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Abstract:

This paper studies the explicit calculation of the set of superhedging (and underhedging)

portfolios where one asset is used to superhedge another in a discrete time setting. A general

operational framework is proposed and trajectory models are defined based on a class of

investors characterized by how they operate on financial data leading to potential portfolio

rebalances. Trajectory market models will be specified by a trajectory set and a set of

portfolios. Beginning with observing charts in an operationally prescribed manner, our

trajectory sets will be constructed by moving forward recursively, while our superhedging

portfolios are computed through a backwards recursion process involving a convex hull

algorithm. The models proposed in this thesis allow for an arbitrary number of stocks and

arbitrary choice of numeraire. Although price bounds, V 0(X0, X
2,M) ≤ V 0(X0, X

2,M),

will never yield a market misprice, our models will allow an investor to determine the amount

of risk associated with an initial investment v.
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Notation

Here we describe the notation used throughout the thesis. We indicate parameters used

to define trajectory models, historical estimation, and model construction.

Chapter 2 - Notation used to define trajectory market models:

• S: Trajectory set consisting of undiscounted assets Si = (S0
i , S

1
i , ..., S

d
i ), portfolio

rebalancing times Ti and a financial observable Wi. (see Definition 1)

• Sji : The price of asset j at the i’th portfolio rebalancing, where j = 0, 1, ..., d. (see

Definition 1)

• X : Trajectory set of discounted assets Xi = (X1
i , X

2
i , ..., X

d
i ). (see Section 2.1.1)

• Xj
i : The value of asset j at the i’th portfolio rebalancing when using S0 as a

numeraire, where j = 1, ..., d. (see Section 2.1.1)

• H: sequences of functions representing portfolios. H = {(H0
i , H

1
i , ...,H

d
i )}i≥0,

where Hj
i represents the amount of holdings in asset j at the i’th portfolio rebal-

ancing.

• H: The portfolio set, where portfolios H ∈ H. (see Definition 2)

• M: Trajectory based market, where M = X ×H. (see Definition 3)

• V Φ
k (X): Portfolio value for the trajectory X at rebalancing k. (see Equation (2.2))

• GΦ
k (X): Profits generated for the trajectory X at rebalancing k.(see Equation

(2.3))

• X(X,k): Trajectory set consisting of trajectories conditioned at node (X, k). (see

Section 2.1.3)
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• ∆X(X(X,k)): Set of changes in value from rebalancing k to k + 1 conditioned on

node (X, k). (see Equation (2.8))

• ri(co(∆X(X(X,k)))): The relative interior of the convex hull of the set of changes

in value ∆X(X(X,k)). (see Proposition 4)

• cl(co(∆X(X(X,k)))): The closure of the convex hull of the set of changes in value

∆X(X(X,k)). (see Proposition 4)

• V k(X, X2,M): The upper price bound of discounted asset X2 along trajectory

path X for the market M. (see Definition 8)

• V k(X, X2,M): The lower price bound of discounted asset X2 along trajectory

path X for the market M. (see Definition 8)

Chapter 3 - Notation used to define historical estimation methods:

• T : Historical time interval which an investor has access to chart values s(t), where

t ∈ T . (see Section 3.1)

• s(t): Matrix of time series of undiscounted asset prices, where s(t) =(
s0(t), s1(t), ..., sd(t)

)
. (see Section 3.1)

• sj(t): time series of the undiscounted price of asset j, j = 0, 1, ..., d. (see Section

3.1)

• x(t): Matrix of time series of discounted asset prices, where x(t) =(
x1(t), ..., xd(t)

)
. We refer to x(t) as a chart. (see Section 3.1)

• xj(t): Time series of the discounted price of asset j, j = 1, 2, ..., d. (see Section

3.1)

• δ0: Investor calibrated parameter which provides an investor with historical chart

sampling times. (see Definition 10)

• {rl}: The set of historical rebalancing times (for a specific interval [t0, t0+T ] ∈ T ).

(see Definition 10)

• δ: Investor calibrated parameter which provides an investor with historical port-

folio rebalancing times, ti, in our δ-uncorrelated models. (see Definition 11)
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• δup and δdown: Investor calibrated parameters which provides an investor with his-

torical portfolio rebalancing times, ti, in our δ-correlated models. (see Definition

13)

• {ti}: The set of historical rebalancing times (for a specific interval [t0, t0+T ] ∈ T ).

(see Definition 11 and Definition 13)

• N(x, [t0, t0 + T ]): The number of portfolio rebalances that occurs for a given

chart x(t) in time interval [t0, t0 + T ] ⊆ T with calibrated parameter δ (or δup

and δdown). (see Definition 12)

• m1
i and m2

i are the number of δ̂1 and δ̂2 value changes of assets x1(t) and x2(t),

respectively, between portfolio rebalances i and i+ 1. (see Equation (3.6))

• qi is the number of time intervals of size ∆ between two consecutive portfolio

rebalances i and i+ 1. (see Equation (3.8))

• Pi is the number of ν̂0 changes of the accumulated vector variation between two

consecutive portfolio rebalances i and i+ 1. (see Equation (3.7))

• NE(x, [t0, t0 + T ]) is a collection of all (m1
i ,m

2
i , qi, Pi) values that occur in the

interval [t0, t0 + T ]. (see Definition 14)

• i∗ is the maximum number of possible portfolio rebalances that occur historically

in the interval [t0, t0 +T ]. This is only used in Type 0 models (first introduced in

4.2) to terminate the recursive creation of trajectory paths. (see Definition 15)

• X∗(x, T , i) and X∗(x, T , i) for i ≥ 0 represent the maximum and minimum ratio

of normed vector changes that occurs at the i’th δ-movement within the charts

x(t), respectively. This constraint will limit the amount our trajectory asset values

may fluctuate since an initial portfolio rebalancing (i = 0). (see Definition 16)

• N∗(x, T , ρ) and N∗(x, T , ρ) represent the maximum and minimum portfolio re-

balances that occur within x(t). This is used to limit the number of portfolio

rebalances that occur after time ρ ∈ ∆N has elapsed. The investor will then not

rebalance a portfolio more (and less) often than they would have historically. (see

Definition 17)

• N∗(x, T , w) and N∗(x, T , w) for w = w(x, [t0, ti]) ≥ 0 represent the maximum and

minimum portfolio rebalances that occur within x(t) after a chart has accumulated

w(x, [t0, ti]) amount of variation at the i’th rebalancing. (see Definition 21)
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• T ∗(x, T , i) and T∗(x, T , i) represent the maximum and minimum amount of time

elapsed after the i’th portfolio rebalancing. This restricts the investor to perform

the i’th portfolio rebalancing at times which they would have done so historically.

(see Definition 18)

• T ∗(x, T , w) and T∗(x, T , w) represent the maximum and minimum amount of time

elapsed after w = w(x, [t0, ti]) amount of variation is accumulated after the i’th

portfolio rebalancing. This restricts the investor to perform the i’th portfolio

rebalancing at times which they would have done so historically. (see Definition

22)

• W ∗(x, T , i) and W∗(x, T , i) for i ≥ 0 represent the maximum and minimum

amount of accumulated variation after the i’th portfolio rebalancing time. This

is used to limit the amount that model asset values X1, X2 can vary up to the

i’th portfolio rebalance. (see Definition 19)

• W ∗(x, T , ρ) and W∗(x, T , ρ) for ρ ∈ [0, T ] represent the maximum and minimum

amount of accumulated variation between historical portfolio rebalancing times.

This is used to limit the amount that model asset values X1, X2 can vary after

time ρ has elapsed. (see Definition 20)

Chapter 4 - Notation used to construct trajectory market models (note that we

utilize a similar, yet different, notation to parameters introduced in Chapter 3. This

enables Chapter 4 to not rely on previously introduced notation pertaining to charts):

• NE : Set of changes used to construct trajectory sets. (see Section 4.1)

• NA(Xi): Admissible set of Xi+1 values for a given Xi. (see Section 4.1)

• N(X): Maximum number of portfolio rebalances in a trajectory. (see Section

4.2.1)

• X(i) and X(i): Model pruning constraints; maximum and minimum vector per-

cent change for X at rebalancing i. (see Sections 4.2 and 4.2.2)

• N(ρ) and N(ρ): Model pruning constraints; maximum and minimum number of

rebalances after ρ ∈ [0, T ] time has elapsed. (see Sections 4.2 and 4.2.3)
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• N(w) and N(w): Model pruning constraints; maximum and minimum number of

rebalances after w amount of vector variation has been accumulated. (see Sections

4.2 and 4.2.4)

• T (i) and T (i): Model pruning constraints; maximum and minimum amount of

time elapsed after the i’th portfolio rebalancing. (see Sections 4.2 and 4.2.3)

• T (w) and T (w): Model pruning constraints; maximum and minimum amount

of time elapsed after w amount of vector variation has been accumulated. (see

Sections 4.2 and 4.2.4)

• W (i) and W (i): Model pruning constraints; maximum and minimum amount of

accumulated vector variation after the i’th portfolio rebalancing. (see Sections

4.2 and 4.2.4)

• W (ρ) and W (ρ): Model pruning constraints; maximum and minimum amount of

accumulated vector variation after ρ ∈ [0, T ] time has elapsed. (see Sections 4.2

and 4.2.4)

Chapter 5 - Notation used for worst-case estimates:

• NE(x, T ): worst-case estimate of a set of emprically measured chart changes. (see

Section 5.4)

• NOTE: worst-case estimates of pruning constraints in model building (X(i), X(i),

N(ρ), N(ρ), N(Wi), N(Wi), T (i), T (i), T (Wi), T (Wi), W (i), W (i), W (Ti), and

W (Ti)) are defined in Section 3.4.
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Chapter 1

Introduction

The theory of asset pricing has been studied extensively throughout the academic and finan-

cial literature, with a large emphasis being on the study of options pricing. A classic setting

of asset pricing utilizes a Black-Scholes model, where stock prices evolve by a Geometric

Brownian Motion. It is shown in Eberlein and Jacod [1997] that this model in particular has

serious deficiencies from the point of view of the distribution of returns as well as from the

point of view of its path properties. For example, the paper states that returns of stochastic

processes may not be observable quantities. Then to overcome such deficiencies, market

models will often incorporate assumptions which cause an investor to enter the realm of

incomplete models. If models are constructed with the absence of arbitrage opportunities

such market models will yield non-unique prices.

That is, Eberlein and Jacod [1997] discuss that assumptions used in order to con-

struct these models and obtain asset prices, models yield non-informative super- and sub-

replication bounds. The obtained asset prices degenerate down to absolute bounds, where

the term absolute bounds refers to super- and under-replication bounds that hold for any

possible no-arbitrage model; hence rendering the bounds useless or non-informative. The

reference Pfleiderer [2014] mentions that although theoretical models are necessary to under-

stand our financial systems, it is often found that models in finance ’cherry pick’ assumptions

in order to force models to produce given results. If these assumptions are difficult, or im-

possible, to relate to the real world, models based on such premises may be unreliable. The

aforementioned papers should show that although stochastic models are powerful tools in

understanding how financial systems work, they can also mislead.

Contrary to literature mainly focussing on replicating portfolios and options pricing, the

literature on superhedging risky assets with a portfolio of risky assets is not extensive. More

so, there is not an extensive amount of literature on the use of risky numeraires in dynamic
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asset pricing. When the numeraire is a random process, the pricing of a claim whose value

has been transformed under change of numeraire, e.g. under a change of currency, has to

take into account the risks existing on the foreign market (see Privault [2019] for this claim

along with examples of changes of numeraire where the numeraire is a random process).

In order to perform a fair pricing, one must determine a valid probability measure, under

which the transformed process will be martingale.

Filipovic [2007] goes to show that when pricing assets there is no optimal numeraire, or

rather, there exists no optimal numeraire that yields lower solvency capital requirements

than any other numeraire. This means that there does not exist a numeraire which enables

the investor to obtain an expected return greater than a risk-free rate. While being aware

of the fact from Filipovic [2007], the setting we provide allows for an arbitrary numeraire to

be chosen. We then observe the geometric effect of changing numeraire and our ability to

construct market models that yield informative price bounds.

This paper addresses the same issue explored in Ferrando et al. [2019a]: can we justify

simple models for asset evolution where we can evaluate sub- and super-replication prices

and, in such a way that these quantities have useful risk-rewards characteristics? In contrast

to Ferrando et al. [2019a], which has as a main focus derivative pricing while using a simple

bank account as numeraire, we focus our methodologies on pricing one risky asset in terms

of another one while incorporating an arbitrary numeraire

An algorithm construction, and its mathematical justifcation, that evaluates the sub-

and super-replication bounds in a probability-free setting has been given in Degano et al.

[2018]. It has been applied in Ferrando et al. [2019a] to obtain call option prices. This same

paper also argues that the reason for price bounds degenerating to absolute bounds may

be due to assumptions used to construct stochastic processes. These processes utilize an

assumed probability distribution which implicity incorporates analytical constraints, leading

to price paths not comparable to realistic outcomes. Thus, one may hypothesize that the

construction of a market model through an operational, non-probabilistic point of view may

provide an investor with informative worst-case price bounds which resemble realistic price

paths more closely.

1.1 Logical constraints from adopting an operational

setting and a superhedging methodology.

We adopt the following general point of view: we consider an investor that looks for an

investment opportunity by trading one asset x1 against another asset x2. The investor’s

model may signal a relative misprice between the assets. Under such conditions, the investor
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will sell (or short) an asset, say x2, while the other asset, say x1, is used to superhedge x2.

We expand on these financial operations below once further needed concepts are introduced.

In this Introduction, we rely on an informal, descriptive, meaning for several technical

words (estimation, worst case, calibration etc). These words will be given a more precise

meaning for the specific models that we introduce later on. In any case, in this Introduction,

we try our best to provide a context and a preliminary meaning for the use we will make of

several technical terms and notions. We rely on some intended repetition to better describe

the overall approach.

The main two components for constructing our models are: an operational setting and

a superhedging methodology. The former notion assumes an investor with a well defined

portfolio rebalancing strategy who operates on data through measurements and portfolio

rebalances. For us, such setup mostly implies how historical data will be used to construct

future scenarios. There are several alternatives to proceed i.e., the methodology does not

prescribe a unique way of constructing a model. On the other hand, the superhedging

approach is a natural method to adopt once we decline to assign probabilities to future

scenarios (as we generally do in the thesis).

By construction, and as we argue below, the proposed models will never signal an invest-

ment opportunity which is an arbitrage opportunity. Therefore, in order to invest, there is

the need to take in risk. To explain how we approach the notion of risk we indicate that we

split the model construction in two stages. 1) In the first stage, a worst case methodology

proposes a set of possible future scenarios (trajectories). In a close analogy with stochastic

processes, one can think that one is proposing the support of a process. Such set of tra-

jectories can be shrunk by means of historical frequencies; these are the measured ratios of

occurrence of the event in question over the total number of historical possibilities. Such a

form of taking in risk could be labeled worst case risk. 2) In a second stage, once the set of

trajectories is available, there is the reasonable possibility to place a probability distribution

on such set. This we consider a prerogative of our investor and leads to the possibility of

providing a risk analysis for the profit and loss (P&L) function. Such function provides the

gains and losses as a function of individual trajectories and associated to the superhedging

strategy but with an initial investment being different, smaller, that the superhedging upper

bound price.

The word calibration refers to setting the values of parameters that are under the control

of the investor. Criteria for calibration are model specific and so, will be described later in

the thesis. On the other hand, estimation here means setting the values of parameters that

are not under the control of the investor; those parameters are set through the observation

of historical trajectories. The main criteria for estimation is worst case historical estimation

which, we expect, should be quite clear for each of our models. The other criteria is risk-
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taking estimation which is a graduation from worst case by means of historical frequencies

(this is what we called above “worst case risk”).

It should be clear that many of our model choices could also be considered as other

sources of risk. In particular, there is the (perennial) question: how reliable are these

historical frequencies to account for the likelihood of future events? This seems an impossible

question to address in general; in particular, the answer depends on specific characteristics of

the model construction, estimation of some parameters and calibration of other parameters.

One possibility to address such question could be to develop a measure of robustness across

the different modeling constructions that we face. These kinds of questions fall outside the

scope of the thesis which concentrates in implementing a class of models and illustrating

their risk-reward trade offs.

The proposed models have a direct financial meaning and are based on a general method-

ology. We emphasize that all model’s components have an empirical meaning and it is this

characteristic that makes them suitable for empirical testing or to be used in conjunction

with machine learning. This is in contrast to the usual models driven by an apriori prescribed

noise which are not easily falsifiable. Also, using operational-type models for investment

decisions, allows to attach a definite meaning to each such decision. For example, we will

know that taking into a certain level of risk amounts to neglecting the future occurrence of

a specific set of trajectories and we also will know their historical measured frequency. Most

importantly, as future trajectories unfold, we know in real time if they belong to the model

or not.

To go back to our opening paragraph and to better describe the overall goal of our thesis:

we want to evaluate the quality of our models used to signal investment opportunities. The

thesis studies the quality of our proposed models in a rather qualitative and indirect way

(as opposed to performing out of sample testing). The fact that the models have a direct

empirical meaning allow us to analyze features of the models that can be interpreted in

investment terms.

In this thesis, when we use the words ”operational setting”, we mean a model construc-

tion methodology where an investor has adopted a certain investment pattern (e.g., the

investor may trade after five minutes have elapsed). Given such an ”operational” setting we

then look to construct future scenarios that reflect such constraints. Say, we look at possible,

historical, stock changes that took place in five minute intervals. We remark that fixing an

operational setting does not uniquely imply a model construction method (this straightfor-

ward fact will be apparent once we introduce the models’ constructions). In fact there may

be several possibilities to proceed for model construction. Interestingly, the methodology

can be deployed also in several financial situations. For example: Do we look for investment

opportunities several trading steps into the future or after a single trade? Do we consider
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overnight effects? What are the effects of a time horizon and sampling frequency? How

does changing the numeraire affects the model’s implications? Due to the number of pa-

rameters required to create our models, analyzing each and every one of these aspects is out

of the scope of this thesis. We do however wish to observe the effect of choosing arbitrary

numeraires on overall asset values.

We emphasize that our adopted investment strategy is to superhedge and underhedge one

stock by means of trading on another stock. This leads to values of super and under pricing.

That is, we obtain price bounds for the price of one stock relative to another stock, of course

the roles of the stocks can be reversed (we also have the flexibility of using a third stock

as numeraire). That is, our model provides two prices today, one leading to superhedging

and another one to underheging. These properties are guaranteed to hold for all trajectories

in the model. For simplicity, in many cases, we may only refer to superhedging and omit

mentioning underhedging. Notice that superheging is a very stringent investment strategy

as it guarantees the existence of a portfolio in terms of x1 that will upperbound, for all

trajectories in the model, x2 at a future time. Given that the models are estimated under a

worst case point of view, it follows that the initial investment, denoted by V 0(X0, X
2,M),

required to set up the superhedging portfolio will be high (M indicates the particular model).

This fact implies that a sizable risk needs to be taken to reduce this value to just x2
0. As the

models can be deployed in different ways and at different market conditions, the amount of

risk and the superhedging rewards, will vary. In essence, the investor can then analyze the

market as a casino where the odds change and they can be assessed relative to an investor

based model that is objective and interpretable in financial terms.

The reference Ferrando et al. [2019a] superhedged European options with the underlying

stock while here we superhedge a given stock with another one. In particular, in the present

setting, there is no need to target the superhedging at a pre-specified future time. Another

key difference between the setting of our thesis and Ferrando et al. [2019a] is that the market

price of the option at present time (i.e. at the time when the model is being set up) was

not needed as part of the trajectory market construction in Ferrando et al. [2019a]. This

implies that there is the possibility that the superheding and underhedging model prices may

uncover an arbitrage opportunity involving the selling/buying of the option and trading on

the stock. In other words, from the model’s point of view, the market could misprice an

option leading to an arbitrage opportunity (from the point of view of the model and when

trading with the stock and option). The latter means that in Ferrando et al. [2019a] there

could be an investment opportunity without the need to take in risk.

In contrast to the situation described above, and in the setting of the present thesis, we

construct vector valued trajectory models for two stocks and both of their initial market

given prices are used for the model construction. The off-shoot is that the model will never
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predict a (riskless) mispricing leading to an arbitrage opportunity. This can be seen by the

fact that if V 0(X0, X
2,M) ≤ V 0(X0, X

2,M) is the model price interval we can then prove

that V 0(X0, X
2,M) ≤ x2

0 ≤ V 0(X0, X
2,M). This result follows from the no arbitrage

property (actually it also follows from the more general 0-neutral property) that holds for

the constructed vector valued model. Therefore, in order to search for desirable investment

opportunities, we look for risk-taking investments where we sell (or short) stock x2 and

invest v ≤ x2
0 in our superhedging strategy. Given that the actual investment required

in order to superhedge along all model trajectories is the amount V 0(X0, X
2,M), and

V 0(X0, X
2,M) > v, we will then face the risk of not being able to superhedge along a

certain subset of the model trajectories. One concludes that such subset contributes to the

existence of the gap [v, V 0(X0, X
2,M)].

1.2 Possibilities to Deploy the General Methodology

Here we indicate, in a practical and direct way and without specific details, several possi-

bilities and guidelines to construct and deploy our general methodology.

We propose future scenarios (trajectories) generated from historical events which reflect

the operational setting of the investor. We also confine ourselves to a time horizon of one

day used as a reference to complete our portfolio transactions. The reason for choosing

a time horizon of one day, is that this allows the investor to neglect any overnight effects

which might otherwise occur in stock prices due to overnight trading or investor’s sentiments

created from newly released news. One could deploy the methodology over time horizons of

several days as well, however, in this case one should adjust the estimation and calibration

methodology accordingly (we try to present our methods using general criteria which can

hopefully be transported to different regimes).

These future scenarios could represent a single step or a multiple set of steps. Here

a step means a potential portfolio rebalance. Multi-step trajectories are constructed in a

combinatorial way from single step historical gathered events. Trajectories are vector valued

(X1
i , X

2
i , . . .) where the . . . indicate potential additional trajectory coordinates like some/all

of: i,Wi, Ti. Here i is the number of steps along a given path, Wi the vector variation

between rebalances and Ti the time of the i-th portfolio rebalance. Different models in this

thesis are built by adding or removing some of these additional coordinates.

We remark that choosing which variables to include in the trajectory coordinates is

the crucial modeling decision and we make no claim for special qualities for our selections

besides simplicity. We only remark in passing that portfolio rebalances obey the inequality

||(X1
i+1, X

2
i+1)− (X1

i , X
2
i )|| ≥ δ (1.1)
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where δ is investor dependent and hence calibrated. In this thesis the use of the notation

|| · || indicates the Euclidean norm, and other choices of the norm are not explored. In the

case that (X1
t , X

2
t ) is a martingale process, we remark that the number of times for which

(1.1) holds, i.e. the number of steps, obeys Burkholder’s δ-escape inequalities which are

vector generalizations of Doob’s upcrossing inequalities (Burkholder [1989]). The generality

of Burkholder’s inequalities suggests that the number of steps, over a certain time span, has

some regularity i.e. stable behavior suitable for model building.

Forcing portfolio rebalances to obey Equation (1.1) allows for trajectory market models

to be constructed as is done in Ferrando et al. [2019a]. While we do construct market models

in this manner, in this paper we also introduce a new type of model construction. Instead

of portfolio rebalances obeying Equation (1.1), we force them to obey the inequalities

0 ≤ (X2
i+1 −X2

i ) ≤ δup(X1
i+1 −X1

i ), (1.2)

0 ≥ (X2
i+1 −X2

i ) ≥ δdown(X1
i+1 −X1

i ),

restricting the investor to movements where the asset X1 moves in the same direction as the

asset X2. Models which obey (1.2) are expected to produce a smoother relationship since

assets must always move together.

Let N∗(x, T , Ti) and N∗(x, T , Ti) represent the historical maximum and minimum num-

ber for which the inequality ||(x1(ti), x
2(ti))− (x1(ti−1), x2(ti−1))|| ≥ δ holds over historical

time windows [0, Ti] ⊆ T where T is a historical time interval for which we have access to

the data (x1(t), x2(t)), t ∈ T . Here x(t) denotes a chart, or rather, a multidimensional time

series of values of a set of assets. The interval [N∗(Ti), N
∗(Ti)] will be used, during model

construction, to curtail, or trim, the mentioned combination of one step events when build-

ing a multi-step trajectory. This interval can also be shrunk to remove trajectories (what

we have called previously worst case risk). Other constraining intervals like [W∗(i),W
∗(i)],

[T∗(i), T
∗(i)] etc are also available. A criteria that we use to assess the usefulness of a tra-

jectory coordinate is to look at how, for example, [N∗(Ti), N
∗(Ti)] behaves as we aggregate

more and more historical data: does N∗(Ti) − N∗(Ti) becomes stable (i.e. does it stop

growing as we aggregate historical data) and informative (i.e. of small enough value)? In

other words, the worst case range [N∗(Ti), N
∗(Ti)] is informative regarding the coordinate

i if its range provides information that allows to restrict the manifold of future possibilities

for trajectory proliferation.
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Chapter 2

Background Material

2.1 General, Discrete, Trajectory Based Models

The thesis relies on discrete time, one-dimensional, non-probabilistic market models as in-

troduced in Ferrando et al. [2019b] and extended to the general multidimensional case in

Degano et al. [2018]. Reference Ferrando et al. [2019a] gives a detailed outline for creating a

trajectory based (1-dimensional) market model with operational assumptions which is then

used to price a European call option on a stock. This paper aims to extend the research in

Ferrando et al. [2019a] in order to develop a 2-dimensional trajectory based market model

describing the joint movements of two stocks (each expressed in terms of a third numeraire

stock). Each such 2-dimensional market model is then used to superhedge or underhedge

one stock with respect to another. In this section we review the theoretical framework used

to create that type of market.

