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ABSTRACT 

Characterization of continuous-flow mixing processes, which is extensively employed by 

chemical process industry is challenging. Agitated pulp chests behave as low-pass filters 

to reduce high frequency variability in pulp properties ahead of many pulping and 

papermaking operation. The complex Rheology displayed by the pulp suspension can 

create considerable deviation from ideal mixing. The non-ideal flows identified were 

short-circuiting, recirculation and dead volume. Until now, the identification of non-ideal 

flows has been carried out in a discrete-time domain with some approximations. In the 

present study, we characterize the agitated pulp chests in the continuous time domain, 

which obviates the restrictions imposed by the discrete time approaches. For this purpose, 

a robust and efficient hybrid genetic algorithm is utilized along with a differential­

algebraic model of mixing. Both the algorithm and the model are successfully validated 

using experimental and simulated data. Superior characterizations at a higher sampling 

time are obtained compared to those yielded by the discrete-time domain methods. This 

outcome highlights the benefit of the continuous time domain approach developed in this 

work. 
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1 INTRODUCTION 
Mixing plays an important role in stock blending, consistency control, bleaching, 

chemical generation and de-inking in pulp and paper industry. In agitated pulp chests, 

mixing is usually carried out to blend different pulp streams, often with wet~nd 

chemicals, dyes, fillers, or additives as well as to provide a uniform feed of process 

streams. The chests in pulping processes are used to ensure uniform flow upstream of 

many operations including chemical addition in bleaching stages, washers, screens and 

cleaners. Furthermore, pulp chests act as low-pass filters attenuating high-frequency 

variability of pulp concentration, and thus compliment the control loops of paper 

machine, which only attenuate slow process disturbances (Bialkowski, 1990). 

Ideal mixing is often assumed during the design of pulp chests. The mixing dynamics is 

represented by a first order transfer function and the chest volume is based on the total 

residence time required (Brown, 1968; Reynolds et aI., 1964; Walker and Cholette, 

1958). However, the rheology of a pulp suspension is complex, and exhibits significant 

yield stress (Bennington et al., 1990; Gullichsen and Harkonen. 1981; Wikstrom and 

Rasmussen, 1998). These phenomena create significant departures from ideal mixing as 

shown by dynamic tests made on both industrial and scale-model chests (Ein-Mozaffari 

et aI., 2003; 2004a,b; 2005; Ford et aI., 2006; Saeed et aI., 2007). 

The identified non-ideal flows during mixing are recirculation (where a portion of the 

stock recirculates within the mixing zone), short-circuiting (where a portion of the feed 

directly flows to the exit without entering the mixing zone), and dead zones (where pulp 

is stagnant or flows significantly slower than the bulk of the suspension). Non-ideal flows 

mitigate the extent of upset attenuation produced by the chest (Ein-Mozaffari et aI., 2003; 

2004b; 2005). Typical disturbances occur at frequencies higher than the cut-off 

frequencies of paper machine control loops. Consequently, the disturbances are not 

attenuated by control loops, thereby affecting paper quality and machine runnability. 
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These effects can be dealt by examining the dynamic behavior of pulp mixing under 

practical conditions, and improving the process design accordingly. As a result, the 

identification of mixing has received extensive attention in the past. Although important 

studies in the continuous-time domain have been carried out (Johansson, 1994; Johansson 

et at., 1999; Soderstrom et aI., 1997; Whitfield and Messali, 1987), the integer time 

delays in the pulp chest model make mixing identification very challenging. The schemes 

for the identification of systems with time delays (Sung and Lee, 2001; Wang et at., 

2001) are not generic enough to handle dynamic model of pulp chests. A recently 

proposed linear filter method (Salim et aI., 2006) addresses the simultaneous estimation 

model parameters and the delay for such problems. 

Kammer et ai. (2005) developed a numerical method to determine mixing parameters 

based on the discrete-time model developed by Ein-Mozaffari et ai. (2003). Authors used 

two distinct stages for the identification: an efficient but less accurate least squares 

minimization for the optimal delays followed by an accurate gradient search for all 

parameters. Although this mechanism is not guaranteed to converge to the global 

minimum, a Monte Carlo simulation showed very encouraging results. Later on, Upreti 

and Ein-Mozaffari (2006) determined the mixing parameters based on the same model 

using a hybrid multi-parameter optimization algorithm, which uniquely integrates genetic 

algorithms (Holland, 1975) with gradient search. The algorithm identified the 

optimization parameters with high accuracies that are essential for adequate 

characterization of agitated pulp chests. Note that small changes in the characterization 

parameters significantly affect the degree of disturbance attenuation, especially at 

frequencies higher than the cutoff frequencies of paper machine control loops (Ein­

Mozaffari, 2002). 

The objective of the present study is to carry out mixing identification in the continuous 

time domain. It is desired to determine the mixing parameters of agitated pulp chests 

based on the differential-algebraic model of the mixing process, and to avoid the model 

approximations that are typical of discrete-time system identification. 
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In prevIOUS studies (Kammer et aI., 2005; Upreti and Ein-Mozaffari, 2006), the 

continuous dynamic model of the mixing pulp chest was discretized using a zero order 

hold (ZOH) assuming that ZOH[ G2 ] is approximately equal to G2(z) (refer 
l-RG2 l-RG2(z) 

Figure 1). This approximation is only valid for small sampling time ts and small R. The 

resulting discrete transfer function was used to obtain the dynamic model parameters. 

However, in this study, directly used the continuous dynamic model for the estimation of 

the model parameters without applying the above approximation. 

1.1 THESIS OVERVIEW 

CHAPTER 1 This chapter gives introductory information about the problem in industry 

and solution implemented, along with detailed literature survey of past research 

showing importance of the study of characterization parameters like short­

circuiting, recirculation and dead zones in mixing of agitated pulp chests and 

different methods of optimization employed to find optimized parameters. This 

chapter also gives the overview of the mathematical model of previous research 

based on discretization technique using zero order hold. 

CHAPTER 2 explains the details of the research objective and problem formulation. 

Also gives details of objective function of the problem along with genetic 

operations. Details are given about the model developed in this study in 

continuous time domain based on carrying out mass balance in short circuiting 

and mixing zones. 

Procedure for solution is provided with development of interior penalty function 

for constraints are described. 

At last derivation of partial derivatives required for gradient search in continuous 

time domain using model and interior penalty function and details of integration 
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of derivatives using Runge-Kutta Fehlberg method with Cash-Karp parameters, 

adaptive step size control and cubic spline are explained. 

CHAPTER 3 explains the details of the algorithm usmg genetic operations like 

selection, crossover and mutation for optimal vector determination in conjunction 

with objective functions. Also contains procedure of mapping for finding out 

optimal vector. The values of various parameters used in model, genetic 

operations and gradient search are given. 

CHAPTER 4 summarizes the identification results of five simulated data sets without 

noise, with addition of noise and 9 experimental data sets in continuous time 

domain. It discusses the details of the model validation procedure, validation 

results and comparison of results with results reported in literature. Also gives the 

comparison of the results of the same simulated data sets without and with noise 

and experimental data sets, simulated using discrete time domain algorithm and 

three data sets simulated using Kammer's method. Details of experimental setup, 

experimental data sets and addition of noise are provided in this chapter. The 

mixed and unmixed volume of chest and the computation time for both algorithms 

with type of computer used is given in this chapter. Comparison of the results of 

continuous and discrete time domain for higher sampling time of 50 seconds is 

also part of this chapter. 

CHAPTER 5 Concludes. 

CHAPTER 6 Bring up the future work that can be done using developed algorithm. 

4 



1.2 LITERA TURE SURVEY 

Mixing and agitation are important in all chemical process industries and the pulp and 

paper industry is no exception. Effective mixing is vital to successful process results 

throughout the pulp and paper manufacturing process, including stock blending, 

consistency control, bleaching, chemical generation and deinking, among others. 

Agitated pulp stock chests act as buffers between processes, and reduce variability in 

fiber mass concentration, freeness and other quality factors. From the standpoint of 

variability reduction in paper quality, stock chests provide a means for reducing high­

frequency variability of pulp to paper machine. In essence, those chests behave as low­

pass filters to complement the action of control loops, which can only control low­

frequency variability below the loop cut-off frequency (Bialkowski, 1992). 

It is important to ensure that such chests are properly designed in order to achieve the 

desired degree of upset attenuation that paper machine control loop can handle. Although 

mixing has been extensively studied for many systems, information available on mixing 

pulp suspension is limited. This is due, in part, to the complex rheology of pulp fiber 

suspensions. Pulp suspensions form a continuous fiber network that possesses structure 

and strength resulting from interactions between neighboring fibers. As the mass 

concentration of the suspension increases, the number of fiber/fiber interactions 

increases, and so does the network strength (Bennington, 1996). As a result of this 

rheological behavior, fiber suspensions are extremely difficult to agitate, and non-ideal 

phenomena exist in stock chests. 

Brown (1968) studied the dynamic behavior of a paper mill stock chest, assuming ideal 

mixing, and described the dynamic response with a first order transfer function. 

Walker and Cholette (1958) calculated the damping factors (the ratio of the amplitudes of 

the output to the input waves) for an ideal stock chest with a single feed for various 

disturbances including continuous sine, square, and single square wave inputs. They 

made no comparison between numerical results and experimental data. Reynolds et al. 
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(1964) studied the degree of upset attenuation for a stock chest. They suggested that 

additional smoothing of pulp concentration could be achieved by either externally 

recirculating part of output or by splitting the feed to the top and bottom of the chest. 

However, the effects of non-ideal flow on the dynamic response of stock chests were not 

considered. Since ignoring non-ideal flows can lead to errors in system design 

(Levenspiel, 1998) it is necessary to study the dynamic behavior of stock mixing under 

realistic (less-than-ideal) mixing conditions. 

Ein-Mozaffari et al. (2003, 2004b, 2005) found that the identified non-ideal flows during 

mixing are recirculation (where a portion of the stock recirculates within the mixing 

zone), short-drcuiting (where a portion of the feed directly flows to the exit without 

entering the mixing zone), and dead zones (where pulp is stagnant or flows significantly 

slower than the bulk of the suspension). Non-ideal flows mitigate the extent of upset 

attenuation produced by the chest. These types of non-ideal flows should be avoided 

since they always reduce the performance of the unit. 

An example of step response for an industrial stock chest is presented in Figure 1.1, the 

top curve is the input signal and the bottom curve is the output of pulp concentration. The 

effect of channeling starts being seen at around t = 300 s, then the first cycle of proper 

mixing occurs approximately between 450 and 700 s. This cycle is followed by 

subsequent ones that are generated by the recirculation of the pulp suspension inside the 

chest. Ein- Mozaffari et al. (2002, 2003) calculated the frequency responses for this 

industrial stock chest, and a perfectly mixed chest having the same volume and flow rate 

(Figure 1.2). 
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Figure. 1.1 Response of the 119 m3 industrial stock chest to a step input in suspension 

mass concentration [(data provided by Bialkowski, EnTech Control Engineering Inc.; 

Ein- Mozaffari et al., (2002,2003)] 
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Figure. 1.2 Frequency response of the industrial chest to its ideal response, (Ein­

Mozaffari et aI., 2002, 2003) 

As seen the degree of upset attenuation for the industrial stock chest is considerably 

worse than that of the equivalent perfectly mixed chest, especially for frequencies from 

0.01 to 0.1 rad/s. These frequencies are higher than the cut-Qff frequencies of paper 

machine control loops, which are from 0.002 to 0.005 rad/s. Therefore, disturbances at 

these frequencies would not be attenuated and would affect paper quality and machine 

run- ability . 

