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ABSTRACT

Studies on Industrial Vision Inspection Methods
A thesis of the degree of
Master of Applied Science, 2007
by
Haibin Jia

Department of Mechanical Engineering, Ryerson University

Although vision inspection has been applied to a wide range of industrial applications,
inspection accuracy remains a challenging issue due to the complexity involved in
industrial inspection. The common method adopted in industry is to use a template image
as a reference template to inspect each live imag¢ on a pixel-by-pixel basis. In this thesis,
a tolerance-based method is studied to replace the template image method. The said
tolerance is formed by two indices computed from an image, instead of using the whole
image for inspection. To ensure an accurate tolerance zone, a Neural Networks method is
used to take into consideration the noise and uncertainties in the parts under inspection.
To reduce training time, the Taguchi method is adopted to select a minimum number of
the sample images needed for training. Once a tolerance zone is obtained, a live image is
inspected against it. If the indices fall inside the tolerance zone, it is deemed as good,
otherwise faulty. The inspection accuracy achieved is 94.5%. Three examples are given,

one for label inspection and the other two for auto part inspection.
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CHAPTER 1 INTRODUCTION

1.1 Motivation and Solution

Computer vision, a widely used technology, has been highly developed and adopted in
various industrial applications. It has been applied in manufacturing, medicine and
aerospace engineering. Especially, computer vision has been playing a crucial role in
manufacturing processes [1], such as assembly, measurement, and automated industrial
application. Nowadays, it is hard to find a manufacturing plant that does not have some

type of machine vision to measure, locate and inspect products.

Vision inspection is one of the areas that attract much attention in computer vision [2, 3].
Researchers have been striving to reduce cost, improve precision and consistency, and
shorten inspection time. However, the potential of industrial vision inspection systems
has not yet been fully exploited. For example, to date, the vision inspection systems are
mainly used as a screening inspection, and the identification and removal of defective
products, rather than as a process for continuous improvement of a manufacturing system.
The lack of flexibility in the existing industrial vision inspection systems to adapt
algorithms to new products and to different industrial applications is the reason for the

absence of continuous improvement capabilities.

Currently, when new components are introduced into an existing assembly line, the
inspection system requires reprogramming to incorporate the new characteristics of the
new components into the inspection algorithms. The same situation will happen when the

1



existing inspection system is introduced into a different industrial application, such as
from printing inspection to automobile manufacturing inspection. Often, this process of
reconfiguration requires the involvement of the original equipment manufacturer (OEM)
of the inspection system to develop new inspection algorithms and adjust the existing
inspection system to the new components. The cost of this adjustment period is
frequently one of the main obstacles for the appropriate use of inspection systems on the
factory floor. Therefore, it is necessary to develop the tools and methodologies that
would allow the rapid adaptation of existing inspection systems to new products so that
the inspection systems are not rendered obsolete by incremental changes in

manufacturing processes.

Over the last two decades, artificial intelligence (AI) methods have been applied to train
inspecti;)n systems to improve their efficiency and accuracy. The Neural Networks (NN)
method is one of the popular Al methods used for image processing. Because of its
inherently nonlinear nature, Neural Networks is considered particularly well suited for
image processing applications where the classical spatial or frequency methods are not
effective. NN-based methods are developed to complement or replace conventional
approaches for industrial inspection. Applications of NN-based inspection include quality

and process control, document processing, identification and authentication, and medical

diagnosis. [4].



The processing efficiency of NN-based vision inspection methods is largely determined
by the abstraction level of the input data, which may be classified into three levels, pixel,
local feature and object. In the first category, the intensities of individual pixels are
provided as the inputs. In the second category, a set of derived, pixel-based features
constitutes the inputs. In the last two categories, the properties of individual objects are
used as the inputs. In most published works, the input data is either pixel level or feature
level, the methods based on which are usually computationally intensive and time

consuming.

Though Neural Networks models are different, there is one common aspect, namely, the
Neural Networks being used to inspect image as a classifier [5-8]. So the training data
must include enough information and has to be pre-processed. The large volume of data
means that preprocessing and inspection are time consuming and this has been. the
biggest obstacle for industrial implementation. Inspection speed and interference of

uncertain factors are identified as the main problems of traditional vision inspection

system.

In this thesis, a tolerance method is studied. This method combines a statistical method
with a Neural Networks method. Different from traditional vision inspection methods,
this method is based on two indices of a good image, which are the variances of the rows
and columns of the image. Neural Networks are trained using these two indices from a set

of sample images. The minimum and maximum values of the two indices form a



tolerance zone. To ensure an accurate tolerance zone, Neural Networks is used to take
into consideration the noise and uncertainties in the parts under inspection. To improve
speed, the Taguchi method is adopted to select a minimum number of the sample images
needed for training. When inspecting, the two indices of each image are computed
through trained Neural Networks and compared with the tolerance zone. If the indices fall
inside the tolerance zone, it is deemed as good, otherwise faulty. Experimental results
show that defective items can be effectively detected by examining whether either index

falls out of the tolerance zone. In what follows, the details of this method are presented.

1.2 Thesis Outline

This thesis is organized into seven chapters:

Charter 1 is the introduction.

Chapte; 2 describes the previous approaches of industrial vision inspection and
application of Neural Networks to vision inspection.

In Chapter 3, a tolerance method is studied for industrial vision inspection. Fundamental
concepts, algorithms and Neural Networks structure are also provided.

Chapter 4 addresses the practical considerations of industrial vision inspection.

Chapter 5 focuses on optimization of training data.

Chapter 6 presents experiment results.

Chapter 7 summarizes conclusions and discusses future work.



CHAPTER 2 LITERATURE REVIEW

In this chapter, the structure, algorithms and Neural Networks application for industrial
vision inspection are reviewed. The drawbacks of traditional methods and improvement

goals are discussed.

2.1 Industrial Vision Inspection

Machine vision systems are referred to as automated vision inspection, and those have
been applied slowly but surely to a variety of manufacturing applications, all with the
goal of improving quality and productivity in manufacturing processes .[9]. Machine
vision may be described as the acquisition and analysis of vision information. An image
- is a snap shot of vision information that is composed of many (usually several million)
picture elements called pixels. Preprocessing of the pixels allows the vision information

to be used for decision making.

Typically, an industrial vision inspection system can be decomposed into a sequence of
processing steps [4, 10, 11]: image acquisition to acquire images by a digital camera;
image enhancement to improve the quality of the image for subsequent processing; defect
recognition to detect defects by comparing the current image with a template image;
defect classification to classify a defect type by feature extraction and classification; and
decision making to decide if the image should be judged as good or defective. Figure 2.1
illustrates the structure of a typical industrial inspection system. One of the common

problems in industrial environment is how to quantify the uncertainties that affect the

5



image fidelity. These uncertainties may be caused by machines dynamics, product

variation, and illumination variation.

Image R Image | Neural Network R Decision
Acquisition ”| Enhancement i Training "| Algorithms
Control Information
System ’ Storage
Decision

Figure 2.1 Industrial vision inspection system [4]

The first component in a generic automated vision inspection station is image acquisition

and digitization. Image acquisition is usually done with a camera as the sensor.

One type of image sensor, used in most computer vision systems, is a television camera.
The image is focused onto a photoconductive target. At the target, the higher the image
intensity in a region, the more charge that is lost at the region. An electron beam is then

deflected onto the target magnetically, and this beam makes up the lost charge. The video

signal is made up from the beam.

