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ABSTRACT 

Time-delay estimation is a widely used signal processing task in many areas of ultrasound 

medical imaging and the performance of many applications is highly dependent on the 

accuracy and efficiency of the time-delay estimates. Time-delay estimation determines the 

displacement between two ultrasond echo signals. In this thesis, we propose a new time-

delay estimation algorithm, which generates a zero-crossing curve to compute the time-

delay estimate between two ultrasound echo signals. A comparative study, using statistical 

analysis and quantitative measurement of image quality in simulated and experimental 

ultrasound elastography, was done to compare the performance of the proposed algorithm 

with other established algorithms, such as normalized cross-correlation (NCC) and sum 

squared differences (SSD). The results of comparsion of various algorithms using signal-

to-noise and contrast-to-noise ratios indicated that the new algorithm only marginally 

improved the quality of the images in ultrasound elastography. In addition, a novel strain 

map normalization method was implemented to enhance target visualization in ultrasound 

elastography by compansating for strain decay with depth.  
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Chapter 1  

General Introduction 

1.1     INTRODUCTION 

For thousands of years [1] palpation has been used as a diagnostic tool to detect soft tissue 

abnormalities. It has been known that diseases change the mechanical properties of tissues. 

For example, ductal and scirrhous carcinomas of the breast [2], [3], tumours of the prostate 

gland [2], and fibrosis and cirrhosis of the liver [4] are typically much stiffer than the 

normal surrounding tissues. Palpation is essentially the assessment of the elasticity of soft 

tissues which is sensed by deformation of tissues (i.e., strain) due to application of pressure 

(i.e., stress). However, palpation is a subjective and an unreliable method for the 

assessment of tissue elasticity because tissue abnormalities which are smaller in size and 

deeper beneath the skin surface cannot be generally detected. Although rates of false-

negative and false-positive of palpation are high, the benefits of early diagnosis and 

treatment can far surpass the cost of false-positives [1].  

There has been a continuous search for alternative to physical examinations and 

diagnostic imaging has revolutionized the field of medicine, since Wilhelm Roentgen 
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produced the first x-ray image of his wife’s hand in 1895. Diagnostic imaging has become 

an indispensable part of the care system. A medical image reveals many different kinds of 

indications, including changes in shape of a certain structure, changes in image intensity 

within a certain structure compared to a normal tissue, and/or the appearance of features 

(e.g., lesions) that are not normally visible [5]. With the continous advancements in science 

and technology, improvements are made to the diagnostic imaging instrumentations and 

each improvement must be assessed in a quantitative fashion. Typically, the quality of 

medical images are evaluated by criteria, such as signal-to-noise ratio (SNR), contrast-to-

noise-ratio (CNR), and spatial resolution [5].  

Conventional imaging modalities are not able to detect all types of cancers and for 

this reason needle biopsies are widely performed to histologically detect certain type of 

cancer, such as breast [2], [6], prostate [2], [7], liver [4], [8], thyroid [9], kidney [10], etc. 

Needle biopsy is an invasive single point examination and has many shortcomings, such 

as patient discomfort, relative high cost and minuscule size of the biopsy specimen [1], [8].  

One very promising modality for detection of abnormal tissues is elasticity 

imaging, which is also known as elastography. Essentially, elastography replicates the 

process of manual palpation to produce a quantitative map of tissue stiffness. Stiffness is 

an intrinsic property of tissues, which is characterized by the elastic moduli, such as 

Young’s modulus, shear modulus and bulk modulus [11], [12]. Young’s modulus (E) 

describes longitudinal deformation which is defined as:  

𝐸 =
stress

strain
 (1.1) 
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where stress is force per unit cross-sectional area, which has units of N m2⁄  or Pa, (as shown 

in Eq. 1.2), and strain is the change in length of the material divided by the length of the 

material prior application of force, which has no units, (as shown in Eq. 1.3). 

stress =
force

area
 (1.2) 

strain =
length after − length before  

length before
 (1.3) 

Shear modulus (𝐺) describes deformation caused by a shear force (as shown in eq. 1.4). 

When a force is applied to an object from one of the sides, which is parallel to the direction 

of force, the object will be pulled over to one side by 𝜃. Bulk modulus (𝐾) describes 

volumetric deformation in response to externally applied pressure (as shown in Eq. 1.5). 

The minus sign in Eq. 1.5 shows that the volume decreases when pressure increases. 

𝐺 =
shear stress

shear strain
=

𝐹/𝐴

tan 𝜃
 (1.4) 

𝐾 =
−change in pressure

fractional change in volume
=

−𝛿𝑃

𝛿𝑉/𝑉
 (1.5) 

All elastography techniques involve a method of tissue excitation, which can be by 

direct mechanical means (i.e. compressional force) or by indirect means (e.g. by an acoustic 

radiation force) to cause quasi-static or dynamic tissue displacement [1], [12]. The response 

of tissue to excitation is monitored by various means, such as ultrasound, MRI and optical 

coherence tomography (OCT). Ultrasound methods mainly rely on estimation of tissue 

displacement using radiofrequency (RF) data or Doppler effects [11]. MRI methods, also 

known as magnetic resonance elastography (MRE), mainly rely on dynamic tissue 

displacement, which is accompanied by generation of shear waves. MRE tracks shear wave 

propagation to obtain information about the phase shift of the MR images [13], [14].OCT 
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methods, also known as optical coherence elastography (OCE), is analogous to ultrasonic 

methods, except tissue displacements are estimated using intensity of reflected light [15]. 

While OCE has intrinsically higher spatial resolution compared to ultrasound 

elastography and MRE, its penetration depth is lower than ultrasound elastography and 

MRE. In comparsion to MRE, ultrasound elastography generally provides more accurate 

and precise results [1]. In addition, ultrasound elastography, in general, is faster, 

inexpensive, and more convenient for the patients compared to MRE [1]. Thus, ultrasound 

elastography is generally more suitable for many clinical applications.  

Numerous techniques of ultrasound elastography have been proposed over the year 

and they generally fall into two main categories: strain elastography and shear-wave 

elastography. In strain elastography, a force (i.e., stress) is applied—usually to the skin 

surface with an array probe—to cause tissue deformation and the changes in dimensions 

of the tissue (i.e., strain) is measured from the time-shift between backscattered ultrasound 

signals. Since hard lesions are less compliant to stress than soft lesions, hard lesions will 

experience less strain than soft lesions and it is the variation of strain that are mapped in 

strain elastography. It has been reported that the strain must be less than 1%, otherwise the 

correlation coefficient between backscattered signals falls below 0.9 which will 

significantly affect the accuracy of the time-delay estimation [16]. Strain elastography 

relies on relative strain estimation; therefore this is a qualitative method.  However, this 

method still provides valuable clinical information [1]. In shear-wave elastography, 

acoustic radiation force, which is generated by a focused ultrasound beam, is used to cause 

a localized displacement deep inside tissues [1]. Acoustic radiation force is accompanied 

by generation of low frequency (50-500 Hz) shear wave which propagate through the tissue 
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at speed of 1-10 m/s. Low frequency shear waves are able to propagate over an increased 

area compare to high frequency shear wave which are attenuated more rapidly. High frame 

rate (>1000 fps) imaging system is used to capture shear wave speed (𝑐𝑠), which is related 

to Young’s modulus (𝐸) and shear modulus (𝐺) by [1]: 

𝐸 = 3𝐺 = 3𝜌𝑐𝑠
2 (1.6) 

where 𝜌 is tissue mass density. 

Tissue displacement is estimated from consecutive backscattered signals by 

algorithms, which are referred to time-delay estimator. The quality of images of ultrasound 

elastography is highly dependent on the quality of the displacement estimates [17]. The 

most commonly used and well-known time-delay estimation methods are normalized 

cross-correlation (NCC) and sum squared differences (SSD). (Refer to Section 1.2     for 

literature review.) It has been reported in literature that overall the performance of NCC 

and SSD is optimum (in terms of accuracy and precision) relative to other time-delay 

estimation methods [18]. However, their main shortcoming is high computational cost 

(especially, for the NCC) [18], [19]. Usually, in commercial ultrasound scanners, a 

computationally efficient version of NCC and SSD algorithms are implemented. For 

example, a modified version of NCC [20] has been implemented in Sonix® RP (Ultrasonix 

Medical Corp., Richmond, BC, Canada), and a modified version of SSD [21] has been 

implemented in SONOLINE® Elegra (Siemens Medical Solutions, Mountain View, CA, 

USA).   

In this work, a new time-delay estimation algorithm is proposed. The performance 

of the proposed algorithm will be evaluated using statistical analysis and quantitative 

analysis of image quality in ultrasound elastography.  
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1.2     LITERATURE REVIEW 

In ultrasound elastography, a key role of an imaging system is to accurately estimate tissue 

motion between two radio-frequency (RF) frames. In ultrasound imaging, tissue motion is 

typically estimated by either Doppler (phase-domain) methods or time-domain methods.  

