Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2007

Effects of software aging and rejuvenation on
performability of layered distributed systems

Jigar Patel
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Patel, Jigar, "Effects of software aging and rejuvenation on performability of layered distributed systems" (2007). Theses and
dissertations. Paper 46S.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/465?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

EFFECTS OF SOFTWARE AGING AND
REJUVENATION ON PERFORMABILITY OF
LAYERED DISTRIBUTED SYSTEMS

by

Jigar Patel, B.Eng.
S.P.University, India, 2005

A thesis presented to Ryerson University
in partial fulfillment of the
requirements for the degree of
Master of Applied Science
in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2007
© Jigar Patel 2007

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

UMI Number; EC54178

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC54178
Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346

EFFECTS OF SOFTWARE AGING AND REJUVENATION ON
PERFORMABILITY OF LAYERED DISTRIBUTED SYSTEMS

© Jigar Patel
Master of Applied Science

Department of Electrical and Computer Engineering

Ryerson University, 2007

Abstract

When a fault-tolerant layered distributed system continues its operation despite the
presence of component failures, its performance is usually degraded. Its performance can
also be degraded if it is executing continuously for a long period of time due to a
phenomenon known as software aging. To prevent unexpected or unplanned outages due
to aging, a pro-active technique called software rejuvenation can be employed. This
technique involves gracefully terminating an application and immediately restarting it
with a refreshed internal state. For proper modeling of these systems, their performance
and dependability characteristics need to be considered in a unified way, called
performability. This thesis proposes a new model called “Rejuvenated-FTLQN”, to
evaluate the effects of software aging and rejuvenation on performability of these layered
systems. Specifically a Layered Queueing Network (LQN) is used for performance
analysis and a Multi State Fault Tree (MSFT) is used for dependability analysis. The
model is also used to study the impact of performing rejuvenation, time to perform
rejuvenation and rejuvenation frequency on performability of a system. A software tool

called “Rejuvenated-FTLQNS” has been developed to automate the model solution.

it

Acknowledgements

First, I would like to thank my supervisor, Prof. Olivia Das for her unequivocal support
and guidance over a long period of time. I am very fortunate to have worked with her
during the entire course of my graduate studies. I will never forget the countless
moments, that we have spent discussing new ideas. Her advice, encouragement, Kindness

and patience have been a source of great inspiration to me.

Special thanks are due to Prof. Alagan Anpalagan and Prof. Olivia Das for working
. together to ensure the series of scholarships I have received. I would also like to thank the
Government of Ontario for awarding me Ontario Graduate Scholarship (OGS) and

Natural Sciences and Enginecring Research Council (NSERC) for funding the research.

Words cannot express my gratitude towards my father (Naresh), mother (Kirti) and
sister (Khushbu) for all their support and unconditional love. Hellen Keller has truly said
“The best and most beautiful things in the world cannot be seen or even touched - they

must be felt with the heart”. 1 dedicate this thesis to my mother.

iv

Table of Contents
CHAPTER 1- INTRODUCTION........ 1
1.1 INTRODUCTION AND MOTIVATION...vuciresserresrenressssreesssesesssessssssssseassnnssessssnsesssssosssnss 1
1.2 PROBLEM DEFINITION AND RESEARCH OBJECTIVES .iiittretteieesessennseseesesssssnnesssesseseeses 3
1.3 WHY THIS PROBLEM IS IMPORTANT? ceccttveverteressssareesesssssssoesssersnssnessssssonssnnsessssssseeses 5
1.4 COMPARISON WITH RELATED PREVIOUS WORK .cveuvttvsseeessvnessesersereasssenesssssenessserssssn 6
1.5 CONTRIBUTIONS coutieverinneiissresiseesseressesesssesssssessssesssssssanesssssssesessssssasaesessesssssessssessnes 8
1.6 OUTLINE OF THE THESIS ..ueicvviivisseeesssessssesssssessssesssssessssssssossesssssesssssssesssessssessnssssnns 9

2.1 ANALYTICAL MODELINGccctvtrnterernerereessssensressssssesssssisessssessssesssnssssessessassensessens 12
2.2 CLASSIFICATION OF SOFTWARE FAULTS....covteuecenisnsrensesiensseniesessesessssesssnssessssssens 14
2.3 SOFTWARE AGING AND REJUVENATION ..cvevvrirerererisssssssssisssersassarenssnsassssssssosssssesenes 16
2.4 QUALITY ATTRIBUTES . ..cccccviurrirneniresasssssessessssssassssesssssssssensssssessessosessassensaresssssssssses 19
2.5 FAULT TREE AND MULTI STATE FAULT TREE (MSFT) covcvevvrenrirrninerieesssesssssenne 21
2.6 MARKOV CHAINS woucuitirinriennnnsenesesesesisssssessasssssssssssssssesssssssessssessssssssssosessssssens 24
2.7 LAYERED DISTRIBUTED SYSTEMS OR LAYERED ARCHITECTURE ...cvvvevereresecsessenens 27
2.8 QUEUEING NETWORK AND LAYERED QUEUEING NETWORK (LQN) MODEL.......... 28
2.9 FAULT TOLERANT LAYERED QUEUEING NETWORK (FTLQN) MODELccovvevnenn. 32
2.10 DIFFERENT MODELING APPROACHES FOR SOFTWARE REJUVENATIONcocovevvvnnne 33
2.11 PERFORMABILITY: MEASURES AND MODELSoocvvitirinenineinerersssssesssssessassessessees 37

2.11.1 Performability MEASUTES ... ennrersiniinssissssissssssssssmsesisssossssssassssosessissssssssessmssssressesss 37

2.11.2 Performability MOGEISvieeririesnnvneninssssesssssssessssississssissessssssssssssstssssessasssasssessons 39

CHAPTER 3 - REJUVENATED-FTLQN MODEL AND ITS SOLUTION..42

3.1 REJUVENATED-FTLQN MODEL ...ccocvveirreirersererencsnisseesseeesessssesssssssessssessassasssssessesns

3 1.1 SYSIEm-1evel MOdEL.....n.cviriniviviriisiniinesisinsiiiiiiiesssssssseissssssssssssans
3.1.2 Model for Individial COMPONENES ..cciviisisssisniinssiissssssssassssenasssssssss
3.1.3 Modelling Fault Propagarlion......eiessissssisisssssmsenonmsessisessssssenssisssssssssssssssossosss
3.1.4 Operational ConfiQUIALIONS.....cvvrsisiessisssisisssrssssisisistsssssnsersssssssssssssesssnsssssssssssorsnsasassessssssssens
3.1.5 Modelling Performance Degradation die 10 SOftWare Ainguevvessnsverereeroresssasssssasenns

31,6 MEASUTE Of IMIEIESt cuvunnviniirsernsssiisisssossssssssssissinisinissessnesssssssssssasssssssisssssissssssssesssssosssesesssssesess

" 3.2 REJUVENATED-FTLQN MODEL SOLUTIONcccererrtrerereeruessessessnessasssssessessrassessaes
3.3 EXAMPLE- REJUVENATED-FTL.QN MODEL SOLUTION.....cccovvuiirisnnesieererescssrenossnes
314 SUMMARY ...vviveiviereiniriensenseessessesessssssessessassasssessessssssessessessaessessessesssessesssssssonsossons

4.1 MODEL SOLUTION WITH AND WITHOUT REJUVENATIONcovuverrerrieernenneeseesesnens
4.2 EFFECTS OF REJUVENATION RATE cciinivtiniimnrinnninsnineennninenennsnsssessessssssssessssessess
4.3 EFFECTS OF FAULT TOLERANCEcoveuerurrene ettt b e ne s s s e s e easebesheebesberaens
4.4 COMPARING DIFFERENT DESIGNS 1iiveivtiessisseessiisiesssneesenssnesssesssesssesssesssscsssesssssnesns
4.5 SUMMARY .eoivrrieinueniressineerssessssssonsssssrssssasssssessssssssessssssssnssssssssssssossssssssassssssssssssss

CHAPTER 5 - REJUVENATED-FTLQN MODEL SOLVER

DESCRIPTION......ccccusueucunsesuesesasnesens . P —

5.1 OVERVIEW OF REJUVENATED-FTLQNS TOOL ...coovevierrirvrennirnesseesnsssesseessassesssesnnens
5.2 DESCRIPTION OF REJUVENATED-FTLQNS TOOL.....coccoivvvirrinrineiiiesesesrsssssesssesees
5.3 HOW TO USE REJUVENATED-FTLQNS TOOL....covivevuiinieeseesseessseesseessesssesesessseesseses
Si4 SUMMARY coiuirriiiriseerenninssnssmsnenssessisnessissssiesssessssesssesssssssesessesessensenessessorssesessssens

vi

75

CHAPTER 6 - CASE STUDY: BUILDING SECURITY SYSTEM (BSS).... 93

6.1 DESCRIPTION OF BUILDING SECURITY SYSTEM (BSS) wuvviveveerirevereesesesesssressssenasenne 93
6.1.1 Description of TWOo Main SCENATIOs...u e, 94
6.1.2 Main Components of Building Security SYSIM ... ivveviiensinnnerncnnsiiesssesnienssssssenaose 94

6.2 SCENARIOS FOR BUILDING SECURITY SYSTEM (BSS) e s see s e ssea s ssetes 95

6.3 LQN AND FTLQN MODEL OF BUILDING SECURITY SYSTEM....ccceceimnnienuernsnsnasianns 99

6.4 REJUVENATED-FTLQN MODEL - BUILDING SECURITY SYSTEMcccoveeruesurseencens 101

6.5 DISCUSSIONS .oititiiintitistisisncnsiesitsesesresmsssssnssssnssssssssssssesssssssssassssessanssssssnsssesess 108
6.5.1 Model Solution with and without Rejuvenation ... 108
6.5.2 Effects of ReJUVENAHON RALEccvivrevvisinsiserisessensssnsisesisnisssssssssiesnsnesisnsssssssesossssesssassssasssns 109

0.0 SUMMARY 1iiiiriinirisenismienssinesismneserenssessssssinrssssstessssanssssssssarassssanasssssasssosasassosanessns 111

CHAPTER 7- CONCLUSIONS AND FUTURE WORKccccceeneereaensrsrsaenes 112

7.1 RESEARCH SUMMARY ...citiiiiiiimininiiiasesssssnsisssssssasssssssssissssssstssstsesesssssenssssssessanns 112
7.2 DIRECTIONS FOR FUTURE RESEARCH ..cvevvvierecessesssssessnssninssnsnssnisssisnessesssssssssnes 114
7.2.1 Reduction in the number of Operational Configurations. .. 115

7.2.2 Time-Based Rejuvenation PoliCY ...t 115

7.2.3 Semi-Markov Model for Modeling Aging and Rejuvenation........eninniinenissnssn 116

7.2.4 Load-balanced Rejuvenated- FTLON MOdel.....vniiviininsiinisnnnniinnissnsisssse 116
ADPDPCIUAICES ...oooceeeeerrsessssss st es SRR AR R R RRRS SRS e 117
BiblOGEapRyot e e e 131

vii

List of Tables

Table 1. Steady State Probabilitiesc.vcivivninninninninniinnnseseeeeemens 56
Table 2. Operational Configurations.......ueiiisseemsssmee 59
Table 3. Mean Exccution Demandsccueeisnissenniesiimnseseesnsssssisssensssssssses 62
Table 4. Reward rate and Probability of Operational Configurationsccceveereveerecervenn. 63
Table 5. Rates IN CTMOECS i 71
Table 6. Steady state probabilities- Without REJUVENationcevvevvverererrenrenernenninens 71
Table 7. Steady state probabilities- With ReJuvenation........ceveveeenienenenenenessenerseens 72
Table 8. Reward rate and Probability of Operational Configurationsceeeererveerereens 73

Table 9. Design 1- Operational Configurations (due to presence of secondary server only)

... 83
Table 10. Design 2- Operational Configurations (due to presence of secondary server

OMIY) crttcriiinrinnenieniineerreeseerieesiseesnesssesssssonsssssesssssssssessssessssssasersssssnessesersosssessasonsasssnesssesssoes 83
Table 11. Design 3- Operational Configurations (due to presence of secondary server

ONY) tttttueisuiesiensiinennienmeenenreressssstsesssessssssesssessresssssstesssessssssaesssassseesssesssessnesnnessasssnessssesanes 83
Table 12. Mean CPU demands for Primary and Secondarycocvevivenienreeniereeenees 84
Table 13. Steady State Performability for three different designs.......oveevvivverrerenernnennes 84
Table 14. Steady State Probabilities ... 102
Table 15. Operational Configurations (due to presence of secondary server only)........ 104
Table 16. Probability with and without rejuVenation.......ccveerereirenernnessiressessersenesssesaens 109

viii

List of Figures

Figure 1.1 - Main Ingredients of the Problem........coeviiiniieniiinninneenia, 4
Figure 1.2 - Comparison of LQN, FTLQN and Rejuvenated-FTLQN............ SRR 8
Figure 2.1 - Techniques for evaluation of the SysteM....cvueieneininecnineeeneen, 13
Figure 2.2 - Classification of Software faultsc.ccecevevniiimninncnniiniiin, 15
Figure 2.3 - Performability — a COMPOSIte MEASUIE ..cuvirerirerersieiintiieisnsisismssinessnsenensns 21
Figure 2.4 - A FAUlt TTEE w.oivriviiiiiniinrniieiiinisiiiessisnissnenssesssnsnsisssssesnssssssnssessns 22
Figure 2.5 - A Multi State Fault TTeecocvivvnriririvnmiinnnnenennnnnssnnsisseeee 24
Figure 2.6 - Example-DTMC.......ccccoininnnnmiienensssnn. 26
Figure 2.7 - EXample-CTMC ..., 26
Figure 2.8 - An LQN Model ..., 31
Figure 2.9 - An FTLQN MOdEL.....cccocvinininnnninnmiiiiiiissssassss 32
Figure 2.10 - State Transition DIagram ... 33
Figure 2.11 - Petri Net Model for Software Rejuvenation.......eveniisienniiie. 35
Figure 3.1 - Example- FTLQN Model.......ccovvninnininnnmnnneeninnemsns 43
Figure 3.2 - CTMC Model for Software Task— Without Rejuvenation.........cvvveeereniinnes 44
Figure 3.3 - CTMC Model for Software Task — With Rejuvenation........cccevevrvieesnenenens 45
Figure 3.4 - CTMC Model f0r ProCessor.... oo 45
Figure 3.5 - Fault Propagalidn And-Or Graph for FTLQN Model.........covvrinvinnnnrencne. 48
Figure 3.6 - Different Operational Configurationsc.cvrevinmiinnimnennenioniins 49
Figure 3.7 - FTLQN MOdElciviiviiniiieniininenenisnissisisiissimminimosimsissons 53
Figure 3.8 - CTMC —INterface tasK.....cvveereiveerenrenrinnnnnsieonmmssnieiimenmsnmeseenes 54
Figure 3.9 - CTMC — APPlICation taSKccevrevrereeieeiesienseesereriesseseesessessesssssersesssssessessonses 55
Figure 3.10 - CTMC = Database =1 tasK ...uvvrvervrerrernnenseeensesesesssssnsssssessesssasesserassesassans 56
Figure 3.11 - Fault Propagation And-Or Graph........cccoveenneeismeen, 57
Figure 3.12 - Different Operational Configurationscceccvesesesesnsnsesisssesssssesensesssenesnns 58
Figure 3.13 - Operational Configuration = S1......ceeeiererererennsnnssssenesiosesssnssen 60
Figure 3.14 - Operational Configuration = S9.....vvieeienesneresnnenennesenssssssss 61
Figure 3.15 - MSFT for Databasc-1 unoperational.........cveevevesressesssnsensesnenenessseennns 65

Figure 3.16 - MSFT for System unoperational.......ccovvvenmininninnnenenesens. 67

Figure 4.1 - CTMC — Without Rejuvenationccuuveiveiennrenncnnnnnnissesssnssessensnssns 70
Figure 4.2 - CTMC — With Rejuvenation ... 70
Figure 4.3 - Steady State Performability (SSP) v/s Rejuvenation Rate.......ocevevvevirerencnes 75
Figure 4.4 — NO fault tOIEIaNCE ..cvcvriviririniirisisesmsinisisssiisiissssssiesesssssssssaessss 76
Figure 4.5 — With fault toJErance ... 76
Figure 4.6 - SSP v/s Rejuvenation Rate- With and Without Fault Tolerancecoevu... 77
Figure 4.7 - SSP v/s Rate R3- With and Without Fault Tolerance.......c.coecevernverereressanas 78
Figure 4.8 - SSP v/s Rate R2- With and Without Fault Tolerance.......c.cuceveveeiieinnniennnens 78
Figure 4.9 - Design 1 - FTLQN MOdEl....oiiinniieniiiiiiseses 80
Figure 4.10 - Design 2 - FTLQN Model.......coovmienninninninnenessen, 81
Figure 4.11 - Design 3 - FTLQN Model....ccviviniiiiniinieieennemees 82
Figure 5.1 - LQNS v/s FTLQNS v/s Rejuvenated-FTLQNScooorivineninnnnenennnnene 86
Figure 5.2 - FTLQN Modelcocvvniiimnmininninnnniiiienieniiesnimsssssssesses 89
Figure 5.3 - Rejuvenated-FTLQNS tool — Block Diagram.........cecvivvisnninnienesinnnninnn 90
Figure 5.4 - Rejuvenated-FTLQNS Input File ... 91
Figure 5.5 - SSP calculated by Rejuvenated-FTLONS ... 92
Figure 6.1 - Building Security System- Main Components..........oeeveeinsniinivessesssasssnnne 95
Figure 6.2 - Sequence Diagram for Access Control SCenariocouiiriennessnsnseenenns 97
Figure 6.3 - Sequence Diagram for Acquire/Store Video Scenario........ueveneseisisrssenenns 98
Figure 6.4 - LQN Model of Building Security SYSteM......oucvvuviverisnresisniennnnninnnnsieness 99
Figure 6.5 - FTLQN MOdE] ..o 100
Figure 6.6 - CTMC for Cardeader/Disk taskocvvviinnirivnmininnnieninnieinine, 101
Figure 6.7 - CTMC for AccessController tasK...uvmmiiiimimimsn. 101
Figure 6.8 - CTMC for Database-1 and Database-2 ..., 102
Figure 6.9 - Fault propagation And-Or graph.......ccrimiinninieeens 103
Figure 6.10 - MSFT for Database-1 (primary) unoperationalcovsvseesvesnsnssesnsneresnns 106
Figure 6.11 - MSFT for system unoperational........ceriiinniienniiminniiniesees 107
Figure 6.12 - Rate R4 V/S Steady State Performability (SSP)......cocovviinivivininennnins 111
Figure 6.13 - Rate R3 V/S SSP..ivivviiiiiiiiiiiiiiiiiin e, 109
Figure 6.14 - Rate R2 v/S SSP .o, 111

List of Appendices

Appendix A: BNF Grammar for Rejuvenated-FTLQNS Input File......ovvvvvnivnnen o 117
Appendix B: Sample Input and output files generated by Rejuvenated-FTLQNS......... 122

xi

List of Acronyms

CTMC - Continuous Time Markov Chain

DTMC - Discrete Time Markov Chain

FTLQN - Fault Tolerant Layered Queueing Network
FTLQNS - Fault Tolerant Layered Queueing Network Solver
LQN - Layered Queueing Network

lLQNS - Layered Queueing Network Solver

MSFT - Multi State Fault Tree

OLTP - On-Line Transaction Processing

- PERL - Practical Extraction and Report Language

QN - Queueing Network

SHARPE - Symbolic Hierarchical Automated Reliability and Performance Evaluator
SOAP - Simple Object Access Protocol

SSP - Steady State Performability

xii

Chapter 1
Introduction

1.1 Introduction and Motivation

In recent years, our dependency on complex distributed systems for carrying out chores
of our daily life has increased dramatically. For example, banking, health care, data
communication, telecommunication tasks inevitably involves interaction with these
systéms. Since outages of these systems incur high cost and may result in human loss,
there has been widespread research on designing these systems to be able to tolerate
failures. Research has repeatedly found that the main cause of system outage is due to
software failures [28]. Software faults are classified by Gray [28] into Bohrbugs and
Heisenbugs. Bohrbugs are essentially permanent design faults and hence almost
deterministic in nature. They can be identified easily and weeded out during the testing
and debugging phase (or early deployment phase) of the software life cycle. Heisenbugs,
on the other hand, are essentially permanent faults whose conditions of activation occur
rarely or are not easily reproducible. Trivedi et al. [29] introduced another kind of
software fault called aging-related fault where once the software is started, potential fault
conditions gradually accumulates with time leading to either performance degradation or
transient failures or both. This process of software degradation while executing

continuously for a long period of time is known as Software Aging.

Software aging is observed in Internet explorer, Netscape, as well as commercial
operating systems. The possible symptoms of software aging are memory leaking,
unreleased file locks, file descriptor leaking, data corruption in the operating environment
of system resources etc. Thus it is caused by the bugs in the application program that was
developed, in the libraries that the application is using or in the application execution

environment (e.g. operating system) [31]. Software aging has been observed in

telecommunication systems [31], OLTP (On-Line Transaction Processing) systems [7],
web-servers [36], SOAP-based server [48], safety-critical systems [37], space-craft
systems [52]. The most glaring example of software aging that resulted in loss of human
life is US Patriot missiles deployed during Gulf war [37]. The accumulated round off
error led to the interpretation of an incoming Iragi Scud missile as a false alarm which

cost the lives of 28 US soldiers.

