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Abstract

The use of PEVs (Plug-in Electric Vehicles) is fast expanding due to their low energy cost

and low environmental pollution. However, a big hurdle is that PEVs have a short driving

range and long battery charging time even when using supercharging stations. There-

fore, better queuing models are necessary to improve the quality of services using public

charging stations. This thesis develops an approach for estimating various discharging

profiles of PEV batteries considering different regional driving cycles. Each driving cycle

generates a unique discharging profile. These discharging profiles were employed in a

computer model to study recharging process of PEVs in public charging stations. More-

over, a unique utility function is construed which is optimized to minimize the overall

waiting time for consumers and harmonize the queue size in each charging station. This

model uses Toronto downtown area as a case study.
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Chapter 1

Introduction

Plug-in Electric Vehicles (PEVs) are the new generation of vehicles. These vehicles are

progressively expanding due to their low energy cost and low pollution. Electrical Grid

(EG) connectivity is one of the significant features of PEVs. Nowadays, the amount of

electricity is produced by renewable and green energy sources helps PEVs consume the

clean energy, which leads to lower emissions. Moreover, consumers may also save money

by using PEVs due to the high cost of fossil fuel. Hence, PEVs are becoming more

common in the market and have become a reliable form of transportation. Statistics

indicates that the number of PEV consumers has experienced an annual increase of 80%

since 2000 [1]. In fact, it is estimated that by the end of 2015, 10% of all new vehicles

sold will be PEVs [2].
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1.1 PEVs’ Effect on Electrical Grid

In addition to all the advantages, a number of facts have to be taken into consideration.

Despite the potential benefits for PEV owners when compared to conventional vehicles,

reconciliation will be needed between vehicle owners and grid operators [3]. In general,

increase in system’s peak load, increase in losses, decrease in voltage and system load

factor are impacts of PEVs on the electrical grid. There is a natural coincidence between

peak electricity demand and vehicles returning to their residence after a daily commute.

This coincidence between vehicle charging demand and existing peak demand is a concern

from the utility point of view. Previous studies have called for some form of control over

vehicle charging to avoid adding to the peak demand [4, 5]. The existing solution is

to coordinate charging process of PEVs based on the relationship between feeder losses,

load factor, and load variance to minimize impacts (system losses) and improve voltage

regulation.

Traditionally, the power grid refers to an interconnected transmission power system

using analog technology. However, the term Smart Grid (SG) is a nebulous term span-

ning various functionalities geared towards modernizing the power grid. At its core, a

smart grid utilizes digital communications and control systems to monitor and control

power flows, with the goal of making the power grid more resilient, efficient and cost

effective [6]. Coordinated charging can help to reduce the pressure on EG in compari-
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son with uncoordinated charging. However, it also compromises the Quality of Services

(QoS) since the consumers have minimum control over this process.

1.2 Coordinated Control System Strategies

By using electric power, PEVs can alleviate the energy crisis and shift the energy de-

mand from the transportation sector to the power system. The widespread deployment

of PEVs in near future is like a double-edged sword for the power grid [7]. This fact, may

increase the peak load on the power grid and cause power quality problem. Need for a

control system is inevitable for PEVs charging process to reduce voltage and frequency

deviation caused by electric vehicles. However, deployment of PEV technologies have a

various number of uncertainties and variables in real-world. Uncertainties such as PEVs

early departure error (i.e., the PEV departs prior to the expected departure time), and

load prediction errors continue to fail intelligent control methods. Therefore, economic

benefits are usually traded for robustness of the system [8]. Markov Decision Process

(MDP) have been used to model uncertainties in control systems based on the change in

real-time electricity price and, customer’s uncertainty behavior in Demand Side Manage-

ment(DSM) [9, 10]. A real-world scenario of business model is also needed besides the

robust control strategies. The centralized control system is complicated to implement

in the real world as it may sacrifice the benefits of certain customers for achieving a

3



better payoff in the whole system [7]. There are many proposed decentralized control

systems that has been studied and applied. The noncooperative game model for PEVs

to participate in frequency regulation [11] and, applied game theory to integrate PEVs

as demand-side resources for DSM in the building energy control [12] are examples of

such studies.

1.3 Problem Statement

Even though the coordinated system seems to be the solution for PEVs charging process,

it compromises the QoS to consumers. In this case, PEV owners have minimum control

over charging process of their vehicle which is unsatisfactory. Customer’s uncertainty

behavior also has a significant role in developing a feasible control strategy. A proper

system modeling is required to define a middle ground to minimize the overall system load

and PEVs’ charging time. Studying PEV’s charging/discharging process beside applying

control strategy, helps to achieve this objective. A coordinated balance system also is

a key to harmonizing load on the power system and improve PEV consumers charging

experience.

The aim of this research is to investigate the SOC behavior of PEV considering dif-

ferent driving cycles that lead to an estimation of PEV’s need of charging in different

scenarios. Study of the discharging behavior of PEVs leads to investigate how vehicle im-
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plement load to the charging stations in the absence of vehicle charging control strategies.

In fact, behavior of consumers has a high impact on the charging process performance.

This thesis proposes an efficient operational framework for multiple charging sta-

tions, which offers a harmonized system and improved overall charging experience for

consumers. The customer behavior affects not only the overall charging process time but

also the queue size and the load on the charging stations. The objective is to introduce

a simple and suggestive system for optimizing PEVs’ charging process to improve PEVs’

overall charging time. Moreover, queue balance of stations is another aspect of this

investigation. Our system is a computer model simulation, which allows the real-time

information delivery to PEVs or smartphone applications either based on 3G network or

internet [13, 14].

1.4 Thesis Organization

Chapter 2 of this thesis contains literature review, where existing battery models, existing

PEV (PHEV and EV) battery technologies and architectures are explored. The literature

review highlights the fact that PEV batteries are different that the regular batteries due

to their high power capability and configuration. Also, they have different discharging

behavior and profile due to numerous conditions.

In Chapter 3, a model of PEVs is simulated with different existing driving cycle

5



standards to investigate the discharging behavior of PEVs under different circumstances.

Based on captured data, a proper discharging curve was modeled over time for each

scenario.

Following this, Chapter 4 investigates and proposes a queueing model of stations as

well as driving algorithm of PEVs. The driving algorithm considers discharging profile of

PEVs battery and their critical battery state. A Proper framework was developed to test

the driving algorithm and PEVs interaction with stations. Moreover, a utility function

was proposed based on a relationship between the distance of each vehicle to each station

and charging station queue size.

Chapter 5, starts with the impact of PEV charging on existing stations in downtown

Toronto and how the utility function can be improved through sensitivity analysis to

harmonize and balance the overall stations queuing size. Sensitivity analysis aims to

investigate the consumer’s decision making based on preference on shortest distance or

smaller queue size of each station. A new facility location was also suggested considering

the location of initial critical charge of PEVs and existing charging stations. In the dis-

cussion and conclusion section of Chapters 6, the key results and insights are highlighted

followed by recommendations for future work.

6



Chapter 2

Background and Previous Research

Works

A proper understanding of battery helps to investigate PEVs and how they interact with

charger and charging stations. PHEVs and EVs are using different battery technologies

compared to hybrid vehicles due to their higher energy and energy density. A comprehen-

sive study of equivalent battery circuits along with charging and discharging behavior

of batteries helps to develop a realistic model for PEVs. Each type and architecture

of PEVs has different effects on battery size, vehicle capability and discharging rate of

their battery. Therefore, review of existing PEVs architectures is essential for modeling

a proper discharging profile in different scenarios.
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2.1 Battery Modeling

Battery modeling is an essential tool for improving battery design, manufacturing, and

control of EV’s and PHEV’s battery packs. Also, it’s a standard procedure to estimate

the correct State of Charge (SOC) and State of Health (SOH) of the batteries. Extensive

research has been carried out on battery modeling. Researchers developed a variety of

models for various aspects and purposes [15].