Doppler methods are commonly used in blood flow imaging, which determine 

average phase-shift from the Doppler frequency shift signals [22]. In pulsed Doppler 

ultrasound, backscattered echo signals are recorded from a specific depth in the tissue and 

they undergo through a process called phase quadrature demodulation [22]. Phase 

quadrature demodulation (which is usually implemented in hardware) is a two channel 

processing where in the first channel a reflected RF signal is mixed (i.e., multiplied) with 

a reference RF signal, and in the second channel a reflected RF signal is mixed with a 

reference RF signal which is phase shifted by 𝜋 2⁄  [23]. Each channel also undergoes a 

low-pass filtering. The resultant signal from the first channel is called in-phase component 

of the Doppler signal (𝐼) and the resultant signal from the second channel is called 

quadrature component of the Doppler signal (𝑄) [23]. Doppler methods of tissue motion 

estimation typically rely on an autocorrelation algorithms, which estimate the rate of 

change of phase between two adjacent Doppler signal (i.e., 𝑟𝑐(𝑚) = 𝐼(𝑚) + 𝑗𝑄(𝑚) and 

𝑟𝑐(𝑚 − 1) = 𝐼(𝑚 − 1) + 𝑗𝑄(𝑚 − 1)). Angular frequency (𝜔) can be approximated from 

the rate of change of phase (𝜙) as following [24]: 

𝜔 =
𝑑𝜙

𝑑𝑡
≈

𝜙(𝑚) − 𝜙(𝑚 − 1)

𝑇𝑝𝑟𝑓
 (1.7) 
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where 𝑇𝑝𝑟𝑓 is the time between two pulse emissions. Autocorrrelation techniques uses a 

series of Doppler signal pairs to estimate their mean angular frequency which can be 

written as [24]: 

�̅� =
1

𝑇𝑝𝑟𝑓
tan−1 (

∑ 𝑄(𝑚)𝐼(𝑚 − 1) − 𝐼(𝑚)𝑄(𝑚 − 1)𝑀
𝑚=1

∑ 𝐼(𝑚)𝐼(𝑚 − 1) + 𝑄(𝑚)𝑄(𝑚 − 1)𝑀
𝑚=1

) (1.8) 

where 𝑀 is the total number of pulse emissions.   

Time-domain methods (also known as time-delay estimation) estimate the relative 

time-shift between sequences of RF echo signals. Generally, time-delay estimation 

methods act as feature matching (or pattern-matching) operators, in which a feature (small 

segment) of a signal is selected and a search is performed to find the best match for it in 

another signals. Time-delay estimation can be performed on either the RF echo signals or 

the envelope of the RF echo signals. Time-delay estimation has been extensively studied 

over the years and numerous algorithms have been proposed. Some of the well-known 

algorithms include, but are not limited to, cross-correlation (CC), normalized cross-

correlation (NCC), sum squared differences (SSD), sum absolute differences (SAD), 

covariance (CV), and normalized covariance (NCV).   

Time-domain methods are more widely used and in many application they are more 

advantageous compared to phase-domain methods [25].  The primary difference between 

phase-domain methods and time-domain methods is that phase-domain methods estimate 

velocity of a group of scatterers, whereas time-domain methods estimate displacement of 

a group of scatterers [25].  Estimating the displacement of a group of scatterers is preferred 

because motion of scatterers can be tracked with time and scatterers do not have to be in 

motion at the time of data acquisition to estimate their motion [25]. In addition, time-
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domain methods do not suffer from aliasing artifact unlike phase-domain methods. In 

phase-domain methods, the maximum measurable velocity is determined by the Nyquist 

criterion (which states that the maximum Doppler frequency must be half the pulse 

repetition frequency) otherwise high velocities will be switched to low velocities [25]. 

Moreover, time-domain methods has been reported to have higher precision compared to 

phase-domain methods [25].  

NCC has been used for tissue motion estimation for a long time and its relative 

performance is generally considered to be superlative [18]. NCC take a segment (window) 

of data from a reference echo signal and searches for the best match for it in a shifted echo 

signal by computing correlation coefficient (i.e., pattern-matching function) between the 

two segments at each search step. NCC between a reference 𝑠1[𝑛] and a shifted 𝑠2[𝑛] 

windows is defined as [26], [27]: 

𝑅𝑁𝐶𝐶[𝜏] =
∑ (𝑠1[𝑖] ∙ 𝑠2[𝑖 + 𝜏])  𝑟+𝑁−1

𝑖=𝑟 

√∑ 𝑠1
2[𝑖] ∙𝑟+𝑁−1

𝑖=𝑟 ∑ 𝑠2
2[𝑖 + 𝜏]𝑟+𝑁−1

𝑖=𝑟

 (1.9) 

where 𝑟 is the origin of the reference window, 𝑁 is the length of the windows, 𝜏 is the 

search lag (i.e., shift between the reference and shifted windows). The term in the 

numerator is the non-normalized cross-correlation between  𝑠1[𝑛] and 𝑠2[𝑛], and the terms 

in the denominator are the energy of 𝑠1[𝑛] and 𝑠2[𝑛] by which the numerator is normalized. 

By taking into account the energy of the reference and shifted windows is beneficial 

because the local variations in the standard deviation and mean of the windows get 

compensated [28]. The location (i.e., 𝜏) where Eq. 1.9 is maximum corresponds to the time-

shift between a reference and shifted windows. The general procedure of a correlation 

coefficient based motion estimation method is illustrated in Figure 1.1.   
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Figure 1.1:  A schematic illustration of a correlation coefficient based motion estimation method. A 

reference window is compared with a shifted window to find the location where correlation coefficient 

between them is maximum. The location of maximum correlation coefficient corresponds to the time-shift 

between the two windows. (Figure modified and adopted from [25]). 

SSD is also widely used in motion estimation as it has performed comparable to 

NCC [18]. SSD compares a reference and a shifted window by computing the least 

difference (i.e., pattern-matching function) between them. The location of minimum 

difference between the reference and shifted windows is the corresponding time-shift 

between them.  SSD sums the squared difference between a reference window 𝑠1[𝑛] and a 

shifted window 𝑠2[𝑛] as defined by [18], [26]: 

𝑅𝑆𝑆𝐷[𝜏] = ∑ (𝑠1[𝑖] − 𝑠2[𝑖 + 𝜏])2
𝑟+𝑁−1

𝑖=𝑟
 (1.10) 

where 𝑟 is the origin of the reference window signal, 𝑁 is the length of the windows, 𝜏 is 

the search lag. Unlike NCC, SSD does not take into account the energy of the reference 

and shifted windows and as a result it does not compensate for the local variations of the 
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mean and standard deviation of the data. On the other hand, SSD is more computationally 

efficient compared to NCC. The main disadvantage of NCC is its high computational cost, 

which can be problematic for real-time implementations [18], [29]. A few novel 

implementations of NCC and SSD have been reported to increase their computational 

efficiency [20], [21], [27]. For example, in [24] and [25] time-delay estimates of the 

previous window was used to reduce the search range in the current window.  

In addition to using RF data, time-delay estimation can be performed using 

envelop-detected data. Envelop-detected signals are obtained from the absolute value of 

the analytic signals, which are extracted from the RF signals by using Hilbert transform 

[30]. Envelop-detected signals contain less information, relative to RF signals, because 

Hilbert transform removes the phase information of the signals [25]. The phase information 

is a factor in the distinctiveness of the speckle pattern and retaining this information 

increases the likelihood of locating an accurate match [25].  

The performance of all time-delay estimation algorithms can be deteriorated by 

many factors [18], [19]. Practically, time-delay estimation is computed using discrete-time 

ultrasonic echo signals which restricts the time-delay estimates to be an integer multiple of 

the sampling interval. When discrete-time signals are used in time-delay estimation, the 

outputs can potentially suffer from high bias (i.e., average difference between true and 

esimated time-delays) and variance (i.e., average squared difference of time-delay 

estimates from mean of the time-delay esimates) [18]. However, if the discrete-time signals 

are sampled above the Nyquist rate, then by using interpolation the time-delay estimates 

will be as precise and accurate as continuous-time signals [18]. Interpolation can be 

performed before and/or after computation of a pattern-matching function. Interpolation of 
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the data before computation of a pattern-matching function simply increases the sampling 

rate of the data, which allows for finer and more accurate time-delay estimates [26]. On the 

other hand, interpolation of the data post computation of a pattern-matching function 

usually fits a predetermined type of curve or a polynomial to a number of sample points in 

the pattern-matching function to describe the pattern-matching function as if they are 

continuous-time functions [31]. This approach does not restrict the time-delay estimates to 

be an integer multiple of the sampling interval. A number of interpolation methods have 

been described in literature, such as cosine-curve fitting [32], parabolic curve-fitting [33], 

[34], grid slope [35], [36], and spline fitting [37]. However, even with implementations of 

these methods, time-delay estimates suffer high bias and variance [26], [31].  

