3.7 4.4 

1500 0.8 1.1 1.5 1.9 2.3 2.8 3.4 4.0 4.9 5.7 

1400 0.9 1.2 1.6 2.0 2.5 3.0 3.6 4.2 5.2 6.1 

1300 0.9 1.3 1.7 2.2 2.7 3.2 3.9 4.5 5.5 6.4 

1200 1.0 1.4 1.8 2.4 2.9 3.4 4.1 4.8 5.9 6.8 

1000 1.2 1.6 2.2 2.8 3.4 4.0 4.8 5.6 6.7 7.6 

900 1.3 1.8 2.4 3.0 3.7 4.4 5.2 6.1 7.2 7.9 

800 1.5 2.0 2.6 3.4 4.0 4.8 5.7 6.6 7.6 7.9 

700 1.7 2.2 3.0 3.8 4.5 5.3 6.3 7.1 7.9 

 600 1.9 2.6 3.4 4.2 5.0 5.9 6.9 7.7 

  500 2.3 3.0 3.9 4.9 5.7 6.7 7.5 7.9 

  400 2.8 3.6 4.6 5.7 6.6 7.5 7.9 

   300 3.5 4.5 5.7 6.8 7.5 7.9 

    250 4.0 5.1 6.3 7.4 7.9 

     200 4.8 5.9 7.1 7.8 

      175 5.2 6.4 7.5 7.9 

      150 5.8 6.9 7.8 

       140 6.0 7.1 7.9 

       130 6.3 7.3 7.9 

       120 6.6 7.5 7.9 

       110 6.8 7.7 

        100 7.1 7.8 

        90 7.4 7.9 

        80 7.6 7.9 

        70 7.8 7.8 

        60 7.9 7.8 

        50 7.9 8.1 

        40 8.1 

         30 

          20 

          



117 

 

5.3 Superelevation Distribution for System of Curves 

5.3.1 Numerical Example 4 (AASHTO Methods – System of Curves) 

 

Table 5.6 illustrates all the results for AASHTO five methods, based on the input data 

that is shown in Table 5.2. The values for both e and f can be determined utilizing 

Equation (2.60), Method 1; Equations (2.62) and (2.63), Method 2; Equations (2.65) and 

(2.66), Method 3; Equations (2.68) and (2.69), Modified Method 2; and Equations (2.72), 

(2.73) and (2.74), Method 5. Regarding each radius, the design safety margin VL-V can 

be anticipated and the limiting speed VL can be determined utilizing (3.24). Utilizing the 

frequency information for each curve radius (Table 5.2), the mean, standard deviation 

and coefficient of variation of the design safety margin can be determined with each 

method (Table 5.7). 

 

The effect for the above minimum design speeds was noted by Krammes et al. (1995), 

indicating that traditional design speed methodology "controls only minimum (design 

speed) values and encourages the use of above-minimum values." In the previous 

example, the design speed values were determined utilizing Figure 2.11. When the design 

speed of the 200 m curves is established at 85 km/h rather than 78 km/h, then for those 

curves     ,     , along with the centripetal ratio (  /  ) results in 0.22, 178 m, along 

with 0.284, respectively, as opposed to 0.27, 129 m, along with 0.239 respectively (Table 

5.2). Utilizing Method 5, the e, f, VL and VL-V value is from 0.100, 0.297, 71.292, and 

0.292, respectively, ending with 0.078, 0.073, 117.257 and 36.951 respectively (Table 
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5.6). The mean and standard deviation of the safety margin are 17.14 and 10.71 

respectively (Table 5.7). 

For AASHTO methods, as illustrated within Table 5.7, the largest mean of the safety 

margin occurs within Method 3 (followed by Method 5); however, the smallest standard 

deviation can be found in Method 2. Therefore, no single method is the best in either 

respect. Clearly, Method 5 provides a larger mean of the safety margin (17.14 km/h) in 

relation to Method 1 (13.8 km/h), Method 2 (6.35 km/h) and Method 2 modified (8.54 

km/h), conversely, it is slightly smaller than Method 3 (18.44 km/h). Furthermore, 

Method 5 provides a smaller standard deviation of the safety margin (10.71) in relation to 

Method 3 (11.81), conversely larger than Method 1 (8.82), Method 2 (6.54) and Method 

2 modified (8.01). Regarding the coefficient of variance, Method 5 (0.63) has the lowest 

value compared with Method 1 (0.64), Method 2 (1.03), Method 3 (0.64) and Method 2 

modified (0.94). As a result, Method 5 provides a good balance within the three different 

measurements of statistics and thus is considered the best method. 