To counteract this phenomenon of software aging, a pro-active approach to fault
management called software rejuvenation aimed to prevent unexpected or unplanned
outages. due to aging may be used. Software rejuvenation is the concept of gracefully
terminating an application and immediately restarting it with a refreshed internal state
[31]. Cleaning the internal state of software might involve garbage collection, flushing
operating system kernel tables, reinitializing internal data structures, and hardware
reboot. Software rejuvenation has been successfully implemented in various systems like
IBM xSeries servers [32], scientific speech synthesis system [31] and web-servers [66].
The failure which resulted in loss of human lives (Patriot missiles) could have been

prevented if the computer was restarted after each 8 hours of running time [37].

Enterprises must continuously provide high quality of service (QoS) to gain a
competitive advantage and in order to meet the ever growing demands for increasing
number of users and additional services. The need for integrating evaluation of QoS
requirements like performance and dependability, into the software development process
has been recognized long time ago. For new applications where measurements are not
possible or even for existing applications, analytical modeling can be used for predicting
the behaviour of the system. Simulations models can be build to any arbitrary level of
detail and can provide very good estimates about the dynamic behaviour of the system.
However the time and resource cost, to build and analyze simulation models can be
prohibitive. Analytic models, on the other hand, though may not always encompass the
full dynamics of the system, provide a good balance between cost and accuracy. Analytic
models are used to gain deeper insight into the system and to help choose among

alternative designs, configurations, and so forth by quickly answering ‘what-if” questions.

Because analytic models can be build and solved quickly, they make ideal candidates for

such purpose.

Performance and dependability are the two most important quality requirements of a
system. Pure performance modeling involves representing the probabilistic nature of user
demands and predicting the system capacity to perform, under the assumption that the
system structure remains constant [68]. Pure dependability modeling deals with the
representation of changes in the structure of the system, generally due to faults, being
modeled. For modeling fault-tolerant systems that are capable to provide continued
service in presence of failures (may be in a degraded mode), their performance and
dependability should be considered simultaneously, known as performability [38].
Performability modelling considers the effect of structural changes in response to failures

and their impact on the overall performance of the system.

Business and industry is moving to the “client-server" computing paradigm. With this
computing model, clients with varying degrees of sophistication are connected to one or
more servers. The servers run applications on behalf of the clients or store some resource
such as data or perform both functions. In such distributed systems, processing of request
from users is distributed among several tasks. Most of the distributed systems used today
are structured in layers with some kind of user interface task in the topmost layer making
requests to different layers of servers [60]. Software aging can occur at any layer of
layered distributed system and rejuvenation may be implemented to combat its effects,
Thus the evaluation of performability of such layered systems, in presence of aging and

rejuvenation is needed.

1.2 Problem Definition and Research Objectives

Nowadays, most of the distributed systems with clients and servers are typically
constructed with layered software architecture. The Layered Queueing Network (LQN)
model can be used to study the performance of such layered systems. LQN model is an

extension of widely used Queueing Network (QN) model. In fault tolerant layered

distributed systems like the telecommunication systems and banking systems, the effects
of a server failure are felt through the inability of its clients to obtain service. Thus
failures are propagated by the layered dependencies. In [9], a model, known as Fault
Tolerant Layered Queueing Network Model (FTLQN), was developed to express these
layered service failure and repair dependencies and an algorithm was provided for
computing performability measures. The FTLQN model has two advantages, (1) it
closely resembles the software architecture (making it easy to build), and (2) it contains
the service dependencies which are required in one form or another to analyze the
failures. However, FTLQN model does not consider the effects of aging and rejuvenation
for software components. It would be valuable to include these effects to get a better
understanding of the overall behaviour of the system. Figure 1.1 shows the main concepts

involved in the problem definition.

Layered Distributed Systems

Software Software
Rejuvenation Problem Aging

Performability

Figure 1.1 - Main Ingredients of the Problem

The main goal of this thesis is to incorporate the effects of software aging and
rejuvenation into FTLQN performability evaluation. So the question raised is: How the
phenomenon of software aging and rejuvenation on the servers is affecting the
performability of the system? The new model termed as “Rejuvenated-FTLQN" is
introduced to answer this question. It considers the propagation of performance
degradation due to aging from lower to higher layers of servers. The performance

degradation due to aging is modeled by changing the service rate of the software tasks.

In this work, Multi-State Fault Trees (MSFTs) are used for dependability analysis and
“Layered Queueing Networks (LQNs) are used for performance analysis. MSFTs are
solved using the SHARPE (Symbolic Hierarchical Automated Reliability and
Performance Evaluator) tool [53] and the LQNs are solved using the LQNS (Layered
Queueing Network Solver) tool [21]. The model solution avoids solving very' large
Markovian models. A software tool called Rejuvenated-Fault Tolerant Layered
Queueing Network Solver (Rejuvenated-FTLQNS) has been developed using C++ and

PERL to automate the model solution technique as described in chapter 3 of this thesis.

1.3 Why this Problem is Important?

The problem of computing performability of fault tolerant layered distributed systems

under the effects of software aging and rejuvenation is important because:

» Server processes at different layers are intended to run continuously forever
except during software upgrades and they may start aging after a certain
period of time providing degraded service. This aging phenomenon affects the
performance of the system. Also, due to aging the application exhibits

increasing failure rate,

= Rejuvenation may be impleriented to counteract the effects of software aging,
and the system may be unavailable while undergoing rejuvenation affecting

the dependability of the system.

Thus taking aging and rejuvenation into account while computing performability, will
give more realistic measure of overall quality of responsiveness compared to when it is

not considered.

1.4 Comparison with Related Previous work

In this work, prediction-based rejuvenation policy [57] [58] is assumed as opposed to
time-based recjuvenation. In prediction-based rejuvenation policy, the rejuvenation starts
whenever a degraded state of the component is detected by means of analyzing some
observable symptoms. Otherwise, the component eventually goes to an undetected failed
state that usually requires higher detection and repair time than the rejuvenation time. In
time-based rejuvenation policy, rejuvenation is done after particular time interval, Time-
based rejuvenation is widely used in some real production systems E.g. web-servers

[66].

A survey about papers that follow the analytic-based approach for prediction based
rejuvenation policy can be found in [57]. A semi-markov model that relaxed the
assumption for exponential distribution was presented in [19]. A markov regenerative
process that allowed the rejuvenation trigger clock to start in a robust state was
described in [27]. A measurement based approach for proactive detection of software
aging in OLTP servers was studied in [7] using monitored data collected during a period
of 5 months. That data was used to train a pattern-fecognition tool. After the training
phase, the system was used to monitor the production environment, That tool was able to

predict the occurrence of software aging with a long time in advance.

The model we are using to capture the effects of software aging and rejuvenation is
similar to [31] [57] [58] in that it uses hypoexponentially distributed (which is an
increasing failure rate distribution) time to failure for modelling aging. This two-stage
failure process is confirmed by performing practical experiment as described in [33]. In
this experiment 20 workstations were connected to the server and it was observed that in
the operational phase, the server experiences performance degradation, characterized by
lower and lower internet access speed. The data from the server system was periodically
monitored and collected. The two quantities measured were (1) response time, the

interval from the time a client sends out the first byte of request until it receives the first

byte of reply and (2) the available physical memory. The response time had an

increasing trend and available memory had a decreasing trend as described in [33].

The two-stage failure process was also used by Rinsaka and Dohi, for behavioral
analysis of single-version and two-version software system [46]. Garg et al. [25]
considered the effect of load on aging. Decreasing service rate was used to capture
degradation caused by software aging in [44]. However, most of the above mentioned
work on aging and rejuvenation was focused on evaluation of availability aspect of the
system. For e.g. in [31], steady state availability was measured and in [27] the number of
jobs lost was evaluated. In this work, performability of the system is evaluated. Qur
work differs from previous works in following aspect: The application domain for
Rejuvenated-FTLQN model is layered distributed systems or multi-layered system,
where the failure of a service depends on other services in lower layers. Thus the aging
in layered system with multiple layers of queues is modeled. None of the previous works
has done so. The main strength of our model is its capability of capturing the aging in a

system with layers of queues.

Figure 1.2 compares the Rejuvenated-FTLQN model with two of the existing models
namely LQN and FTLQN. LQN [60] is a pure performance model. In the layered view,
there are server tasks which have their own queues of messages to serve and which in
turn make requests to lower layer servers. A Layered Queueing Network (LQN) model is
a performance modelling framework for client-server like distributed systems that use a

style of synchronous inter-task communication.

The FTLQN [9] performability modelling concept can be applied to model a class of
systems which possess a fault-tolerant client-server like structure and whose design takes
advantage of the stand-by redundancy approach, an approach that advocates the usage of
a stand-by server when the primary server fails and a mechanism to re-direct the service
requests at the time of failure. Since this is non-state space based model, it does not suffer
from state space explosion problem. FTLQN model considers layered distributed systems

and Rejuvenated-FTLQN model is an extension of FTLQN model. The choice of

selecting FTLQN model over other performability model (e.g. markov reward model) is
because of two main reasons: (1) The application domain is layered systems (2) It avoids
state space explosion problem. Rejuvenated-FTLQN model considers the effects of
software aging and rejuvenation on the software components. Performance degradation
and increasing failure rate caused by software aging and change in unavailability of the

system caused by software rejuvenation is considered while evaluating performability.

Rejuvenated-.

L FTLON .
- Pure Performance - Performability Model - Performability Model
Model - Adds dependability to - Adds the effects of Software
LQN Aging and Rejuvenation to
FTLQN

Figure 1.2 - Comparison of LQN, FTLQN and Rejuvenated-FTLQN

1.5 Contributions

The principal contributions of this thesis are as follows:

> A new model called “Rejuvenated-FTLQN” has been developed for computing
performability of layered fault tolerant client-server like distributed systems under
the effects of software aging and rejuvenation on servers. The primary contribution
being the use of MSFT (Multi State Fault Tree) in the model solution technique

(chapter 3). The model solution can be briefly outlined as below:

» Modeling Aging and Rejuvenation: A Continuous Time Markov Chain
(CTMQ) is added for every software task (process) to the FTLQN model
to take into account the effects of software aging and rejuvenation. CTMC
denotes the state of a software task and transitions between states.

» QOperational Configurations: Fault-tolerance and software aging gives rise

to the different configurations of the system in which the system is

operational. Determine all the different operational configurations of the
system using the AND-OR graph representation of the FTLQN model.

» Performance Analysis: Evaluate the Layered Queuing Network (LQN)
model for every configuration to obtain the performance measure that will
be assigned to every operational configuration.

» Dependability Analysis: A Multi State Fault Tree (MSFT) is used to
calculate the probability of the system being in each of the operational
configuration.

= Steady State Performability calculation: Combine the results from the
performance analysis and the dependability analysis to obtain the

performability measure.

> A software tool termed as Rejuvenated-FTLQONS (Fault-Tolerant Layered Queueing
Network Solver) has been developed to automate the Rejuvenated- FTLQN model
solution (chapter 5). This tool is used to analyze the effects of software aging and

rejuvenation on performability of large Building Security System (chapter 6).

> The impact of (1) rejuvenation frequency, (2) time to perform rejuvenation and (3)
the interval in which the application goes from healthy state to failure probable state

due to aging on performability is analyzed (chapter 4).

1.6 Outline of the Thesis

Chapter 2 provides background information that forms the foundation of our work, The
main concepts discussed are performability, software aging, rejuvenation, layered
distributed systems and FTLQN.

Chapter 3 presents a detailed description of the Rejuvenated-FTLQN model which is
developed in present research and the model solution technique for computing
performability with the help of an example.

Chapter 4 investigates the impact of rejuvenation on the system by comparing the model

solution in two cases - with and without rejuvenation. This chapter also discusses the

effects of rejuvenation frequency, time to perform rejuvenation and base longevity
interval on performability.

Chapter 5 presents the high level description of the software tool (Rejuvenated-FTLQNS)
that automates the model solution technique.

Chapter 6 deals with the application of Rejuvenated-FTLQN model on the large Building
Security System (BSS).

Chapter 7 concludes the study, summarizes the work and provides some directions for

future scope of studies.

10

Chapter 2
Background

This chapter introduces the preliminary concepts that form the foundation of our work.
These concepts are used throughout this thesis. In section 2.1, three main techniques used
for evaluation of a system are described along with their pros and cons. Analytical
modeling is the technique used in the present research. Section 2.2 deals with three
different kinds of software faults, including the aging-related faults. Section 2.3 describes
the phenomenon of software aging and rejuvenation along with some practical examples.
Section 2.4 discusses about various quality attributes of the system and defines the term
performability. Section 2.5 describes fault tree and multi state fault tree with the help of
an example and section 2.6 describes markov chain. In section 2.7 an overview of layered
distributed systems is given. Section 2.8 deals with the Layered Queuing Network
(LQN), which is a performance model for layered distributed systems. An extension of
LQN model called Fault Tolerant Layered Queuing Network (FTLQN) is discussed in
section 2.9. Different modeling approaches for software rejuvenation namely analytical
modeling and measurement-based approach are discussed in section 2.10, with more
emphasis on analytical approach. Finally, various performability measures including

steady state performability and different performability models are reviewed in section

2.11.

11

2.1 Analytical Modeling

There are three main techniques for understanding the dynamic behavior of a computer
system [35). When the system under study already exists and is accessible, we can make
measurements by performing experiments. When the system does not exist or it is
clumsy to deal with, a model must be developed. Analytical models use mathematical
“concepts and notation. Simulation models are computer programs that mimic the
behaviour of the system, under some assumptions. Both kind of models restricts to the

important aspects only and leave out other details.

While measurement is an attractive option for assessing an existing system or a
prototype, it is not a feasible option during the system design and implementation phases.
Model-based evaluation has proven to be an attractive alternative in these cases. Several
types of models are currently used in practice. The most appropriate type of model
depends upon the complexity of the system, the questions to be studied, the accuracy

required, and the resources available for the study.

Discrete-event simulation is also another widely.used modeling technique in practice
but it tends to be relatively expensive. Analytical modeling provides a cost-effective
alternative to simulation for studying the performance and dependability of computer and
communication systems. Due to recent developments in model generation, solution
techniques and automated tools, large and realistic models could be developed and

studied.

A model is an abstraction of a system: an attempt to distill, from the mass of details
that is the system itself, exactly those aspects that are essential to the system’s behavior.
Once a model has been defined through this abstraction process, it can be parameterized
to reflect any of the alternatives under study and then evaluated to determine its behavior
under this alternative. Using a model to investigate system behavior is less laborious and
more flexible than experimentation, because the model is an abstraction that avoids

unnecessary detail. It is more reliable than intuition, because it is more methodical: each

12

particular approach to modelling provides a framework for the definition,
parameterization, and evaluation of models. Of equal importance is that using a model

enhances both intuition and experimentation.

Evaluation

Figure 2.1 - Techniques for evaluation of the system

The choice of the technique depends on the type of the system investigated, its
availability, familiarity with the techniques, time and resource constraints, desired
accuracy etc. The advantages of analytical modeling are that the time required is
generally less than other two techniques and even the cost is lower than performing
simulations and measurcments through experiments. The trade-off evaluation is even

casier in case of analytical modeling, and it can be used at any stage of the system life

cycle.
There are two main reasons for modeling a given system:

» Existing systems are modeled for better understanding, for analyses of deficiencies
such as identification of potential bottlenecks, or for upgrading studies.

s Models are used during the design of future systems in order to check whether

rcquiremcnls are met.

13

Different levels of details are required for both the above mentioned cases. A high level
description of the model is the first step to be accomplished. Either information about a
real computer system is used to build the model, or experiences gained in earlier
modeling studies are implicitly used. This process is rather complicated and needs both
modeling and system application-specific expertise. Models always have a specific
purpose for which it is build, and which determines its structure and representation.

. Deciding which technique to use is often based on the following criteria [21]:

Stage: point in life cycle when study is to take place.

Time required: when the results are needed.

Tools: analytic modelling tools, simulators, measurement packages.
Accuracy: degree to which results match reality.

Trade-off evaluation: ability to study different system configurations.

Cost: time and money needed to conduct the study.

For the solution to the problem defined in chapter 1, analytical modeling technique is

used.

2.2 Classification of Software Faults

This section describes the various types of software faults, Gray [28] classifies software

faults into Bohrbugs and Heisenbugs.

e Bohrbugs are essentially permanent design faults and- hence almost
deterministic in nature. They can be identified easily and weeded out during the
testing and debugging phase (or early deployment phase) of the software life

cycle.
* Heisenbugs, on the other hand, are design faults that behave in a way similar to

hardware transient or intermittent faults. Their conditions of activation occur

rarely or are not easily reproducible. These faults are extremely dependent on

14

the operating environment (other programs, OS and hardware resources). Hence
these faults result in transient failures, i.e., failures which may not recur if the
software is restarted. Some typical situations in which Heisenbugs might surface
are boundaries between various software components, improper or insufficient
exception handling and interdependent timing of various events. It is for this
reason that Heisenbugs are extremely difficult to identify through testing. In
fact, any attempt to detect such a bug may alter the operating environment
enough to change the symptoms. A mature piece of software in the operational
phase, released after its development and testing stage, is more likely to

experience failures caused by Heisenbugs than due to Bohrbugs.

Trivedi et al [29] designates faults attributed to software aging, which are quite different

from bohrbugs and heisenbugs, as aging-related faults.

C Software faults)
y
Bohrbugs Aging-related
Heisenbugs bugs

Figure 2.2 - Classification of Software faults

* Aging-related bugs are the faults that cause deterioration of the operating
system resources, data corruption and numerical error accumulation. Examples
include memory leaks, unreleased file locks, storage space fragmentation,
accumulation of round off errors etc. The fault conditions gradually accumulate

over time and lead to performance degradation of the software or transient

failures or both.

15

2.3 Software Aging and Rejuvenation

The phenomenon of software aging has been reported by several recent studies [23] [31]
[33]. It was observed that once the software was started, potential fault conditions
gradually accumulated with time leading to either performance degradation or transient
failures or both. Failures may be of crash/hang type or those resulting from data

, inconsistency because of aging. Typical causes of aging are:

e Memory bloating or leaking,

¢ Unreleased file-locks,

¢ Data corruption,

* Storage space fragmentation and

e Accumulation of round off errors.

According to Parnas [43] there are two distinct types of software aging. First is caused
by the failure of the product’s owners to modify it to meet changing needs and second is
the result of the changes that are made. Unless software is frequently updated, its user
will become dissatisfied and they will switch towards new product as soon as the benefits
overweigh the costs of retraining and converting. The software will be referred as old and
outdated. If the program is large, understanding the original design and finding those
sections or modules that must be changed is challenging task. Changes made by people
without understanding the original design almost always cause the structure of the
program to degrade. Sometimes the damage is small but oftc_:n it is quite severe. After

many such changes, the original design rules are even violated in some cases.

Thus we have two different views on software aging. One refers to the need of
modifying the software due to changing requirements as well as change in surrounding
environment as stated by Parnas [43]. While other refers to performance degradation of
software due to factors like memory bloating and leaking, unreleased file-locks, data
corruption, storage space fragmentation and accumulation of round-off errors as stated by
Kishor Trivedi et al. [56].

16

To counteract first type of software aging one should design software for change; and
the documentation must be well organized, complete and precise. To apply information
hiding, one must begin by characterizing the changes that are likely to occur over the

lifetime of the product. Even if we take all reasonable preventive measure, aging is

inevitable.

To counteract second type softwarc aging as described in [56] a technique called
software rejuvenation is implemented. Software rejuvenation is a proactive approach of
fault management which involves gracefully terminating an application or a system and
restarting it in a clean internal state [31]. For analysis and modeling purpose in this thesis,

this type of software aging is considered. From now onwards aging refers to this software

aging unless stated otherwise.

Software rejuvenation involves halting the running software occasionally, “cleaning” its

internal state and restarting it. Some examples of cleaning the internal state of software

might involve:

* Garbage collection.
e Flushing operating system kernel tables.
e Reinitializing internal data structures.

e An extreme, but well known example of rejuvenation is a hardware reboot.

Practical Examples of Software Aging and Rejuvenation

1. US Patriot Missiles

The software fault in the Patriot missile-defense system responsible for the Scud
incident in Dhahran was due to aging-related bug [37]. To project a target's trajectory, the
weapons-control computer required its velocity and the time as real values. However, the

system kept time internally as an integer, counting tenths of seconds and storing them in a

17

24-bit register. The necessary conversion into a real value caused imprecision’s in the
calculated range where a detected target was expected next. For a given velocity of the
target, these inaccuracies were proportional to the length of time that the system had been
continuously running. As a consequence, the risk of failing to track, classify, and
intercept an incoming Scud missile increased with the length of time that the Patriot

missile-defense system operated without a reboot.

On 21 February 1991, the Patriot Project Office warned Patriot users that "very long
runtimes” could negatively affect the system's targeting, implying it should be rebooted
regularly. Unfortunately, the army officials assumed that the users would not
continuously operate the Patriot systems long enough for a failure to become imminent;

therefore, they did not specify the required rejuvenation frequency.

2. Apache Web server

Apache is the one of most popular web server software currently used [65]. Apache
provides some software rejuvenation features. For example, a child process is terminated
and restarted after handing more than a specified number of requests. Apache also allows
system administrators stop and restart the web server software in three different ways by
sending different signals to the parent process:

i. TERM signal (stop now)
ii. HUP signal (restart now)
iii. USRI signal (graceful restart)

3. Log-File System

The log-file system endures performance degradation when the disk space is
fragmented, a phenomenon of software aging [40]. A log-structured file system writes all
new information to disk in a sequential structure, name the log. The fundamental purpose
of a log-structured system is to improve write-performance by buffering a sequence of
file system changes in the file cache and then writing all the changes to disk, sequentially,

in a single disk write operation. In order to maintain a large free arca on the disk for fast

18

writing, the log is divided into segments, and uses a segment cleaner to compress the live
information from heavily fragmented segments. Segment cleaning can be considered as a

rejuvenation operation action to counteract the performance degradation induced by file

system fragmentation.