Figure 1.2 illustrates curve-fitting of the cross-correlation function. Without curve-

fitting or interpolation, the time-delay estimate would be restricted to the sample point 

where cross-correlation is maximum (i.e., 𝑦1 in Error! Reference source not found.). 

owever, if the cross-correlation was computed using continuous-time signals, then the peak 

of cross-correlation function would be offset from the 𝑡1 by 𝛿. If a curve is fitted to a few 

sample points around the peak of cross-correlation function (i.e., 𝑦0, 𝑦1, and 𝑦2), then the 

location where the fitted curve is maximum (i.e., �̂�) can be determined analytically.  
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Figure 1.2:  Illustration of curve-fitting to three sample points (𝑦0, 𝑦1, and 𝑦2) around the peak of cross-

correlation. The dashed line represents continuous-time cross-correlation and the solid line represents the 

fitted curve. (Figure modified and adopted from [31]). 

Cosine-curve fitting fits a cosine shaped curve to the three sample points (𝑦0, 𝑦1, and 𝑦2) 

around the peak of cross-correlation function and it is defined as [31], [38]: 

�̂� =
𝛼

𝛽
 (1.11) 

where 𝛼 and 𝛽 are defined as: 

𝛼 = cos−1 (
𝑦0 + 𝑦2

2𝑦1
) (1.12) 

𝛽 = tan−1 (
𝑦0 − 𝑦2

2𝑦1 sin(𝛼)
) (1.13) 

Like all curve-fitting methods, cosine-curve fitting suffers from some degree of bias (i.e., 

𝑏𝑠 = �̂� − 𝛿, as shown in Figure 1.2). Nonetheless, the amount of bias from curve-fitting is 

significantly smaller than from without implementation of curve-fitting. Cosine-curve 

fitting has been reported to perform better (in term of bias and standard deviation) than 

other curve-fitting methods, such as parabolic curve-fitting [26], [31], [39].   
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Recently, many new time-delay estimation algorithms have been proposed, such as 

sample tracking [39], and spline-based continuous time-delay estimators [26], [40]. These 

methods use polynomial spline interpolation to represent either the reference and delayed 

signals or the reference signal only by polynomials. The coefficients of the polynomial 

spline are then used to analytically compute the time-delay estimates. These methods have 

been shown to outperform NCC and SSD, in terms of bias and standard deviation, but at 

the cost of increased computation time. However, these methods are not optimum for real-

time ultrasound elastography. For example, sample tracking [39] uses NCC to obtain 

coarse time-delay estimates because it cannot estimate time-delays larger than 𝜆 4⁄ , and 

spline-based continuous time-delay estimators [26], [40] are computationally inefficient.  

In literature, the performance of most time-delay estimation algorithms have been, 

generally, evaluated using RF echo data which have been generated by a simple simulation 

model. For example, in [18], [19], [26], [39]–[41] a sinc-enveloped sinusoid point spread 

function was convolved by Gaussian distributed white noise to construct a reference RF 

signals. This model assumes that a line of scatterers (i.e., white noise) moves axially 

towards a single element transducer. A delayed version of a reference signal was 

constructed by simply translating a replica of a reference signal in axial direction. This 

model is not an accurate representative of a real ultrasound RF echo singal. There are more 

realistic ultrasound simulation softwares, such as Field II [42], [43], for generation of 

ultrasound signals and images. However, to the author’s knowledge, Field II ultrasound 

simulation was never used to generate RF signals to compare the performance of the time-

delay estimators.  
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1.3     RESEARCH HYPOTHESIS AND SPECIFIC AIMS 

The hypothesis of this research is that the proposed new time-delay estimation algorithm 

improves the quality of the images in ultrasound elastography. The specific aims of this 

research are to: 

I. Implement the new algorithm and compare its performance with NCC and SSD 

using simulated data generated by Field II ultrasound simulation software and 

experimental data acquired from a calibrated ultrasound elastography tissue 

phantom.  

II. Apply the new algorithm to improve signal-to-noise ratio, and contrast-to-noise 

ratio of images in ultrasound elastography.  

III. Apply a new strain map normalization method to enhance target visualization in 

ultrasound elastography.  

 

1.4     THESIS ORGANIZATION 

The remainder of this thesis is organized as follows:  

 Chapter 2 presents the manuscript: “A new algorithm for time-delay estimation in 

ultrasonic echo signals and its application in ultrasound elastography”, which was 

submitted to the journal of IEEE transactions on ultrasonics, ferroelectrics, and 

frequency control. 

 Chapter 3 presents conclusion of the thesis and suggestion for future works.  

 Appendix A presents performance evaluation of various time-delay estimation 

algorithms in simulated elastography phantoms. 
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 Appendix B presents a study on computational efficiency of the various time-delay 

estimation algorithms. 
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Ultrasonic Echo Signals and Its Application in 

Ultrasound Elastography 

Elyas Shaswary, Student Member, IEEE, Jahan Tavakkoli, Senior Member, IEEE, and Yuan Xu 

 

Abstract—Time-delay estimation determines the relative displacement between two 

ultrasound echo signals. In this paper, we propose a new time-delay estimation algorithm, 

which uses only the sign function to obtain the corresponding time-delay estimate. The 

performance of the proposed algorithm was compared with two established algorithms, 

i.e., normalized cross-correlation (NCC) and sum squared differences (SSD), using both 

statistical analysis and quantitative measurement of image quality in ultrasound 

elastography. All simulated ultrasound echo signals were generated using Field II 

ultrasound simulation software. The results indicated that in overall the proposed algorithm 

had similar accuracy and precision compared to NCC and SSD algorithms. On the other 

hand, the proposed algorithm produced images with marginally higher signal-to-noise and 

contrast-to-noise ratios compared to NCC and SSD in ultrasound elastography. 

Index Terms—Time-delay estimation, ultrasound elastography, strain imaging, cross-

correlation, sum squared differences. 

  



21 

I. INTRODUCTION 

Time-delay estimation is a key task in many signal processing applications and it is used 

in many fields, such as radar, sonar, communication, medical imaging, acoustics, and 

speech processing [1]. In ultrasound medical imaging, the performance of many signal 

processing applications is dependent on the accurate estimation of the relative time-delay 

between a reference and a delayed echo signals. Time-delay estimation, in medical 

ultrasound imaging, has applications in areas such as tissue elasticity imaging [2], [3], [4], 

[5], blood flow imaging [6], [7], [8], [9], [10], [11], acoustic radiation force imaging 

(ARFI) [12], [13], [14], motion compensation for synthetic receive aperture imaging [15], 

phase-aberration correction [16], [17], [18], noninvasive temperature estimation [19], and 

so on. Time-delay estimation has been extensively studied and a number of methods have 

been proposed. Time-delay estimation calculates the displacement between a sequence of 

backscattered ultrasound signals, where the displacement appears as time shift or phase 

shift.  

Time-delay estimation can be performed in different domains such as time, phase, 

or frequency. However, time-domain methods are more extensively used due to their high 

accuracy, precision, and spatial resolution [20], [21], [22], [23], [24]. Time-domain 

methods are primarily used in tissue motion estimation. Generally, a segment of radio-

frequency (RF) data in a reference echo signal is compared with a segment of RF data in a 

delayed echo signal. At each window a pattern-matching function is calculated to find the 

location where the two windows resemble each other the most. Most common pattern-

matching functions calculate correlation coefficients or squared difference values between 

the two windows.  
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Many time-delay estimation algorithms have been proposed over the years, each 

offers trade-offs between accuracy, spatial resolution, and computational time [21], [24], 

[25], [26]. Some of the well-known algorithms include cross-correlation (CC), normalized 

cross-correlation (NCC), covariance (CV), normalized covariance (NCV), sum squared 

differences (SSD) and sum absolute differences (SAD). CC, NCC, CV and NCV methods 

computes correlation coefficient function and the location where the correlation coefficient 

is maximum is the corresponding time-delay. SSD and SAD methods compute squared and 

absolulte difference functions, respectively and the location where the squared or absolute 

difference functions is minimum is the corresponding time-delay. NCC, NCV, and SSD 

methods are generally considered to be the gold standard methods as they yield optimal 

results under different testing conditions [21]. NCC and NCV are computationally very 

similar with the exception that NCV considers the mean of the reference and the delay 

signals. NCC and NCV differ from CC and CV in their algorithmic operations by 

considering the energy of the reference and the delayed signal [21].  Considering the energy 

of the reference and the delayed signal is beneficial because it compensates for the local 

variations in the standard deviations and mean of the signals [27]. NCC and NCV suffer 

from high computational cost, which can be problematic for real-time implementation [21], 

[24]. A few novel implementations of NCC and SSD have been reported to reduce their 

computational cost [25], [28], [29].  

Many factors can deteriorate the performance of the all these algorithms [21], [24]. 

Practically, time-delay estimation is computed using discrete-time ultrasonic echo signals. 

When discrete-time signals are used to compute time-delay estimation the output is an 

integer multiple of the sampling period, which could be a potential source of error (i.e., 
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high bias and variance) in time-delay estimation [21]. However, if the discrete-time signals 

are sampled beyond the Nyquist rate, then by using interpolation the time-delay estimates 

will be as precise and accurate as continuous-time signals [21]. The reference and delayed 

signals can be interpolated before and/or after computing the pattern-matching function, as 

shown in Figure 2.1.  