 

Utilizing a design speed higher than the suggested value reduces the mean safety margin 

and then increases the standard deviation for the safety margin (e.g., inconsistency is 

increased between the curves), and the effects become unfavorable. This verifies the 

recommendation from Krammes et al. (1995) that utilizing "above-minimum values (of 

the design speed) ... may have a negative effect on consistency among alignment 

elements." 
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Table 5. 6 Safety Margins for Diffrence Methods and Optimization Model 

Method Variable 
Radius (m) 

100 150 200 250 300 350 

1 e 0.099 0.080 0.065 0.056 0.049 0.044 

 

f 0.298 0.223 0.175 0.146 0.123 0.107 

 

VL(km/h) 71.219 82.805 92.227 100.185 106.792 112.477 

 

VL-V (km/h) 0.219 6.805 14.227 20.185 25.792 30.477 

2 e 0.097 0.023 0.000 0.000 0.000 0.000 

 

f 0.300 0.280 0.239 0.201 0.172 0.151 

 

VL(km/h) 71.000 76.000 82.834 90.880 97.621 103.312 

 

VL-V (km/h) 0.000 0.000 4.834 10.880 16.621 21.312 

3 e 0.100 0.100 0.100 0.100 0.100 0.100 

 

f 0.297 0.203 0.139 0.101 0.072 0.051 

 

VL(km/h) 71.292 85.104 96.968 106.939 115.507 122.966 

 

VL-V (km/h) 0.292 9.104 18.968 26.938 34.507 40.966 

2 modified e 0.097 0.023 0.020 0.020 0.020 0.020 

 

f 0.300 0.280 0.219 0.181 0.152 0.131 

 

VL(km/h) 71.000 76.000 85.847 94.311 101.451 107.531 

 

VL-V (km/h) 0.000 0.000 7.847 14.311 20.451 25.531 

5 e 0.100 0.097 0.091 0.087 0.082 0.078 

 

f 0.297 0.206 0.148 0.115 0.090 0.073 

 

VL(km/h) 71.292 84.644 95.322 104.019 111.163 117.257 

 

VL-V (km/h) 0.292 8.792 17.843 24.926 31.484 36.951 

EAU e 0.100 0.098 0.093 0.088 0.083 0.078 

 

f 0.297 0.205 0.147 0.114 0.089 0.073 

 

VL(km/h) 72.031 85.806 97.059 106.250 113.814 120.121 

 

VL-V (km/h) 1.031 9.806 19.059 26.250 32.814 38.121 

SAU e 0.100 0.100 0.096 0.089 0.082 0.076 

 

f 0.298 0.204 0.145 0.113 0.091 0.076 

 

VL(km/h) 71.292 85.095 96.381 105.285 112.519 118.526 

 

VL-V (km/h) 0.292 9.095 18.381 25.285 31.519 36.526 

Cubic Model e 0.100 0.068 0.044 0.032 0.024 0.020 

 

f 0.297 0.235 0.195 0.170 0.148 0.131 

 

VL(km/h) 72.031 81.944 89.611 96.413 102.402 107.617 

  VL-V (km/h) 1.031 5.944 11.611 16.413 21.402 25.617 
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Table 5. 7 Comparison of Means, Standard Deviation and Coefficient of Variation of Safety 

Margins for all Methods and Optimization Models 

  Safety margin (km/h)   

Element Mean Standard Deviation 

Coefficient of 

Variation 

 

AASHTO methods 

  Method 1 13.80 8.82 0.64 

Method 2 6.35 6.54 1.03 

Method 3 18.44 11.81 0.64 

Method 2m
b 8.54 8.01 0.94 

Method 5 17.14 10.71 0.63 

 

