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Abstract

Many approaches have been taken towards the development of a compliant stereo correspon-

dence algorithm that is capable of producing accurate disparity maps within a short period of

time. There has been great progress over the past decade due to the vast increase in optimiza-

tion techniques. Currently, the most successful algorithms contain explicit assumptions of the

real world such as definitive differences in disparity among objects and constant textures within

objects.

This thesis starts by giving a brief description of disparity, along with descriptions of some

common applications. Next, it explores various methods used in common stereo correspon-

dence algorithms, as well as gives an in depth description and analysis of top performing algo-

rithms. These algorithms are later used to compare with the proposed algorithm.

In the proposed algorithm, frequency stereo correspondence in parallel with the traditional

color intensity stereo correspondence is used to develop an initial disparity map. Frequency

stereo correspondence is achieved using a winner-take-all block based Discrete Cosine Trans-
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form (DCT) to find the largest frequency components as well as their positions to use in dis-

parity estimation. The proposed algorithm uses methods that are computationally inexpensive

to reduce the computational time that plagues many of the common stereo correspondence al-

gorithms. The proposed algorithm achieves an average correct disparity rate of 95.3%. This

results in a disparity error rate of 4.07% compared to the top performing algorithms in the Mid-

dlebury website [1]; the DoubleBP, CoopRegion, AdaptingBP, and ADCensus algorithms that

have error rates of 4.19%, 4.41%, 4.23%, and 3.97%, respectively. Additionally, experimental

results demonstrate that the proposed algorithm is computationally efficient and significantly

reduces the processing time that plagues many of the common stereo correspondence algo-

rithms.
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Chapter 1

Introduction

The human visionary system is a complex system that provides the perception of objects in

terms of color, texture, motion, and depth [11]. This has been widely explored in stereo vision

in the attempt to replicate this complex visionary system. One major problem in computer

vision that has become a key topic of research is stereo matching [6]. Stereo matching is de-

fined in [12] as finding the corresponding relationship between pixels from two images taken

from the same scene, and to use this correspondence in extracting disparity information. For

upcoming applications such as Free-Viewpoint Television (FTV) and Multi-view Television

(MTV) stereo matching plays a key role in achieving a high quality experience. Currently, two

problems plague many stereo correspondence algorithms which cause them to be unsuitable

for real time; (1.) The matching accuracy of the produced disparity map, and (2.) the compu-

tational time of the algorithm [9]. Current algorithms are not capable of producing accurate

disparity maps while maintaining a fast computation speed. Alternatively, algorithms that are

capable of achieving fast computational speeds can only achieve acceptable accuracy rates for

small sized images. In the following, we first introduce the definition of disparity as well as

different applications and problems associated with stereo correspondence in Chapter 1. Then,
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CHAPTER 1. INTRODUCTION
1.1. DISPARITY

in Chapter 2, we discuss several stereo correspondence techniques as well as several classical

stereo correspondence algorithms. Chapter 3 introduces the proposed method that uses fre-

quency components in determining the disparity map. Chapter 4 describes the experimental

setup as well as the results that were achieved. Lastly, Chapter 5 concludes this thesis.

1.1 Disparity

To better understand the concept of this work, the definition of disparity should first be ex-

plained. First, disparity must be understood in two different instances [13, 14]. Disparity

mapping defined in stereo image coding differs from its definition used in stereo vision. Dis-

parity mapping in stereo image coding refers to the representation of the depth information,

whereas stereo vision requires the depth information. Here, stereo vision does not necessarily

need the true disparity map, the depth information, if the disparity maps corresponding to each

camera can be calculated.

It should be understood that schemes such as MTV and FTV all aim to provide the audience

with a 3D experience. To properly produce the 3D experience, 3D applications broadcast two

separate views, corresponding to the left eye and right eye. Alternatively, a more desirable

approach, would be to broadcast one view along with side information. This side information

is typically the calculated disparity information of the scene.

1.2 Acquiring Depth Information

There are multiple ways of obtaining depth information from a 3D scene. One example is by

using a laser range camera and the other is by using a stereo image pair with the assistance

of triangulation, this is commonly referred to as stereo vision, stereo matching or stereo corre-
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1.3. STEREO CORRESPONDENCE APPLICATIONS
CHAPTER 1. INTRODUCTION

spondence [15]. In short, stereo correspondence refers to the process of matching correspond-

ing pixels from one image to the other. Techniques used to achieve stereo correspondence will

be explained in further detail in Chapter 2.