A second type of camera is the digital camera that receives an image via individual

sensing elements. Each sensing element records the energy level of reflected light in its

6



geometric domain by the amount of charge generated. The most common type of digital
device is the charge coupled device (CCD). The digital camera has the advantage that it is
not subject to geometric distortion since there is no electron beam scanning. The digital

camera is also less sensitive to noise and overexposure.

Once an image is acquired by a camera, it is sent to an image processor. The functions of
the image processor are to digitize the input image from the camera, store the digitized
image and implement special purpose functions. The signal is digitized by an analog to
digital converter where it is transformed into a matrix of picture elements. Each picture
element, called pixel, is a number corresponding to the intensity of light at a particular
point in the image. The pixels are stored in the memory where they may be accessed by

the various software components.

One of the most critical hardware considerations in an industrial vision inspection system
is lighting [30]. It should be noted that there is no such thing as an optimal lighting
environment that can be applied to all situations. Lighting is very specific to environment
and application. Many different types of lighting can be used. Typical examples include
diffuse lighting, background lighting, direct lighting and stripe lighting. Each of these
examples is shown in Figure 2.2. An appropriate lighting configuration for a specific
industrial vision inspection application must be determined by experimentation. Some

applications require changing the lighting environment during processing.



S
i

(a) Background light (b) Directed light
LJ
(c) Diffuse light (d) Light stripping

Figure 2.2 Lighting environments [4]

Due to the large amount of information contained in each image, it is important to
enhance the image prior to processing. Typical enhancements include removal of noise,
edge detection and enhancement of contrast. Enhancement may be performed on

individual pixels, groups of pixels or the entire image.

One of the crucial and most time-consuming processes in the training phase of vision
inspection systems is the selection of inspection features. A feature is usually a prominent

or distinctive characteristic that can be extracted from a digital image of a product to be

8



inspected. Ideally, the features used share common characteristics in that they are
computationally inexpensive, and simple enough to accommodate new components

without major modifications to the actual system.

However, a downside of the feature simplification is that they alone do not provide an
error-free classification among inspection parts. In the training phase, the developer of
the vision inspection system needs to identify, among known features, a subset of them
that provides an adequate level of discrimination between defective and non-defective
components. If no subset of features provides the needed discrimination, it is necessary to
develop new features to attain the desired level of discrimination. The feature selection

process requires a great deal of time and a knowledgeable human developer.

In theory, human inspectors could be utilized to detect missing components. However, in
practice, continuous miniaturization and the increasing speed of assembly of these
components make human inspection obsolete and the use of industrial vision inspection
systems a necessity. However, because of their lack of flexibility, these systems have
been used mostly as a way to detect defects rather than to use the information generated
by these systems to improve the underlying manufacturing systems. Because of the time
it requires, a very important element in achieving this goal is the automation of the

selection of the features to use for the inspection.



2.2 Vision Inspection Algorithms of Industrial Vision Inspection

System

There are many image processing techniques useful for machine vision inspection. These
techniques include area calculation, histogram analysis, boundary following, image
subtraction and feature matching [9, 12-14]. The choice of the techniques is primarily

based on the types of inspection and application.

Area Calculation

In the area calculation, the region of the image is the portion with the boundary, where
the boundary is represented by those pixels that have both black and white neighbors.
The application of this technique is to calculate the total number of the black pixels that
contair_l the region and the boundary of the image. An inspection threshold value is
predetermined and implemented in the algorithm to distinguish the good parts from the

defective ones. The area of good parts should be very close to each other and is always

greater than a defective part.

Boundary Following

This procedure must work on a consistent boundary with four-connected neighbors. The
boundary is detected clockwise, and the number of the boundary points is accumulated
during the entire trace. The number of the boundary points of the test part is then

compared with the points of a good part. Based on the difference between the numbers of
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the boundary points, a good part is distinguished from a defective part. When the

difference is within a predetermined range, the part is considered a good part.

Histogram analysis

A gray-level histogram of an image shows the frequency of occurrence of each gray level
in the image. The idea behind this technique is that the histograms of the image of all the
good parts are similar. The operation of this technique is to calculate the number of pixels
for each gray level and compare with the good part. A tolerance is defined in the’

algorithm to differentiate a defective part from a good part.

Image Subtraction

Image subtraction is the simplest and most direct approach to the inspection problem.
This is one of the earliest techniques employed in inspection. The acquired image is
compared against the template image. The subtracted image, showing defects, can
subsequently be displayed and analyzed. Figure 2.3 shows this direct subtraction process

as a logical XOR operation.

XOR ® > @

Figure 2.3 Image subtraction [15]

The advantage of this method is easiness to implement. Another advantage is that it

allows for verification of the overall defects in the image. But this technique suffers from

11



many practical problems, including registration, color variation, reflectivity variation,

lighting sensitivity and other uncertain factors.

Feature Matching

Feature matching is an improved form of image subtraction, in which the extracted
features from the object and those defined by the model are compared. The advantage of
this matching is that it greatly compresses the data for storage, and at the same time
reduces the sensitivity to the input data and enhances the robustness of the system. This

matching process is also called template matching.

One of the major limitations of the template matching method is that an enormous
number of templates must be used, making the procedure computationally expensive.
This .problem can be eliminated if the features to be matched are invariant in size,
location, and rotation. The disadvantages of this method are that it requires large data
storage for the ideal image patterns, and precise registration is necessary for comparison.
It is sensitive to illumination and digitization conditions, and the method lacks flexibility.
Once the base image is changed, the templates must be withdrawn again. To get the

better inspection results, the template optimism usually has to be interfered manually.
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2.3 Neural Networks Application of Industrial Vision Inspection

System
As one branch of artificial intelligences (AI), the first Neural Networks model was first
presented by McCulloch and Pitts in the 1940s [16]. Rosenblatt devised the perceptron
model in 1962. The model generated much interest because of its ability to solve some
simple classification problems. In 1969, Minsky and Papert [16] provided mathematical

proofs of the limitations of the perceptron and pointed out its weakness in computation.

The power and usefulness of artificial neural networks have been demonstrated in several
applications including speech synthesis, diagnostic broblems, medicine, business and
finance, robotic control, signal processing, computer vision and many other problems that
.fall under the category of pattern recognition. For some application areas, neural models
show promise in achieving human-like performance over more traditional artificial

intelligence techniques.

From the engineering point of view, Neural Networks can be seen as highly parallel
dynamical systems that model transformation from inputs to outputs. How the
transformation is carried out depends on the Neural Networks model and its way of
learning the transformation. The most natural application areas for the Neural Networks
are those tasks that require the establishment of an appropriate transformation without

analytical modeling. Therefore, it is no wonder that the most successful applications of
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Neural Networks can be found in the area of machine vision inspection, where such

inputs to outputs transformations dominate the problem.

Much of the current research in Neural Networks is centered on individual network
models, whereas in typical industrial applications, a system level of Neural Networks is
more desirable. Individual Neural Networks might be seen as components in a broader
system, which also contains many other data processing techniques. This kind of use of
Neural Networks leads to a hybrid architecture in which some of the processing modules
are based on Neural Networks. Then the problem is to decide what benefits Neural
Networks may provide for the given industrial application and what kinds of Neural

Networks models should be used.