 

Figure 2.1:  Most common time-delay estimation schemes. (a) Time-delay estimation without 

interpolation. (b) Time-delay estimation with interpolation of the reference and delayed signals before 

computing a pattern-matching function. (c) Time-delay estimation with interpolation of the pattern-

matching function. (d) Time-delay estimation with interpolation of the reference and delayed signals, and 

interpolation of the pattern-matching function. 

Interpolation of the signals before computing the pattern-matching function simply 

increases the sampling rate, which enables more accurate time-delay estimates [1]. 

Interpolation of the signals after computing the pattern-matching functions usually fits a 

predetermined type of curve or a polynomial to a number of samples points in the pattern-

matching functions to describe the pattern-matching functions as if they are continuous-

time functions [30]. This approach does not restrict the time-delay estimates to be integer 

multiple of the sampling period. A number of interpolation techniques have been described 

in literature which include, but not limited to, cosine-curve fitting [31], parabolic-curve 

fitting [32], [33], grid slope [34], [35] and spline fitting [36].  
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In addition, the performance of the time-delay estimators are deteriorated when the 

finite length reference and delayed signals are corrupted by electronic and/or acoustic 

noises and decorrelated by physical processes [21], [24]. These factors can cause two type 

of errors in the time-delay estimates, which are referred to as false peak and jitter errors 

[21], [24]. False peak error ensues when there is another peak in cross-correlation function 

which has higher amplitude than the true peak. In the case of SSD and SAD estimators, 

false peak error occurs when another peak in least difference function has lower amplitude 

than the true peak. Thus, false peak error occurs when an incorrect peak is selected in the 

pattern-matching function. Jitter error occurs when the true peak of the pattern-matching 

function is shifted from its true position [21], [24]. False peak errors can be easily identified 

in the time-delay estimates and they can be filtered out using nonlinear signal processing, 

such as median filtering [21]. On the other hand, jitter errors cannot be filtered out and as 

a result the performance of the time-delay estimators is fundamentally limited by the jitter 

errors [21]. 

In this work, we propose a new time-domain time-delay estimation method. The 

proposed method generates a zero-crossing in the pattern-matching function. The location 

of the zero-crossing corresponds to the best match between a reference and a delayed 

signal.  

II. PROPOSED ALGORITHM 

The new algorithm is based on finding the location of a zero-crossing at a specific window 

using the equation: 
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𝑠0 = ∑ sign(𝑤2(𝑡𝑘) − 𝑤1(𝑡𝑘)) & sign(𝑤1
′(𝑡𝑘))

𝑁

𝑘=1

 (2.1) 

where 𝑤1(𝑡) is the reference signal, 𝑤2(𝑡) is the delayed signal, 𝑤1′(𝑡) is the instantaneous 

time derivative of 𝑤1(𝑡), & is the logical operator AND, 𝑁 is number of sample point 

within the window, and 𝑡𝑘 is the sample point. At each sample point, Eq. 2.1 takes the 

difference between 𝑤1(𝑡) and 𝑤2(𝑡), multiplies it by the instantaneous time derivative 

of 𝑤1(𝑡), and determines the sign of them. Then, sum the signs as values of either +1 or -

1 from all the sample points. If 𝑤2(𝑡) is shifted to the left of 𝑤1(𝑡) then Eq. 2.1 will yield 

positive signs (+1), as shown in Figure 2.2(a). If 𝑤2(𝑡) is shifted to the right of 𝑤1(𝑡) then 

Eq. 2.1 will yield negative signs (-1), as shown in Figure 2.2(b). If 𝑤2(𝑡) is aligned with 

𝑤1(𝑡) then Eq. 2.1 will yield zero. The trend (i.e., change in mean) of 𝑤1(𝑡) and 𝑤2(𝑡) 

was removed by subtracting their respective means before applying Eq. 1.  

 

Figure 2.2:  (a) Representation of positive shifting. (b) Representation of negative shifting. 

In order to find out the location of zero-crossing we use the general form of Eq. 2.1, 

as: 
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𝑠(𝜏) = ∑ sign(𝑤2(𝑡𝑘 − 𝜏) − 𝑤1(𝑡𝑘)) & sign(𝑤1
′(𝑡𝑘))

𝑁

𝑘=1

 (2.2) 

where 𝜏 is search lag (i.e., time-shift while searching for a zero-crossing). Eq. 2.2 slides 

𝑤2(𝑡) over 𝑤1(𝑡) from −𝜏max to +𝜏max. Eq. 2.2 slides 𝑤2(𝑡) over 𝑤1(𝑡) from the left side 

(i.e. −𝜏max) to the right side (i.e. +𝜏max) to obtain a zero-crossing point. In other words, a 

zero-crossing is obtained when Eq. 2.2 goes from positive sign to negative sign, as shown 

in Figure 2.3. The location of zero-crossing corresponds to the location where 𝑤1(𝑡) and 

𝑤2(𝑡) are at their closest match. The location of the closest match also corresponds to the 

time-delay between them.  

 

Figure 2.3:  Visualization of Eq. 2.2 to generate a pattern-matching function to obtain a zero-crossing. 

Keeping −𝜏max and +𝜏max at a minimum, increases efficiency of the method by 

avoiding the unnecessary search for a zero-crossing. This is only possible if one has a priori 

information about the range over which the search for a zero-crossing should be done. 

However, in most applications the time-delay from one window to the next window does 

not vary significantly and we can use the time-delay estimation of the previous window to 

guide the search for a zero-crossing in the current window. If the time-delay estimation in 
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previous window is erroneous (e.g., in scenarios when there is multiple zero-crossings or 

when there is no zero-crossing) then either the window proceeding the previous window 

or an alternative backup method, e.g., NCC or SSD, can be used to guide the search in the 

current window.  

III. SIMULATION METHODS 

A series of simulation was carried out to investigate the performance of the proposed 

algorithm. The performance of the proposed algorithm was investigated in terms of 

standard deviation (i.e., a measurement of precision), bias (i.e., a measurement of accuracy) 

and standard deviation of the jitter error (i.e., standard deviation of time-delay estimate 

error) as a function of sub-sample delay, signal-to-noise-ratio (SNR), and kernel window 

length. The performance of the proposed algorithm was compared with NCC, SSD with 

and without cosine curve fittings algorithms. The effect of interpolation on the performance 

of the time-delay estimation methods was also examined by interpolating the reference and 

delayed signals before computing a pattern-matching function.  

Field II ultrasound simulation software [37], [38] was used to generate a series of 

ultrasound RF echo signals. Field II can accurately simulate a typical array-based 

ultrasound scanner to generate RF signals. To this end, it generates RF echo signals from 

a collection of point scatterers, which are distributed uniformly in the region of interest and 

their scattering strength are set by a Gaussian distribution [39]. Thus, different types of B-

mode images can be constructed by adjusting the scatterers distribution and scatterers 

strength.  
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In order to simulate time-delay in ultrasound RF signal, first a reference signal was 

generated by uniformly distributing a number of scatterers within a volume and then Field 

II was used to construct the corresponding RF echo signal. A delayed version of the 

reference signal was generated by shifting the same scatterers distribution (which was used 

for the construction of the reference echo signal) in the axial direction and then Field II 

was used to construct the corresponding RF echo signal. A linear array transducer with 192 

elements, utilising 64 active elements with a Hanning apodization in transmit and receive, 

was used to scan the 160,000 scatterers within a 40×40×10 mm (axial, lateral, elevation) 

volume. Main parameters and their values which were used in Field II are listed in Table 

2.1. The scatterers were displaced by sub-sample amount (i.e., displacement which 

corresponds to a fraction of the sampling period) and the displacement of the scatterers was 

varied from 0 to 1 samples, in increment of 0.05 samples, to generate a total of 21 sets of 

delayed signals. A set of 200 reference and delayed signals were generated for statistical 

analysis, where each signal included about 5000 samples point (equivelent to 50 𝜇𝑠). In 

addition, narrowband noise (i.e., noise which had the same bandwidth as the signals) was 

added to the reference and delayed signals to generate signals with varying SNR in the 

range of 10 to 60 dB. 
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PARAMETER VALUE 

Transducer type Linear array with 192 elements and 64 active elements 

Element height 5 mm 

Element weight 1 wavelength (equivalent to 0.15 mm) 

Inter-element spacing 0.05 mm 

Transmit focus 20 mm 

Receive focus 10 mm and 30 mm 

Apodization Hanning 

Dimension of the tissue phantom 40 mm × 40 mm × 10 mm (axial, lateral, elevation) 

Number of scatterers 160,000 scatterers 

Density of scatterers 10 scatterers/mm3 

Sampling frequency 100 MHz 

Transmit centre frequency 5 MHz 

Speed of Sound 1510 m/s 

Attenuation coefficient 0.75 dB/(cm MHz) 

Number of A-lines per frame 200 

Table 2.1:  Parameters and their assigned values used in Field II ultrasound simulation software for 

generation of ultrasound echo signal to perform statistical analysis. 