1.3 Stereo Correspondence Applications

1.3.1 MTV - Multi-view Television

MTV aims to provide the user with a larger amount of viewing angles though the viewing

angle of the scene can not be freely controlled like Free-Viewpoint TV. MTV uses Multi-view

Coding (MVC) provided in the H.264/MPEG-4 AVC video compression scheme.

MVC enables efficient encoding of scenes captured simultaneously from multiple cameras.

Technically, due to the large amount of data multi-view videos contain, MVC takes advantage

of the large amount of inter-view correlation by using efficient predictive coding of neighboring

views. A prime example of the implementation of MTV and the MVC coding scheme is the

famous Matrix bullet time scene where there are a finite number of cameras with a virtual view

calculated in between each camera to give the illusion of a moving camera from one point to

another.

1.3.2 FTV - Free-viewpoint Television

FTV originally proposed by [5, 16, 17] aims to provide an innovate visual media experience

that enables the user to view any 3D scene by freely changing the viewpoint. This application

provides the user with the ability to freely control the camera angle and camera location at any

point in time.

[5, 18] provides a set of problems that must be resolved for FTV to be realizable. Some of

3



CHAPTER 1. INTRODUCTION
1.4. FUNDAMENTAL STEREO CORRESPONDENCE PROBLEMS

the more concerning problems are:

• Representation: Efficient data representation must be done to best describe all views

within a 3D space.

• Capturing: Due to the nature of FTV, cameras must be treated differently, where cameras

with different characteristics must be treated as a single camera.

• Rendering: Since only a finite number of cameras can be used, the remaining infinite

number of viewpoints must be generated.

FTV representation uses the Ray-space representation proposed in [19]. The ray-space

representation derives a virtual space that incorporates all possible viewing angles through the

collection of viewing angles. The ray-space representation will be explained in certain detail

in Section 2.3.1, where it produces an infinite number of views within the camera array.

1.4 Fundamental stereo correspondence problems

There are obvious limitations in determining the disparity among a pair of stereoscopic im-

ages, though the most apparent of these problems are occlusions, noise and biasing, and the

maximum disparity limitations.

1.4.1 Occlusions

There are two types of occlusions present in a pair of stereoscopic images. The first is the

occluded regions along the borders of each stereo image. This is caused by the horizontal

movement of the camera with respect to the scene. This of course shifts the scene with respect

to the horizontal shift of the camera. The second form of occlusions are those present within

4



1.4. FUNDAMENTAL STEREO CORRESPONDENCE PROBLEMS
CHAPTER 1. INTRODUCTION

Figure 1.1: Occlusions

the scene when a 3D point in an object is visible in one viewpoint but not the other. The com-

bination of these occlusions can cause multiple problems when trying to achieve an accurate

depth map. Figure 1.1 visualizes these two cases of which occlusions can occur. Here, Figure

1.1 shows different scenarios of occlusions on the pixel, PO.

These occlusions typically happen at an edge of a foreground object where no information

from neighboring views are available. Therefore, in stereo correspondence algorithms, these

portions of the image are typically left blank or dataless [20]. Since the intensity of occlusions

is caused from the shifting distance of one real camera from another, the occlusion intensity

can be minimized by reducing the distance between the two cameras.

1.4.2 Noise and Biasing

Modern cameras used in stereo correspondence are typically very susceptible to both noise and

biasing. In realistic applications, it is very hard to remove noise and biasing prior to scene

capturing, thus to ensure that the lowest matching cost can be achieved between stereoscopic

images, both noise and biasing must be done in the preprocessing step through several filters

and algorithms.
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CHAPTER 1. INTRODUCTION
1.5. CONTRIBUTIONS AND MOTIVATIONS

1.4.3 Maximum Disparity Limitations

Due to the nature of disparity maps and view generation, [21] determined that the horizontal

distance between two matching points in a stereoscopic pair of images is limited to a maximum

of 3% of the image width. This results in a limitation to the maximum distance between

two stereoscopic cameras. Jung et. al. provides an experimental analysis when a pair of

stereoscopic cameras are set to produce disparity values larger than 3%. Here, [21] states that

many users began to feel large amounts of eyestrain when a virtual view was generated between

the two stereoscopic images.