Fixed curve 

  EAU Method 18.27 10.89 0.60 

SAU Method 18.39 10.88 0.59 

 

Optimization models 

  Discete 
a 10.70 6.50 0.61 

Quadratic
 a,c* 10.30 7.30 0.71 

Cubic 
c,d 11.53 7.05 0.61 

a
 Based on Easa (2003). 

  
b
 The modified Method 2m is the same as Method 2 except that     =0.02 

instead of zero.  

 c*
 For the quadratic distribution, c=-0.000073. 

  c
 For the cubic distribution, c=-0.004658587. 

  d
 For the cubic distribution, c=-0.0002452192. 

   

 

5.3.2 Numerical Example 5 (EAU Method – System of Curves) 

 

The results of Table D.3 (Appendix D) of the EAU Method,  ,  ,    and    –   values 

is from 0.100, 0.297, 72.031 and 1.031, respectively ending with 0.078, 0.073, 120.121 

and 38.121, respectively (Table 5.6). The mean and standard deviation of the safety 

margin are 18.27 and 10.89, respectively (Table 5.7).  
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Table 5.7 illustrates the improved solution compared with the AASHTO methods for the 

safety margin of the mean, standard deviation and coefficient of variation. The mean of 

the EAU Method (18.27) has a margin of improvement from Method 1, 2, 2 modified and 

5 respectively, (13.80, 6.35, 8.54 and 17.14 respectively). However, it has a slightly 

inferior margin compared with Method 3 (18.44), as shown in Table 5.7. The standard 

deviation of the EAU Method (10.89) has a margin of improvement from Method 3, 

(11.81); however, it has a slightly inferior margin compared with Method 1, 2, 2 modified 

and 5 (8.82, 6.54, 8.01 and 10.71 respectively), as shown in Table 5.7; the coefficient of 

variation of the EAU Method (0.60) has a margin of improvement from Method 1, 2, 3, 2 

modified and 5 respectively, (0.64, 1.03, 0.64, 0.94 and 0.63 respectively).  The 

performance of different methods was examined using     ,     , and   , where those 

variables were the same for all curves, superior than the AASHTO Method, Discrete, 

Quadratic and Cubic model will belong to distribution   and  .  

 

As a result, the EAU Method counterbalances the order of distributing   and   that is 

dependent upon the frequency of the curves and their radii, roadway restriction and the 

significance of the mean with variance of the safety margin and improving the design 

consistency. Consequently, the EAU Method provides a good balance within the three 

different measurements of statistics and is thus considered the better method, compared 

with AASHTO, for being used as a measure which reflects both safety and consistency. 
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5.3.3 Numerical Example 6 (SAU Method – System of Curves) 

 

The results of Table D.4 (Appendix D) involving the SAU Method, the  ,  ,    and    –

   values are from 0.100, 0.298, 71.292 and 0.292, respectively ending with 0.076, 0.076, 

118.526 and 36.526 respectively (Table 5.6). The mean, standard deviation and 

coefficient of variation of the safety margin are 18.39, 10.88 and (0.59), respectively 

(Table 5.7). Table 5.7 illustrates the improved solution compared with the AASHTO 

methods for the safety margin of the mean, standard deviation and coefficient of 

variation. The mean of the SAU Method has a margin of improvement from Method 1, 2, 

modified version of 2 and 5 respectively; however, it has a slightly inferior margin 

compared with Method 3, as shown in Table 5.7. The standard deviation of the SAU 

Method has a margin of improvement from Method 3; however, it has a slightly inferior 

margin compared with Method 1, 2, 2 modified and 5, as shown in Table 5.7. The 

coefficient of variation of the SAU Method has a margin of improvement from Method 1, 

2, 3, 2 modified and 5 respectively. 