4. Operating Systems

Operating systems such as Windows and Linux suffers from memory leaks. Memory
leaks are caused by software residual bugs, which prevent a program from freeing up the
memory that it no longer nceds. As a result of memory leaks, the program grabs more and

more memory until it finally crashes when there is no memory available.

5. Netscape and Internet Explorer

Client applications like Netscape and Internet Explorer also suffers from memory

leaks, which leads to occasional crash/hang of the application.

2.4 Quality Attributes

Computer systems are used in many critical applications where a failure can have serious
consequences (loss of lives or property). Developing systematic ways to relate the
software quality attributes of a system to the system’s architecture provides a sound basis
for making objective decisions. The ultimate goal is the ability to quantitatively evaluate
and trade off multiple software quality attributes to arrive at a better overall system.

Software quality is the degree to which software possesses a desired combination of

attributes.

e Performance - “Given that it works, how well it works?”

The degree to which a system or component accomplishes its designated functions
within given constraints, such as speed, accuracy or memory usage [35]. Latency or the

response time and the throughput are two most important performance parameters.

19

e Reliability - “For how long it works?”

Reliability refers to the ability of the system to operate continuously without
interruption [54). “The ability of an item to perform a required function
under given conditions for a given time interval”. Reliability is defined as the probability
that the system functions properly and continuously in the interval [0; t], assuming that it

was operational at time 0.

"o Availability - “Does it Work?”

Availability refers to the accessibility of the system to users. A system is available if its
users' requests for service are accepted at the time of their submission [54]. Unlike
reliability, availability is instantaneous. The former focuses on the duration of time a
system is expected to remain in continuous operation or effectively operational. The latter
concentrates on the fraction of time instants where the system is operational in the sense
of being accessible to the end user. "The ability of an item to be in a state 1o perform a
required function at a given instant of time or at any instant of time within a given time

interval, assuming that the external resources, if required, are provided.”

An important difference between reliability and availability is that reliability refers to
failure-free operation during an interval, while availability refers to failure-free operation

at a given instant of time.

¢ Dependability
Dependability is that property of a computer system such that reliance can justifiably

be placed on the service it delivers [2]. Dependability has several attributes, including:

» Availability: readiness for usage.
» Reliability: continuity of service.

= Safety: non-occurrence of catastrophic consequences on the environment.

20

* Confidentiality: non-occurrence of unauthorized disclosure of information.
* Integrity: non-occurrence of improper alterations of information.

* Maintainability: aptitude to undergo repairs and evolution

* Performability

The implicit assumption in the analysis of availability and reliability is that the
relevant system states are binary: either the system is up or running or it is not. This
simplistic view does hold true for systems that cannot tolerate failures, but for fault-
tolerant systems, many more system states become important, one for every possible
masked failure pattern. Under such partial failures, the system's performance degrades,
even as its full range of functionality remains intact. One way to measure the
consequences is to reward the system for every time unit it is ready, at a rate proportional
to its performance during that interval. Thus Performability measures probabilistically
quantify a systems “ability to perform” in a given operational environment.
Performability is a composite measure of a system's performance and its dependability.
This measure is the vital evaluation method for degradable systems - highly dependable
systems which can undergo a graceful degradation of performance in the presence of
Jaults (malfinctions) allowing continued "normal” operation [38]. A more detailed

discussion on performability can be found in the section 2.11.

Performability

AN

Performance Dependability

léigure 2.3 - Performability ~ a composite measure

2.5 Fault Tree and Multi State Fault Tree (MSFT)

A fault tree [54] represents the combination of component failures that cause the

occurrence of system failure in a tree-like structure. It uses boolean gates (AND, OR and

21

k-out-of-n) to represent the combinations. If two gates share an input, then the fault tree
" is§aid"to have repeated events. The fault tree is a pictorial representation of the
combination of conditions that can cause the occurrence of system failure. Fault tree is
one of the most commonly used models for reliability analysis. A condition at higher
level is reduced to a combination of lower level conditions by means of logic gates. The
process of reduction stops when the basic conditions are reached wherein a basic
condition is a condition that cannot be reduced further. The component failures can be the
basic conditions. It is assumed that the basic conditions are mutually independent and that
their probabilities are known. The condition is denoted by a value of logic 1 for failure at
* a node; otherwise the logic value of the node is 0. Each gate has inputs and outputs. The
input to a gate is either a basic condition or the output of another gate. The output of an
and gate is a logic 1 if and only if all of its inputs are logic 1. The output of an or gatc is a
logic 1 if and only if one or more of its inputs are at logic 1. The output of a k out of n
gate is logic 1 if k or more of the inputs are at logic 1. There is a single output called the

top condition representing the occurrence of system failure.

» Example - Fault Tree

Suppose we have a system with two processors having fast private memory modules
and the system having slower, shared memory modules. We assume that the system °
operates as long as there is at least one operational processor with access to either a

private or shared memory. The fault tree will be as shown in figure 2.4,

l Failure I

—

[2oy | 2

M1 M3 M2 M3

Figure 2.4 - A Fault Tree

22

Similar to a fault tree, Multi State Fault Tree (MSFT) [64] is also a tree like structure
that represents all the combinations of individual component states that cause the system
to occupy a specific state. The main difference is that in MSFT, each system component
can have many different states and not only two states as in binary-state system. The root
of a tree is the top event, say S, which means that the system is in state S. The event S is

reduced to a combination of events that can cause the occurrence of that particular top

event by means of logic gates (e.g. and, or).

In a MSFT, a boolean variable is used to represent each state of the component. The
variables associated with the same component are no longer independent of each other

because the component can only occupy exactly one state at any time.

* Example - MSFT
Consider system with two boards B1 and B2, each having a processor and a memory.
The memories (M1 and M2) can be shared by both processors (P1 and P2). This example

has been taken from [64]. We consider the whole board as a component which has four

states:

e State 4; both P and M are functional
e State 3;: M is functional, but P is down.
e State 2; P is functional, but M is down.

e State 1; both P and M are down.

System state is defined as:

e State ‘UP’: at least one processor and both of the memories are functional.

Figure 2.5 shows the MSFT for state 3 of the system. In the figure 2.5 B ;; represents the

board B; being in state j.

23

“yUpP”

B 1,4 B 1.3 B 24

Figure 2.5 - A Multi State Fault Tree

MFST is used for dependability analysis part of the Rejuvenated-FTLQN model solution.
Fault tree and MSFT can be solved using the SHARPE tool [47] [53].

2.6 Markov Chains

This section gives an overview of discrete and continuous time markov chains with the

help of an example.

Stochastic Processes

A Stochastic process is a family of random variables {X {a}, €T}, where the
parameter @ takes values from the parameter set T. A stochastic process is a
probabilistic model of a dynamic system where T is either a discrete or continuous
representation of time, If T is discrete, then the events are observed at discrete points; if T
is continuous, then events are observed continuosly over time. The random variables is a
stochastic process take on values X { @ }e Q, where Q is called the state space.

If T is discrete set, the stochastic process is a discrete time stochastic process. If T is

continuous set, the stochastic process is a continuous time stochastic process.

24

Markov Chains
A Markov process is a stochastic process which satisfies the markov (or memoryless)
property: the future of the process depends only on the current state of the process and

the current time not on the history of the process.
PCX(t) 2 x | X(t) = xi, t2 2 ... 21} =P { XM 2x1X(t)=x} (1)

A Markov chain is a Markov process with a finite or countably infinite state space. At
each observation, the process is seen to be in one of a countable number of states. These
states are generally labeled as integers or vectors of integers [54].

A Discrete Time Markov Chain (DTMC) is a Markov process with finite or countably
infinite number of states where the time parameter T is measure in countable units. 1t is

denoted as {X, , n20}. The Markov property can be stated as shown in equation (2):

P{X 1+ =j 1 X o= inee Xo= io} =P{Xn+l =j I Xn=in}; (2)

for n20 and ig, i1+++y Iny j € Q

A Continuous Time Markov Chain (CTMC) is a Markov process with finite or
countably infinite number of states where the time parameter T is continuous. It is

denoted as {X(t) , t=20}. The Markov property can be stated as shown in equation (3):

P{X(t+s) =j | X(s) =1, X(u) =Ky ; 0 u < s} =P{X(t+s) =j 1 X(s) = i} (3)

fort,s 20,i,je Q,and forall 0 u<s, kne Q.

Markov chains [54] have the notions of state of a system and transitions between states.
The system is said to occupy a certain “state” whenever it satisfies the conditions defined
for that state. The dynamical changes in the state of the system are referred to as “state
transitions”. In Markov model, it is assumed that the sojourn time (the amount of time
spent in a state) is exponentially distributed. For dealing with non-exponentially

distributed sojourn times, semi-Markov models were developed. The state space for the

25

Markov models grow much faster than the number of components being modelled,

making it difficult to specify a model correctly.

» Example-DTMC
Suppose that if a particular machine remains broken for 4 days, the machine is replaced

with a new machine. And for broken day 1, 2 and 3 the machine is repaired. “Broken”

0.6 0.
Broken
Day 2
4

Figure 2.6 - Example-DTMC

indicates the machine is in repair.

Broken
Day 4

* Example-CTMC

Consider a computer system that consists of two file servers and one processor. The
system can function correctly as long as at least one of the file servers and the processor |
are operational., Both the file servers and processor can be repaired. The CTMC model

showing the state transition is as shown in figure 2.7.

2F; Fr

Figure 2.7 - Example-CTMC

26

- Fr - Failure rate of the file servers.
- Fp - Failure rate of the processors.
- Ry - Repair rate of the file servers.

- R, - Repair rate of the processors.

A CTMC is used for modeling the effects of aging and rejuvenation in the Rejuvenated-

FTLQN model solution.

2.7 Layered Distributed systems or Layered Architecture

The client-server computing paradigm is a system where processing of requests from
users is distributed among several tasks. Tasks interact with one another using the remote
procedure call (RPC) [60]. Applications make requests for services using what appear to
be conventional procedure calls. However, rather than branching to another section of the
same program, a message is sent to another task which may or may not reside on the

same computer. When the remote task replies, the remote procedure call returns.

Distributed software systems are usually structured in layers, with some kind of
operational control or user interface tasks as the topmost layer, making requests to
various layers of servers. Layered modeling describes a system by the sets of resources
that are used by its operations. Every operation requires one or more resources, and the
model defines a resource context and an architecture context for each operation. The
architecture context is a software object to execute the operation, and the resource context
is a set of software and hardware entities required by the operation. Every resource
includes an aspect of an authority to proceed and use it, which is controlled by a
discipline and a queue (which may be explicit or implicit). In layered modeling the
resources are ordered into layers (typically with user processes near the top and hardware
at the bottom) to provide a structured order of requesting them. With layering a graph of
all possible sequences of requests is acyclic, and deadlock among requests is impossible.

Layering provides an order; requests may jump over layers.

27

2.8 Queueing Network and Layered Queueing Network (LQN)
Model

This section gives an overview of Queueing Network and its extension Layered Queueing
Network (LQN) model. Consider a service center and a population of customers, which
at some times enter the service center in order to obtain service. It is often the case that
the service center can only serve a limited number of customers. If a new customer
arrives and the service is exhausted, he enters a waiting line and waits until the service
facility becomes available. So we can identify three main elements of a service center:

1. Population of customers,

2. Service facility and

3. Waiting line.

As a simple example of a service center consider an airline counter where passengers
are expected to check in, before they can enter the plane. The check-in is usually done by
a single employee, however, there are often multiple passengers. A newly arriving and
friendly passenger proceeds directly to the end of the queue, if the service facility (the

employee) is busy. This corresponds to a FIFO service (first in, first out).

Queueing network modelling is a particular approach to computer system modelling in
which the computer system is represented as a network of queues which is evaluated
analytically. A network of queues is a collection of service centers, which represent
system resources and customers, which represent users or transactions [35]. Thus

queueing network is a pure performance model.

LQN (pure performance model) is an extension to the widely used queueing network
model. LQN was first independently developed under the name of Stochastic Rendezvous
Networks (SRN) in [22] [45] [60]. The most important difference between LQN and
traditional queueing networks is the fact that a server serving a client request can become
a client of another server, thus modelling nested services and synchronous calls. This

way, a concept of layering is introduced.

28

The Layered Queueing Network is a model of network of tasks running on processors
and communicating via a send-reply-receive pattern, in which a sender of a message
waits for a reply pattern called as Rendezvous, a RPC, or synchronous messaging. The
task may also send messages without reply, known as asynchronous messaging. Calls can

target servers in the same layer as the client or can skip several layers [21].

LQN Building Blocks

This section describes the main components of the LON Model with the help of an

example. The definitions in this section are taken from [21].

» Task
A task is an entity that models a software process. A task can be either:

1. Client task

2. Server task
A client task sends requests to other tasks. A server task performs work on behalf of the

request from its clients. A server itself may also be a client to its lower level servers by
making requests to those as part of fulfilling their own work to the higher level client.
Each task may have different classes of workloads on the processor by representing it
with several entities. Each entry provides a different service pattern and a different
workload. However, all entries of one task share a common task queue. The task queue

scheduling disciplines supported by LQN that controls the order in which requests are

processed E.g. First In First Out (FIFO).

A server may be a single server, a multiserver or an infinite server. A single server is
modeled as a single task, which handles only one request at a time. Concurrency in LQN
is modeled by multi-servers and replicated servers. A multiserver contains a multitude of
copies of task, yet all copies share onc common queuc for incoming requests. A
replicated server, however, is similar to the multiserver, except that each copy task has its

own request queue. An infinite server is modeled as an infinite number of processors that

29

can handle an infinite number of requests. For example, network delays are often

modeled as infinite servers.

» Entry

An LQN server may offer more than one service, each one with it own service time
and visit ratio to other servers. Each service is modeled as an entry of the task. It is
assumed that all the requests for all entries of a task are queued in a common task queue.

The execution of a server entry following the reception of a message by an entry maybe
broken into two parts; the first part named first phase ends when the reply is sent back

and the second part is the subsequent phases after the reply.

» Types of Request

1. Synchronous Request- A Synchronous Request blocks the client until
server sends back the reply.

2. Asynchronous Request- A client continues its work in parallel with the
server.

3. Forwarding Request- A Forwarding Request is similar to synchronous
request from the client’s point of view. The difference is that more then
one server is involved. The first server forwards the request to the next
server, and it is free to do other work, after the second server finishes the
request, the second server sends back the reply to the original client. The

original client is blocked until it receives the reply.

In the LQN model shown in figure 2.8, we have “console task” (reference task),

“application task”, “generate task” and “database task”.

30

users console task
[0,0.5] ~

(0.3) processor 1
(0,2)
application process generate generate
task data data task
7~ [1,0.5] [0.5, 0.5] ~ ~

é (1,0.2)

processor 2 processor 3

database
read database task
-, [1,2]
é processor 4

Figure 2.8 - An LQN Model

Tasks can provide more than one type of service (e.g. a database can provide support for
both searching and updating). This is represented by dividing the task-parallelogram into
several smaller parallelograms (called entries), cach representing one type of service.
Request-arcs are then drawn to the sub-parallelograms. Every task has at least one entry.
Thus each kind of service offered by an LQN task is modeled as a so-called entry. In
figure 2.8, “users”, “process data”, “generate data” and “database read” are entries. An
entry may be decomposed in two or more sequential phases of service. Phase 1 is the
portion of service during which the client is blocked, waiting for a reply from the server.
At the end of phase 1, the server will reply to the client, which will unblock and continue
its execution. The remaining phases, if any, will be executed in parallel with the client.
Every phase has its own execution time and demands for other entries. The values
specified in the square brackets indicate mean execution demand for one invocation of
entry. The values specified near the arrows indicate the average number of calls to other
entry, for one invocation of the entry. In figure 2.8, for e.g. [1, 0.5] indicates execution
demand of entry “process data” and (0, 3) indicates the average number of calls made by
entry “users” to “process data”. Although not explicitly illustrated in the LQN notation,
every server, be it software or hardware, has an implicit message queue where incoming
requests are waiting for their turn to be served. Servers with more than one entry have a

single input queue, where requests for different entries wait together.

31

2.9 Fault Tolerant Layered Queueing Network (FTLQN) Model

This section describes the FTLQN model, which is an extension of the LQN model. An
LQN model is a pure performance model, and FTLQN adds dependability-related
parameters to it. An FTLQN [9] model describes distributed systems which employ
redundant servers which may be primary-backup or load-balanced. It modifies the LQN
model to express the strategy to be used in case of failure and to generate the different
configurations in which the system may be fully or partly operational. The layered
structure of an FTLQN model describes the dependencies that determine the service
failures, based on service dependencies.

In an FTLQN model, a service request arc may be replaced by a set of alternative arcs
with an order of preference. In Figure 2.9, we have database task-A as well as database
task-B. So if database task-A (having priority 1 indicated by #1) fails then application
task will use database task-B (having priority 2 indicated by #2). A set of alternative arcs

are shown attached to solid black rectangle.

users console task
'[0,0.5]

processor 1
(0,3 (, 2)

generate
data
[0.5, 0.5] S

generate @
processor 2@ task

1,0.2)

database database
read - a read- b dtat:ll?-age
[1,2] [1,2] N ‘i
~

database ™

N
task-A N CD processor 5
O processor 4

application
task

process
data

processor 3

Figure 2.9 - An FTLQN Model

32

The FTLQN model has two advantages [10]:
* It closely resembles the software architecture (making it easy to build).
e It contains the service dependencies which are required in one form or another to

analyze the failures.
Thus FTLQN model extends the LQN performance model by adding dependability-

related parameters to it.

2.10 Different Modeling Approaches for Software Rejuvenation

This section gives an overview of two different modeling approaches for software

rejuvenation: (1) Analytical modeling and (2) Measurement based approach.

Analytical modeling

Figure 2.10 shows the basic software rejuvenation model proposed by Huang et al.
[31]. The software system is initially in a “robust” working state, 1. As time progresses, it
eventually transits to a “failure-probable” state 2. The system is still operational in this
state but can fail (move to state 0) with a non-zero probability. The system can be
repaired and brought back to the initial state 1. The software system is also rejuvenated at

regular intervals from the failure probable state 2 and brought back to the robust state 1.

1:
healthy

0: 3
Failure Rejuvenation

Figure 2.10 - State Transition Diagram

33

Huang et al. [31] assumed that the stochastic behavior of the system can be described by
a simple Continuos-Time Markov Chain (CTMC). The random time interval when the
highly robust state changes to the failure probable state is exponentially distributed. Just
after the state becomes the failure probable state, a system failure may occur with a
positive probability. If the system failure occurs before triggering software rejuvenation,
then the repair is started immediately at that time and is completed after the random time
elapses. Otherwise, the software rejuvenation is started. Note that the software

rejuvenation cycle is measured from the time instant just after the system enters state 1.

Dohi et al. [19] developed semi-Markov models with the periodic rejuvenation and
general transition distribution functions. The underlying stochastic process is a semi-
Markov process with four regeneration states. If the sojourn times in all states are
exponentially distributed, this model is the CTMC in Huang et al. Thus the mode! has

similar but somewhat generalized mathematical structure to that compared to Huang et al.

Garg et al. [24] developed a Stochastic Petri Net (SPN) model where rejuvenation is
performed at deterministic intervals. Because of the deterministic rejuvenation intervals
the theory of CTMC cannot be applied. The software starts up in a “robust” state in
which the probability of failure is zero. As it is used, it ages with time and if no
rejuvenation is done eventually transits to another state. In this state, it provides normal
service but can fail (crash) with a non-zero probability. Once it crashes, it takes a random
amount of time to bring it up again to the clean state and restart it. Rejuvenation is
performed at a fixed interval from the start (or restart) of the software in the robust state.
At the time of rejuvenation, if the software has not already crashed, it is either in the
clean or the failure probable state. It is then stopped, cleaned and restarted; all of which
takes a random amount of time. Further it was assumed that the time for which software
remains clean and the time to fail from the failure probable state are both exponentially
distributed. Thus the time to failure for the software starting in the robust state has a
hypo-exponential distribution. The times to restart both from rejuvenation and crash
failures arc both exponentially distributed. The rejuvenation interval, however, is

deterministic.

34

Figure 2.11 - Petri Net Model for Software Rejuvenation

Figure 2.11 shows the Petri net model for software rejuvenation [24]. The circles
represent, places with dots inside representing the tokens held inside that place. Unshaded
rectangles represent transitions with exponentially distributed firing time while the
shaded rectangle represents a transition with a constant firing time. The robust state is
modeled by the place Pyp. Transition Tpr» models the aging of the software. When this
transition fires, i.e., a token reaches place Ppprob) the software enters the failure probable
state. The transition Tows models crash failure of the software. During the software restart
(while the transition T, is enabled), every other activity is suspended; the inhibitor arc
from place Pyoun to transition Teick is used to model this fact. The transition T models
the rejuvenation period. It is enabled with Tprap and fires when the clock expires if Tj,op
has not fired by that time. Once it fires, a token moves in place P,; and the activity
related with software rejuvenation (transition T) starts. During the rejuvenation phase,
every other activity in the system is suspended. This is modeled by inhibitor arcs from
place P, to transitions Tprob and Tyews. Upon rejuvenation, the Petri net has to be

reinitialized into a condition with one token in place Pyp and one in place Pgoet, and all

the other places empty.

Wang et al [59] considered different rejuvenation policies for clustered system with n
identical nodes and used Petri Nets for modeling purpose. Three rejuvenation policies
evaluated were: (1) Standard rejuvenation- the rejuvenation is triggered after T time units

have passed since the last rejuvenation epoch or the recovery from system failure. (2)

35

Delayed Rejuvenation- In off peak period, the rejuvenation policy is the same as standard
rejuvenation policy. In peak period, all nodes are just scheduled for rejuvenation if time T
has passed since last rejuvenation. Nodes scheduled for rejuvenation still operate as usual
until rejuvenation starts immediately when next off peak period starts. (3) Mixed
Rejuvenation- This policy combines the standard rejuvenation and the delayed
rejuvenation policies. In off peak period, the rejuvenation policy is the same as standard
rejuvenation policy. In peak period, the rejuvenation will be done if scheduled early in
the peak period, while it will be delayed if scheduled late in the peak period. According
to [57], the delayed rejuvenation is better than the standard rejuvenation with respect to
the system throughput. For longer rejuvenation-triggering intervals, the standard
rejuvenation yields a better result than delayed rejuvenation, while for shorter
rejuvenation-triggering intervals the delayed rejuvenation policy outperforms standard
rejuvenation policy. While mixed rejuvenation policy provides better results compared to

both standard and delayed rejuvenation policies.