Since ignoring non- ideal flows can lead to errors in system design (Levenspiel 1998), it 

is necessary to investigate the dynamic behavior of stock mixing under realistic (less 

than- ideal) mixing conditions. As a result, the identification of mixing has received 

extensive attention in the past. Although important studies in the continuous- time domain 

have been carried out (Johansson, 1994; Johansson et al., 1999; Soderstrom et aI. , 1997; 
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Whitfield and Messali, 1987), the integer time delays in the pulp chest model made 

mixing identification very challenging. The schemes for the identification of systems 

with time delays were not generic enough to handle the dynamic model of pulp chests 

(Sung and Lee, 2001; Wang et aI., 2001). A recently proposed linear filter method 

addresses the simultaneous estimation model parameters and the delay for such problems 

(Salim et aI., 2006). 

To study the mixing process, Ein-Mozaffari et ai. (2002) designed and built a laboratory 

scale model of an industrial chest, implemented at the Pulp and Paper Centre, University 

of British Columbia. The main purpose of the authors' project was to analyze the effect 

of several different variables in the dynamic behavior of the chest. Some examples of 

variables being studied were: chest dimensions, propeller speed and diameter, pulp feed 

and exit locations, fiber mass concentration and pulp flow rate through the chest. 

Ein-Mozaffari et al. (2003) developed the simplest dynamic model that represents the 

observed behavior of the industrial plant as seen in Fig. 1.3. 

jF,u Short-drcuiting zone jF'YI 

of volume ~ 

Input 
F,u (1- f)F, U F2, Yj Mixing zone of F2'Y2 (1- R)F2' Y2 

volume V7 

RF2, Y2 

Figure 1.3 Schematic of the mixing process, (Ein-Mozaffari et aI., 2002, 2003) 
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The input and output signals (u and y, respectively) are either the pulp fiber mass 

concentration, in industrial settings, or the suspension conductivity, in the scale model. 

The parameter f represents the channeling fraction of pulp fiber or suspension 

conductivity, while R represents the recirculation fraction of pulp fiber or suspension 

conductivity. Since all parameters in the model have physical meanings, their values must 

be determined on the basis of experimental data. 

The existing chest design criteria do not account for non-ideal flow in the chests. Ein­

Mozaffari et al. (2003) measured the power input needed to create complete motion in a 

chest versus suspension mass concentration, impeller diameter and chest dimensions. 

Author's found that evaluation of surface motion alone may not be sufficient to eliminate 

stagnant zones in remote regions of the chest; the power calculated from existing design 

criteria did not completely eliminate stagnant regions below the chest surface. Therefore, 

a chest that shows very good surface motion may produce a process result that is not 

ideal. Then they found that at suspension mass concentrations >2%, the mixing response 

of solid and liquid phases is very similar. Therefore, a liquid phase tracer was used to 

study the mixing time and dynamic response of stock chests. Finally, they found that 

mixing time for the laboratory stock chest was both a function of impeller momentum 

flux and suspension mass concentration. 

Ein-Mozaffari et al. (2004) found that stock chests designed for complete surface motion 

can still have dead zones. To eliminate these poorly mixed regions the installed power 

must be at least equal to the power required for the onset of complete motion, which was 

greater than that specified by current design practices. They found that if the stock chest 

must be ideally mixed to act as a low-pass filter and attenuate high frequency variations 

in stock properties (fiber mass concentration etc.), the required installed power must be 

considerably greater than power recommended by Yackel (1990) or required for 

complete motion in the vessel. 

Ein-Mozaffari et al. (2004) carried out dynamic tests on a scale-model chest and 

industrial chests. Results confirmed the existence and extent of non-ideal flows within 

10 



the chest. These included channeling, recirculation and stagnant zones. Since these flows 

decrease the extent of disturbance attenuation of the chest, they can reduce paper quality 

and machine run-ability. The tests made on the scale-model chest showed that pulp feed 

and exit locations, the ratio of the impeller flow rate to pulp flow rate through the chest, 

and the suspension mass concentration have a significant effect on channeling and the 

effective mixing volume. The extent of non-idealities progressively decreased as the 

impeller speed was increased. At suspension concentrations above 3% the system was 

prone to a significant extent of channeling and stagnant volume. The degree of upset 

attenuation was a function of the impeller momentum flux, rather than the power input. 

Both the industrial and scale-model chest tests demonstrated that power requirements 

calculated based on achieving either smooth surface motion or complete stock motion did 

not eliminate the stagnation zones and channeling completely. Additional power was 

required to have an ideal dynamic response from the chest. 

Ein-Mozaffari et al. (2005) quantified the effect of fiber type and fiber mass 

concentration on mixing dynamics in a rectangular pulp stock chest as a function of the 

suspension yield stress. It was found that as suspension yield stress decreased (by 

reducing the fiber mass concentration and/or the fiber length) the extent of upset 

attenuation significantly improved and the degree of short-circuiting and dead volume 

was reduced. However, dynamic tests showed that while the yield stress plays a 

significant role determining mixing quality, the dynamic behavior was not fully described 

by the suspension yield stress alone. Measurements showed that the power required to 

achieve an ideal dynamic response (the complete elimination of non-ideal flow) for 

softwood pulp suspensions was two times greater than power required for hardwood pulp 

suspensions at the same operating conditions. One existing design method (Yackel 1990) 

predicts only a 15% increase in the power required. Test results of Ein-Mozaffari et al. 

(2005), showed that to avoid short-circuiting under flow configurations prone to high 

degree of short-circuiting the pulp outlet should be located within the cavern created by 

the impeller. By applying these criteria to existing mixer configurations is possible to 

improve the dynamic response of pulp mixing chests. 
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Ein-Mozaffari et al. (2007) found that the pulp feed and exit locations have a significant 

effect on the degree of upset attenuation, although the exit must be located in a zone of 

sufficient agitation to prevent dewatering of pulp mixed slurry. For suspension mass 

concentrations greater than 3%, the system was prone to a high percentage of channeling 

and a low degree of attenuation. Under these circumstances, the degree of attenuation 

could be improved by either reducing the pulp flow rate through the chest or increasing 

the impeller speed. In industrial situations, a decrease in pulp flow rate is not possible and 

changes in impeller speed must be considered. They found that chests designed using the 

criterion of the onset of complete motion does not necessarily lead to a fully mixed 

system, especially at fiber mass concentration greater than 3%. 

Kammer et al. (2005) developed a tailor-made mechanism for the identification of 

discrete-time mixing parameters based on the continuous-time model developed by Ein­

Mozaffari et al. (2003). Authors used two distinct stages for the identification: an 

efficient but less accurate least squares minimization for the optimal delays followed by 

sequential quadratic programming for all parameters, models. The structure of the model 

used in the paper represents non- ideal flows in industrial stock chests, but the techniques 

introduced can potentially be adapted to the identification of other processes with internal 

recirculation like physiological systems, neuromuscular model and recycle internal 

variables in the loop. 

The identification results obtained through simulation were considered very satisfactory, 

given that the "true" parameters were available for comparison. The analysis of 

experimental data led to simplifications in the original model, and consequently in the 

identification mechanism. Ultimately, the study provided means for better design of 

agitated stock chests, as well as to the design of optimized control techniques for this type 

of process. 

Ein-Mozaffari et al. (2007) studied the flow velocity in pulp suspension using Ultrasonic 

Doppler velocimetry used for opaque fluids. Using velocity profiles across the impeller, 
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the effect of fiber type and fiber mass concentration on the impeller pumping rate and 

flow number was quantified as a function of the suspension yield stress. As suspension 

yield stress was increased, the impeller flow number was decreased. Velocity 

measurements showed the existence of dead zones in the comers of the chest. The size of 

the dead zones increased with increasing suspension yield stress for a fixed impeller 

speed. 

Upreti (2004) presented a new optimal control technique to provide robust, good quality 

solutions independent of starting points, and auxiliary conditions. The technique is based 

on Genetic Algorithm (Holland, 1975), which simulate the evolution of living beings. 

These algorithms generate robust optimal solutions (Goldberg, 1989a) by stochastically 

emphasizing (selecting) optimally better variable-values, recombining (crossing over) 

them, and changing them slightly (mutating) in a randomly generated collection 

(population). Previous applications of Genetic Algorithms on optimal control problems 

include the works of Michalewicz, Janikow, and Krawczyk (1992), Seywald, Kumar, and 

Deshpande (1995), and Lee et al. (1997). In particular, Lee et al. (1997) applied Genetic 

Algorithm for the optimal control of continuous polymerization reactors. They obtained 

better results in comparison to iterative dynamic programming as well as sequential 

quadratic programming. 

Upreti (2004) presented optimal control technique applies genetic operations on a 

population of random, binary---coded deviation vectors. An element of a deviation vector 

carries the value of deviation of control from its "mean" value. A control vector is 

mapped to each deviation vector, and a vector of landomly initialized mean control 

values. Each element of these vectors corresponds to a control stage. After a few 

repetitions of genetic operations, a newly generated optimal control vector is used to 

update the vector of mean control values, and the size of control domain was varied 

within its limits. The genetic operations are applied again. For the size-variation of 

control domain, its successive contraction was alternated with successive expansion. The 

mapping of control vectors was kept logarithmic in the beginning, but later on alternated 

with a linear one. 
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Upreti and Ein-Mozaffari (2006) determined the optimal parameters of the pulp chest 

model using a hybrid multi-parameter optimization algorithm that was developed by 

uniquely integrating genetic algorithms (Holland, 1975) with gradient search. The 

optimization algorithm carried out gradient search as well as the genetic operations of 

selection, crossover and mutation on binary--coded optimization parameters within their 

size varying domains using alternating linear and logarithmic mappings. The interaction 

between genetic operations and gradient search was unique, and led to efficient search 

and refmement of optimization parameters. To test and use the algorithm, simulated as 

well as experimental plant data were employed in conjunction with the dynamic model, 

which is non-linear as well as discontinuous. The hybrid algorithm identified the 

optimization parameters with high accuracies, and can be used to identify non-ideal 

flows in reactors, packed columns, and heat exchangers; and other processes with internal 

recirculation such as the physiological system of neuromuscular reflex (Khoo, 2000). The 

characterization parameters for the non-ideal flow in agitated pulp chests were 

determined. The algorithm was a multi-parameter optimization algorithm, which 

uniquely fuses the robustness of genetic operations with the refinement of gradient 

search. The algorithm was validated by applying it to three different sets of simulated 

data for agitated pulp chests with a priori knowledge of characterization parameters. The 

values of these parameters matched very well with those optimally determined by the 

algorithm. In presence of noise in the simulated data, the average and maximum values of 

absolute fractional deviation in optimal parameters were respectively 0.0084 and 3.3%. 