2.1.1 Basic Terms of Battery Performance and Characteriza-

tion

Before any further investigation, the terminologies of the battery and battery performance

have to be explored for deeper understanding. The terms define the characteristic and

behavior of the battery that lead to improvement of battery models. Following are the

useful terms of battery performance:

Ampere-hour Capacity: Ampere-hour (Ah) is the possible total charge that can dis-

charge from a fully charged battery under standard condition. The rated Ampere-

hour defines the maximum capacity of a fully charged battery under predefined

condition performed by its manufacturer. This condition includes temperature,

discharging rate, etc. An alternative term defining the capacity of the battery is

Watt-hour (Wh). This name is popular with regular consumers. The rated Wh
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capacity is represented by the following equation:

Rated Wh Capacity = Rated Ah Capacity× Rated Battery Voltage. (2.1)

C-rate : The term C-rate or C (nominal C-rate) is used to present a charge or discharge

rate equal to the capacity of a battery in one hour [16]. In the late 1700s, Charles-

Augustin de Coulomb ruled that a battery that receives a charge current of one

ampere (1A) passes one coulomb (1C) of charge every second. That means, in 10

seconds, 10 coulombs pass into the battery, and so on. On discharge, the process

reverses. Today, the battery industry uses C-rate to scale the charge and discharge

current of a battery [16].

State of Charge (SOC): The most popular term in existing battery industry. SOC

defines the remaining capacity of the battery that is affected by its operating con-

ditions such as load current, temperature, etc. In other words, SOC is simply the

relation between remaining capacity of the battery and maximum capacity.

SOC =
Remaining Capacity

Rated Capacity
. (2.2)

Moreover, SOC can be express in terms of Ah capacity as it is stated in (2.3). In

battery management, SOC is a critical condition due to challenges in accurate SOC
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evaluation even though it is the key to the operational performance of batteries.

Therefore, a proper study is required to understand and model SOC in different

conditions and situations. The changes in SOC is defined as follow:

∆ SOC = SOC(t)− SOC(to) =
1

Ah Capacity

∫ t

to

i(τ)dτ. (2.3)

Cut-off Voltage : Cut-off voltage is the minimum allowable voltage that is defined

by the manufacturer. This term interpreted by industry as the ”empty” state of

battery [17].

Depth of Discharging (DOD): DOD definition is the total percentage of battery

that has been discharged. DOD value can reach to 80% or higher in deep-cycle

batteries.

DOD = 1− SOC. (2.4)

State of Health (SOH): SOH is the ratio of the maximum charge capacity of an aged

battery to the maximum charge capacity when the battery was new [18]. SOH is

an important parameter that indicates the quality of performance of batteries for

estimating battery’s remaining lifetime as it is defined as follow:

SOH =
Aged Energy Capacity

Rated Energy Capacity
. (2.5)
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Cycle Life: Cycle life is the maximum number of charging and discharging cycles a

battery can handle at 80% DOD before it fails desired specific performance criteria.

The higher the DOD, the shorter the life cycle is [17]. Therefore, to achieve higher

life cycle, lower DOD is required during normal operations batteries, especially in

large batteries.

Battery Management System (BMS): Battery management system is a manage-

ment unit which is designed to decide the maximum charging or discharging cur-

rent and duration from estimated SOC and SOH of the battery packs. BMS unit

is a hardware unit including sensors, controller, communication and hardware with

software algorithms [17].

2.1.2 Equivalent Circuit Models of Battery

There are two general models classified as electrochemical models and equivalent cir-

cuit models for batteries. For the purpose of this research, the electrical equivalent

circuit models are considered. Electric circuits models are lumped-parameters that are

developed based on comprehensive simulation studies. For studies of system integra-

tion, control, optimization and even inter-connectivity of EVs and PHEVs to the grid,

a lumped parameter is required [17]. The battery as a lumped load defines battery ter-

minals and overall characteristic and dynamics such as voltage, current, temperature,
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and SOC. These models are also used in various simulation software such as PSpice and

MULTISM. Moreover, algebraic or differential equations model of battery are useful in

simulation environment such as MATLAB and Simulink along existing generic battery

models in Simpower subsystems.

According to various fundamental electrical circuit literature, batteries can be char-

acterized as an ideal voltage source. There are two standard models in electrical systems

as they are indicated in Figure 2.1. These models along their popularity, cannot char-

acterize SOC or thermodynamics due to their simplicity. First model in Figure 2.1(a)

indicates the mathematical model for battery equivalent circuit [19]. Diodes in this cir-

cuit are ideal, and they are used to identify the charging and discharging path in battery

along with relevant resistance for each action. Cb and Rp indicate battery capacity and

self-discharge resistance (insulation resistance) respectively on the left side of the circuit.

R2c and R2d are internal resistance for charging and discharging. Also, over-voltage re-

sistance and capacitance for charge and discharge are represented by R1c, R1d and C1.

According to actual electrochemical reactions and temperature dependent, the values

of these capacitors and resistors are definable [19]. The second model is developed by

Natural Renewable Energy Laboratory in Figure 2.1(b). This electrical circuit model for

the battery is part of ADVISOR tool package which is indicated as a RC network [20].

This model consists of resistors (Rb, Rc, R) and capacitors (Cb, Cc). Cb denotes storage

12



capacity and Cc denotes fast charging/discharging aspect of the battery. Cb is much

larger than Cc since it represent storage capacity of the battery. Terminal voltage and

current of battery is defined by v and i respectively. Cb’s voltage and current are vb and

ib. Also, Cc’s capacitor voltage and current denote as vc and ic. Following relations were

obtained by applying basic circuit analysis to NREL battery model.

Cbv̇b = −ib

Ccv̇c = −ic

vb − ibRb = vc − icRc

i = ib + ic

v = vc − icRc − iR.

(2.6)

The thermal model of the battery is not a part of equivalent battery circuits. There-

fore, thermal model may be represented by a lumped first order equation with linear

dynamics in (2.7). The parameters of the components are functions of SOC and battery

temperature. T denotes cell temperate and Ta represents air temperature in ◦C. RT is

the thermal resistance (C◦/W) which depends on whether the battery is in ”charge” or

”discharge” mode. Also, CT is equivalent heat capacitance in (J/C◦). qb is heat transfer

rate generated by the battery cell, qc is thermal conduction and qac is air conditioning

forced heat. The relation between these parameters come as followed:
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(b) NREL battery model [20]

Figure 2.1: Fundamental electrical circuit models of battery.
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qc = (T − Ta)/RT

CT Ṫ = qb − qc − qac.

(2.7)

Considering (2.6) and (2.7), total SOC can be defined as a combination of SOC in

Cb and Cc considering the battery temperature. In (2.8), SOCb and SOCc are functions

of vb and vc respectively while the sum of variables αb and αb is one. For instant, in

described NREL model αb is set to 20/21 and αc is equal to 1/21 [20]

SOC = αbSOCb + αcSOCc. (2.8)

2.2 Electric Vehicle Battery Technologies

Electrical vehicle batteries are moderately different in comparison with existing batteries

in the market (regular laptop, cell phones and other consumer electronic devices). In

fact, EV and PHEV batteries are designed to handle high power with rated value of 100

kWh. They also have high energy capacity within a limited space and weight while they

have to be affordable in price.

U.S and Canadian governments are strongly supporting the R&D activities towards

advancement of these batteries through the department of energy (DOE). For instance,

2 billion dollars grants are dedicated to accelerating the manufacturing and development
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of the next generation of U.S batteries and EVs in 2011 [21]. Only two different types of

battery technology are used in manufactured vehicles according to Table 2.1 [22]. HEVs

mostly use NiMH due to its mature technology. On the other hand, Lithium ion (Li-ion)

is being used in EVs and PHEVs due to its potential for obtaining higher specific energy

and energy density. Therefore, EVs and PHEVs can integrate into futuristic power grids

(Smart and Micro Grid), and can be used for grid support such as renewable accommo-

dation, frequency regulation, voltage profile regulation and system optimization [22]. For

the purpose of this research, Li-ion battery technology is studied more comprehensively.

Table 2.1: Batteries used in electric vehicles of selected car manufacturers.