 

The superelevations differ drastically between the improved method and AASHTO 

Method 5. While AASHTO superelevation distribution utilizes a parabolic formula for an 

asymmetrical curve, the SAU Method utilizes a cubic formula of the SAU curve. The 

performance belonging to different methods was examined using     ,     , and   , 

where those variables were the same for all curves, and was superior than the AASHTO, 

the EAU Method, Discrete, Quadratic and Cubic model belonging to distribution   and  .  
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As a result, the SAU Method counterbalances the order of distributing   and   that are 

dependent upon the frequency of the curves and their radii, roadway restriction and the 

significance of the mean with variance belonging to the safety margin and improving the 

design consistency. Consequently, the SAU Method provides a good balance within the 

three different measurements of statistics and is thus considered the best method for use 

as a measure which reflects both safety and consistency. 

5.3.4 Numerical Example 7 (Parametric Cubic Model – System of Curves) 

 

The results of the optimization model for Table 4.1 are given in Table 5.6. Using the 

Lingo software based on the Global optimal solution, the objective function was obtained 

as 25.617, and the parameters of the optimization model determined that   =  0.004658, 

and   = 0.000245. Additionally, the f values calculated from the optimization model lie (f 

follows a cubic distribution curve) between Method 2 and Method 3 as shown in Figure 

5.4. The range of the safety margin is from 1.03 to 25.62 km/h (Table 5.6) within an 

11.53 km/h mean, 7.05 Standard Deviation and 0.61 Coefficient of Variation (Table 5.7). 

The optimization model presented another solution that is better than the AASHTO 

methods, which is the improved solution, based on the coefficient of variation for the 

safety margin as shown in Figure 5.11.  

 

A comparison for both the superelevation    along with the safety margin    for 

AASHTO Method 5, along with the optimization model is illustrated in Table 5.6.  
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Figure 5. 4 Compare of Cubic Model, Quadratic Model, and AASHTO Methods (AASHTO 

2001) 

 

The superelevations differ drastically between the optimization model and AASHTO 

Method 5. While AASHTO superelevation distribution utilizes a parabolic formula for an 

asymmetrical curve, the optimization model utilizes a cubic formula of   distribution. 

The Optimization model, it minimizes the variation in safety margin of a specific 

highway segment. Clearly, the optimization model step function is significant only with 

this example, where usually the optimization model values might follow other patterns 

according to other examples. 
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5.4 Sensitivity Analysis  

5.4.1 Single Curve  

 

For sensitivity analysis purposes, based on    = 80 km/h,    = 70 km/h,      = 8%, and 

    = 0.14, the percentage reduction in superelevation and side friction for a single value 

of horizontal curve radius is between two methods, the EAU and SAU Methods 

respectively, and AASHTO Method 5 as illustrated in Figure 5.5 and Figure 5.6. 

 

Figure 5. 5 The difference between AASHTO Method 5 and EAU Method (     = 8%) 

 

Figure 5. 6 The difference between AASHTO Method 5 and SAU Method (     = 8%) 
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This study focuses on the superelevation distribution based on the EAU and SAU curve 

equations, respectively. Regarding single curve analysis, Figure 5.5 shows the difference 

between the EAU Method and AASHTO Method 5 involving side friction ( ) and 

superelevation ( ). There is a decrease in   while an increase in  , however, the 

difference is substantially small between the two methods. Figure 5.6 illustrates the 

difference between the SAU Method and AASHTO Method 5 involving side friction ( ) 

and superelevation ( ). In this case, there is an increase in   while a decrease in  , with 

the difference being very small between the two methods. Appendix A illustrates design 

superelevation rates for      = 8% for AASHTO Method 5 along with EAU and SAU 

Methods for different speeds ranging from 40 to 130 km/h. Figure 5.7 shows the 

comparison of traditional curve, which is used by AASHTO Method 5 along with EAU 

and SAU curve, which is used by EAU and SAU Method, respectively.  

 

Furthermore, for sensitivity analysis purposes,    = 100 km/h,    = 85 km/h,      = 

10%,      = 0.02 and     = 0.12. The results of the example show that the rates of the 

superelevation for the EAU and SAU methods are greater than that of AASHTO Method 

5 as illustrated in Figure 5.7 and Figure 5.8. 