We use the words asset and stock as synonymous and mostly refer to the “superhedging”

operation while neglecting to mention, for simplicity, that we are also obtaining underhedg-

ing information (a underhedging portfolio and a underhedging price).

The general definitions start with a set of trajectories S with S ∈ S being sequences

S = {Si}i≥0 of stock prices (plus some additional coordinates as well) expressed in a currency

numeraire. We then quickly allow to change numeraire and obtain sequences X = {Xi}i≥0

the notation then changes from X(S) = {Xi(S)}i≥0 to X = {Xi}i≥0 ∈ X (X the set of

trajectories in a given numeraire units). So the set S is removed from further discussion as

its explicit presence is not required in the remaining of the thesis as we explain next. The

modeling set S is basic to Degano et al. [2018] and Ferrando et al. [2019a] as their analysis

is in currency units, the reference Degano et al. [2018] does a theoretical analysis on the

effect that a numeraire change may have on the no-arbitrage property, and other notions,
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and for this reason that reference requires to start with the original set S (satisfying certain

properties). On the other hand, in the present thesis, we can start with a set X and construct

it so that it satisfies the properties we require in order to have a well defined framework

leading to price bounds and associated superhedging portfolios. Of course, our data, which

we use to build X , is given to us in currrency units but we do change the data to the required

numeraire and so we can use this transformed data to construct X .

2.1.1 Multidimensional Trajectorial Markets with Arbitrary Nu-

meraire

This section provides a short summary of the formal definitions required to develop a

trajectory based market model. We utilize the multidimensional definitions as given in

Degano et al. [2019] however, following sections will only be concerned with d = 2.

Definition 1 (Trajectory Set). Given s0 = {s0
0, . . . , s

d
0} ∈ Rd+1 and w0 ∈ Ω0, a trajectory

based set S is a subset of the following:

S∞(s0, w0) ≡ {S ≡ {Si ≡ (Si, i, Ti,Wi)}i≥0 : Si ∈ Σi, Wi ∈ Ωi,

Ti ∈ ∆ N+, i ∈ N, (S0,W0) = (s0, w0)}

where Σ = {Σi} is a family of subsets of Rd+1, Ω = {Ωi} is a family of sets and ∆ ∈ R+.

Elements of S are called trajectories.

The real numbers Ski in Si = (S0
i , . . . , S

d
i ) should be considered as having dimensional

units relative to a currency numeraire, say [Ski ] = $/[Sk] where $ is one unit of the said

currency and [Sk] is a unit of asset Sk. The additional variables beyond the coordinate i,

namely Ti and Wi do not play any role in trading considerations (in particular they do not

play an explicit role in the computation of the superhedging and subhedging portfolios and

associated price bounds). Moreover, as it will be detailed later in the thesis, these extra

coordinates are included only in some of the models and for the sole purpose (but crucial) of

constraining the combinatorial growth of the trajectory set. Their meaning is best described

later in the thesis once further details have been introduced.

In financial theory it is important to observe the behaviour of asset prices with respect

to the price of a separate asset, otherwise known as a numeraire. We then reserve S0 to

represent the numeraire used to obtain the discounted prices

Xi(S) ≡ (X1
i (S), X2

i (S), . . . , Xd
i (S)) ≡

(
S1
i

S0
i

,
S2
i

S0
i

, . . . ,
Sdi
S0
i

)
,

D ≡ {S0
i > 0}.

9



Xj
i (S) will then represent the value of asset j in units of the numeraire S0. The numerical

value of Xj(Si) (i.e. stripped from its units), is the number of units of the asset S0, now

the numéraire, which are required to acquire one unit of the Sj asset.

As explained in Section 2.1 our models construct the coordinates X1
i , X

2
i directly, that

is, without first depending on the quantities S1
i , S

2
i . For this reason our trajectories will

drop any reference to elements of S and will be elements of a trajectory set denoted X , its

elements are sequences of the form Xi = (Xi, i, Ti,Wi) (construction of a variety of sets X
is one of the major goals of the thesis). Notice that Xi = (X1

i , . . . , X
d
i ). It is also natural

to change notations and denote our numeraire asset S0 by X0, something we do from now

on; clearly X0
i = 1 for all i. We comment in passing that there is an abuse of notation at

play here as Wi may be affected by the change of numeraire (i.e. going from currency units

$ to [X0] units). Nonetheless, this should not cause any problems in later developments in

the thesis as Wi will naturally be also constructed in relation to the quantities X1
i , X

2
i .

Definition 2 (Portfolio Set). A portfolio H is a sequence of functions H ≡ {Φi = (H0
i , Hi) =

(H0
i , H

1
i , . . . ,H

d
i )}i≥0 and H0

i : X → R, Hi : X → Rd . Then:

1. A portfolio H is said to be admissible for the trajectory set X if for each X ∈ X there

exists an integer NH(X) > 0 such that Hi(X) = 0 for all i ≥ NH(X).

2. A portfolio H is said to be self-financing at X ∈ S if for all i ≥ 0 the following holds:

H0
i (X) +Hi(X) ·Xi+1 = H0

i+1(X) +Hi+1(X) ·Xi+1 (2.1)

3. A portfolio H is called non-anticipative if for all X,X′ ∈ X , satisfying X ′k = Xk for

all 0 ≤ k ≤ i, then it follows that Φi(X) = Φi(X
′),

where we have used the dot product notation x · y, x, y ∈ Rd.

To avoid confusion we provide a dimensional analysis of (2.1). Let 1Z denote one unit

of asset Z and use the notation [Z] = 1Z . Take d = 1 for simplicity, then the left and right

hand side of (2.1) have the same units: 1X0 +1X1
1X0

1X1
= 1X0 +1X0 . Notice that the number

of shares Hk
i (X) comes with units [Hk

i (X)] = 1Xk

Definition 3 (Trajectory Based Market). Given x0 ∈ Rd, w0 ∈ Ω0, a trajectory based set

X ⊆ X∞(x0, w0) and a portfolio set H, we say thatM = X ×H is a trajectory based market

if it satisfies the following properties:

1. All Φ ∈ H are self-financing and Φ = 0 ∈ H.

2. For each (X,Φ) ∈M there exists NΦ(X) ∈ N such that Φk(X) = ΦNΦ
(X) = 0 for all

k ≥ NΦ(X).
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Given X ∈ X and k ≥ 0, we will use the notation V Φ
k (X) for the value of the portfolio

Φ ∈ H:

V Φ
k (X) ≡ H0

k(X) +Hk(X) ·Xk. (2.2)

V Φ
k (X) can be interpreted as the value of the portfolio at the beginning of the stage k

expressed in units of the numéraire. In addition, GΦ
k (X) will denote the profits generated

up to the stage k associated with Φ ∈ H for a trajectory X ∈ X , that is

GΦ
k (X) ≡

k−1∑
i=0

Hi(X) ·∆iX for k ≥ 0 where ∆iX = Xi+1 −Xi. (2.3)

GΦ
k (X) reflects, in terms of the numéraire, the net gains accumulated by the portfolio Φ at

the beginning of the k-th stage.

Remark 1. Note that, for any portfolio Φ and any trajectory X, it is true that GΦ
k (X) =

−G−Φ
k (X).

Proposition 1. Let X be a space of trajectories, and let Φ be a portfolio on X . Then the

following statements are equivalent:

1. Φ is self-financing.

2. H0
i−1(X) +Hi−1(X) ·Xi = H0

i (X) +Hi(X) ·X) for all X ∈ X and i ≥ 0.

3. V Φ
k (X) = V Φ

0 +GΦ
k (X) = H0

0 +H0 ·X0 +

k−1∑
i=0

Hi(X) ·∆iX for all k ≥ 0.

Remark 2. From the previous Proposition, we know that the H0 component of a self-

financed portfolio Φ satisfies

H0
k(X)−H0

k−1(X) = −(Hk(X)−Hk−1(X)) ·Xk. (2.4)

Given that

H0
0 = V Φ

0 −H0 ·X0, (2.5)

the sequence H0 is completely determined by the initial investment V Φ
0 and H by means of

the previous equations.

We will say that the market M = X × H is semi-bounded if for each Φ ∈ H there is

nΦ ∈ N such that NΦ(X) ≤ nΦ for all X ∈ X and it is n-bounded, for n ∈ N, if NΦ(X) ≤ n
for each pair (X,Φ) ∈M.

The thesis considers d = 2, that is, we construct trajectory sets for two stocks (but a

third stock is also present, but not modeled explicitly, and acting as numeraire). Despite
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this framework, the construction of superhedging and subhedging portfolios involves a single

asset. That is, portfolios are built trading with a single stock (the numeraire, as is well

known, is also a second asset being traded and plays the analogue role to a bank account

with no interest rates). The choice of d = 2 and the ensuing implication of trading with only

one asset was decided to keep the setting as simple as possible. Moreover, this restriction

allows us to make use of results from Degano et al. [2018] where it is proven how to evaluate,

by an algorithm, superhedging and subhedging portfolios and price bounds in the case of

trading with a single asset. This dynamic programming based algorithm is referred to as

the convex hull algorithm and is briefly summarized in Ferrando et al. [2019a] but fully

developed in Degano et al. [2018]. We rely on this algorithm but do not provide much

details besides some comments when needed. The extension of the convex hull algorithm

to trading with more than one stock is an interesting open problem not addressed in the

thesis.

2.1.2 No-Arbitrage and 0-Neutrality

Here we follow Degano et al. [2019] and refer to that paper for details and proofs (as well as

Degano et al. [2018] and Ferrando et al. [2019b] for connections with the stochastic literature

and references). Restrictions will be imposed into trajectory markets so that no investor

has the possibility of generating a profit without the need to incur in a risk of loss. Such

investment opportunity is called an arbitrage opportunity.

Definition 4 (Arbitrage opportunity). Given a trajectory based marketM = X×H, Φ ∈ H
is an arbitrage opportunity if:

• ∀X ∈ X , V Φ
NΦ

(X) ≥ V Φ
0 .

• ∃X∗ ∈ X such that V Φ
NΦ

(X∗) > V Φ
0 .

We say that M is arbitrage-free if H does not contain arbitrage opportunities.

It can be shown (Degano et al. [2019]) that the arbitrage-free condition is sufficient

for the model to provide fair option prices (a well known result in the classical financial

literature.)

Next we introduce a weaker criteria saying that the largest of the minimum possible

gains that can be obtained by means of the strategies available in the market is 0.

Definition 5 (0-neutral market). Let M = X ×H a trajectory based market. We say that

M is 0-neutral if

sup
Φ∈H

{
inf
X∈X

GΦ
NΦ

(X)

}
= sup

Φ∈H

 inf
X∈X

NΦ(X)−1∑
i=0

Hi(X) ·∆iX

 = 0. (2.6)
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If the largest minimum profit is zero, the 0-neutral market definition is intuitively saying

that for each portfolio there is at least one possibility that the investor loses money, or at

best, lose nothing. In Degano et al. [2019] it is shown that this property is also sufficient

to obtain a pricing interval for financial derivatives. The next Proposition shows that the

property of 0-neutrality is weaker than the arbitrage-free property.

Proposition 2. Let M = X × H an arbitrage-free trajectory based market. Then M is

0-neutral.

It is clear how to generate simple examples of 0-neutral markets which contain arbitrage

(see Degano et al. [2019]).

The following simple characterization of 0-neutral markets will be useful in the next

section.

Proposition 3. A trajectory based market M = X ×H is 0-neutral if and only if, for each

Φ ∈ H and ε > 0 there exist Xε ∈ X such that

NΦ(Xε)−1∑
i=0

Hi(X
ε) ·∆iX

ε < ε. (2.7)

2.1.3 Local No-Arbitrage, Local 0-Neutrality and Geometric

Characterizations

In discrete and finite time one can obtain necessary and sufficient conditions, only involving

local properties of the trajectory set, implying trajectorial markets that are arbitrage-free

(or 0-neutral). Such characterizations are the analogue of the equivalence of no arbitrage

stochastic markets and the possibility to equivalently modify the stochastic process into

a martingale process. Here we present the local conditions and indicate their geometric

nature. Moreover, in the next section we use one such local condition to establish a useful

result for our thesis.

Given k ≥ 0, X ∈ X , define the conditional set:

X(X,k) ≡ {X′ ∈ X : Xi = X′i ∀ 0 ≤ i ≤ k}.

Notice that X(X,0) = X and that if X′ ∈ X(X,k) then X(X′,k) = X(X,k). We will refer to the

tuple (X, k) as a node.

Define

∆X(X(X,k)) ≡ {∆kX
′ : X′ ∈ X(X,k)} ⊆ Rd, (2.8)

where ∆kX
′ = (X ′k+1 −X ′k) has been introduced before.
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We will refer as local to any property relative to a node (X, k) and only involving elements

of ∆X(X(X,k)).

The definitions below are the local counterpart of those of arbitrage-free and 0-neutral

for the whole market. We are going to provide results characterizing the global properties

in terms of the local ones. For convenience set: HX ≡ {H : (H0, H) ∈ H}.

Definition 6 (Local notions). Given a trajectory based market M = X × H, let X ∈ X
and k ≥ 0.

1. (X, k) is called an arbitrage-free node with respect to H if

[Hk(X) ·∆kX
′ = 0 ∀X′ ∈ X(X,k)] or [ inf

X′∈X(X,k)

Hk(X) ·∆kX < 0],

for all H ∈ HX .

2. (X, k) is called a 0-neutral node with respect to H if, for all H ∈ HX :

inf
X′∈X(X,k)

Hk(X) ·∆kX
′ ≤ 0.

M is called locally arbitrage-free (0-neutral) if each (X, k) is an arbitrage-free (0-neutral)

node w.r.t. H. A node that is not arbitrage-free w.r.t. H, will be called an arbitrage node

w.r.t. H.

Notice that an arbitrage-free node w.r.t. H is always 0-neutral w.r.t. H. Clearly, there

are natural examples of nodes which are 0-neutral w.r.t. H but no arbitrage-free w.r.t. H
(hence these are arbitrage nodes). It is then of interest that Degano et al. [2019] obtains

results that justify option prices obtained for general 0-neutral markets (in particular these

markets may contain 0-neutral nodes which are arbitrage nodes w.r.t. H).

Admittedly, attaching the qualifier “w.r.t. H” is a precise statement but can be unnec-

essarily distracting. The reader could replace the appearance of Hk(X) and the quantifier

∀H ∈ HX by ∀h ∈ Rd. In other words, no matter the direction of an investment h there is

always a possibility of losing money (in the no-arbitrage case) or at best breaking even (in

the 0-neutral case). In fact, we provide below sufficient conditions on trajectory nodes that

imply that those nodes are arbitrage-free (0-neutral) w.r.t. H for any H.

Below, the notation ri (co (E)) for E ⊆ Rd refers to the relative interior of the convex

hull generated by E. Similarly cl (co (E)) refers to the closure of the convex hull generated

by E.

Proposition 4. Given a trajectory based market M = X ×H, consider a node (X, k).
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1. If:

0 ∈ ri
(
co
(
∆X(X(X,k))

))
. (2.9)

then (X, k) is an arbitrage-free node w.r.t. H.

2. If:

0 ∈ cl
(
co
(
∆X(X(X,k))

))
. (2.10)

then (X, k) is a 0-neutral node w.r.t. H.

According with these results we introduce the following notions.

Definition 7 (H-Independent local properties). A node (X, k) is called arbitrage-free if

(2.9) is satisfied; it is called 0-neutral if (2.10) is satisfied. We call X locally arbitrage-free

(locally 0-neutral), if every node (X, k) is arbitrage-free (0-neutral).

So, if X is locally arbitrage-free (locally 0-neutral), thenM = X ×H is locally arbitrage-

free (locally 0-neutral) for any H.

The geometric condition (2.9) is known (with the necessary modifications) in the stochas-

tic literature but may not have been appreciated as a fundamental characterization of the

property of arbiytrage-free. As is shown in Degano et al. [2019], it gives an interesting

point of view to see the no-arbitrage condition in geometrical terms. Finally, from (2.10),

a 0-neutral node (X, k) which, in turn, is not an arbitrage-free node implies that 0 ∈ Rd

belongs to the boundary of co
(
∆X(X(X,k))

)
. This is a fickle condition which should be rare

to find in markets.

The local definitions introduced above allow us to ensure global conditions on a trajectory

based market.

Theorem 1 (No arbitrage: local implies global). If M is locally arbitrage-free (as per

Definition 6) and semi-bounded, then M is arbitrage-free.

Similarly, the following Theorem shows that a trajectory based market will be 0-neutral

if it is locally 0-neutral.

Theorem 2 (0-neutral: local implies global). Let M = X ×H be a semi-bounded trajectory

market. Then if M is locally 0-neutral (as per Definition 6) then, M is 0-neutral.

Converses to both theorems above also hold (proofs and additional statements are in

Degano et al. [2019]).
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2.1.4 Price Bounds for One Asset Relative to Another Asset

We consider d = 2 from now onward and depart slightly from Degano et al. [2019]; in that

reference price bounds (for general options) are defined by means of multidimensional trading

portfolios. Even though our setting is multidimensional in the sense that d = 2 > 1 we will

be only trading with one dimensional portfolios. This difference will make it awkward to

rely on results from Degano et al. [2019] and so we follow our own independent developments

next.

The notation Z will be used for a general function defined on X ; it could be thought as

the payoff of an option. In the present thesis we will only consider:

Z(X) = Xk
N(X) where k = 1, 2 denotes the stock that is being superhedged (2.11)

andN(·) is an integer valued stopping time, that is ifN(X) = n thenN(X) = N(X1, . . . ,Xn).

The quantity V k(X, Z,M) below will denote the minimum amount of capital required,

conditional on a node (X, k), to superhedge the payoff/function Z. An analogous, dual,

interpretation, can be assigned to V k(X, Z,M). For simplicity in the notation we assume

that we trade with asset X1 in order to superhedge asset X2, clearly these roles can be

reversed.

Definition 8 (Conditional Minmax Bounds). Given a market M = X × H, k ≥ 0, and

X ∈ X . Define:

V k(X, X2,M) ≡ inf
H∈H

{
sup

X̂∈X(X,k)

{
X2
N(X̂)

−
NH(X̂)−1∑

i=k

Hi(X̂) ∆iX̂
1
}}

. (2.12)

Also set V k(X, X2,M) ≡ −V k(X,−X2,M). We then call these quantities price bounds

at node (X, k). For simplicity, we may use the notation V k ≡ V k(X, X2,M) and V k ≡
V k(X, X2,M) when it is clear what the conditioning node is and the fact that we are su-

perhedging X2.

Notice that we have that V k(X, X2,M) = V k
(
(X0,X1, . . . ,Xk), X2,M

)
and so when

k = 0 we can write the upper price bound simply as V 0(X0, X
2,M).

Also notice that Hi(X̂) ∆iX̂
1 = Hi(X̂)(X̂1

i+1 − X̂1
i ) and that Hi(X̂) ∈ R. That is, we

are trading with a single asset and have an ordinary product (as opposed to a dot product).

That is, even though d = 2 and so we have a market model for two assets X1, X2 (in terms

of numeraire X0) we are requiring to trade with a single asset. Notice that previously we

used Hi = (H1
i , . . . ,H

d
i ) but hope the reader can differentiate the meaning of the symbol

used from context.
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We are going to prove V k(X, X2,M) ≤ X2
0 ≤ V k(X, X2,M), a useful result for our

thesis. In the proof we will need to rely on the quantities Uk(X, X2,M), Uk(X, X2,M)

which we introduce next.

Definition 9 (Dynamic Bounds). Consider an n-bounded, discrete market M; for a given

function Z defined on X , any X ∈ X , and 0 ≤ i ≤ n set

U i(X, Z,M) =


inf
H∈H

sup
X̂∈X(X,i)

[U i+1(X̂, Z,M)−Hi(X) ∆iX̂
1] if 0 ≤ i < N(X)

Z(X) if i = N(X).

(2.13)

Also define U i(X, Z,M) = −U i(X,−Z,M).

Under a general hypothesis on H (which we do not discuss so as not to derail our discus-

sion), Corollary 4 from Degano et al. [2018] gives U i(X, Z,M) = V i(X, Z,M) which implies

U i(X, Z,M) = V i(X, Z,M). These relationships will be used in the proof of Proposition 5

below.

In stochastic models, the existence of a price interval is given by the notion of an (stochas-

tic) arbitrage-free market which leads to a collection of (equivalent) martingale measures.

Such collection is used to evaluate upper and lower bounds. The present setting utilizes the

notion of 0-neutrality to obtain V k ≤ V k, in fact we obtain a more detailed result below.

Proposition 5. Consider a bounded market M = X ×H that is locally 0-neutral and such

that the necessary hypothesis to apply Corollary 4 from Degano et al. [2018] hold. Then for

any 0-neutral node (X, k), 0 ≤ k ≤ N(X):

V k(X, X2,M) ≤ X2
k ≤ V k(X, X2,M). (2.14)

Proof. The hypothesis on (X, k) means that (2.10) holds, in turn this implies (see Degano

et al. [2018]) that for each h ∈ R2 and δ > 0 there exists X′ ∈ X(X,k) satisfying h ·∆kX
′ ≤

δ. To simplify notation, sometimes we we may write V k = V k(X, X2,M) and a similar

shortcut notation for related quantities.

We prove (2.14) by backwards induction on the index k. Notice that (2.14) holds at

k = N(X) because UN(X) = X2
N (X) = UN(X) holds by definition according to (2.13). Then

(2.14) for k = N(X) follows from U i = V i and U i = V i which are valid for all 0 ≤ i ≤ N(X).

It remains then to assume that (2.14) holds at k + 1 (0 < k + 1 ≤ N(X)) for all X ∈ X
and then to prove that also holds at k (0 ≤ k) for all X ∈ X .

We first provide a proof ofX2
k ≤ V k(X2); assume otherwise, namelyX2

k > V k(X, X2,M)
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and consider ε ≡ X2
k − V k. For this ε > 0, there exists H1

k such that

Uk(X, X2,M) + ε+H1
k(X) ∆kX̂

1 ≥

Uk+1(X̂, X2,M) = V k+1(X̂, X2,M) ≥ X̂2
k+1, ∀X̂ ∈ X(X,k),

where we used the inductive hypothesis to establish the last inequality. Therefore

V k(X, X2,M) + ε+Hk(X) ·∆kX̂ ≥ X2
k , ∀X̂ ∈ X(X,k),

where Hk(X) · ∆kX̂ is the dot product in R2 of: h ≡ Hk(X) = (H1
k(X),−1) and (this

follows notation that we have used before) ∆kX̂ = (∆kX̂
1,∆kX̂

2). We then obtain

h ·∆kX̂ ≥ X2
k − V k(X, X2,M)− ε ≡ δ > 0, ∀X̂ ∈ X(X,k), (2.15)

this contradicts our assumption of (X, k) being a 0-neutral node. The proof of X2
k ≥ V k(X2)

follows a similar argument, but can also be obtained from the following considerations as

well. The formalism of trajectorial bounds applies to an arbitrary function Z and we have

not used in the derivation of X2
k ≤ V k(X2) any particular property of X2

i (in particular we

have not used X2
i ≥ 0). Therefore our proof implies −X2

k ≤ V k(X,−X2,M) which then

implies V k(X, X2,M) ≤ X2
k .
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Chapter 3

Charts

Recall that this thesis has two objectives in mind; 1) Construct trajectory market models

through an operational framework, and 2) Superhedge one asset with respect to a portfolio

of another. In this chapter we visit the framework and assumptions used to employ an

operational approach when constructing a trajectory market model. Throughout this thesis

we often refer to charts. This term is used to represent a multidimensional time series

of values of a set of undiscounted or discounted assets, where a discounted asset is the

price of an asset that has been discounted by some numeraire of choice. To relate the

notation given in Chapter 2 and the framework proposed in the present chapter, we refer to

s(t) =
(
s0(t), s1(t), . . . , sd(t)

)
as a time series of a set of d+ 1 undiscounted asset values and

x(t) =
(
x1(t), . . . , xd(t)

)
as a time series of a set of d discounted asset values. We note that

we use s(t) in this chapter in order to relate the operational framework to the background

material, and sections and chapters following Section 3.2 will only require availability of

charts x(t). The notation s(t) also allows us to introduce a general notation for a choice of

numeraire and numeraire change. In following chapters we refer to charts as the discounted

chart values x(t), and always refer to s(t) as undiscounted charts.