The reference and delayed signals were segmented into small windows with 

overlapping and time-delay estimation was performed between each window. Once, time-

delay estimates for all windows were estimated then their bias (𝑏), standard deviation (𝜎) 

and standard deviation of the jitter error were computed using the following equations [1], 

[24]: 

𝑏(Δ̂) =
1

𝑛
∑(Δ̂[𝑖] − Δ[𝑖])

𝑛

𝑖=1

 (2.3) 

𝜎(Δ̂) = √
1

𝑛
∑ (Δ̂[𝑖] −

1

𝑛
∑ Δ̂[𝑖]

𝑛

𝑖=1

)

𝑛

𝑖=1

2

  (2.4) 

𝜎(Δ − Δ̂) = √
1

𝑛
∑(Δ[i] − Δ̂[𝑖])

2
𝑛

𝑖=1

   (2.5) 
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where Δ[𝑖] are the true time-delays, Δ̂[𝑖] is the estimated time-delays, and 𝑛 is the number 

of time-delay estimates.  

IV. SIMULATION RESULTS AND DISCUSSION 

A series of simulated ultrasonic RF echo signals were generated using Field II. All 

calculations were carried out in MATLAB (MathWorks Inc., Natick, MA).  

The performance of the proposed algorithm was evaluated without interpolation (as 

depicted in Figure 2.1(a)) and with interpolation of the RF signals by a factor of 10 

(equivalent to 1 GHz sampling frequency) before computing a pattern-matching function 

(as depicted in Figure 2.1(b)).  NCC and SSD algorithms were implemented in all possible 

methods, as shown in Figure 2.1(a)-(d). Simulation results are shown in Figure 2.4 through 

Figure 2.6. The vertical axes of standard deviation and standard deviation of the jitter errors 

are shown in logarithmic scales to enhance their visualization.  

Figure 2.4 shows the standard deviation, bias, and standard deviation of the jitter 

errors as a function of sub-sample delays. The reference and delayed signals had SNR of 

45 dB and the window length was set to 10 wavelengths (equivalent to 2 𝜇𝑠 ≈1.51 mm) 

with 50% overlap. The sub-sample delays were varied from 0 samples to 1 samples in 

increment of 0.05 samples. The new algorithm without pre-pattern-matching interpolation 

of the reference and delayed signals (as shown by five-pointed star in Figure 2.4) had its 

lowest bias at sub-sample delay of 0 samples and 0.5 samples. In addition, it had its lowest 

standard deviation and standard deviation of the jitter errors as the sub-sample delays 

approached 0.5 samples. This indicates that the proposed algorithm is biased towards time-

delays of 0.5 samples. On the other hand, the standard deviation, bias, and standard 
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deviation of the jitter errors of NCC and SSD, without pre-pattern matching interpolation 

of the reference and delayed signals (as shown by circle and diamond in Figure 2.4, 

respectively), were lowest close to sub-sample delay of 0 and 1 samples. This shows that 

NCC and SSD algorithms, without interpolation of the data, can only estimate time-delays 

at an integer multiple of the sampling period and they do not have sub-sample accuracy. 

NCC with cosine curve fitting (as shown by the dot in Figure 2.4) and SSD (as shown by 

the square in Figure 2.4) with cosine curve fitting had relatively lower standard deviation, 

bias, and standard deviation of the jitter errors compared to NCC and SSD without 

interpolation. This indicates that NCC and SSD can achieve sub-sample accuracy with 

cosine curve fitting. For all sub-sample delays, NCC with cosine curve fitting had lower 

standard deviation, bias, and standard deviation of the jitter errors compared to SSD with 

cosine curve fitting.  
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Figure 2.4:  Standard deviation, bias, and standard deviation of the jitter error as a function of sub-sample 

delay. For each sub-sample delay 200 A-lines were used and each A-line was divided by window length of 

10 wavelengths (with 50% overlaps) which resulted in 9000 time-delay estimates. Sampling frequency was 

100 MHz, center frequency was 5 MHz, and SNR was 45 dB. 

Interpolation of the reference and delayed signals prior to computing a pattern-

matching function generally reduced the standard deviation, bias, and standard deviation 
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of the jitter errors of all time-delay estimation methods, except the NCC with cosine curve 

fitting, for all sub-sample delays. When the reference and delayed signals were interpolated 

by a factor of 10, NCC (as shown by the triangle in Figure 2.4) and SSD (as shown by the 

inverted triangle in Figure 2.4) had slightly higher standard deviation and standard 

deviation of the jitter errors compared to the proposed algorithm (as shown by the asterisk 

in Figure 2.4), NCC with cosine curve fitting (as shown by the left pointing triangle in 

Figure 2.4), and SSD with cosine curve fitting (as shown by the right pointing triangle in 

Figure 2.4) for sub-sample delays of 0.05 samples to 0.95 samples in steps of 0.1 samples. 

On the other hand, for sub-sample delays of 0 samples to 1 samples in step of 0.1 samples 

the standard deviation, bias, and standard deviation of the jitter errors of all methods were 

about the same. In addition, SSD with interpolation of the data in most cases had lower 

standard deviation, bias, and standard deviation of the jitter errors relative to SSD with 

cosine curve fitting for all sub-sample delays. On contrary, NCC with interpolation of the 

data had marginally higher standard deviation, bias, and standard deviation of the jitter 

compared to NCC with cosine curve fitting. Thus, NCC benefits more from cosine curve 

fitting than from interpolation of the data and SSD generally benefits more from 

interpolation of the data than from cosine curve fitting. The proposed new algorithm with 

interpolation of the data had about the standard deviation, bias, and standard deviation of 

the jitter errors as NCC with cosine curve fitting, NCC with interpolation of the data and 

cosine curve fitting, and SSD with interpolation of the data and cosine curve fitting for all 

sub-sample delays.  

Figure 2.5 shows standard deviation, bias, and standard deviation of the jitter errors 

as a function of SNR. The sub-sample delay was set to 0.25 samples and window length 
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was set to 10 wavelengths with 50% overlap. The SNR was varied from 10 dB to 60 dB. 

As expected, the standard deviation and standard deviation of the jitter errors of all methods 

generally decreased as SNR increased. The proposed new algorithm without interpolation 

of the data had about the same magnitude of bias and standard deviation of the jitter errors 

as the NCC and SSD algorithms without interpolation of the data for all values of SNR. 

Without interpolation of the data, the proposed algorithm had positive biases whereas NCC 

and SSD had negative biases. When the sub-sample delay was 0.25 samples the proposed 

method was biased toward a sub-sample delay of 0.5 samples and on the other hand, NCC 

and SSD were biased toward a sub-sample delay of 0 samples. Thus, the proposed 

algorithm yielded positive biases (i.e., difference between estimated and true time-delays 

were positive) and NCC and SSD yielded negative biases (i.e., difference between 

estimated and true time-delays were negative). NCC with cosine curve fitting and SSD 

with cosine curve fitting had lower bias compared to proposed algorithm, NCC, and SSD 

without interpolation of the data for all levels of SNR. Moreover, the bias of all method 

remained about the same for all amount of SNR, with exception of the proposed algorithm 

without interpolation of the data which increased slightly as SNR increased. This increase 

in bias of the proposed algorithm, without interpolation of the data, is because the proposed 

algorithm becomes more stable as SNR increases as it is evident from its decrease of 

standard deviation.  
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Figure 2.5:  Standard deviation, bias, and standard deviation of the jitter errors as a function of SNR. For 

each SNR 200 A-lines were used and each A-line was divided by window length of 10 wavelengths (with 

50% overlaps) which resulted in 9000 time-delay estimates. Sub-sample delay between the reference and 

delayed signals were 0.25 samples. Sampling frequency was 100 MHz and center frequency was 5 MHz. 

With interpolation of the data, the proposed new algorithm, NCC with cosine curve 

fitting, SSD with cosine curve fitting, and NCC with cosine curve fitting but without 
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interpolation of the data had about the same and lowest standard deviation, bias, and 

standard deviation of the jitter errors for all levels of SNR.  SSD with interpolation of the 

data had lower bias and standard deviation of the jitter errors compared to SSD with cosine 

curve fitting. On the other hand, NCC with cosine curve fitting had lower standard 

deviation, bias, and standard deviation of the jitter errors compared to NCC with 

interpolation alone for all levels of SNR.  

Figure 2.6 shows the standard deviation, bias, and standard deviation of the jitter 

errors as a function of window length. The reference and delayed signals had SNR of 45 

dB and the sub-sample delay was set to 0.25 samples. The window length was varied from 

1 wavelength (equivalent to 0.2 𝜇𝑠 ≈ 0.151 mm) to 40 wavelengths (equivalent to 8 𝜇𝑠 ≈ 

6.04 mm). The standard deviation of all methods generally decreased as window length 

increased and the bias of all methods remained nearly the same as window length increased. 