The outcome was significant given the random initiation of the algorithm in the sparse 

domains of the parameters non-linearly and discontinuously related to the objective 

function. The sensitivity analysis with respect to the genetic parameters indicated slightly 

better performance with higher population size and mutation probability. Comparisons 

with the optimal results obtained without using gradient search affirmed its benefit of 

inclusion within the developed hybrid algorithm. After successful validation, the 

algorithm was applied to three different sets of experimental plant data on agitated pulp 

chests, and the optimal values of these parameters were determined. Not withstanding the 

noise in the experimental data, which was not considered in the mathematical model used 
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for optimization, the experimental and optimal outputs agreed well. The corresponding 

root-mean-squared fractional errors from experimental output data were of the order of 

10-2• The results indicated that the developed hybrid algorithm could be very promising 

for more accurate solutions of non-linear and discontinuous process optimization 

problems. 

Furthermore, Barnitharan (2004) used successfully genetic algorithm-based optimal 

control method for different polymerization processes for different objectives. Hanna 

(2006) used hybrid genetic algorithm, which provided a global solution that had better 

minimum variance characteristics in controllers than the enumerative search technique 

and Lambda tuning. Salwan et. al. (2007) developed a computer fluid dynamics (CFD) 

model for agitated pulp chests using multiple reference frame. Rheology of pulp 

suspension was approximated using Herschel -Bulkley model 

1.3 DISCRETE TIME DOMAIN APPROACH 

Dynamic tests carried out on industrial and scale-model chests have shown that non­

ideal flows including short-circuiting, recirculation, and dead zones are common; and 

significantly reduce the ability of the chest to attenuate fluctuations (Ein-Mozaffari, 

2002; Ein-Mozaffari et aI., 2004a, 2005). 

The model developed by Ein-Mozaffari et al. (2003b) describes the dynamic non- ideal 

flow behavior observed in the industrial and scale-model agitated pulp chests allowing 

for two parallel suspension flow paths through the mixing chest: (i) a mixing zone 

consisting of a first order transfer function with delay and feedback for recirculation, and 

(ii) a short-circuiting zone consisting of a first order transfer function plus delay as 

shown in Figure 1.4. 
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Figure 1.4 Block diagram of the mixing process, (Ein-Mozaffari 2002, 2003) 

The combined transfer function for the chest in the continuous-time domain is as 

follows: 

(1.1) 

In Equation (1.1), Tl and T2 are the time delays, and 1"1 and 1"2 are the time constants for 

the short-circuiting and mixing zones, respectively. Further details of discrete model are 

provided in Ein-Mozaffari et al. (2002), and Ein-Mozaffari et aI. (2003b, 2004b). Since 

the experimental data to be simulated were measured at fixed and small time intervals, 

the zerQ--{)rder hold was applied to the output signal to transform the above transfer 

function into the discrete-time equivalent. (Kammer et aI., 2005): 

Kammer et al. (2005) developed a tailor-made mechanism for the identification of 

continuous-time mixing parameters based on the discrete-time model. In this method, 

the authors used two distinct stages for the identification: an efficient but less accurate 

least squares minimization for the optimal delays followed by sequential quadratic 
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programming for all parameters models. Method is not guaranteed to converge to the 

global minimum and depends on initial guess. 

Discretized model developed was further augmented for constraints and augmented 

penalty function was derived. Related derivatives were derived and solved using genetic 

algorithm and gradient search. (Upreti and Ein-Mozaffari, 2006) 
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2 CONTINUOUS TIME DOMAIN 

APPROACH 

2.1 RESEARCH OBJECTIVE 

In prevIous studies (Kammer et aI., 2005; Upreti and Ein-Mozaffari, 2006), the 

continuous dynamic model of the mixing pulp chest was discretized using a zero order 

hold (ZOH) assuming that ZOH[ G2 ] is approximately equal to G2 (z) . This 
1- RG2 1-RG2 (z) 

approximation is only valid for a small sampling time ts and small R. The resulting 

discrete transfer function was used to obtain the dynamic model parameters. However, in 

this study the continuous dynamic model is used for the estimation of the model 

parameters without applying the above approximation, which can give better results for 

higher sampling time and higher R. Higher sampling time can help industry for lower 

frequency of sampling instances and lower amount of data collection. 

2.2 CONTINUOUS TIME DOMAIN 

CHARACTERIZATION OF MIXING 

A process flow diagram of mixing in an agitated pulp chest is shown in Figure 1.3. The 

output concentration (y) [conductivity of salt solution or pulp fiber concentration, Ein­

Mozaffari et ai. (2002)] is dependent on the intermediate concentrations, Yl and Y2' 

respectively in: (i) the short-drcuiting zone comprising the first order transfer function, 
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and a delay; and (ii) the mixing zone comprising the first order transfer function with a 

delay, and feedback for recirculation (Figure 1.4). 

With time (t) as the independent variable, the mass balance for the two zones yields the 

following differential equations: 

dYI = .IF [u - YI ] = ~ [u - YI ] 
dt ~ TI 

(2.1) 

dY2 = F2 L _ Y2]=_1 L - Y2] 
dt V IYJ T IYJ 

2 2 

(2.2) 

where f is a short-circuiting factor, F and F2 are the volumetric flow rates, u and Yj 

are the concentrations, and VI and V2 are the volumes as shown in Figure 1.3. 

Furthennore, with R as the fraction of pulp recirculated within the mixing zone, 

F =[!.=.LJF 
2 1-R 

Yj =[1- R]u + RY2 

The system output is as follows: 

y(t) = f X YI (t - 1;) + [1- f] x Y2 (t - T2) 

Where YI and Y2 are both zero for negative times. 

The initial conditions for Equations (2.1) and (2.2) are 

YI (0) = Y2 (0) = Yexp (0) 

Where Yexp (0) is the experimental output specified at the initial steady state. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Based on the mathematical model glven by Equations (2.1 )--(2.6), the optimization 

problem for the identification of the mixing parameters is developed. 

It may be noted that the effect of recirculation was not observed in a lab-scale chest 

(Kammer et aI, 2005). Therefore, the simplified mathematical model with R = 0 was used 

in this case. 
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2.3 OPTIMIZATION PROBLEM 

The goal is to determine the mixing parameters that minimize the error between the 

experimental output (y exp) or algorithm predicted output (Yalgorithm) and that predicted by 

Equation (2.1}-{2.6), (Yrnod). Because this work involves lab-scale agitated chests, where 

recirculation R is insignificant. (Kammer et aI., 2005), the characterization parameters 

are T, , T2 , 'f" 'f 2 and f. They need to be optimally determined by minimizing the 

following objective function: 

N-' 

I, = L [y mod,k - Yexp,k f 
k=O 

Yalgorithm is used in above equation when simulated data sets are used. 

(2.7) 

In the above equation, the index k is the k-th experimental sampling instant, and N is the 

total number of the samples. The optimization problem is constrained by the following 

inequalities: 

0::;;/::;;1 

0::;; R::;; 1 

and 

where 

a, = exp[ -:,' J. I = 1,2 

and Is is sampling instant in sec. 

Tl <T2 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Also the objective function for genetic operations, which gives globality of optimal 

results with very high probability in conjuction with gradient search, is given below. 

Since genetic algorithms inherently maximize an objective function, the following 

objective function 

J=_I_ 
1+1, 
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is considered for maximization when genetic operations are applied in the algorithm. 

2.4 AUGMENTED FUNCTION 

To minimize difference between Yexp or (Yalgorithm) and Ymod by searching optimal values of 

parameters, procedure of a robust hybrid optimization algorithm developed by Upreti and 

Ein-Mozaffari (2006), with modification for continuous time domain was applied. The 

hybrid algorithm is generic in nature and applies both gradient search; and the genetic 

operations of selection, crossover and mutation on binary~oded optimization parameters 

within their size varying domains using alternating linear and logarithmic mappings. The 

interaction between genetic operations and gradient search is unique, and leads to 

efficient search and refinement of optimization parameters. The algorithm has been found 

to yield robust solutions with high accuracies. (Upreti and Ein-Mozaffari, 2006; Hanna et 

aI., 2006). 

The hybrid algorithm is fairly generic in that it needs only the limits of the optimization 

parameters, an objective function for the genetic operations, and a penalty function for 

the gradient search. The optimal results were periodically used by the gradient search for 

further improvement by minimizing the following interior penalty function. (Rao, 1996): 

12 = I) -r[ 1 + 1 _~ __ 1 __ ~ __ 1 +_1_+_1_ 
~-T2 a)-a2 d) d 2 a) a2 a)-1 a2 -1 

1 1] 
- j+& + /-&-1 

(2.15) 

with r being the penalty variable tending iteratively to zero and & is small positive 

number and 

T 
d; = 1 + --...!..., i = 1,2, d) :5: d 2 

ts 
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2.5 GRADIENT SEARCH 

The partial derivatives of 12 from Equation (2.15), with respect to ~ and T2 were 

evaluated using the backward difference 

The remaining partial derivatives were analytically calculated as follows: 

aI2 all [-1 1 1] 
aal = aal -r (al -a2 )2 + a~ - (al -1)2 

In Equations (2.17) and (2.18), the partial derivatives of II are given by 

aI N-I { [fJy] [fJy ] } ~ = 2L {Ymod,k - Yexp,J f -8 I + (1- f) ~_2 
ual k=O al k _ T. UUI k - T 

I 2 

aI N-I {[fJy ] } -8 I = 2(1- f) L {Ymod.k - Yexp,k} -8 2 

a2 k=O a2 k-T 
2 

where 

[Byl] -0 for(k-~)~O 
Bal k-~ 

and 

[By2] =0 for (k-li)~O; 1=1,2 
Baj k-li 

due to the initial steady state condition. 
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(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 



It may be noted that Equations (2.20) and (2.21) depend on 0'1 , aY2 and aY2 ,all of 
aa l aa l aa2 

which are functions of time. These functions were determined by integrating the 

following three differential equations: 

~(Oyl ) __ Yi - YI _~ Oyl 
dt 001 alts fl 001 

(2.24) 

(2.25) 

(2.26) 

Simultaneously with Equations (2.1) and (2.2). The initial conditions for equations 

(2.24}-{2.26) are as follows: 

(2.27) 

Finally, the partial derivative of II in Equation (2.19) is given by 

(2.28) 

where 

(2.29) 

2.6 INTEGRATION OF EQUATIONS 

Equations (2.1), (2.2), (2.24), (2.25) and (2.26) were simultaneously integrated using the 

fifth-{)rder Runge-Kutta Fehlberg method with Cash-Karp parameters, and adaptive 

step-size control (Press et aI., 2002) in conjunction with the genetic operations. It may be 

noted that the values of the state variables are needed at the experimental sampling 

instants to calculate the objective function as well as it derivatives in the gradient search. 

Those values were obtained using cubic spline. For this purpose, cubic spline objects 

were tied to the arrays of the state variables generated by the Runge-Kutta method. 
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3 SOLUTION APPROACH 

Genetic algorithms are based on Darwin's theory of survival of the fittest, based on the 

principles of natural genetics and natural selection (Goldberg, 1989, Holland, 1975). The 

basic elements of natural genetics-reproduction, crossover, and mutation-are used in the 

genetic search procedure. It differs from the traditional methods of optimization in the 

following respects: 

1 A population of points is used for starting the procedure instead of a single design 

point, so less likely to get trapped at a local optimum. 

2 Algorithm uses only the values of the objective function. The derivatives are not 

used in the search procedure. 

3 The design variables are represented as strings of binary variables that correspond 

to the chromosomes in natural genetics. 

4 The objective function value corresponding to a design vector plays the role of 

fitness in the natural genetics. 