Measurement based approach
While the analytical model is based on the assumption that the rate of software aging
is known, in the measurement based approach, the basic idea is to monitor and collect
data on the attributes responsible for determining the health of the executing software.
The data is then analyzed to obtain predictions about possible impending failures due to
resource exhaustion.

The basic idea is to periodically monitor and collect data on the attributes responsible
for determining the health of the executing software. Garg et al. [25] propose a
methodblogy for detection and estimation of aging in the UNIX operating system. An
SNMP-based distributed resource monitoring tool was used to collect operating system
resource usage and system activity data from nine heterogeneous UNIX workstations
connected by an Ethernet LAN. A central monitoring station runs the manager program
which sends ger requests periodically to each of the agent programs running on the

monitored workstations.

36

2.11 Performability: Measures and Models

In the past, most modelling work kept performance and dependability separate.
Initially, the dependability of the system might have been satisfied, then the performance
optimized. This led to systems having good performance when the system was fully
functional but a drastic decline in performance when, inevitably, failure occurred.
Basically, the system was either 'on’ and running perfectly or 'off' when it crashed.
Improvements on this led to the design of degradable systems. Because degradable
systems are designed to continue their operation even in the presence of component
failures (albeit at a reduced performance level), their performance can not be accurately

evaluated without taking into account the impact of the structural changes (malfunctions

& repairs) [38].

Analysis of the systems from a pure performance viewpoint tended to be optimistic
since it ignores the failure-repair behaviour of the systems. At the other extreme, pure
dependability analysis tended to be conservative, since performance considerations were

not taken into account. Thus, it was essential that methods for the combined evaluation of

performance and dependability be developed: Performability analysis.

2.11.1 Performability Measures

The goal of evaluating the performability of a system is to capture the overall quality of
its responsiveness which is sometimes degraded by failures. Performability was first
introduced by [38] as a measure that quantifies a system’s ability to perform in the

presence of faults. Such ability has been formally defined as the probability that the

system will perform above a given accomplishment level, given that the system has been

operational for a period of time t. This section defines various performability measures of

interest as described in [30] [47].

(1) Steady-state performability or the expected steady-state reward rate:

Pslcndy=z Pi R(l) (4)
iey

37

Steady state performability is defined by equation (4), where:

- Pgeaay indicates the steady state performability or expected steady-state reward rate.

- % denotes the set of all the possible configurations in which the system can operate,

- P; stands for the steady state probability of states residing in ¥.

- R(i) stands for the reward rate associated to the states in % .This reward rate quantifies
the ability of the system to perform in the corresponding configuration.

We can thén partition the set of states % in a set 7, of “up” states, and a set ¥4 of
“down’states, i.e. =%, U Xa With X, ={iex | R@) > 0 }and ¥4 ={iex! RG@) = 0

}. Consequently we then have,

Paeaty= Y, PiRG) =Y PiR(G) (5)
iey i€ Yu

In a particular case, when all the reward rates R(i) = 1, whenever % € %, and R@i) = 0
elsewhere, then the above equation (5) gives the steady-state dependability D as shown in
equation (6):
D=Y P (6)
iey

(2) Point Performability or the expected instantaneous reward rate is given by:
Pinstant ()= P; (1) R(i) (7)
iey

Point performability is defined by equation (7), whenever R(i) = 1 for all the system
operational states and zero otherwise, the above equation gives the system instantancous

dependability.

(3) Cumulative Performability:

The cumulative performability or the accumulated reward in [0, t) which represents the

38

amount of work accomplished during a generic time interval [0, t) is given by equation

(8):

!

YO = [2 d (8)
0

Where Z (1) denotes the system reward rate at time ¢ i.e. the reward value of the state of

the system at time ¢.

(4) Performability Distribution:
The performability distribution or the distribution of the accumulated reward (denoted by

F (1,)) is given by equation (9):

F(t,y)=Prob{ Y®) <y) 9)

(5) Mean accumulated reward:

The mean accumulated reward in [0, t) can be calculated using equation (/0):
t !

E[Y()]= E[| Z@dd= [ElZw)]de (10)
0 0

The fraction E[Y())/t is known as the interval availability when a reward rate 1 is

assigned to the system operational states and zero to non-operational states.

2.11.2 Performability Models
The common approach for the development of performability models of fault-tolerant

computer systems has been the use of stochastic reward models [30]. In a stochastic

reward model there is a stochastic model (also known as the structure state model) which

describes the configurations of the system (i.e. structural variations of the system arising

due to the failure and repair of its components) and a reward rate (measure of

performance) which is associated with each of the states of the stochastic model. The
stochastic model is thus the higher level dependability model representing the
failure/repair processes of the system components. The performability measure is

obtained by combining the reward rates associated with the states of the stochastic model

with the state probabilities.

39

(1) Markov Reward Modecls (MRM)

In a Markov Reward Model, the underlying structure state model is a Markov model (a
CTMC). In the Markov model, the sojourn time (the amount of time in a state) is
assumed to be exponentially distributed. A reward rate (mecasure of performance) is
associated with each states of the Markov model and the desired performability measures
can be obtained by combining the reward rate associated with each state of the Markov

model with the state probabilities.

The first issue related to the Markov Reward Model is concerned with the description
of the dependability aspects of a system, i.e. the translation of the system into its
corresponding Markov model. The Markov model has some associated difficulties [47].
The state space can grow much faster than the number of components in the system being
modelled, making it difficult to specify a model correctly. The next issue related to
Markov Reward Model is concerned with the derivation of the reward rates. Such
derivation usually requires a performance evaluation in each state of the Markov model.
The performance evaluation in each state of the Markov model may be measurement

based or model based.

(2) Dynamic Queueing Network

A version of the Markov Reward Modelling approach known as Dynamic Queueing
Network concept has been developed [30] in which a parameterized queueing network is
used to model the performance aspect of the system and a generalized stochastic Petri net
is used to describe the dependability aspect of the system. This technique comprises of a
function that maps the possible markings of the generalized stochastic Petri net, denoting
the system configurations, to the queueing network parameters. Then, a reward rate is
associated with every possible generalized stochastic Petri net markings by solving the
corresponding queueing network models. Finally, the actual calculations for
performability are done by translating the dynamic queueing network model to a Markov
Reward model. The performability modeling approach taken in this thesis is similar to the

dynamic queueing network concept.

40

(3) Non-Markov Reward Models

In a Markov Reward Model, the amount of time in a state is assumed to be
exponentially distributed. There are a great number of real situations in which the failure
processes are non-Poisson and the failure times of the components are deterministic or
generally distributed. For dealing with non-exponentially distributed failure times, the
semi-Markov Reward Model has been developed. In a semi-Markov Reward Model, the
underlying structure state model is a Semi-Markov process (SMP) in which the rate of
transition from state i to j may depend on how long the chain has been in state i, but it
still does not depend on anything that happened before the chain reached state i. In SMP,

the amount of time in a state is allowed to be any distribution function [30].

41

Chapter 3
Rejuvenated-FTLQN Model and its

Solution

This chapter describes the “Rejuvenated-FTLQN” model and its solution. The main
purpose is to evaluate the performability of fault tolerant layered distributed systems
under the effects of software aging and rejuvenation. The goal of evaluating the
performability of a system is to capture the overall quality of its responsiveness which is
sometimes degraded by failures [38]. In this thesis, the service degradation caused by
software aging is also considered. A model called “Rejuvenated-FTLQN” is proposed
for this purpose.

In section 3.1 of this chapter, the Rejuvenated-FTLQN model is described, in section
3.2 the Rejuvenated-FTLQN model solution is introduced and in section 3.3, each and

every step of the model solution is explained with the help of an example.

3.1 Rejuvenated-FTLQN Model

An FTLQN model [9] describes distributed systems which employ alternative servers
and routing of requests to mask failures. FTLQN model modifies the LQN model to
express the strategy to be used in case of failure. Rejuvenated-FTLQN model adds
software aging and rejuvenation related information to FTLQN model. This section gives
an overview of the Rejuvenated-FTLQN model and the next section describes its

solution.

3.1.1 System-level Model

Figure 3.1 shows an example of FTLQN model of the system. The alternative targeting

of the request is indicated by the labels “#n” on arcs showing the priority of the targets.

42

#1 indicates the highest-priority available server. A task is an entity that models a
software process. T1, T2, T3, T4 and T5 indicates software tasks (processes). A server
task performs work on behalf of the request from its clients. A server itself may also be a
client to its lower level servers. A task may offer different services. Each service is

modeled as an entry of the task. In figure 3.1, el, €2, €3, e4 and e5 indicates entries.

ed
eb5
_- [0.5,0.2] / [0.6,0.4] ~
3 M

T4
P4 s P5

Figure 3.1 - Example- FTLQN Model

The performance parameters provided in this model are:

* The mean CPU demand per invocation foe each entry (E.g. [0.5, 0] inside the

parallelogram).
* The mean number of calls from an entry to other entries (E.g. (1,0) near the

arrow)

43

3.1.2 Model for Individual Components

In this section, the model considered for taking into account the cffects of aging and
rejuvenation on the software tasks is described. Huang, et al. [31] proposed an analytical
model for modeling aging and rejuvenation, where the degradation is described by a two
step process. From the clean state, the software system makes a transition into a degraded
state from which two actions are possible: rejuvenation with return to the clean state or
transition to the complete failure state. They model the four-state process as a Continuous-

Time Markov chain (CTMC). Each of the four states is described as follows:

e State W: Working or highly robust state (normal operation)
e State FP: Failure Probable state (due to aging).
e State BR: Being Rejuvenated state (undergoing rejuvenation)

o Siate F; Failed State.

Figure 3.2 shows the state transitions for the software tasks without rejuvenation. An
application stays “healthy” for a while before it reaches a state where failure is probable;-
it often takes a while for a program to reach its boundary conditions or leak out some of
its resources [31]. Thus a failure is two step behavior as shown in figure 3.2, where a
process goes from state ‘W’ (highly robust state) to state ‘FP’ (failure probable state)
with rate R; (the time interval is called the base longevity interval) and from there it can

make a transition to state ‘F’ (failed state).

R2 A

Ry

Figure 3.2 - CTMC Model for Software Task—- Without Rejuvenation

44

Now consider the CTMC for the software tasks with rejuvenation implemented as
shown in figure 3.3. In this case we have an additional state (State ‘BR’) which indicates
that the task is undergoing rejuvenation. Hence a process can make a transition from
State ‘FP’ (Failure Probable state) to State ‘BR’ (Being Rejuvenated) state with rate Ry,

After rejuvenation is performed the process goes back to State ‘W’ (highly robust state)

with rate Rs,

R, R A

R4

Figure 3.3 - CTMC Model for Software Task - With Rejuvenation

The CTMCs described above is solved to get the steady state probabilities of the

software tasks being in each of the four states. Figure 3.4 shows the CTMC model for the

processor. Aging and rejuvenation are not considered for processors.

R1
Figure 3.4 - CTMC Model for Processor

45

3.1.3 Modelling Fault Propagation

For modeling fault propagation, the FTLQN model is converted into the fault
propagation AND-OR graph [10]. AND-OR graphs are used for problem reduction by
decomposing the main problem into the set of sub problems. AND-OR graphs can have
and nodes whose successors must all be achieved, and or nodes where one of the

successors must be achieved (i.e., they are alternatives).

The main goals of the fault propagation AND-OR graph are:
¢ To model the service dependencies in the FTLQN model and
* To generate all the operational configurations (different configurations of the
system in which the system is operational). For this purpose the graph is traversed
in Breath First Search (BFS) fashion.

The fault dependencies in an FTLQN model can be represented by a prioritized, labeled
directed AND-OR graph termed as a fault-propagation AND-OR graph. Because of the
layered structure of an FTLQN model, the failure of a service provided by an entry
depends on the failure of the services provided by its processor, its task and by other

lower-level entries in the model. Thus the entry e of task ¢ is said to be operational if:

1. The task 7 is working. Task can be any of the two states: State ‘W’ (highly robust
state) or State ‘FP’ (failure probable due to aging).

2. The processor allocated to task ¢ is working.

3. All the services that the entry e uses are working. A service used by an entry is
said to be working if any of the alternative entries providing that service is

working.
The entry e is unoperational otherwise. The dependencies on task and its processor are

represented separately because a failure of task t may be independent of the failure of its

processor.

46

Graph contains five types of nodes, namely, entry node, service node, processor node,

" iask riode and state classification node which are defined as follows:

(i) An entry node is an AND node that describes an entry of the FTLQN model. Figure
3.5 shows the graph for the FTLQN model shown in the figure 3.5. In Figure 3.5- el, €2,

e3, e4 and e5 are all entry nodes.

(i) A service node is an OR node that describes the preference order of the alternative

targets for a requested service. All of its successors represent the alternative targets while

its parent represents the entry requesting the service. This node corresponds to the solid

black rectangle in the FTLQN model and is represented as a shaded node in graph. In

figure 3.5- Servl, Serv2 and Serv3 are service nodes.

(iii) A processor node is a leaf node that contains the information about a processor. In

figure 3.5 P1, P2, P3, P4 and PS5 are processor nodes.

(iv) A task node contains the information about a software task of the FTLQN model.

Graph also has one special start node r which is an OR node representing the overall state
of the system. Its successors represent the reference entries of the FTLQN model, a

reference entry being an entry of a reference task. In figure 3.5- T1, T2, T3, T4 and TS

denotes task nodes.
(v) A state classification node contains the information about the different states that the
software task can possess when it is operation

(highly robust state) or State ‘FP’ (failure probable state- due to

al. For example it may be in State ‘W’

aging). In figure 3.5- ‘W’

and ‘FP’ indicates the two operational states of the software tasks.

In the FTLQN performability algorithm as described in [9], the fault propagation And-

aph representation of FTLQN model consists of all the above mentioned nodes
-FTLQN model, the software tasks

Or gr
except the state classification node. In Rejuvenated

can be in ‘W’ or ‘FP’ state, a state classification node is added to make this distinction.

47

(serv2)
' #2
#1
4
[/

Figure 3.5~ Fault Propagation And-Or Graph for FTLQN Model

3.1.4 Operational Configurations

Structural variations of the system arising due to the failure of its components and
software aging describe the configurations of the system. The layered structure of an

FTLQN model describes the dependencies that determine the service failures, based on

48

service dependencies. The special property of layered systems is that a failure of a task or

processor in one layer can cause many tasks that depend on its services (at any layer in

nless there is a redundant server. This property gives rise to the

tem in which the system is operational. All this set of

the system) to fail, u
different configurations of the sys

configurations is defined as operational configurations.

For every software task to be operational it can be in State ‘W’ (highly robust state)

or in State ‘FP’ (failure probable state due 10 software aging). This behavior gives rise to

even more configurations. We are interested in capturing all the different combinations

asks) states that lead to the whole system being operational.

Operational
Configurations

: Due to presence of
secondary server (back-
up)

of the system components (t

Due to Software
Aging

Figure 3.6~ Different Operational Configurations

3.1.5 Modelling Performance Degradation due to Software Aging
When the task is in ‘W’ state the mean CPU demands for its entries will be lower

compared to when it is in ‘FP’ state. Aging of the task is modeled by making the mean

CPU demands or mean execution demands of its entries an increasing function of its

state. When the task is in “FP” state its performance is degraded and the mean CPU

demands for all of its entries will be increased as per the rate at which the service

degradation occurs. E.g. Performance of prim

to software aging, so from the end-user perspective i
as in highly robust state) resulting in increased response

ary database server is degraded by 40% duc

t will take more time to process the

request (compared to when it w

PROPERTY OF
49 RYERSON UNIVERSITY LIBRARY

time. To model this behaviour we are increasing the execution demands (mean CPU
demands) for the corresponding entries in the failure probable state. We can do this
because the service rate reaches and settles to a low unacceptable value as a result of
software aging [44]. Different LQN models that correspond to different operational
configurations will differ in the parameters as per the state the software tasks resides in
(‘W’ or ‘FP’).

3.1.6 Measure of interest

The goal is to evaluate the steady state performability of the system which is defined as:

Pstcady": Z PiR (i)
iey

- % denotes the set of all the possible configurations in which the system can operate
- P;stands for the steady state probability of states residing in
- R (i) stands for the reward rate associated to the states in

- Pyagy denotes the steady state performability
The reward rate quantifies the ability of the system to perform in the corresponding

configuration. Thus P,y represents the value of the reward rate offered by the system

averaged over all the possible values it can provide according to the states it is in.

50

3.2 Rejuvenated-FTLQN Model Solution

To evaluate the steady state performability of the fault-tolerant layered distributed

systems under the effects of software aging and rejuvenation following steps can be

performed:

Step 1: Generate a FTLQN model from the system description. An FTLQN model

describes distributed systems which employ redundant servers which may be used as

a primary-backup. It modifies the LQN model to express the strategy to be used in

case of failure.

Step 2: Add a Continuous Time Markov Chain (CTMC) for every software task
(process) to the FTLQN model to take into account the effects of software aging and

rejuvenation. CTMC denotes the state of a software task and transitions between

states.

Step 3: Translate the FTLQN model into the Fault Propagation AND-OR graph. The

Fault Propagation AND-OR graph provides a convenient means to model the

dependencies of the service . ailures in a layered system. The Fault Propagation AND-

OR graph also takes under consideration the multiple states of the software tasks

resulting due to the performance degradation caused by software aging.

Step 4: Determine the different operational configurations of the system. Presence of

secondary server and software aging gives rise to the different configurations of the

system in which the system is operational.

Step 5: Evaluate the reward rate for each operational configuration using Layered

Queuing Network (LQN) model for every configuration. Reward rate is the

performance measurce that will be assigned to every operational configuration to

quantify how well the system performs in that particular operational configuration.

51

Step 6: Compute the probabilities of system being in each of the operational

configuration. Multi-Stat¢ Fault Tree’s (MSFTs) is used to compute the probabilities.

The input to the MSFT is obtained by solving the CTMCs for the software tasks as

well as failure probabilities for processors.

Step 7: Combine the probabilities and the rewards for every operational configuration

to determine the steady state performability.

All the above mentioned steps are automated in the software tool called Rejuvenated-
FTLQNS (Rejuvenated - Fault Tolerant Layered Queuing Network Solver). Detailed

explanation of the tool is given in chapter 5 of this thesis.

3.3 Example- Rejuvenated-FTLQN Model Solution

This section explains in detail all the steps mentioned above with the help of a simple

example,

Step 1: Model Description

Consider an example of customer-information retrieval system, as described below:

1.
2.
3.

User enters their credentials into the login screen,

User is authenticated and redirected to the search window.

User enters the search information (Name, ID etc) in the search window and
clicks “Search”.

Required record is fetched from the database and displayed to the user.

The FTQLN model for above mentioned system is as shown in figure 3.7, secondary

database-2 task will be used by the application task whenever primary database-1 task is

not available. Users task is the reference task. Interface task consist of one entry named

52

“Authenticate” having mean execution demand of [0.2, 0.1] and its processor named

“Interface_P". Similarly for Application task, Database-1 and Database-2 task, we have

entries “search”, “db_read1” and “db_read2" respectively. The mean execution demand

for every entry is as shown in figure 3.7. The processors corresponding to every task is

also shown in the figure 3.7. The value (1, 0) near the arrow indicates the average number

of calls made by one entry to another.

This example will be used to explain all the further steps of t

users
User [0'0'5]/
\
\

O

User_P

he model solution.

(1,0)

y
Authenti-
Interface -cate
[0.2,0.1] S

O

1,0
(1.0 Interface_P
Application
~
@
Application_P
(1,0) (1,0)

db_read1 db_read2
_ [0.5,0.2] [0.6,0.4] ~
=) '
Database-1 Database-2
Database-2_P

Database-1_P

Figure 3.7 - FTLQN Model

53

Step 2: Modeling Aging and Rejuvenation for Software Tasks

In figure 3.7, Users task is a reference task (do not receive any request) and represent
users (or load generators) of the system. So we don’t consider aging and rejuvenation for
that task. But for all the other tasks involved in customer information retrieval scenario

the model parameters (assumed) are as follows:

Model Parameters

Interface task:
¢ It goes from initial robust state (“W’) to failure probable state (‘FP’) in 5 days;
Rz =1/ (5%24).
® The mean time between two consecutive failures is 3 months; 1 = 1/ (3*%30%24).
? ¢ Torecover from an unexpected failure it takes 1 hour; R;=1.
* Rejuvenation is performed every 2 weeks; R4= 1/ (9%24). Note that R4 denotes
the rate of rejuvenation after the application goes into the failure probable state.
Therefore we have Ry=1/ {(14 -5)*24}.

¢ Time to perform rejuvenation is 10 minutes. R3=6.

0.004629

0.008334 0.0004629

Figure 3.8 - CTMC -Interface task

54

Application task:
* It goes from initial robust state (‘W) to failure probable state (‘FP’) in 10 days;

R; = 1/ (10*24).
* The mean time between two consecutive failures is 3 months; 1= 1/ (3*30%24),

* Torecover from an unexpected failure it takes 30 minutes; R1= 2.
* Rejuvenation is performed every 19 days; Ry= 1/ (9%24).