Company Country Vehicle Model Battery Technology

GM USA Chevy-Volt Li-ion

Ford USA Saturn Vue Hybrid NiMH
Escape, Fusion, MKZ HEV NiMH

Escape PHEV Li-ion

Toyota Japan Prius, Lexus NiMH

Honda Japan Civic, Insight NiMH

Hyundai South Korea Sonata Lithium polymer

Chrysler USA Chrysler 200C EV Li-ion

BMW Germany X6 NiMH
Mini E (2012) Li-ion

BYD China E6 Li-ion

Daimler Benz Germany ML450, S400 NiMH
Smart EV (2010) Li-ion

Mitsubishi Japan iMiEV(2010) Li-ion

Nissan Japan Altima NiMH
Leaf EV (2010) Li-ion

Tesla USA Roadster(2009) Li-ion

Think Norway Think EV Li-ion
Sodium/Metal Chloride
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2.2.1 Li-ion Batteries

Li-ion batteries are popular nowadays due to their significant life span and quality of

their charge. In general, charging and discharging batteries is a chemical reaction, but

Li-ion technology is claimed as an exception [23]. In Li-ion technology energy flows in

and out as part of ion movement between anode and cathode. The Li-ion charger is a

voltage-limiting device that is comparable to the lead acid system. The difference lies

in a higher voltage per cell, tighter voltage tolerance and the absence of trickle or float

charge at full charge [23]. Because of all the above-mentioned facts, lithium ion batteries

are the most popular in PEVs. Correct setting of the Li-ion chargers is crucial because

Li-ion cannot accept overcharge. Most lithium ion cells charge to 4.20 V/cell with a

tolerance of ±50 mV/cell. Higher voltages could increase the capacity, but the resulting

cell oxidation would reduce battery’s life cycle. However, safety concerns are more crucial

than battery life cycle if battery charges beyond 4.20 V/cell [23].

Figure 2.2 indicates the different levels of Li-ion voltage and current behavior in

different stages. There are four main stages in the charging process of Li-ion batteries.

Stage 1 is when the voltage increases at the constant current. This process takes 1 to 1.5

hour. Stage 2 is the time interval that voltage is maximum, while the current starts to

decrease. This time interval lasts approximately 2 hours. Stage 3 is charge termination

that happens when the current is smaller than 3% of the maximum current. Last but not
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Figure 2.2: Charging profile of a Li-ion battery cell [23].

least is the final stage (stage 4) which is occasional topping charge process. In this stage,

topping charge will be applied to battery cell when the voltage drops to 4.05 V/cell.

When the current drops to a predetermined level, Li-ion is fully charged.

Today, the battery industry uses C-rate to scale the charge and discharge current of a

battery [23]. The charge rate of a typical Li-ion battery is between 0.5C and 1C in Stage

1, and the charge time is about three hours. Manufacturers recommend charging the

18650 cell at 0.8C or less. Charge efficiency is 97 to 99 percent, and the cell remains cool

during charge. Some Li-ion battery packs may experience a temperature rise of about 5

◦C (9 ◦F) when reaching full charge [23]. On discharge, the process is reversed, and the
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Figure 2.3: Discharging profile of a Lead acid battery cell [16].

C-rate defines how fast the battery will discharged over time.

Discharging battery behavior has to be analyzed with a battery analyzer. Battery

analyzer is capable of applying different C-rates and checks how battery responds to

desired discharging rate. Higher C-rate will produce a lower capacity reading and vice

versa. For example, by discharging the 1,000 mAh battery at 2C (2,000 mA), the battery

should ideally deliver the full capacity in 30 minutes [23]. In reality, internal resistance

and environment temperature turn some of the energy into heat and lowers the resulting

capacity to about 95 percent or less. Discharging the same battery at 0.5C, or 500mA

over two hours will likely increase the capacity to above 100 percent. Figure 2.3 illustrates

the different discharging times of a lead acid battery at various load in C-rate.
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2.3 Schematics of Possible PHEV Architectures

EVs and PHEVs have similar architecture, although PHEVs have an internal combustion

engine (ICE). PHEVs also have more complex and advanced architectures and control

system in comparison with EVs. One advantage of PHEVs is fuel flexibility. A user could

power their vehicle with electricity from the electrical power grid, gasoline (or other liquid

fuel), or both. To do so, a PHEV has both an electric motor and an ICE. This flexibility

also complicates vehicle designs and possible ways of using energy from two different

systems [24]. The objective of the overall design of PHEVs system is to supply power

from two different sources.

Series, Parallel, and Power-split are three different existing architectures for PHEVs.

Each configuration is unique and has it’s own advantages and disadvantages. None of

existing architecture is preferable over other ones. While Toyota is currently developing

a PHEV with a parallel architecture, i.e. a plug-in version of the Prius, General Motors

is working with a series architecture, i.e. the Chevy Volt [24].

2.3.1 Series PHEV Architecture

In general, series hybrid vehicles require larger electronic components including both

motor and generator, resulting in a more weighty drive-train system [25]. Figure 2.4(a)

shows series PHEV architecture. A series drivetrain architecture powers the vehicle only
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by an electric motor using electricity from a battery. The battery is charged from an

electrical outlet, or by the gasoline engine via a generator. Series power-trains are un-

derstood to be most suited to medium and heavy duty PHEVs because of the additional

space that is available for the components and the vehicle platform [26, 27]. In the

series configuration, the vehicle can aim for optimum operation due to the mechanical

decoupling of the engine. Also, the electric motor can reach very high Revolutions Per

Minute (RPM) which leads to cheaper price due to less required gear in the transmission.

Moreover, this configuration can perform All Wheel Drive (AWD) performance due to its

advantage of using one electric motor per wheel. Despite all the mentioned advantages,

series architecture has some considerable disadvantages. The conversion of ICE happens

twice (mechanical to electrical, electrical to mechanical) and therefore losses are signifi-

cant. Also it requires full-sized ICE and electric motor, since the battery does not have

a high storage capacity.

2.3.2 Parallel PHEV Architecture

A parallel drivetrain adds a direct connection between the engine and the wheels, adding

the potential to power the vehicle by electricity and gasoline simultaneously or by gaso-

line only. Figure2.4(b) shows parallel architecture configuration. Parallel architecture

has a pure electric traction that is boosted by a battery pack at low speed. It also has
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a hybrid action where both engine and battery are engaged in this configuration. Speed

and torque of the two powerplants can be chosen independently, which leads to smaller

powerplants and cheaper and more efficient vehicle in comparison with the series con-

figuration. Complex control system configuration is the disadvantage of this model in

compared to series architecture.

2.3.3 Power-Split PHEV Architecture

Power-split configuration is a combination of series and parallel architecture. There-

fore, the alternative term of series-parallel hybrid is appropriate. Figure 2.5 shows the

power-split hybrid configuration. There is a direct mechanical power path as well as

an electromechanical path for the ICE. Existing pure electrical traction are boosted by

batteries at low speed. Hybrid traction using both engine and battery is a good option

for this type of vehicles. Battery charges during engine traction and regenerative braking

action. Power-split architecture is the combination of series and parallel configuration

and uses the advantages of both model. The increase in cost and further complexity in

this configuration control system are unavoidable disadvantages of this architecture.

Power-split is the most popular concept in full EVs and PHEVs [28]. GM-Allison

EVT is an example of this architecture. In this study, the power-split configuration was

simulated due to its popularity in industry.

23



2.4 PHEV Battery Discharging Concept

Charge Depleting (CD) and Charge Sustaining (CS) are two basic modes of a PHEV.

Charge depleting (CD) is the mode of vehicle operation that is dependent on energy

from the battery pack. Battery electric vehicles operate solely in this mode. Most PHEV

operate in CD mode at start-up and switch to CS mode after the battery has reached its

minimum SOC. Usable DOD is the difference between the maximum and minimum SOC

[24]. In Figure 2.6, the battery is ”fully” charged (from an electrical outlet) to 98 percent

at the beginning of a cycle. For a distance, the PHEV is driven in CD mode. Energy

stored in the battery is used to power the vehicle, gradually depleting the battery’s

SOC. Once the battery reaches minimum level (around 25% to 30% depending on the

different types of vehicle battery pack), the vehicle switches to CS mode. In CS mode,
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Figure 2.6: Different stage of SOC behavior in PHEVs [24].
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the SOC is sustained by relying primarily on the gasoline engine to drive the vehicle,

using the battery and electric motor to increase the efficiency of the gasoline engine. The

vehicle remains in CS mode until the battery is plugged in again to recharge. PHEV uses

all-electric or blended operation in CD mode [24].

In conclusion, PEVs need to charge immediately in CS mode. Therefore, an accessible

charging station is essential to recharge electric vehicles. In chapter 3, The relationship

between PEVs and stations is researched comprehensively.
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Chapter 3

Driving Cycles and State of Charge

Analysis

3.1 Introduction

Transport Canada’s Eco TECHNOLOGY for Vehicles program (”eTV”) tests emerging

vehicle technologies to assess their performance in accordance with established Canadian

motor vehicle standards. Test vehicles will undergo the following three phases of testing

and evaluation:

Phase 1: Laboratory Fuel Consumption and Emissions Testing.

Phase 2: Dynamic Performance Testing.
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Phase 3: On-road Evaluations.