5 In every new generation, a new set of strings is produced by using randomized 

parents, selection and crossover from the old generation with a better fitness or 

objective function value 

6 A simple example of genetic operation is given for better understanding: 
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X f(x)=x2 

01 101 ~ 23+ 22+{)J+ ZJ = 13 169 
11000 24+23+~~{)J =24 576 
01000 ZJ+ 23+~{)J+{)J = 8 64 
1 001 1 24+{)J~21+ZJ =19 361 

Reproduction and crossover 
Reproduction crossover new population 

site 
01 1 01 1 4 01 100 ()O+ 23+ 22+()O+{)J = 12 144 
1 1 0010 4 1 1001 24+23+~{)J+ZJ =25 625 
111000 2 1 1 01 1 24+23+~21+ZJ =27 729 
101011 2 10000 24+()3+()2+~{)J = 16 256 

Mutation site better string 
1 0011 3,4 1 01 01 2~()3+22+~ZJ=21 441 

The way of applying genetic algorithm in this research is as below:-

Following the approach of Upreti (2004, 2006), the hybrid optimization algorithm is 

incorporated with continuous time domain model equations developed in previous 

section. Given Nx number of optimization parameters, the presented multi-parameter 

optimization algorithm randomly initializes a mean value Xi for each optimization 

parameter between the limits Xi min and Xi max, i = 0, 1. .. Nx -1. The value of any i-th 

parameter, Xi, is calculable fromxi' and a binary-coded deviation Llxi ,2 based on some 

mapping. The Nx values of each of Xi, Xi and Llxi,2 form vectors, X, X and ~X2' 

respectively. In addition toX , a population of ~2 is also randomly generated. The 

mappings to calculate X from X and any ~2 in its population are described in section 

3.1. 

To generate an optimal vector X , the genetic operations of selection, cross- over, and 

mutation are successively applied to the population of binary- coded deviation vector 

~2' A value of objective function is associated with each ~2 by using the X (as 
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calculated from the mapping) to solve the mathematical model of a problem. These 

objective function evaluations are done before selection. The value of each objective 

function is scaled up by raising it to a specified power, n > 1, to favor the optimally better 

members of the population during selection (Coley, 1999a; Goldberg, 1989). Ifany 

constraint is violated for any ~2' its objective function is set to zero so that the 

infeasible ~2 is eliminated in the next round of selection after participating in 

crossover and mutation. 

After the specified Ngen generations of genetic operations, the optimal vector so obtained 

is improved by gradient search. Next, the domain of each Xi is contracted, and X is 

replaced by X. This completes one iteration of the algorithm. In successive iterations, the 

logarithmic mapping is alternated with a linear mapping. Each of the domains is 

contracted until it reaches its minimum size, when it is expanded successively. This 

expansion helps in searching a better optimum in bigger domains. When the maximum 

size of a domain is reached, its successive contraction is resumed to let the refinement of 

a hopefully new, optimal vector. By alternating the mappings, the diversity of the 

population under genetic operations gets prolonged, thereby avoiding its premature 

stagnation. Without this measure, the population is very likely to undergo a "genetic­

drift" so that most of its member becomes similar leading to premature convergence. 

3.1 MAPPING 

For any optimization parameter, a mapping relates the binary~oded deviation (Axi ,2) 

and the mean parameter value (Xi) to the parameter value (Xi). Thus, a mapping provides 

a vector (X) corresponding to each binary~oded deviation vector (~2) in its 

population. The presented optimization algorithm (Upreti 2006) uses the following 

logarithmic and linear mappings: 
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Logarithmic Mapping 

The purpose of logarithmic mapping is to emphasize relative precision (Coley, 1999b) 

within the elements of X. For any optimization parameter, the logarithmic mapping 

bZ , 
provides the value, Xi = I where, 

b = {(~~,max-Xi,min)if(Xi,max-Xi,min~ 
2,lf( Xi ,max -Xi ,min)<2 

_ 10gb D; 
Z. = 10gb X. + L\x. 2 

I I 2Nb' 1 I, 11,1 _ 

(3.1) 

(3.2) 

In Equation (3.1), b is the logarithmic base and xi,max and xi,min are the maximum and 

minimum values of the parameter, Xi. In Equation (3.2), Di is the value of the domain 

between the limits of Dmin > 0 and b, and Nbibi is the number of representative bits for any 

i-th element of ~2 , i. e. ~;,2' 

Linear mapping 

The linear mapping is straightforward, and is given by 

- D; A~ 
Xi = Xi + N. l..U i 2 2 hu., -1 ' 

3.2 THE ALGORITHM 

Following is the hybrid optimization algorithm (Upreti, 2006): 

1. Initialize, 

(a). X, the vector of mean values of optimization parameters using, 

i = 0, 1. .. Nx - 1 
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where Ri in Equation (3.4) is the i-th pseudo-random number obtained from a 

pseudo-random number generator (Knuth, 1973); 

(b). a population of Npop binary-coded deviation vectors ~2 using the pseudo-random 

number generator; and 

(c). the parameter domain, Di = (xi,max -xi,min )/2 for each optimization parameter 

2. Set logarithmic mapping for the genetic operations of selection, crossover, and 

mutation. 

3. Generate an optimal vector by repeating the following consecutive operations on the 

population of ~2 for Ngen generations: 

(a). objective function (.1) evaluation for each ~2 , 

(b). selection based on the scaled objective function (f), 

(c). crossover with probability Pc, and 

(d). mutation with probability Pm 

4. Obtain the vector, X, and corresponding jl generated so far using genetic operators. 

Set the counter, i = O. SetX(i) = X, and j(i)1 = jl 

5. For gradient search, the augmented objective function based on the interior penalty 

function method (Rao, 1996) is given by 

12 = II -r[ 1 + 1 _~ __ 1 __ ~ __ 1 +_1_+_1_ 
I;. -T2 a l -a2 d l d 2 a l a2 a l -1 a2 -1 

+ limr~O 1 1] 
- f +& f -&-1 

Where & is a small positive number. h incorporates the inequality constraints, i. e. 

Equations (2.11)-{2.13). The derivatives required for the gradient search are 

provided in other section. Set r = 1 in this step. 

6. Set the gradient search counter,j = O. SetX(j) = X(i) , and j(J)1 = j(i)1 • 

Calculate the corresponding augmented objective function (jU)2) for the gradient 

search. 
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7. Calculate the vector of the partial derivatives ofi2(J), i. e. i; (J), using Equations 

(2.9)-{2.15). If Ili~ll=o then setX(i+l) = X(J), and go to Step 12. 

8. Calculate X(J+I) along the steepest descent direction as follows: 

r(J) 

X(J+I)=X(J) -aIIX(J)llx II/~(J)II 

Wherea is some positive fraction. Calculate the corresponding 12 (J+I) 

9. If l/i+l) > I/ i ) then setX(i+I) = X(J), and 12 (J+I) = I/ i ) ; and go to Step 12. 

10. If11- 12 (J) /12 (J+I) 1 < & then setX(i+I) = X(J+I) , and 12 (i+l) = 12 (J+I); and go to Step 12. 

11. Setj = j + 1, and go to Step 7. 

12. Calculate I (i+l) 
1 

corresponding to X (i+I) . If II (i+I) > II (i) 

and X = X(i); and go to Step 15. 

,. (i) 
then setll = II , 

13. Set i l = 11(i+I) ,andX = X(i+I). If11- II(i) /11(i+I)1 < &, or r < & then go to Step 15. 

14. Reduce the penalty term of Equation (2.15) by setting r =Crr, where Cr is some 

positive fraction. Set i = i + 1, and go to Step 6. 

15. Store the resulting optimal value of objective function i l ,and the 

corresponding optimal vector ( X ). 
16. Replace X by X . 
17. Repeat Steps 3-16 once with linear mapping. 

18. For each optimization parameter, 

(a). if Di is equal to either Dmin or Dj,max, set the size-variation factor 

for control domain, Co=Co-1 • (This step allows the alternation of 

the successive contraction of a D; with its successive expansion.) 

(b). set Di =Co Di. If Di < Dmio, set Di = Dmio. If Di > Dj, max, 

set Di = Di,max. (This step allows the variation of Di within its limits.) 

19. Go to Step 2 until the iterative change in i l is negligible. 
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r 
The above development is general, and the hybrid algorithm is applicable to a multi­

variable optimization problem subject to a mathematical model, and accompanying 

constraints. 

3.3 INPUTS 

The presented optimization algorithm needs the following inputs: 

(1) the mathematical model and its parameters for the calculation of objective function; 

(2) the number of optimization parameters (Nx), and constraints; 

(3) the minimum value (Dmin) of control domain, its maximum value 

(D i , max. i = 0, 1 ... Nx - 1), and a factor (CD) to vary the size of control domain; 

(4) a seed number to generate pseudo-random numbers; 

(5) the following parameters for the genetic operations of selection, crossover, and 

mutation: 

a) the number of bits (Nbit,i) for each optimization parameter 

b) the number of cross-{)ver sites (Ncr) for each Ax i,2, i. e. each optimization 

parameter 

c) the probability of cross-{)ver (Pc) 

d) the probability of mutation (Pm) 

e) the power index (n) to scale objective function 

f) the number of genetic generations (Ngen) every iteration. 

The hybrid optimization algorithm developed in the last section was applied to the 

optimization problem. A multi-parameter mapped coding (Goldberg, 1989) was 

employed for the binary representation of the optimization parameters. The values of 

various parameters used in the application are listed in Table 3.1. 
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Table 3.1 Limits of the optimization variables inputs to the algorithm 

Parameter Value Parameter Value 

di,miD,i = 1,2 1 dt,max 5xl02 

d 2,max 
lOj 

Gi,min,i = 1,2 
lO--() 

G i max i = 1,2 (l-lO---{)) 
fmiD, 0 

f max, 1 Co,Cr 0.75 

Dmin lO--4 Nbitd i = 1,2 10 
, " 

Nbi1a i = 1,2 7 Nbil.! 7 
, " 

N gen lO Pc 0.98 

Pm 0.2 Nxsites 2 

e lO--() n 2 
Npop Li=Nx-t N .. a 10--4 

i=O bll,l 

The algorithm was first tested by applying it to the five different sets of simulated data, 

data sets 1-5. This was followed by the application of the algorithm to nine different sets 

of experimental laboratory scale plant data, Data sets 1-9 gathered by Ein-Mozaffari, 

(2002). 
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4 RESULTS AND DISCUSSION 

The hybrid genetic algorithm with the continuous time model was first tested by 

applying it to the five different sets of simulated data, data sets 1 to 5 for which the real 

parameters f, h T2 , T I and T 2 time constants were known and input data were generated 

as per research work and method developed by Ein Mozaffari, (2002). Simulation was 

carried out for input data of 5424 sampling instants (representing conductivity value of 

salt solution, imaginary addition to chest) and 10000 iterations. Output of conductivity 

from model was generated using these parameters and input. Using hybrid genetic 

algorithm parameters were estimated. Using these estimated parameters and input 

concentration output was obtained from model and root mean squared errors were 

compared. Same input data was used for all 5 sets of data. Measurement inaccuracies of 

instruments known as noise were not incorporated in the model. 