Beginning with an general overview of the setting used to observe historical chart values,

we move on to introduce the assumptions used for two different operational approaches. The

difference between these two models being very minimal; changing the way we define a δ-

escape. As previously mentioned, one way allows the two assets of interest to move in any

given direction, as long as the inequality (1.1) is satisfied. Conversely, the second model

only allows the assets to move in the same direction; up in price, or down in price, which

obeys the inequalities (1.2).

The chapter is laid out as follows. Section 3.1 informally introduces the notions the

reader will encounter throughout the chapter. Section 3.2 provides a generalized overview
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of how an investor may use an aribtrary selection of assets to observe charts. This is related

to how we provide a general multidimensional notation for trajectory markets in Chapter 1.

Section 3.3 introduces the operational framework, in which Section 3.3.1 asset prices may

move in any direction, while Section 3.3.2 introduces the framework in which asset prices

move together. To distinguish between the two we refer to the former as δ-uncorrelated

market models, and the latter as δ-correlated market models. Following this, we discuss

the discretization of observed quantities, which is required to create a discrete trajectorial

market model, and a brief discussion of calibrating model parameters. We then formally

define historical estimates an investor may utilize to construct market models in Sections

3.3.4, 3.4.

We note that the main purpose of this chapter is to discuss the operations that an

investor performs to observe charts and introduce some parameters which are concerned

with observing said charts. None of the parameters introduced in this chapter are used to

construct market models until Chapter 5.

3.1 Operational Setting

We refer to undiscounted charts as the market quoted price s(t) =
(
s0(t), s1(t), ..., sd(t)

)
of

risky assets at time t. Similarly, the term discounted charts will represent the value of our

assets s(t) discounted by an investor chosen numeraire, sk(t) ∈ s(t), k ∈ {0, ...d}. As this

thesis is concerned with obtaining relative prices, after choosing a numeraire we will obtain

discounted prices x(t). Since an investor will perform operations on discounted charts x(t),

for simplicity we refer to the values of x(t) as charts.

The paper Ferrando et al. [2019a] considers a market created with d = 1, with a simple

zero interest rate bank account. The difference in our multidimensional case is that we first

provide a general notation for observing an arbitrary d, and later we will concern ourselves

with d = 2. Although we limit ourselves to d = 2 in this paper, the generalized notation

goes to show that trajectory market models are not limited as we provide the framework

for an arbtirary number of assets.

This is then formalized by considering a chart to be a map x : T → R × R, where T
is a time interval (more specifically, T is the time interval that our investor has access to

chart data). We note that when referring to time intervals, we use the following continuous

interval notation to actually mean the following: [a, b] ≡ [a, b]∩∆Z, where ∆ is the smallest

time resolution at which the investor will observe the market. So, T ⊆ ∆Z. Although this

is an abuse of notation, it is required to simplify the writing. We will use T to denote the

maximum amount of time for our model trajectories to unfold. Given T , the investor will

perform operations on charts within specific time intervals [t0, t0 + T ] ⊆ T .
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We construct market models with two different operational approaches. For the first,

our investors will only react to the market when they observe a normed vector change in

value greater than some value δ ∈ Q+ (for δ-uncorrelated models). For another, when one

chart component x1(t) moves up δup times more than x2(t) or moves down δdown times more

than x2(t) (for δ-correlated models). Any time when an investor reacts to market changes

is referred to as a δ-escape, δ-move, or δ-movement (for both uncorrelated and correlated

models).

The parameter δ0 ≤ δ provides the investor a set of sampling times which is used to

determine the state of a financial observable w(x, [t0, t0 +t]). The investor will also calibrate

parameters δ̂1, δ̂2, and ν̂0 which will be used to discretize observed chart quantities and

eventually construct our trajectory model’s coordinates X1
i , X2

i , and Wi, respectively.

Then, for a fixed δ (or δup, δdown), δ0, and ∆ > 0:

1. Charts x(t) are sampled at dynamic times rl which depend on investor prescribed δ0.

The set of sampling times is given as {rl} ⊆ [t0, t0 + T ] ⊆ T .

2. Time intervals have a lower resolution bound ∆ > 0, so that (rl+1 − rl) ≥ ∆.

3. Times ti, for the i-th δ-movement, satisfy ti ∈ {rl}, which are given by an investor

prescribed δ, and have a lower time resolution bound ∆ so that (ti+1 − ti) ≥ ∆.

These are the times at which an investor would rebalance their portfolio. The set of

rebalancing times is given as {ti} ⊆ {rl}.

4. A sampled financial observable w(x, t) is accumulated for the samples x(rl), which will

allow us to restrict possible future events.

5. There is a dynamical number of portfolio rebalances N(x, [t0, t0 + ρ]) that take place

in time interval [t0, t0 + ρ], where 0 ≤ ρ ≤ T . Given that there are N(x, [t0, t0 + T ])

δ-movements in the time interval [t0, t0 + T ], then for this interval we have that i ∈
{0, 1, ..., N(x, [t0, t0 + T ])}.

For each operational approach, δ-correlated and δ-uncorrelated, we will incorporate ob-

servable constraints allowing us to construct trajectory paths which incorporate states which

may appear as rebalancing stock values. This is in contrast to stochastic processes which

may grow unboundedly (i.e. Brownian motion has infinite speed) and include paths which

may never appear as a possible rebalancing stock values. Our observable constraints may

be constructed in many ways, in the sense that an investor is not limited to the observable

constraints proposed in this chapter. For example, this thesis is concerned with an investor

who will operate on chart values and keep track of worst-case scenarios of any observable

quantity. The term worst-case may refer to the extreme values of the investor’s observ-

able quantities for the entire dataset our investor has access to. Then, for the purpose of
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this thesis, possible worst-case constraints will be formed through the observation of chart

values x(t). Chart values will yield measureable quantities such as the sampled financial ob-

servable w(x, [t0, t0 + t]), portfolio rebalancing times ti, and number of portfolio rebalances

N(x, [t0, t0 + T ]). Thus, for a chart x(t) and a given set of data T , the investor will be able

to observe the following worst-cases:

1. X∗(x, T , i) and X∗(x, T , i); the maximum and minimum amount of vector change

after the i’th portfolio rebalance occurs,

2. N∗(x, T , ρ) and N∗(x, T , ρ); the maximum and minimum number of portfolio rebal-

ances that occur after ρ time elapses,

3. N∗(x, T , w) and N∗(x, T , w); the maximum and minimum number of portfolio rebal-

ances that occur after w = w(x, [t0, t0 + t]) vector variation is accumulated,

4. T ∗(x, T , i) and T∗(x, T , i); the maximum and minimum amount of time elapsed after

the i’th portfolio rebalance,

5. T ∗(x, T , w) and T∗(x, T , w); the maximum and minimum amount of time elapsed after

w = w(x, [t0, t0 + t]) vector variation is accumulated,

6. W ∗(x, T , i) and W∗(x, T , i); the maximum and minimum amount of accumulated sam-

ple financial observable w(x, [t0, ti]) after the i’th portfolio rebalance occurs,

7. W ∗(x, T , ρ) and W∗(x, T , ρ); the maximum and minimum amount of accumulated

sample financial observable w(x, [t0, t0 + ρ]) after the i’th portfolio rebalance occurs.

In Ferrando et al. [2019a], the objective was to determine a fair price for a european call

option which expires at maturity time T . However, we are concerned with super hedging

one stock with respect to another and therefore the need for our trajectories to expire at

some specific future time is dispensed with. We do however require some stopping criteria

in order to dictate when the historical observation (and later in the production of future

nodes) is complete. Such stopping criteria could be an investor prescribed future time T , or

maximum number of portfolio rebalances i∗. To be precise, a time interval [t0, t0 + T ] ⊆ T
will have N(x, [t0, t0 + T ]) ≤ i∗ δ-movements and we consider the trajectory within this

interval to be complete at the time tN ≤ T or at the maximum rebalancing i∗. We allow

trajectories beginning at time t0 to end at any time before the expiration time T and do

not force them to continue to time t0 + T .

In this setting we then have an investor who is interested in comparing market prices of

one asset relative to their operational portfolio rebalancing. Rebalancing times, determined

by δ, will end at some time tN ≤ T , which allows for trajectories to naturally finish as close
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as possible to T . This contrasts what is done in Ferrando et al. [2019a], where trajectories

are forced to finish at time T . This is due to the fact that Ferrando et al. [2019a] deals with

the valuation of options, which must reach their maturity time T .

Given this setup, the operations of sampling and portfolio rebalancing performed on

chart samples will create the following associations:

x(ti)→ Xi, ti → t0 + Ti, w(x, [t0, ti])→Wi

which we write compactly as x(ti)→ Xi, where x(ti) ≡ (x1(ti), x
2(ti), i, ti, w(x, [t0, ti])) and

Xi ≡ (X1
i , X

2
i , i, Ti,Wi). Historical worst case estimates of ti and w(x, [t0, ti]) will limit the

possible future states of our trajectories. Such worst case estimates will serve as necessary

constraints restricting the possible future values of Xi+1 for a given X0, ...,Xi.

Note at this point that any δ-escape will be referred to as a δ −move, δ − increment,
or δ −movement, which will also be the investor’s protfolio rebalancing times.

3.2 Chart Values

Now that we have briefly described the operational setting let us begin with deploying an

operational approach as generally as possible. Starting with a mathematical framework

using d+1 assets, we eventually limit ourselves to d = 2. At the moment our historical data

starts with undiscounted asset prices s(t) =
(
s0(t), s1(t), . . . , sd(t)

)
, t ∈ T , with all data in

currency units and we obtain discounted prices with respect to a numeraire s0(t), given by:

xk(t) =
sk(t)

s0(t)
, k = 0, ..., d.

For example, we superhedge s2(t) with s1(t) and use s0(t) as numeraire. This then gives

x0(t) = 1, ∀t ∈ T . This means we hold the numeraire from ti to ti+1 and it does not change

because is expressed in units of itself. Say we have 6 shares at ti and then we also have 6

shares at ti+1. This is exactly a more general case of a bank account with 0 interest rates.

To provide a more general framework, we could also start by selecting our numeraire to

be sp(t), p ∈ {0, 1, ..., d}, and define

xk(t) =
sk(t)

sp(t)
k = 0, ..., d,

which now gives xp(t) = 1, ∀t ∈ T . Notice that we do not have a general notation for this as

in Chapter 2 as we select S0 as numeraire, however, Chapter 2 could be changed accordingly

but we do not want to introduce confusing generality.
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Thus, the above is just a preamble for the following important comment: our setting

allows for more general relative pricing (in contrast to what is portrayed later in the thesis:

x2(t) price in terms of x1(t) price all in terms of x0(t)).

Let A : Rd+1 → R be a linear transformation (i.e. a matrix) and B : Rd+1 → R+ be

another linear transformation. Then, we let y0(t) = Bs(t), such that Bk > 0 so y0(t) > 0

for all t ∈ T . We could then take this linear combination (i.e. y0(t)) as a numeraire.

Then, we let

yb(t) =
Asb(t)

y0(t)
, b ∈ {0, 1, ..., d},

and yb(t) is stock b in terms of the y0(t) numeraire. Notice that we have y0(t) > 0 and that

the coordinates As(t) could be negative.

If we were to limit ourselves to d = 2, we could then price y2(t) in terms of y1(t) with

numeraire y0(t). In other words, we create an index portfolio y2(t) = As2(t)/y0(t) and

use another linear combination as numeraire (this second linear combination guarantees

y0(t) > 0). This keeps trading asset y1(t) simple (i.e. it is just s1(t) in different units) as it

would be impractical (but possible) to trade with another linear combination.

The above framework is indicative that the investor may be free to change numeraire

given the same set of assets s(t), and that the change of numeraire may be given by a linear

combination of assets in s(t).

3.3 Charts and Investors’ Operations

We now concern ourselves with d = 2 (i.e. s(t) =
(
s0(t), s1(t), s2(t)

)
) and simply choose

s0(t) to be our numeraire. This setting provides us with x0(t) = 1 for all t ∈ T , and both

x1(t) and x2(t) in units of s0(t). In our setting this will allow the investor to obtain a

relative pricing: x2(t) in terms of x1(t) all in units of s0(t).

The next subsections lay out the operations an investor will perform on charts. We

introduce two different operational frameworks: one where the investor observes charts as

is done in Ferrando et al. [2019a], a second where discounted assets x1(t) and x2(t) must

move in the same direction.

3.3.1 δ-Uncorrelated Models

Set

T = MT∆; δ, δ0, δ̂
1, δ̂2, ν̂0 ∈ Q+; δ ≥ δ0

where MT is some positive integer. ∆ is the smallest time resolution at which the investor

may observe charts. The investor will fix δ, δ0, δ̂1, δ̂2, and ν̂0 by a process of calibration,
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where one method of calibrating and selecting meaningful values of δ and δ0 will be discussed

in Section 5.2. The investor will only rebalance their portfolio for normed vector changes

greater or equal than δ while δ0 will provide the sampling times.

As in Ferrando et al. [2019a], to define estimates for model variables X1
i , X2

i , Ti, and Wi

one needs to evaluate first the notions introduced in this section on the historical data x(t)

within a fixed time interval [t0, t0 + T ] ⊆ T . These estimates are updated by shifting the

time interval through the historical dataset T . The method for shifting the time interval

through the data is not explicitly stated as this is investor dependent. We do discusss the

method which is used in this thesis in Section 6.1.

Definition 10 (Dynamic Sampling Times). Given δ0 > 0, a chart x = (x1(t), x2(t)),

and an interval [t0, t0 + T ], where t ∈ [t0, t0 + T ] ⊆ T ; a sequence of increasing dynamic

sampling times is given by r = r(x, [t0, t0 + T ]) = {rl}Ll=0 ⊆ [t0, t0 + T ] (so rl ∈ ∆Z), where

L = (x, [t0, t0 + T ]), and r0 = t0 satisfying:

δ0 ≤ ||x(rl+1)− x(rl)||, 0 ≤ l ≤ L− 1, rL ≤ t0 + T. (3.1)

Definition 11 (Dynamic Rebalancing Times). Given δ > 0, T ∈ ∆N, a chart x =

(x1(t), x2(t)) and an interval [t0, t0 +T ], where t ∈ [t0, t0 +T ] ⊆ T ; a sequence of increasing

dynamic portfolio rebalancing times is given by t = t(x, [t0, t0 + T ]) = {ti}Ni=0 ⊆ {rl}Ll=0,

N = N(x, [t0, t0 + T ]), t0(x) = t0, T ∈ ∆N, satisfying:

δ ≤ ||x(ti+1)− x(ti)||, 0 ≤ i ≤ N − 1, tN ≤ t0 + T. (3.2)

Definition 12 (Number of Portfolio Rebalances). Given a chart x, portfolio rebalancing

times {ti} given by Definition 11, and length of time ρ ∈ [0, T ] ⊆ ∆N+, the number of times

a portfolio is rebalanced in an interval [t0, t0+ρ] is a function and is denoted N(x, [t0, t0+ρ])

given by:

N(x, [t0, t0 + ρ]) = i; t0 + ρ ∈ [ti, ti+1) (3.3)

The collection {rl}, given in Definition 10, is referred to as sampling times. Similar to

Definition 10, we have that the collection {ti} (given in Definition 11) is the collection of

times where the investor would have rebalanced their portfolio in the interval [t0, t0 + T ].

A 2D representation of possible chart sampling and portfolio rebalancing times is given in

Figure 3.1, where it is seen there can be many δ0-movements between each δ-movement.

We have that N(x, [t0, t0 + ρ]) is the number of times a portfolio is rebalanced in the

interval [t0, t0 + ρ] for some duration of time ρ ∈ {0,∆, ...,MT∆}. We also set the notation

N ≡ N(x, [t0, t0 + T ]). It follows that N ≤ L ≡ L(x, [t0, t0 + T ]), where L represents the

number of samples taken in interval [t0, t0 + T ]. We also make mention that the notation
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N ≡ N(x, [t0, t0 +T ]) should not be confused with the notation N(X) used in later chapters.

Here we define some critical items that are used to estimate parameters used for building

a trajectory markets. The items are defined consecutively and described following the

definitions. Given a segment [t0, t0 + T ] ⊆ T , if si is the number of chart samples between

two portfolio rebalances, then we can write for 0 ≤ i ≤ N − 1:

∆tix
j ≡ xj(ti+1)− xj(ti), j = 1, 2.

∆tiw ≡ w(ti+1)− w(ti) =

si−1∑
j=0

||x(rli+j+1)− x(rli+j)||

∆it ≡ ti+1 − ti = rli+si − rl

where ti = rli < ... < rli+si = ti+1, i.e. li+1 = li + si and 0 ≤ si. Then, by setting

w(x, [t0, t0]) = 0, then the historical variation can be written as follows:

w(x, [t0, ti]) =

li+1∑
l=0

||x(rl+1)− x(rl)||

3.3.2 δ-Correlated Models

The operational framework proposed in Section 3.3.1 relies on portfolio rebalances given by a

prescribed parameter δ. Notice that historical δ-movements of the chart x(t) = (x1(t), x2(t))

can correspond to the following observations:

• ∆tix
1 ≥ 0,∆tix

2 ≥ 0

• ∆tix
1 ≤ 0,∆tix

2 ≤ 0

• ∆tix
1 ≥ 0,∆tix

2 ≤ 0

• ∆tix
1 ≤ 0,∆tix

2 ≥ 0

That is, the chart components x1(t) and x2(t) can move in the same direction or in different

directions (in their values). The new operational framework proposed in this section limits

the movement of the assets to moving in the same direction; both x1(t) and x2(t) increase

in value, or both decrease in value.

The investor will set

T = MT∆; δup, δdown, δ0, δ̂
1, δ̂2, ν̂0 ∈ Q+,

where MT is a positive integer. Similar to the investor prescribing the parameter δ in Section

3.3.1, the investor will prescribe mulitple values δup, δdown ≥ 0. Then, the investor will only
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Figure 3.1: Portfolio rebalances and sampling times are given by normed vector changes in
x(t) = (x1(t), x2(t)) which satisfy Equations 3.1 and 3.2. Here we see a 2D representation of a
possible portfolio rebalance. The vector represents the change in value between portfolio rebalances
(≥ δ), while the dotted blue line represents the sampled path of the chart.
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rebalance their portfolio when the following is satisfied:

0 ≤ ∆tix
2 = (x2(ti+1)− x2(ti)) ≤ δup∆tix

1 = δup(x
1(ti+1)− x1(ti))

or

δdown∆tix
1 = δdown(x1(ti+1)− x1(ti)) ≤ ∆tix

2 = (x2(ti+1)− x2(ti)) ≤ 0

That is, we are looking for moments in time when the historical price of x2(t) increases a

ratio δup less than x1(t), or likewise, x2(t) decreases by a ratio δdown less than x1(t).

To create a market model in this manner the Definition 11 in Section 3.3 will be replaced

with the definition below. We still use charts x(t) ≡ (x1(t), x2(t)) and observe historical

trajectories which occur in a fixed window [t0, t0 + T ] ⊆ T and is updated by rolling the

window through T . We also rely on the same Definitions 10 and 12 as introduced in Section

3.3.1.

Definition 13 (Correlated Dynamic Rebalancing Times). Given δup, δdown > 0, a chart x =

(x1, x2) and an interval [t0, t0 + T ]; a sequence of increasing dynamic portfolio rebalancing

times is given by is given by t = t(x) = {ti}Ni=0 ⊆ {rl}Ll=0, N = N(x, [t0, t0 +T ]), t0(x) = t0,

t′ ∈ ∆N, satisfying:

0 ≤ (x2(ti+1)− x2(ti)) ≤ δup(x1(ti+1)− x1(ti)) (3.4)

or

δdown(x1(ti+1)− x1(ti)) ≤ (x2(ti+1)− x2(ti)) ≤ 0 (3.5)

where we have that 0 ≤ i < N − 1, tN ≤ t0 + T.

We note that the operational framework for a δ-correlated market model will still incor-

porate parameter δ0 in order to obtain sampling times given by Definition 10. One could

go about incorporating new sampling parameters (i.e. δ0,up ≤ δup, δ0,down ≤ δdown) which

would be used to satisfy similar inequalities as those in Definition 13 (but given similar to

Definition 10 for sampling times), however for simplicity we only change the definition of

our rebalancing times.

Thus, the only difference between the operational framework porposed in Section 3.3.1

and that proposed in this section is in how the investor obtains their historical rebalancing

times. The financial meaning of all values such as {rl}, {ti}, N(x, [t0, t0 + T ]), as well as

all parameters to be introduced in following sections remains the same. The operational

framework proposed in both this section as well as Section 3.3.1 both apply to parameters

introduced in following sections in this chapter.

One might question why we bother to define rebalancing times in the way we defined
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in this section. Performing observations in this manner may allow the investor to create

a market model where X2 can be more efficiently superhedged by a portfolio consisting of

X1. Observing the past in such a way will allow the investor to create a set of future nodes

which will allow them to superhedge (similarly for underhedge)

X2
i+1 ≤ δup(X1

i+1 −X1
i ) +X2

i .

3.3.3 Discretization of Observed Quantities

We are concerned with observing the past in an operational manner, and prescribing possible

future times at which the investor might rebalance a portfolio. In doing so, observed chart

quantities ∆tix
1, ∆tix

2 and ∆tiw will be rounded to the nearest multiples of δ̂1, δ̂2, and

ν̂0, respectively, and used to force X1
i ∈ δ̂1Z, X2

i ∈ δ̂2Z, and Wi ∈ ν̂0N when constructing

the trajectory set X . As will be seen during model construction in Section 4.2, this creates

a discrete grid of coordinates: Xi = (X1
i , X

2
i , i, Ti,Wi) ∈ δ̂1Z× δ̂2Z× N×∆N× ν̂0N. This

section formalizes the rounding of ∆tix
1, ∆tix

2, ∆tit and ∆tiw and how these quantities

are associated to model values Xi.

We mention that the above usage of the hat notation ‘ˆ ’ is different than in Ferrando

et al. [2019a]. In Ferrando et al. [2019a] the notation is used to distinguish the smallest

value a certain parameter can be. For example, in Ferrando et al. [2019a] the parameter

δ̂0 = 0.01 is the smallest unit of monetary currency used to trade an asset. This is practical

in Ferrando et al. [2019a] since there is no usage of numeraire, and all assets are in units of

currency, rather than units of numeraire. In our paper we incorporate relative pricing and

lose the simplicity of prices being in terms of currency. Thus, the ‘ˆ’ notation given to δ̂1,

δ̂2, and ν̂0 is simply to distinguish the fact that these parameters are used to round observed

chart changes and are termed discretization parameters. The rounding of a quantity may

also be referred to as the discretization of a quantity.

To indicate this discretization, we will introduce the notation b·cδ̂k to distinguish the

values which are rounded to δ̂k, and we will then have b∆ix
kcδ̂k = bxk(ti+1) − xk(ti)cδ̂k ∈

δ̂kZ. Similarly, we will round the changes of the observed financial observable ∆tiw to the

nearest value of ν̂0, so that we have
⌊
∆tiw

⌋
ν̂0

=
⌊∑si−1

j=0 ||x(rli+j+1)− x(rli+j)||
⌋
ν̂0
∈ ν̂0N,

where si is the number of chart samples between two portfolio rebalances. Then, given a

segment [t0, t0 + T ] ⊆ T and si, we can write the following for 0 ≤ i ≤ N − 1:

b∆tix
jcδ̂j ≡ m

j
i δ̂
j , j = 1, 2, (3.6)

b∆tiwcν̂0 ≡ ν̂0

si−1∑
j=0

|pj | ≡ ν̂0Pi, (3.7)
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∆tit ≡ (ni+1 − ni)∆ ≡ qi∆, (3.8)

where ti = rli < ... < rli+si = ti+1, i.e. li+1 = li + si, 0 ≤ si, mj
i ∈ Z, and ji, Pi, qi ∈ N. By

setting w(x, [t0, t0]) = 0, P0 = 0, the historical variation can be written as follows:

w(x, [t0, ti]) =
⌊ li+1∑
l=0

||x(rl+1)− x(rl)||
⌋
ν̂0

≡ ν̂0

i∑
j=0

Pj (3.9)

3.3.4 Unfolding Chart Parameters

In this section we formally introduce a possible empirically measured set NE(x, [t0, t0 + T ])

which can be used to create the trajectorial market models described in Section 4.2. The

reason for introducing the definition now is that it deals with a chart x(t) and time interval

[t0, t0 + T ]. Familiarizing the reader with this parameter here also helps to clarify the

meaning of the models introduced in Chapter 4.

Definition 14 (Empirically Measured Chart Changes). Given a segment [t0, t0 + T ] ⊆
T , sampling rimes {rl}Ll=0 and portfolio rebalancing times {ti}Ni=0, the set of empirically

measured chart changes is denoted:

NE(x, [t0, t0 +T ]) =
{

(
b∆tix

1cδ̂1

δ̂1
,
b∆tix

2cδ̂2

δ̂2
,
ti+1 − ti

∆
,
b∆tiwcν̂0

ν̂0
) : 0 ≤ i ≤ N−1

}
(3.10)

where the {rl} are defined as in Definition 10, the {ti} are defined as in Definition 11 or

Definition 13, N ≡ N(x, [t0, t0 + T ]) as defined in Definition 12, b∆tix
1cδ̂1 and b∆tix

2cδ̂2

as given in Equation (3.6), and b∆tiwcν̂0
as given in Equation (3.7). Notice that the set

NE(x, [t0, t0 + T ]) is a set of (m1
i ,m

2
i , qi, Pi) values as seen in Equations (3.6), (3.8), and

(3.7). Also, recall that m1
i ,m

2
i ∈ Z and qi, Pi ∈ N.