Phase 1 focuses on the various effects of different kinds of fuel on vehicles. It also eval-

uates the outcomes against Canadian and U.S standards. Moreover, emissions and fuel

consumption tests will performed as per the procedures listed on the Code of Federal

Regulations (CFR) [29]. Phase 2 focuses on dynamic performance tests which are per-

formed by Transport Canada testing facility. The test’s emphasis is on road safety of

transportation. The last phase (phase 3) of evaluation will be performed by having

drivers or evaluators drive the test vehicle for a certain distance and then respond to

evaluation forms. The results of all three phases conclude in a final report which will

be available to the manufacturer as well as stakeholders. Also, some highlighted results

will be available through related websites. Fuel Consumption and Emissions Testing and

Analysis in phase one is the main focus of this thesis and research analysis.

3.2 Driving Cycles

A drive cycle is a pattern of changing accelerations, speeds, and braking over time used

to test fuel economy, as well as battery performance [25]. A cycle usually repeats one

or more schedules. The SOC discharging behavior of PEV’s battery is directly relevant

to the acceleration and de-acceleration of vehicle and also road and seasonal conditions.

Studying SOC behavior for different cycles leads to understanding of PEV driving range
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and battery behavior. The driving cycles are derived from extensive data on real-world

driving conditions, such as driving activity, trip length and stopping frequency, among

other factors [30].

There are several driving standards such as Economic Commission for Europe Dy-

namometer Operating Cycles, Japanese Technical Standards, and California EPA Air

Resources Board Dynamometer Driving Schedules. These driving cycles are not the

main focus on this study since they are mostly designed for testing combustion engines.

However, the Society of Automotive Engineers (SAE) and the U.S. Environmental Protec-

tion Agency (EPA) are developed recommended practices and procedures for the testing

vehicles which is more suitable for PEV’s battery behavior study [31].

3.2.1 U.S. Environmental Protection Agency (EPA)

There are several EPA driving cycles to consider for different scenarios in vehicles. How-

ever, not all provided driving cycles are suitable for PEVs. The most important EPA

classifications which are suitable for PEVs come as followed:

U.S. FTP-72 Cycle (LA-4, Urban): The U.S. FTP-72 or LA-4 driving cycle is a

simulation of a 12.07 km urban driving route, at a standard temperature and pres-

sure (STP). The Federal Test Procedure 72 has a running time of 1369 second (22

minutes and 49 seconds). The length of this driving cycle is 12.07 km with a top
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Figure 3.1: The U.S. FTP-72 simulated driving cycle, length of 1369 seconds, average
speed of 31.5 km/h, 18 total stops, and distance of 12.07 km.
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Figure 3.2: The U.S. HWFET simulated driving cycle, length of 765 seconds, average
speed of 77.73 km/h, and distance of 16.51 km.
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speed of 91.3 km/h and average speed of 31.5 km/h. FTP-72 contains 18 stops in

total. Figure 3.1 indicates the simulated FTP-72 driving cycle standard.

Highway Fuel Economy Test (HWFET) : The Highway Fuel Economy Test (HWFET)

driving cycle is a simulation of a highway driving route that is approximately 16

km long. The maximum speed of the cycle is 96.5 km/h and the minimum speed is

45.7 km/h. The HWFET has a running time of 765 seconds. Figure 3.2 indicates

the simulated Highway Fuel Economy Driving Schedule standard.

SC03: The SC03 Supplemental Federal Test Procedure (SFTP) has been introduced to

represent the engine load and emissions associated with the use of air conditioning

(A/C) in vehicles. SCO3 driving cycle has a running time of 596 seconds (9 minutes

and 56 seconds). The length of this driving cycle is 5.8 km. 88.2 km/h is the

achieved top speed with the average speed of 34.8 km/h. Figure 3.3 indicates the

US03 driving cycle standard.

US06: The US06 Supplemental Federal Test Procedure (SFTP) was developed to ad-

dress the shortcomings with the FTP-72 test cycle in the representation of aggres-

sive, high speed and/or high acceleration driving behavior, rapid speed fluctuations,

and driving behavior following startup [32]. US06 duration is 596 second (9 minutes

and 54 seconds). It has a 13 km driving routine with an average speed of 77 km/h.

Top speed is 130 km/h and it includes four stops. Figure 3.4 indicates the US06
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Figure 3.3: SC03 speed correction driving schedule, length of 596 seconds, average speed
of 34.8 km/h, and distance of 5.8 km.
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Figure 3.4: US06 or supplemental FTP driving schedule, length of 596 seconds, average
speed of 77.4 km/h, and distance of 12.8 km.
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driving cycle standard.

3.3 Plug-in Electrical Vehicle Model

As it is stated in chapter 2, PHEVs models are more complex than EVs especially when

it comes to control system design. By modifying predefined Mathworks hybrid-electric

vehicle model, we are simulating different standard driving scenarios. This predefined

model is designed for system-level tests or power quality analysis. we have modified this

model to help us analyse and study SOC behavior in different circumstances.

PEV model consists of physical and control systems. Integration of PEV model with

MATLAB and Simulink enables us to understand PEV’s battery behavior. Develop-

ment of battery discharging profiles help us realize when PEVs battery pack needs to be

charged.

3.3.1 Vehicle and Battery Model Simulation

Our simulated PHEV contains electrical, mechanical, thermal, mode logic and control

systems in Figure 3.5. Vehicle block includes tire and inertial models. Electrical sys-

tem contains, synchronous motor and generator, DC-DC converter and a battery pack.

The power-split architecture of PHEVs in Figure 2.5 was employed to configure this

simulation blocks. There are various types of configurations which are suitable for bat-
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tery simulation. Simelectronic library contains generic predefined models of batteries.

Generic predefined model is a charge dependent voltage source where it’s parameters can

be found in existing data sheets in Simulink environment. The advantage of this battery

model is to define different types of batteries, while it also has a few parameters which can

be found easily on relative data sheets. On the other hand, Simpower library provides

several pre-defined models with full parameterization and extensive documentation.

Although these models are compelling, more realistic and customized battery cell

model is required to understand the discharge characteristic of PEVs and PHEVs. For

custom cell battery model, Simscape language was used along with battery cell equivalent

discharge circuit. Figure 3.6 indicates the custom battery with 10 battery cells where

each battery cell contains a discharge equivalent circuit based on Figure 2.1. DC-DC

converter is modeled using Simscape for simplicity in compared to Simpower library.

Full vehicle model block contains tire models and longitudinal dynamics. Since the

combustion engine is not the main focus on this simulation, a lookup-table relating speed

to available power was used for simplicity.

3.3.2 Logic Mode

Figure 3.7 shows the specification of mode logic in PEVs. A PEV in motion has 3 different

modes. In Start mode, the generator is used as a starter motor to start the engine and
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Figure 3.5: Simulated configuration of PHEV block parameter including control logics,
electrical system level, power split device, vehicle dynamics, and mechanical engine block.

the electrical motor is used to drive the vehicle. When the engine reaches the certain

threshold (800 RPM), vehicle enters a normal mode where the engine is used to drive the

vehicle and charge the battery. If the driver wishes to accelerate, the motor can be used

to drive the vehicle faster while the generator is off. This means all the vehicle torque can

be used to accelerate the vehicle. In cruise mode, the generator may be used to charge

the battery. Moreover, there is expected transmission between acceleration mode and

start mode. The motor is used to charge the battery when the driver applies brake. For

building the mode logic, Stateflow in Simulink environment was used. The logic mode

34



Figure 3.6: Customized battery with 10 battery cells for PHEV model.

for this simulated vehicle locates in control subsystem in Figure 3.5. Logic block takes

the vehicle speed, battery charge (SOC), applied brake and engine speed as inputs then

evaluates the performing state for our simulated vehicle. Generator and motor are either

enable or disable based on evaluated state.

35



�����������

���	����
�

�������

���	�����
�

��
�����

����	
�����
��

������	�����������������������������������������������������������������������������������������

���	�������
��

������	��������
�

����


��
����

����������	
����
��


�
����
����
�����
��
���������������������������������������������

����������	
�����	�

�
����
����
������	�

����������

�
����

�	�

�
����

�
����
������������������������

����	��������������������������

�
�����

������


����������

�	������
�

��
�����

�����
�

���	�����
�

��������������

���������������

Figure 3.7: Mode logic specification flow chart for PHEV.

3.4 Results and Post Processing

Our designed model helps us to test all U.S. EPA driving cycles. All driving cycles were

repeated until the battery pack had been depleted to 30% or less. In other words, driving

cycles were repeated until simulated PHEV battery switch from CD to CS mode. A suffi-

cient number of tests had been ran to determine discharging time in each standard cycle.