* Time to perform rejuvenation is 10 minutes, R3=6,

0.004629

0.004167 0.0004629
2

Figure 3.9 - CTMC - Application task

Database-1 task:
* It goes from initial robust state (‘W) to failure probable state (‘FP’) in 10 days;

Ry = 1/(10%24).
* The mean time between two consecutive failures is 2 months; 1 = 1/ (2*%30%24),
* To recover from an unexpected failure it takes 30 minutes; Ry= 4,
* Rejuvenation is performed every 19 days; Rs= 1/ (9*24).

* Time to perform rejuvenation is 10 minutes. Ry=6.

55

0.004629
0.004167 0.0006945

oo

Figure 3.10 - CTMC - Database -1 task

The model parameters for Database-2 task are same as Database-1 task (as shown in
figure 3.10). All the CTMCs mentioned above are solved using the SHARPE tool [47],
and the steady state probability of software task residing in each of the four states is
calculated. The steady state probabilities obtained considering the model parameters
described above are shown in table 1. Changing the model parameters (as per the system
under study) will result in change in the value of steady state probabilities. These steady
state probabilities will be used further in the dependability analysis part (Step 6) of the |

model solution.

Table 1. Steady State Probabilities

Tasks State F State W State FP State BR
Interface 0.0002871 0.37897 0.62027 0.0004785
Application 0.0001041 0.54970 0.44985 0.0003470
Database~1 0.0001523 0.56065 0.43886 0.0003385
Database-2 0.0001523 0.56065 0.43886 0.0003385

56

Step 3: AND OR Graph Representation

e 3.11 - Fault Propagation And-Or Graph

Figur

" '3

search”, “readl” and

In the graph shown in figure 3.11, “ysers”, “authenticate”,

“read2”are all entry nodes (AND nodes). “servl” is the service node, which is

57

represented as the shaded node. “User”, “Interface”, “Application”, “Database-1" and
“Database-2” are all task nodes (OR nodes), all of which can be in any of the two
different states ‘W’ and ‘FP’, “User_P”, Interface_P”, “Application_P”, “DBI1_P” and

“DB2_P” are all processor nodes (leaf nodes).
Step 4: Operational Configurations

Operational
Configurations

Due to Software
Aging

Due to presence of
secondary server (back-up

Y.

S2to S8
C S1and S9) C S10to S16)

Figure 3.12 - Different Operational Configurations

S1 and S9 configurations arise due to binary states of software tasks: W and F. It does not
consider the extra FP working state of tasks, as there is no consideration of software
aging. For S1 we have 3 tasks and each task can be in highly robust state (‘W) as well as
failure probable state (“FP’). Thus we have 8 (2% different operational configurations
including S1. E.g. Interface-W, Application-W, Database-1-FP is one of the possible
operational configuration. Similarly for S9 also we have 8 different operational
configurations including S2. E.g. Interface-FP, Application-W, Database-1-
unoperational, Database-2- FP is one of the possible operational configuration. For all
this 8 operational configurations corresponding to S9, the Database-1 task is

unoperational (either failed or undergoing rejuvenation). So finally we have 16 different

58

operational configurations of the system as shown in table 2. The number of operational
configurations is more in Rejuvenated-FTLQNS model compared to when the
performance degradation due to software aging is not considered (increases from 2 to 16).

Figure 3.13 and 3.14 indicates operational configuration S1 and S9 respectively.

Table 2. Operational Configurations

Notation Operational Configurations

S1

Interface-W, Application-W, Database-1- W
%2 Interface-FP, Application-W, Database-1- W
> Interface-W, Application-FP, Database-1- W
> Interface-W, Application-W, Database-1- FP
> Interface-FP, Application-FP, Database-1- W
% Interface-FP, Application-W, Database-1- FP
> Interface-W, Application-FP, Database-1- FP
> Interface-FP, Application-FP, Database-1- FP
> Interface-W, Application-W, Database-1- unoperational , Database-2- W
>0 Interface-FP, Application-W, , Database-1- unoperational , Database-2- W
- Interface-W, Application-FP, Database-1- unoperational, Database-2- W
>]n‘re)face-W, Application-W, Database-1- unoperational , Database-2- FP
- Interface-FP, Application-FP, Database-1- unoperational , Database-2- W
> Interface-FP, Application-W, Database-1- unoperational , Database-2- FP
- Interface-W, Application-FP, Database-1- unoperational , Database-2- FP
- Interface-FP, Application-FP, Database-1- unoperational, Database-2- FP

59

Step 5: Performance Analysis (LQN)

Once we have determined the different operational configurations of the system, The
next step is to generate Performance models (LQN) corresponding to every operational
configuration and using LQNS tool to obtain different performance measures. Finally the
desired performance measure will be assigned as a reward to every operational

configuration.

Authenti-
-cato
[0.2,0.1]

Interface

Interface_ P

Application_P

O Database-1

Databaseo-1_P

Figure 3.13 - Operational Configuration - S1

60

Authenti-
-cate
{0.2,0.1]

Interfaco

Interface_P

Application search
[0.5,0] ~ -

Application_P
(1,0)

/b_reai/
[0.6,0.4] ~

Database-2

Database-2_P

Figure 3.14 - Operational Configuration - S9

The change in the mean CPU demands for all the software tasks in “FP” state is as shown
in table 3. Each and every operational configuration will have corresponding LQN model
with different parameters, depending on the state of the software tasks in that particular
operational configuration. All the LQN models are solved using LQNS (Layered
Queueing Network Solver) tool [22]. Throughput is selected as the reward to be assigned
to every ope}ational configuration. Rewards for every operational configuration are

shown in table 4. For system unoperational state, the throughput (reward) assigned is 0.

61

Table 3. Mean Execution Demands

Entry Working state (W) of Failure Probable
task state (FP) of task
users
[0,0.5] -
authenticate
[0.2, 0.1] [0.3, 0.15]
search
[0.5, 0] [0.75, 0]
db_read1
[0.5,0.2] [0.7, 0.28]
db_read2
[0.6, 0.4] [0.84, 0.56)

62

Table 4. Reward rate and Probability of Operational Configurations

Cgr?f?ggﬁtrlgt?:ris Reward- Throughput nggfggﬁg f
S1 0.55198 0.083811
S2 0.517833 0.137174
S3 0.490042 0.068588
S4 0.477727 0.065610
S5 0.460677 0.112257
S6 0.449909 0.107384
S7 0.429976 0.053693
S8 0.407262 0.087879
S9 0.50193 0.004230
S10 0.471498 0.006923
S11 0.450876 0.003462
S12 0.415705 0.003311
S13 0.426071 0.005666
S14 0.39498 0.005420
S156 0.381928 0.002710
S16 0.364217 0.004435
System Unoperational 0 0.24744

Step 6: Dependability Analysis (MSFT)

Apart from the reward rate for every operational configuration, we also need to

determine the probability of system being in each of that configuration in order to

63

evaluate steady state performability. The failure probability of all the processors and
reference task is assumed to be 0.05. To find the probability of operational configuration

S1, following formula is used:

Prob(§1) = (1-F_{Users}) * (1-F_{User_P}) * (P_ {Interface,,)) * (1- F_ {Interface_P))
* (P_ (Application,,}) * (1-F_ Application_P}) *(P_ {Database-1,)) * (1-F_ {Database-
1_P))

= 0.083811

- F_ {Users} indicates failure probability for Users task.

- F_ {User_P} indicates failure probability for User processor which is used by Users
task.

- P_ [Interface,) indicates probability of Interface task being in state ‘W’. This
probability is obtained by solving the CTMC for Interface task.

- F_ {Interface_P) indicates failure probability for Interface-Processor.

- P_ {Application,, } indicates probability of Application task being in state ‘W’. This
probability is obtained by solving the CTMC for Application task.

- F_ {Application_P} indicates failure probaBility for Application-Processor. .
- P_ [Database-1,,] indicates probability of Database-1 task being in state “W’. This
probability is obtained by solving the CTMC for Database-1 task.

- F_ {Database-1_P}) indicates failure probability for Database-1-Processor.

Similarly the probability of occurrence for operational configuration S2 to S8 can be
calculated. The probabilities for operational configuration S2 to S8 are as shown in table
4. Now to calculate the probability for operational configuration S9, we first need to
determine the probability of Database-1 task being unoperational. Figure 3.15 shows the
MSFT which represents the combination of conditions that can cause Database-1 to be

unoperational,

64

Database-1
unoperational

DB 1,F DB 1, BR

Figure 3.15 - MSFT for Database-1 unoperational

- DB rindicates that Database-1 is in ‘F’ state (Failed state)
- DB ;pr indicates that Database-1 is in ‘BR’ state (Being Rejuvenated
state)

- DB_P rindicates that Database-1 processor is in ‘F’ state (Failed State)

The MSFT shown in figure 3.15 is solved using the SHARPE tool [47] to obtain the

probability of Database-1 being unoperational.

To find the probability of operational configuration S9, following formula is used:

Prob(S9) = (1-F_{Users}) * (1-F_{User_P}) * (P_ {Interface,})) * (1- F_ {Interface_P})
* (P_ {Application,,}) * (1-F_ Application_P}) *(P_ {Database-2,,}) * (1-F_ {Database-
2_P})* (P_{Database-1 unoperational})

= 0.004230

65

- P_{Database-1 unoperational] indicates the probability of Database-1 task being in
unoperational state obtained by solving the MSFT shown in figure 3.15.

- P_ {Database-2,,] indicates probability of Database-2 task being in state “W’, This
probability is obtained by solving the CTMC for Database-2 task.

- F_ (Database-2_P} indicates failure probability for Database-2-Processor.

Similarly we can calculate probability for all other operational configurations related to
S9. Thus we will have probability of occurrence for all 16 different operational

configurations as shown in table 4.

MSFT for system being in unoperational state is shown in figure 3.16. The probability
obtained by solving this MSFT using SHARPE is shown in table 4. The sum of the
probabilities of all 16 operational configurations and system unoperational probability

addsup to 1.

66

System Unoperatonal

MSFT
Root

Int_cpu ¢

DB1_cpu ¢

DB2_cpu ¢

Int_ty Int_t
App_ty APP_ter TR

DB1_t; DB ter DE2.t, DB2_ten

Figure 3.16 - MSFT for System unoperational

U_CPU { indicates the probability that processor used by Users task is in failed state.
U_T ;indicates the probability that Users task is in failed state.
Int_cpu ¢ indicates the probability that processor used by Interface task is in ailed state.

Int_t ¢ indicates the probability that Interface task is in failed state.

67

- Int_t gr indicates the probability that Interface task is undergoing rejuvenation.
-App_cpu r indicates the probability that processor used by Application task is in failed
state.

- App_trindicates the probability that Application task is in failed state.

- App_tprindicates the probability that Application task is undergoing rejuvenation,

- DB1_cpu ¢ indicates the probability that processor used by Database-1 task is in failed
state.

- DB1_tindicates the probability that Database-1 task (primary) is in failed state.

- DB1_t grindicates the probability that Database-1 task is undergoing rejuvenation.

- DB2_cpu ¢ indicates the probability that processor used by Database-2 task is in failed
state.

- DB2_tindicates the probability that Database-2 task (secondary) is in failed state.

- DB2_t prindicates the probability that Database-2 task is undergoing rejuvenation.

Step 7: Steady State Performabilty Calculation

The steady state performabilty or expected steady state reward rate or mean throughput
is calculated by multiplying the throughputs (rewards) associated with every operational
configuration with their corresponding probabilities. In our case using the reward and
probability for every operational configuration from table 4, we get the steady state

performability of: 0.3569 requests/sec.

3.4 Summary

This chapter has introduced the Rejuvenated-FTLQN model to compute the steady state
performability of the system under the effects of software aging and rejuvenation,
CTMCs were used for modeling aging and rejuvenation, where the degradation was
described by a two step process. Fault propagation And-Or graph was used to generate
different operational configurations of the system, LQN model corresponding to every
configuration was cvaluated to obtain the throughput and MSFT was used in the
dependability analysis part of the calculations. A simple example of customer-
information retrieval system was used to demonstrate all the steps involved in the

Rejuvenated-FTLQN model solution.

68

Chapter 4
Analysis using Rejuvenated-FTLQN

Model

This chapter discusses about following things. Section 4.1 deals with the impact of
performing rejuvenation on the steady state performability of the system. The
Rejuvenated-FTLQN model solution is compared for two cases: (1) With Rejuvenation
and (2) Without Rejuvenation. Section 4.2 discusses about the effects of increasing the
rejuvenation frequency on the steady state performability. Section 4.3 compares the
Rejuvenated-FTLQN model solution for two different cases: (1) system with fault
tolerance (2) system without fault tolerance. For both the cases the effects of time to
perform rejuvenation, rejuvenation frequency, and base longevity interval on steady state
performability is studied. Section 4.4 deals with the comparison of different designs of

the system based on steady state performability.

4.1 Model Solution with and without Rejuvenation

In this section the example of FTLQN model (figure 3.7) given in chapter 3 is used. The
Rejuvenated-FTLQN model solution explained in chapter 3 was taking into consideration
that rejuvenation was implemented. In this section we will compare that model solution

with one in which no rejuvenation is performed.

The CTMC for the software task when no rejuvenation is performed is as shown in
figure 4.1, as explained in section 3.2 of chapter 3. The CTMC for the software task when

rejuvenation is performed is shown in figure 4.2. Each of the four states is described as

follows:

69

e State W: Working or highly robust state (normal operation)
o State FP: Failure Probable state (due to aging).
e State BR: Being Rejuvenated state (undergoing rejuvenation)

e State F: Failed State.

R2 A

R4

Figure 4.1 - CTMC - Without Rejuvenation

Ra
R2 . A

R4
Figure 4.2 - CTMC - With Rejuvenation

The rates in the CTMCs for every software tasks are same as described in chapter 3. All
the rates in the CTMC for different software tasks are shown in table 5. The steady state
probabilities obtained after solving the CTMCs using SHARPE tool is shown in table 6
and 7. Table 6 shows the probabilitics for “Without Rejuvenation” case and table 7 shows

the probabilities for “With Rejuvenation” case.

70

Table 5. Rates in CTMCs

Tasks Rate Ry Rate Rz Rate R3 Rate Rs Rate A
Interface 1 0.008334 6 0.0046296 | 0.000462
Application 2 0.004167 6 0.0046296 | 0.000462
Database-1 4 0.004167 6 0.0046296 | 0.000694
Database-2 4 0.004167 6 0.0046296 | 0.000694
Table 6. Steady state probabilities- Without Rejuvenation
Tasks State F State W State FP
Interface 0.000438 0.052598 0.94696
Application 0.000208 0.099960 0.899383
Database~1 0.000297 0.142810 0.856890
Database-2 0.000297 0.142810 0.856890

71

1

Table 7. Steady state probabilities- With Rejuvenation

Tasks State F State W State FP State BR
Interface 0.0002871 0.37897 0.62027 0.0004785
Application 0.0001041 0.54970 0.44985 0.0003470
Database~1 0.0001523 0.56065 0.43886 0.0003385
Database-2 0.0001523 0.56065 0.43886 0.0003385

The fault propagation AND-OR graph is same for both the cases as shown in figure 3.7.
We will have same number of operational configurations as before (16). The rewards
(throughput) associated with the operational configurations will also remain the same.

The operational configurations (their notation) and the throughputs are shown in table 8.

The difference is in the configuration probabilitics. When no rejuvenation is performed
the software task will reside in failure probable state (‘FP’) for longer duration compared
to when rejuvenation is performed. For example, say operational configuration- S8 -
Interface-FP, Application-FP, Database-1- FP from table 8, we can see that when
rejuvenation is implemented the system stays in this configuration for less amount of
time compared to when rejuvenation is not implemented. The configuration probabilities

for all the operational configurations are shown in table 8.

72

Table 8. Reward rate and Probability of Operational Configurations

bt | Revart Troughut | Prssbiy n | Probasiy-

Rejuvenation
S1 0.55198 0.083811 . 0.000581
S2 0.517833 0.137174 0.01046
S3 0.490042 0.068588 0.005227
S4 0.477727 0.065610 0.003486
S5 0.460677 0.112257 0.094114
S6 0.449909 0.107384 0.062763
S7 0.429976 0.053693 0.031366
S8 0.407262 0.087879 0.564701
S9 0.50193 0.004230 0.000029
S10 0.471498 0.006923 0.000526
S11 0.450876 0.003462 0.000263
S12 0.415705 0.003311 0.000175
S13 0.426071 0.005666 0.004732
S14 0.39498 0.005420 0.003156
S15 0.381928 0.002710 0.001577
S16 0.364217 0.004435 0.028393

73

¢ VWithout Rejuvenation:

Steady state performability=0.3306 requests/sec.

¢ With Rejuvenation:

Steady state performability=0.3569 requestsisec.

The result shows that the steady state performability increases when rejuvenation is

performed.

4.2 Effects of Rejuvenation Rate

This section describes the effects of rejuvenation rate (frequency) on the steady state
performability of the system. Rejuvenation rate refers to the rate R4 in the CTMC shown
in figure 4.2, and rate R; indicates the repair rate after a rejuvenation event. As we
increase the rejuvenation rate, the steady state probabilities of task being in each of the
four states (‘W’, ‘FP’, ‘BR’, ‘F’) changes. The steady state probability of task being in
highly robust state (‘W’) increases. The result is that the probability of occurrence of the
operational configurations changes along with the inputs for MSFT. Finally it results into

changed steady state performability value.

Rejuvenation rate for database servers and application task is increased. On the x-axis of
the graph (figure 4.3) only rejuvenation rate for Application task is shown but the plot
takes into consideration increase in rejuvenation rate for database servers too. All other
model parameters are same as described in table 5. Initially when we increase the
rejuvenation frequency, we see increase in steady state performability. The increase in the
value of steady state performability is only upto a point (0.38), after which it starts
declining. For e.g. increasing the rejuvenation rate from 0.0046 to 0.0069 results in
increase in steady state performability from 0.35 to 0.36. Steady state performability
decreases from 0.38 to 0.375 when the rejuvenation rate in increased from 0.02 to 0.04,

as the system which is rejuvenated very often might also lose availability.

74

0.385
0.38
0.375
0.37
0.365
0.36
0.355
0.35 -
0.345 - : : . ;

0 001 002 003 004 0.5

Rejuvenation Rate-R;

Steady State Performability

Figure 4.3 - Steady State Performability (SSP) v/s Rejuvenatiori Rate

4.3 Effects of Fault Tolerance

This section describes the effects of fault tolerance on the steady state performability.
Rejuvenated-FTLQN model solution is applied to the system without fault tolerance and
with fault tolerance. Also the effects of rejuvenation frequency, time to perform
rejuvenation and base longevity interval on the steady state performability is compared

for two different designs:

(1) System with no fault tolerance- shown in figure 4.4.

(2) System with fault-tolerance- shown in figure 4.5.

In case (1) we don’t have secondary database server available. So when the primary
database server is unoperational (Undergoing Rejuvenation or Failed) the system is
unoperational. But in case (2) when primary database server is unoperational, the system
is still operational with Application task using secondary database. In case (1) we have 8
different operational configurations (S1 to S8), considering the fact that the software
tasks have 2 operational states (‘W’ and ‘FP’). In case (2) we have 16 different

operational configurations (S1 to S16) as explained in chapter 3.

75

User

Authenti-
-cate
[0.20.1]

Inferface

(10)

Application search

(050

db_read1
[0.50.2]

Database-1

Database-1_P

Figure 4.4 -No fault tolerance

Application_P.

User

(10) D

Authenti-
-Cale
[0.20.9)

Interface

10)
Interface_P Interface_P

db_read1
[0.50.2]

db_read?2
[0.6,04)

7 N\
7 s N
O Database-1 Database-2 O
Database-1_P Dalabase-2_P

Figure 4.5 -~ With fault tolerance

76

Steady State Performability

0.335 .
0 0.01 0.02 0.03 0.04 0.05

Rejuvenation Rate

Figure 4.6 - SSP v/s Rejuvenation Rate- With and Without Fault Tolerance

The rejuvenation rate for database servers and Application task is increased. On the x-
axis of the. graph (figure 4.6) only rejuvenation rate for Application task is shown but the
plot takes into consideration increase in rejuvenation rate for database servers too. All
other model parameters are same as described in table 5. From figure 4.6, we can see that
steady state performability is higher when we have secondary database available. Initially
when we increase the rejuvenation frequency we see increase in steady statc
performability. But after certain threshold (e.g. 0.365 for system without fault tolerance)
the steady state performability starts declining. Thus the increase in the value of steady
state performability is only upto a point, after which it starts decreasing. “Rejuvenated-
FTLQN" model can be used to study the effects of rejuvenation frequency on the steady
state performability of the system and also to determine the threshold after which it has a

negative impact.

77

0.36

0.355
0.35
0.345
0.34
0.335

Steady State Performability

0.33

Rate Rj

Figure 4.7 - SSP v/s Rate R;- With and Without Fault Tolerance

If we increase rate Ry and keep R4 constant then the steady state performability
increases as shown'in figure 4.7. On the x-axis of the graph (figure 4.7) only Rate R; for
Application task is shown but the plot takes into consideration increase in rates for
database servers too. When we increase rate Rs, the software tasks stays in “Being
Rejuvenated” state (‘BR’) for shorter duration and in highly robust state (“W”) for longer

duration, resulting in higher steady state performability.

0.36 1— \
0.355 r é L
0.35 -+ ‘\bNith’FauIt Tolerance
0.345

0.34
0.335
0.33
0.325
0.32 ‘
0.003 0.005 0.007 0.009 0.011

Rate R,- Base Longevity Interval

ity

_Without Fault Tolerance:

Steady State Performabil

T T

Figure 4.8 - SSP v/s Rate R,- With and Without Fault Tolerance

If we increase the rate at which the application goes from ‘W’ to ‘FP’ state (rate Ry),

and keep all other model parameters same then the steady state performability decreases

78

as shown in figure 4.8. This is because when we increase the rate R, the software tasks
stays in highly robust state for shorter duration and in failure probable state for longer
duration (performing at degraded performance level for longer amount of time) which
results in lower steady state performability value. Thus Rejuvenated-FTLQN model can
also be used to analyze the effects of time taken to perform rejuvenation and base

longevity interval on the steady state performability.