The algorithm was first tested without addition of noise to input data and then with 

addition of noise to check compatibility with experimental input output data which 

always has noise. The algorithm was validated using 2 sets of past researcher validation 

data (Ein Mozaffari, 2002). This was followed by the application of the algorithm to 

nine different sets of real lab scale experimental plant input and output data collected 

from past research, Data sets 1-9 (Ein Mozaffari, 2002). The results of the application of 

the algorithm are provided below. Finally, the data with a large sampling time were 

processed with the discrete as well the continuous time approach to assess benefit of 

continuous time domain algorithm. 
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4.1 SIMULATION RESULTS IN CONTINUOUS 

TIME DOMAIN WITHOUT NOISE. 

Simulated Data 

Five simulated data sets were generated using the mathematical model developed in this 

work. The real model parameters were carefully varied for effective testing of the 

optimization algorithm. Data set 1 is the base case. Data set 2 is the second case with a 

lower value of T 2 than in the base case. Data set 3 is the second case with higher f . The 

data sets 1-3 have the sampling time, Is = 1 s. The remaining two data sets have a higher 

Is of 5 s. Data set 4 is the second case with higher Is and T 2 , while data set 5 is data set 4 

with higher f additionally. 

The results obtained for these data sets are provided in Table 4.1, which compares the 

estimated parameters generated by the algorithm to the real parameters. It is observed that 

the real and the estimated values of all parameters agree very well. These agreements 

indicate that the optimization algorithm is well suited to yield results that are very close 

to the global optimum. This outcome is very desirable given the random initialization of 

the algorithm in the sparse domains of the parameters, which are non-linearly and 

discontinuously related to the objective function. Moreover, the absolute relative error 

I rms = if' ~[1- Y mod ]2 
i=O N Yexp 

(4.1) 

Yalgorithm is used in above equation when simulated data sets are used. 

between the estimated and real parameters averages to a low value of 0.00122 showing 

close output values. 
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Table 4.1 

Data set~ 

Is (s) ~ 

Inns 

Parameter 

I; 

T2 

:", 

:"2 

f 

The real and estimated parameters for the simulated data sets 1-5 without 

noise in continuous time domain. 

1 2 3 4 5 

1 1 1 5 5 

0.000829 0.001048 0.002656 0.000278 0.001299 

Real Estimated Real Estimated Real Estimated Real Estimated Real Estimated 

40 40.273 40 40.392 40 39.900 40 40.052 40 39.935 

110 109.959 110 109.971 110 110.018 110 109.896 110 111.186 

10 9.440 10 9.206 10 10.211 10 9.905 10 10.138 

50 49.940 20 19.980 20 20.149 500 500.061 500 504.020 

0.2 0.199 0.2 0.198 0.7 0.701 0.2 0.199 0.7 0.700 

The algorithm predicted estimated output (Yalgorithm), the model output (Ymod), and the 

input (u) for these data sets are plotted in Figure 4.1. The estimated output overlaps the 

model simulated output for each data set. Also the dynamic binary step input representing 

conductivity or pulp concentration to the chest and its output from chest corresponding to 

real parameters is reflected in Figure 4.1. Data set 1-3 has lower time constant, reflects 

fast steady state in Figure 4.1.Data set 1 and 2 has 0.2 short circuiting which can be seen 

at 2.4 value on y axis and data set 3 shows 0.7 short circuiting at nearly 3.3 value on y 

axis. Data sets 4 and 5 has higher values of :" 2 which is reflected in Figure 4.1 along 

with different short circuiting parameter value of 0.2 and 0.7. 
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Figure 4.1 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the model output (Ymod - thick pink line) for each of 

the simulated data sets 1- 5 without noise in continuous time domain. The outputs overlap 

in each case. 
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4.2 SIMULATION RESULTS IN 

CONTINUOUS TIME DOMAIN AFTER 

ADDITION OF NOISE 

4.2.1 Addition of noise 

To examine the confidence on the estimated parameter values, the optimization algorithm 

was applied to the simulated data sets after the introduction of filtered white noise to 

input. This is required because the model itself does not incorporate noise and all 

experimental data are with noise due to measuring inaccuracies of instruments known as 

noise. White Noise is the signal that covers the whole range of frequency. For example 

white light has full range of frequency but if we select intermediate frequency we get 

different colors. White noise is filtered using band pass filter with cut-off frequency of 

0.05 rad/sec (Ein- Mozaffari et aI., 2003). Noise in the form of random numbers having 

zero mean value was added to the binary input data with variance of 0.0625, known as 

the Discrete White Noise. 

The Discrete White Noise term is a sequence of independent, normally distributed 

random variables with a mean of zero. Noise was added to the input data using 

S imul ink ™ program. They were then used to generate five sets of simulated data using 

the mathematical model [Equations (2.1)-(2.6)] and the real parameters used earlier 

(Table 4.1). 

37 



I 
I RESULTS WITH NOISE 

The real model parameters were same as without noise. The results obtained for these 

data sets are provided in Table 4.2, which compares the estimated parameters generated 

by the algorithm to the real parameters. 

Table 4.2 The real and estimated parameters for the simulated data sets 1-5 with 

noise in continuous time domain. 

Dataset. I 2 3 4 5 

Is (s) • 1 1 1 5 5 

Inn. 0.01340 0.01312 0.01425 0.01342 0.01413 

Parameter Real ~stimated Real Estimated Real Estimated Real Estimated Real Estimated 

1; 40 39.936 40 39.516 40 39.474 40 39.613 40 39.556 

T2 110 109.146 110 109.718 110 109.845 110 109.625 110 112.938 

'1 10 9.161 10 10.165 10 10.695 10 9.471 10 10.499 

'2 50 50.881 20 20.068 20 19.468 500 490.069 500 502.352 

f 0.2 0.197 0.2 0.199 0.7 0.702 0.2 0.202 0.7 0.702 

It is observed that the estimated parameters agree very well with the real parameters. 

Moreover, the absolute relative error of output concentrations as per Equation (4.1), 

between the estimated and real parameters averages to a low value of 0.01098. The 

algorithm predicted estimated output (Yalgorithrn), the model output (Ymod), and the input ( u ) 

for these data sets are plotted in Figure 4.2. The estimated output overlaps the model 

simulated output for each data set. All the plots are not smooth lines showing the effects 

of noise added to the input data. The quality of the results thus obtained in absence as 

well as presence of noise substantiates the efficacy of the optimization algorithm. 
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Figure 4.2 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the model output (Ymod - thick pink line) for each of 

the simulated data sets 1- 5 with noise in continuous time domain. The outputs overlap in 

each case. 
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In the Figure 1.1, we can see the phenomenon of recirculation in the response of collected 

data from industrial chest. But in Figure 4.1 and Figure 4.2 the recirculation phenomenon 

is not visible. This is likely due to the fact that not all process variables can be scaled 

down in the laboratory apparatus, like the pulp-fiber dimensions (Kammer et aI., 2005). 

It is known that the uncontrolled factor in scale-up and scale-down is often the 

magnitude of the non-ideality of flow, and unfortunately this often differs widely 

between large and small units (Levenspiel 1998). The scale model does not behave as a 

recirculation process. So whole identification process was simplified by taking 

recirculation nil. 

4.3 MODEL VALIDATION 

Validity of the model is an important factor and algorithm has to be tested. To validate 

model, if we simulate it with fresh experimental input data and compare the results with 

output of the experimental data and should match with less root mean squared error. 

Figure 4.3 shows the procedure for model validation. The experimental data sets used in 

this work were generated by Ein-Mozaffari (2002). 

In the first step, the algorithm was employed to characterize a laboratory-scale agitated 

chest by exploiting its experimental data. Table 4.3 shows the characterization parameters 

along with the values of Irrns. 
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Figure 4.3 Model validation procedures, (Ein-Mozaffari 2002, 2003) 
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The corresponding outputs Yalgorithm and Yexp' and the input u are plotted in Figure 4.4 

Simulation results for data set validation 1 

10.-------------------------------------------------~ 

9 

'8 8 
~ 
~7 
~ 
~ 6 

:::;, 

5 

4~----~------~------~------~--------------~------~ 
o 1000 2000 3000 4000 5000 6000 

time (s) 

Figure 4.4 Results of the characterization of a laboratory-scale pulp chest using its 

experimental validation data set 1, where input (thin black line), estimated algorithm 

predicted output (Yalgorithm - yellow line) and the experimental output (yexp - thick pink 

line) 

Table 4.3 Characterized parameters of experimental validation data set 1 for model 

validation 

Data set~ Validation 1 

tisec} 5 

[rms ~ 0.04587 

1; 47.590 

T2 96.350 

T. 9.299 

T2 878.876 

f 0.241 

43 



In the second step, the characterization parameters of Table 4.3 were used in the mixing 

model to predict the output in presence of a different input to the agitated chest. The 

outputs and the new input are plotted in Figure 4.5. In this figure the experimental output 

is in thick pink line and simulated output from the model, estimated using the first set of 

data is in yellow line. It can be seen that the simulated output and experimental output are 

very close to each other. The Inns of 0.0538 was obtained, which agrees well with that 

obtained during the characterization (see Table 4.3). 

o 1000 2000 

Validated result 

3000 
time (s) 

4000 5000 6000 

Figure 4.5 The validation of the mixing model in presence of a different experimental 

input to the chest, where input (thin black line), estimated algorithm predicted output 

(Yalgorithm - yellow line) and the experimental output (yexp - thick pink line) 
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4.4 EXPERIMENTAIJ RESULTS IN 

CONTINUOUS TIME DOMAIN 

4.4.1 Experimental Set-up and Experimental 

details 

Nine experimental data sets (Data sets 1- 9) used in this work were gathered by Ein­

Mozaffari (2002). To study the macro scale mixing and dynamic behavior of agitated 

pulp stock ches4 a scale model chest was designed and built. (Ein- Mozaffari, 2002). A 

schematic diagram of the experimental setup is shown in Figure 4.6 

Pulp suspension was pumped from the feed tank (1 m3) to the Plexiglas stock chest 

(0.2 m3) and back to the discharge tank (1 m3). Both the feed and discharge pumps were 

progressive cavity pumps (Monyo Industrial Products, Springfield, OH) equipped with 

variable frequency drives. Pulp suspension inside the feed tank was agitated using a 63.5 

cm top entering Chemineer (Dayton, OH) A310 impeller driven with a 5- hp variable 

speed drive. The stock chest was rectangular in dimensions: width, W=40 cm, height, 

Z=70 cm, and length, L=70 cm. A 3- hp variable speed motor was used to drive three test 

impellers. These were scaled versions of Maxflow impellers (Chemineer Inc.) having 

diameters of 10.2 cm, 14.0 cm and 16.5 cm. Impeller torque and speed were measured 

using an inductive- rotary torque transducer with an encoder disk (model 0411IE50, 

Staiger Mohilo, Germany). 

The input and output flow rates were measured using two magnetic flow meters 

(Rosemount Analytical, Irvine, CA). The pulp was pumped from the feed tank through 

the agitated pulp chest and into the discharge tank. The input and output configuration is 

shown in Figure 4.7. 
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Schematic of experimental set- up. (Ein- Mozaffari 2002, 2003). 
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Figure 4.7 Input-output configuration 1 (Ein-Mozaffari 2002, 2003) 

The chest was equipped with a side-entering impeller. Dynamic tests were performed by 

injecting a saline solution via a computer-controlled solenoid valve into the pulp feed. 

The conductivities of the input and output streams were measured with flow-through 

conductivity sensors and analyzed. The identification experiment was performed by 

exciting the system and observing the input and output conductivities over a time period. 