For each driving cycle a battery discharging profile was created for further applications.
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3.4.1 FTP-72 Post Analysis

FTP-72 in Figure 3.1 was selected as our first input to our model. As expected, the SOC

behavior followed the driving cycle pattern. Since the initial SOC was different each time,

DOD varied for each iteration. Figure 3.8(a) indicates the DOD of the first simulated

cycle where the initial charge was 98%. SOC fluctuation is caused by acceleration, de-

acceleration and applied break. Table 3.1 demonstrates DOD for our modeled battery

pack through numerous driving cycles until it reaches the CS mode. Results indicate the

average DOD of 7% in each iteration. An average linear discharging behavior was created

considering DOD in each FTP-72 cycle to demonstrate a general discharging profile for

our battery pack. Figure 3.8(b) show that the curve has exponential behavior and it

takes more than 200 minutes to discharge from a full initial charge.

Table 3.1: FTP-72 driving cycle electrical consumption results.

FTP-72(LA-4) Cycle Initial SOC (% ) End SOC (% ) Drop (%)

1 98 95.5 2.5

2 95.5 92.4 3.1

3 92.4 87.5 4.9

4 87.5 77.7 9.8

5 77.7 70.7 7

6 70.7 62.7 8

7 62.7 53.3 9.4

8 53.3 43.2 10.1

9 43.2 32.2 11
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(b) FTP-72 overall PHEV battery discharging pro-
file.

Figure 3.8: Discharging profile of Electric Vehicle battery obtained using FTP-72 driving
cycle standard.

3.4.2 HWFET Post Analysis

HWFET was the second tested driving cycle as it indicated in Figure 3.2. Since duration

of each HWFET is short, two cycles were used for each iteration. Figure 3.9(a) indicates

the DOD for first simulated iteration when the initial charge was 98%. SOC fluctuation

is caused by acceleration, de-acceleration and applied break. The Amplitude of SOC

fluctuation is less than FTP-72, although the DOD for each iteration was greater than

FTP-72 due to the higher achieved speed on highways. Table 3.2 demonstrates the DOD

of the battery pack when it runs through numerous driving cycles. Results indicate the

average DOD of 8.75% in each iteration. Therefore, DOD in HWFET driving cycle is
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more significant compared to FTP-72. Based on DOD in each simulated iteration in

Table 3.2, an average linear discharging behavior was created to demonstrate the general

discharging profile for our battery pack. Figure 3.9(b) shows that the curve has an

exponential behavior and it takes more than 100 minutes to reach to CS mode with full

initial charge.

Table 3.2: HWFET driving cycle electrical consumption results.

HWFET Cycle Initial SOC (% ) End SOC (% ) Drop (%)

1/2 98 87 11

3/4 87 66.8 20.2

5/6 66.8 47.2 19.6

7/8 47.2 23 24.2
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Figure 3.9: Discharging profile of electric vehicle battery obtained using HWFET driving
cycle standard.
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3.4.3 SC03 Post Analysis

SC03 driving cycle in Figure 3.3 was applied to our model. Figure 3.10(a) indicates the

discharging curve for the first simulated cycle when the initial charge was 98%. The

SOC fluctuation has a sinusoidal behavior due to the aggressive driving pattern of SC03.

The amplitude of the fluctuation was increased as battery discharged over time. Table

3.3 demonstrates the DOD of the battery when it runs through numerous driving cycles.

Results indicate the average DOD of 11% in each cycle. Therefore, the DOD in this cycle

is a bit higher than FTP-72 and lower than HWFET. Based on DOD in each simulated

iteration in Table 3.3, an average linear discharging behavior was created to demonstrate

the general discharging profile for our battery pack. Figure3.10(b) show that the curve

has an exponential behavior and it takes more than 120 minutes for the battery to reach

to CS mode with full initial charge.

Table 3.3: SC03 driving cycle electrical consumption results.

SC03 Cycle Initial SOC (% ) End SOC (% ) Drop (%)

1/2 98 92 6

3/4 92 81.5 10.5

5/6 81.5 64.7 16.8

7/8 64.7 52 12.7

9/10 52 43 9

11/12 43 32 11
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Figure 3.10: Discharging profile of electric vehicle battery obtained using SC03 driving
cycle standard.

3.4.4 US06 Post Analysis

US06 was the last driving cycle analysis in this chapter, which is indicated in Figure 3.4.

Since the initial SOC was different each time, DOD varied for each iteration. Figure

3.11(a) indicates the discharging curve for the first simulated cycle when the initial SOC

was 98%. Acceleration, de-acceleration and applied break in this cycle caused a sawtooth

shape fluctuation for SOC. Table 3.4 demonstrates the DOD of our battery pack when it

runs through numerous driving cycles. Results indicate an average DOD of 20% for each

cycle. Therefore, the DOD is the highest in comparison with other tested driving cycles.

Based on DOD in each simulated iteration in Table 3.4, an average linear discharging

behavior was created to demonstrate the general discharging profile for our battery pack
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Figure 3.11: Discharging profile of electric vehicle battery obtained using US06 driving
cycle standard.

for SC03. Figure 3.10(b) demonstrates, the curve has exponential behavior and it takes

around 70 minutes to reach to CS mode with full initial charge.

Table 3.4: US06 driving cycle electrical consumption results.

US06 Cycle Initial SOC (% ) End SOC (% ) Drop (%)

1/2 98 87 11

3/4 87 64.8 22.2

5/6 654.8 42 22.8

7 42 16.5 25.5
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3.5 Conclusion and Discussion

In this chapter, EPA standard driving cycles were tested on our simulated vehicle model

to indicate the average DOD and total discharging time in each scenario.

FTP-72 represents the urban driving route in a standard temperature and pressure.

Results indicate the average DOD of 7% for each FTP-72 cycle and total discharging

time of 200 minutes. This standard cycle has the highest discharging time and lowest

average DOD compared to other EPA standards.

HWFET is the highway driving route simulation in a standard temperature and

pressure. Results indicate the average DOD of 18.75% for each of the two HWFET

cycles and total discharging time of 100 minutes. DOD in HWFET driving cycle is

higher than FTP-72 due to the higher achieved speed on highways.

SC03 driving cycle represents the engine load and emission associated with the use of

air conditioning in vehicles. Results indicate an average DOD of 11% for each SC03 cycle

and total discharging time of 120 minutes. A/C usage of the vehicles increases DOD for

this driving cycle compared to FTP-72. Moreover, the discharging time of SCO3 is 80

minutes less that FTP-72.

US06 developed to address the shortcoming with the FTP-72 test cycle in the rep-

resentation of aggressive, rapid speed fluctuation and high acceleration driving behavior

following vehicle startup. Results indicate an average DOD of 20% for each US06 cycle
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and total discharging time of 70 minutes. The highest DOD and lowest total discharging

time belong to US06 in comparison with other EPA standards.

Therefore we can conclude that, aggressive driving and use of air conditioning affect

DOD of PEVs’ battery pack significantly. In general, PEV’s driver behavior directly

influences the recharging time. Table 3.5 summarizes captured results for all EPA stan-

dards.

Table 3.5: EPA tested driving cycles results.

EPA standards Average DOD in each cycle (%) Total discharging time (minutes)

FTP-72 7 200

HWFET 18.75 100

SC03 11 120

US06 20 70
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Chapter 4

PEV-Station Interaction and

Driving Algorithm

In previous chapters, the discharging behavior of EV batteries were studied. Different

driving cycles create different discharging rates. Therefore, PEVs charging needs in

different times depends on their driving pattern. The goal of consumer is to charge their

PEV fast while considering minimum overall waiting time in charging process. Charging

PEVs takes a long time. Therefore, drivers have to consider the distance between possible

stations for charging and the availability of stations. This chapter proposes a system that

defines an interaction between stations and PEVs.
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4.1 Queueing Model and Station Framework

In general, charging process of PEVs in urban areas can be modeled with multiple charg-

ing stations with queue length N [33]. Figure 4.1 represents multiple charging stations

with a single queue structure. Let us denote a PEV charging event using Poisson pro-

cess for each station. As interpreted from Figure 4.1, PEV’s charging process is a queue

system. A queuing system consists of one or more servers that provide charging services

from the grid to arriving PEV consumers. Consumers who arrive to find all servers busy

join one or more queues (lines) in front of the servers [33]. In this described framework,

Poisson arrivals and exponential services enable us to use Markovian queuing models

that are easy to analyze and produce usable results.