To summarize the topics introduced in this section we have the following:

• the investor samples charts x(t) at the times rl, given by a chart’s δ0-movement;

{rl}Ll=0 is the set of sampling times within a given interval [t0, t0 + T ].

• si is the number of chart samples between portfolio rebalances i and i+ 1.

• Rebalancing times ti ∈ {rl} occur at a chart’s δ-movements; {ti}Ni=0 is the set of

portfolio rebalancing times within a given interval [t0, t0 + T ].
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• N(x, [t0, t0 + ρ]) is the total number of portfolio rebalances after ρ ∈
{0,∆, ...,MT∆} duration of time has passed. N is the total number of δ-

movements which occur in time interval [t0, t0 + T ].

• m1
i and m2

i are the number of δ̂1 and δ̂2 value changes of assets x1(t) and x2(t),

respectively, between portfolio rebalances i and i+ 1.

• qi is the number of time intervals of size ∆ between two consecutive portfolio

rebalances i and i+ 1.

• Pi is the number of ν̂0 changes of the accumulated vector variation between two

consecutive portfolio rebalances i and i+ 1.

• NE(x, [t0, t0 + T ]) is a collection of all (m1
i ,m

2
i , qi, Pi) values that occur in the

interval [t0, t0 + T ].

3.4 Observable Worst-Case Pruning Constraints

The build up of notation introduced in Sections 3.1 and 3.3 have been for the operations an

investor will perform on historical charts x(t), primarily to obtain an empirically measured

set NE(x, [t0, t0 + T ]). As will be discussed in Chapter 4, the notation NE differs from

the previously introduced NE(x, [t0, t0 + T ]); NE will be used to indicate a general set of

empirical changes used to create trajectory models. In this sense we leave NE to be specified

by the investor when creating models, where NE may be instantiated to be NE(x, [t0, t0+T ])

or some other observed estimate. In Chapter 5 we discuss how to formulate a worst-case

estimate for NE .

Our models will be created by beginning in a specified initial state X0 and moving

forward recursively. Possible future events Xi+1, i ≥ 0 will be constructed by a state Xi

and elements of the empirical set NE . For example, the elements in our empirical sets

(m1,m2, q, P ) ∈ NE will provide possible future states Xi+1 where we will have X1
i+1 =

X1
i + m1δ̂1, X2

i+1 = X2
i + m2δ̂2, Ti+1 = Ti + q∆, and Wi+1 = Wi + P ν̂0. Trajectory

sets constructed in this recursive and combinatorial manner will cause the trajectories grow

unboundedly and not resemble historical worst-case events observed in the charts. This

reason is why we incorporate what we term worst-case pruning constraints into our models;

enabling us an operational way to restrict our future nodes from growing unboundedly.

In this section we define the worst-case pruning constraints used to construct trajectory

sets. The definitions are not used until model creation in Section 4.2, however, similar to
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NE(x, [t0, t0 + T ]), these definitions are concerned with a chart x(t). In constrast to the

parameter NE(x, [t0, t0 + T ]), the definitions given in this section are concerned with the

whole dataset T rather than a single interval [t0, t0 + T ] ⊆ T . We could reserve these

worst-case definitions for Chapter 5, where we introduce worst-case definitions of NE , and

not lose any source of clarity in the paper.

As previously stated, the investor will set T , the historical data interval T , and calibrate

both a sampling parameter δ0 and portfolio rebalancing parameter δ (or δup and δdown).

The investor will then observe the times at which δ0 and δ-movements occured historically

while keeping track of the worst-cases which occur throughout our dataset T . For example,

we may keep track of the maximum and minimum number of δ-movements which occur

over the time interval [t0, t0 + ρ] ⊆ T , ρ ∈ {0,∆, ...,MT∆} (denoted N∗(ρ) and N∗(ρ) in

Definition 17). Then, Xi+1 will be restricted by only allowing states which reside within our

observable bounds. For example, in Type I models we only allow states Xi+1 which satisfy

i+1 ∈ [N∗(ρ), N∗(ρ)]. This will be further clarified in the next subsections, the topic is only

introduced here to familiarize the reader with notions used later in model construction. We

call this process of omitting possible future states worst-case pruning.

Note that in the following sections we refer to a given interval [t0, t0 +T ] ⊆ T , historical

portfolio rebalancing times {ti}Ni=0, and portfolio sampling times {rl}Ll=0 where we will

always have that: {ti}Ni=0 ⊆ {rl}Ll=0 ⊆ [t0, t0 + T ].

Our investor will begin by observing historical δ-movements that have occured in the

chart x(t) ≡ (x1(t), x2(t)) where t ∈ [t0, t0 +T ]. Given the segment [t0, t0 +T ] and rebalanc-

ing times {ti}Ni=0, we create the set NE(x, [t0, t0 + T ]) as described in Definition 14. Each

interval [t0, t0 + T ] will provide a unique set of sampling and rebalancing times which in

turn provide the investor with NE(x, [t0, t0 + T ]) unique to the given interval. The interval

[t0, t0 +T ] will then be moved and observable parameters are updated for each new window.

We begin the series of pruning constraint definitions by first defining the following:

Definition 15 (Maximum Number of Portfolio Rebalances).

i∗ ≡ i∗(x, T ) ≡ max
∀[t0,t0+T ]∈T

N(x, [t0, t0 + T ]). (3.11)

i∗(x, T ) represents the maximum number of δ-movements that occur within each interval

[t0, t0 + T ] in our whole set of data T . It is also not used until model creation in Section

4.2, but we remark at this time that it is used to terminate trajectories in models which

do not incorporate rebalancing time Ti as well as serve as an upperbound to i used in the

following subsections.
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3.4.1 Type 0 Pruning Constraint

While the interval [t0, t0 + T ] is moved through T and the investor observes historical δ-

movements within each interval he moniters the maximum and minimum normed vector

percent change that occurs between time t0 and each δ-movement. This maximum and

minimum percent change is called our Type 0 worst-case pruning constraint. This is now

formalized:

Definition 16 (Historical Maximum and Minimum Normed Vector Percent Change). Given

a chart x over time length T , an interval [t0, t0 + T ] ⊆ T , and portfolio rebalancing times

{ti}Ni=0, the maximum and minimum normed vector percent change that occurs in T is

denoted by X∗(x, T , i) and X∗(x, T , i), respectively, and are defined as following:

X∗(x, T , i) = max
∀[t0,t0+T ]⊆T

||x(ti)− x(t0)||
||x(t0)||

, X∗(x, T , i) = min
∀[t0,t0+T ]⊆T

||x(ti)− x(t0)||
||x(t0)||

(3.12)

where 0 ≤ i ≤ i∗

3.4.2 Type I Pruning Constraints

Just as is indicated for the type 0 pruning constraint, the time interval [t0, t0 + T ] will

be updated by rolling through the data, and our investor observes historical δ-movements.

As the moving interval is updated the investor keeps track of the maximum and minimum

number of portfolio rebalances that have occured after a certain time ρ ∈ ∆N has elapsed

since time t0. This is formalized here.

Definition 17 (Historical Maximum and Minimum Number of δ-movements (at time ρ)).

Given a chart x over time length T , time interval [t0, t0 +T ] ⊆ T , and portfolio rebalancing

times {ti}Ni=0, the maximum and minimum number of δ-movements (portfolio rebalances)

that occurs an interval of length ρ ∈ ∆N is denoted by N∗(x, T , ρ) and N∗(x, T , ρ), respec-

tively, and are defined as following:

N∗(x, T , ρ) = max
∀[t0,t0+T ]⊆T

N(x, [t0, t0 + ρ]), N∗(x, T , ρ) = min
∀[t0,t0+T ]⊆T

N(x, [t0, t0 + ρ])

(3.13)

and we then have that N∗(x, T , ρ), N∗(x, T , ρ) ∈ N, ∀ρ.

We also keep track of the maximum and minimum amount of time elapsed at the i’th

rebalancing. This is formalized in the defintion below.

Definition 18 (Historical Maximum and Minimum Elapsed Time (for variation)). Given a

chart x over time length T , time intervals [t0, t0 + T ] ⊆ T , and portfolio rebalancing times

33



{ti}Ni=0, the maximum and minimum time that elapses since t0 is denoted by T ∗(x, T , i) and

T∗(x, T , i), respectively, and are defined as following:

T ∗(x, T , i) = max
∀[t0,t0+T ]⊆T

ti − t0, (3.14)

T∗(x, T , i) = min
∀[t0,t0+T ]⊆T

ti − t0

where 0 ≤ i ≤ i∗ and we have that T ∗(x, T , i), T∗(x, T , i) ∈ N.

3.4.3 Type II Pruning Constraints

We repeat that given an interval [t0, t0 + T ], the investor will observe historical δ0 and δ-

movements to the chart x(t). While the interval is updated the investor will keep track of

the maximum and minimum amount of vector variation that x(t) has accumulated after the

i’th portfolio rebalance has occurred will also be observed.

Definition 19 (Historical Maximum and Minimum Vector Variation (at rebalances)).

Given a chart x over time length T , time intervals [t0, t0 + T ] ⊆ T , portfolio rebalanc-

ing times {ti}Ni=0, and accumulated vector variation w(x, [t0, ti]), the maximum and mini-

mum amount of vector variation accumulated after the i’th portfolio rebalance is denoted as

W ∗(x, T , i) and W∗(x, T , i), respectively, and defined as the following:

W ∗(x, T , i) = max
∀[t0,t0+T ]⊆T

⌊
w(x, [t0, ti])

⌋
ν̂0

, W∗(x, T , i) = min
∀[t0,t0+T ]⊆T

⌊
w(x, [t0, ti])

⌋
ν̂0

(3.15)

where 0 ≤ i ≤ i∗ and then we have that W ∗(x, T , i), W∗(x, T , i) ∈ ν̂0N.

With the incorporation of many observable quantities (namely, the number of portfolio

rebalances N(x, [t0, t0 + ρ]), the times ti, and the vector variation w(x, [t0, ti])) we are now

able to incorporate many observable pruning constraints. We can observe the effect of one

variable (say the number of rebalances) with respect to many other variables (an elapsed

time ρ or accumulated vector variation w = w(x, [t0, t0 + ρ])). We now define the rest of

these observable pruning constraints consecutively below.

Definition 20 (Historical Maximum and Minimum Vector Variation (at time ρ)). Given

a chart x over time length T , time intervals [t0, t0 + T ] ⊆ T , portfolio rebalancing times

{ti}Ni=0, and accumulated vector variation w(x, [t0, ti]), the maximum and minimum amount

of vector variation accumulated after ρ ∈ [0, T ] time has elapsed is denoted W ∗(x, T , ρ) and

W∗(x, T , ρ), respectively, and defined as the following:

W ∗(x, T , ρ) = max
∀[t0,t0+T ]⊆T

⌊
w(x, ρ)

⌋
ν̂0

, W∗(x, T , ρ) = min
∀[t0,t0+T ]⊆T

⌊
w(x, ρ)

⌋
ν̂0

(3.16)
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and then we have that W ∗(x, T , ρ), W∗(x, T , ρ) ∈ ν̂0N.

Definition 21 (Historical Maximum and Minimum Number of δ-movements (at accumu-

lated vector variation w(x, [t0, ti])). Given a chart x over time length T , time intervals

[t0, t0 + T ] ⊆ T , portfolio rebalancing times {ti}Ni=0, and accumulated vector variation

w(x, [t0, ti]), the maximum and minimum number of δ-movements (portfolio rebalances)

that occurs after the chart accumulates w(x, [t0, ti]) amount of vector variation is denoted

by N∗(x, T , w) and N∗(x, T , w), respectively, and are defined as following:

N∗(x, T , w) = max
∀[t0,t0+T ]⊆T , w(x,[t0,t0+ρ])=w

N(x, [t0, t0 + ρ]),

N∗(x, T , w) = min
∀[t0,t0+T ]⊆T , w(x,[t0,t0+ρ])=w

N(x, [t0, t0 + ρ])
(3.17)

and we then have that N∗(x, T , w), N∗(x, T , w) ∈ N.

Definition 22 (Historical Maximum and Minimum Elapsed Time (for variation)). Given

a chart x over time length T , time intervals [t0, t0 + T ] ⊆ T , portfolio rebalancing times

{ti}Ni=0, and accumulated vector variation w(x, [t0, ti]), the maximum and minimum time

that elapses since t0 is denoted by T ∗(x, T , w) and T∗(x, T , w), respectively, and are defined

as following:

T ∗(x, T , w) = max
∀[t0,t0+T ]⊆T , w(x,[t0,t0+ρ])=w

ti − t0,

T∗(x, T , w) = min
∀[t0,t0+T ]⊆T , w(x,[t0,t0+ρ])=w

ti − t0
(3.18)

where 0 ≤ i ≤ i∗ and we have that T ∗(x, T , w), T∗(x, T , w) ∈ N.

We summarize all definitions introduced in this section below. Note that when con-

structing trajectory sets the investor is not limited to the worst-case pruning constraints

mentioned in this paper. Note that each of the constraints are dependent on the investor’s

choice of δ (or δup and δdown).

• i∗ is the maximum number of possible portfolio rebalances that occur historically

in the interval [t0, t0 +T ]. This is only used in Type 0 models (first introduced in

4.2) to terminate the recursive creation of trajectory paths.

• X∗(x, T , i) and X∗(x, T , i) for i ≥ 0 represent the maximum and minimum ratio

of normed vector changes that occurs at the i’th δ-movement within the charts

x(t), respectively. This constraint will limit the amount our trajectory asset values

may fluctuate since an initial portfolio rebalancing (i = 0).
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Figure 3.2: Using historical time interval T = T 1 and data described in [1.] in the enumeration
in Section 6.1 (currency as numeraire), we show how the pruning constraints widen as more data
is used in our historical estimation process. Here we select δ0 = 0.5 and δ = 1.0.
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• N∗(x, T , ρ) and N∗(x, T , ρ) represent the maximum and minimum portfolio re-

balances that occur within x(t). This is used to limit the number of portfolio

rebalances that occur after time ρ ∈ ∆N has elapsed. The investor will then not

rebalance a portfolio more (and less) often than they would have historically.

• N∗(x, T , w) and N∗(x, T , w) for w = w(x, [t0, ti]) ≥ 0 represent the maximum and

minimum portfolio rebalances that occur within x(t) after a chart has accumulated

w(x, [t0, ti]) amount of variation at the i’th rebalancing.

• T ∗(x, T , i) and T∗(x, T , i) represent the maximum and minimum amount of time

elapsed after the i’th portfolio rebalancing. This restricts the investor to perform

the i’th portfolio rebalancing at times which they would have done so historically.

• T ∗(x, T , w) and T∗(x, T , w) represent the maximum and minimum amount of time

elapsed after w = w(x, [t0, ti]) amount of variation is accumulated after the i’th

portfolio rebalancing. This restricts the investor to perform the i’th portfolio

rebalancing at times which they would have done so historically.

• W ∗(x, T , i) and W∗(x, T , i) for i ≥ 0 represent the maximum and minimum

amount of accumulated variation after the i’th portfolio rebalancing time. This

is used to limit the amount that model asset values X1, X2 can vary up to the

i’th portfolio rebalance.

• W ∗(x, T , ρ) and W∗(x, T , ρ) for ρ ∈ [0, T ] represent the maximum and minimum

amount of accumulated variation between historical portfolio rebalancing times.

This is used to limit the amount that model asset values X1, X2 can vary after

time ρ has elapsed.
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Chapter 4

Models

Once again, we reiterate the fact that this thesis is concerned with two objectives; 1) Con-

struct trajectory market models through an operational framework, and 2) Superhedge one

asset with respect to a portfolio of another. The previous chapter completely dealt with

the operational framework that an investor will follow to obtain the parameters required to

create a trajectory model. In this chapter we delve into the construction of trajectory sets

X using the operational assumptions introduced previously. The chapter is organized as

follows. We begin with an informal description of the recursive framework used to construct

trajectory sets. Following this, a formal definition of the trajectory set is given alongside

the methods used to construct a worst-case trajectory market model. We then discuss how

the investor may go about incorporating risk into their trajectory sets.

We will be building different model types, each consisting of a distinct set of coordinates;

either (X1
i , X

2
i , i), (X1

i , X
2
i , i, Ti), or (X1

i , X
2
i , i, Ti,Wi), which we refer to as Types 0, I, and

II, respectively. That is, we omit the time component (Ti) from type 0 models and the

variation component (Wi) from both type 0 and I models. To shorten the notation at times

we will refer to coordinates for Type II models since they contain all variables mentioned

in previous chapters. So, when constructing a trajectory based market model we will only

utilize the components of (m1,m2, q, P ) ∈ NE which correspond to the coordinates used in

a specific model type.

In each model, we utilize pruning constraints to restrict possible future states Xi+1

through a method we refer to as pruning. We incorporate many of these pruning constraints

which inhibit the growth of trajectory sets with regards to each model’s specific choice of

coordinates. For example, since Type 0 models will utilize the coordinates (X1
i , X

2
i , i) we are

only able to bound future states with respect to the behaviour of X1
i and X2

i . However, when

including Ti into models (as is done in Type I and II models), future states can be restricted
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even further by pruning nodes with respect to the times possible portfolio rebalances occur.

This is the reason why many observable worst-case pruning constraints were defined in the

previous chapter.

The process of pruning possible Xi+1 yields future states which we admit into our tra-

jectory set X . Since we only allow states into our trajectory sets which are bounded by

the pruning constraints incorporated into a specific model, we require a way to distinguish

these states from those states not included in our sets X . We refer to the states included in

X as admissible states or admissible nodes.

We note that we wish the model building described in this chapter is supposed to stand

as its own entity, not relying on notions described in Chapter 3, but allowing the investor

the choice of incorporating different instantiations for the model’s parameters in model

construction. For that reason we utilize a different set of notation in this chapter which

is not the same as, but related to the meanings introduced in Chapter 3. For example,

in Chapter 5 the set NE(x, T ) represents a worst-case estimate of chart changes. In this

chapter we will rely on the notation NE to represent the set of chart changes used for model

building, where an investor is free to setNE = NE(x, T ) or any other preferred instantiation.

The new notation for model building will further be clarified in following sections.

4.1 Trajectory Sets: General Properties and Recursive

Definition

This section deals with the constructions of the trajectory sets associated with each of

the model coordinates described in the beginning of this chapter. Similar to Ferrando

et al. [2019a], the previous section assumed the availability of charts x(t), and introduced

sequences of integers si, m
1
i , m

2
i , qi, Pi, and N(x, [t0, t0 + ρ]), ρ ∈ [0, T ]. In this thesis the

observation of historical δ0 and δ-movements will also provide us with pruning constraints

which will be used as parameters to create a worst-case trajectory based market model.

Some examples of such pruning constraints are more precisely defined in Section 3.4. We

will now describe the process through which we will construct trajectorial market models

by allowing our models to be specified by the introduced constraints. The end result being

the definition of a possible set of chart values, portfolio rebalance times, and accumulated

variation values.

The values rl, ti, m
1
i , m

2
i , qi, pj andN(x, [t0, t0+T ]) are either observable or operationally

prescribed and are a result of acting on the chart x(t). Similar to Ferrando et al. [2019a],

to avoid confusion in creating our trajectory models we will adopt the same symbols and

meaning for our modelling variables which are used to create the trajectories. Trajectory
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models will be described with a mathematical construction of capitalized variables while

we have already used lower case variables to describe the mathematical construction of the

empirically observed variables. Model variable meanings will still share similar meaning

as their empirical counterparts; X represents model asset values, Ti represents model time

values, and Wi will represent the accumulated variation of vector X in our models. The

empirical counterparts of X, Ti, and Wi will be x, ti, and w(x, [t0, ti]), respectively. In this

same manner, when referring to empirical changes (m1
i ,m

2
i , qi, Pi) used to construct Xi+1,

we will drop reference to the subscript i. This allows us to refer to any arbitrary element

within the empirically observed set of vector changes. So, when referring to trajectory model

construction, we replace m1
i with m1, m2

i with m2, qi with q, Pi with P , and N(x, [t0, t0+T ])

with N(X, [t0, t0 +T ]). These associations will allow our trajectories to lie within a discrete

grid of points based on historical data (specifically ∆) and the investor calibrated parameters

δ̂1, δ̂2, and ν̂0: Xi ≡ (X1
i , X

2
i , i, Ti,Wi) ∈ (δ̂1Z× δ̂2Z× N×∆N× ν̂0N).

We now state a general recursive formulation of the trajectory set X . To describe the

models generally we utilize the coordinates used in Type II models as it contains all coordi-

nates used in each other model type. NE represents a given set of quadruples (m1,m2, q, p),

m1,m2 ∈ Z, q, p ∈ N, obtained through the observation of historical trajectories. This

empirical set (NE) will be used to produce possible future states Xi+1 which will reside

on some point within our discrete grid, which we call nodes. We will often refer to states

corresponding to Xi as parent nodes and their future counterparts Xi+1 will often be ref-

ered to as children nodes. Each node will correspond to a tuple (k1
i , k

2
i , i, ni, ji) where we

set the notation X = {Xi = (X1
i , X

2
i , i, Ti,Wi)} = {(k1

i δ̂
1, k2

i δ̂
2, i, ni∆, jiν̂0)}, k1

i , k
2
i ∈ Z,

ni < ni+1, 0 ≤ ji < ji+1, ni, ji ∈ N.

Trajectory coordinates of X will be specified by beginning with initial values X1
0 ≡

x1
0, X

2
0 ≡ x2

0, T0 ≡ t0, W0 ≡ w(x(t0), t0) = 0 and proceeding recursively: given a node

(k1
i , k

2
i , i, ni, ji) we will provide a set of admissible values of (k1

i+1, k
2
i+1, i+ 1, ni+1, ji+1); for

each admissible tuple we set:

∆iX
d ≡ (Xd

i+1 −Xd
i ) = (kdi+1 − kdi )δ̂d = md

i δ̂
d, d = 1, 2,

∆iT ≡ (Ti+1 − Ti) = (ni+1 − ni)∆ = qi∆,

∆iW ≡ (Wi+1 −Wi) = (ji+1 − ji)ν̂0 = Piν̂0,

What dictates whether a construced node is included in our models, otherwise called

admissible, depends on whether or not the model values obey the pruning constraints which

an investor wishes to incorporate into their models. Then, given (X1
i , X

2
i , i, Ti,Wi), the

admissible set is given by the convenient notation, each for Types 0, I, and II models,
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respectively:

NA(X1
i , X

2
i , i) ={(X1

i+1 = x1
0 + k1

i+1δ̂
1, X2

i+1 = x2
0 + k2

i+1δ̂
2,

i+ 1), with (k1
i+1, k

2
i+1, i+ 1) admissible}

NA(X1
i , X

2
i , i, Ti) ={(X1

i+1 = x1
0 + k1

i+1δ̂
1, X2

i+1 = x2
0 + k2

i+1δ̂
2, i+ 1,

Ti+1 = ni+1∆), with (k1
i+1, k

2
i+1, i+ 1, ni+1) admissible}

(4.1)

NA(X1
i , X

2
i , i, Ti,Wi) = {(X1

i+1 = x1
0 + k1

i+1δ̂
1, X2

i+1 = x2
0 + k2

i+1δ̂
2,

i+ 1, Ti+1 = ni+1∆, Wi+1 = ji+1ν̂0), with

(k1
i+1, k

2
i+1, i+ 1, ni+1, ji+1) admissible}

The notation NA(X1
i , X

2
i , i, Ti,Wi) may be written compactly as NA(Xi). The next

section discusses the specification of each model type; Type 0, I and II by specifying the set

of admissible tuples for each model type.

4.2 Trajectory Model Specification

This section completes the general recursive framework introduced in Section 4.1, completing

the introduction of the trajectory sets introduced in Equation (4.1). The investor will have

prescribed some values of δ̂1, δ̂2, and ν̂0 by a means of calibration as is discussed in Section

5.2. δ̂1 and δ̂2 will simply be used to provide X1
i and X2

i values while ν̂0 provides variation

Wi values. The models assume a fixed ∆ and T .

NE represents a set of the changes in chart observables {(m1,m2, q, P )} with m1, m2 ∈
Z, and q, P ∈ N. Future states Xi+1 will be restricted by bounding them within incor-

porated pruning constraints X(i), X(i), N(ρ), N(ρ), N(Wi), N(Wi), T (i), T (i), T (Wi),

T (Wi), W (i), W (i), W (Ti), and W (Ti). Given that each model type only contains certain

information with its given set of coordinates, specific models will be able to incorporate

specific pruning constraints. For example, a model with coordinates (X1
i , X

2
i , i) is not able

to restrict the future with W (i) since variation information is not available to the investor.

We also note that these constraints could be instantiated to be the worst-case estimates

defined in Chapter 3, or any investor prescribed value (which is regarded as a risk-taking

estimate).