These signals were recorded in a computer for the estimation of dynamic model 

parameters. The excitation provided in the dynamic experiments was limited to binary 

sequences as the input signal was controlled by an on-off solenoid valve. The whole 

process of model identification comprised two experiments. In the first experiment, the 

input signal was a rectangular pulse, which allowed the estimation of an approximate 

model to design the excitation for the second experiment (Kammer et aI., 2005). The 

excitation energy for the second experiment was concentrated at frequencies where the 
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Bode plot is sensitive to parameter variations (Ljung, 1999). Therefore, the frequency­

modulated random binary input signal was designed for this purpose. Further details are 

provided in Ein-Mozaffari et al. (2003b). Table 4.4 shows the details of different 

experiments using different impeller rpm and different pulp concentration to generate 

experimental input and output data 

Table 4.4 Details of the different experimental parameters used for generating data 

sets 1 to 9 

PULP PUMP FLOW RATE 

EXPERIMENT NO CONCENTRATION STIRRER RPM Llmin 

% 

1 2.1 600 5 

2 2.7 700 5 

3 2.7 800 5 

4 2.7 1000 5 
/ 

5 3.3 800 25 

6 3.3 1000 25 

7 3.3 900 25 

8 3.3 900 5 

9 3.3 1000 5 

4.4.2 Simulation results in continuous time domain 

for experimental data 

The motivation for applying the developed algorithm to these diverse experimental data 

sets was to check its global convergence as well as to examine the quality of estimated 

results. The values of I rms are of the order 10-2, which is higher than that obtained earlier 

with the simulated sets of data without noise. The reason is that the experimental output 
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data are real plant data, and carry noticeable noise including measurement errors in 

contrast to the smoother, algorithm - generated output data of the simulated data sets. It 

may be noted that the root mean squared error values obtained with the experimental data 

are similar in magnitude to those obtained with simulated data with noise. This similarity 

suggests that the average absolute fractional error in experimental parameter estimation 

might thus be around 6.8%. Table 4.5 and 4.6 provides the results obtained for the nine 

experimental data sets. 

Table 4.5 The estimated mixing parameters for the experimental data sets 1--6 in 

continuous time domain. 

Data set~ 1 2 3 4 5 6 

tJsec) 5 5 5 5 1 1 

Irms ~ 0.1086 0.0566 0.1141 0.0839 0.0504 0.0694 

T, 71.165 71.871 65.083 1.000 18.223 16.294 

T2 80.668 272.962 230.675 112.291 18.223 42.610 

1", 9.201 11.614 24.394 0.395 2.249 3.165 

1"2 854.l56 743.544 706.l33 570.373 373.418 224.253 

f 0.281 0.753 0.372 0.086 0.685 0.536 

Table 4.6 The estimated mixing parameters for the experimental data sets 7-9 in 

continuous time domain. 

Data set~ 7 8 9 

f.s{sec) 5 1 1 

Irms ~ 0.0440 0.0488 0.0427 

T, 16.219 1.000 1.000 

T2 20.512 82.493 83.918 

1", 1.l38 0.479 0.421 

1"2 205.692 734.478 719.744 

f 0.548 0.119 0.0l3 
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The corresponding outputs Ymod andYexp, and the input u are plotted in Figure 4.8--4.10. 

It is observed that the signal-to-noise ratio in Yexp is higher than that in the simulated data 

sets. Nonetheless, the estimated output follows the experimental counterpart very closely 

except for the noise component, which is not taken into account by the process model. 

However, the root-mean-squared relative error (ignoring the first time instant) between 

the estimated and experimental outputs is a low value of order 10-2 as listed in Table 4.5 

and 4.6. The results are of similar quality as obtained in the model validation exercise 

except for data sets 1,3 and 4 for which Irms is in a slightly higher range, 0.0839-O.l141. 

Effect of short circuiting and time constant is seen same as simulation data in the Figure 

4.8-4.10. 
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Figure 4.8 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 1- 3 in continuous time domain. 
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Figure 4.9 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 4-6 in continuous time domain. 
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Figure 4.10 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line)with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 7- 9 in continuous time domain. 
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4.5 COMPARISON OF RESULTS OF 

DIFFERENT METHODS 

4.5.1 Simulated results comparison with and 

without noise 

Comparison of simulated results 

To further appraise the developed continuous time domain approach, we compared its 

results with those yielded by two different discrete time domain characterizations, namely 

Kammer's method (Kammer et.al., 2004) and the discrete time approach using hybrid 

genetic algorithm (Upreti and Ein-Mozaffari 2006). To decide the accuracy of the 

developed continuous time domain algorithm, we simulated 1-5 data sets with and 

without noise using discrete time domain algorithm and compared the results. The results 

obtained for these data sets in discrete time domain are provided in Table 4.7 (without 

noise) and Table 4.8 (with noise) which compares the estimated parameters generated by 

the algorithm to the real parameters. It is observed that the real and the estimated values 

of all parameters do not agree very well for all data sets and all parameters. Also time 

constant has been assigned integer value in multiplication with sampling time, it gives 

integer values in the result corresponding to sampling time of related data set and not 

decimal or intermediate values. 
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Table 4.7 The real and estimated parameters for the simulated data sets 1-5 without 

noise in discrete time domain. 

Data set~ 1 2 3 4 5 

Is (s) ~ 1 1 1 5 5 

Inns 0.00157 0.00251 0.00352 0.003636 0.008839 

Parameter Real IEstimated Real IEstimated Real IEstimated Real IEstimated Real Estimated 

1't 40 40.000 40 40.000 40 39.000 40 40.000 40 35.000 

T2 110 90.000 110 109.000 110 110.000 110 105.000 110 125.000 

1'1 10 9.162 10 9.042 10 10.705 10 7.240 10 13.022 

1'2 50 50.399 20 20.427 20 19.697 500 503.087 500 492.019 

f 0.2 0.197 0.2 0.196 0.7 0.704 0.2 0.195 0.7 0.713 

Table 4.8 The real and estimated parameters for the simulated data sets 1-5 with 

noise in discrete time domain. 

Data set~ 1 2 3 4 5 

Is (s) ~ 1 1 1 5 5 

Irms 0.013455 0.013927 0.01496 0.01361 0.016172 

Parameter Real Estimated Real Estimated Real IEstimated Real Estimated Real IEstimated 

TI 40 39.000 40 39.000 40 39.000 40 35.000 40 35.000 

T2 110 109.000 110 109.000 110 109.000 110 110.000 110 130.000 

1'1 10 10.225 10 10.142 10 10.496 10 12.328 10 12.951 

1'2 50 50.688 20 20.295 20 19.999 500 487.506 500 478.758 

f 0.2 0.199 0.2 0.199 0.7 0.700 0.2 0.207 0.7 0.715 
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Comparison of estimated parameters of both algorithms are given in Table 4.9 (without 

noise). Table 4.9 shows that the results obtained from continuous time domain are more 

accurate and consistent compared to real parameters. Root mean squared errors of 

continuous time domain are less than that of discrete time domain 

Table 4.9 Comparison of the real and estimated parameters for the simulated data sets 1-

5 without noise in continuous time domain and discrete time domain with smaller 

sampling time .( Values in brackets are of discrete time domain) 

Dataset~ J 2 3 4 S 

ts (s) ~ 1 1 1 5 5 

0.000829 0.001048 0.002656 0.000278 0.001299 

Inns (0.00157) (0.0025l) (0.00352) (0.003636) (0.008839) 

Parameter Real Estimated Real Estimated Real Estimated Real Estimated Real Estimated 

40 40.273 40 40.392 40 39.900 40 40.052 40 39.935 

r. (40.000) (40.000) (39.000) (40.000) (35.000) 

llO 109.959 llO 109.971 llO 110.018 llO 109.896 110 1l1.l86 

T2 (90.000) (l09.00) (l10.00) (l05.00) (125.00) 

10 9.440 10 9.206 10 10.2ll 10 9.905 10 10.138 

f, (9.162) (9.042) (10.705) (7.240) (13.022) 

50 49.940 20 19.980 20 20.149 500 500.061 500 504.020 

f2 (50.399) (20.427) (19.697) (503.087) (492.019) 

0.2 0.199 0.2 0.198 0.7 0.701 0.2 0.199 0.7 0.700 

f (0.197) (0.196) (0.704) (0.195) (0.713) 

Comparison of estimated parameters of both algorithms with noise are given in Table 

4.10. Table 4.10 shows that the results obtained from both algorithms matches well for 

cases 1-3 which is small sampling time of 1 sec. Results of continuous time domain are 

more accurate and consistent compared to real parameters particularly for case 4-5 which 

is higher sampling time of 5 sec. This is because in discrete time domain - continuous 

dynamic model of the mixing pulp chest was discretized using a zero order hold (ZOH) 
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assuming that ZOH 2 is approximately equal to (refer Figure 1.4). [ CT ] CT2(z) 
1-RCT2 1-RCT2(z) 

This approximation is only valid for small sampling time ts and small R. Root mean 

squared errors of continuous time domain matches with that of discrete time domain 

Table 4.10 Comparison of the real and estimated parameters for the simulated data sets 

1-5 with noise in continuous time domain and discrete time domain with smaller 

sampling time.( Values in brackets are of discrete time domain) 

Data set~ 1 2 3 4 5 

ts (s) ~ 1 1 1 5 5 

0.01340 0.01312 0.01425 0.01342 0.01413 

Irms (0.013455) (0.013927) (0.01496) (0.0l361) (0.016172) 

Parameter Real Estimated Real !Estimated Real Estimated Real Estimated Real Estimated 

40 39.936 40 39.516 40 39.474 40 39.6l3 40 39.556 

~ (39.000) (39.000) (39.000) (35.000) (35.000) 

110 109.146 110 109.718 110 109.845 110 109.625 110 112.938 

T2 (109.00) (109.00) (109.00) (110.00) (l30.00) 

10 9.161 10 10.1654 10 10.695 10 9.471 10 10.499 

1"1 (10.225) (10.142) (10.496) (12.328) (12.951) 

50 50.881 20 20.068 20 19.468 500 490.069 500 502.352 

1"2 (50.688) 120.295} il9.9991 _(487.5Q) 1(478.75~ 

0.2 0.197 0.2 0.199 0.7 0.702 0.2 0.202 0.7 0.702 

f (0.199) (0.199) (0.700) (0.207) (0.715) 

The algorithm predicted estimated output (Yalgorithm) , the model output (Ymod) , and the 

input (u) for these data sets in discrete time domain with and without noise are plotted 

in 4.11 and Figure 4.12. The estimated output overlaps the model simulated output for 

each case 
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Data set 4 without noise (discrete model) 
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Figure 4.11 Comparison of the il\Put (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the model output (Ymod - thick pink line) for each of 

the simulated data sets 1- 5 without noise in discrete time domain. The outputs overlap in 

each case. 
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Data set 4 with noise (discrete model) 
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Figure 4.12 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the model output (Ymod - thick pink line) for each of 

the simulated data sets 1- 5 with noise in discrete time domain. The outputs overlap in 

each case. 
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Kammer's method 

Data sets 1-3 were simulated using Kammer's method. (Kammer et aI., 2005). Results of 

simulation using Kammer's method are given in Table 4.11. Kammer et al. (2004) 

developed a tailor-made mechanism for the identification of continuous-time mixing 

parameters based on the discrete-time model. (Ein-Mozaffari et aI., 2003). In this 

method, the authors used two distinct stages for the identification: an efficient but less 

accurate least squares minimization for the estimated delays followed by sequential 

quadratic programming for all parameters models. This method is not guaranteed to 

converge to the global minimum and depends on initial guess. Details of Kammer's 

algorithm for higher sampling time were not available. Table 4.12-4.14 shows the 

comparison of parameters from all three algorithms which are almost same for data sets 

1-3 for small sampling time. 