 

This study focuses on the superelevation distribution based on the EAU and SAU curve 

equations, respectively. Regarding single curve analysis, Figure 5.7 shows the difference 

between the EAU Method and AASHTO Method 5 involving side friction ( ) and 

superelevation ( ). There is a decrease in   while an increase in  , however, the 

difference is substantially small between the two methods.  
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Figure 5. 7 The diffrence between Method 5 and EAU Method (    =10%) 

  

 

Figure 5. 8 The diffrence between Method 5 and SAU Method (    =10%) 
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Figure 5.8 illustrates the difference between the SAU Method and AASHTO Method 5 

involving side friction ( ) and superelevation ( ). In this case, there is an decrease in   

while a increase in  , with the difference being small between the two methods. Figure 

5.9 shows the comparison of traditional curve, which is used by AASHTO Method 5 

along with EAU and SAU curve, which is used by EAU and SAU Method, respectively. 

 

 

 

   

 

  

Figure 5. 9 Comparison of   between Method 5, EAU and SAU Methods 
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The differences in the AASHTO, EAU and SAU Methods, can be seen in Appendix C. 

The results show: 

1) For Methods 1, 2, along with 2 (modified),   is larger than e regarding all radii. 

2) For AASHTO Methods 3 and 5 along with EAU and SAU Methods,   is larger 

than   for all small radii while e is larger than   regarding large radii. 

3) AASHTO Methods 1 and 5 along with EAU and SAU Methods provide a 

smooth change within both   along with   when the radius increases. 

4) AASHTO Method 1 maintains the proportions for the centripetal force offered 

by the   and the   constant. 

 

The utilization for a minimum superelevation (similarly in Method 2 Modified) involves 

having superelevation, wherever it may presently not be offered. This ends up increasing 

 

construction costs however, it could lead to less loss-of-control situations dealing with 

vehicles going about the inside curve crossing the centerline then going from a difficult to 

favourable curvature. Therefore, a decision-making needed when a curve radius is very 

large, that the curve could be considered a normal crossfall and tangent utilized. 

 

AASHTO has individually calculated the prior methods. The linear distribution for 

Method 1 is best only when all the vehicles travel within a constant speed despite 

whether the travel is within a curve with minimum radius, a flat curve or a tangent. 

Methods 5 is suggested by AASHTO of distribution for   along with   regarding all 

curves that have radii larger than minimum radius within urban high-speed streets and 
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rural highways. EAU and SAU Methods improve the distribution for   along with   

regarding all curves that have radii larger than minimum radius within urban high-speed 

streets and rural highways. The curvilinear distribution for EAU and SAU Methods 

involves an equal parabolic arc unsymmetrical curve (EAU) and single arc 

unsymmetrical curve (SAU), respectively of the   distribution where a tangent for two 

legs defines Method 5. Deducting the   values with the design values for (e+f ), a final e 

distribution can then be obtained. Appendix C shows superelevation and side friction 

versus Curve Radius for    = 100 km/h and      = 10% for AASHTO Methods along 

with EAU and SAU Methods. Furthermore, it also highlights the difference in percent 

involving   and   initially between AASHTO Method 5 and EAU Method, and then 

shows the difference in percent involving   and   between AASHTO Method 5 and SAU 

Method. 

5.4.2 System of Curves  

 

Pertaining to the system of curves, this involves two proposed methods and an 

optimization model, the EAU, SAU Methods and Parametric Cubic Model, respectively. 

According to the counterbalance of the mean, standard deviation and the coefficient of 

variation of the safety margin, the results demonstrated here appear in relation to the 

curvilinear distribution belonging to Method 5 that is recommended by AASHTO. Table 

5.7 shows all the AASHTO, the EAU, SAU Methods along with the Discrete, Quadratic 

and Parametric Cubic Models, where the SAU Method improves   and   distribution that 

is dependent upon the frequency of the curves and their radii, roadway restriction and the 
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significance of the mean and standard deviation belonging to the safety margin and 

improving the design consistency.  

 

When comparing the EAU Method with all methods and models, the results show a 

counterbalance where the EAU Method is superior to AASHTO Methods, Discrete, 

Quadratic and Parametric Cubic Model; however, it is inferior to the SAU Method in 

improving design consistency based on the safety margin. Considering the Parametric 

Cubic Model, it is the best in order of   and   distribution (Table 5.6), and it is superior 

to AASHTO Methods and the Quadratic model; however, it is slightly inferior to the 

SAU and EAU Methods and Discrete Model in maximizing design consistency based on 

the safety margin, and demonstrated through numerical examples in Figure 5.10 & Figure 

5.11.   