Each model assumes the availability of the state (X1
i , X

2
i , i, t0+Ti,Wi); with initialization
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X1
0 = x1

0, X2
0 = x2

0, T0 = 0, W0 = 0. We also remark that the following model constructions

may deal with both δ-correlated and δ-uncorrelated models, as the descriptions below are

only concerned with building a trajectory set with a given set of coordinates.

These models each have a defined set of coordinates, as mentioned in the beginning of

this chapter. Beginning with Type 0 models we change the coordinate system in Type I and

II models by adding an extra dimension each time. Doing so allows us to nest each pruning

constraint in the next model; i.e. nest the Type 0 pruning constraint into Type I and II

models, and nest the Type I pruning constraints into Type II models. Nesting then allows

us to compare the effect of pruning future nodes with respect to each model by evaluating

the price bounds given by each trajectory set.

We expect that models with more pruning constraints will exhibit more pruning at each

proposed future δ-movement. This increased pruning in certain models will likely prune

more nodes (and have less admissible X1
i and X2

i values) and therefore produce tighter

price bounds [V 0(X0, X
2,M), V 0(X0, X

2,M)].

4.2.1 Trajectory Termination

Before defining each model type, we briefly discuss the means used to terminate a trajectory

at a certain node. The models assume a fixed time T , yet we only incorporate the time

coordinate Ti into two model types. We also mentioned that in this thesis, trajectories

do not need to be forced to terminate exactly at time T . While this allows our model

trajectories to unfold more naturally, this might cause some confusion to the reader on how

these trajectories reach their end.

When creating our trajectory models, the investor should have some freedom in choosing

when trajectories are to stop. Thus we allow models to incorporate an upperbound to the

number of portfolio rebalances that may occur. As will be seen, in models with coordinates

(X1
i , X

2
i , i), the only appropriate information to use when terminating trajectories lies within

the portfolio rebalancing number i.

For the construction of our trajectory models we assume a given quantity N(X) is

available and it will represent the maximum number of rebalances allowed to occur in any

trajectory in our models. This then restricts 0 ≤ i ≤ N(X) and a trajectory will terminate

at rebalance number N(X). Within this chapter, and upon model construction, we assume

this quantity N(X) is given such that TN(X) ≤ T . We may define N(X) in such a way

that allows each trajectory to unfold naturally, which is given generally by the following

denotion:

N(X) ≡ i such that NA(Xi) = ∅

Then let us call G the superhedging (or subhedging) optimal investor portfolio. Let
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NG(X)−1 be the last time she performs a portfolio rebalance. This means that the investor

will liquidate her portfolio when i = NG(X). The investor is able to to select NG(X) ≤
N(X), something not yet explored.

When extending the models to use the coordinates (X1
i , X

2
i , i, Ti) and (X1

i , X
2
i , i, Ti,Wi),

there could be many appropriate criteria used to terminate trajectories, however, the most

natural would be to stop a trajectory once we have reached a node with Ti = t0 + T . This

then restricts rebalancing times to the interval [t0, t0 + T ]. The investor is still able to

prescribe N(X) to terminate trajectories at earlier rebalancing times.

One might then ask, if we are restricting model states to lie within incorporated pruning

bounds then what happens when we encounter a parent node with no admissible children

nodes? Then this parent node is regarded as a terminal node, where trajectories naturally

complete themselves at this point.

In the next few subsections we describe a process which creates a setNA(X1
i , X

2
i , i, Ti,Wi)

for three different model types. Following this we address some issues that may be encoun-

tered when constructing NA(X1
i , X

2
i , i, Ti,Wi).

4.2.2 Type 0 Model

The most basic model will be limited to the coordinates (X1
i , X

2
i , i), which will act as the

base model, as it contains the least amount of infomation for the investor. It will also

provide the investor with a smaller discrete grid which will lower the overall computation

time of creating and valuing trajectory sets.

Coordinates: (X1
i , X

2
i , i)

Input Parameters:

1. δ̂1, δ̂2 ∈ Q+

2. A set NE .

3. Maximum number of portfolio rebalances N(X) ∈ N.

4. Historical worst case bounds X(i), X(i), where i ∈ N, X(i), X(i) ∈ R, 0 ≤ i ≤
N(X), and X(0) = X(0) = 0.

Beginning in X0 = (X1
0 , X

2
0 , 0) and elements m1,m2 ∈ NE , the next set of future nodes

Xi+1 will be produced (briefly discussed in Section 4.2). The trajectory market model will
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only allow future nodes Xi+1 = (X1
i +m1δ̂1, X2

i +m2δ̂2, i+ 1) which correspond to having

a normed vector percent change which is both not greater than our maximum observed

normed vector percent change, and not less than our minimum observed vector change; or

rather:
||(X1

i+1, X
2
i+1)− (X1

0 , X
2
0 )||

||(X1
0 , X

2
0 )||

∈
[
X(i+ 1), X(i+ 1)

]
⊆ R. (4.2)

NA(X1
i , X

2
i , i) ≡

{(
X1
i + ∆iX

1, X2
i + ∆iX

2, i+ 1
)

: ∃(m1,m2) ∈ NE ,

0 ≤ i ≤ N(X), (∆iX
1,∆iX

2) = (m1δ̂1,m2δ̂2)

||(X1
i+1, X

2
i+1)− (X1

0 , X
2
0 )||

||(X1
0 , X

2
0 )||

∈ [X(i+ 1), X(i+ 1)]
} (4.3)

Note that the set of coordinates does not contain information about how near terminal

time T the trajectories finish, as we omit the time coordinate altogether. This may be

a major issue to some investors as knowing how far into the future the trajectories may

travel might be crucial. This model is designed to act as a base model before adding

more coordinates to incorporate more information. It should provide the investor with

the widest price bounds V 0(X0, X
2,M) ≤ V 0(X0, X

2,M). We also note that with less

dimensions the number of computations required to construct a trajectory set is reduced,

as with more dimensions a trajectory model’s discrete grid of nodes increases in size. For

example, searching for specific nodes in Type II models Xi+1 ∈ (δ̂1Z× δ̂2Z×N×∆N× ν̂0N)

requires many more computations than in Type 0 models. This is due to the fact that our

Type 0 model grids are much smaller than a grid produced for a Type II model.

4.2.3 Type I Model

Coordinates: (X1
i , X

2
i , i, Ti)

Input Parameters:

1. δ̂1, δ̂2 ∈ Q+

2. A set NE .

3. Pruning Constraints X(i) and X(i), where i ∈ N, X(i), X(i) ∈ R, 0 ≤ i ≤ N(X),

and X(0) = X(0) = 0.
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4. Pruning Constraints N(ρ) and N(ρ), where ρ ∈ ∆N, ρ ≤ T , N(ρ), N(ρ) ∈ N, and

N(0) = N(0) = 0.

5. Pruning constraints T (i) and T (i), where i ∈ N, T (i), T (i) ∈ ∆N, 0 ≤ i ≤ N(X),

and T (0) = T (0) = 0.

We begin creating this model with initial state X0 = (X1
0 , X

2
0 , 0, T0). The elements (m1,m2, q) ∈

NE will generate the (i + 1)’th possible rebalancing values Xi+1, while only allowing the

trajectory set X to contain admissible nodes. We classify nodes as admissible only if they

have coordinate values which lie within all indicated pruning constraints.

How we utilize pruning constraints X(i) and X(i) is indicated in the Type 0 models.

Type I models incorporates new pruning constraints where at the (i+ 1)’th portfolio rebal-

ance we only allow future states Xi+1 which satisfy:

i+ 1 ∈
[
N(Ti+1), N(Ti+1)

]
∩ N,

Ti+1 ∈
[
T (i+ 1), T (i+ 1)

]
∩∆N.

(4.4)

Then, the following defines the admissible set of nodes, which is used to construct X :

NA(X1
i , X

2
i , i, t0 + Ti) ≡

{(
X1
i + ∆iX

1, X2
i + ∆iX

2, t0 + Ti + ∆iT, i+ 1
)

:

∃(m1,m2, q) ∈ NE , q∆ ≤ (T − Ti), i ≥ 0,

(∆iX
1,∆iX

2,∆iT ) = (m1δ̂1,m2δ̂2, q∆),

||(X1
i+1, X

2
i+1)− (X1

0 , X
2
0 )||

||(X1
0 , X

2
0 )||

∈ [X(i), X(i)]

(i+ 1) ∈ [N(X, [t0 + Ti + q∆]), N(X, [t0 + Ti + q∆])]

t0 + Ti + q∆ ∈
[
T (i+ 1), T (i+ 1)

]}
(4.5)

This model construction allows our trajectories to get as close to the terminal time T ,

something which might be important to know for the investor. Future nodes are pruned

to ensure there are not too many or too few number of portfolio rebalancing moments at

a specific moment of time ρ ∈ [0, T ]. Our worst-case pruned trajectories will then have a

number of portfolio rebalances which reflects what has occured historically in T . As we will

discuss in future sections, the amount of pruning done within a model is directly related to

the choice of δ and the amount of data used in the historical observation of trajectories.
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4.2.4 Type II Model

Coordinates: (X1
i , X

2
i , i, Ti,Wi)

Input Parameters:

1. δ̂1, δ̂2, ν̂0 ∈ Q+

2. A set NE .

3. Pruning Constraints X(i) and X(i), where i ∈ N, X(i), X(i) ∈ R, 0 ≤ i ≤ N(X),

and X(0) = X(0) = 0.

4. Pruning Constraints N(ρ) and N(ρ), where ρ ∈ ∆N, ρ ≤ T , N(ρ), N(ρ) ∈ N, and

N(0) = N(0) = 0.

5. Pruning Constraints N(Wi) and N(Wi), where Wi ∈ ν̂0N, N(Wi), N(Wi) ∈ N,

and N(0) = N(0) = 0.

6. Pruning constraints T (i) and T (i), where i ∈ N, T (i), T (i) ∈ ∆N, 0 ≤ i ≤ N(X),

and T (0) = T (0) = 0.

7. Pruning constraints T (Wi) and T (Wi), where Wi ∈ ∆N, T (Wi), T (Wi) ∈ ∆N,

and T (0) = T (0) = 0.

8. Pruning constraints W (i) and W (i), where i ∈ N, W (i), W (i) ∈ ν̂0N, 0 ≤ i ≤
N(X), and W (0) = W (0) = 0.

9. Pruning constraints W (Ti) and W (Ti), where Ti ∈ ∆N, W (i), W (i) ∈ ν̂0N, and

W (0) = W (0) = 0.

Similar to the previous models, we begin in the inital state X0 = (X1
0 , X

2
0 , 0, T0,W0) and

progress recursively to create the trajectory set X . We will utilize elements (m1,m2, q, P ) ∈
NE to create the possible future rebalancing states Xi+1. We prune trajectory states that

do not lie within our historical worst-case bounds.

The use of pruning constraints X(i) and X(i), N(ρ) and N(ρ), and T (i) and T (i) are

given in the description for the previous model types. We use these previously mentioned

constraints as well as some new pruning constraints and this model will only allow future

state Xi+1 to satisfy the following constraints:
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i+ 1 ∈ [N(Wi+1), N(Wi+1)] ∩ N

Ti+1 ∈ [T (Wi+1), T (Wi+1)] ∩∆N

Wi+1 ∈ [W (i+ 1),W (i+ 1)] ∩ ν̂0N

Wi+1 ∈ [W (Ti+1),W (Ti+1)] ∩ ν̂0N

Then, the following defines the admissible set of nodes, which is used to construct X :

NA(X1
i , X

2
i , i, t0 + Ti,Wi) ≡

{(
X1
i + ∆iX

1, X2
i + ∆iX

2, t0 + Ti + ∆iT,

Wi + ∆iW, i+ 1
)

:

∃(m1,m2, q, P ) ∈ NE , q∆ ≤ (T − Ti), i ≥ 0,

(∆iX
1,∆iX

2,∆iT,∆iW ) = (m1δ̂1,m2δ̂2, q∆, pν̂0),

||(X1
i+1, X

2
i+1)− (X1

0 , X
2
0 )||

||(X1
0 , X

2
0 )||

∈ [X(i), X(i)]

(i+ 1) ∈ [N(X, [t0 + Ti + q∆]), N(X, [t0 + Ti + q∆])]

(i+ 1) ∈ [N(Wi + ∆iW ), N(Wi + ∆iW )]

t0 + Ti + q∆ ∈
[
T (i+ 1), T (i+ 1)

]
t0 + Ti + q∆ ∈

[
T (Wi+1), T (Wi+1)

]
Wi + ∆iW ∈ [W (i+ 1),W (i+ 1)]

Wi + ∆iW ∈ [W (Ti+1),W (Ti+1)]
}

(4.6)

Just as in Type I models, we allow our trajectories to unfold as naturally as possible;

progressing through the interval [t0, t0 + T ], approaching time T . It is possible that a

trajectory X ∈ X will stop at rebalancing number N(X). We also incorporate the variation

component into our coordinate system. This added dimension allows us to prune trajectories

with values which move excessively and accumulate too much variation, or move not enough

and do not accumulate enough variation.

Notice that, for each model type, the incorporation of new dimensions in our coordinates

allows us to prune with respect to this new dimension. Especially apparent in the Type II

models, these pruning constraints may prune with respect to one coordinate while regarding

many other coordinates as an independent variable. For example, we prune nodes with
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regards to Wi, while we may regard i or Ti as the independent variable.

We also remark that the only dimensions which we require in the valuation process are

X1
i and X2

i . Including the other variables i, Ti, Wi is solely for the purpose of pruning

potential future nodes.

4.2.5 Issues with Pruning of Possible Xi+1: Dealing with Arbitrage

Nodes

We just described a process which an investor may construct NA(Xi) for a given set of

coordinates. There will be instances where the investor will encounter issues with NA(Xi).

It is possible that NA(Xi) with produce an arbitrage opportunity at Xi, or (since we concern

ourselves with a 2-dimensional convex hull) NA(Xi) will not have enough children nodes

Xi+1. In this section we describe how an investor will deal with these issues to force Xi to

be 0-neutral (a concept introduced in Definition 6 and Proposition 4 of Chapter 2). Once

each node is constructed to be 0-neutral, our trajectory set X will be globally 0-neutral, and

we will be able to obtain super and sub-hedging values V K(X, X2,M) and V K(X, X2,M)

for all stages 0 ≤ k ≤ NH(X) ≤ N(X), ∀X ∈ X , H ∈ H.

Let us begin with the issue of encountering a child node which is out of our time of

interest [t0, t0 + T ]. Suppose ∃Ti+1 ∈ Xi+1 ∈ NA(Xi) such that Ti+1 = Ti + q∆ > T . One

may incorporate assumptions to deal with children nodes which reside past t0 +T , however

to reduce the complexity of our models we refrain from doing so. Since we do not include

a way of dealing with such cases we regard the parent node Xi as a final node, or rather,

for this X ∈ X we have that NH(X) = i. That is, in our market model M = X × H for

each (X,Φ) ∈ M (i.e. X ∈ X and Φ ∈ H) we then have that Φk(X) = 0 for all k > N(X).

Note that this case only arises in the Type I and Type II models introduced in the previous

sections.

If we do not encounter any issues with Ti+1, there still might be issues enountered with

regards to a node’s 0-neutrality. Recall that we are constructing market models which

incorporate nodes which obey a 2-dimensional 0-neutrality. Our market M is globally 0-

neutral if each parent node Xi is locally 0-neutral. Since we construct X recursively we

ensure each Xi is 0-neutral before moving to the next rebalancing Xi+1. This concept is

discussed in Chapter 2, Proposition 4, where it dicusses that a given parent node Xi is locally

0-neutral if its given children nodes Xi+1 ∈ NA(Xi) satisfy the 0-neutrality condition given

in Definition 6. This definition states that, (X,Φ) is called a 0-nuetral node with respect to

H (H ∈ R2) if, for all H ∈ HX and k ≥ 0 the following is satisfied:

inf
X′∈X(X,Φ)

Hk(X) ·∆kX
′ ≤ 0.
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That is, there must be one scenario at rebalancing i + 1 where the investor makes at

least no profit since rebalancing i. We will be utilizing the geometric properties of the

convex hull to ensure the above condition holds. In doing so, we determine whether or not

a 2-dimensional point cloud of children node’s asset values (X1
i+1, X

2
i+1) includes the parent

node’s asset values (X1
i , X

2
i ). Then a parent node Xi is called 0-neutral if for the following

set:

E = {(X1
i+1X

2
i+1) : ∃Xi+1 = ((X1

i+1X
2
i+1, t0 + Ti.Wi) ∈ NA(Xi)}

the following is satisfied:

(X1
i , X

2
i ) ∈ cl

(
co(E)

)
.

Notice that, since we concern ourselves with 2-dimensional 0-neutrality, in order to

determine if (X1
i , X

2
i ) ∈ cl

(
co(E)

)
holds we require that there are more than 1 distinct

tuples in E. When there is only 1 distinct tuple in E and 0 ∈ cl
(
co(E)

)
, then (X1

i+1, X
2
i+1) =

(X1
i , X

2
i ) and we do not gain any new information from this trajectory, however it allows the

trajectory to carry into the future (perhaps it will then terminate at this i+ 1 or continues

by still being a 0-neutral node). We supply a visual representation of the above condition

to show the reader when cl
(
co(E)

)
is satisfied or not in Figure 4.1.

Suppose along some X ∈ X we have that (X1
i , X

2
i ) /∈ cl

(
co(E)

)
. This means that at Xi

the investor will encounter an arbitrage opportunity. As discussed in Chapter 2, Proposition

5, we will always find that V 0(X0, X
2,M) ≤ X2

0 ≤ V 0(X0, X
2,M). In order to bring

more information to our trajectory set, while still maintaining meaningful price bounds

we incorporate these events in our models by adding an artificial child node which is zero

neutral, and setNH(X) = i+1. Thus, the following node would be included in our admissible

set:

Xi+1 = (X1
i , X

2
i , i+ 1, t0 + T,Wi)

We summarize this section with the following:

Given a parent node Xi = (X1
i , X

2
i , i, t0 + Ti,Wi) and NA(Xi), if:

1.
[
NA(Xi) = ∅

]
:

Portfolio rebalancing for X ∈ X naturally ends at rebalancing i due to the pruning

constraints; that is, we have NH(X) = i and Hi(X) = 0 for all NH(X) ≤ i ≤
N(X).

2.
[
∃Ti+1 ∈ Xi+1 ∈ NA(Xi) such that t0 + Ti+1 > T

]
:

Force portfolio rebalancing for X ∈ X to end at rebalancing i by setting NA(X) ≡
∅; that is, we have NH(X) = i and Hi(X) = 0 for all NH(X) ≤ i ≤ N(X).
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3.
[
∀Ti+1 ∈ Xi+1 ∈ NA(Xi): t0 + Ti+1 ≤ T

]
AND

[
(X1

i , X
2
i ) /∈ cl(co(E))

]
:

Although it is an abuse of notation, we set NA(Xi) ≡ NA(Xi)∪(X1
i , X

2
i , i+1, t0 +

T,Wi). That is, we add an artificial 0-neutral node to the pruned set of children

NA(Xi) and force the rebalancing to end at this rebalancing: NH(X) = i and

Hi(X) = 0 for all NH(X) ≤ i ≤ N(X).

4.
[
∀Ti+1 ∈ Xi+1 ∈ N ∗A(Xi): t0 + Ti+1 ≤ T

]
AND

[
(X1

i , X
2
i ) ∈ cl(co(E))

]
:

Then we set NA(Xi) ≡ NA(Xi). Xi is 0-neutral, and we continue to construct

trajectory paths X(X,i) ⊆ X .

The summary above holds for all models introduced in this section.

4.2.6 Nested Model Values

As indicated, the pruning constraints used in Type 0 Models are nested into Type I and

II models, and similarly, we nest the pruning constraints used in Type I models into Type

II models. We also mentioned that the extra dimensions incorporated into Type I and II

models play no role in the valuation process of X . The valuation process only concerns itself

with the value of our assets at specific rebalancing; i.e. it only requires the values X1
i and

X2
i .

Due to the nesting of pruning constraints, we expect this to reflect a nesting of price

intervals obtained from each model. We explain this here.

Recall that the price bounds for an asset X2 at the k’th rebalancing are denoted

V k(X, X2,M) ≤ V k(X, X2,M). Let us denote the the markets M0, MI , MII as the

market produced for a Type 0, I, or II model, respectively. For simplicity in the next state-

ment let us denote the superhedging value for X2 at the k’th rebalancing given by Type 0,

I or II models as the following: V k(X, X2,M0) ≡ V k(M0), V k(X, X2,MI) ≡ V k(MI),

V k(X, X2,MII) ≡ V k(MII), respectively. The same notation will be given to the subhed-

ing value. Then, we expect to see the following behaviour:

V (M0) ≤ V (MI) ≤ V (MII) ≤ X2
i ≤ V (MII) ≤ V (MI) ≤ V (M0) (4.7)

That is, the price bounds given by a Type II model should be tighter than (or at least

equivalent to) the price bounds given by a Type I or Type 0 model. This sensible claim

may be informally proven by the following argument: if we create Type 0, I and II models

all with the same parameters (i.e. δ̂1, δ̂2, ν̂0, NE and pruninig constraints), then we will
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Figure 4.1: A visual representation of when (X1
i , X

2
i ) ∈ cl

(
co(E)

)
(in the top subplot) and when

(X1
i , X

2
i ) /∈ cl

(
co(E)

)
(lower subplot).
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always have MII ⊆ MI ⊆ M0. Let us first concern ourselves with the simplest set of

coordinates: (X1
i , X

2
i , i). An investor will produce Xi+1 by using the set NE to obtain

Xi+1 = (X1
i + m1δ̂1, X2

i + m2δ̂2, i + 1), where m1,m2 ∈ NE . If the pruning constraint in

Equation (4.2) is satisfied then Xi is admissible. It is very possible that, if we were to extend

the coordinates to the Type I or II coordinates, increasing the possibilities for pruning will

cause the node Xi+1 to be pruned. For example, that same node might now have some

value for Ti+1 which does not satisfy Equation (4.4). Then ∃X ∈ M0 such that X /∈ MI .

This same logic may then be applied to Type II models and the pruning constraints they

utilize.

Note that through the reasoning above, it is never possible to have M0 ⊆ MI ⊆ MII .

Each subsequent model has the same if not more pruning occuring at each parent node Xi.

Thus, there will be more nodes in Type 0 models than there is in Type II models. This

is indicative that we will always see V i(M0) ≤ V (MI) ≤ V (MII) ≤ X2
i ≤ V (MII) ≤

V (MI) ≤ V (M0).

Note that this only pertains to Type 0, I, and II models created with the same values

for the input parameters δ̂1, δ̂2, and ν̂0, and the same set NE .

4.3 Risk Taking in Trajectory Models

Up until now, this paper purely deals with the mathematical framework to observing charts

operationally and constructing a trajectory set. There is now enough foundation to create

a trajectory set, use the valuation process as described in Chapter 2, Definition 8, to yield a

trajectory market modelM = X ×H with price bounds V 0(X0, X
2,M) ≤ V 0(X0, X

2,M).

We proved in Proposition 2.14 in Chapter 2 that we will always have V 0(X0, X
2,M) ≤

X2
0 ≤ V 0(X0, X

2,M) and since we know our market models will never provide price bounds

which indicate a possible market mispricing, we wish to extract further information from

our models.

We have constructed a market M, in which with initial capital V 0(X0, X
2,M) an in-

vestor is able to form some portfolio H ∈ H of X1 and superhedge X2 at any state in

trajectories in X . That is, according to our model, an investor will be able to superhedge

X2 with no risk if they begin with an initial capital of V 0(X0, X
2,M). What if the in-

vestor was interested in taking on some amount of risk by beginning with initial capital

v < V 0(X0, X
2,M)? In this section we address this question and discuss the process of risk

taking within our trajectorial market models.

Let us first describe the issue at hand. Without our models signalling a market misprice,

our investor would never be inclined to trade the assets of interest. Therefore, there should

be some mechanism in place to indicate that with a certain level of risk, the investor should
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profit from trading X1 with initial capital v < V 0(X0, X
2,M). This might then interest

our investor to use insight obtained from our market models to actually place trades.

The mechanism used to indicate a certain level of risk taken with initial capital v is

our profit and losses when simulating trajectory paths within X . Given some X ∈ X and

H ∈ H, trading X1 while shorting X2 will result in our investor profitting or losing money

within the future time interval [0, T ].

Suppose that we short X2, while forming a portfolio of asset X1 to superhedge X2 over

[0, T ], then the value of the portfolio of asset X1 at the i’th rebalancing in X ∈ X is given

by

VH(i,X1) = v +

i−1∑
k=0

Hk(S)(X1
k+1 −X1

k).

Our investor will then profit at any stage i if we have that VH(i,X1) > X2
i . Then, to

quantify the level of risk the investor is taking on by creating a portfolio of value v to

superhedge X2 we will sample trajectories from the trajectory set X , and determine the

proportion of trajectories which profit in our model. As a further step, the investor may

also have a preference for a certain probability distribution for the sampled trajectories in

X , such probability distribution will then provide a probability of gains. We do not pursue

this further step in the thesis.

Given that the amount of relative capital required to superhedge X2 in all states is

V 0(X0, X
2,M), if the investor begins with an initial investment of size v ≥ V 0(X0, X

2,M)

they will always superhedge X2.