4.4 Comparing Different Designs

In this section, three different designs of the system introduced in chapter 3 are
compared. Rejuvenated-FTLQN model is used to evaluate the steady state performability
under the effects of software aging and rejuvenation for all the three designs. The main
purpose is to illustrate how Rejuvenated-FTLQN model can be used to compare different

designs of the system based on the steady state performability.

e Design 1: Fault tolerance at Database tier- figure 4.9.
e Design 2: Fault tolerance at Application tier- figure 4.10.

¢ Design 3: Fault tolerance at Web tier- figure 4.11.

The secondary tasks have the same failure profiles as primary tasks. We will have 16
different operational configurations for each of the design, but the difference is in the
layer in which the fault tolerance is available. Two operational configurations that arise
due to presence of secondary server alone and not due to software aging, for design 1,

design 2 and design 3 are shown in table 9, table 10, and table 11 respectively.

79

User users
/ U AN
\

(1,0)

User_P

4

Authenti-
Interface -cate
[0.2,0.1] N

Interface_P

Application search
[0.5,0] \\

A Application_P
db_read1 db_read2
- [0.5,0.2] [0.6,0.4] N

d Database-1 Database-2

Database-1_P Database-Z_P

(1,0)

Figure 4.9 - Design 1 - FTLQN Model

80

User users
[0,0.5]
\
\

y
Authenti-
Interface -cate
[0.2,0.1] N o
2

#1 # Interface_P
(1,0) (1,0)

Application1 /' Search1 Search2 Application2
- [0.5,0] [0.5,0] So
P -~
) O
Application2_P

Application1_P (1,0) (1,0)

1S

Database Read

[0.5,0] N

O
Database_P

Figure 4.10 - Design 2 - FTLQN Model

users
[0,0.5] N

#2 b User_P

User

(1,0)

Authenti- Authenti- |
Interfacet -catel -cate2 nterface2
7 [0.2,0.1] [0.2,0.1] N
\
) -

Interface1_P (1.0 (1,0) Interface2_P

Application search
[0.5,0] ~

O

Application_P
(1,0 pRIcATon-
read
Database [0.6,0.4] -
Database_P

Figure 4.11 - Design 3 - FTLQN Model

82

Table 9. Design 1- Operational Configurations (due to presence of secondary
server only)

Notation | Operational Configurations

DI1OCI1 | Interface-W, Application-W, Database-1- W

D10C2 | Interface-FP, Application-FP, Database-1- unoperational, Database-2- W

Table 10. Design 2- Operational Configurations (due to presence of
secondary server only)

Notation | Operational Configurations

D20C1 | Interface-W, Application-1-W, Database-W

D20C2 | Interface-W, Application-1-unoperational, Application-2-W Database-1- W

Table 11. Design 3- Operational Configurations (due to presence of
secondary server only)

Notation | Operational Configurations

D30C! | Interface-1-W, Application-W, Database-W

D30C2 | Interface-1-unoperational, Interface-2-W, Application-W, Database-W

The mean execution demands (or mean CPU demands) for primary as well as secondary
entries of the tasks arc shown in table 12. In all the three cases, secondary is less
powerful compared to primary. All the three FTLQN models are solved using the
Rejuvenated-FTLQNS tool, and the steady state performability values obtained for each

of them is shown in the table 13.

83

Entry Primary- Mean CPU demands | Secondary- Mean CPU demands
read [0.5,0.2] [0.6,0.4]
search [0.5, 0] [0.7, 0]
authenticate [0.2,0.1] [0.3,0.2]

Table 12. Mean CPU demands for Primary and Secondary

Table 13. Steady State Performability for three different designs

Design Steady State Perfomability
Design 1 0.3569 requests/sec
Design 2 0.3646 requests/sec
Design 3 0.3648 requests/sec

From table 13, we can see that the steady state performability is almost same for design
2 and design 3 of the system, which is little higher compared to design 1. Thus
Rejuvenated-FTLQN model can be used to evaluate different proposed designs of the
system and the results can be compared based on steady state performability values. The
results obtained can also help in making decision of whether adding extra hardware will
be useful and by how much. Trade-off between the performability value and the cost of
extra hardware can be evaluated to make a decision. For e.g. from table 3 we can see that
adding extra server at application tier or database tier results in approximately same value
of steady state performability. Thus the decision of buying the server with lower cost can

be made.

4.5 Summary

In this chapter, the impact of performing rejuvenation on steady state performability
was studied using the Rejuvenated-FTLQN model. The effect of changing rejuvenation
rate on steady state performability was considered. The gain in the value of steady state
performability due to fault tolerance in the system and the effects of time to perform

rejuvenation, base longevity interval and rejuvenation frequency on system with and

84

without fault tolerance were considered. Finally, Rejuvenated-FTLQN model was used to

compare different designs of the system based on steady state performability.

85

Chapter 5
Rejuvenated-FTLQN Model Solver

Description

This chapter presents a high level description of the Rejuvenated- FTLQNS (Fault
Tolerant Layered Queueing Network Solver) tool, which automates the Rejuvenated-
FTLQN Model solution. Section 5.1 gives an overview of Rejuvenated-FTLQNS tool.
Section 5.2 describes the processing steps that are carried out by Rejuvenated-FTLQNS
tool with the help of the block diagram. Section 5.3 describes how to use the

Rejuvenated-FTLQNS tool through command line.

5.1 Overview of Rejuvenated-FTLQANS tool

This section gives a brief overview of Rejuvenated-FTLQNS tool. This tool automates
the evaluation of performability for fault tolerant systems under the effects of software

aging and rejuvenation,

Rejuvenated-
LQNS FTLANS FTLQNS

- Performance Evaluation - Performability Evaluation - Performability Evaluation
- Solves LQN Model - Solves FTLQN Model - Solves Rejuvenated-FTLQN Model
- Adds dependability - Adds Software Aging and

Rejuvenation

Figure 5.1 - LQNS v/s FTLQNS v/s Rejuvenated-FTLQNS

LQNS (Layered Quecucing Network Solver) is the software tool used for performance
evaluation [60]. LQNS solves LQN model. In the Rejuvenated-FTLQN model solution

we are generating LQN models (performance models) for ever operational configuration

86

and LQNS is invoked to solve the LQN models. FTLQNS (Fault Tolerant Layered
Queueing Network Solver) is the software tool that was developed for performability
evaluation [10]. FTLQNS adds dependability evaluation to the existing LQNS tool and
automates the algorithm to evaluate the steady state performability of fault tolerant
\ layered distributed systems. In the evaluation of performability by FTLQNS tool there is
no consideration of software aging and rcjuvenation. So Rejuvenated-FTLQNS tool
which was developed in present research adds the effects of software aging and
rejuvenation to the FTLQNS performability computations. Detailed architecture of the

tool is discussed in next section of this chapter.

5.2 Description of Rejuvenated-FTLQNS tool

A high level block diagram of the Rejuvenated-FTLQNS tool is shown in figure 5.2. A
Rejuvenated-FTLQN model can be described in a plain text file. For example, the input
file for the model shown in figure 5.2 is shown in figure 5.3. The Rejuvenated-FTLQNS
Parser takes a Rejuvenated-FTLQN model description that obeys the BNF grammar
given in Appendix A and develops the corresponding fault-propagation AND-OR graph.
For every task except reference task, the rates in the CTMC are mentioned in the task
description section of the input file. The rates are specified in this order: Ry, Rz, R3, Ry,

and A. For the input file shown in figure 5.3, the rates are shown in bold font.

The AND-OR Graph Analyzer is a C++ routine that operates on the fault-propagation
AND-OR graph and generates the operational configurations due to fault tolerance. This
part is same as the FTLQNS tool. From the knowledge of the input model and the
operational configurations generated due to presence of secondary server, another C++
routine generates all the operational configurations due to software aging. It takes into
account the multiple operational states (W and FP) for the software tasks. For the
example shown in figure 5.2, we will have 8 different operational configurations. 8 LQN
input files will be generated by Rejuvenated-FTLQNS tool and LQNS tool will be
iteratively invoked to solve the LQN models. One of the LQN input file is given in

87

Appendix B. LQNS tool will generate 8 output files corresponding to every LQON input
file. A PERL script extracts the desired value (throughput) from the output file. This
throughput value is assigned as the reward to the corresponding operational
configuration. A sample output file generated by LQNS tool and the PERL script that

extracts the throughput value from it are shown in Appendix B.

The AND-OR Graph Analyzer along with the model description generates the MSFTs,
The sample MSFT input file for the example shown in figure 5.2 is given in Appendix B.
The SHARPE tool is then invoked to solve the MSFTs. A PERL script extracts the
desired value (failure probability) from the output file generated by SHAREPE tool. These
failure probabilities are then used to calculate the probabilities of occurrence for
operational configurations. A sample output file generated by SHARPE tool and the
PERL script that extracts the failure probability from it are shown in Appendix B.

Finally, the probabilities of the operational configurations and the rewards (throughput)
are fed to the Performability Calculator to compute the steady-state performability. The
output of the Rejuvenated-FTLQNS tool consists of the different operational
configurations, their probabilities, their associated reward rates and the steady state

performability.

88

entry1
/ entryt /\ task1

processori

entry2 task2
[0.5,0} ~
[an
#1 H2

processor2
.9 (1.0

entry3 entry4
_ [0.5,0.2] [0.6,0.4] ~
d task3 task4 b

processor3 processor4

(1,0)

Figure 5.2 - FTLQN Model

89

Model
Description

B Parser

MSFT Input
files

Perf Model
(Secondary
Server)

Perf Model
(Sofware
Aging)

SHARPE . -

Probabilities o Reward Rate’
Configuration: Configurations . .

Gérfcajrmgbii'i;y' Ca lc'ujat@

Figure 5.3 - Rejuvenated-FTLQNS tool - Block Diagram

90

G "A1” 1e-06 50 5 0.900000 -1

P4
p pl f(0.05)
p p2 f(0.07)
p p3 f (0.05)
p p4 f (0.05)
-1

T4

ttir el -1 p1(0.1)

tt2n e2 -1 p2(1)(0.008334) (6) (0.0046296) (0.000462)
tt3n e3 -1 p3(2)(0.002976) (3) (0.002976) (0.0001157)
tt4n e4 -1 p4(2)(0.002976) (3) (0.002976) (0.0001157)
-1

E4

sel 0.000000 0.500000 -1
se2 0.500000 0.000000 -1
se3 0.500000 0.200000 -1
se4 0.600000 0.400000 -1
yele2l0-1

ALT y e2 [e3, e4] 1.0 0.0 -1
-1

Figure 5.4 - Rejuvenated-FTLQNS Input File

5.3 How to use Rejuvenated-FTLQNS tool

This section describes how to use Rejuvenated-FTLQNS tool through command line.

The Rejuvenated-FTLQNS tool is invoked as follows:
% Rejuvenatedftiqns filename

The filename should have filgn extension, for example, ex.ftlgn. The description in the

file should follow the BNF format given in Appendix A.

91

For the FTLQN model shown in figure 5.2, the input file is shown in figure 5.3. In Figure
5.3, first section describes the four processors, second section describes all the tasks
along with the associated CTMC rates and the last section describes the CPU demand for
the four entries along with the service dependencies among the entries. Assuming the
name of the input file to be example.ftign, the Rejuvenated-FTLQNS is invoked on this

file as follows:
% Rejuvenatedftigns example.ftign

The sample intermediate outputs generated by Rejuvenated-FTLQNS tool are shown in

Appendix B. The final output generated is shown in Figure 5.5 below:

Steady State Performability of the System: 0.433324 requests/sec

Figure 5.5 — SSP calculated by Rejuvenated-FTLQNS

5.4 Summary

In this chapter, a high level description of Rejuvenated-FTLQNS tool which automates
the Rejuvenated-FTLQN model solution was given. This chapter also described the

processing steps that are carried out by the Rejuvenated-FTLQNS tool.

92

Chapter 6
Case Study: Building Security

System (BSS)

A building security system is a complex distributed system which can be used at
hospitals, hotels, and laboratories etc [63]. This chapter uses the “Rejuvenated-FTLQN”
model to evaluate the steady state performability of the Building Security System (BSS),
taking into consideration the impact of software aging and rejuvenation. First the
overview and the usage of the system is given. Then the LQN, FTLQN and
“Rejuvenated-FTLQN” model of the system are discussed. Finally the effects of
changing rejuvenation rate, base longevity interval and time to perform rejuvenation on
steady state performability are also considered. The main purpose of this chapter is to
show that Rejuvenated-FTLQN model can be used to analyze a large distributed system

involving many software tasks, with the help of an example (BSS).

6.1 Description of Building Security System (BSS)

This section gives a brief overview of Building Security System. This system is mainly

used for following two purposes:

e To control access to a building (Access Control Scenario).

e To monitor activity in a building (Acquire/Store Video Scenario).

Apart from the two main scenarios stated above, the system can be used for following

purposes also:

e Operations for administration of the access rights.

e Viewing the video frames.

93

¢ Sending an alarm after multiple access failures.

6.1.1 Description of Two Main Scenarios

This section explains the Access Control Scenario and Acquire/Store Video Scenario.
o Access Control Scenario
In the Access Control scenario following steps takes place:
1. A card is inserted into a door-side reader.
2. A door-side reader reads and transmits the data to a server.
3. Server checks the access rights associated with the card in a database of access
rights.

4, Then either triggers the lock to open the door or denies access.

o Acquire/Store Video Scenario
In the Acquire/Store Video Scenario following steps takes place:
1. Number of web cameras located around the building.

2. Video frames are captured periodically by these web cameras.

3. This Video frames are stored in the database.

6.1.2 Main Components of Building Security System

Figure 6.1 shows the main components involved in the Building Security System,

*= Application Server: To control access to the building (AccessController) and
to process images captured and store it into the database,

= Security Card Reader: To read the information from the card.

* Video Camera: To Capture the video frames.

* Door Lock Actuator: Controls the door lock.

* Database Server: Store the access rights as well as the images that are

captured by the video cameras.

94

%
)
i1

Video Camera Databa

Qi
Qu;

se Sever

Security Card Reader

Application Server

Figure 6.1 - Building Security System- Main Components

6.2 Scenarios for Building Security System (BSS)

Unified Modeling Language (UML) is a general-purpose modeling language that
includes a graphical notation used to create an abstract model of a system, referred to as a
UML model [5]. In this section, a UML sequence diagram is given for access control

scenario and acquire/store video scenario [63].

¢ UML Sequence diagram

A type of interaction diagram, a sequence diagram shows the actors or objects

participating in an interaction and the events they generate arranged in a time sequence.

95

The sequence diagram is used primarily to show the interactions between objects in the
sequential order that those interactions occur. The focus is less on messages themselves
and more on the order in which messages occur; nevertheless, most sequence diagrams
will communicate what messages are sent between a system's objects as well as the order
in which they occur. The diagram conveys this information along the horizontal and
vertical dimensions: the vertical dimension shows, top down, the time sequence of
messages/calls as they occur, and the horizontal dimension shows, left to right, the object

instances that the messages are sent to .

Thus, the vertical dimension in a sequence diagram represents time, with time proceeding
down the page. The horizontal dimension represents different actors or objects.
The UML scenario diagram for access control scenario and acquire/store video scenario

are as shown below:

96

* Access Control Scenario - UML Sequence Diagram

Database

ccessContolle

Read Rights

Alarm

DoorlLo

CardReader

e e e e e e e e e e

User

Enter Building

B

Not O.K, Alarm

- - - - ot

Figure 6.2 - Sequence Diagram for Access Control Scenario

97

e Acquire/Store Video Scenario -UML Sequence Diagram

GetBuffer
AllocBuffer

D

é_...-.._-.._-.._—..-

Getlmage
Passimage

Storelmage

Store

ProcOnelmage

e---------_---_--

| VideoController |

Figure 6.3 - Sequence Diagram for Acquire/Store Video Scenario

98

6.3 LQN and FTLQN Model of Building Security System

This section describes the LQN and FTLQN model of the Building Security System.
The LQN Model of the system is shown in figure 6.4 [63].

scquireLoop | VideoController User [Uears
[L.E] rate=0.350¢
) ™

\

peocOsImage | 4cquireProc readCard | CardReader
[1.50] 8]
10)
UIOJ / \L\:_
alloc | BuffarManager sdmit | AecessController
[03.0) [35.02]
i(fc—mdoa) L S0.0)

\ slamm
Buffer Dy \ Alamm

N\ L
M:/ w & ¢.0 Y— @
4
gecImage [passimage | AcquireProel stu ge StoreProc lock [Lock
20| (03.0) (0, 300] N

(8P.0) io])

necwork | Network | [releaseBuf| Bufher2 wiitelmz [readRigltswriteEvent] DataBase
10.1) | {infinite) [0.5,0] 0 | s | BE&G |00 threads)

5, o;l O b
"
@ writeBlock! readData | writeRec | Disk @
mo | 180 | B (2t1k'ead5)\i

Figure 6.4 - LQN Model of Building Security System

99

In this system we add a secondary database server, called Database-2 (DB-2), as shown

in figure 6.5. Thus if the primary database is unoperational, the AccessController task

will use DB-2. The rest of the model and the mean number of calls are same as figure 6.4,

except that storeImage will also use DB-2 when primary database is unoperational and

DB-2 is allocated DB2CPU (processor).

admit
[39,02]

AccessController

#
"y #2
#2
Writelmg | readRights | writeEvent DataBase Writelmg | readRights | writeEvent || DataBase-2
[7.2,0] [1.8,0] [1.8,0] (10 threads) [7.2,0] [1.8,0] [1.8,0] {10 threads)

WriteBlock | readData

(1.0

(1.50]

writeRec
(1.8,0]

Disk
(2 threads)

Figure 6.5 - FTLQN Model

100

6.4 Rejuvenated-FTLQN Model - Building Security System

The “Rejuvenated-FTLQN” model is applied for access control scenario which involves
following software tasks: Users, CardReader, AccessController, Database and Disk.
When the primary database is unoperational, the AccessController task will use the

secondary database (DB-2). The failure profiles for the software tasks are as shown in the

CTMC:s below:

0.005952
0.005952 0.0001157

®» ® O

2

Figure 6.6 - CTMC for CardReader/Disk task

0.01041

0.01389 0.0004629

ONCH©G

2
Figure 6.7 - CTMC for AccessController task

101

0.00416

0.0104166

0.0004629

Figure 6.8 - CTMC for Database-1 and Database-2

0.5

The steady state probabilities obtained after solving the above CTMCs using the

SHARPE tool is as shown in the table 14.

Table 14. Steady State Probabilities

Tasks State F State W State FP State BR
CardReader 0.000028 0.5043 0.4946 0.00098
AccessController 0.000129 0.4386 0.5603 0.00097
Database - 1 0.000255 0.7228 0.2764 0.00047
Database-2 0.000255 0.7228 0.2764 0.00047
Disk 0.000028 0.5043 0.4946 0.00098

102

The fault propagation AND-OR graph is shown in figure 6.9.

Figure 6.9 - Fault propagation And-Or graph

103

The next step is to generate the operational configurations of the system. The two
operational configurations that arise due to presence of secondary server are shown in

table 15.

Table 15. Operational Configurations (due to presence of secondary server
only)

Notation [Operational Configurations

S1 CardReader-W, AccessController-W, Database-1- W, Disk-W
S2 CardReader-W, AccessController-W, Database-1- unaperational, Database-
2- W, Disk-W

‘W’ indicates Working or highly robust state. S and S2 configurations arise due to
presence of secondary server alone, without any consideration of software aging. For S1,
we have 4 tasks and each task can be in highly robust state (‘W*) as well as failure
probable state (‘FP’). Thus we have 16 (2%) different operational configurations including
S1 for e.g. CardReader-W, AccessController-W, Database-1- FP, Disk-W is one of the
possible operational configuration. Similarly for S2 also we have 16 different operational
configurations including S2, for e.g. CardReader-W, AccessController-FP, Database-1-
unoperational, Database-2- FP, Disk-W is one of the possible operational configuration.
So finally we have 32 different operational configurations of the system. The number
of operational configurations is more in our case compared to when the performance
degradation due to software aging is not considered (increases from 2 to 32). All the
operational configurations are generated automatically by “Rejuvenated-FTLQNS” tool

from the model description.

Thus we will have 32 different LQN Models corresponding to its equivalent operational
configuration. The “Rejuvenated-FTLQNS” tool generates 32 different LQN input files
and invokes LQNS [60] on cach of the file. A PERL Script extracts the desired value
(e.g. throughput) from the output file generated by LQNS. We are selecting throughput as

104

the reward rate to be associated with corresponding operational configuration.
Throughput is high when the tasks are in highly robust state compared to when the tasks
are in failure probable state due to aging for e.g. Operational configuration CardReader-
W, AccessController-W, Database-1-W, Disk-W has a throughput of 0.126215/Sec, while
operational configuration CardReader-W, AccessController-W, Database-1-FP, Disk-FP
has 0.0969637/Sec. Similarly we will have different throughput value (reward rate)

corresponding to every operational configuration.

Apart from the reward rate for every operational configuration, we also need to
determine the probability of system being in each of that configuration in order to
evaluate steady state performability. The failure probability of all the processors and

reference task is assumed to be 0.05. To find the probability of operational configuration

S1 following formula is used:

Prob (SI) = (I-F_{users)) * (I-F_{UserP}) * (P_{CardReader,)) * (I-F_{CardPj]) *
(P_{AccessController,}) * (1-F_{ApplicCPU}) *(P_ (Database-1,}) * (1-F_ {DBCPU))
*(P_ {Disk,]) * (1- F_ {DiskP}) = 002239

- F_ {users) indicates failure probability for users task.