Table 4.11 The estimated mixing parameters for the simulated data sets 1-3 usmg 

Kammer's method with noise. 

Data set~ 1 2 3 

Is (s) ~ 1 1 1 

Parameter Real Estimated Real Estimated Real Estimated 

~ 40 39.000 40 39.000 40 39.000 

T2 110 109.000 110 109.000 110 109.000 

1'1 10 10.26 10 10.176 10 10.500 

1'2 50 50.7 20 20.301 20 20.015 

f 0.2 0.199 0.2 0.199 0.7 0.700 
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Table 4.12 Comparison of the real and estimated parameters for the simulated data set-l 

with noise in continuous time domain, discrete time domain and Kammer's method with 

sampling time of 1 sec. 

Parameter Real Continuous Discrete Kammer 

r; 40 39.936 39.000 39.000 

T2 110 109.146 109.000 109.000 

TI 10 9.161 10.225 10.26 

T2 50 50.881 50.688 50.7 

f 0.2 0.197 0.199 0.199 

Table 4.13 Comparison of the real and estimated parameters for the simulated data set-2 

with noise in continuous time domain, discrete time domain and Kammer's method with 

sampling time of 1 sec. 

Parameter Real Continuous Discrete Kammer 

r; 40 39.516 39.000 39.000 

T2 110 109.718 109.000 109.000 

TI 10 10.165 10.142 10.176 

T2 20 20.068 20.295 20.301 

f 0.2 0.199 0.199 0.199 
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Table 4.14 Comparison of the real and estimated parameters for the simulated data set-3 

with noise in continuous time domain, discrete time domain and Kammer's method with 

sampling time of 1 sec. 

Parameter Real Continuous Discrete Kammer 

Ii 40 39.474 39.000 39.000 

T2 110 109.845 109.000 109.000 

'l"J 10 10.695 10.496 10.500 

'l"2 20 19.468 19.999 20.015 

f 0.7 0.702 0.700 0.700 

Higher sampling time results comparison 

We simulated data sets 1-5 without noise using continuous and discrete time domain 

algorithm for higher sampling time of 50 seconds. Results are listed in Table 4.15, 

continuous time domain shows far better parameter approximation than the discrete time 

domain algorithm. The values of I rms with the continuous time domain approach are at 

least two orders of magnitude lower than that obtained using discrete time domain 

approach. This outcome was expected since the discretized model provides good results 

for small sampling times as discrete time domain algorithm was developed with 

approximation of small sampling instances. Also time delays are assigned integer values 

in multiplication with sampling time, dicrete algorithm does not give values below 50 

sec, but gives in multiplication of 50 sec. That is the reason time delays have values 0 in 

some data sets of discrete time domain results. The algorithm predicted estimated output 

(Yalgorithm), the model output (Ymod), and the input (u ) for these data sets in continuous and 

discrete time domain with and without noise are plotted in Figure 4.13 and Figure 4.14 

The estimated output overlaps the model simulated output for each case for continuous 
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time domain whereas in discrete time domain, there is deviation, shown in Figure 

4. 15(enlarged view of data 1-3) 

Table 4.15 Comparison of the real and estimated parameters for the simulated data sets 

1-5 without noise in continuous time domain and discrete time domain with higher 

sampling time of 50 sec. (Values in brackets are of discrete time domain). 

Data set~ 1 2 3 4 5 

Is (s) ~ 50 50 50 50 50 

6.55e--004 9.26e--005 3.83e--005 1.75e--004 6.72e--0O5 

Irms (0.028966) (0.043284) (0.015439) (0.002514) (0.008375) 

Parameter Real Estimated Real Estimated Real Estimated Real !Estimated Real Estimated 

40 34.638 40 ~7.518 40 38.599 40 39.877 40 39.963 

~ (00) (50) (00) (00) (00) 

110 113.642 110 110.695 110 113.642 110 110.352 110 111.119 

T2 (100) (100) (100) (100) (50) 

10 28.460 10 16.526 10 13.322 10 10.243 10 10 .. 073 

1") (44.988) (13.925) (38.043) (27.116) (10.659) 

50 49.378 20 19.877 20 19.221 500 499.878 500 499.606 

1"2 (44.988) (19.881) (38.043) (505.59) (534.92) 

0.2 0.251 0.2 0.216 0.7 0.726 0.2 0.200 0.7 0.700 

f (0.374) 0.570) (0.898) (0.224) (0.673) 
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Data set 4 without noise (continuous model) 
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Figure 4.13 Comparison of the input (thin black line), estimated algoritlun predicted 

output (Yalgorithm - yellow line) with the model output (Ymod - thick pink line )for each of 

the simulated Data sets 1- 5 without noise in continuous time domain - Sampling time 50 

sec. The outputs overlap in each case. 

67 
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Data set 4 without noise (discrete model) 
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Figure 4.14 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the model output (Ymod - thick pink line) for each of 

the simulated Data sets 1- 5 without noise in discrete time domain - Sampling time 50 

sec The outputs overlap in each case. 
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Data set 3 
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Figure 4.15 Comparison of the input (thin black line), estimated algorithm predicted 

output in continuous time domain (yellow line), estimated algorithm predicted output in 

discrete time domain (dark blue line), with the model output (Pink line), for the simulated 

Data sets 1- 3 without noise in continuous time domain - Sampling time 50 sec. The 

continuous time domain output overlaps experimental output whereas discrete time 

domain does not overlap. 

4.5.2 Experimental results comparison 

All experimental data sets were simulated using discrete time domain. Results are given 

in Table 4.16 and 4.17. Comparisons of the parameters generated by both algorithms are 

listed in Table 4.18 and 4.19. Values of the parameters match well for smaller sampling 

time. Comparison of the Inns values for experimental data sets for continuous and discrete 

time domain are given in Table 4.20 and matches very well showing successful 

development of algorithm. The algorithm predicted estimated output (Yalgorithm), the 

experimental output (yexp) , and the input (u) for these data sets using discrete time 
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domain are plotted in Figure 4.16- 4.18 The estimated output overlaps the experimental 

output for each data set. Variation in plotted lines may be due to the experimental errors. 

Table 4.16 The estimated mixing parameters for the experimental data sets 1--6 in 

discrete time domain. 

Data set~ 1 2 3 4 5 6 

Is (s) 5 5 5 5 1 1 

Inns ~ 0.10786 0.07041 0.12217 0.78400 0.04654 0.06795 

1't 70.000 70.000 65.000 0.000 17.000 16.000 

T2 90.000 300.000 225.000 115.000 56.000 40.000 

i\ 8.233 11.008 21.294 0.364 3.340 2.947 

i2 857.021 609.440 702.593 569.477 346.391 215.627 

f 0.291 0.765 0.370 0.071 0.718 0.533 

Table 4.17 The estimated mixing parameters for the experimental data sets 7-9. in 

discrete time domain. 

Data set~ 7 8 9 

Is (s) 1 5 5 

I rms ~ 0.04428 0.04557 0.04535 

1't 15.000 0.000 0.000 

T2 42.000 85.000 80.000 

i\ 2.631 0.412 0.362 

i2 215.627 742.588 721.893 

f 0.586 0.166 0.011 
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Table 4.18 Comparison of the estimated mixing parameters for the experimental data sets 

1--6 in continuous time domain and discrete time domain. (Values in bracket are of 

discrete time domain) 

Data 
set~ 1 2 3 4 5 6 

ts<sec) 5 5 5 5 1 1 

0.1086 0.0566 0.1141 0.0839 0.0504 0.0694 

Irrns ~ (0.10786) (0.07041) (0.12217) (0.78400) (0.04654) (0.06795) 

71.165 71.871 65.083 1.000 18.223 16.294 

r. (70.000) (70.000) (65.000) (0.000) (17.000) (16.000) 

80.668 272.962 230.675 112.291 18.223 42.610 

T2 (90.000) (300.000) 1225.0001 J115.000) (56.000) (40.000) 

9.201 11.614 24.394 0.395 2.249 3.165 

1') (8.233) (11.008) (21.294) (0.364) (3.340) (2.947) 

854.156 743.544 706.133 570.373 373.418 224.253 

1'2 (857.021) (609.440) (702.593) (569.477) (346.391) (215.627) 

0.281 0.753 0.372 0.086 0.685 0.536 

f (0.291) (0.765) (0.370) _(0.071) (0.718) (0.533) 
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Table 4.19 Comparison of the estimated mixing parameters for the experimental data sets 

7-9 in continuous time domain and discrete time domain. (Values in bracket are of 

discrete time domain) 

Data set~ 7 8 9 

t.y{sec) 5 1 1 

0.0440 0.0488 0.0427 

Irms~ (0.04428) (0.04557) (0.04535) 

16.219 1.000 1.000 

1; (15.000) (0.000) (0.000) 

20.512 82.493 83.918 

T2 (42.000) (85.000) (80.000) 

1.138 0.479 0.421 

1'\ (2.631) (0.412) (0.362) 

205.692 734.478 719.744 

1'2 (215.627) (742.588) (721.893) 

0.548 0.119 0.013 

f (0.586) (0.166) (0.011) 
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Table 4.20 Comparison of Irms values of continuous time domain and discrete time 

domain for experimental data sets 1-9 

Experiment No. Continuous Time Domain Discrete Time Domain 

Irms Irms 

1 0.1086 0.1078 

2 0.0566 0.0704 

3 0.1141 0.1221 

4 0.0839 0.7840 

5 0.0504 0.0465 

6 0.0694 0.0679 

7 0.0440 0.04428 

8 0.0488 0.0455 

9 0.0427 0.0453 
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Figure 4.16 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgprithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 1-3 in discrete time domain. 
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Figure 4.17 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line )for 

each of the experimental Data sets 4--6 in discrete time domain. 

77 



Exp 7 (discrete model) 
6 

E 
.r::. -.§ 5 
C) 

~ 
~4 
)( 

~ 
~ 

;::, 3 

0 500 1000 1500 2000 2500 

Exp 8 (discrete model) 
14 

E12 .r::. 
~ .... 
010 
C) 

~ a 
0-
)( 6 ~ 

;::, 4 

2 
0 2000 4000 6000 aooo 10000 

Exp 9 (discrete model) 
16 ~----------------------------------------~----------~ 

E14 .r::. -'§12 
C) 

~10 

e-a 
~ 
~ 6 

;::, 
4 

o 2000 4000 6000 8000 10000 
time (s) 

Figure 4.18 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 7- 9 in discrete time domain. 
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---_._----- -------------------------

Comparison of results of experimental data for sampling time of 50 seconds 

For checking the application at higher sampling time, input and output values at every 50 

seconds were collected from experimental data sets 1-9 and simulated on continuous and 

discrete time domain. Comparisons of the parameters generated by both algorithms are 

listed in Table 4.21 and 4.22. Values of the parameters are better in continuous time 

domain. Also parameter/follows nearer to approx 5% variation than small sampling time 

results, given in Table 4.18 and 4.19. This shows far better trend of short -drcuiting in 

the chest at higher sampling time compared to discrete time domain. Also time constant 

has been assigned integer value in multiplication with sampling time in discrete time 

domain algorithm, it gives integer values of time constants T 1 and T 2 in the result 

corresponding to sampling time of related data set and not decimal or intermediate 

values. 