This was expected because as sample points within a window increases the time-delay 

estimation becomes more precise; however more sample points within a window do not 

affect the accuracy of the time-delay estimation. Without interpolation of the data, the 

proposed new algorithm, NCC, and SSD had highest bias magnitude and standard 

deviation of the jitter errors compared to other methods for all window lengths. With 

interpolation of the data, the proposed algorithm, NCC with cosine curve fitting, SSD with 

cosine curve fitting, and NCC with cosine curve fitting but without interpolation of the data 

had relatively the lowest standard deviation, bias, and standard deviation of the jitter errors 

for all considered window lengths. In addition, the standard deviation of the jitter errors of 

the proposed algorithm with interpolation of the data, SSD with cosine curve fitting and 

interpolation of the data, NCC with cosine curve fitting and interpolation of the data, and 
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NCC with cosine curve fitting but without interpolation of the data decreased with 

increased in window length.  

 

Figure 2.6:  Standard deviation, bias, and standard deviation of the jitter errors as a function of window 

length. For each window length 200 A-lines were used. Sub-sample delay between the reference and 

delayed signals were 0.25 samples. Sampling frequency was 100 MHz, center frequency was 5 MHz, SNR 

was 45 dB, and window overlap was 50%. 
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V. EXPERIMENTAL PERFORMANCE 

An experiment was carried out to study the performance of the proposed new algorithm 

using data acquired from an ultrasound scanner. The perforamcne of the proposed 

algorithm was evaluated in terms of target detectiabilty (i.e., visual apperance of target to 

the observer), elastographic signal-to-noise ratio (SNRe) and elastographic contrast-to-

noise ratio (CNRe). A commerical ultrasound breast elastography phantom (Model #059, 

CIRS Inc., Nortfolk, VA, USA) was scanned using Sonix RP ultrasound scanner 

(Ultrasonix Medical Corp., Richmond, BC, Canada) with a 128 element linear array 

transducer. The phantom contained several spherical inclusions which were about 4.6 times 

stiffer than the background according to the manufacturer’s specificaitons. Some of key 

specifications of the phantom are tabulated in Table 2.2.  

Parameter Inclusions Background 

Elasticity 89 kPa 19.3 kPa 

Speed of sound 1560 m/s 1534 m/s 

Contrast -1.66 dB -1.44 dB 

Attenuation 0.5 dB/(cm MHz) 0.46 dB/(cm MHz) 

Table 2.2:  Specifications of the CIRS breast elastography tissue phantom. 

The ultrasound scanner was set to 5 MHz transmit central frequency and 40 MHz 

sampling freqency. The transducer was held by hand while it is pressed in and out by small 

compressional force against the phantom’s top surface. At the same time, RF frames were 

stored for post-processing. All post-processing calculations were performed in MATLAB 

(MathWorks, Inc., Natick, MA, USA). 5 consecutive RF frames were randomly selected 

out of over 100 acquired RF frames and then processed. Figure 2.7 depicts the B-mode 

images of two consective frame as an example. In the acquired RF frames two stiff 

inclusions were present, one at about 15 mm axial depth with diamter of about 15 mm and 
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another one at about 32 mm axial depth with diameter of about 7 mm. The time-delay 

estimates between two consective RF frames were computed pair-wise by dividing each 

A-line into small windows of 10 wavelengths (equivalent to 1.51 mm) with 75% overlap. 

The time-delay estimation algorithms which were used included the proposed algorithm, 

NCC, NCC with cosine curve fitting, SSD, and SSD with cosine curve fitting. The effects 

of interpolation was also considered by interpolating the RF frames by a factor of 10-fold 

(equivalent to 400 MHz sampling frequency). The strain map was generated by the 

numerical differentiation of the time-delay estimates, using the 1D Savitzky-Golay digital 

differentiator (SGDD) [40]. SGDD is a moving least-squares polynomial fitting technique, 

which is performed by the convolution of an input signal with the filter coefficients. The 

filter coefficients depend on the order of differentiation, degree of the polynomial and 

length of the filter [40], [41]. SGDD with first or second degree of polynomial fitting is 

more suitable in ultrasound elastography as it can produce strain maps with high SNRe and 

CNRe [42], which are defined as follows [43], [44]:  

𝑆𝑁𝑅𝑒 =
𝜇

𝜎
 (2.6) 

𝐶𝑁𝑅𝑒 =
2(𝜇background − 𝜇lesion)

2

(𝜎background
2 + 𝜎lesion

2 )
 (2.7) 

where 𝜇 is the mean and 𝜎 is the standard deviation of a region of uniform strain in the 

strain map. In this work, SGDD with filter length of 9 samples, ploynomail fitting of second 

degree, and differentiation of first order was used. Moreover, the strain maps were filtered 

using 5×5 median and mean filters to further increase the SNRe because the gradient 

operator introduces extra noise amplification in the strain maps [45].  
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Figure 2.7:  B-mode images of the RF frames acquired from the CIRS breast elastography tissue phantom 

at (a) pre-compression state and at (b) post-compression state. 

Figure 2.8 shows the filtered strain maps generated using various algorithms 

studied. Without interpolation of the data, NCC, SSD, and the proposed algorithm were 

not able to clearly show the two inclusions. With interpolation of the data and/or cosine 

curve fitting all algorithms were able to show the inclusions. The larger inclusion was 

clearly standing out from the background; however, the smaller inclusion was somewhat 

concealed in the background (e.g., the colour shading of the inclusion was very similar to 

the surrounding medium). This type of artifacts in the elastograms are called “target 

hardening”, which arises from non-uniform distribution of stress in the medium [2], [46]. 

Stress is depth dependent and it decreases as depth increases. When a compressional force 

is applied to a medium, the stress near top surface of the medium is greater compared to 

the stress near the bottom end of the medium. Moreover, the scatterers near the top surface 

of the medium, where the force is applied, are displaced the most and the scatterers at the 

deepest end are displaced the least. Therefore, the strain in the elastograms decreases as 
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depth increases. Figure 2.9(a) shows the strain of a single line (passing through the middle 

of the large inclusions as shown in Figure 2.8). It can be seen that the strain decreases as 

depth increases, which makes the detection of deep inclusions problamatic.  

We attempt to solve the strain dependence on depth by a process called strain map 

normalization. First, the strain trend was determined by taking the average of several strain 

lines (e.g., 10 lines) from random lateral distances and it was filtered out to make it smooth. 

The filtering of the strain trend was done by 1×20 median and moving average filters. 

Figure 2.9(b) shows a strain line along with the strain trend. Then, each strain line in the 

elastogram was normalized by the magnitude of the strain trend to obtain a normalized 

elastogram. Figure 2.9(c) depicts a normalized strain line in which the dependence of strain 

on depth is compansated. Figure 2.10 shows normalized strain maps corresponding to those 

shown shown in Figure 2.8.  

The SNRe and CNRe of each strain map shown in Figure 2.8 and Figure 2.10 are 

listed in Table 2.3. Without interpolation of the data, the proposed algorithm had higher 

SNRe and CNRe compared to NCC and SSD, but it had lower SNRe and CNRe compared 

to NCC and SSD with cosine curve fittings. With interpolation of the data, the proposed 

new algorithm had the highest SNRe and CNRe. NCC with interpolation of the data and/or 

cosine curve fitting, SSD with interpolation of the data, and SSD with interpolaiton of the 

data and cosine curve fitting had about the same SNRe and CNRe. Moreover, interpolation 

of the data and/or cosine curve fitting significently improve the quality of the strain maps 

in terms of SNRe and CNRe. Furthermore, strain map normalization did not affect the SNRe 

and CNRe of the elastograms even though it compansated for strain decay with depth. 
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Figure 2.8:  The strain maps of the CIRS breast elastography tissue phantom. Time-delay estimates were 

computed by all considered algorithms (using window length of 10 wavelengths with 75% window 

overlap). The corresponding strain was computed using the SGDD method (with filter length of 9 samples, 

polynomial fitting of second degree, and differentiation of first order). The strain maps were also filtered by 

a 5×5 median and mean filters. 

Soft 
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Figure 2.9:  (a) Plot of a single strain line along the axial direction. (b) Plot of the strain trend (shown by 

the dotted line) by which strain line was normalized. (c) Plot of a strain line after normalization. 

 

 Original Strain Map Normalized Strain Map 

Algorithm SNRe (dB) CNRe (dB) SNRe (dB) CNRe (dB) 

NCC 4.10 -2.20 3.99 -2.52 

NCC w/ CosFit 19.13 21.77 19.48 21.82 

SSD 4.09 -2.23 3.99 -2.54 

SSD w/ CosFit 17.62 8.32 17.04 9.29 

Proposed Algorithm 9.11 1.21 9.48 1.25 

NCC w/ Int10 19.51 21.95 19.36 21.66 

NCC w/ Int10 & CosFit 18.99 21.89 19.40 21.87 

SSD w/ Int10 19.53 21.97 19.39 21.67 

SSD w/ Int10 & CosFit 19.04 21.91 19.38 21.85 

Proposed Algorithm w/ Int10 19.99 23.36 20.63 23.48 

Table 2.3:  SNRe and CNRe of the original and the normalized strain maps of the CIRS breast 

elastography tissue phantom. From each strain map, sample points (about 60 samples) were taken from the 

region of small inclusions and from the background at the same axial. 
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Figure 2.10:  The normalized strain map of the CIRS breast elastography tissue phantom. Time-delay 

estimates were computed by all considered algorithms (using window length of 10 wavelengths with 75% 

window overlap). The corresponding strain was computed using the SGDD method (with filter length of 9 

samples, polynomial fitting of second degree, and differentiation of first order). The strain maps were 

filtered by a 5×5 median and mean filters. 