- F_ {UserP} indicates failure probability for User processor which is used by users task.
. P_ [CardReader,) indicates probability of CardReader task is in state “W’. This
probability is obtained by solving the CTMC for CardReader task

Al other parameters in the equation have the same interpretation.

Similarly for all other operational configurations related to S1, we can calculate the
corresponding probability. If any particular task is in state ‘FP’ the steady state
probability being in state ‘FP’ is obtained by solving CTMC for that task. Now to
calculate the probability of operational configurations related to S2, we have to first
determine the probability of primary database (DB-1) being unoperational. As all the 16

operational configurations related to S2 has primary database unoperational and thus

105

using secondary database. Figure 6.10 shows the MSFT which represents the

combination of conditions that can cause Database-1 to be unoperational.

Database-1
unoperational

DB 1,F DB 1,BR

Figure 6.10 - MSFT for Database-1 (primary) unoperational

- DB indicates probability of Database-1 being in ‘F’ (Failed) state.

- DB 1,5r indicates probability of Database-1 being in ‘BR’ (Being Rejuvenated) state.

- DB_CPU ;y indicates probability of DB CPU (which DB-1 is using) being in ‘F’
(Failed) state.

To find the probability of operational configuration S2 following formula is used:

Prob (S2) = (1-F_{users}) * (1-F_{UserP}) * (P_{CardReader,}) * (1-F_{CardP}) *
(P_ ([AccessController,]) * (1-F_{ApplicCPU}) * (P_{Database-2,,}) * (I-
F_{DB2CPU)) * (P_{Disk,J}) * (1-- F_{DiskP}) * (P_{Database-1 unoperational}) =
0.001146

- (P_{Database-1 unoperational}) is obtained by solving the MSFT shown in figure 6.10
using SHARPE.

106

- Database-2 and its corresponding CPU (DB2CPU) are used in the formula.

Similarly we can calculate probability for all other operational configurations related to
S2. Thus we will have probability of occurrence for all 32 different operational
configurations. MSFT for System unoperational (for access control scenario) is shown in
figure 6.11. The sum of the probabilities of all 32 operational conﬁguratidns and system
unoperational probability adds up to 1. MSFT for database-1 unoperational and system
unoperational is automatically generated by “Rejuvenated-FTLQNS” tool from model
description, and the required probability is extracted from the output generated by
SHARPE.

BSS System (for Access
Control) Unoperationat

MSFT
Root

ac_cput

[\

D1_cput cr_cpuy

B

t
D1_ty D1ten D2_ty D2_tar

Figure 6.11 - MSFT for system unoperational

107

The steady state performabilty or expected steady state reward rate is calculated by
multiplying the throughputs (rewards) associated with every operational configuration
with their corresponding probabilities. We get the steady state performability of 0.06647

requestsisec.

6.5 Discussions

In this section we will discuss about (a) Model solution with and without considering
rejuvenation for software tasks, comparing the steady state performability values when
rejuvenation is performed compared to when it is not performed. (b) Effects of changing
the rejuvenation frequency (rate), repair rate after rejuvenation event and base longevity

interval on the steady state performability of the system.

6.5.1 Model Solution with and without Rejuvenation

This section describes the impact of performing rejuvenation on steady state
performability. When rejuvenation is not implemented, the CTMC for the software tasks
will be as shown in figure 3.2 of chapter 3. We will have same number of operational
configurations as before (32), and the rewards (throughput) associated with the
operational configurations will also remain the same. The difference is in the
probabilities of occurrence for the operational configuration. When no rejuvenation is
performed the software task will reside in failure probable state (‘FP’) for longer duration
compared to when rejuvenation is performed. For example, say OC1 denote operational
configuration- CardReader-W, AccessController-FP, Database-1- FP, Disk-FP, from
table 16, we can see that when rejuvenation is implemented the system stays in this
configuration for less amount of time compared to when rejuvenation is not implemented.

0OC?2 denote CardReader-W, AccessController-I'P, Database-1- W, Disk-W.

¢ Without Rejuvenation:

Steady state performability= 00529726 requests/sec.

108

e With Rejuvenation:
Steady state performability= 0.06647 requestsisec.

The result shows that the steady state performability increases when rejuvenation is
performed. The increase is quite less because of the naturc of the application but

important point is that steady state performability increases. For other systems, with

different set of parameters we may see a bigger difference.

Table 16. Probability with and without rejuvenation

Operational Probability- Probability-
Configurations Rejuvenation Implemented Rejuvenation not
Implemented
OCl1 0.0446 0.5681
0oC2 0.0366 0.0001428

6.5.2 Effects of Rejuvenation Rate

This section describes the effects of rejuvenation rate (frequency) on the steady state
performability of the system. Rejuvenation rate refers to the rate R4in the CTMC shown
in figure 6.12, and rate R3 indicates the repair rate after rejuvenation event. We compare

the effects of rejuvenation rate on two different designs:

(1) Access Control scenario with no fault tolerance.

(2) Access Control scenario with fault-tolerance.

In case (1) we don’t have secondary database server available. So when the primary
database server is unoperational (Undergoing Rejuvenation or Failed) the system in
unoperational. But in case (2) when primary database server is unoperational, the system

is still operational with AccessController task using secondary database. In case (1) we

109

have 16 different operational configurations, considering the fact that the software tasks
-have 2 operationa]—states’(‘W’v and ‘FP’). In case (2) we have 32 different operational
configurations as explained in section 6.4 of this chapter. We are increasing the
rejuvenation rate for database servers and AccessController tasks. On the x-axis of the
graph (figure 6.12) only rejuvenation rate for AccessController task is shown but the plot
takes into consideration increase in rejuvenation rate for database servers too. All other
model parameters are same as described in section 6.4 of this chapter. From figure 6.12,
we can see that steady state performability is higher when we have secondary database
available (with fault tolerance case). Initially when we increase the rejuvenation
frequency, we see increase in steady state performability. But as soon as the rejuvenation
frequency goes lower than 8 days (R4= 0.041), there is a decline in steady state
performability, Thus the increase in the value of steady state performability is only upto a
point, after which it starts decreasing. “Rejuvenated-FTLQN" model can be used to study
the effects of rejuvenation frequency on the steady state performability of the system and

also to determine the threshold after which it has a negative impact.

If we increase rate Rz and keep R4 constant then the steady state performability increases
as shown in figure 6.13. When we increase rate Ry, the software tasks stays in “Being
Rejuvenated” state (‘BR”) for shorter duration and in highly robust state (‘W’) for longer
duration, resulting in higher steady state performability. If we increase the rate at which
the application goes from ‘W’ to ‘FP’ state (called the base longevity interval) and keep
all other model parameters same, then the steady state performability decreases as shown
in figure 6.14. Because when we increase the rate Ry, the software tasks stays in highly
robust state for shorter duration and in failure probable state for longer duration
(performing at degraded performance level for longer amount of time). Thus
“Rejuvenated-FTLQN” model can also be used to analyze the effects of time taken to

perform rejuvenation and base longevity interval on the steady state performability.

110

Wih Faul Tolerance

t

o] 0.02 0.04 0.06 0.08
RejJuvenation Rate- R4

Figure 6.12 - Rate R, v/s Steady State Performability (SSP)

: ?
5 z
E 3
E
2 2
: ;
TB‘ -
3 &
] g
o &% 35 : :
0 0.02 0.04 0.06
Rate R, (Base Longevity Interval)
Figure 6.13 - Rate Rz v/s SSP Figure 6.14 - Rate R, v/s SSP
6.6 Summary

In this chapter, the case study of large building security system was used to apply the
“Rejuvenated-FTLQN” model for evaluating steady state performability. Two main
scenarios were presented namely access control scenario and acquire/store video scenario
and the model solution technique was shown for access control scenario. Finally the
effects of rejuvenation frequency, time to perform rejuvenation and base longevity
interval on steady state performability was discussed. This chapter shows that the

Rejuvenated-FTLQN model can be used to study a substantially large system containing

half a dozen components.

111

Chapter 7
Conclusions and Future Work

This research was motivated by the need for considering the effects of software aging
and rejuvenation on the performability of the system. In this chapter the summary of the

work, as well as the directions for future work is discussed.

7.1 Research Summary

This thesis has developed a model named as Rejuvenated-FTLQN to evaluate the
steady state performability of fault tolerant layered distributed systems in the presence of
software aging and rejuvenation on the servers at different layers. This approach avoids
solving large markovian model. The existing FTLQN model was developed to express
the layered service failure and repair dependencies. An algorithm was also provided for
computing performability measures. However, in FTLQN model there was no
consideration of software aging and rejuvenation phenomenon. But in many of the
existing systems the server processes are intended to run continuously providing non-stop
service and they may start aging after a certain period of time providing degraded service.
Rejuvenation may be implemented to counteract the effects of aging. Rejuvenated-
FTLQN model as described in chapter 3 was developed to take into account the aging

and rejuvenation behaviour while evaluating performability.

Rejuvenated-FTLQN model solution uses LQN for performance analysis and MSFT for
dependability analysis, A CTMC is added for every software task that describes different
states in which the task resides and the transition between them. CTMC also includes the
Failure Probable (FP) state due to aging and Being Rejuvenated (BR) state indicating that
the task is undergoing rejuvenation and therefore unavailable. The CTMCs are solved
using the SHARPE tool to obtain the steady state probabilities. These probabilities are
further used in the dependability analysis part as an input to MSFT. The AND-OR graph

representation of the Rejuvenated- FTLQN model is used to generate different

112

operational configurations of the system. Operational configurations of the system
describe the structural variations caused due to fault tolerance and software aging. An
LQN mode! (performance model) is constructed for each and every operational
configuration and solved using the LQNS tool to obtain the desired performance
measure. The aging of any particular task is modeled by changing the mean execution
demand of its entries. To calculate the probability of occurrence of the operational
configuration, a MSFT is used. A MSFT describes the combination of events that lead to
the task or system being unoperational. For e.g. if any task is unoperational there are
three possible causes: (1) the task is in failed state (2) the task is undergoing rejuvenation
and (3) the processor that is used by the task is in failed state. The MSFTs are solved
using the SHARPE tool to obtain the failure probability. The results from the
performance analysis (LQN) as well as the dependability analysis (MSFT) are combined
to obtain the steady state performability. It has been assumed here that the failures of the

software tasks and processors are independent of each other

A software tool called Rejuvenated-FTLQNS (Fault Tolerant Layered Queueing
Network Solver) was developed to automate the Rejuvenated-FTLQN model solution
(chapter 5). Rejuvenated-FTQLNS has been developed in C++ and PERL. LQNS and
SHARPE tools are invoked from Rejuvenated-FTLQNS tool. A model was solved for
two cases (1) with rejuvenation implemented and (2) without rejuvenation and it was
found that rejuvenation helps in improving the steady state performability of the system.
The effects of rejuvenation frequency on the steady state performability was also studied
and it was observed that increasing the rejuvenation rate results in higher steady state
performability, but this was only upto a point. After which increasing the rejuvenation
frequency had negative effects on steady state performability. A model was solved for a
system without fault tolerance and a same system with fault tolerance (by the means of
secondary server) and it was found that the steady state performability was higher for
fault tolerant system. The effects of the time to perform rejuvenation and the time it takes
to go from highly robust state to failure probable state due to aging (base longevity

interval) on steady state performability was also studied (chapter 4). It was found that as

113

the time to perform rejuvenation as well as base longevity increases, the steady state

' performability decreases.

The Rejuvenated-FTLQN model was also used to analyze the large Building Security
System (BSS). Access Control Scenario (to control access to a building) was described
using the UML sequence diagram and used for the application of Rejuvenated-FTLQN
model. The effects of performing rejuvenation and having a secondary database server

were also discussed.

Rejuvenated-FTLQN model can be used to analyze the impact of software aging on any
layer of the multi-tier application. As the processes running on the server are required to
run non-stop for a long duration (in days, weeks or even years), they are prone to aging.
The model proposed in this thesis can quantify the effects it has on the steady state
performability of the system. In a way, a better picture is revealed. The pro-active
approach to eliminate the effects of software aging can be implemented using software
rejuvenation technique. The overhead involved with software rejuvenation is that the
application may be unavailable during the time in which rejuvenation is performed.
Rejuvenated-FTLQN model can be used to study the combined effects of aging and
rejuvenation occurring at any layer, on the steady state performability of the system.
Some of the other questions that can be answered using Rejuvenated-FTLQN model are:
(1) How much gain in steady state performability can be obtained by implementing
rejuvenation? (2) Increasing the rejuvenation frequency will increase the steady state
performability by what amount? (3) How the actual time taken to perform rejuvenation
and the base longevity interval are affecting the steady state performability of the system?
(4) Adding a secondary server at which layer, will result in highest steady state

performability value, considering the effects of software aging and rejuvenation?

7.2 Directions for Future Research

The work done in this thesis can be extended in following directions:

114

7.2.1 Reduction in the number of Operational Configurations

A drawback of the Rejuvenated-FTLQN model solution is the enormous number of
operational configurations due to two operational states (“W’ and ‘FP’) for each software
task. This drawback could be addressed by approaching the problem from different

perspectives. Some of them are as follows [16]:

1. One possibility might be to explore symmetry in redundancy. In this case, using

the primary or the backup gives rise to the same performance model and thus the

number of operational configurations can be reduced.

2. Another way is to approximate the solution by considering only those software
tasks that affect the system in a greater amount and ignoring others. For example,
the tasks which provide shared services are usually more sensitive than others

since their failure triggers multiple failures. Identification of these components

might be done by performing sensitivity analysis.

3. For any of the software tasks if we have the knowledge about degradation caused
by software aging being small enough which results in both the states “W” and
“FP” having approximately the same values. We can assume only for those
particular tasks that degradation in performance is small enough to ignore. This
assumption reduces the number of operational configurations by a great amount

since many combinations of software task states can be aggregated to one

operational configuration.

7.2.2 Time-Based Rejuvenation Policy

Rejuvenated-FTLQN model considers prediction-based policy in which the
rejuvenation starts whenever a degraded state of the component is detected. Similar

solution can also be developed for time-based rejuvenation policy. In time-based

115

rejuvenation policy the rejuvenation is performed after a specific time interval. So the
only deciding factor in performing rejuvenation is time. For e.g. rejuvenation takes

place after every 8 hours.

7.2.3 Semi-Markov Model for Modeling Aging and Rejuvenation

In Rejuvenated-FTLQN model, CTMC was used for capturing the effects of software
aging and rejuvenation, in which the sojourn times in all states are exponentially
distributed. For the non-exponentially distributed sojourn times, Semi-Markov model
can be used for modeling aging and rejuvenation [19]. For Semi-Markov model the

time spent in each state can follow any distribution.

7.2.4 Load-balanced Rejuvenated- FTLQN Model

In Rejuvenated-FTLQN model, it was assumed that the system is made fault
tolerant with redundant server, meaning only when the primary server is
unoperational, the secondary server will be used. The model solution can be extended
for the system with load balanced between the servers. So both the servers will be
used, with load balanced between them. The performability algorithm for load-
balanced FTLQN model has been provided in [10]. This algorithm can be extended to

include the effects of software aging and rejuvenation on servers.

116

Appendix A: BNF Grammar for
Rejuvenated-FTLQNS Input File

This section describes the formal description of the Rejuvenated-FI‘LQNS input file

grammar in BNF form, This grammar s an extension of the FTLQNS input file grammar

provided in [21] and FTLQNS grammar is in turn an extension of LQNS grammar [10].

The extensions made to the FTLQNS grammar have been highlighted. The nonterminals

are denoted by <non-terminal_id>, while the terminals are written without brackets.

. m . .
The notation {...} , where n < m means that the part inside the curly brackets is repeated

n
at least n times and at most m times. If n = 0, then the part may be missing in the input

text.

General Information

(InputFile) — (generallnfo) (processorinfo) (taskInfo) (entrylnfo)
(generallnfo) — G (comment) (convVal) (itLimit) (printnt Jop,

N *
(string) 1 comment on the model '/

(comment) -

(convVal) — (real) 1" convergence value Y

(itLimit) — (integer) | * max nb. of iterations Y,

(printint) — (integer) /* intermed. res. print interval i

(underrelaxCoef) = (real) /™ underrelaxation coefficient’/
(endlist) = -1 /" end of list mark'/

(string) — “(text) ”

117

Processor Information
(processorinfo) — P (np) (pDecList)

(np) — (integer) | * total number of processors Vi

(pDeclList) — {(npDecl) }'? (endList)

(pDecl) — p(procld) (eschedulingFlag) (procQuantum),
(multiServerFlag)y, (replicationFlag), (procRate)y
_(procFailprob)
(procld) — (linteger) | (identifier) 1" processor identifier /

(schedulingFlag) — f/ " First come, first served */
L] » . N *
| /" p priority, preemptive /
* .k
| / n Head of line /
| /*i Random "/
* " *
l /s Processor sharing '/
(procQuantum) — (real) | ' processor time quantum "
(multiServerFlag) — m (copies) | * number of duplicates” /
p
L2 . *
| / "1 Infinite server '/
(replicationFlag) — r (copies) /™ number of rcplicas*/
(procRate) — R (ratio) /™ Relative proc. speed” /

(procFailprob}) — ((real) /¥ processor failure probability*/

118

-—(-copies,) — (integer)

(ratio) - (real)

Task Information
(taskinfo) —T (nt) (tDeclList)
(nt) — (integer) | * total number of tasks" /

(MDecllist) - {(tDecl)} o (endList)

(tDecl) —)'t (taskld) (refTaskFlag) (entryList) (procld)
(taskPri)y (thinkTimeF lag ot { multiserverflag Jop:s
(replicationflag o (ctmeratel) { ctmcrate2) {ctmcerate3)
(ctmerated) (ctmclambda) (agingpercent),y

(procld) - (integer) | (identifier) /* task identifier /
(refTaskFlag) — r 1™ reference task”/

| 7* n non-reference task 'l

(entrylList) — {(entryld) }{° (endList) /* task t has ne, entries” /
(entryld) — (integer) | ¢identifier) /" entry identifier y

(taskPri) — (integer) | * task priority, optional |

(thinktimeflag) = z (real) | * task think time, optional i

(ctmcratel) — ((real)) ! * ctmc rate from F (failed) to W (working) Y
(ctmcrate2) — ((real)) | * ctme rate from W (working) to FP (aging) *)
(ctmcrate3) — ((real)) ! * ctme rate from BR (rejuvenated) to W (working) i

(ctmcrated) — ((real)) ! *etme rate from FP (aging) to BR (rejuvenated) i

119

(ctmclambda) — ((real)) | * ctme rate from FP (aging) to F (failed) *l

(agingpercent) — (integer, /™ rate of performance degradation- to change the
g g

mean cpu demands of the entries, optional !

Entry Information
(tDecl) — E (ne) (entrydeclist)
(ne) — (integer) | * total number of entries '/

(entrydeclist) — { (entrydecl) J6%2 (endList)
/™ k = maximum number of phrases*l

(taskinfo) — a (entryld) (arrivalRate)

lc (entryld) { (coeffofVariation) }Ik (endlist)
If (entryld) { (phtypeFlag) }1k (endlist)

ls (entryld) { (serviceTime) }f (endlist)

| y (fromentry) (toentry) { (rendezvous) J (endlist)
| ALT y (fromentry) [(toPrioentryList)]

{ (rendezvous) }1k (endlist)

(ne) — (real) | * open arrival rate to entry y

(serviceTime) — (real) | * mean phase service time |

(phTypeFlag) — (integer) | " 0 - stochastic phase, 1 - deterministic phnse*/
(coeffOfVariatio) —» (real) | * service time coeff, of variation */

(rendezvous) — (real) | * mean number of RNV s/ph y

120

(fromEntry) — (entryld) | * source of a message Y,
(toEntry) — (entryld) | * destination of a message '/

(toPrioEntryList) — { (entr 'Id)};w“" (endlist) 1™ neg is the number o
Y

alternative destinations of a message

which are prioritized from left to right 'l

121

Appendix B: Sample Input and output files generated
by Rejuvenated-FTLQNS

This section describes the intermediate files that are generated by Rejuvenated-FTLQNS
tool for the solution of model shown in figure 5.2. Figure B1 indicates the LQN input file
generated by Rejuvenated-FTLQNS tool. Figure Bl corresponds to operational
configuration: task1-W, task2-FP, task3-FP. LQNS tool in invoked to solve this LQN
model and the output generated by LQNS is shown in figure B2. The PERL script shown
in figure B3 extracts the throughput value from the output file generated by LQNS
(Figure B2). This throughput value is then assigned as reward to that particular

operational configuration,

G "generated for Al” 0.000001 50 5 0.900000 -1

P 3

pplf

pp2f

pp3f

-1

T 3

t tl r el -1 pl

t t2 n e2 -1 p2

t t3 ne3 -1 p3

-1

E 3

s el 0.000000 0.500000 -1

s e2 0.750000 0.000000 -1

s e3 0.750000 0.300000 -1

y el e2 1.000000 0.000000 -1
y e2 e3 1.000000 0.000000 =1

-1

Figure B1. Sample LQN input file (in LANS syntax)

122

0.1gn: warning: Entry "el" has no service time specified for phase 1.
Copyright the Real-Time and Distributed Systems Group,

Department of Systems and Computer Engineering

Carleton University, Ottawa, Ontario, Canada. K18 5B6

Generated by lgns, version 2.23 (Linux 2.6.20-1.2307.fc5smp.#1 SMP Sun

Mar 18 21:02:16 EDT 2007 1686)
Sat Jun 2 12:14:06 2007

Input: 0.lgn

Output: *stdout*

Command line: lqns
Comment: generated for Al

Convergence test value: 3.26986e-07
Number of iterations: 7

MVA solver information:

Layer n k srv step() mean stddev wait ()
mean stddev User System Elapsed
1 701 2 37 5.2857 0.18443 591
84.429 6.0861 0:00:00.00 0:00:00.00 0:00:00.00
2 13 1 2 66 5.0769 0.076923 1008
77.538 2.5385 0:00:00.00 0:00:00.00 0:00:00.00
3 701 1 36 5.1429 0.14286 372
53.143 3.1429 0:00:00.00 0:00:00.00 0:00:00.00
Total 27 0 0 139 5.1481 0.06967 1971
73 3.1392 0:00:00.00 0:00:00.00 0:00:00.00

User: 0:00:00.00

System: 0:00:00.00

Elapsed: 0:00:00.00
Processor identifiers and scheduling algorithms:
Processor Name Type Copies Scheduling
pl Uni 1 FCFS
p2 Uni 1 FCFS
p3 Uni 1 FCFS
Task information:
Task Name Type Copies Processor Name Pri Entry List
tl ref 1 pl 0 el{(2 phases)
t2 serv 1 p2 0 e2
t3 serv 1 p3 0 e3 (2 phases)

123

Entry execution demands:

Task Name Entry Name Phase 1 Phase 2
tl el 0 0.5

t2 e2 0.75 0

t3 e3 0.75 0.3

Mean number of rendezvous from entry to entry:

Task Name Source Entry Target Entry Phase 1 Phase 2
tl el e2 1 0
t2 e2 el 1 0

Phase type flags:
All phases are stochastic.