 

Figure 5. 10 Means and Standard Deviation of Safety Margins for all Methods and Optimization 

Models 
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Figure 5. 11 Coefficient of Variation of Safety Margins for all Methods and Optimization Models 

5.5 Summary 

 

Considering a single curve, based on      of 8% and speed of 80 km/h, the percentage 

gets increased in reduction towards superelevation for a single value of horizontal curve 

radius between the SAU Method and AASHTO Method 5. For a horizontal curve with a 

large radius, the reduction will be high for superelevation design; conversely, the increase 

is low for side friction. Furthermore, for a horizontal curve with a small radius, the 

reduction is low for superelevation design; however, the increase is very low for side 

friction. Relating to a system of curves, based on      of 8% and speed of 80 km/h, the 

proposed methods and optimization model are extremely helpful because they give the 

superelevation distribution of different radii for design speed and horizontal curves.  
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For purposes of evaluation, these methods are utilized for improving the design 

consistency. This result certifies a superelevation design that will assist most drivers with 

a low level of uncertainty. Table 5.8 provides a methodology comparison of the different 

methods. 

 

Table 5. 8 Distribution Method Comparisons for   and   within AASHTO, NCHRP439, Discrete, 

Quadratic, EAU, SAU, Cubic. 

Methods Advantages Disadvantages 

1 - e and f use a linear relationship with 

the radius inverse 

- Straightforward (e along with f  is 

relative to 1/R) 

- Avoid utilizing  fmax and emax  

- Ideal and sensible to distribute 

f or e 

- Uncertain once vehicle speeds are 

not consistent 

 

2 - Suitable within low-speed urban 

streets as e is less possible 

- Greatly dependent within available 

f where driving comfort can be an 

issue 

3 - f is not required at flatter curves within 

design speeds 

- Outcome within negative f in 

flatter curve going at average of 

running speeds 

- increasing the value of f sharply to 

fmax on sharper curves, which 

could result in inconsistent driving 

4 - f is not needed at flatter curve within 

average running speeds along with f  

that is retained for overdriving 

- f rises towards fmax at certain 

sharper curves that could result in 

inconsistent driving 

5 - Suitable for high-speed urban streets 

- e and f uses a curvilinear relationship 

with the radius inverse 

- keep advantages for Method 1 and 4 

- Using an unsymmetrical vertical 

curve equation  

-Very complicated to calculate, 

subjectively chosen distribution 

path 

NCHRP439 Keep advantages for methods 1 and 4, 

reduce design inconsistency for 

different e of the same vd . exceptional 

radius 

Stepped function utilized within 

design that is similar with discrete 

function. Needs speed decrease at 

95th percentile speed. There is no 

difference with 85
th
 percentile. 
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Discrete and 

Quadratic  

optimization 

model 

Maximizes the design consistency 

within an analysis of single alignment-

aggregate. Minimizes the variation 

within safety margin within a single 

alignment in a number of large curves 

no matter what their order. Within 

disaggregate analysis-sequence for 

horizontal curves within a single 

alignment are measured. Creates lower e 

than Method 5. 

Required influential optimization 

computer software needed to 

present a solution. Complex 

calculation method presents higher f 

than that of Method 5. Utilizes 

discrete function that is different 

with the dynamic equation of 

vehicle motion within a horizontal 

curve. 

EAU  - This Mathematical formula is superior 

to AASHTO. 

- Takes advantage of the benefits from 

Method 1, 4 and 5 

- Maximizes the design consistency 

within an analysis of the EAU Vertical 

Curve Equation.  

- Complicated to calculate, 

however, it will be simplified by 

incorporating and the using 

mathematical program software 

such as Lingo. 

SAU  - This Mathematical formula is superior 

to AASHTO. 

Takes advantage of the benefits from 

Method 1, 4 and 5 

- Maximizes the design consistency 

within an analysis of the SAU Vertical 

Curve Equation.  