Queue Length (Station Size) 

Figure 4.1: Multi-station framework with multiple M/M/1 queue system [33].
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Markov process is representing the number of customers in such system as a birth-and-

death process, which is widely used in population models [34]. Since charging stations

represent a single queuing structure, studying M/M/1 queueing system for this frame-

work is required.

4.1.1 M/M/1 Queueing Model

The M/M/1 queue is the simplest of the queuing models used in practice. First M

characterized the arrival. The arrivals are assumed to occur in a Poisson process with

arrival rate of λ per hour. This means, the number of customers N(t) arriving during a

time interval (0, t] has a Poisson distribution [34]. Second M characterized the services.

The services are assumed to occur in exponential behavior with a rate of µ per hour. The

third character indicates the number of servers which is one in this case. Generally, M&M

indicate the memory-less property of the arrival and services, or Markovian property of

arrival and services [34]. Figure 4.2 shows the basic queuing analysis for PEVs. The

system dictates that the average time that each car spends in the queuing system (W )

and the average number of people in the system (L) have a proportional relationship.

Average waiting time spent in the queuing system include average time each car spends

in the server (Ws) plus average time each car spends in the queue (Wq). Moreover,

average people in queue include average people in the server (Ls) and queue (Lq). The
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relationship between utilization quantity (ρ), Ls and Lq is stated in (4.1) [34]. ρ is the

fraction of time which is defined as ratio of arriving rate λ and service rate µ. (4.2)

defines Ws and Wq by applying the Little’s law [34].

Arrival Rate (λ) Average Waiting Time in Queue (Wq)

Average Number of People in Queue (Lq)

Service Rate (µ)

Figure 4.2: M/M/1 queue structure and analysis.



ρ = λ/µ

Ls = (1−ρ)ρ
(1−ρ)2 = ρ

1−ρ

Lq = Ls − λ
µ

= ρ
1−ρ − ρ

L = Ls + Lq

(4.1)

By Little’s law :



Ws = Ls

λ

Wq = Lq

λ

W = Ws +Wq

(4.2)
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As it stated before, the PEV charging framework can be built considering the M/M/1

queuing probability. From the stationary distribution of M/M/1 queue, the mean queue

size at each station is computed by (4.3) [33].

E[Ni] =
µi

µi − λi
. (4.3)

The symbols λi and µi denote arrival and service rates of PEVs for station i per hour

respectively. E[Ni] represents the mean value of customers for station i.

4.2 Modeling PEVs and Charging Stations

Mapping the PEVs and charging stations is the next stage of this process. We modeled

PEVs and charging stations on a 2-D system in Figure 4.3. Nine stations with equivalent

distances are distributed in this platform. Initially, 100 PEVs were tested on this platform

considering M/M/1 queueing model for existing stations. For this model, PEVs’ initial

SOCs and their locations are selected randomly. All the existing PEVs in the system

started their operation in CD mode (Mode =0). In this mode, the PEVs randomly move

in their defined coordinates until their SOC reaches CS mode (mode =1).

For this simulation, since our framework aimed to cover the urban driving cycle,

Figure 3.9(b) was used to show the discharging behavior of each PEVs over time. This

discharging profile identifies when the PEVs need to recharge. PEVs reaches critical
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Figure 4.3: Proposed 2-D system with x interval [0, 1000] and y interval [0, 1000]. 100
PEVs and 9 stations are existed in this platform. PEVs initial location is selected ran-
domly.

mode when the car SOC is 30%. In critical mode (mode=1) PEVs need to recharge their

battery. Therefore, they have to move towards a station. PEVs can find the optimum

station by communicating with the data center. The data center can process all the input

variables such as SOC, the distance of the vehicles to stations and the queue size of each

station to suggest the best station to harmonize overall queuing size. Figure 4.4 presents

the moving pattern of a PEV for a day (1440 minutes) and how data center suggests

the best charging stations considering shortest path between the vehicle and stations. In

Figure 4.4, solid line indicates mode 0 (CD mode), where PEV randomly moves until its

SOC reaches 30%. Upon reaching 30% of charge, PEV’s mode changes to 1 until vehicle
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Figure 4.4: A PEV driving and mode pattern for one day. Charging station is selected
based on closest distance between the PEV and stations. solid line(mode=0) indicates
the driving pattern of the vehicle and plus sign indicates driving patern of the vehicle
when SOC is critical (mode=1).

reaches to selected station. When the vehicle reaches the station, the queue size of the

station is increased by one. Charging stations are assumed to possess superchargers.

Superchargers represent the most advanced charging technology in the world at this time

presented by Tesla Motors. These chargers are 16 times faster than most public charging

stations. Superchargers are capable of delivering up to 120 kW, which can replenish half

a charge in as little as 20 minutes and a full charge in 75 minutes [35]. Therefor, PEV

spends 75 minutes to charge (mode = 2) in each station. The mode changes back to

zero when the PEV is charged to 98%. Consequently, the PEV leaves the station, and

the station’s queue size is updated (decreased by 1). Figure 4.5 shows the flow chart
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algorithm for this procedure.

4.3 Utility Function

The objectives of this computer modeling are to balance the load of each charging station

and minimize the overall waiting time for the customers. The data center can process

and find the optimal station for PEVs considering distance and the queue size of each

station. The function presented in (4.4) is proposed to make such a decision. Dij is

distance between station i = {1, 2, 3....N} and vehicle j = {1, 2, 3....M}. Qij denotes

queue size of station i when vehicle j needs to be charged. N and M are set to 9 and 100

respectively. Coefficient ’a’ defines consumer’s sensitivity to the distance between vehicle

and stations and coefficient ’b’ defines consumer’s sensitivity to queue size of stations. β

and α are data center sensitivity parameters for Dij and Qij. The data center selects a

station that minimizes Zij every time a vehicle needs recharging.

Zij = a.Dij
α + b.Qij

β (4.4)
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Figure 4.5: PHEV charging and driving flowchart algorithm in one day.
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4.4 Selected Case Studies

For understanding how each parameter affects overall stations’ queue size, different case

studies are required to test our parameterized equation in (4.4). Many different combi-

nations of parameters and coefficients are applied to our decision equation to explore the

impact of the data center to our proposed system. Following cases are the examples of

our many tested cases in the interest of finding the most attainable solution.

Case I: Our first case focuses only on the shortest distance between vehicle and stations.

From the drivers point of view, the first intention is to find the closest station to

recharge their car. Therefore, our first case study is finding optimal station based

on shortest distance only, and how this decision affects our charging stations’ queue.

Our parameters and coefficients are set accordingly in (4.4) where β = 0, b = 0,

a = 1, and α = 1.

Case II: Our second case focuses on the shortest distance between vehicle and stations

while stations’ queue sizes are taken into consideration as well. Since PEVs have a

long recharging time, stations queue size is a significant factor. Besides driving a

distance, drivers have to consider how busy each station is to minimize their overall

recharging time. Therefore, finding optimal station based on shortest distance

and queue size with equal priority is our second case study. Our parameters and

coefficients are set accordingly in (4.4) where β = 1, b = 1, a = 1, and α = 1.

54



Case III: Our third case focuses on Higher priority to stations queue size in (4.4).

Besides minimizing the overall recharging time, harmonizing stations queue size

helps us to provide better services to drivers. Therefore, finding optimal station

based on shortest distance and queue size with higher priority may contribute to

this goal. Our parameters and coefficients are set accordingly in (4.4) where β = 2,

b = 1, a = 1, and α = 1.

Table 4.1: Variability of each station queue size for each case study.

Station Number Case I Case II Case III

1 5.93 3.17 2.95

2 7.41 6.81 5.67

3 4.27 5.87 3.52

4 4.45 2.281 3.78

5 3.52 18.74 3.12

6 3.12 5.91 5.44

7 11.78 2.92 3.87

8 1.82 4.02 4.3

9 5.56 4.45 3.89

Table 4.2: Minimum variability of each station queue size in each case.