Squared coefficient of variation of execution segments:
All executable segments are exponential.

Open arrival rates per entry:
All open arrival rates are O.

Type 1 throughput bounds:

Task Name Entry Name Throughput
tl el 0.5

t2 e2 0.666667
t3 e3 0.952381

Mean delay for a rendezvous:

Task Name Source Entry Target Entry Phase 1 Phase 2
tl el e2 0 0
t2 e2 e3 0.0727273 0

Service times:

Task Name Entry Name Phase 1 Phase 2
t1 el 1.57273 0.5

t2 e2 1.57273 0

t3 e3 0.75 0.3

Service time variance (per phase)
and squared coefficient of variation (over all phases):

Task Name Entry Name Phase 1 Phase 2 coeff of var
**2 |

tl el) 10.3493 0.25 2.46715

t2 e2 4,16567 0 1.68414

124

t3

Throughputs and

Task Name
Total

tl

t2
0.758772
t3
0.506579

Utilization and
Task Name

wait

tl

Utilization and
Task Name

wait

t2

Utilization and
Task Name

wait
t3

ed 0.5625 0.09

utilizations per phase:

0.591837

Entry Name Throughput Phase 1 Phase 2

el 0.482456 0.758772 0.241228

e2 0.482456 0.758772 0

e3 0.482456 0.361842 0.144737
waiting per phase for processor: pl

Pri n Entry Name Utilization Phl wait Ph2
0 1 el 0.241228 0 0
waiting per phase for processor: pl

Pri n Entry Name Utilization Phl wait Ph2
0 1 e2 0.361842 0 0
waiting per phase for processor: p3

Pri n Entry Name Utilization Phl wait Ph2
0 1 e3 0.506579 0 0

Figure B2. LQN Output file corresponding to Figure B1

125

#!/bin/perl

Stakelgn=0;

$inputlqn=0;

open (RES, ">resultlqn2");

cpen (GETDATA, "<nooflgn2") or die("Error");
Snumber = <GETDATA>;

for (Scount = Snumber; Scount >=0; Scount--)
{
system "lgns $inputlqgn.lgn > S$takelqn.out";
open (REWD, "Stakelgn.out") || die "error in opening .out file!";
$takelgn=S$takelqn+l;
Sinputlgn=$inputlqgn+l;
while (<REWD>)
{

$secmatch = index(S$_, "Throughputs ");

if ($secmatch != -1)

{

$secmatch = index($_, "Throughput ");

$thruput = substr($_, S$secmatch, 10);
print RES S$thruput;
print RES "\n";
print "Value of thruput: $thruput";
last;
}
}
close{ REWD);
}
close(RES) ;
close (GETDATA) ;

Figure B3. PERL Script to extract throughput

126

Figure B4 shows the input CTMC file corresponding to task 3 in FTLQN model shown in
figure 5.2. SHARPE tool is invoked to solve this CTMC and the output generated by
SHARPE is shown in figure BS. The output consists of steady state probabilities for each
of the 4 states. The PERL script shown in figure B6 extracts the steady state probabilities
value from the output file generated by SHARPE (Figure B2). This probability values are

then used as an input to the MSFT as well to calculate the probability of operational

configurations.
markov t3
01 2.000000
1 2 0.002976
2 0 0.000116
2 3 0.002976
3 1 3.000000
end

expr prob(t3, 0)
expr prob(t3, 1)
expr prob(t3, 2)
expr prob(t3, 3)
end

Figure B4. Sample CTMC input file (in SHARPE syntax)

prob(t3, 0): 2.8431e-05

prob(t3, 3): 4.8627e-04

Figure B5. CTMC output file corresponding to Figure B4

127

#!/bin/perl

Stake=1;

$input=1;

open(RES, ">resultct");

open (GETDATA, "<noofctmc") or die("Error");
Snumber = <GETDATA>;

for ($count = S$number; $count >0; S$count--)
{
system "/usr/local/bin/sharpe $input.ct > $take.ctout";
open(FP, "$take.ctout") || die "error in opening .ctout file!™";
Stake=Stake+1;
S$input=$8input+l;
while (<FP>)
{
$match = index($_, ":");
if (Smatch != -1)
{
$grab = substr($_, 15, 11);
print RES Sgrab;
print RES "\n";
print "Value of grab: S$grab";
print "\n";

}
}
close (FP);
}
close (RES) ;
close (GETDATA) ;

Figure B6. PERL Script to extract steady state probabilities

128

Figure B7 shows the input MSFT file corresponding to task 3 being in unoperational
state. SHARPE tool is invoked to solve this MSFT and the output generated by SHARPE
is shown in figure B8. The PERL script shown in figure B9 extracts the failure

probabilitics value (probability at infinity) from the output file generated by SHARPE
(Figure B2).

mstree entry
repeat task:0 prob(0.000028)
repeat task:3 prob(0.000486)

or t task:0 task:3

repeat processor:0 prob(0.050000)
or top t processor:0

end

cdf (entry, top)

end

-1

Figure B7. Sample MSFT input file (in SHARPE syntax)

CDF for system entry:
probability at O: 5.0488e-02

probability at infinity: 9.4951e-01
continuous probability: 0.0000e+00

Figure B8. MSFT output file corresponding to Figure B4

129

#!/bin/perl

Stakemsft=0;

Sinputmsft=0;

open (RESMSFT, ">resultmsft");

open {(GETDATAMSFT, "<noofmsft") or die("Error");
Snumber = <GETDATAMSFT>;

for (Scount = S$number; S$count >0; Scount--)
{
system "/usr/local/bin/sharpe S$inputmsft.msft > S$takemsft.msftout";
open (FPMSFT, "S$takemsft.msftout") || die "error in opening .msftout
file!";
Stakemsft=S$takemsft+1;
Sinputmsft=Sinputmsft+1;
while (<FPMSFT>)
{
Smatch = index($_, "probability at infinity:");
if (Smatch (= -1)
{
Sgrabprob = substr(s$_, 25, 11);
print RESMSFT S$grabprob;
#print RESMSFT "\n";
print "Value of grab: S$grabprob";
print ll\n";

}
}
close (FPMSFT) ;
}
close (RESMSFT) ;
close (GETDATAMSFET) ;

Figure B9. PERL Script to extract failure probability

130

Bibliography

[1] A. Artur, S.Luis, “Deterministic Models of Software Aging and Optimal Rejuvenation
Schedules”, 10th IFIP/IEEE International Symposium on Integrated Network
Management, May 21 2007, pp.159-168.

[2] A. Avizienis, J. Laprie, and B. Randell, “Dependability and its Threats: A Taxonomy”
in Building the Information Society: Proc, IFIP 18th World Computer Congress, 22-27
August 2004, Toulouse, France, R. Jacquart, Kluwer Academic Publishers, 2004, pp.91-

120.

[3] A. Avritzer, E. Weyuker, “Monitoring Smoothly Degrading Systenis for Increased
Dependability”, Empirical Software Eng. Journal, Vol 2, No 1, 1997, pp. 59-71.

[4] G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications,
John-Wiley & Sons, 1998

[5] G. Booch, J. Rumbaugh and 1. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, 2" edition, 2005.

[6] V. Castelli, R.E. Harper, P. Heidelberger, S.W. Hunter, K.Trivedi, K. Vaidyanathan,
and W. Zeggert, “Proactive Management of Software Aging,” IBM J. Rescarch &
Development, vol. 45, no. 2, Mar. 2001, pp. 311-332.

[7] K.Cassidy, K.Gross, A.Malekpour, “Advanced Pattern Recognition for Detection of
Complex Software Aging Phenomena in Online Transaction Processing Servers”, Proc.
of the 2002 Int. Conf. on Dependable Systems and Networks, DSN-2002, pp. 478-483.

[8] G. Ciardo, R. Marie, B. Sericola and K. S. Trivedi, “Performability Analysis Using
Semi-Markov Reward Processes”, IEEE Transactions on Computers, vol. 39, no. 10,
1992, pp. 1251-1264.

[9] O. Das and C. M. Woodside, “The Fault-tolerant layered queueing network model for
performability of distributed systems”, 1EEE Int. Computer Performance and
Dependability Symposium (IPDS’98), 1998, pp. 132-141.

[10] O. Das, Performance and dependability analysis of fault-tolerant layered distributed
systems, Master’s thesis, Dept. of Systems and Computer Engineering.,, Carleton
University, 1998.

[11] O. Das and C. M. Woodside, “Evaluating layered distributed software systems with
Sault-tolerant features”, Performance Evaluation, 45 (1), 2001, pp. 57-76.

131

[12] O. Das and C. M. Woodside, “Failure detection and recovery modelling for multi-
layered service systems”, Fifth International Workshop on Performability Modeling of
Computer and Communication Systems (PMCCS-5), Erlangen, Germany, Sept. 2001, pp.
131-135.

[13] O. Das and C. M. Woodside, “Modeling the Coverage and Effectiveness of Fault-
Management Architectures in Layered Distributed Systems”, IEEE International
Conference on Dependable Systems and Networks (DSN'2002), June 2002, pp. 745-754

[14] O. Das and C. M. Woodside, “Layered Dependability Modeling of an Air Traffic
Control System”, IEEE Intl. Conference on Software Engineering (ICSE 2003) Workshop
on Software Architectures for Dependable Systems, Portland, Oregon, USA, May 2003,
pp. 50-55.

[15] O. Das and C. M. Woodside, “Dependable LONS: A Performability Modeling Tool
for Layered Systems”, 1EEE International Conference on Dependable Systems and
Networks (DSN 2003), San Francisco, California, USA, June 2003, pp. 672.

[16] O. Das and C. M. Woodside, “The Influence of Layered System Structure on
Strategies for Software Rejuvenation”, Sixth Intl. Workshop on Performability Modeling
of Computer and Communication Systems (PMCCS-6), Monticello, Hllinois, USA, Sept.
2003, pp. 47-50.

[17] O. Das and C. M. Woodside, “Computing the Performability of Layered Distributed
Systems with a Management Architecture”, ACM Fourth International Workshop on
Software and Performance (WOSP 2004), Redwood City, California, USA, Jan 2004, pp.
174-185.

[18] O. Das and C. M. Woodside, “Analyzing the effectiveness of fault management
architectures in layered distributed systems”, Performance Evaluation, 56, 2004, pp. 93-
120.

[19] T. Dohi, K. Go“seva-Popstojanova and K. S. Trivedi, “Analysis of Software Cost
Models with Rejuvenation”, In Proc.of the 5th IEEE Int.Symp.on High Assurance
Systems Engineering, HASE 2000, Albuquerque, NM, November 2000, pp. 25-34.

[20] T. Dohi, K. Go"seva-Popstojanova and K. S. Trivedi, “Statistical Non-Parametric
Algorithms to Estimate the Optimal Software Rejuvenation Schedule”, Proc.of the 2000
Pacific Rim Int.Symp.on Dependable Computing, PRDC 2000, Los Angeles, CA,
December 2000, pp. 77-84.

[21] G. Franks, Performance Analysis of Distributed Server Systems, Ph.D. thesis, Dept.
of Systems and Computer Engineering., Carleton University, 1999

132

[22] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and C. M.Woodside,
“Performance Analysis of Distributed Server Systems,” in 6th Intl. Conf. on Software

Quality (61CSQ), Ottawa, 1996, pp. 15-26.

[23] S. Garg, A. van Moorsel, K. Vaidyanathan, K. Trivedi, “A Methodology for
Detection and Estimation of Software Aging,” Proc. Ninth Int’l Symp. Software
Reliability Eng., Nov. 1998, pp. 282-292.

[24] S. Garg, A. Puliafito, M. Telek and K. S. Trivedi, “Analysis of Software
Rejuvenation Using Markov Regenerative Stochastic Petri Net”, In Proc.of the Sixth
Int.Symp. on Software Reliability Engineering, Toulouse, France, October 1995, pp 180-

187.

[25] S. Garg, Y. Huang, C. Kintala and K. S. Trivedi, “Time and Load Based Software
Rejuvenation: Policy, Evaluation and Optimality”, Proc. of First Fault Tolerant
Symposium, India, December 1995, pp. 22-25

[26] S. Garg and A. P. A. Van Moorsel, “Towards performability modeling of software
rejuvenation”, presented in PMCCS, Bloomingdale, Illinois, September 6-9, 1996.

[27] S. Garg, A. Puliafito, M. Telek and K.S. Trivedi, “Analysis of. Preventive
Maintenance in Transactions Based Software Systems”, IEEE Trans on computers, vol
47, no 1, 1998, pp 96-107

[28] J. Gray, “Wihy Do Computers Stop and What Can Be Done About 1t?” Proc. Fifth
Symp. Reliability in Distributed Software and Database Systems, Jan. 1986, pp. 3-12

[29] M. Grottke & Kishor S Trivedi, “Fighting Bugs: Remove, Retr‘y, Replicate, and
Rejuvenate”, IEEE Computer Magazine (Feb 2007), pp. 107-109.

[30] B. Haverkort, R. Marie, G: Rubino and K. S. Trivedi, Performability Modelling:
Techniques and Tools, John Wiley and Sons, Chichester, England, April 2001.

[31] Y. Huang, C. Kintala, N. Kolettis and N. D. Fulton, “Software Rejuvenation:
Analysis, Module and Applications”, in Proc. 25" Annual Intl. Symp. on Fault Tolerant
Computing, 1995, pp. 381-390.

[32) IBM Netfinity Director Saftware Rejuvenation - White Paper. IBM Corp., Research
Triangle Park, NC, Jan 2001.

[33] L. Jiang, G. Xu, “Modeling and analysis of software aging and software failure.
Journal of Systems and Software”, 2007, pp. 590-595.

[34] P. Jogalekar, Murray Woodside, "Evaluating the Scalability of Distributed Systems",
IEEE Trans. on Parallel and Distributed Systems, v 11 n 6, June 2000, pp. 589-603.

133

[35] E. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik, Quantitative
..System Performance, Prentice-Hall, Inc,,-1984,o

[36] L. Li, K. Vaidyanathan and K. S. Trivedi, “An Approach to Estimation of Software
Aging in a Web Server”, In Proc.of the Int.Symp.on Empirical Software Engmcermg,
ISESE 2002, Nara, Japan, October 2002, pp. 91-103.

[37] E. Marshall, “Fatal Error: How Patriot Overlooked a Scud”, Science, Volume 255,
Issue 5050, pp. 1347.

[38] J. F. Meyer, “On Evaluating the Performability of Degradable Computing Systems”,
IEEE Trans. on Computers, vol. 29, no. 8, Aug 1980, pp. 720-731.

[39] J. F. Meyer, “Performability: A retrospective and some pointers to the future”,
Journal Performance Evaluation. 14(1992), pp. 139-156.

[40] R. Mendel and Ousterhout, K. John, "The Design and Implementation of a Log-
Structured File System". ACM Transactions on Computer Systems, Vol. 10 Issue 1, pp.
26-52. :

[41] N. 1. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Company, Palo
Alto, California, 1980.

[42] T. Omari, Greg Franks, Murray Woodside, Amy Pan, “Solving Layered Queueing
Networks of Large Client Server Systems with Symmetric Replication”, Proc. 5th Int.
Workshop on Software and Performance (WOSP 2005), July 2005, pp 159-166.

[43] D. L. Parnas, “Software aging”, In Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 1994, pp. 279-287.

[44] A. Pfening, S. Garg, A. Puliafito, M. Telek, K.Trivedi , “Optimal Software
Rejuvenation for Tolerating Soft Failures”, Performance Evaluation, Vol 27 & 28, Oct
1996, North-Holland, pp 491-506.

[45] J. A. Rolia and K. C. Sevcik, “The Method of Layers”, IEEE Trans. on Software
Engineering, vol. 21, no. 8, August 1995, pp. 689-700.

[46] K. Rinsaka and T. Dohi, “Behavioral Analysis of a Fault-Tolerant Software System
with Rejuvenation”, 1EICE Trans D: Information, December 1, 2005; E88-D (12), pp.
2681-2690.

[47] R. A. Sahner, K. S. Trivedi and A. Puliafito (1996), Performance and Reliability

Analysis of Computer Systems: An Example-Based Approach Using the SHARPE
Software Package, Kluwer Academic Publishers, Boston,

134

[48] L. Silva, H. Madeira, G. Silva, "Software Aging and Rejuvenation in a SOAP-based
Server," nca, Fifth IEEE International Symposium on Network Computing and
Applications (NCA'06), 2006, pp. 56-65

[49] R. M. Smith, K. S. Trivedi and A. V. Ramesh, “Performability Analysis, Measures,
an Algorithm and a case study”, IEEE Trans. on Computers, vol. 37, no. 4, 1988, pp.

406-417.
[50] C.U. Smith, Performance Engineering of Software Systems, Addison Wesley, 1990.

[51] F.Sheikh and C.M. Woodside, “Layered Analytic Performance Modelling of a
Distributed Database System”, Proc. 1997 International Conf. on Distributed Computing
Systems, May 1997, pp. 482-490.

[52] A.Tai, S.Chau, L.Alkalaj, H.Hecht. “On-board Preventive Maintenance: Analysis of
Effectiveness an Optimal Duty Period”, Proc. Third International Workshop on Object-
Oriented Real-Time Dependable Systems, Feb. 1997, pp. 40-47.

[53] K Trivedi, “SHARPE 2002: Symbolic Hierarchical Automated Reliability and
Performance Evaluator”, IEEE Int. conf. On Dependable Systems and Networks, 2002,

pp. 23-26.

[54] K. S. Trivedi, Probability and Statistics, with Reliability, Queuing and Computer
Science Applications, 2nd edition. J ohn Wiley, 2001.

[55] K. S. Trivedi, G. Ciardo, M. Malhotra and R. A. Sahner, “Dependability and
Performability Analysis”, in Performance Evaluation of Computer and Communication
Systems, LNCS, L. Donatiella, R. Nelson (eds.), Springer-Verlag, 1993, pp. 587-612.

[56] K.S.Trivedi, K.Vaidyanathan, and K.Goseva- Postojanova, “Modeling and Analysis
of Software Aging and Rejuvenation”, Proc. 33rd Annual Simulation Symp., IEEE
Computer Society Press (2000), pp. 270-279.

[57] K. Vaidyanathan, K.Trivedi,, “A comprehensive model for software rejuvenation”
IEEE Trans. on Dependable and Secure Computing, 2(2), 2005, pp. 124 - 137.

[58] K. Vaidyanathan, R. E. Harper, S. W. Hunter and K.Trivedi, “Analysis and
implementation ~ of software rejuvenation in cluster systems”, ACM
SIGMETRICS/Performance 2001, pp. 62-71.

[59] D. Wang, W. Xie, K. S. Trivedi, “Performability analysis of clustered systems with
rejuvenation under varying workload ”, Perform. Eval. 64(3), 2007, pp. 247-265.

[60] C. M. Woodside, J. E. Neilson, D. C. Petriu and S. Majumdar, “The Stochastic

Rendezvous Network Model for Performance of Synchronous ~ Client-Server-like
Distributed Software”, IEEE Trans. on Comp, 44(1), 1995, pp. 20-34.

135

[61] C. M. Woodside, “Performability modelling for multi-layered service systems”,
Third International Workshop on Performability Modeling of Computer and
Communication Systems (PMCCS-3), Illinois, USA, Sept. 1996.

[62] C. M. Woodside, “Layered Resources, Layered Queues and Software Bottlencks”, a
tutorial presented to the 2003 Illinois Multiconference on Measurement, Modelling and
Evaluation of Computer-Communication Systems, Sept 2, 2003.

[63] J. Xu, C.M.Woodside, D.Petriu “Performance Analysis of a Software Design using
the UML Profile for Schedulability, Performance and Time”, Proc. 13th Int Conf. on
Computer Performance Evaluation, Modelling Techniques and Tools (TOOLS 2003),
Urbana, 1llinois, USA, Sept 2003, vol. LNCS 2794, Lecture Notes in Computer Science,
Springer-Verlag, pp. 291-310.

[64] X. Zang, D. Wang, H.,Sun, K. Trivedi, “A BDD-based algorithm for analysis of
multistate systems with multistate components”, IEEE Trans. on Computers, 52(12),
2003, pp.1608-1618.

[65] http://www.apache.org [Online]

[66] http://httpd.apache.org/docs/1.3/misc/perf-tuning.htm] [Online]

[67] http://srejuv.ee.duke.edu/ [Online]

[68] http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/eaj2/report.html [Online]

136

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2007

	Effects of software aging and rejuvenation on performability of layered distributed systems
	Jigar Patel
	Recommended Citation