There are at least four main aspects that should be considered in Neural Networks

application for vision inspection:

1) Selecting the network learning algorithm

There are two types of learning algorithms of Neural Networks: supervised or
unsupervised. If the input and desired output are known, a Neural Networks is said to be
under supervised learning. Suppose that a Neural Networks is designed to learn between
the following pairs of patterns as shown in Table 2.1. The input patterns are decimal

numbers, and the target patterns are given in form of binary values of the decimal

numbers:
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Table 2.1 Example of supervised Neural Networks

Input Pattern | Target Pattern
01 001
02 010
03 011
04 100

In a Neural Networks model, nodes are connected together to form a network. For
supervised learning algorithm, the weights are arbitrarily defined in the first training run.
During learning, one of the input patterns is given to the input layer. This pattern is
propagated through the network (independent of its structure) to the output layer. The
output layer generates an output pattern which is then compared to the target pattern.
Depending on the difference between output and target, an error value is computed. This
output error indicates the learning effort of network, which can be controlled by the
"imaginary supervisor". The greater the computed error value is, the more the weight
values will be changed. The weights are updated by a number of iterations so the
computed outputs will come closer to the target outputs. The Neural Networks is

considered well trained when the difference becomes smaller than a given tolerance.

Neural Networks under unsupervised learning have no such target outputs. It cannot be
determined what the result of the learning process will look like. During the learning
process, the weight values of such a Neural Networks are "arranged" inside a certain

range, depending on given input values. The goal is to group similar units close together
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in certain areas of the value range. This effect can be used efficiently for pattern

classification purposes.

2) Controlling the complexity

When training a network for a given problem, the task of a learning process is to
construct a required transformation from the input space to the output space of the
network [17]. Any transformation of given inputs to outputs is a function approximation
problem. The difficulty is that the training samples might easily lead to multiple possible
solutions. In order to obtain useful results, the Neural Networks complexity should be

matched with the problem complexity and the number of available training examples.

If the _network is too complex, it will perfectly learn the training set while generalizing
very poorly. Controlling the complexity is therefore a necessity to ensure good
generalization. It is specially a key issue when the training set is small, noisy and even
partially incorrect. The practical methods for controlling the model complexity include
methods such as early-stopped training, committees of early-stopped networks, weight

decay or other regularization methods.

3) Choosing the training data

After the construction of Neural Networks, selected data will be chosen for network

training. These training data should contain sufficient information for the task [18].
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4) Assessing the performances of the network

To determine how well a network works, the common way is to verify the network with

test example sets that were not used during the training process.

2.4 Drawbacks of Traditional industrial vision inspection System

As mentioned before, referential methods, the most popular algorithm used for industrial
vision inspection, adopt a comparison either through pixel-based or feature-based method.
An ideal image (standard image/template image) or number of ideal images must be
saved in the database in advance. To make a final decision, one or more threshold values
must be setup. If the difference is out of the threshold value, it means that defect is found.

Usually the threshold is set up based on operator’s experience or trials.

Also referential methods do not consider uncertain factors like lighting sensitivity,
machine dynamics, etc. But all these factors are not avoidable under real industrial
environment. Neural Networks are used in some application cases of vision inspection
system. But the time consuming problem becomes the biggest obstacle for real industrial
implementation. From the viewpoint of industry there are three main difficulties for

vision inspection to be used widely:

» Speed: In modern industries, high-speed production line is widely applied. Real time
monitoring and inspecting system is required to synchronize with the speed of production

line [19].
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* Anti-Noise ability: At present, vision inspection systems require controlled environment
and precise positioning, and assume everything is in perfect condition. But the real
working environment is varied, and improvement should be made to cope with the

uncertainties like illumination, etc.

* Flexibility: Industrial vision inspection systems should be flexible and easy to adjust

from one product to other new products and from one industry to anther one.

The method studied in this thesis is to deal with these problems.

2.5 Design of Experiments

The Neural Networks requires a sufficient number of training data set to be able to
describe the model fully. A too-long learning phase increases the danger of overtraining
[20]. Basically, overtraining means that the Neural Networks becomes too familiar with
historical data and is less able to generalize and handle new data. If insufficient training
data is used, then it causes under training. Thus, the use of different experimental designs
is to find the optimum number of training runs needed for a satisfactory training set for a
Neural Networks. The key is to obtain the maximum information from a minimum
number of data and training runs but still can reach high inspection accuracy. Design of

Experiment (DOE) is the way to deal with this problem.
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Design of Experiment (DOE) is a structured, organized method that is used to determine
the relationship between the different factors (Xs) affecting a process and the output of
that process (Y) [21-25]. This method was first developed in the 1920s and 1930, by Sir
Ronald A. Fisher, the renowned mathematician and geneticist [25]. DOE involves
designing a set of ten to twenty experiments, in which all relevant factors are varied
systematically. When the results of these experiments are analyzed, they help to identify
optimal conditions, the factors that most influence the results, and those that do not, as

well as correlation between these factors.

DOE methods require well-structured data matrices. When applied to a well-structured
matrix, analysis of variance delivers accurate results, even when the matrix that is
analyzed is quite small. Design of experiments is a useful tool that is applied in industry
for product and process design and optimization. Its application leads to an understanding
of the complex relationship between the inputs and the outputs. Dr. Genichi Taguchi has
developed a method based on “orthogonal array” experiments which gives much reduced
“variance” for the experiment with “optimum settings” of control parameters [26]. The
“orthogonal array” has been studied widely and is now recognized as a fundamental

component in the statistical design of experiments.

Orthogonal arrays (OA) mathematically reduce the number of trials of a full factorial
experiment without significantly reducing the effectiveness of the experiments [27-29].

These combinations are chosen to maintain the orthogonality among the various factors,
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so that there are an equal number of test data points under each level of each factor. The
primary use of the orthogonal array is to layout the plan to perform the fractional factorial
experiments. There are two basic types of orthogonal arrays, namely two-level
orthogonal arrays designated as L4, L8, L12, L16, and L32 OAs and three-level
orthogonal arrays L9, L18 and L27 OAs. The number in the array designation indicates
the number of rows in the array, corresponding to the number of trials. For example, an
L8 OA would consist of eight trials. A two-level, eight-trial orthogonal array (L8 OA) is
shown in Table 2.2. There are seven columns in this array, which may have a factor

assigned to each.

Table 2.2 L8 Orthogonal array [24]

Trial No. Column No.

1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
S 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

The levels for the trials are designated by ‘I’s and ‘2’s. It can be seen that all columns
provide four trials under the first level of the factor and four trials under the second level

of the factor. This is one of the features that provide the orthogonality among the factors.

20



2.6 Summary
In this chapter, the traditional industrial vision inspection system is introduced and
followed by the discussions on the drawbacks and improvement goals of the traditional

vision inspection method.
It has been identified that the interference of uncertain factors and inspection speed are

the main problems of the traditional industrial vision inspection system. The following

chapter describes a method under this study to deal with these problems.

21



CHAPTER 3 METHODOLOGY

In this chapter, the statement of three problems under studied is given. The statistics
based Neural Networks method is then introduced and applied to solve the three

problems.

3.1 Problem Statement

There are three problems under study: label printing inspection for printing industry, clips
detection for automobile assembly process and casting failure detection for automobile
water pump manufacturing. These three problems are representatives of industrial vision
inspection problems, the images used for both of training and inspection are affected by
industry environment variations and uncertainties, those variations and uncertainties

make the Neural Networks training process time-consuming and inaccuracy.