Table 4.21 Comparison of the estimated mixing parameters for the experimental data 

sets 1-6 in continuous time domain and discrete time domain at sampling time of 50 

seconds (Values in bracket are of discrete time domain) 

Data 
set~ 1 2 3 4 5 6 

ts(sec) 50 50 50 50 50 50 

0.12005 0.07795 0.12103 0.10293 0.16919 0.20360 

Irms ~ (0.13431) (0.09255) (0.12363) (0.44103) (0.27474) (0.38352) 

66.210 64.610 59.520 28.214 1.000 8.769 

1; (50) (0) (0) (0) (0) (0) 

218.062 460.909 250.397 475.537 330.008 67.057 

T2 (200) (550) (350) (100) (150) (150) 

30.088 25.022 39.215 439.186 16.439 4.964 
i, (21.075) (71.850) _(112.614) (3.621) (3.684) (23.515) 

798.922 589.494 702.937 439.190 74.982 173.449 

i2 (826.101) (415.462) (664.903) (571.978) (212.504) (167.276) 

0.387 0.784 0.395 0.087 0.695 0.549 

f (0.380) (0.837) (0.502) (0.074) (0.448) (0.398) , 
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Table 4.22 Comparison of the estimated mixing parameters for the experimental data sets 

7-9 in continuous time domain and discrete time domain at higher sampling time of 50 

seconds. (Values in bracket are of discrete time domain) 

Data set~ 7 8 9 

(Jsec) 50 50 50 

0.01261 0.05812 0.044107 

Irms ~ (0.18789) (0.04914) (0.04935) 

1.682 71.410 64.741 

~ (0) (0) (0) 

46.284 499.999 499.999 

T2 (150) (50) (100) 

10.363 640.327 623.973 

'\ (3.687) (736.970) (40.722) 

165.265 648.128 625.863 

'2 (190.475) (736.970) (700.339) 

0.618 0.011 0.031 

f (0.408) (1e--08) (0.063) 

The model predicted estimated output (Yalgorithm), the experimental output (Yexp), and the 

input (u) for these higher sampling time experimental data sets using continuous time 

domain are plotted in Figure 4.19 - 4.21 and discrete time domain are plotted in 

Figure 4.22- 4.24. The estimated output is nearer to experimental output for each data set 

for full length of data in both the algorithms. The estimated output is nearer to 

experimental output for each data set for small length of data in continuous time domain 

than discrete time domain reflecting better Irms values of continuous time domain than 

discrete time domain as shown in Figures 4.25-4.29 showing successful development of 

algorithm. Variation in plotted lines may be due to the experimental errors. Obviously 

trend of experimental output as well as estimated output is not exactly same as that for 

small sampling time(Figure 4.8 -4.1 Oand 4.16-4.18) because input variations are more in 

50 seconds duration. 
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Figure 4.19 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 1- 3 in continuous time domain for sampling time of 

50 seconds. 
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Figure 4.20 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 4-6 in continuous time domain for sampling time of 

50 seconds. 
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Figure 4.21 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 7-9 in continuous time domain for sampling time of 

50 seconds. 
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Exp data set 1 (discrete model) 
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Figure 4.22 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 1-3 in discrete time domain for sampling time of 50 

seconds. 
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Exp data set 4 (discrete model) 
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Figure 4.23 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 4-6 in discrete time domain for sampling time of 50 

seconds. 
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Exp data set 7(discrete model) 
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Figure 4.24 Comparison of the input (thin black line), estimated algorithm predicted 

output (Yalgorithm - yellow line) with the experimental output (yexp - thick pink line) for 

each of the experimental Data sets 7- 9 in discrete time domain for sampling time of 50 

seconds. 
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Figure 4.25 Comparison of the input (thin black line). estimated algorithm predicted 

output in continuous time domain (dark blue line). estimated algorithm predicted output 

in discrete time domain (yellow line). with the experimental output (Pink line). for the 

experimental Data sets 1- 2 in continuous time domain - Sampling time 50 sec. The 

continuous time domain output is close to experimental output. 
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Exp data set 3 
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Figure 4.26 Comparison of the input (thin black line), estimated algorithm predicted 

output in continuous time domain (dark blue line), estimated algorithm predicted output 

in discrete time domain (yellow line), with the experimental output (pink line), for the 

experimental Data sets 3-4 in continuous time domain - Sampling time 50 sec. The 

continuous time domain output is close to experimental output. 
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Figure 4.27 Comparison of the input (thin black line), estimated algorithm predicted 

output in continuous time domain (dark blue line), estimated algorithm predicted output 

in discrete time domain (yellow line), with the experimental output (Pink line), for the 

experimental Data sets 5-6 in continuous time domain - Sampling time 50 sec. The 

continuous time domain output is close to experimental output. 
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Figure 4.28 Comparison of the input (thin black line), estimated algorithm predicted 

output in continuous time domain (dark blue line), estimated algorithm predicted output 

in discrete time domain (yellow line), with the experimental output (Pink line), for the 

experimental Data sets 7- 8 in continuous time domain - Sampling time 50 sec. The 

continuous time domain output is close to experimental output. 

90 



Exp data set 9 
16~--------------------------------------------------~ 

14 

~12 

~ 
E 10 
o 
~ 
0: 8 
)( 

~ 
::) 6 

4 

2 ~----~~----~~------~------~------~------~----~ 
o 200 400 600 800 1000 1200 

Figure 4.29 Comparison of the input (thin black line), estimated algorithm predicted 

output in continuous time domain (dark blue line), estimated algorithm predicted output 

in discrete time domain (yellow line), with the experimental output (Pink line), for the 

experimental Data set 9 in continuous time domain - Sampling time 50 sec. The 

continuous time domain output is close to experimental output. 
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4.5.3 Calculation of mixed volume in the chest from 

parameters 
With the help of the characterization parameters, we can determine the fully mixed and , 

the dead volume fractions of the pulp in the pulp chests (Ein-Mozaffari et ai., 2004b). 

Listed in Table 4.23, these volume fractions provide a valuable insight into the degree of 

mixing affected by the pulp chests. 

V 
T = f.m. 

2 (1- fK2 or 

Vr.m. = T2 (1- fK2 
Where Q is the pulp flow rate through the chest in liter/sec 

V f.m. in liters 

(4.2) 

Total volume ofthe laboratory scale chest is 64 liter (40cm x 40cm x 40cm) 

Inlet-Outlet position is as per config.l, Figure 4.7 (Ein-Mozaffari, 2002, 2003) 

Table 4.23 The mixed and dead volumes fractions in the laboratory-scale pulp chests 

based on characterization parameters obtained using Data sets 1-9. 

EXP. CONTINUOUS TIME DOMAIN DISCRETE TIME DOMAIN 
NO 

V f.m. mixed volume dead volume Vf.m. mixed volume dead volume 

total volume total volume total volume total volume 
1 51.12 0.80 0.20 50.63 0.79 0.21 
2 15.30 0.24 0.76 11.89 0.19 0.81 
3 36.90 0.58 0.42 36.88 0.58 0.42 
4 43.42 0.68 0.32 44.06 0.69 0.31 
5 48.93 0.76 0.24 40.66 0.64 0.36 
6 43.35 0.68 0.32 41.92 0.65 0.35 
7 38.66 0.60 0.40 37.15 0.58 0.42 
8 53.88 0.84 0.16 51.55 0.81 0.19 
9 59.19 0.92 0.08 59.47 0.93 0.07 
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4.6 COMPUTER USAGE AND TIME OF 

COMPUTATION 
Because of the differential-algebraic model, the algorithm is computationally more 

intensive than the earlier approach based on the discrete time model. It was programmed 

in C++ language on Dual-Core Intel® Itanium® 2 processors 1.5 GHz processor and 15 

giga bites RAM. Toe application of the algorithm on a single data set took up to 110 days 

to complete on 3 GHz processor and 1 giga bite RAM and has to run 40 data sets. It 

became possible on Dual-Core Intel® Itanium® 2 processors, using Intel 9.1 software in 

C++ language. Comparison of time for both the algorithm is given in Table 4.24 for data 

sets 1-5 and Table 4.25 for experimental data sets 1-9. 

Table 4.24 Comparison of time taken for simulation by computer in continuous and 

discrete time domain using computer generated data sets 

CASE NO CONTINUOUS TIME DISCRETE TIME DOMAIN 

DOMAIN SIMULATION TIME IN SEC 

SIMULATION TIME IN SEC 

WIT NOISE WITH NOISE WIT NOISE WITH NOISE 

1 1281382 2017952 454.82 452.83 

2 1006856 2018291 461.49 458.79 

3 63825 181536 108.6 106.98 

4 1005480 1951638 447.33 448.24 

5 62021 169628 105.8 106.13 
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Table 4.25 Comparison of time taken for simulation by computer in continuous and 

discrete time domain using experimental data sets. 

EXPERIMENT NO. CONTINUOUS TIME DISCRETE TIME 

DOMAIN DOMAIN 

SIMULATION TIME IN SIMULATION TIME IN 

SEC SEC 

1 437337 136.22 

2 505073 132.9 

3 531631 147.04 

4 527068 140.01 

5 1049567 161.24 

6 822223 161.03 

7 1091786 177.33 

8 1015957 122.97 

9 673951 127.96 
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5 CONCLUSION 

The identification of mixing parameters was carried out for agitated pulp chests in the 

continuous time domain. A robust and effective hybrid optimization algorithm, which 

incorporates genetic operations and gradient search was developed. The differential­

algebraic model of mixing, and the derivatives of the objective function were derived. 

Three of the derivatives were the state variables of governing differential equations. The 

identification strategy was tested by applying it to five different sets of simulated data 

with known mixing parameters without and with noise. These parameters matched very 

well with the estimated parameters determined by the algorithm. Model was validated 

and compared with past researchers. 

After this successful validation, the mixing parameters of nine experimental data sets 

were determined with the average root-mean-squared fractional errors of 0.0687. Five 

simulated data sets were simulated on discrete time domain algorithm. Continuous time 

domain algorithm gave better accuracy and consistency with lower root-mean-squared 

value than discrete. Results of continuous time domain were also compared by simulating 

data set 1-3 with noise using Kammer's method for sampling time of 1 sec. Continuous 

time domain gave matching results with better accuracy than other two methods for small 

sampling time. For a higher sampling time, the results were superior to those yielded by 

discrete time characterization, which is applicable to data with small sampling times. This 

outcome brings up the utility of developed approach for effective characterization of 

mixing with significantly less frequent sampling. With the help of the characterization 

parameters, the fully mixed and the dead volume fractions of the pulp in the pulp chests 

were calculated. These volume fractions provide a valuable insight into the degree of 

mixing affected by the pulp chests. 
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6 FUTURE WORK 

For future work the results can be derived more precisely if amount of iterations are 

increased and genetic parameters are varied. Also by using other software or parallel 

computing system results can be more precise. The developed strategy is expected to be 

very useful for continuous time domain characterization of process systems with time 

delays for multi-parameter and non-linear applications. 

Moreover the algorithm can be checked for higher R - the recirculation effect, if 

industrial data are available as laboratory data do not comprise recirculation effect. 

Comparison of results using different splines can be studied. 
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