The trajectory set X may be regarded as an object which is synonymous to a stochastic

process’s support, which consists of all path where the process may lie. This then forces our

trajectories to move recursively from our initial state i = 0 and end at rebalancing number

i = NH(X) ≤ N(X), X ∈ X . This process for simulating trajectory paths is analogous to

simulating stock prices with a discrete Geometric Brownian Motion, where the stochastic

process must lie within some level of support.
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Chapter 5

Measurements on Charts for

Estimation and Criteria for

Calibration

In this section we discuss the process for estimating parameters used in model instantiation.

We mention once again that the process for obtaining model parameters is divided into

two parts. The first being a calibration process, where the investor sets parameters to

individual preferences which allow for model construction. The calibration process is crucial

to constructing our models as the choice of calibrated parameters (δ, δ0, δup, δdown, δ̂1, δ̂2,

ν̂0) reflect the outcome of the obtained estimated parameters. In Section 5.2 we discuss

criteria for an optimal calibration of these parameters, with a main focus on the calibration

of δ, δup, and δdown. The second part of obtaining model parameters is an estimation

process, where the word estimation refers to the computations performed on historical data.

Given the investor’s calibration of δ (or δup and δdown), δ0, δ̂1, δ̂2, and ν̂0, he operates on

data through the operational framework described throughout Chapter 3 which yields the

estimated parameters used for model construction. Recall that the operational framework

described in Chapter 3 which relies on a worst-case persepctive, which allows trajectory

models to be objective.

We assume availability of charts x(t) where t ∈ T , T ⊆ ∆Z and T denotes the set of

historical times for which the investor has access to values x(t). The investor will prescribe

T = MT∆ and perform operations described in Section 3.3 on intervals [t0, t0 +T ] ⊆ T . We

utilize definitions of observable worst-case pruning constraints as introduced in Section 3.4.

In this section we discuss how to go about obtaining a worst-case estimate for NE . This
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involves performing the operations described in Section 3.3 on intervals [t0, t0 +T ] ⊆ T . We

also mention here that treating T as an interval would incorporate overnight effects when

updating [t0, t0 + T ]. To avoid this we enforce T to be one trading day of data, and only

allow t0 = k(MT + 1)∆, k ∈ Z.

Given the historical data x(t), t ∈ T , calibrated parameters δ0, δ (or δup and δdown), we

obtain chart sampling times {rl}Ll=0 and historical portfolio rebalancing times {ti}Ni=0, both

dependent on δ0, δ, and an interval [t0, t0 +T ] ⊆ T . The interval is updated by shifting it by

one day and starting again, omitting overnight effects. Each set of sampling times {rl}Ll=0,

one for each such window, will have a variable length of L(x, [t, t+ T ]) + 1. Likewise, each

set of rebalancing times {ti}Ni=0, one for each such window, will have a variable length of

N(x, [t, t+ T ]) + 1.

The following sections rely on notation introduced in Section 3.3.

5.1 Rounded Chart Values

Given an interval [t0, t0 + T ], the investor first evaluates the times {rl}Ll=0, and {ti}Ni=0

using exact values. The rounding, mentioned in section 3.3, occurs after and reversing this

order would give different results. When rounding, the case of ambiguity would rise when

distinguishing how to round values (with regards to a floor or ceiling rounding).

To create a disambiguation the reader is turned to Section 9.1 of the paper Ferrando

et al. [2019a], which shows that after rounding we will always have:

δ ≤ ||(b∆tix
∗1cδ̂1 , b∆tix

∗2cδ̂2)||

for all 0 ≤ i ≤ N . It clarifies that, regardless of choice of floor or ceiling rounding, the

above inequality will always hold. The same will apply for similar arguments pertaining to

sampling times.

5.2 Calibration of δ, δ0, δup, δdown, δ̂
1, δ̂2, ν̂0

Before an investor can begin to perform the historical estimations required to build a tra-

jectory based market model, they go about selecting appropriate values for the parameters

δ, δ0, δup, and δdown as well as the discretization parameters δ̂1, δ̂2, and ν̂0. The process

of selecting values for these parameters is referred to as calibration. It is these calibrated

parameters that the investor is free to select which will have a direct effect on the outcome of

our trajectory models. All other model parameters are given as a result of the choice of the

calibrated parameters. These parameters must be set to guarantee that the investor may
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observe charts as described in Chapter 3, and will be able to construct a trajectory based

market as described in Chapter 4. In this section we discuss the concerns of calibrating δ,

δ0, δup, δdown, δ̂1, δ̂2, and ν̂0 to ensure a model’s construction.

5.2.1 δ

Our δ-uncorrelated models are constructed through portfolio rebalances which are dependent

on chart δ-movements, and thus it should be clear that an investor’s choice of δ has the

greatest effect on their ability to create a trajectory based market model. The investor must

choose δ so that there are observable δ-movements within the charts x(t). We denote the

maximum and minimum chart changes as following:

δmax = max
∀[t0,t0+T ]⊆T

(
||x(t′)− x(t)||

)
, δmin = min

∀[t0,t0+T ]⊆T

(
||x(t′)− x(t)||

)
for t < t′; t, t′ ∈ [t0, t0 + T ]; 0 < t′ − t ≤ T

Then, for any δ ≥ δmax the investor will not have rebalanced their portfolio once histor-

ically and we will then have NE(x, [t0, t0 + T ]) = ∅. Thus to obtain meaningful results, the

investor must choose some values of δ,∈ [δmin, δmax] ⊂ R+. Notice that when δ = δmin the

investor will rebalance their portfolio at every time step, or rather, qi = 1 or equivalently

ti+1 = ti + ∆ for each element in our empirical set of nodes NE(x, [t0, t0 + T ]). Therefore

we limit our choices of δ to the interval [δmin, δmax].

We first mention that δ should be selected such that we observe at leastN(x, [t0, t0+T ]) ≥
1 for some [t0, t0 +T ] ⊆ T . In fact, δ should be chosen so that we are able to create a market

which is at least 0-neutral (at least meaning it must be 0-neutral however arbitrage free is

preferred). In order to do so we determine if 0 ∈ ri
(
co(M)

)
where M ≡ {(m1,m2) :

∃(m1,m2, q, P ) ∈ NE)}. Although market models can be constructed when 0 ∈ cl
(
co(M)

)
is satisfied, we aim to have that 0 ∈ ri

(
co(M)

)
(the notation given here was first introduced

in Chapter 2, Proposition 4). Recall the way we construct market models is given in Section

4.2.5, where we said we stop the recursive formulation of a trajectory once an arbitrage

opportunity arises. If 0 /∈ cl
(
co(M)

)
then our market would become a one step arbitrage

market, i.e. NH(X) = 1. We show some sets M , described above, in Chapter 6 where we

show model output for chosen δ values.

Note that the investor’s choice of δ has an effect on |NE |, which affects the overall compu-

tation time when constructing X . We also emphasize that the calibration of δ (and actually,

all other parameters discussed in this section) and the estimation of models parameters go

hand in hand. The investor is required to perform an estimation process for many values of

δ in order to determine which reflects their own trading behaviour.

We provide output for various pruning constraints which contribute to an investor cali-
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brating their choice of δ. These values can be seen in Figures 5.1, 5.2, 5.3, and 5.4. Figure

5.1 is helpful to observe the amount our vector X may change from initial state X0. Fig-

ure 5.2 portrays the maximum and minimum number of portfolio rebalances that occur at

time T in the intervals [t0, t0 + T ] ⊆ T . This figure is particularly helpful in calibrating

δ since the investor may select δ so that N∗(x, T , T ) and N∗(x, T , T ) are within bounds

which represents an investor’s trading behaviour. Figure 5.3 helps the investor determine

which δ values allow trajectories to reach terminal time T while Figure 5.4 shows how

wide the bounds T ∗(x, T , i) and T∗(x, T , i) are (the wider these bounds, the less number

of nodes pruned at each stage when constructing X ). Similar plots to Figure 5.4 showing(
W ∗(x, T , i) −W∗(x, T , i)

)
are given in the Appendix. Also, similar plots to Figures 5.1,

5.2, 5.3, and 5.4 which utilize Twitter as a numeraire will be provided in the Appendix.

Figure 5.1: maxi

(
X∗(x, T , i)

)
and mini

(
X∗(x, T , i)

)
vs. δ for δ-uncorrelated models. Here we

have that T = T 2 as given in Chapter 6. This represents the maximum and minimum amount Xi

may vary from X0. Notice that there are instances of δ where we have that maxi

(
X∗(x, T , i)

)
=

mini

(
X∗(x, T , i)

)
. This indicates that if δ is calibrated to any of these values, there is only one

[t0, t0 + T ] ∈ T where we observe a δ-movement.
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Figure 5.2: N∗(x, T , T ) and N∗(x, T , T ) vs. δ for δ-uncorrelated models. Here we have that
T = T 2. Greater the value of N∗(x, T , T )−N∗(x, T , T ) in this figure provide more stable output
as it does not restrain the future entirely. i.e. choosing δ = 1.0 allows trajectories to reach time T
with at least 8 rebalances but less than 18 rebalances.

Figure 5.3: T ∗(x, T , N(X)) and T∗(x, T , N(X)) vs. δ for δ-uncorrelated models. Here we have
that T = T 2 as given in Chapter 6.
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Figure 5.4:
(
T ∗(x, T , i)−T∗(x, T , i)

)
vs. δ for δ-uncorrelated models. Here we have that T = T 2

as given in Chapter 6. This plot shows how wide the pruning constraints T ∗(x, T , i) and T∗(x, T , i)
are at each δ-movement.

5.2.2 δup and δdown

Given that we define our δ-movements entirely different in δ-correlated models, limiting our

choices of δup and δdown less intuitive. As can be seen in Figures 5.5 and 5.6, an increase in

δup and δdown causes an increase in the number of observed δ-movements. This is contrasted

by what occurs when increasing δ in δ-uncorrelated models, which causes a decrease in the

number of observed δ-movements. The reasoning for this is due to how δ-movements are

defined in δ-correlated models. For example, if we were to increase δup >> 1 it is more

likely that the following will hold: 0 ≤ x2(t) − x2(ti) ≤ δup(x
1(t) − x1(ti)) for some t > ti,

t, ti ∈ [t0, t0 + T ].

In order to construct a trajectory market model an investor must prescribe values for

δup and δdown such that they obtain stable parameters for model building. This is done

by ensuring the same arguments in the previous section for calibrating δ are satistied. We

repeat these here. We require that N(x, [t0, t0 + T ]) ≥ 1 for some [t0, t0 + T ] ⊆ T and

must have at least that 0 ∈ cl
(
co(M)

)
. Although market models can be constructed when

0 ∈ cl
(
co(M)

)
is satisfied, we aim to have that 0 ∈ ri

(
co(M)

)
.

In the same respect for δ, the investor’s choice of δup and δdown has an effect on |NE |,
which affects the overall computation time when constructing X . Similarly, the calibration

of δup and δdown and the estimation of models parameters go hand in hand. The investor
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is required to perform an estimation process for many values of δup and δdown in order to

determine which reflects their own trading behaviour.

We provide output for the same pruning constraints shown in the previous section. These

figures show values for these constraints which contribute to an investor calibrating their

choice of δup and δdown. Note that while the values for δup and δdown may be different (i.e.

δup 6= δdown), we provide output by setting δup = δdown. These values can be seen in Figures

5.5, 5.6, 5.7, and 5.8. Rather than being very repititive, we mention that these plots help

with the calibration of δup and δdown by showing the same characteristics described in the

previous section. There are similar plots to those given here in the Appendix, just as is

stated in the section above for δ calibration.

Figure 5.5: maxi

(
X∗(x, T , i)

)
and mini

(
X∗(x, T , i)

)
vs. δ for δ-correlated models. we have that

T = T 2 as given in Chapter 6, δup = δdown = δ in the above plot. Here we use δ as a reference to
the value along the x-axis in the above plot.
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Figure 5.6: N∗(x, T , T ) and N∗(x, T , T ) vs. δ for δ-correlated models. Here we have that T = T 2

as given in Chapter 6, δup = δdown = δ in the above plot. Here we just use δ as a reference to the
value along the x-axis in the above plot.

Figure 5.7: T ∗(x, T , N(X)) and T∗(x, T , N(X)) vs. δ for δ-correlated models. Here we have that
T = T 2 as given in Chapter 6, and δup = δdown = δ in the above plot. Here we just use δ as a
reference to the value along the x-axis in the above plot.
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Figure 5.8:
(
T ∗(x, T , i)−T∗(x, T , i)

)
vs. δ for δ-correlated models. Here we have that T = T 2 as

given in Chapter 6. This plot shows how wide the pruning constraints T ∗(x, T , i) and T∗(x, T , i)
are at each δ-movement.

5.2.3 δ0

The choice of δ0 is not so crucial to ensure a trajectory model’s construction as it is only

used to determine the times {rl}Ll=0 to sample the charts x(t) between δ-movements. These

sampling times are then used to determine the amount of vector variation the chart accu-

mulates between δ-movements in a trajectory interval [t0, T ]. As the choice of δ0 only affects

the accumulated vector variation we note that it would be perfectly acceptable to set δ0 = δ

in trajectory models that do not incorporate the vector variation coordinate Wi.

In models which incorporate the vector variation, the investor is limited to δ0 ∈ [δmin, δ].

The effect of δ0 on model construction is not covered in this thesis, and thus we have limited

our choice of δ0 to arbitrary values which allow for model construction in a reasonable time.

A reasonable computation time would of course be dependent on the investor’s choice of T

and ∆. In this thesis we limit ourselves to T = 130∆, with ∆ = 3 minutes which is one

trading day. Thus the investor should be able to build and value a trajectory model at the

beginning of each trading day in a matter of minutes.

5.2.4 δ̂1, δ̂2 and ν̂0

The parameters δ̂1, δ̂2, and ν̂0 provide the discretization of the observable charts and limit

the possible values of our coordinates. The selection of these parameters also helps regulate
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the computation time for constructing models; the smaller the values of δ̂1, δ̂2, and ν̂0 cor-

responds to a larger discretization. There is also a tradeoff presented here when calibrating

these parameters. With a larger discretization the investor is able to construct models with

a higher degree of precision, yet increases the computation time of constructing market

models.

Once again, the effect of these parameters on model construction is not explored in this

thesis so we limit ourselves to δ̂1, δ̂2, ν̂0 values which allow us to build traecjtory models

with a reasonable amount of computation time. We do mention that if the investor chooses

to use a bank account with zero-interest rate as their numeraire, the smallest values for δ̂1,

δ̂2 and ν̂0 would be δ̂1 = δ̂2 = ν̂0 = 0.01. This is exactly the same case as that in Ferrando

et al. [2019a].

5.3 Comments on Worst-Case Calibration and Estima-

tion

The calibrated parameters should be set so that the estimated parameters have stable ranges.

That is, their ranges should have informative values in the sense of restricting the offspring

of children via pruning and reflect the investor’s own trading behaviour. There are many

different criteria an investor may use to select δ, and to some extent T .

We mentioned in the previous section various criteria an investor will use to calibrate

δ and that doing so requires the investor to test estimated parameters over a variety of

δ values. Given the choice of historical data and δ, the estimated parameters should also

reflect an investor’s own trading behaviour. However, to obtain estimated parameters that

reflect a investor’s preference one must select begin by selecting δ; where choosing δ will

involve an estimation process performed several times over many δ values.

After observing the effect δ has on estimated parameters, criteria for choosing a value of

δ becomes purely investor dependent. For example, the investor might wish to rebalance a

portfolio only 5 times in a trading day to avoid accruing too many transaction costs. This

investor would then select a δ value corresponding to i∗ ≥ 5 (or N∗(x, T , T ) ≥ 5 if using

type I or II models) and setting N(X) = 5. This same logic can be applied to any observable

quantity which the investor measures.

The parameters associated with an operational setting must be chosen so that they

satisfy the topics discussed in the above section. In this section, we discuss the implications

of selecting a δ value.

Choosing δ too large (or δup and δdown too small) will degenerate down to binomial

models and we will obtain the price bounds V 0(X0, X
2,M) = V 0(X0, X

2,M). Choosing
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insufficient δ (or δup and δdown) will also cause the set NE to be empty. Then for the interval

of historical data, T , |NE | is controlled by the value of δ (δup and δdown). Also for a fixed

δ (δup and δdown), increasing T changes the shape of the set |NE |. The investor should

determine if the shape of |NE | stabilizes with an accumulation of data. If the shape of |NE |
stabilizes over time, new data introduced to our models will only contribute to the relative

interior of the convex hull of |NE |. We show this stabilization in various figures such as

Figure 5.11 and figures throughout the appendix. We also mention that since large |NE |
result in increased computation times when creating X .

5.4 Worst-Case Estimate for NE

Define,

NE(x, T ) ≡ ∪[t0,t0+T ]⊆TNE(x, [t0, t0 + T ]),

where NE(x, [t0, t0 + T ]) was introduced in Definition 14. This new set, NE(x, T ), is what

we refer to as a worst case estimate of this parameter. If the investor chooses to remove

any arbitrary subset from the worst-case estimates then this would be called a risk-taking

estimate.

For the purposes of this paper we go ahead and set the model variable NE to be the

observed worst-case historical estimate:

NE = NE(x, T )

However, one might be interested in recasting models with a direct product of worst-case

values observed in NE(x, T ) by defining NE in the following manner. Define:

m1 = min{m1 : ∃(m1,m2, q, P ) ∈ NE(x, T )},

m1 = max{m1 : ∃(m1,m2, q, P ) ∈ NE(x, T )},

m2 = min{m2 : ∃(m1,m2, q, P ) ∈ NE(x, T )},

m2 = max{m2 : ∃(m1,m2, q, P ) ∈ NE(x, T )},

q = min{q : ∃(m1,m2, q, P ) ∈ NE(x, T )},

q = max{q : ∃(m1,m2, q, P ) ∈ NE(x, T )},

P = min{P : ∃(m1,m2, q, P ) ∈ NE(x, T )},

P = max{P : ∃(m1,m2, q, P ) ∈ NE(x, T )},
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where m1,m2, q, P ∈ NE(x, T ). Then we would construct NE as:

NE = NDP
E ≡{m1 ∈ Z : m1 ≤ m1 ≤ m1} × {m2 ∈ Z : m2 ≤ m2 ≤ m2}×

{q ∈ N : q ≤ q ≤ q} × {P ∈ N : P ≤ P ≤ P}

where the DP in NDP
E indicates ‘Direct Product’. Notice that NE(x, T ) ⊆ NDP

E . Although

NDP
E is used in Ferrando et al. [2019a], the use of this set is not explored in this thesis. We

concentrate our efforts on exploring the use of introducing various pruning constraints in

our models.

Figures 5.9, 18, 19, 20, 21, show how the structure of each of the extreme values m1,

m1, m2, m2, q, q, P , and P behave with respect to an investor’s choice of δ. This behaviour

is also affected by the investor’s choice of δ̂1, δ̂2, and ν̂0. Although given in each plot,

for the estimation process we set δ̂1 = δ̂2 = δ/2 and ν̂0 = δ for δ-uncorrelated models,

and δ̂1 = δ̂2 = 0.5 and ν̂0 = 1.0 for δ-correlated models. We also set δ0 = δmin for δ-

uncorrelated models while we set δ0 = 0.01 for δ-correlated models for every δ in these

figures. We also mention that we provide analogous output for the structure of NE(x, T )

while using a numeraire in the Appendix.

We mentioned that we are concerned in utilizing properties of the convex hull to construct

our trajectory market models (outlined in Proposition 4 of Chapter 2), and in particular,

we are concerned with the convex hull of the set defined in Equation (2.8) of Section 2.1.3.

To ensure the conditions in Proposition 4 will be satisfied before constructing our models

we may observe the convex hull of a set of possible (m1δ̂1,m2δ̂2) pairs. Then, for the set

M = {(m1δ̂1,m2δ̂2) : ∃(m1,m2, q, P ) ∈ NE(x, T )} we observe the convex hull.

For our trajectory market models to be objective, we note that the convex hull of M

should stabilize with an accumulation of data for an investor’s choice of calibrated parame-

ters. Otherwise if the convex hull of M grows indefinitely our models will not remain to be

objective as the price bounds [V 0, V 0] will grow indefinitely as well. Therefore, we observe

the effect that an accumulation of data has on the shape of the convex hull. This is seen

in Figure 5.11 below and Figures A.3-A.7 in the appendix. As can be seen in the figures

is that the shape of the convex hull does stabilize after an accumulation of data, which is

expected.

5.5 Worst-Case Estimate for Pruning Constraints

The historical pruning constraints are formally defined in Section 3.4. We repeat for clarity

that these parameters are obtained by iterating through different intervals in our historical

data, [t0, t0 + T ] ⊆ T , and updated at each interval. Thus, the definitions given in Section
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Figure 5.9: |NE(x, T )| vs. δ for δ-uncorrelated models. We use two different time intervals of
historical data in the plots provided. The first uses T = T 1 while the second plot uses T = T 2,
where T 1 and T 2 are given in Chapter 6. Here we have δ ∈ [δmin, δmax] for each time interval used.
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Figure 5.10: |NE(x, T )| vs. δ for δ-correlated models. We use two different time intervals of
historical data in the plots provided. The first uses T = T 1 while the second plot uses T = T 2,
where T 1 and T 2 are given in Chapter 6. Here we have δ ∈ [0.01, 8.0] for each time interval used.
It is shown in a figure in the appendix that the size |NE(x, T )| stabilizes after a certain δ. Note
that we have δup = δdown = δ where δ represents the value along the x-axis in the figure.
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Figure 5.11: For the following set M = {(m1δ̂1,m2δ̂2) : ∃(m1,m2, q, P ) ∈ NE(x, T )} we show
how co(M) grows with the increase of data. Here we use historical time interval T = T 1 and data
described in [1.] in the enumeration in Section 6.1. Each subplot has values for m1δ̂1 along the
x-axis and m2δ̂2 along the y-axis. Notice the convex hull’s stability after incorporating about 15
days of data.
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3.4 gives the investor worst-case estimates of these pruning constraints.

Unless otherwise indicated, we will set our model’s pruning constraints to be the follow-

ing:

X(i) = X∗(x, T , i), X(i) = X∗(x, T , i)

N(Ti) = N∗(x, T , ρ), N(Ti) = N∗(x, T , ρ)

N(Wi) = N∗(x, T , w), N(Wi) = N∗(x, T , w)

T (i) = T∗(x, T , i), T (i) = T ∗(x, T , i)

T (Wi) = T∗(x, T , w), T (Wi) = T ∗(x, T , w)

W (i) = W∗(x, T , i), W (i) = W ∗(x, T , i)

W (Ti) = W∗(x, T , ti), W (Ti) = W ∗(x, T , ti)

The behaviour of some of these pruning constraints is seen in Figures 5.1, 5.5, 5.2, 5.6,

5.3, 5.7, 5.4 and 5.8. Figures 5.1, 5.5, 5.2, 5.6, 5.3, 5.7 are particularly helpful to the

investor when calibrating δ. The investor is able to determine which values of δ allow the

most change in value, how close trajectories get to time T , and the number of portfolio

rebalances performed historically at termination time T .

Note that in Figures 5.3 and 5.7, we observe that T ∗(x, T , N(X)) = T∗(x, T , N(X)) for

many δ. This behaviour indicates that - although there are multiple rebalances occuring -

there is only one trajectory that occurs historically which exhibits N(X) δ-movements. As

is seen in Figures 5.4 and 5.8, it is not the case that T ∗(x, T , i) = T∗(x, T , i) for all i > 0.

5.6 Worst-Case Estimate for Stopping Number

For the models defined in 4.2, the investor must prescribe some maximum rebalancing

number for the trajectories to take. This is mostly important to the construction of any

Type 0 model. To closely compare each of the model types we set N(X) = i∗(x, T ), where

i∗ is defined in Definition 15. Then, i∗ is a worst-case estimate of the maximum rebalancing

number.

As will be illustrated in the next chapter, supplying N(X) does not mean that each

trajectory in our models will definitely result in having N(X) rebalances. The pruning

constraints used in our models will still have the ability to restrict the models further, and

result in trajectories paths where an investor would liquidate their portfolio when reaching

the NH(X)’th rebalancing. Then we would have Hi(X) = 0 for all NH(X) ≤ i ≤ N(X).
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Figure 5.12: Using historical time interval T = T 1 and data described in [1.] in the enumeration
in Section 6.1 (currency as numeraire), we show how the pruning constraints widen as more data
is used in our historical estimation process. Here we select δ0 = 0.5, δ = 1.0, δ̂1 = δ̂2 = δ/2 = 0.5
and ν̂0 = δ = 1.0.
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Chapter 6

Output for Trajectory Models

This chapter completes the specification of the trajectory models introduced throughout

this thesis by discussing the data used for estimation and showing some output for the

worst-case estimated parameters. The estimation methodology is discussed in Section 3.3

and constructions of the worst-case pruning constraints are introduced in Section 3.4. Model

construction is described in Section 4.2.