Station number 1 2 3 4 5 6 7 8 9

Minimum variability 2.95 5.67 3.52 2.28 3.12 3.12 2.916 1.82 3.89

Selected Case 3 3 3 2 3 1 2 1 3

Our model tested 100 PEVs for our proposed cases. PEVs’ initial SOC and location

is selected randomly. All vehicles were initially in CD mode and all simulations ran for

1440 minutes (a day). Our goal is to compare our cases and find minimum queue size
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variability. Table 4.1 summarizes the variability of each station’s queue length in all 3

cases. The simulation was ran numerous times for higher level of accuracy. Statistical

results show that Case 3 is better than Case 2 and 1 in terms of queue overflow. Case

2 was fairly better than Case 1 although not all the time. Table 4.2 indicates which

case generates the minimum overall queue size variability in each station. Figure 4.6

demonstrates queue size behavior of all nine stations considering all three cases.
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Figure 4.6: Queue size behavior of all 9 stations for all 3 tested cases.
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Chapter 5

Practical Application and Analysis

In previous chapters, a proper initial model was developed for PEVs considering different

driving cycles and SOC. Also, a utility function was proposed for the data center to decide

the optimum stations for PEVs to harmonize the overall load on queuing stations and

minimize the overall waiting time of consumers. The randomness of driving pattern

and distances plus the number of existing stations must be eliminated to develop an

accurate model of PEVs charging process. Applying our proposed framework model

in previous chapters to different cities eliminates random parameters and improves our

decision function. Therefore, our suggested computer model was adapted to City of

Toronto for further analysis in this chapter.
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5.1 Mapping and Station Locations

In the previous chapter, an initial platform was developed for the study of different PEV

modes and behavior. However, a more realistic platform is necessary to improve the

modeling of PEVs. A realistic city map helps to find the actual driving distance of PEVs

to the location of existing charging stations.

5.1.1 City of Toronto’s Map

Geospatial Map & Data Center (GMDC) website provides access to geospatial datasets

exclusive to Ryerson University [36]. Property Data Maps (PDMs), is the inventory

for Toronto-centric data such as roads and building heights. CanMap Routelogistics,

Census of Canada Profiles, and Digital Elevation Models are a few examples of accessible

datasets via the GMDC Search [36]. Geospatial database for the City of Toronto includes

various geospatial files including roads, clutter data, digital elevation, place names and

building heights [37]. This data is usually used towards city planning, city modeling,

traffic analysis and cultural and agricultural studies.

For this study, interest area is the downtown core of Toronto since most of the ex-

isting charging stations are located in this zone. Toronto geospatial data file converted

to a MATLAB structure with a combination of provided MATLAB applications and

functions such as image acquisition, image processing and computer vision. Downtown
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(a) Main roads are black, streets are blue, the
highways are red, the railways are cyan, and
airstrips are green. Lakes were defined with
thicker blue lines.
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(b) Stations location in down-town Toronto. A
PEV driving path to nearest charging station.
PEV’s CD mode and CS mode are indicated by
black and red respectively.

Figure 5.1: Down town Toronto simulated map.
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Table 5.1: Grid and geographical area of selected downtown Toronto coordinates.

Grid Meters Geographic

XMIN 628,155 W 79◦ 24′ 41.628924′′

YMIN 4831,275 N 43◦ 37′ 24.341916′′

XMAX 631,815 W 79◦ 21′ 49.3506′′

YMAX 4841,540 N 43◦ 42′ 54.640008′′

Toronto includes highways, roads, main roads, airstrips and railways. Each structure is

categorized separately in Figure 5.1(a). Table 5.1 summarizes the selected grid area in

meters and geographical coordinates. A proper algorithm is applied to define each roads

intersection and connections in a form of structure. Block roads were recognized for our

algorithm efficiency.

5.1.2 Modeling PEVs and Charging Stations in Toronto

The selected area of downtown Toronto has 23 existing charging station. Figure 5.1(b)

indicates the location of each charging station in our selected zone. Most of these sta-

tions are open 24 hours, seven days a week. 100 PEVs are being tested on this platform

considering M/M/1 queueing model for the stations. Toronto is a combination of high-

ways, roads, and streets. FTP-72 discharging profile in 3.8(b) for Toronto urban driving,

and HWFET discharging profile in 3.8(b) for Toronto highway driving were integrated

to PEVs discharging rate.

Each PEV has random initial starting location and destination. Each vehicle finds
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the shortest possible path between the current location and final destination. A new

destination will be assigned to each vehicle when they reached their destination. Our

simulation ran for 1440 minutes (a day) for all 100 existing PEVs. For the recharging

process, proposed algorithm in Figure 4.5 was adapted to analyze charging and driving

procedures of each car. Figure 5.1(b) shows the movement of a vehicle to its closest

station for recharge. Data center sends the vehicles to best possible charging station

considering stations queue size and distance. For finding the best solution, (4.4) was

normalized since each variable has a different unit. The normalized decision making

equation represented in (5.1).

fij(x, y) = axij
α + byij

β

where :

xij =
Dij

Dmax

yij =
Qij

Qmax

i = {1, 2, 3....N} j = {1, 2, 3....M}

(5.1)

Parameters a, b, α and β are set to one for initial analysis of our computer model.

Figure 5.2 indicates overall load on all 23 stations over one day. The overall load distri-

bution illustrates that PEVs are distributed unevenly among existing stations. Figure

5.3 shows the kilometers driven in a day for all 100 PEVs. Each vehicle on average was

driven 45.05 kilometers.
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5.2 Sensitivity Analysis

For limiting coordinated control on PEVs, the data center must have a minimum effect

on selected optimum charging station. Therefore, the value of α and β as sensitivity

parameters for data center, are set to one in (5.1). The goal is to find the best value of

’a’ and ’b’ (customers sensitivity coefficients) to minimize fij(x, y).

minimize
a,b

fij(x, y) = axij
1 + byij

1

subject to xijmin < xij < xijmax

yijmin < yij < yijmax

Sensitivity analysis has several approaches depending on the complexity of a model.

If a model is small enough to solve quite quickly, brute force method is usually applicable.

However, if the model is enormous and takes a long time to solve, a formal method of

classical sensitivity analysis is more reliable [38]. The brute force method rarely yields

efficient algorithms, and it is not as constructive as some other techniques although it is

wildly applicable and simple. Classical sensitivity analysis is tedious and is based on the

relationship between the initial tableau and the optimum tableau. This analysis updates

the optimum solution quickly when the coefficients of the original tableau change [38].

Computer-based ranging is a method between classical sensitivity analysis and brute force

and aims for simple information about how much certain coefficients can change before
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Figure 5.2: Overall load distribution of 23 charging stations queue in down-town Toronto
for one day when all sensitivity parameters and coefficients are one.
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Figure 5.3: Km driven for all 100 PEVs in down-town Toronto with average drive of
45.05 km for each vehicle when all sensitivity parameters and coefficients set to one(23
stations).
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significantly changing the outputs. It also determines the best combination of coefficients

to optimize the desired function.

Since our function is a linear function, computer-based sensitivity analysis is ideal.

Ordinal objective function coefficients (’a’ and ’b’) range from 1 to 5. A bigger range for

our sensitivity coefficients will compromise the balance of our function and reliability of

each variable. Numerous iterations were simulated to find the best value of ’a’ and ’b’.

Results indicate that 1.25 and 1.75 are the best values for ’a’ and ’b’ respectively. These

selected values can harmonize the overall load and minimize the queue size variability

of stations. The Improved utility function based on sensitivity analysis is stated in

(5.2). Figure 5.4 indicates the overall stations’ queue load with the new optimum utility

function. The overall queue load in Figure 5.4 is more harmonized in comparison with

Figure 5.2. The average driven Kilometer is 48.22 according to Figure 5.5 which is not

significantly higher from Figure 5.3.

fij(x, y) =
5

4
xij +

7

4
yij (5.2)
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Figure 5.4: Overall load distribution of 23 charging stations queue in down-town Toronto
for one day when all sensitivity coefficients was optimized.
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Figure 5.5: Km driven for all 100 PEVs in down-town Toronto with average drive of
48.22 km for each vehicle when all sensitivity coefficients was optimized(23 stations).
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5.3 Location Allocation

An additional station can reduce the overall load to charging station and the overall

charging process. For locating a new facilities, many parameters should be taken into

consideration. Factors that influence the facility decision are transportation, labor, ma-

terial, equipment, land, market, energy, government, financial institutions, etc [39]. Since

desired data is not available, this problem is limited to distance and accessible services

to consumers. The distance between a new facility and existing facility is modeled in

Euclidean distance [40]. Therefore, d(x, y, ci, di) is denoted as the distance between a

new facility and existing facility i in following equation:

d(x, y, ci, di) =
√

(x− ci)2 + (y − di)2. (5.3)

Our objective is to find x and y coordinates for a new facility that satisfy the following

relation:

max f(x, y) =
m∑
i=1

wi
√

(x− ci)2 + (y − di)2. (5.4)

Variables x and y are the location coordinates of the new station. c and d are location

coordinates of existing station i. wi denotes weight associated with travel between the

new station and existing station i.