Label printing inspection

The main problem of label printing inspection is to detect defective labels that contain
uncertainties including machine dynamics, product variation and illumination variation.
Figure 3.1 shows a letter “H” under inspection. Due to machine dynamics, a good letter
“H”, as shown in Figure 3.1(a), is distorted when captured by a CCD camera. If not

treated properly, this letter would be regarded as defective, while in reality the original

letter is good.
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Therefore, the first task is to filter out the image distortions caused by uncertainties so
that the image shown in Figure 3.1(a) will be judged as eligible and that in Figure 3.1(b)
as defective. The second task is to set a tolerance for inspection in order to account for
the ranges of uncertainties. The proposed algorithm uses a statistical method to define a

tolerance zone and uses a Neural Networks method to take systematic uncertainties into

consideration.
l:> Machine Dynamics |:>
Good Image Distorted Image
(a) Distorted image of good image
Defect
® E? Machine Dynamics :>
Defective Image Distorted Image

(b) Distorted image of defective image

Figure 3.1 Distorted images due to machine dynamics [15]

Clips detection

There are a number of variations in clips detection, including the variations of clip
position, illumination variation and rotation variation. The images under study were

obtained from Van Rob. There are actually quite large differences in the position of the
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clip within the image between different samples as shown in Figure 3.2. Also the lighting

conditions across the samples are not uniform.

Figure 3.2 Position and illumination variation of clips

Considering all the variations, the main problem of clip detection is to decide what kind
of images should be used to train the Neural Networks. Another problem is to decide
whether there would be a minimum training set that can be used to reduce the time of
training but still can keep high inspection accuracy. To achieve these two goals, the
research is made in image processing and image registration to eliminate the noise

information. Design of Experiments is used to find a minimum training set.

Casting failure detection

The main goal of casting failure detection is to check the casting failures on the
connecting plane of an automobile water pump, like inclusions, porosity (blow holes,
pinholes), cold cracking, hot cracking, surface irregularities, and distortion, as shown in
Figure 3.3. The images under study were provided by McMaster University. The part is
placed on a frame so that the positions in all pictures are exactly the same. How to extract

the inspection part from the background and how to detect the tiny defects on the

connecting plane and edge are the main tasks.
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Figure 3.3 Casting failure detection

These three types of inspection problems cannot be solved by the traditional method that
compares a live image with a reference image, without considering the effect of noise
information and uncertainties containing in the images. Statistics based Neural Networks
method is studied to cope with this situation. The method uses only good images to
establish a tolerance zone for inspection, and the Neural Networks is used to filter out the

industrial environment uncertainties.

3.2 Statistics Method

3.2.1 Live Image, Sample Image and Template Image

There are two main types of images in industrial vision inspection. A live image is the
image captured directly from the production line, and a sample image is a live image
selected as a reference image. In practice, an inspection image is required to compare to a

reference image, called template image in industry. However, there is no true template
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image due to various factors. A reasonable way is to create a template image based on a
number of sample images. In this thesis, an averaging method is adopted to create this
image by adding the corresponding pixels of all the good sample images and dividing

them by the number of sample images.

3.2.2 Two Indices

The variances of the rows and the columns are selected as two indices. Variance
measures the deviation from the mean value; therefore it is selected to establish a
tolerance zone that defines an area within which the items under inspection are
considered acceptable. The minimum and maximum values of the two indices provide
four corner points that can form a rectangular tolerance zone in the 2-D plane. The

definitions of row/column numbers and pixel coordinates are given in Figure 3.4.

Pixel
m row
n column
Good sample 1 Good sample 2 Good sample N (N samples)
N L& ~' ¥ R R \
i
Pixel
3 ? m row
f n column
J

Template image

Figure 3.4 Row/Column number and pixel coordinate definition
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The template image is created by the averaging method; it is actually a “mean value

image”. Therefore, for every pixel, the variance is defined as

1 & 2
N;(Pij —Sk_ij) (3-1)

2—
o; =

where N is the total number of the good sample images, C'ijz denotes the variance of pixel
at (i, j), Pijis the gray level of the template image at pixel (i,j), and Sk_jjis the gray level of

the corresponding pixel in the k., sample image, see Figure 3.4.

The variance for a row is determined as

o, =<Ss 32)
- n

where n is the number of pixels in a row, and 02,_i denotes the variance of the i, row.

Likewise, the variance for a column is determined as

o, =130, (33)

where m is the number of pixels in a column, and ozc_i denotes the variance of the jg
column.
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The minimum and maximum values of the row variance, denoted by 6%.min and O maxs

respectively, are obtained as

2 _ . 2 2 2 2
Gr_min _mln(ar_o 9ar_l ’o-r_2 LA ar_m-l ) (3’48)

2 _ 2 2 2 2
Or mx —Max (o, o°,0, 30, 3 seees Op ) (3.4b)

The minimum and maximum values of the column variance, denoted by 6%.min and czr.m,x,

respectively, are obtained as

2 . 2 2 2 2
(o =min (0, 4,0, ," 0. 3 500 O, ") (3.5a)

¢_min [4

2

2 . 2 2
(o =min (o, , 302 150, 3 seeee Oc_py’) (3.5b)

¢_max

Note that n and m also indicate respectively the number of columns and the number of

rows for the image under inspection, and nx m represents the resolution of the image.

3.2.3 Tolerance Zone

Four indices Grmax> (Trmax)s Grmin (Tromin)s Cemax (Temax)s aNd Gemin” (Temin) can be used
to create a tolerance zone, where Ti.max and Ty.min represent the maximum and minimum
row value of the tolerance zone; T¢.max and Tc.min represent the maximum and minimum
column value of the tolerance zone. As shown in Figure 3.5, a rectangular tolerance zone

is created directly using the four points. If the midpoints of the four points are used
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instead, a thomb tolerance zone is created, as shown in Figure 3.6. Therefore, different
combinations of the four points can create different shape tolerance zones that may be

used to handle different inspection cases.

Ur
1&
Tr__max r==
Tolerance
Zone
Tr_min [T '
. 1 > 2
O-C
Tc_min Tc_max

Figure 3.5 Tolerance zone for inspection
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Figure 3.6 Two types' of Rhomb tolerance zones
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3.3 Statistics Based Neural Networks Method

3.3.1 Structure of Neural Networks

Neural Networks, also known as a parallel distributed processing network, is a computing
paradigm that is loosely modeled according to cortical structures of the brain. It consists
of interconnected processing elements called nodes or neurons that work together to
produce an output function. The output of a Neural Networks relies on the cooperation of

the individual neurons within the network to operate.

The most common type of artificial Neural Networks consists of three layers of neurons:
a layer of "input" units connected to a layer of "hidden" units, which is in turn connected

to a layer of "output" units, as shown in Figure 3.7:

Inputs Hidden layer Outputs
X[ Yl
X2 Y2
XN YN

Figure 3.7 A three-layer Neural Networks

® The inputs represent the information fed into the network;
® The activity of each hidden unit is determined by the inputs and the weights on the

connections between the inputs and the hidden units;
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® The outputs depend on the activity of the hidden units and the weights between the

hidden and output units;

3.3.2 Inputs and Outputs

Figure 3.8 shows the Neural Networks structure studied in this thesis, and it is a three-

layer model, consisting of input layer, hidden layer, and output layer, with two nodes in

each layer.
Inputs Hidden layer Outputs
Row Index of image i Row Index of image j
Column Index of image i Column Index of image j

Figure 3.8 Neural Networks structure

In most vision inspection applications, industrial environment uncertainties and product
variations are difficult to measure and will affect the inspection accuracy. The method
under studied uses supervised learning algorithm, which means inputs and outputs should
be given in advance. In this study, the input and output are the average row and column

index of a pair of live images, and they are defined as

18 2
O-r_average =—2.0:i (3 .68)
m'iz
2 18 2
O-c_average =— O"_.- j (3 6b)
n j=0
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2 2 . .

where 6°r.average and G ayersge- denote the average row and column index of an image,
. 2 2 . . .

respectively, and o and o ;* denote the variance of the i,y row and the jmmn column,

respectively.