- Complicated to calculate, 

however, it will be simplified by 

incorporating and the using 

mathematical program software 

such as Lingo. 

Cubic 

Optimization 

Model 

Maximizes the design consistency 

within system of curves. Minimizes the 

variation within safety margin within 

alignment in a number of large curves 

regardless of their order. Creates lower 

  than Method 5. 

Required influential optimization 

computer software needed to 

present a solution. Complex 

calculation method presents higher 

  than that of Method 5.  
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Chapter 6: Conclusions and Recommendations 

 

6.1 Conclusions 

 

This thesis presented the analysis of superelevation design approaching the proposed 

methods. For single curves, both EAU and SAU methods are valuable and theoretically 

parallel to AASHTO Method 5, by offering a smooth distribution of superelevation for 

highway curves. For system of curves, the proposed methods and the optimization model 

equations towards superelevation design are uncomplicated to apply and provide 

superelevation rates that are relatively comparable with AASHTO Method 5. As 

acknowledged earlier, the utilization of Method 5 signifies a mathematical analysis 

having little consideration towards the speed variation, along with an extensive process 

needed to attain the superelevation distribution.   

 

For AASHTO methods, inconsistency within the safety margin could also arise from 

utilizing curves whose radii is more than the minimum radius; variation levels within the 

margin are dependent on the superelevation and side friction factor choices within some 

situations. The system of curves (EAU and SAU Methods) offers a reasonably high mean 

of safety margin (higher than Method 5) and lower value of coefficient of variation which 

provide a higher consistency level for the safety margin between curves (fairly higher 

than Method 5). 
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This thesis presents an optimization model considering the mean, standard deviation 

along with the coefficient for variation for the probability distribution for each variable (  

and  ) that is different from extreme values. The optimization model also accounts for 

the connection between variables. This thesis proposes a new technique to improve 

highway design consistency following the principles of the safety margin. Safety margin 

is defined by determining the difference between the design speed and maximum limiting 

speed.  

 

In summary, the proposed methods and optimization model have advantages over 

AASHTO methods as follows: 

1) Eliminate the requirement for the process of trial-and-error to evaluate all 

AASHTO methods to find the design of superelevations for any known set of 

data for highway curves. Moreover, it directly finds the best superelevations 

taking into account the complete design space (of which AASHTO curves are a 

division).  

2) Present flexibility to determine both the mean and standard deviation of the 

safety margin concurrently. Furthermore, these proposed methods and 

optimization model are able to hold other limitations that are considered essential 

for specific practical cases.  

3) Both the EAU and SAU methods are valuable when the highway section has 

numerous horizontal curves. However in this case, the proposed methods reduce 

the variation of the safety margin for a set of highway curves without taking into 

consideration their sequence. This increases better ad hoc expectancy for drivers 
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on a specific highway. This study is theoretically similar to AASHTO Method 5 

(which offers an even distribution of   for highway curves) and succeeds analysis 

by Nicholson (1998) and Easa (2003). Consequently, this analysis presents clear 

deliberation for the safety margin in designing superelevations to improve 

highway consistency.  

4) In consequence, the optimization model determines the superelevation rate and 

side friction factor that minimize the objective function of a certain highway 

segment.  

5) Highway design consistency based on the safety margin approach assists other 

approaches that aim to support larger consistency into design speed selection.  

6) Optimization is clearly a powerful and beneficial tool, and the method presented 

in this thesis will help increase its function in geometric design. 

These results certify a superelevation design that will assist most drivers with a low level 

of uncertainty. The information provided will be helpful for both the evaluator and 

designer, especially when discussion with respect to design sufficiency comes into 

question. Integrating the safety index within the turning radius design, along with the 

superelevation distribution, promises a thorough proposed method analysis built within 

the design methodology. 
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6.2 Future recommendations 

 

This study considers the superelevation distribution of horizontal curves within highway 

design in regard to the effect of several parameters, such as side friction factor, 

superelevation rate, limiting speed and safety margin. Based on the numerical examples 

provided in Chapter 5, it was determined that the EAU, SAU Methods and the Parametric 

Cubic Model were superior to that of the AASHTO Methods due to improving highway 

design consistency. However, this is not quite complete and the following will illustrate 

recommendations for future analysis along with numerical research: 

 

1) To consider differences between design speeds and operating speeds as the safety 

margin for a horizontal curve on a highway. 