Since there is no information associated with preferences and priorities of the new
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Figure 5.6: PEVs location of first critical SOC (red) and existing charging stations
location (black) in downtown Toronto.
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station location, wi is set to one. Using (5.4) and (5.3), our first objective function is

presented as followed:

max f(x, y) =
m∑
i=1

wi.d(x, y, ci, di)

where :

wi = 1

(5.5)

Figure 5.6 indicates the existing location of stations in downtown Toronto and location

of PEVs first critical SOC. The locations indicate the first time vehicles communicate with

the data center to find the best optimum station for recharging. The new station location

also must have the closest distance to PEV’s critical location. The distance between the

new station and PEVs critical location also is defined with Euclidean models. Therefore,

the relationship between location of PEV’s critical SOC and a new facility is presented

as followed:

g(x, y) =
m∑
i=1

wi
√

(x− ei)2 + (y − fi)2 (5.6)

Variables x and y are the location coordinates of the new station. e and f are location

coordinates of existing station i. wi set to one. Considering (5.6), the distance between

critical SOC and new station location must be minimized. Therefore, a second objective

function is presented as followed:
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min g(x, y) =
m∑
i=1

wi.d(x, y, ei, fi)

where :

d(x, y, ei, fi) =
√

(x− ei)2 + (y − fi)2

wi = 1

(5.7)

Figure 5.7 shows the applied combination of Minkowski and Chebyshev distance meth-

ods to find the best possible location for the new facility. First, Minkowski distance

method was employed to indicate closest PEV’s critical SOC locations into present sta-

tion radius. Chebyshev distance method also is used to locate the maximum possible

distance between existing station and the new station. Considering all the out of range

PEV’s critical SOC locations, new facility location is marked and indicated. The new

location coordinate has the maximum possible distance to old stations and minimum

possible distance to out of range PEV’s critical SOC locations.
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Figure 5.7: Applied Minkowoski and Chebyshev distance method results to allocate new
facility location.

In Figure 5.8, additional new station to our desired model significantly reduces the

overall load on charging queues. In fact, the overall queue load is decreased and dis-

tributed evenly among all 24 existing stations. The average driving is reduced to 42.03

Km for each vehicle compared to Figure 5.9.
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Figure 5.8: Overall load distribution of 24 charging stations queue in down-town Toronto
for one day when all sensitivity coefficients was optimized.
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Figure 5.9: Km driven for all 100 PEVs in down-town Toronto with average drive of
42.03 km for each vehicle when all sensitivity coefficients was optimized (24 stations).
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Chapter 6

Conclusions and Future Work

In this study, the State of Charge (SOC) discharging behavior was estimated using dif-

ferent existing driving cycle standards. PEV discharging rate is relevant to the speed of

driving, the number of stops, acceleration and de-acceleration pattern of each vehicle. A

futuristic model was proposed for PEVs’ driving pattern and charging and discharging

behaviors. In the model, PEVs are assumed to be transmitting their SOC and locations

in real-time. Data center finds the best charging station using our suggested utility func-

tion. The utility function considers stations’ queue size and distance between the vehicle

and stations. Moreover, downtown Toronto was simulated for a realistic study of PEVs’

driving behavior.

As the result, proposed utility function was improved by sensitivity analysis. Fur-

thermore, location allocation technique was applied for locating a new charging station.

Location of PEVs first critical SOC and locations of existing stations are the primary

inputs for locating our new facility. Results indicate new facility location will reduce the

overall queue load and average driven distance.
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Seasonal and traffic conditions not only have a significant effect on the discharging

rate of PEVs battery pack, but also affect the power grid performance. Power system

peak hours and generated power are different in each season. Therefore, the power grid

has some limitations to address drivers recharging needs. Moreover, accessibility of each

station to other facilities such as movie theaters and coffee shops can improve the quality

of services to consumers since the charging duration of PEV is long. Therefore, taking

all the aforementioned factors into consideration for our decision making function will

generate better results for PEVs drivers.

There are improvements that can enhance our results’ accuracy. A survey of vehicle

commuters in Toronto can help to improve the commuting distance statistics. The driv-

ing pattern study of Toronto drivers will generate a more accurate discharging profile of

PEV’s battery. Better estimation of the distance and timing of vehicle trips throughout

a day would also improve the vehicle simulation portion of the model. An analytical

analysis of service rate and arriving rate of PEVs in the city of Toronto would lead to a

better and more realistic model. Statistical data such as transportation analysis, labor

cost, equipment cost, land cost and market analysis would be a great help to improve

the location allocation of a new charging station in the city of Toronto. Using rectilinear

model instead of Euclidean model for defining the distance between the new station and

existing stations, simplifies our proposed objective functions and avoids further complex-

ity in our proposed framework. Rectilinear models represent the actual distances between

new and existing facilities. Rectilinear model generates more realistic results although

they are more difficult to solve because of multiple paths connecting any two points.
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Appendices
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Appendix A

Parameters of Electric Vehicle

Model

Below parameters were used in Figure 3.5 for our Similink model in chapter 3 :

Vehicle Parameters Value

Mass 1200 Kg

Tire Radius 0.3 m

Wheel Inertia 0.1 kg.m2

Aero Drag Coefficient 0.26

Engine Vehicle Gear Ratio 1.3

Distance CG Front Axle 1.35 m

Distance CG Rear Axle 1.35 m

Distance CG Ground 0.5 m

Tire Rated Vertical Load 3000 N

Tire Rated Peak Long Force 3500 N

Tire Slip At Peak Force 6%

Tire Relaxation Length 0.25 m

Trans Inertia 0.5

Trans Friction 0.0001
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Internal Combustion Engine (ICE) Parameters Value

Shaft Inertia 0.25

Max Power 57000+57000 W

Speed at Max Power 5000 RPM

Max Speed 6000 RPM

Friction 0.2079 N.m.s/rad

Sensor Time constant 0.005

Battery Model Parameters Value

Cell Nominal Cap 50 Ah

Cell SOC initial 0.9

Cell temperature initial 25◦

Cell thermal Capacitance 400 J/C◦

Surface area of battery exposed to air 0.01 m2

Convective heat transfer coefficient 20 W/m2/K

Nominal Current Capacity 15 A

Electrolyte Freezing Temp -40 C◦

Controller Parameters Value

Engine Start RPM 800 RPM

Engine Stop RPM 790 RPM

Control Mode Logic TS 0.1

Control ICE Kp 0.02

Control ICE Ki 0.01

Control Generator Kp 10

Control Generator Ki 3

Control Motor Kp 500

Control Motor Ki 300

Control Vehicle Speed Kp 0.02

Control Vehicle Speed Ki 0.04
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DC-DC Convertor Parameters Value

Output Voltage 500 V

Resistance Losses 0.625 Ohm

Control Kp 0.01

Control Ki 10

Minimum input Voltage 20

Mean Boost Kp 0.001

Mean Boost Ki 1

Power to Heat ratio 0.1 W/W

Thermal Mass 0.1x10 Kg

Specific Heat 100 J/Kg/K

Initial Temperature 25◦

Air Temperature 298 K

Convection Area 20 cm2

Convection Heat Coefficient 100 W/(m2K)

Generator Parameters Value

Stator Resistance 0.00475 Ohm

Inductances H [0.000635 0.000635]

Torque Speed LUT Speed RPM [0 1200 2000 3000 4000 10000 15000]

Torque Speed LUT Torque N.m [400 400 250 150 110 0 0]

Damping 0.00001 N.m/(rad/s)

Torque Control Time Constant 0.04

Shaft Inertia 0.2

Series Resistance 0.01 Ohm

Motor Parameters Value

Stator Resistance 0.091 Ohm

Inductances H [0.001597972349731 0.002057052250467]

Torque Speed LUT Speed RPM [0 1200 2000 3000 4000 5000 6000 6500 10000]

Torque Speed LUT Torque N.m [400 400 225 150 100 80 70 0 0]

Damping 0.00001 N.m/(rad/s)

Torque Control Time Constant 0.0267

Shaft Inertia 0.2

Efficiency 91%
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Ultra Capacitor Parameter Value

Nominal Capacitance 1000 F

Rated Cv 0.2 Farad/V olt

Series Resistance 15 Ohm

Initial Voltage 217 V
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