3.3.3 Training

The network training is carried out for all the sample images pairs to fully describe the
nature function. When the two indices value of the input sample image is transferred into
that of the output sample image, the training process of one image pair is considered done.

The number of the training pairs can be obtained by:

_N(N-1)

N Pairs — 2 (3 '7)

where N is the number of sample images. The weights between each two layers are
obtained after training. As show in Figure 3.8, the structure between inputs and outputs
layer which contain weights and hidden layer forms a transfer function TF and it can be

regarded as the filter that can filter out the systematic uncertainties to a certain extent.

This industrial vision inspection software was developed by Yi Zhu in 2005 [1]. Figure

3.9 shows the training process and the convergence performance curve.
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] Figure 3.9 Neural Networks trainingw(‘)f clips détéétion

3.3.4 Tolerance Zone

After the transfer function is obtained, the maximum and minimum indices of each
sample image are recomputed to filter out the systematic uncertainties. As illustrated in
Figure 3.10, Gr-mins Or-max’s Oc-min: aNd Gemax> before filtering are recomputed, which are

denoted as Gr.min, Gr-max» Ge-min and Ge.max.

Sample 1 Sample 2 cens Sample N

cmw_m.xz of N sample Grow_max Of N™ sample

th
0?.:ol_maxz of N* sample Gcol_m;x of N™ sample

cm,_mi,.z of N* sample Grow_min Of N" sample

th
Ocol_ ...;..2 of N" sample Geol_min Of N™ sample

Figure 3.10 Filtering by transfer function
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To define a tolerance zone, the global maximum and minimum indices are searched over

all the sample images, as defined below

Tr_max = max{ (Gr_max)l, (Gr_max)Z: sesensy (Gr_max)N } (38&)

T+_min=min{ (Gr_min)1, (Gr_min)2s +evees (Gr_min)N} (3.8b)

where T;_min and T, max define the eligible row index range. Likewise,

Tc_max =nax { (Gc_max)l, (Gc_max)2a seceeey (Gc_max)N } (393)

Tc_min = min{ (Gc_min)h (Gc_min)Z, ceeenny (Gc_min)N} (39b)

where T¢ min and T¢_max define the eligible column index range. The tolerance zone is

then defined by Tr_max, Tr_min, Tc_max and Tc_min as shown in Figure 3.5.

3.3.5 Inspection

Once the Neural Networks is well trained and the tolerance zone is created, the inspection
can be carried out. As shown in Figure 3.11, the system uncertainties of the maximum

and minimum indices of a live image are filtered out by the transfer function TF which

gives two POintS (Lrow_max, Lcol_max) and (Lrow_mim Lcol_min)~

Only when these two points are all located in the tolerance zone, the live image is

regarded as good, otherwise it is defective.
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cmw_mxzof live image Lrow_max
o TF

Ocol_max Of live image Leol_max

Grow_min” Of live image Liow._ min
. " TF i

Ocol_ min Of live image Lot min

Figure 3.11 Inspection

Figures 3.12 shows an example of inspection, the two points that created the tolerance
zone created are (164.776, 171.326) and (13.914, 22.619), red points are the filtered
minimum indices of live images, and blue points are filtered maximum indices of live

images.

Row Maximum = 164.776.Column Maximum = 171.326 1 B
Cohni- Row Minimum = 13.914.Celumn Minimum = 22.619
200 :

| . Ilmeget: - ES
Row max = 184.723.Columa max = 119315
! Row min = 40.370, Celuma mia = 50.552

o E—

‘l-.ge!:
-~ Row max = 86.252.Column max = 101.681 .
Rnp-hymt-hm-:ﬂ--g!.‘ll o

image 3: S .
° * Rowmax = 88.262.Columa max » 78.575
° e . . :Rowmia=19.245, Colema mia = 36.993

- . 1‘ Row max = 172.687.Columa max = 147.778
L4 e,

¥

v
Reow max = 170.124.Colema max = 143.82
min = £6.249, Columa min = 65.763

Figure 3.12 Clips detection inspection result
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3.4 Summary

In this chapter, the statistics method and statistics based Neural Networks method are
discussed in detail. The statistic method is fast but does not consider the uncertain factors.
The hybrid method combines the fast speed of the statistic method and the ability of the

Neural Networks method to account for the uncertain factors.
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CHAPTER 4 PRACTICAL CONSIDERATIONS OF

INDUSTRIAL VISION INSPECTION

In this chapter, the practical considerations of the inspection system based on the
proposed method are described. This industrial vision inspection system uses good
sample images to train a Neural Networks which could filter out the uncertainties. An
inspection image is filtered by the Neural Networks first to remove uncertainties and then

compared with the tolerance zone.

Three industry examples are presented: label printing inspection for printing industry,
clip detection for automobile assembly process and casting failure detection for

automobile water pump manufacturing.

4.1 Image Processing
Image processing is one of the important steps in industrial vision inspection, which is to
improve the quality of the image for subsequent steps. Factors that influence the quality

of the images include background, illumination, and human interferences.

Lighting is an important part of any industrial inspection system. By careful selection of a
light source and its positioning, the effectiveness of inspection can be improved. It is
more cost effective and better engineering practice to capture a good image at source,

rather than spend a lot of efforts to clean it up later. For example, threshold is a simple
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image processing technique, and is only reliable if there is a high contrast between the
regions to be divided. Figure 4.1 and 4.2 illustrate an application where screws are being
inspected for size. Image processing is greatly simplified when a high-contrast image is

obtained by backlighting, rather than a multiple grey-scale image from front lighting.

Figure 4.1 Silhouette of screw obtained by back-lighting [30]

Figure 4.2 Silhouette of screw obtained by front-lighting [30]

Images for inspection obtained directly from the product line contain both useful and
useless information. Useful information is the main part of an inspection process. Useless
information is also defined as noise factor that affects the inspection accuracy. For
different image acquisition methods and lighting conditions, different types and
quantities of noise will be obtained. The useful information is defined as Region of
Interest (ROI) that contains the main inspection zone. Figure 4.3 shows the example of

ROI in label printing inspection. The images under study were supplied by Rotoflex.
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(a) the original image (b) ROI of image

Figure 4.3 Label printing inspection [15]

Figure 4.4 shows the ROI in the clip detection on a cross-bar assembly process. The clips

inside the red rectangular boxes are the main targets of inspection, which is the ROL

Figure 4.4 Clips detection

Figure 4.5 shows the ROI in the casting model inspection. The main goal of this
inspection is to check the casting failures on the connecting plane of an automobile water
pump, like inclusions, porosity (blow holes, pinholes), cold cracking, hot cracking,
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surface irregularities, and distortion, as mentioned before. Figure 4.5 (a) is the original
image that contains considerable background noise information, Figure 4.5 (b) is the

image after pre-processing that contains only useful information.

(b) Image with only useful information

Figure 4.5 Casting failure inspection
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4.1.1 Fixed Crop Zone

For clip detection, a cross-car beam contains clips at various points across its surface, and
these clips must be present at the required locations and properly seated in the beam. In
inspection, the part is moving fast in front of the camera. Pictures with the clip present

and missing are shown in Figures 4.6 and 4.7.