Soft 



45 

VI. CONCLUSIONS 

The results of the statistical analysis indicate that the proposed algorithm performs 

comparable to NCC and SSD. However, the proposed algorithm performs inferior 

compared to NCC and SSD with cosine curve fitting. The results also indicates that NCC 

benefits more from curve fitting than from interpolation of the RF data and on contrary 

SSD benefits more from interpolation of the RF data than from cosine curve fitting.  

In ultrasound elastography, the proposed algorithm produced higher quality strain 

maps (in terms of SNRe and CNRe) compared to NCC and SSD but lower quality strain 

maps compared to NCC and SSD with cosine curve fitting. On the other hand, with 

interpolation of the data the proposed algorithm produced strain map of the highest quality 

relative to NCC and SSD with interpolation of the data and/or cosine curve fitting. Thus, 

the proposed algorithm is an optimal time-delay estimator for applications in ultrasound 

elastography.  

The proposed method provides an alternative to the curent eastablished TDE 

methods. One important feature of the proposed algorithm is that Eq. 2 can be implemented 

by comparing two numbers and using the sign function, and a counter after the sign of the 

derivative of the signal is determined. No mathematic operation such as summmation and 

multiplication is needed.  Therefore, it can be potentially implemented on hardware with 

high efficiency. Even though, the computational efficiency of the proposed new algorithm 

has not been studied in the paper, it is anticipated that it is not more computationally 

burdensome than NCC and SSD as it uses the time-delay estimates of the previous 

windows to significantly reduce the searching range of the current window. A possible 

future work can be to compare the computational efficiency of the proposed new algorithm 
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with NCC and SSD algorithms in a realistic situation (e.g., real-time). In addition, the 

proposed algorithm was not implemented with curve fitting because a suitable curve fitting 

method was not found. It is anticipated that its performance could improve with 

implementation of curve fitting.  
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Chapter 3  

Conclusions and Suggestions for Further Work 

3.1     SUMMARY 

The performance of the proposed algorithm was evaluated using statistical analysis and 

image quality analysis. The proposed algorithm was compared with NCC and SSD. The 

effects of interpolation of data and/or cosine curve fitting (in the case of NCC and SSD) 

were also considered. Statistical analysis was carried out by analysing the performance of 

all considered algorithms in terms of bias, standard deviation, and standard deviation of 

the jitter errors as a function of subsample delay, SNR, and kernel window length. Image 

quality analysis was performed by assessing the SNRe and CNRe of strain images in 

simulated and experimental ultrasound elastography. In addition, a novel normalization 

method was applied to enhance target detectability in ultrasound elastography.  

3.2     CONCLUSIONS 

The statistical analysis results indicate that without interpolation of the data prior to 

computing the time-delay estimates the proposed algorithm, NCC and SSD overall had 

about the same standard deviation, bias, and standard deviation of the jitter errors as a 
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function of sub-sample delay, SNR and standard deviation of the jitter errors. As expected, 

interpolation and/or cosine curve fitting (in the case of NCC and SSD) decreased the 

standard deviation, bias, and standard deviation of the jitter errors as a function sub-sample 

delay, SNR, and window length of all considered methods. The proposed algorithm with 

interpolation of the data, NCC with cosine curve fitting, NCC with interpolation of the data 

and cosine curve fitting, SSD with interpolation of the data and cosine curve fitting had 

about the same and the lowest standard deviation, bias, and standard deviation of the jitter 

errors as function of sub-sample delay, SNR, and window length. Moreover, NCC benefits 

more from cosine curve fitting than from interpolation of the data and on contrary SSD 

benefits more from interpolation of the data than from cosine curve fitting.  

When the quality of the strain maps was examined, without interpolation of the 

data, the proposed algorithm had higher SNRe and CNRe compared to NCC and SSD 

however it had lower SNRe and CNRe compared to NCC and SSD with cosine curve 

fittings. The proposed algorithm with interpolation of the data had the highest SNRe and 

CNRe. NCC with cosine curve fitting and/or interpolation of the data, SSD with 

interpolation of the data, and SSD with interpolation of the data and cosine curve fitting 

had about the same SNRe and CNRe. Consequently, to produce strain maps with high SNRe 

and CNRe either the data must be interpolated prior to estimating the time-delays or the 

pattern-matching function must be fitted to a cosine curve. In addition, strain map 

normalization enhanced target visualization by compensating for strain decay with depth 

although it did not affect the SNRe and CNRe of the strain maps. 

Therefore, with interpolation of the data, the proposed algorithm marginally 

improved the quality of the strain maps in terms of SNRe and CNRe.  
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3.3     SUGGESTION FOR FURTHER WORK 

The computational efficiency of each algorithm has not been studied in more details in this 

thesis. A possible future work can be to compare the computational efficiency of each 

algorithm in a realistic situation. In addition, the proposed algorithm was not implemented 

with some type of curve fitting. If the proposed algorithm is implemented with curve fitting 

then its performance in terms of computational efficiency and accuracy could increase. 

Thus, as another future work, it is sugguested to implement the proposed algorithm with 

curve fitting.  

 



54 

 

 

 

 

 

Appendix A 

Performance Evaluation of Various Time-Delay 

Estimation Algorithm in Simulated 

Elastography Phantoms 

 

A simple 3D phantom for strain elastography was simulated using Field II ultrasound 

simulation software. The phantom was constructed from a uniform distribution of point 

scatterers within a volume in which the scatterers strength was set by a Gaussian 

distribution. The phantom exhibited uniform echogenicity. The phantom consisted of hard 

cylindrical inclusions of three different sizes and located at three different axial depths. 

Two 65 mm × 60 mm × 10 mm phantom were modeled, where each one contained nine 

hard inclusions. The first phantom contained inclusions with diameter of 2 mm, 3 mm and 

5 mm at the depth of 10 mm, 30 mm and 50 mm, as shown in Figure A.1(a). The second 

phantom contained inclusions with diameter of 4 mm, 6 mm and 8 mm at the depth of 10 

mm, 30 mm and 50 mm, as shown in Figure A.1(b).  
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Figure A.1: (a) First phantom which contained cylindrical inclusions of 2 mm, 3 mm, and 5 mm 

diameter at 10 mm, 30 mm, and 50 mm axial distances. (b) Second phantom which contained 

cylindrical inclusions of 4 mm, 6 mm, and 8 mm diameter at 10 mm, 30 mm, and 50 mm axial 

distances. 

In order to simulated strain elastography, two RF frames were simulated from the 

scatterers distribution using Field II with the assigned parameters as shown in Table A.1. 

First, a RF frame was simulated, which refers to pre-compression frame, from the scatterers 

distribution. Then, the scatterers were displaced in such a way as if they were compressed 

from the top surface downward by the transducer, as shown in Figure A.2.  In order to 

simulated tissue phantoms with hard inclusions, the scatterers inside the inclusions were 

subjected to less strain compared to the background, when a uniaxial plane compressional 

force was applied. When a compressional force is applied hard inclusions experience less 

strain compare to the background. The phantom was compressed by 0.5% (equivalent to 

0.32 mm at the utmost axial depth) whereas the inclusions were compressed by 1 3⁄ .  

In this study, we have assumed that all scatterers move only in the axial direction 

when they experience a compressional force from the axial direction. In reality scatterers 

are free to move in lateral and elevation directions as well when a compressional force is 
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applied from axial direction. However in this study, since all the time-delay estimation 

algorithms are implemented in 1D and they can only estimate time-delays in axial 

direction, this assumption seems reasonable. The compressed scatterers were then used to 

simulate another RF frame, which refers to post-compression frame. The displacement of 

scatterers from the transducer’s point of view appears as if the top surface, where the 

transducer is mounted, is fixed and the bottom surface is compressed toward the top, as 

shown in Figure A.2.  

PARAMETER VALUE 

Transducer type Linear Array with 256 elements and 64 active elements 

Element height 5 mm 

Element weight 1 wavelength (equivalent to 0.15 mm) 

Inter-element spacing 0.05 mm 

Transmit focus 30 mm 

Receive focus 10 mm, 30 mm, and 50 mm 

Apodization Hanning 

Dimension of the tissue phantom 65 mm × 60 mm ×10 mm (axial, lateral, elevation) 

Number of scatterers 390,000 scatterers 

Density of scatterers 10 scatterers/mm3 

Sampling frequency 100 MHz 

Transmit centre frequency 5 MHz 

Speed of Sound 1510 m/s 

Attenuation coefficient 0.75 dB/(cm MHz) 

Number of A-lines per frame 128 

Table A.1: Parameters and their assigned values used in Field II ultrasound simulation software for 

construction of a computer simulated tissue phantom for strain elastography. 
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Figure A.2: Only 500 scatterers out of a total of 390,000 scatterers are shown in both of these subfigure for 

better illustration. (a) Illustration of the scatterers distribution used by Field II to generate RF frame at pre-

compression state. (b) Illustration of the displaced scatterers distribution, simulating a compressional force 

being applied by the transducer, used by Field II to generate RF frame at post-compressional state. 