The word calibration refers to the process which an investor fixes values to model pa-

rameters. The parameters δ0, δ as well the discretiaztion parameters δ̂1, δ̂2, ν̂0 are investor

dependent and require the investor to fix values (calibrate) to these in order to begin the esti-

mation process. Model parameters, such as NE and worst-case pruning constraints, must be

estimated are dependent on the calibrated parameters and the historical data x(t), t ∈ T .

While the only role the parameters δ̂1, δ̂2, ν̂0 mentioned in this thesis is the rounding

(discretization) of observable quantities introduced in Section 3.3.4, the parameters also

help regulate the total computation time required to perform the estimation and model

construction.

The output in this section is obtained by setting T = MT∆ = 130∆ with ∆ = 3 min. We

provide output for arbitrarily calibrated parameters which provide stable pruning constraints

and construct a trajectory model in a reasonable computation time. Since we have access to

3 minute intraday data and are forcasting our prices at the end of a trading day, a reasonable

computation time would be any duration less than a few hours. This way an investor could

perform their computations following market close or early before a day of trading.
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6.1 Data Employed

Our data consists of 3 minute intraday data over the course of approximately 6 months;

from 2018-05-09 9:30 AM to 2018-10-15 3:57:00 PM. A trading day begins at 9:30 AM, and

ends at 4:30 PM, for a total of 6.5 trading hours (390 minutes) in one day since we are going

by 3 minute ticks there are 130 ∆ intervals in one day. In this thesis we set the following:

[1.] x0(t) to be a currency (US $ to be exact), x1(t) to be the price of Facebook and x2(t)

to be the price of Netflix;

[2.] x0(t) is the price of Twitter, x1(t) to be the price of Facebook and x2(t) to be the

price of Netflix;

[3.] x0(t) is the price of Facebook, x1(t) to be the price of Twitter and x2(t) to be the

price of Netflix;

Let |M | be the number of data points in T , and MT be the number of data points in the

interval [t0, t0 + T ] ⊆ T . We label historical data points by M,M + 1, ...,−1, i.e. M < 0.

Then we use the notation T = {l∆ : l = M,M + 1, ...,−1}. As mentioned, overnight

effects are neglected by setting T = 1 day and selecting t0 such that it is the opening time

of each trading day. Given that in our data there are MT = 130 three minute samples in a

day, we can then set t0 = k(MT + 1)∆, k ∈ {0, 1, ..., b |M |MT
c}.

Although we have access to the entire timeframe T , we note that the amount of data used

in the calibration and estimation process affects the outcome of the model. Once δ and δ0

are calibrated, an accumulation of data may widen the worst-case pruning constraints. This

could indicate that some pruning constraints utilized in this thesis are not useful to use when

constructing market models, since one would expect worst-case parameters to stabilize after

an accumulation of data. We also mention that the shape of the convex hull generated from

the set of possible asset changes should stabilize when accumulating data. That is, for the

set M = {(δ̂1m1, δ̂2m2) : ∃(m1,m2, q, P ) ∈ NE(x, T )}, co(M) should not grow indefinitely

with an accumulation of data. Figure 5.12 shows how some pruning constraints widen with

an accumulation of data while Figure 5.11 (and numerous figures in the appendix) provide

a visualization of the growth of co(M).

When data is accumulated we note that the computation time to construct our market

models increases significantly. For the purposes of this thesis, we limit the amount of data

used in our estimation process. This limits characteristics of our models such as the number

of children nodes produced at a given parent, overall size of our discrete grid, and the amount

of pruning done at each iteration i, and consequently, the computation time for constructing

a model will decrease.
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Nonetheless we consider a wide range of investors who we anticipate estimate the future

according to a worst case possible future (reflecting the investor’s habits). In this way

our models are constructed to be objective since our worst-case setting allows us to treat

investor’s habits, and their operational actions, in an unbiased manner. Although we note

that this objectiveness is only satisfied when historical data is accumulated to exhibit stable

model parameters, our reasoning to limiting the amount of historical data in this thesis

should not confound our reader with the fact that the models constructed in this paper are

considered to be objective.

Then, in order to distinguish between the amount of data used in a specific model

estimation process we will denote the following time intervals:

• T 1 is the entire dataset; from 2018-05-09 9:30 AM to 2018-10-15 3:57:00 PM,

• T 2 is the most present 10 days of data; from 2018-10-02 9:30 AM to 2018-10-15 3:57:00

PM,

and then we will have T 2 ⊆ T 1. We could go about leaving T to indicate our entire historical

dataset, however we use the notation T 1 to indicate the difference in our future figures by

indicating that we set T = T 1 or T = T 2.

Let us now show output for trajectory market models where we arbitrarily choose various

parameters to show how they affect the construction of our models. Below we show output

for δ-uncorrelated and δ-correlated models. Note that in each of the following sections we

split the output into two subsections to distinguish between the two objectives observed

in this thesis. The first subsection will deal with the construction of our trajectory sets,

with the following subsection dealing with the superhedging methodology and trajectory

sampling to determine the profit and losses associated with constructing a portfolio with

initial value v.

6.2 δ-Uncorrelated Models - Currency as Numeraire

Let us now concern ourselves with the assets described in [1.] in the enumeration of the

previous section and the interval T 2 described in Section 6.1. We exhibit some properties of

our trajectory market models constructed using the operational setting for δ-uncorrelated

models.

6.2.1 Objective 1 - Constructing the Trajectory Set

We begin by selecting δ = 1.25 and δ0 = 0.5. We set δ̂1 = δ̂2 = δ/2 and ν̂0 = δ. First

we perform the estimation process. The set of possible vector changes, given as M =
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{(δ̂1m1, δ̂2m2) : ∃(m1,m2, q, P ) ∈ NE(x, T 2)} is displayed in Figure 6.1. Notice that for this

set, M , we have that 0 ∈ ri
(
co(M)

)
. This was part of our criteria to satisfy when selecting

calibrated values, which is discussed in Section 5.2. We also note that |NE(x, T 2)| = 58.

Observed worst-case pruning constraints for the calibrated parameters are shown in

Figure 6.2. Although not explicitly stated, it is shown that i∗(x, T 2) = 10. In order to limit

the number of rebalances in our trajectory set we set N(X) = 4, which helps us regulate

the computation time. This enables us to obtain data in reasonable time for the purpose of

this thesis, since if we were to select N(X) = i∗(x, T 2) then producing the trajectory set X
would take days of computation time.

For each model type we began our construction with X1
0 = 183.82, X2

0 = 331.62, t0 = 0,

T0 = 0, W0 = 0 (note that X1
0 = 183.82 and X2

0 = 331.62 are the most present values we

have in T 2). The k1 and k2 values at each rebalancing i for nodes in our trajectory set are

given in Figures 6.3, 6.4, and 6.5, which give the reader an idea of how the our asset prices

change in X and the pruning occuring at each rebalancing i.

Table 6.1 shows the values obtained for each model type, and notice that Equation (4.7)

given in Section 4.2.6 is satisfied. We also provide the average proportion of nodes pruned

at each parent node for each rebalance, shown in Figure 6.8; this shows the amount of work

the pruning constraints for each model type and our selected parameters.

6.2.2 Objective 2 - Superhedging Methodology

Finally, we produce histograms of the profit and losses of 1000 sampled trajectories for

initial investments of size v = X2
0 and v = X2

0 + 1.0, which are seen in Figures 6.6 and

6.7, respectively. Notice that the proportion of trajectories which the investor profits nearly

doubles when the investor adds $1.0 of currency to their initial investment.

For clarity we indicate that the output from this section is given throughout Figures

6.1-6.8 and in Table 6.1.

6.3 δ-Correlated Models - Currency as Numeraire

We concern ourselves with the assets described in [1.] in the enumeration and the interval

T 2 described in Section 6.1 (once again T 2 is chosen to limit computation time). In this

section we exhibit some properties of our trajectory market models constructed using the

operational setting for δ-correlated models.

74



Figure 6.1: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), the set M = {(δ̂1m1, δ̂2m2) : ∃(m1,m2, q, P ) ∈
NE(x, T 2)} for the δ-uncorrelated model created with δ = 1.25, δ0 = 0.5, δ̂1 = δ̂2 = 0.625, and
ν̂0 = 1.25 is shown. The convex hull of M is given as the dotted red line and red points as its
vertices. Notice that 0 ∈ ri

(
co(M)

)
.
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Figure 6.2: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1)
and the historical data subset T 2 (refer to Section 6.1), the estimated pruning constraints with
δ = 1.25, δ0 = 0.5, δ̂1 = δ/2, δ̂2 = δ/2, and ν̂0 = δ for a δ-uncorrelated model are shown.
Here each axes is labeled on the subplots and the pruning constraint is given as each subplot’s
title. We have that 0 ≤ i ≤ i∗(x, T 2) = 10, ρ ∈ [0, T ], and w. w represents the values for the
accumulated vector variation. Notice that in the plot for N∗(x, T , w) and N∗(x, T , w) there are
instances when N∗(x, T , w) = N∗(x, T , w). This indicates that we only observed one historical
δ-movement resulting in a portfolio rebalancing at variation w. The same argument also applies
for the plots T ∗(x, T , w) and T∗(x, T , w), as well as W ∗(x, T , ρ) and W∗(x, T , ρ).
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Figure 6.3: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), the values of k1 and k2 for all nodes for the
Type 0 δ-uncorrelated model created with δ = 1.25, δ0 = 0.5, and δ̂1 = δ̂2 = 0.625, ν̂0 = 1.25 are
shown.

V 0(X0, X
2,M) V 0(X0, X

2,M)

X2
0 = 331.62

M =M0 327.37 335.37
M =MI 328.495 334.745
M =MII 329.016 333.912

Table 6.1: Although an abuse of notation, we use the notation M = M0 to indicate that the
corresponding row shows the values V 0(X0, X

2,M) and V 0(X0, X
2,M) for the Type 0 market

model. The same applies for the next two rows but for Type I and II models, respectively. Using
the assets described in [1.] (currency as numeraire, refer to Section 6.1) and the historical data
subset T 2 (refer to Section 6.1), the time 0 values for our asset X2 for the δ-uncorrelated model
created with δ = 1.25, δ0 = 0.5, and δ̂1 = δ̂2 = 0.625, ν̂0 = 1.25 and historical data subset T 2 are
shown. Notice that we always have V 0(X0, X

2,M) ≤ V 0(X0, X
2,M) and that Equation (4.7) in

Section 4.2.6 is satisfied.

6.3.1 Objective 1 - Constructing our Trajectory Set

We begin by selecting δup = δdown = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5 and ν̂0 = 1.0. First we

perform the estimation process. The set of possible vector changes, M (given in the previous
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Figure 6.4: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and the
historical data subset T 2 (refer to Section 6.1), the values of k1 and k2 for all nodes for the Type I
δ-uncorrelated model created with δ = 1.25, δ0 = 0.5, and δ̂1 = δ̂2 = 0.625, ν̂0 = 1.25 are shown.

section), is displayed in Figure 6.9. Notice that for this set, M , we have that 0 ∈ ri
(
co(M)

)
.

Also notice that there are not any points in quadrants 2 and 4 on the 2D plot since we only

allow our assets to move in the same direction. We also note that |NE(x, T 2)| = 41.

Observed worst-case pruning constraints for the calibrated parameters are shown in

Figure 6.10. Although not explicitly stated, it is shown that i∗(x, T 2) = 12. Similar to

the previous section, we limit the number of rebalances in our trajectory set by setting

N(X) = 4 since it helps us regulate the computation time. This enables us to obtain data

in reasonable time for the purpose of this thesis, since if we were to select N(X) = i∗(x, T 2)

then producing the trajectory set X would take days of computation time.

For each model type we began our construction with X1
0 = 183.82, X2

0 = 331.62, t0 = 0,

T0 = 0, W0 = 0 (note that X1
0 = 183.82 and X2

0 = 331.62 are the most present values we

have in T 2). The k1 and k2 values at each rebalancing i for nodes in our trajectory set are

given in Figures 6.11, 6.12, and 6.13, which give the reader an idea of how the our asset

prices change in X and the pruning occuring at each rebalancing i. Notice that the k1 and

k2 values in Figures 6.11 and 6.12 are exactly the same. Given that they utilize the same

nodes this indicates that the pruning constraints used in the Type I model described here
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Figure 6.5: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and the
historical data subset T 2 (refer to Section 6.1), the values of k1 and k2 for all nodes when creating
a Type II δ-uncorrelated model created with δ = 1.25, δ0 = 0.5, and δ̂1 = δ̂2 = 0.625, ν̂0 = 1.25 are
shown.

does not do any more pruning than the pruning constraints in the Type 0 models. This is

then reflected in the time 0 values V 0 and V 0 for the models.

Table 6.2 shows the values obtained for each model type, and notice that Equation (4.7)

given in Section 4.2.6 is satisfied. We also provide the average proportion of nodes pruned

at each parent node for each rebalance, shown in Figure 6.17; this shows the amount of work

the pruning constraints for each model type and our selected parameters.

6.3.2 Objective 2 - Superhedging Methodology

Finally, we produce histograms of the profit and losses of 1000 sampled trajectories for

initial investments of size v = X2
0 and v = X2

0 +1.0, which are seen in Figures 6.14 and 6.15,

respectively. It is interesting to see that although the initial values for Type 0 and Type

I models are equal, we observe a higher proportion of trajectories in Type I models which

profit. We also include a similar figure showing that trajetories in X are superhedged when

beginning with initial value v = V 0(X0, X
2,M), which is shown in Figure 6.16. Notice that

the proportion of trajectories which the investor profits nearly doubles when the investor
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Figure 6.6: Using the assets described in [1.] (refer to Section 6.1) and the historical data subset
T 2 (refer to Section 6.1), the profits and losses for 1000 simulations in each δ-uncorrelated model
type created with δ = 1.25, δ0 = 0.5, and δ̂1 = δ̂2 = 0.625, and ν̂0 = 1.25 are shown. Here we begin
with initial investment v = X2

0 .

adds $1.0 of currency to their initial investment.

For clarity we indicate that the output from this section is given throughout Figures

6.9-6.17 and in Table 6.2.
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Figure 6.7: Using the assets described in [1.] (currency as numeraire) and the historical data
subset T 2 (refer to Section 6.1), the profits and losses for 1000 simulations in each δ-uncorrelated
model type created with δ = 1.25, δ0 = 0.5, and δ̂1 = δ̂2 = 0.625, and ν̂0 = 1.25 are shown. Here
we begin with initial investment v = X2

0 + 1.0. Notice that with $1.0 increase in portfolio value
nearly doubles the amount of profitting trajectories.

6.4 δ-Uncorrelated Models: Twitter as Numeraire

We now go to show analogous results to the previous two sections, but with a change of

numeraire. Concerning ourselves now with the assets described in [2.] in the enumeration

and the interval T 2 described in Section 6.1, we go about the same process as we described

in the previous two sections. In Chapter 5, we provided parameter estimation results for
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Figure 6.8: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and the
historical data subset T 2 (refer to Section 6.1), the average percentage of children nodes pruned at
each parent, averaged over each portfolio rebalancing i for each δ-uncorrelated model type created
with δ = 1.25, δ0 = 0.5, and δ̂1 = δ̂2 = 0.625, ν̂0 = 1.25 are shown. Notice that, as a result of
nesting the pruning constraints, each subsequent model does an increased amount of pruning at
each portfolio rebalancing.

the models discussed in the previous two sections. We direct the reader to the Appendix to

view parameter estimation results when using Twitter as a numeraire.

6.4.1 Objective 1 - Constructing the Trajectory Set

Once again, we note that the interval T 2 is used to help lower computation times required to

construct our trajectory market models. We begin by selecting δ = 0.05 and δ0 = 0.01. We

set δ̂1 = δ̂2 = δ/2 and ν̂0 = δ. First we perform the estimation process. The set of possible

vector changes, given as M = {(δ̂1m1, δ̂2m2) : ∃(m1,m2, q, P ) ∈ NE(x, T 2)} is displayed in

Figure 6.18. Notice that for this set, M , we have that 0 ∈ ri
(
co(M)

)
. This was part of our

criteria to satisfy when selecting calibrated values, which is discussed in Section 5.2. We

also note that |NE(x, T 2)| = 68.
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Figure 6.9: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), the set M = {(δ̂1m1, δ̂2m2) : ∃(m1,m2, q, P ) ∈
NE(x, T 2)} for the δ-correlated model created with δ = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5, and ν̂0 = 1.0
is shown. The convex hull of M is given as the dotted red line and red points as its vertices. Notice
that 0 ∈ ri

(
co(M)

)
.

V 0(X0, X
2,M) V 0(X0, X

2,M)

X2
0 = 331.62

M =M0 329.953 333.508
M =MI 329.953 333.508
M =MII 330.151 333.453

Table 6.2: Although an abuse of notation, we use the notation M = M0 to indicate that the
corresponding row shows the values V 0(X0, X

2,M) and V 0(X0, X
2,M) for the Type 0 market

model. The same applies for the next two rows but for Type I and II models, respectively. Using
the assets described in [1.] (currency as numeraire, refer to Section 6.1) and the historical data
subset T 2 (refer to Section 6.1), time 0 values for our asset X2 for the δ-correlated model created
with δup = δdown = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5, and ν̂0 = 1.0 are shown. Notice that we always
have V 0(X0, X

2,M) ≤ V 0(X0, X
2,M) and that Equation (4.7) in Section 4.2.6 is satisfied.
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Figure 6.10: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and the
historical data subset T 2 (refer to Section 6.1), the estimated pruning constraints for a δ-correlated
model with the selection δ = 3.0, δ0 = 0.5, and δ̂1 = δ̂2 = 0.5, and ν̂0 = 3.0 are shwon. Although
not explicitly stated we have that i∗ = 12. Notice that in the plot for N∗(x, T , w) and N∗(x, T , w)
there are instances when N∗(x, T , w) = N∗(x, T , w). This indicates that we only observed one
historical δ-movement resulting in the i’th rebalancing at variation w. The same argument also
applies for the plots T ∗(x, T , w) and T∗(x, T , w), as well as W ∗(x, T , ρ) and W∗(x, T , ρ).
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Figure 6.11: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), the values of k1 and k2 for all nodes for the
Type 0 δ-correlated model created with δ = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5, and ν̂0 = 3.0 are shown.
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Figure 6.12: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), the values of k1 and k2 for all nodes for the
Type I δ-correlated model created with δ = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5, and ν̂0 = 3.0 are shown.
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Figure 6.13: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), the values of k1 and k2 for all nodes for the
Type II δ-correlated model created with δ = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5, and ν̂0 = 3.0 are shown.

87



Figure 6.14: Using the assets described in [1.] (currency as numeraire) and the historical data
subset T 2 (refer to Section 6.1), the profits and losses for 1000 simulations in each δ-correlated
model type are shown. Models are constructed by setting δ = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5,
ν̂0 = 1.0, N(X) = 4. Here we begin with initial investment v = X2

0 .
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Figure 6.15: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), the profits and losses for 1000 simulations in
each δ-correlated model type are shown. Models are constructed by setting δ = 3.0, δ0 = 0.5,
δ̂1 = δ̂2 = 0.5, ν̂0 = 1.0, and N(X) = 4. Here we begin with initial investment v = X2

0 + 1.0.
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Figure 6.16: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), the profits and losses for 1000 simulations in
each δ-correlated model type. Models are constructed by setting δ = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5,
ν̂0 = 1.0, and N(X) = 4. Notice that when we begin with initial investment v = V 0(X0, X

2,M),
we superhedge X2 using X1, or rather, we always profit along any path X ∈ X . The 4 trajectories
which do not profit in Type I models corresponds to having a profit of 0.
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Figure 6.17: Using the assets described in [1.] (currency as numeraire, refer to Section 6.1) and
the historical data subset T 2 (refer to Section 6.1), we show the average percentage of children
nodes pruned at each parent, averaged over each portfolio rebalancing i for each δ-correlated model
type constructed by setting δ = 3.0, δ0 = 0.5, δ̂1 = δ̂2 = 0.5, ν̂0 = 1.0, and N(X) = 4.
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V 0(X0, X
2,M) V 0(X0, X

2,M)

X2
0 = 331.62

M =M0 326.827 336.412
M =MI 326.827 336.412
M =MII 328.562 334.632

Table 6.3: Although an abuse of notation, we use the notation M = M0 to indicate that the
corresponding row shows the values V 0(X0, X

2,M) and V 0(X0, X
2,M) for the Type 0 market

model. The same applies for the next two rows but for Type I and II models, respectively. Using
the assets described in [2.] (refer to Section 6.1) and the historical data subset T 2 (refer to Section
6.1), the time 0 values for our asset X2 for the δ-uncorrelated model created with δ = 0.05,
δ0 = 0.01, δ̂1 = δ̂2 = 0.025 and ν̂0 = 0.05 are shown. Notice that we always have V 0(X0, X

2,M) ≤
V 0(X0, X

2,M) and that Equation (4.7) in Section 4.2.6 is satisfied.

Observed worst-case pruning constraints for the chosen calibrated parameters are shown

in Figure 6.19. It is not explicitly stated, but the figure indicates that we have i∗(x.T ) = 13.

We once again set N(X) = 4 to limit the computation time required to construct our market

model.

For each model type we begin the construction with the same instantiations: X1
0 =

183.82, X2
0 = 331.62, t0 = 0, T0 = 0, W0 = 0 (note that X1

0 = 183.82 and X2
0 = 331.62

are the most present values we have in T 2). The k1 and k2 values at each rebalancing i for

nodes in X are given in Figures 6.20, 6.21, and 6.22. Table 6.3 shows the values obtained for

each model type, and notice that Equation (4.7) is satisfied. We also provide the average

proportion of nodes pruned at each parent node for each rebalance, which is shown in Figure

6.26.

6.4.2 Objective 2 - Superhedging Methodology

Finally, we sampled 1000 trajectories for initial investments of size v = X2
0 , v = V 0(X0, X

2,M)

and v = V 0(X0, X
2,M) which are seen in Figures 6.23, 6.24, and 6.25, respectively. Notice

in Figure 6.23 that there is a greater proportion of profitting trajectories for Type 0 models

than Type I models. This constrasts the analogous output in Sections 6.2 and 6.3 since

we observed each subsequent model generating a larger proportion of profitting trajectories

(when using v = X2
0 ). Also note that the Type II models have nearly double the amount of

profitting trajectories in our simulation.

For clarity we indicate that the output from this section is given throughout Figures

6.18-6.26 and in Table 6.3.
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Figure 6.18: Using the assets described in [2.] in the enumeration of Section 6.1 (using Twitter as
numeraire, refer to Section 6.1), we show the setM = {(δ̂1m1, δ̂2m2) : ∃(m1,m2, q, P ) ∈ NE(x, T 2)}
for the δ-uncorrelated model created with δ = 0.05 and δ0 = 0.01. We set δ̂1 = δ̂2 = 0.025 and
ν̂0 = 0.05 and historical data subset T 2 is shown. The convex hull of M is given as the dotted red
line and red points as its vertices. Notice that 0 ∈ ri

(
co(M)

)
.
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Figure 6.19: Using the assets described in [2.] (refer to Section 6.1) and the historical data subset
T 2 (refer to Section 6.1), we show the estimated pruning constraints. For this δ-uncorrelated model
created with δ = 0.05, δ0 = 0.01, δ̂1 = δ̂2 = 0.025 and ν̂0 = 0.05, we have that i∗ = 12. Notice that
in the plot for N∗(x, T , w) and N∗(x, T , w) there are instances when N∗(x, T , w) = N∗(x, T , w).
This indicates that we only observed one historical δ-movement resulting in the i’th rebalancing at
variation w. The same argument also applies for the plots T ∗(x, T , w) and T∗(x, T , w), as well as
W ∗(x, T , ρ) and W∗(x, T , ρ).
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Figure 6.20: Using the assets described in [2.] (refer to Section 6.1) in the enumeration of Section
6.1 (using Twitter as numeraire) we show values of k1 and k2 for all nodes for the Type 0 δ-
uncorrelated model created with δ = 0.05, δ0 = 0.01, δ̂1 = δ̂2 = 0.025 and ν̂0 = 0.05, while setting
N(X) = 4 and using historical data subset T 2.
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Figure 6.21: Using the assets described in [2.] (refer to Section 6.1) in the enumeration of Section
6.1 (using Twitter as numeraire) we show values of k1 and k2 for all nodes for the Type I δ-
uncorrelated model created with δ = 0.05, δ0 = 0.01, δ̂1 = δ̂2 = 0.025 and ν̂0 = 0.05, while setting
N(X) = 4 and using historical data subset T 2.
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Figure 6.22: Using the assets described in [2.] (refer to Section 6.1) in the enumeration of Section
6.1 (using Twitter as numeraire) we show values of k1 and k2 for all nodes for the Type II δ-
uncorrelated model created with δ = 0.05, δ0 = 0.01, δ̂1 = δ̂2 = 0.025 and ν̂0 = 0.05, while setting
N(X) = 4 and using historical data subset T 2.
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Figure 6.23: Profits and losses for 1000 simulations in each δ-uncorrelated model type when using
the assets described in [2.] in the enumeration of Section 6.1 (using Twitter as numeraire). Models
are constructed by setting δ = 0.05, δ0 = 0.01, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.05, and N(X) = 4. Here we
begin with initial investment v = X2

0 .
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Figure 6.24: Profits and losses for 1000 simulations in each δ-uncorrelated model type when using
the assets described in [2.] in the enumeration of Section 6.1 (using Twitter as numeraire). Models
are constructed by setting δ = 0.05, δ0 = 0.01, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.05, and N(X) = 4. Here
we begin with initial investment v = V 0(X0, X

2,M). Notice that with this initial investment, we
always superhedge X2 along the trajectories in our model when trading X1.
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Figure 6.25: Profits and losses for 1000 simulations in each δ-uncorrelated model type when using
the assets described in [2.] in the enumeration of Section 6.1 (using Twitter as numeraire). Models
are constructed by setting δ = 0.05 and δ0 = 0.01, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.05, and N(X) = 4.
Notice that when we begin with initial investment v = V 0(X0, X

2,M), we underhedge X2 using
X1, or rather, we never profit along any path X ∈ X .
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Figure 6.26: Average percentage of children nodes pruned at each parent, averaged over each
portfolio rebalancing i for each δ = 0.05 and δ0 = 0.01, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.05, N(X) = 4
and historical data subset T 2. Here we are using the assets described in [2.] in the enumeration of
Section 6.1 (using Twitter as numeraire).