Figure 4.7 Clip missing
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Since these images are not registered, there are quite large differences in the positions of

the clips within the images between different samples as shown in Figure 4.8.

The lack of alignment poses a problem for any method that tries to directly compare two
images, e.g., for comparison against a template image. One method could be to
compensate for this by locating the appropriate sub-image for comparison, but this

problem is almost as difficult as finding the clip itself.

Figure 4.8 Position variation of clips
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To find the ROI from the raw image, one of the easiest ways is cropping the images with
a fixed zone that could contain all the position variations of clips in all sample images.

Figure 4.9 shows the images after cropping.

i“r.w. ;w +

Figure 4.9 Position variation of clips

4.1.2 Colour Filter

The RGB colour model is an additive model in which red, green, and blue are combined
in various ways to reproduce other colors [31]. These three colors should not be confused
with the primary pigments of red, blue, and yellow, known in the art world as ‘primary

colors’.

When working with a picture of an inspection part, changing one colour to another seems
like a trivial bitmap manipulation. But a single image can have thousands of colors
(unique RGB triples). For example, the original picture shown in Figure 4.10 has 109,014

colours in it, while the clip contains over 3,600 colors in Figure 4.11.
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Figure 4.10 Colour information of original image
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Figure 4.11 Colour information of clip only

Instead of selecting a single R-G-B triple, often a small colour cube with a range of R-G-
B values can be selected for change. In addition to working with RGB colour space, other
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color spaces, such as HSV (Hue-Saturation-Value), are useful. With HSV color space, a
Hue of 0 degrees is red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue and 300
degrees is magenta. Saturation and value range from O to 255. The "dark yellow" pixels

are rejected above by only selecting "Values" above 128.

By setting appropriate excluding colour (black is chosen for above example) and value
for R-G-B, most of background information could be filtered out. The result is shown in
Figure 4.12, by excluding red color intensity from 6 to 120, the most part of background

noise information is wiped off.

® Color Range: D:\Flles\Ryerson University\Thesisimages\_ Orlginaliresentiview?-000.... [= | &3
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Figure 4.12 Image without background noise

4.1.3 Mask Matrix

Another way to extract the inspection zone is to merge the raw image with a mask matrix.

A mask matrix is created by using a good sample image. This method is only applicable
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to parts that are installed on a frame when taking photos by a camera. For the casting
failure detection, the model is placed on a frame so that the positions of the model in all

pictures are exactiy same.

The images under study are grayscale. Grayscale images intended for visual display are
typically stored with 8 bits per sampled pixel, which allows 256 intensities (i.e., shades of
gray) to be recorded, typically on a non-linear scale. The accuracy provided by this
format is very convenient for programming. Figure 4.13 shows part of the original image

and its original grayscale value matrix.

117 111 108 107 112109
123 116 '110 104 107 109

131 119 1111 107

134 128 115 11

10 110
137 129 116 117 111 109

Figure 4.13 Original image and its grayscale value matrix

MATLAB Image Processing Toolbox is used to create a mask matrix which provides a
comprehensive set of reference-standard algorithms and graphical tools for image

processing, analysis, visualization, and algorithm development. Steps are given as

follows:

Firstly, load the image into MATLAB as a matrix, and the image is shown in Figure 4.14.
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Figure 4.14 Loading image into MATLAB
Second step is finding the threshold grayscale value of each pixel. The pixel with

grayscale value below the threshold value is set to be “0”, which is the black area as
shown in Figure 4.15. Oppositely, the pixel with grayscale value above the threshold
value is set to bé 255, which is the white area. The image is converted to a black-white
format after this step, as shown in Figure 4.15. Figure 4.16 shows part of the BW image

and its grayscale value matrix.
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Figure 4.16 B&W image and its grayscale value matrix

The B&W image contains the main inspection zone along with many noise zones that
have grayscale values also higher than the threshold value. To get rid of the noise, an area

calculation is applied to the image. As shown in Figure 4.15, each area caiculation is the

accumulation of the white pixels.
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After obtaining all the areas of the white zones including main inspection part and noise
information zones, the maximum one is kept, as it is the main inspection part, to form the
mask matrix. The values of others noise information pixels are artificially set to be “0”.
The obtained mask is shown in Figure 4.17. The live images are merged with the mask

matrix to extract the inspection zone, as shown in Figure 4.18.

By - - . B v
e

osue

Figure 4.17 Mask matrix for casting failure detection

Figure 4.18 Live image after merged with mask matrix
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4.1.4 Fast Fourier Transformation

A simple approach to solving the clips detection problem is via a line profile. To use this
technique, a horizontal or vertical line is placed over the clip at some point. Ideally, this
line should cross the clip at the same point in each test. The intensity values of the pixels
along the line can then be used to form a histogram or another one-dimensional

representation. Usually, this would be done with a greyscale image.

The graph can then be characterized in different ways, such as locating maxima or
minima, determining various moments, etc. The goal would be to choose a few variables

whose values strongly correspond to either presence or absence of the clip. See Figure

4.19 for a demonstration of the technique, a horizontal line profile is used.

Present and missing clips with line path superimposed

300 T T 300
200
z 2 z
£ 400 = 100
0 - . 0 y y
0 25 50 0 25 50
Position Position

Resulting line profiles

Figure 4.19 Line profile of clips detection
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The Fast Fourier Transform is an important image processing tool which is used to
decompose. an image into its sine and cosine components. The output of the
transformation represents the image in frequency domain, while the input image is in

spatial domain.

FFT is one practicable way for clip detection. It can solve the problem of position change
of the clips. In the present analysis, there are only three situations to be identified: clip
present, clip missing and clip missing but with a robot arm in the hole, as shown in

Figure 4.20.

Clip present Clip Missing Clip missing with Robot arm

Figure 4.20 Three types of images

Using a horizontal line over the clip at same point on these three situations, Figure 4.21
shows the spectrum of each situation. Clearly, the FFT of line profiles can be used to
determine if the clip is present, even though the position of the clip is changed, and the

difference of base frequencies between missing and present is distinct.
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Figure 4.21 Fast Fourier Transform of three type images

The obvious drawback of this approach is that it can only determine if the clip is present
or missing. Other features, such as determining the angle of the clip, cannot be
determined easily using line profiles (although it could be done if several line profiles
were made). The technique is also quite sensitive to changes in position of the clips,

which are common in this problem.

4.2 Image Registration

Image registration is the process of establishing point-by-point correspondence between
two images of a scene. This process is needed in various computer vision applications,
such as stereo depth perception, motion analysis, change detection, object localization,

object recognition, and image fusion. Image registration is a crucial step in all image

analysis.
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A two point-based registration method is adopted [15] for image registration. This
method is based on computing the center positions of two identical objects images, such
as letters or a zone with a distinctive character. Two corresponding lines can be identified
on both base image and registration image that can be used to register both in position

and orientation.

Step 1: Zone Selection

Select two registration zones and find the center of each zone of the base image and
sample image. Figure 4.22(a) shows a base image for registration in which two areas are
picked. Figure 4.22(b) shows an image to be registered, in which two corresponding areas

are also picked.

(b) Image to Be Registered

Figure 4.22 Two-Point registration

Step 2: Position Registration

Two registration lines can be formed for both the base image and registration image by
linking the two pairs of center points. The two images can be registered in the right

position using the two midpoints of the registration lines, see Figure 4.23. Figure 4.24
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shows a‘registration example of a clip, image No.2-535 is registered based on image

No.2-018.