Each A-line in the pre-compression and post-compression frames were segmented 

into windows of 8 wavelengths (equivalent to 1.2 mm or 160 samples) with 75 % 

overlapping between two consecutive windows. A pattern-matching function was 

calculated between each pre-compression and post-compression windows to find the time-

delay estimates between them. The strain map was generated from the gradient of the time-

delay estimates, using 1D Savistky-Golay digital differentiator with filter length of 9 

samples, polynomial fitting of second order, and differentiation of first order.  In addition, 

the strain maps were filtered using 5×5 median and mean filters. 

The performance of the proposed new algorithm (with and without interpolation of 

the data) relative to NCC and SSD algorithms (with and without cosine curve fitting and 

interpolation of the data) was also evaluated in ultrasound strain elastography imaging 

using simulated data generated by Field II. The parameters used to compare their relative 

Probe Probe 



58 

performance were target detectability (i.e., visual appearance of a target in an image), SNRe 

and CNRe.  

The pre-compression and post-compression B-mode frames of the first and second 

phantoms are shown in Figure A.3 and Figure A.4, respectively. The B-mode frames have 

uniform echogenicity, except for the effects of attenuation. A pre-compression and a post-

compression RF signals are shown in Figure A.5(a)-(b), as an example. Time-delay 

estimation between the pre-compression and post-compression frames was computed A-

line by A-line using the proposed algorithm, NCC, NCC with cosine curve fitting, SSD, 

and SSD with cosine curve fitting. The effect of interpolation was also considered by 

interpolating the pre-compression and post-compression frames by a factor of 10 

(equivalent to sampling frequency of 1000 MHz). The window length was set to 8 

wavelengths (equivalent to 1.21 mm) with 75% window overlap. Figure A.5(b)-(c) shows 

an example of time-delay estimation between two RF signals and the corresponding strain 

estimation. The strain maps, which were computed from the gradient of time-delay 

estimates, are shown in Figure A.6 and Figure A.7. The actual size and position of each 

inclusion is shown in Figure A.1.  
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Figure A.3: B-mode images of the first phantom. (a) Pre-compression state. (b) Post-compression state. 

 

 

Figure A.4: B-mode images of the second phantom. (a) Pre-compression state. (b) Post-compression state. 
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Figure A.5: (a) Plot of a pre-compression and post-compression RF signals from the center (i.e., at 0 lateral 

distance) of the second simulated phantom. (b) A zoom in section of (a). (c) Plot of the corresponding time-

delay estimates between the reference and delayed RF signals. (d) Plot of the corresponding strain. The 

boxes with dashed lines indicate the locations of the inclusions.  
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Figure A.6 depicts the strain maps of the first phantom, which contained inclusions 

with diameters of 2 mm, 3 mm, and 5 mm at axial depths of 10 mm, 30 mm, and 50 mm. 

All considered algorithms were able to visualize the 5 mm inclusions at all three axial 

depths. The 3 mm inclusions are barely visible at 10 mm and 30 mm axial depth but not at 

50 mm depth, using all considered algorithms. None of the algorithms were able to 

visualize the 2 mm inclusions. Figure A.7 shows the strain maps of the second phantom, 

which contained inclusions with diameters of 4 mm, 6 mm, and 8 mm at axial depths of 10 

mm, 30 mm, and 50 mm. All algorithms studied were able to visualize all the contained 

inclusions. Thus, strain elastography can potentially depict and detect inclusions with 

diameter of 4 mm or larger using any of the algorithms studies. In addition, inclusions of 

3 mm diameter can be depicted only if they are superficial.   

The corresponding SNRe and CNRe values of the strain maps in Figure A.6 and 

Figure A.7 are tabulated in Table A.2. When the data was not interpolated, the proposed 

algorithm had higher SNRe and CNRe compared to NCC and SSD but lower SNRe and 

CNRe compared to NCC and SSD with cosine curve fittings. In general, the SNRe and 

CNRe of the strain maps were increased with interpolation of the data and/or cosine curve 

fitting (in the case of NCC and SSD). With interpolation of the data, the proposed algorithm 

generally had the highest SNRe and CNRe. Moreover, NCC with interpolation of the data 

and/or cosine curve fitting, SSD with interpolation of the data, and SSD with interpolation 

of the data and cosine curve fitting had about the same SNRe and CNRe. Thus, interpolation 

of the RF data and/or cosine curve fitting, in general, significantly improve the quality of 

the strain maps of all algorithms studied in terms of SNRe and CNRe.   



62 

 

Figure A.6: The strain maps of the first simulated phantom. Time-delay estimates were computed by all 

considered algorithms (using window length of 8 wavelengths with 75% window overlap). The 

corresponding strain was computed using the SGDD method (with filter length of 9 samples, polynomial 

fitting of second degree, and differentiation of first order). The strain maps were also filtered by a 5×5 

median and mean filters. 
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Figure A.7: The strain maps of the second simulated phantom. Time-delay estimates were computed by all 

considered algorithms (using window length of 8 wavelengths with 75% window overlap). The 

corresponding strain was computed using the SGDD method (with filter length of 9 samples, polynomial 

fitting of second degree, and differentiation of first order). The strain maps were also filtered by a 5×5 

median and mean filters. 
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First Simulated Phantom Second Simulated Phantom 

Algorithm SNRe (dB) CNRe (dB) SNRe (dB) CNRe (dB) 

NCC 19.13 22.19 2.62 12.77 

NCC w/ CosFit 21.88 29.03 27.75 33.11 

SSD 19.13 21.55 2.62 12.77 

SSD w/ CosFit 25.33 31.10 14.48 23.07 

Proposed Algorithm 19.42 28.49 8.72 18.15 

NCC w/ Int10 25.68 32.65 28.70 34.10 

NCC w/ Int10 & CosFit 24.72 31.92 28.04 33.53 

SSD w/ Int10 25.65 32.56 28.74 34.14 

SSD w/ Int10 & CosFit 24.78 31.99 27.79 33.42 

Proposed Algorithm w/ Int10 26.84 33.53 27.94 36.05 

Table A.2: SNRe and CNRe of the first and second simulated phantoms. From each strain map, sample 

points (about 50 samples) were taken from the inclusions which was located at the center elastogram 

(axially and laterally), and from the background at the same axial depth to compute SNRe and CNRe. 
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Appendix B 

A Study of Computational Efficiency of Various 

Time-Delay Estimation Algorithms 

 

The computational efficiency of the proposed algorithm, NCC, SSD, NCC with cosine 

curve fiting, and SSD with cosine curve fitting was studied by taking into account the 

average processing time to generate a displacement map. Experimental data was acquired 

by scanning an ultrasound breast elastography tissue phantom (Model #059, CIRS Inc., 

Nortfolk, VA, USA) using Sonix RP imaging scanner (Ultrasonix Medical Corp., 

Richmond, BC, Canada) with a 128 element linear array transducer. The ultrasound 

scanner was set to 5 MHz transmit central frequency and 40 MHz sampling frequency. The 

transducer was held by hand while it is pressed in and out by small compressional force 

against the phantom’s top surface. Concurrently, RF frames were stored for post-

processing and all post-processing calculations were done in MATLAB (MathWorks, Inc., 

Natick, MA, USA). The data was processed done on a PC workstation (equipped with an 

Intel Core i7-920 CPU running at 3.8 GHz, and 12 GB RAM). Only 10 frames were 

processed, out of 100 frames, and the average processing time to produce a displacement 



66 

map was recorded. The effect of interpolation of RF data before computing the time-delay 

estimates on processing time was also studies by interpolating the RF data by factor of 2, 

5, and 10.  

Figure B.1 shows the results of average processing time of each algorithm. As 

expected, as the interpolation factor was increased the computational time increased, 

almost linearly. For example, the computation time of NCC without interpolation was 

about 8 s, with interpolation by a factor of 5 it increased to about 12 s, and with 

interpolation by a factor of 10 it increased to about 16.5 s. The computation time of NCC 

and SSD was about the same and cosine curve fitting did not affect the computation time. 

The computation times of the propose algorithm were the lowest. Even when comparing 

NCC and SSD without interpolation to the proposed algorithm with interpolation by a 

factor of 10, the computation time of the proposed algorithm was lower by about 2.5 s.   

Thus, the proposed algorithm was computationally more efficient compared to 

NCC and SSD. However, these results are not decisive because the proposed algorithm had 

smaller search range compared to NCC and SSD, and the proposed algorithm was not 

compared with computationally efficient versions of NCC and SSD, as reported in [1], [2], 

[3]. 
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Figure B.1: The average processing time of each algorithm to produce a displacement map. 10 

displacement maps were produced. The RF data was also interpolated by a factor of 2, 5 and 10. The 

transmit central frequency was 5 MHz, sampling frequency was 40 MHz, and window length was 20 

wavelengths (4 μs ≈ 3.1 mm) with 75% window overlap. The size of the RF frames was 2393×256 

samples and the size of the displacement maps was 51×256 samples. 
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