101



6.5 δ-Correlated Models: Twitter as Numeraire

Finally, we provide results for the construction of a δ-correlated model while using Twitter

as a numeraire. The reader is directed to the Appendix to view parameter estimation results

for this case. Concerning ourselves now with the assets described in [2.] in the enumeration

and the interval T 2 described in Section 6.1, we go about the same process as we described

in the previous two sections.

6.5.1 Objective 1 - Constructing the Trajectory Set

Once again, we note that the interval T 2 is used to help lower computation times required to

construct our trajectory market models. We begin by selecting δup = δdown = 8.0 and δ0 =

0.075. We set δ̂1 = δ̂2 = 0.025 and ν̂0 = 0.5. First we perform the estimation process. The

set of possible vector changes, given as M = {(δ̂1m1, δ̂2m2) : ∃(m1,m2, q, P ) ∈ NE(x, T 2)}
is displayed in Figure 6.27. Notice that for this set, M , we have that 0 ∈ ri

(
co(M)

)
. This

was part of our criteria to satisfy when selecting calibrated values, which is discussed in

Section 5.2. We also note that |NE(x, T 2)| = 48.

Observed worst-case pruning constraints for the chosen calibrated parameters are shown

in Figure 6.28. It is not explicitly stated, but the figure indicates that we have i∗(x.T ) = 91.

We once again set N(X) = 4 to limit the computation time required to construct our market

model.

For each model type we begin the construction with the same instantiations: X1
0 =

183.82, X2
0 = 331.62, t0 = 0, T0 = 0, W0 = 0 (note that X1

0 = 183.82 and X2
0 = 331.62

are the most present values we have in T 2). The k1 and k2 values at each rebalancing i for

nodes in X are given in Figures 6.29, 6.30, and 6.31. Table 6.4 shows the values obtained for

each model type, and notice that Equation (4.7) is satisfied. We also provide the average

proportion of nodes pruned at each parent node for each rebalance, which is shown in Figure

6.35

6.5.2 Objective 2 - Superhedging Methodology

Finally, we sampled 1000 trajectories for initial investments of size v = X2
0 , v = V 0(X0, X

2,M)

and v = V 0(X0, X
2,M) which are seen in Figures 6.32, 6.33, and 6.34, respectively. In these

model types constructed in this section, we note that (similar to the previous section) there

is a greater proportion of profitting trajectories sampled for Type I models than Type II

models.

For clarity we indicate that the output from this section is given throughout Figures

6.27-6.35 and in Table 6.4.
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Figure 6.27: Using the assets described in [2.] in the enumeration of Section 6.1 (using Twitter as
numeraire), we show the set M = {(δ̂1m1, δ̂2m2) : ∃(m1,m2, q, P ) ∈ NE(x, T 2)} for the δ-correlated
model created with δup = δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5 and historical data
subset T 2. The convex hull of M is given as the dotted red line and red points as its vertices.
Notice that 0 ∈ ri

(
co(M)

)
.

V 0(X0, X
2,M) V 0(X0, X

2,M)

X2
0 = 331.62

M =M0 327.741 334.963
M =MI 327.741 333.564
M =MII 328.470 333.393

Table 6.4: Although an abuse of notation, we use the notation M = M0 to indicate that the
corresponding row shows the values V 0(X0, X

2,M) and V 0(X0, X
2,M) for the Type 0 market

model. The same applies for the next two rows but for Type I and II models, respectively. Time
0 values for our asset X2 for the δ-correlated model created with δup = δdown = 8.0, δ0 = 0.075,
δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5 and historical data subset T 2 is shown. Notice that we always have
V 0(X0, X

2,M) ≤ V 0(X0, X
2,M) and that Equation (4.7) in Section 4.2.6 is satisfied.
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Figure 6.28: Estimated pruning constraints when using the assets described in [2.] in the enu-
meration of Section 6.1 (using Twitter as numeraire). For this δ-correlated model created with
δup = δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5 and historical data subset T 2, we have
that i∗ = 91. Notice that the plots for N∗(x, T , w) and N∗(x, T , w), T ∗(x, T , w) and T∗(x, T , w),
as well as W ∗(x, T , ρ) and W∗(x, T , ρ) are much smoother than the analogous plots given in the
previous sections. This could be an indication that constructing trajectory sets involving more
portfolio rebalances might provide better pruning constraints.
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Figure 6.29: Using the assets described in [2.] in the enumeration of Section 6.1 (using Twitter
as numeraire) we show values of k1 and k2 for all nodes for the Type 0 δ-correlated model created
with δup = δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5, while setting N(X) = 4 and using
historical data subset T 2.
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Figure 6.30: Using the assets described in [2.] in the enumeration of Section 6.1 (using Twitter
as numeraire) we show values of k1 and k2 for all nodes for the Type I δ-correlated model created
with δup = δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5, while setting N(X) = 4 and using
historical data subset T 2.
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Figure 6.31: Using the assets described in [2.] in the enumeration of Section 6.1 (using Twitter
as numeraire) we show values of k1 and k2 for all nodes for the Type II δ-correlated model created
with δup = δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5, while setting N(X) = 4 and using
historical data subset T 2.
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Figure 6.32: Profits and losses for 1000 simulations in each δ-correlated model type when using
the assets described in [2.] in the enumeration of Section 6.1 (using Twitter as numeraire). Models
are constructed by setting δup = δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5, and N(X) = 4.
Here we begin with initial investment v = X2

0 .
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Figure 6.33: Profits and losses for 1000 simulations in each δ-correlated model type when using
the assets described in [2.] in the enumeration of Section 6.1 (using Twitter as numeraire). Models
are constructed by setting δup = δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5, and N(X) = 4.
Here we begin with initial investment v = V 0(X0, X

2,M). Notice that with this initial investment,
we always superhedge X2 along the trajectories in our model when trading X1.
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Figure 6.34: Profits and losses for 1000 simulations in each δ-correlated model type when using
the assets described in [2.] in the enumeration of Section 6.1 (using Twitter as numeraire). Models
are constructed by setting δup = δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5, and N(X) = 4.
Notice that when we begin with initial investment v = V 0(X0, X

2,M), we underhedge X2 using
X1, or rather, we never profit along any path X ∈ X . Notice that with this initial investment, we
always underhedge X2 along the trajectories in our model when trading X1.
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Figure 6.35: When using the assets described in [2.] in the enumeration of Section 6.1 (using
Twitter as numeraire) we show the average percentage of children nodes pruned at each parent,
averaged over each portfolio rebalancing i for each δ-correlated model type created with δup =
δdown = 8.0, δ0 = 0.075, δ̂1 = δ̂2 = 0.025, ν̂0 = 0.5, N(X) = 4 and historical data subset T 2.
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Chapter 7

Discussion and Conclusion

We now provide a discussion of the results above and refer to similar results shown in the

Appendix. In this section we also discuss various items worthwhile to address in future work.

As can be seen throughout the previous chapter, the output obtained from our trajectory

market models is dependent on an investor’s choice of inputs parameters. We provide model

testing for each model type with δ-uncorrelated and δ-correlated operational assumptions

for two different choices of numeraire. We also note that we provide additional output to

supplement output shown throughout the main sections of the paper.

The first item to mention is that future models do not need to be created exactly as

done in this thesis. Our models are general and may incorporate any type of assets, chart

operations, model parameters and simulation techniques. An investor has the capability

of manipulating trajectory set construction in simple ways such as incorporating a new

financial observable, changing coordinate systems, or redefining the way a δ-movement (or

δ0-movement) is observed. Although we believe we construct X in a rather natural way,

one might be interested in forcing each trajectory to reach terminal time T . This could be

achieved by incorporating similar model construction assumptions as those given in Ferrando

et al. [2019a] (the cases which arise in model construction that force trajectories to carry

on until time T ).

Given that we have constructed two different ways that an investor can define a δ-

movement, we see from our provided figures that there are many contrasting characteristics

between the two model types when observing charts. The simplest example would be to

compare Figures 5.9 and 17, where |NE(x, T )| decreases with an increase of δ in Figure 5.9,

while |NE(x, T )| increases with an increase of δup = δdown in Figure 17. It is also interesting

to note that the values for |NE(x, T )| stabilize after δ (or δup and δdown) is increased to a

certain point. For δ-uncorrelated models, the values for |NE(x, T )| degenerate to 0, while
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the same values stabilize at about 52 elements (this stabilization is seen in Figure 17 in the

Appendix).

This same behaviour is apparent in other parameters such as N∗(x, T , ρ) and N∗(x, T , ρ).

When increasing δ in δ-correlated models, values for N∗(x, T , ρ) and N∗(x, T , ρ) (shown in

5.2) decrease until δ is large enough we observe N∗(x, T , ρ) = 0. Conversely, when increasing

δup and δdown in δ-correlated models, values for N∗(x, T , ρ) and N∗(x, T , ρ) (shown in 5.6)

increases until they stabilize at around δup = δdown ≈ 8.0. The parameters T∗(x, T , i) and

T ∗(x, T , i) also exhibit more values of δup and δdown that correspond to trajectories ending

at terminal time t0 + T (comparing Figures 5.3 and 5.7).

As expected, the constructed market models had values for V 0(X0, X
2,M0),

V 0(X0, X
2,M0), V 0(X0, X

2,MI), V 0(X0, X
2,MI), V 0(X0, X

2,MII), V 0(X0, X
2,MII)

which satisfied the inequality given in Equation (4.7). It is seen in some models created

throughout Chapter 6 that V 0(X0, X
2,M0) = V 0(X0, X

2,MI) or V 0(X0, X
2,M0) =

V 0(X0, X
2,MI). This indicates that the pruning constraints incorporated in Type I mod-

els did not prune enough nodes to cause the price bounds to satisfy V 0(X0, X
2,M0) <

V 0(X0, X
2,MI) and V 0(X0, X

2,M0) > V 0(X0, X
2,MI). In contrast to the Type I

pruning constraints not tightening price bounds (compared to Type 0 models), pruning

constraints used in each of the Type II models constructed in this thesis pruned trajec-

tory sets and yielded initial values satisfying V 0(X0, X
2,MI) < V 0(X0, X

2,MII) and

V 0(X0, X
2,MI) > V 0(X0, X

2,MII).

We turn the reader’s attention to Figure 3.3 and note that with the addition of historical

data in the estimation process the worst-case pruning constraints widen. This, and the fact

that we find V 0(X0, X
2,M0) = V 0(X0, X

2,MI) and V 0(X0, X
2,M0) = V 0(X0, X

2,MI),

would indicate that the pruning constraints N∗(x, T , ρ), N∗(x, T , ρ), T ∗(x, T , i), and

T∗(x, T , i) are non-informative. Future research could involve finding combinations of assets

which provide stable pruning constraints with the accumulation of historical data.

In this thesis we set N(X) = 4 to limit the computation time required to construct and

value trajectory sets. We expect that when setting N(X) = i∗ (i.e. constructing markets

without restricting the number of portfolio rebalances) our price bounds [V 0(X0, X
2,M),

V 0(X0, X
2,M)] to widen. That is, we expect V 0(X0, X

2,M) to decrease and V 0(X0, X
2,M)

to increase. Future work could entail using longer computation times to determine price

bounds for models while not restricting the number of portfolio rebalances.

Output for profit and loss for trajectory path simulation is also worth mentioning. First,

note that when we set v = V 0(X0, X
2,M) our portfolios superhedge the asset X2 and when

v = V 0(X0, X
2,M) our portfolios underhedge the asset X2. This is seen in Figures 6.16,

6.16, 6.24, 6.25, 6.33, and 6.34. We also note that when setting v = X2
0 the proportion of

sampled trajectories which profit increases for each subsequent model (Type 0, I and II).
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We also mention that there is a larger proportion of losing (not profitting) trajectories in

the trajectory sets created in Section 6.2 (the reader may observe this in Figure 6.6). Given

that, in our financial setup, we short X2 while trading X1, it is possible that when we

observe cases such as in Figure 6.6 an investor could observe more profitting trajectories by

longing X2 and performing the inverse trades than what our algorithm provides (instead of

buying we would sell, and vice-versa).

We constructed market models with two choices of numeraire to see the effect of selecting

a risky numeraire. We were also interested to observe geometric characteristics of our use

of the convex hull in the paper and the effect of changing a numeraire on the shape of the

hulls. Although we show how the shape of our convex hulls stabilize after the addition of

data in Figure 5.11 and throughout multiple figures in the Appendix, we do not provide any

insight to selecting one numeraire over the other. Recall that the reference Filipovic [2007]

shows that there is no optimal numeraire that provides an investor with a lower risk than

any other numeraire.

Recall that the trajectory market models constructed in this thesis will never signal a

market misprice (i.e. X2
0 /∈ [V 0(X0, X

2,M), V 0(X0, X
2,M)]). An open problem to the

reader would be going about constructing market models without instantiating models with

knowledge of X2
0 . If models were to signal a market misprice, our models could help investors

identify investment opportunities.

Our models might also provide an opportunity for investors to incorporate machine

learning learning techniques in optimally calibrate model. We expect that machine learning

could be used to optimize an investor’s calibrated parameters, which then would yield models

which minimize the risk associated with constructing a portfolio with initial value v = X2
0 .

We also mentioned in Section 4.3 that trajectory paths were sampled from a population (i.e.

X ) by imposing a uniform distribution on trajectories in our population. Future work may

may also entail determining an optimal probability distribution to impose on trajectory

paths in X . Using a different probability distribution could then provide an investor a

probability of gains.

Thus, we conclude that this thesis develops the basic framework required to construct

a trajectory based market model with a purely observational approach to superhedge (and

subhedge) an asset X2 with a portfolio constructed of asset X1. Our setting for constructing

a trajectory set is left quite general and investors are free to set how they wish to construct

models. One may select an arbitary number of stocks to construct a portfolio with and is

not limited to a conventional riskless asset as the choice of numeraire. We adopt a worst-

case point view which naturally restricts how our trajectories unfold. Framework for model

construction allows for arbitrage opportunities to be included as long as we ensure nodes

within our market are locally 0-neutral. This in turn provides an investor with meaning-
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ful prices which incorporates critical information such as future arbitrage opportunities.

Thus the trajectory models proposed in this paper allow an investor to extract risk-taking

information about how an asset’s trajectory will unfold.

The construction of our market models, namely the Type II market models, is quite

computationally intensive due to the size of discrete grid our Xi provide. Although it is not

performed in this thesis, it would be of interest to construct models with the ability to set

the maximum number of possible rebalances to our worst-case estimate. In order to do this,

computation times could decrease if one could integrate parallel dynamic computing into

the construction of X . With faster computation an investor would be able to use a larger

discretization of observable parameters (i.e. decrease values for δ̂1, δ̂2 and ν̂0).

We also identify several areas which an investor might be able to incorporate machine

learning techniques to aid with calibration and the possibility of signalling market misprices.

There is also the opportunity to impose a preferred - or perhaps estimated - probability

distribution on a trajectory set to increase probability of gains. An open problem that

remains after this thesis is determining how to construct multidimensional trajectory market

models without knowledge of the initial price X2
0 .
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Appendices

In this appendix we visualize the historical data for the assets we utilize in this thesis. There

are a number of different representations shown here. First, we show the historical data for

the assets s(t) =
(
s0(t), s1(t), s2(t)

)
, where s0(t), s2(t), and s2(t) represent the historical

stock prices for Twitter, Facebook and Netflix, respectively. We also show this same data

on the different time intervals (T 1 and T 2) which are described in Section 6.1.

Assets Used

We begin by providing the reader with a visual representation of the data used throughout

the thesis in our estimation processes.

117



Figure 1: Here we have that x1(t) and x2(t) represent the stock values for Facebook and Netflix,
respectively, while using currency as numeraire ([1.] in enumeration from Section 6.1). We use
the dollar currency as numeraire in this case. The top subplot shows asset values throughout the
interval T = T 1while the lower subplot uses T = T 2 as given in Section 6.1.
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Figure 2: Here we have that x1(t) and x2(t) represent the stock values for the stock prices of
Facebook and Netflix discounted by the stock price of Twitter, respectively ([2.] in enumeration
from Section 6.1). The top subplot shows asset values throughout the interval T = T 1 while the
lower subplot uses T = T 2 as given in Section 6.1.
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Growth of the Convex Hull

In Figure 5.11 we provided a visualization of how the shape of M = {(m1δ̂1,m2δ̂2) :

∃(m1,m2, q, P ) ∈ NE(x, T )} changes as more data is accrued to the estimation process.

Here we provide analogous output displaying how the convex hull of M grows when using

more data, and different numeraires. It is seen in the following figures that there becomes

a point where the shape of co(M) stabilizes after a certain amount of data is added.
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Figure 3: For M = {(m1δ̂1,m2δ̂2) : ∃(m1,m2, q, P ) ∈ NE(x, T )} we show how co(M) grows with
the increase of data. Here the assets historical time interval T = T 1 and data described in [1.]
(currency as numeraire). We select the following values for the estimation process: δ = 3.378,
δ0 = 0, δ̂1 = δ̂2 = δ/2 and ν̂0 = δ. Each subplot has values for m1δ̂1 along the x-axis and m2δ̂2

along the y-axis. Notice the convex hull’s stability after incorporating about 150 days of data. Note
that this figure is similar to Figure 5.11, but using more historical data. Each subplot has values
for m1δ̂1 on the x-axis and m2δ̂2 along the y-axis.
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Figure 4: For M = {(m1δ̂1,m2δ̂2) : ∃(m1,m2, q, P ) ∈ NE(x, T )} we show how co(M) grows
with the increase of data. Here we use historical time interval T = T 1 and data described in
[2.] (Twitter as numeraire). We select the following values for the estimation process: δ = 0.103,
δ0 = δmin = 5.159× 10−7, δ̂1 = δ̂2 = δ/2 and ν̂0 = δ. Each subplot has values for m1δ̂1 along the
x-axis and m2δ̂2 along the y-axis. Notice the convex hull’s stability after incorporating about 30
days of data. Each subplot has values for m1δ̂1 on the x-axis and m2δ̂2 along the y-axis.
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Figure 5: For M = {(m1δ̂1,m2δ̂2) : ∃(m1,m2, q, P ) ∈ NE(x, T )} we show how co(M) grows
with the increase of data. Here we use historical time interval T = T 1 and data described in
[2.] (Twitter as numeraire). We select the following values for the estimation process: δ = 0.103,
δ0 = δmin = 5.159 × 10−7, δ̂1 = δ̂2 = δ/2 and ν̂0 = δ. Each subplot has values for m1δ̂1 along
the x-axis and m2δ̂2 along the y-axis. Notice the convex hull’s stability after incorporating about
150 days of data. Note that this figure is similar to Figure 4, but using more historical data. Each
subplot has values for m1δ̂1 on the x-axis and m2δ̂2 along the y-axis.
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Figure 6: For M = {(m1δ̂1,m2δ̂2) : ∃(m1,m2, q, P ) ∈ NE(x, T )} we show how co(M) grows with
the increase of data. Here we use historical time interval T = T 1 and data described in [3.]. We
select the following values for the estimation process: δ = 7.688 × 102, δ0 = δmin = 2.212 × 106,
δ̂1 = δ̂2 = δ/2 and ν̂0 = δ. Each subplot has values for m1δ̂1 along the x-axis and m2δ̂2 along the
y-axis. Notice the convex hull’s stability after incorporating about 30 days of data. Each subplot
has values for m1δ̂1 on the x-axis and m2δ̂2 along the y-axis.
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Figure 7: For M = {(m1δ̂1,m2δ̂2) : ∃(m1,m2, q, P ) ∈ NE(x, T )} we show how co(M) grows with
the increase of data. Here we use historical time interval T = T 1 and data described in [3.]. We
select the following values for the estimation process: δ = 7.688 × 102, δ0 = δmin = 2.212 × 106,
δ̂1 = δ̂2 = δ/2 and ν̂0 = δ. Each subplot has values for m1δ̂1 along the x-axis and m2δ̂2 along the
y-axis. Notice the convex hull’s stability after incorporating about 100 days of data.Note that this
figure is similar to Figure 6, but using more historical data. Each subplot has values for m1δ̂1 on
the x-axis and m2δ̂2 along the y-axis.
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Parameter Estimation - Using Currency (US $) as Nu-

meraire

Output for NE(x, T )

Figure 8: m1, m1, m2, and m2 vs. δ for δ-uncorrelated models.
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Figure 9: m1, m1, m2, and m2 vs. δ for δ-correlated models. Here we have that δup = δdown = δ
where δ represents the value along the x-axis in the figure.

Figure 10: q, and q vs. δ for δ-uncorrelated models.
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Figure 11: q, and q vs. δ for δ-correlated models. Here we have that δup = δdown = δ where δ
represents the value along the x-axis in the figure.

Parameter Estimation - Using Twitter as Numeraire

In Chapter 5 we viewed various results for parameter estimation using the assets described in

[1.] in the enumeration in Section 6.1; which uses a simple currency as numeraire. Since this

paper is concerned with constructing trajectory market models with an arbitrary numeraire

we show parameter estimation results for the assets described in [2.] in the enumeration

in Section 6.1, which uses the stock price of Twitter as numeraire. We provide it in the

appendix to avoid making the bulk of the main paper too long. Note that this output is

analogous to output shown throughout Chapter 5 which uses currency as a numeraire.
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Figure 12: maxi

(
X∗(x, T , i)

)
and mini

(
X∗(x, T , i)

)
vs. δ for δ-uncorrelated (top plot) and δ-

correlated (bottom plot) models. Here we have that T = T 2 as given in Chapter 6. This represents
the maximum and minimum amount Xi may vary from X0. Notice that there are instances of δ
where we have that maxi

(
X∗(x, T , i)

)
= mini

(
X∗(x, T , i)

)
. This indicates that if δ is calibrated to

any of these values, there is only one [t0, t0 + T ] ∈ T where we observe a δ-movement. Parameters
are as given in Sections 6.3 and 6.4.
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Figure 13: N∗(x, T , T ) and N∗(x, T , T ) vs. δ for δ-uncorrelated (top plot) and δ-correlated
(bottom plot) models. Here we have that T = T 2. Greater the value of N∗(x, T , T )−N∗(x, T , T )
in this figure provide more stable output as it does not restrain the future entirely. i.e. choosing
δ = 1.0 allows trajectories to reach time T with at least 8 rebalances but less than 18 rebalances.
Parameters are as given in Sections 6.3 and 6.4.
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Figure 14: T ∗(x, T , N(X)) and T∗(x, T , N(X)) vs. δ for δ-uncorrelated models. Here we have
that T = T 2 as given in Chapter 6.
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Figure 15:
(
T ∗(x, T , i)− T∗(x, T , i)

)
vs. δ for δ-uncorrelated models. Here we have that T = T 2

as given in Chapter 6. This plot shows how wide the pruning constraints T ∗(x, T , i) and T∗(x, T , i)
are at each δ-movement.

Output for NE(x, T )
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Figure 16: |NE(x, T )| vs. δ for δ-uncorrelated models. We use two different time intervals of
historical data in the plots provided. The first uses T = T 1 while the second plot uses T = T 2,
where T 1 and T 2 are given in Chapter 6. Here we have δ ∈ [δmin, δmax] for each time interval used.
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Figure 17: |NE(x, T )| vs. δ for δ-correlated models. We use two different time intervals of
historical data in the plots provided. The first uses T = T 1 while the second plot uses T = T 2,
where T 1 and T 2 are given in Chapter 6. Here we have δ ∈ [0.01, 8.0] for each time interval used.
It is shown in a figure in the appendix that the size |NE(x, T )| stabilizes after a certain δ. Note
that we have δup = δdown = δ where δ represents the value along the x-axis in the figure.

134



Figure 18: m1, m1, m2, and m2 vs. δ for δ-uncorrelated models.

Figure 19: m1, m1, m2, and m2 vs. δ for δ-correlated models. Here we have that δup = δdown = δ
where δ represents the value along the x-axis in the figure.
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Figure 20: q, and q vs. δ for δ-uncorrelated models.

Figure 21: q, and q vs. δ for δ-correlated models. Here we have that δup = δdown = δ where δ
represents the value along the x-axis in the figure.
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