Line in base image
<4—— | formed by two points
B1 and B2.

Line in sample image
formed by two points
I1 and 12.
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Figure 4.24 Image registration
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4.3 Summary
In this chapter, the practical considerations for industrial vision inspection are discussed
which focus on image processing and image registration. Image processing and image

registration are two important steps to reduce the noise effect before the images are used

for Neural Networks training and inspection.
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CHAPTER S OPTIMIZATION OF TRAINING

DATA

In this chapter, optimization of training data is discussed. To adequately describe an

engineering problem, a large number of training data are needed to train the Neural
Networks. However, this will be very time consuming. The best solution is to find the

minimum number of training data.

5.1 Taguchi Method

Too-long learning phase increases the danger of over-training [5]. Basically, over-
training means that the Neural Networks becomes too familiar with historical data and is
less able to generalize and handle new data [5]. If sufficient training data is not used, then
it causes under-training. The use of design of experiments is to find the minimum number
of training data needed for a satisfactory training set for a Neural Networks. The key is to
obtain sufficient information from a minimum number of data to carry out training with

high inspection accuracy. The Taguchi method provides such a solution.

An important component of The Taguchi method is the categorization of factors into two
major categories: control factors and noise factors [24, 32]. Noise factors are those either
not under the perfect control of the management or controlled only through substantial
effort and cost. The control factors are controllable variables or managerial decision

factors. During the robust design phase of Taguchi’s method, the relative importance of
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each control factor on the performance is identified. By finding the best parameter
settings, the selected alternative is improved or optimized, in the sense that the
performance is satisfactory even under uncertainty in the manufacturing environment.
Ideally, parameter settings are sought that minimize the variation of the performance

characteristics around its mean and adjust this mean to the target value.

For industrial vision inspection, considering the noise factors (industrial environmental
variations and product variations), the Taguchi method helps to choose the best training
data. After analyzing all the images taken from the product line, there are four kinds of
noise factors, as shown in Figure 5.1 and Figure 5.2, including illumination, horizontal
and vertical position variations, rotation and robot arm when clip is missing. Only the

images where clip is present are used to train the Neural Networks; thus, the robot arm

noise is not considered.

Figure 5.1 Position and robot arm noise factor
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Three levels are defined for each factor. Table 5.1 lists the noise factors and levels. For

Figure 5.2 Illumination variation

illumination, there are bright, medium and dark levels. The horizontal variation has the

left, center and right levels. Vertical variation has the upper, center and lower levels.

Rotation variation has clockwise, center and counter-clockwise levels.

Table 5.1 Noise factors and levels

Factors Levels
A A . .
Ilumination Bright Medium Dark
B . Left Right
Horizontal | 5 . clsto the left edge) | C°™'F | (5 pixels to the right edge)
C .. . Upper Lower
Position |  Vertical (5 pixels to the up edge) Center (5 pixels to the down edge)
D Rotati Clockwise Center Counter Clockwise
otation (5 degree) (5 degree)

5.2 Orthogonal Array

Assuming there are no interactions between these factors, a standard Ly orthogonal array

can be obtained based on these four factors and their three levels, as shown in Table 5.2.

By using this Lo orthogonal array, the experiments trial run is reduced from 81 to 9. Each

trial run represents one kind of image, such as trial run No.1. This is the image that has

the clip located at up-left in the fixed zone and its illumination is bright. Training and
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inspection is based on these nine kinds of image set. First, nine sample images for each
case are chosen to train the Neural Networks; then another fifteen selected live images

are used to test the inspection accuracy.

Table 5.2 Lo Orthogonal array

Trial Noise Factors

Runs A B C D
1 1 Bright 1Left 1 Upper 1CW
2 1 Bright 2 Center | 2 Center | 2 Center
3 1 Bright 3 Right 3 Lower 3 CCW
4 2 Medium 1 Left 2 Center 3CCW
5 2 Medium 2 Center 3 Lower 1CW
6 2 Medium 3 Right 1 Upper 2 Center
7 3 Dark 1 Left 3 Lower 2 Center
8 3 Dark 2 Center 1 Upper 3 CCW
9 3 Dark 3 Right 2 Center 1CW

An example is shown in Figure 5.3, the nine sample images with its clip located at the
center-left with a bright illumination are used to train the Neural Networks, and another
selected fifteen live images are used to test the accuracy of the inspection. The overall
error inspection, positive faults and negative faults are calculated. Positive fault means
that the clip is present but the inspection system shows that it is missing. Negative fault
means that the clip is missing but the Neural Networks system shows that it is present.

Obviously, negative fault can not be accepted.
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Figure 5.3 One orthogonal array test

5.2.1 Calculation of S/N ratio for each trial run

In each trial run, the number of wrong inspection over the total number of images is

defined as the overall error inspection:

EI

wi

N,

otal
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Where EI, is the overall error inspection for i, run, N, is the number of wrong

inspection including positive faults and negative faults, N, is the total number of

images being inspected, which is fifteen in this study.
The S/N ratio for each experiment was then calculated as:

S/N =-10log,,(EI,) (5.2)

Table 5.3 below lists the calculation results and S/N ratios for each experiment

Table 5.3 S/N ratios for each experiment

A|B|C|D| EI S/N
1 |1]|1]1(1]0.400 | 3.9794
2 [1(2(2]2]0.267 | 5.7398
3 11|3[|3]|3]0.600 | 22185
4 |2|1]2|3/0.600 | 22185
5 {2]2(3]1]0533] 2.7303
6 [2|3(1]2]0.533] 2.7303
7 |3]|11]3]2]0333 ]| 4.7716
8 |312|1]3]0533| 27303
9 [3|13]2]1]0.600 | 22185

5.2.2 ANOM Results

An analysis of means (ANOM) table was created, see Table 5.4. An ANOM table shows

the effect of the S/N ratio on each factor for each level.
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Let y; be the observed S/N ratio when a factor A is at level i, and a factor B is at level j.

Thus, the average sample mean when factor A is at level i is:

> y,) (5.3)

7., =}(Zm) (5.4)

In the above equation, i is the number of times level i occurs for factor A, and J is the

number of times level j occurs for factor B.

Table 5.4 ANOM table
Levels
Factor
1 2 3
A 3.9792 2.5597 3.2401
B 3.6565 3.7335 2.3891
C 3.1467 3.3923 3.2401
D 2.9761 4.4139 2.3891

These effects are also shown in Figure 5.4.
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Figure 5.4 Plots of factor effects

As mentioned before, the combination of the different level for four factors is one sort of
image; therefore, an importance sequence of the nine sorts of images can be obtained by
adding the corresponding level of each ANOM value from each factor, as shown in Table
5.5. Because the rotation variation (factor D) is within 2 degree and only appeared in a
few images, therefore, only factor A, B, and C are computed.

Table 5.5 Sequence of nine sorts of images

AB|C| iNom |'Sequence
1 1 1 1 10.7824 2
2 1 2 2 11.1049 1
3 1 3 3 9.6084 5
4 2 1 2 9.6084 6
5 2 2 3 9.5333 8
6 2 3 1 8.0955 9
7 3 1 3 10.1368 3
8 3 2 1 10.1202 4
9 3 3 2 9.0215 7
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5.3 Minimum Training Set

For each trial run that has a 9-sample-image training set, the test results show both
positive and negative faults. A tighter tolerance zone should be created to reduce the
negative faults. One way to create a tighter tolerance zone is to change the quantity of the
sample images for Neural Networks training. More experiments are carried out to

obverse the variation of accuracy when changing the number of images for training.