2) To improve operational reliability conditions can be analyzed utilizing a 

reliability index as safety margin.  

3) To develop the mathematical example utilizing data from North America. 
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 Appendix A 

 

 

Figure A. 1  Method 5 Design Superelevation Rates for Maximum Superelevation Rate of 8 

Percent 

 

 Figure A. 2 EAU Method Design Superelevation Rates for Maximum Superelevation Rate of 8 

Percent 
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Figure A. 3 SAU Method Design Superelevation Rates for Maximum Superelevation Rate of 8 

Percent 
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Appendix B 

 

Parametric Cubic Model derivation (Cubic distribution of  ) 

 

Consider the general cubic curve designed for the   distribution, exposed by dash line 

within Figure 5.4. The Equation for the curve is 
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Based on Equation (2) 
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Substitute of   from Equation (3) in Equation (1) 
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Equation (4) can be re-written as following: 
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  (5) 

By replacing the parameter (1/R) with (1000/R) in order to keep away from the scaling 

problem into get the optimum solution, subsequently for Curve Group   (noted that  =0) 

     =      
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,     (6) 

where   and   = indefinite variables (decision variables). While the decision variables   

and   might be negative or positive. For  =0 Equation (6) is returned to quadratic. 
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Appendix C 

 

Example 8 (Comparison of Methods): 

 

Table C. 1 Input Data for Example 8 

VD VR emax fmax emin Rmin Rfo Reo Rme Rpi 

100 85 0.10 0.12 0.02 357.73 655.83 787 562.14 568.61 

 

 

 

Figure C. 1 Superelevatlon and Sideways Friction versus Curve Radius (Method 1)  
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Figure C. 2 Superelevatlon and Sideways Friction versus Curve Radius (Method 2)  

 

 

Figure C. 3 Superelevatlon and Sideways Friction versus Curve Radius (Method 3)  
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Figure C. 4 Superelevatlon and Sideways Friction versus Curve Radius (Method 2 Modiffed)  

 

 

Figure C. 5 Superelevatlon and Sideways Friction versus Curve Radius (Method 5)  
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Figure C. 6 EAU Method for Superelevation and Side Friction versus Curve Radius  

 

 

Figure C. 7 SAU Method for Superelevation and Side Friction versus Curve Radius  
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Appendix D 

 

Table D. 1 EAU Method for Superelevation Distribution (Single Curve ) 
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Table D. 2 SAU Method for Superelevation Distribution (Single Curve) 
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Table D. 3 EAU Method for Superelevation Distribution (System of Curves) 

_________________________________________________________________ 

     = 
  
 

                    
 ,      (1) 

    = 
  
 

         
  ,        (2) 

    =  
             

 

  
   -           ,      (3) 

   =          ,        (4) 

   =  
        

 

    
 

 

   

 ,        (5) 

  =    -     ,        (6) 

   = 
 

   
 ,         (7) 

   = 
 

    
 - 

 

   
 ,        (8) 

  =    +    ,        (9) 

  = 
 

 
 ,         (10) 

     = 
  

 
  ,         (11) 

   = 
          

   
 ;   <    ,       (12) 

   = 
           

   
 ;   <    ,       (13) 

   =       + 
    

 

 
 ; x ≤ L/2  ,      (14) 

   = 
  

     
      ; x ≤ L/2  ,       (15) 

   =      -          + 
        

 

 
 ; x > L/2  ,    (16) 

   = 
  

     
      ; x > L/2 ,       (17) 

   =  
         

       
    

  

        
  ,                 (18) 

   =      -    ,        (19) 

     =  
      
 
   

    
 
   

                 (20) 

         =  
    
 
             

      
 
   

                 (21) 

   =                                (22) 

   =     /                      (23) 

_________________________________________________________________ 

 

 
  



155 

 

Table D. 4 SAU Method for Superelevation Distribution (System of Curves) 
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