Figure 5.5 shows an experiment when using only two images to train the Neural
Networks. The tolerance zone is so tight that a lot of positive faults appeared. As shown

in Figure 5.6, ten out of eleven images are wrong detected.
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Figure 5.5 Trained by two sample images
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Figure 5.6 Inspection result of Neural Networks trained by two images

Figure 5.7 shows an experiment when using twelve images to train the Neural Networks.
The tolerance zone is so loose that a lot of negative faults have appeared. As shown in

Figure 5.8, all twelve images are wrong detected.

Figure 5.7 Trained by twelve sample images
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Figure 5.8 Inspection result of Neural Networks trained by twelve images

Table 5.6 shows the variation of accuracy under different number of training images, a
total of 194 images (including 59 defective images) are used to test the accuracy for each
training set:

Table 5.6 Inspection accuracy base on different training set

Num.b er of Positive | Negative | Inspection
No. | Training | “g, e Faults | Accuracy
images

1 2 113 0 41.8%
2 4 37 0 82.5%
3 6 13 0 93.3%
4 8 9 7 91.8%
5 10 5 27 83.5%
6 12 5 38 77.8%
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As shown in Table 5.6, when only two images are used to train the Neural Networks,
there are 113 out of 135 positive faults and no negative faults, and the inspection
accuracy is only 41.8%. When training set increases from 2 to 12, positive faults decrease
from 113 to 5 out of 135, but negative faults increase from 0 to 38 out of 59. As
mentioned before, negative faults can not be accepted. Comparing the six-image training
set with eight-image training set, the inspection accuracy are all higher than 90%, but
eight-image training set will cause 7 negative faults. Hence six-image training set should

be considered to be the final decision.

Now, another decision has to be made as to which three images will be reduced while
using only six sample images according to the importance sequence. Finally, six from
135 images were chosen as the best minimum training set. 440 (including 381 good and
59 bad) live images are chosen to test the Neural Networks system. The accuracy
achieved was 94.5%, 24 images were detected wrong, which were all positive faults. The

inspection results are shown in the following chapter.

5.4 Summary

In this chapter, the Taguchi method is used to find the minimum training data set. A four
factor, three-level Lo orthogonal array is used to reduce the experiment trials. From the
experimental results, a six-sample-image training set is chosen to train the Neural

Networks.
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CHAPTER 6 EXPERIMENTAL VERIFICATION

To verify the accuracy of the industrial vision inspection system, a large number of
experiments are carried out on the three industry problems mentioned in Chapter 3. The

system is tested using both good images and defective images.

6.1 Label Printing Inspection

14 images (shown in Figure 6.1) were used for the Neural Networks training, and 58
images were used for inspection tests, among which 19 are with defects. Figure 6.2 (a) to
(f) shows the inspection results of 58 images. The arrow signs in Figure 6.2 (b) and ()

point out the false inspections.

From the test results, it can be seen that 18 defect images are detected as defective. There
is one positive fault, as shown in Figure 6.3 (a). And there is one negative fault because
the defect portion is tiny and located in the black background area, as shown in Figure

6.3(b). In total, there are 2 inspection faults out of 58, and the accuracy is around 96%.
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Figure 6.1 Sample images for training
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Figure 6.2 (b) Inspection of 2™ set of 10 images
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Figure 6.2(c) Inspection of 3" set of 10 images.
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Figure 6.2 (d) Inspection of 4" set of 10 images
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Figure 6.2 (e) Inspection of 5™ set of 10 images
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Figure 6.2 (f) Inspection of 6™ set of 8 images
Figure 6.2 Label printing inspection result
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Figure 6.3 (b) negative fault

Figure 6.3 Two wrong detections
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6.2 Clips Detection

The use of the Taguchi method effectively reduces the quantity of sample images to six
images that are used for the Neural Networks training. 440 images were used for

inspection tests, among which 59 are defective without clips on the beam.

Figure 6.5 shows inspection results. In Figure 6.5(a), (b), and (c), the arrow signs point
out the false inspections which are all positive faults. Figure 6.5(d) and (e) show the
inspection results of all 59 defective images, there are no negative faults. In total, there
are 24 positive faults out of 440 images; the accuracy is around 94.5%. The results show
that the tolerance zone created by 6 sample images chosen after using the Taguchi
method can contain all the variations including position, rotation, illumination and robot

arm when clips are missing.
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Figure 6.4 Six sample images
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Figure 6.5 (a) Inspection of 1% and 2™ sets
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Figure 6.5 (b) Inspection of 3™ and 4% sets
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Figure 6.5 (c) Inspection of 5™ and 6" sets
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Figure 6.5 (d) Inspection of 7™ and 8" sets
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Figure 6.5 (¢) Inspection of 9™ and 10" sets

Figure 6.5 Clips detection inspection result
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6.3 Casting Failure Inspection

Only thirteen images are obtained from the water pump product line. Four good sample
images are used for Neural Networks training, and the other nine defective images are
used for testing. The good sample images are shown in Figure 6.6. Figure 6.7 shows the
inspection results of nine defective images. Although there is no false inspection, it is

necessary to test the network with more live images in the future.

Figure 6.6 (b) sample image #2
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Figure 6.6 (d) sample image #4

Figure 6.6 Four sample images of casting failure detection
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Figure 6.7 (b) Inspection of 2™ set of 3
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Figure 6.7 (c) Inspection of 3™ set of 3 images

Figure 6.7 Casting failure inspection result

85



CHAPTER 7 CONCLUSIONS AND FUTURE WORK

In this thesis, a hybrid method is studied. This method combines a statistical method with
a Neural Networks method. Neural Networks are trained using two indices from a set of
sample images. The inspection system has been implemented and verified on both label
printing and auto part manufacturing process. According to the results, the inspection

accuracy was around 95%.

7.1 Contributions

The contributions of this thesis are listed below:

1. Reduction of noise information
As mentioned in the beginning of the thesis, industry environmental variations and

product variations are two problems that should be solved to improve inspection accuracy.

To remove the background noise information and to extract the inspection part from the
raw images of clips detection, a fixed crop zone is developed. The position and rotation
variations can be encircled inside the fixed crop zone. This method is applicable to

products to be inspected with a simple shape.

The mask matrix is implemented to solve the problem for the products to be inspected if
they have a complicated shape and their edge is hard to detect. A mask matrix is

established based on a sample image and containing only “0” and “255”, which is black
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and white in grayscale. The white area is the mask of inspection part. For casting failure
detections, the connecting plane of a water pump to be inspected can be exactly extracted
from a raw image by merging it with the mask matrix. This method is applicable to

products which are installed on a frame when taking photos by a camera.

2. Minimum Training Set
The Taguchi method is used to find the minimum training set in clips detection with
diverse and abundant images. The variation is classified into four noise factors, and three

levels are defined for each factor.

A four-factor, three-level Lo orthogonal array is used to cope with reducing the number of
trials without significantly reducing the effectiveness of the experiments. After analyzing
the experimental results, an importance sequence is obtained that helps to decide which
sort of image should be chosen to form a minimum training set. Finally, a six-image
training set is chosen for network training, and the inspection accuracy is 94.5% without

negative faults.
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7.2 Future Work

Although the simulation results show that the industrial vision inspection system can

obtain good performance and high accuracy, some future work is suggested as follows:
1) More testing should be done based on other industries and live images.

2) To improve the accuracy and reduce the positive faults, a better sample image

choosing method should be developed.
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