1.5 Contributions and Motivations

The sizable evaluation database in [1] shows that most, if not all, stereo correspondence al-

gorithms solved initial disparity calculations using color intensity comparisons among four

stereoscopic pairs. Thus a motivating factor for this paper is to approach the stereo correspon-

dence problem using a different method that may potentially provide more accurate results in

higher detailed regions while achieving faster computational times.

The proposed method focuses on the adaptation of frequency based features for stereo

based matching [10]. The proposed algorithm searches for the top frequency components of

each segment, which are then taken and compared across a database as an indicator as to which

segment in the database matches the input segment. Typical stereo correspondence algorithms

such as [6], [7],[8], and [9] use color intensity comparisons to determine the preliminary dis-

parity map whereas the proposed algorithm uses top magnitude frequency components for the

same task. Thus, the proposed method aims to diverge from the common methods of stereo

correspondence by proposing a preliminary method that uses local frequency methods to deter-
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mine the disparity map. This is in hope of removing any computationally expensive methods

such as image segmentation and other iterative algorithms.

The proposed algorithm was initially motivated by the performance that was achieved in

[10]. Here, Wang achieves a near 100% recognition rate in audio files by sampling the target

audio files at the maximum frequency points. The algorithm samples the top 30 frequency mag-

nitudes and positions per second thus providing a large database comparisons. Additionally,

the performance achieved in [22, 23] accompany the feasibility of using frequency components

in determining the frequency components of a stereoscopic pair of images.
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Chapter 2

Literature Review

2.1 Introduction

This chapter focuses on different applications, approaches, and considerations needed for

stereoscopic imaging. Here, camera calibration, along with the accompanying methods be-

hind camera calibration must be taken into consideration. Due to the setup of cameras for

stereoscopic imaging, camera calibration must be done for every configuration. Along with

this, the theory behind matching pixels will be briefly explained in Section 2.2.2.

After camera calibration is presented, the conversion from disparity to depth is explained.

Here, the usefulness of disparity maps can be seen, as the derived disparity map can provide

accurate depth information used for applications such as 3DTV, MTV, and FTV.

This Chapter will conclude by going into a detailed explanation of the top performing

algorithms found in [1]. Here, each of these algorithms use at least one cost function explained

in Section 3.3 for finding the disparity map.
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2.2. CAMERA CALIBRATION

2.2 Camera Calibration

Due to the arrangement of cameras in a stereo vision system, there will always be misalignment

among multiple variables that must be taken care of to ensure the process of finding matching

points can be achieved in the easiest manner, therefore camera calibration is an essential step

in stereo correspondence. [24] proposes a camera calibration technique that observes a planar

pattern in a number of different orientations. If it is assumed that the model plane of the world

coordinate system is located at Z=0, then the relationship between a real world point, M, and

its image projection, m, can be written to resemble that in Equation 2.2.

sm̃ = A
[

R t

]
M̃ with A =


α γ u0

0 β v0

0 0 1

 (2.1)

s


u

v

1

= A
[

r1 r2 r3 t

]


X

Y

0

1


= A

[
r1 r2 t

]
X

Y

1

 (2.2)

For further understanding of camera calibration, the constraints held on the intrinsic pa-

rameters of a camera need to be first defined. If the homography of a camera can be defined by

2.3, then 2.4 can be realized if it is assumed that the homography is effected by some arbitrary

constant, λ .

sm̃ = HM̃ with H = A
[

r1 r2 t

]
(2.3)
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[
h1 h2 h3

]
= λA

[
r1 r2 t

]
(2.4)

For those interested in looking more into other methods for camera calibration should look

at [25], [26], and [24] where each citation discusses different methods for camera calibration

for stereoscopic pairs.

2.2.1 Image Rectification

In non-controlled environments, it is almost impossible to keep cameras perfectly aligned with

each other with no rotation. Additionally, camera distortion causes a mismatch in pixel loca-

tions with respect to their actual location. To relieve this problem, rectification is performed

and is actually two-fold beneficial in the computation of stereo correspondence. First, recti-

fication significantly reduces the computational complexity of the pixel matching algorithm.

Secondly, by fitting each image onto a mutual plane, pixel matching can be done in one direc-

tion in comparison. Figure 2.1 helps provide a clearer description of image rectification. As

seen in Figure 2.1, image rectification provides each image in a stereo pair to be fitted into one

mutual plane. The dotted blue lines shown in Figure 2.1 are known as epipolar lines.

2.2.2 Epipolar Lines

Typically, a multitude of cameras is needed to achieve stereo vision. Though in Section 2.2,

camera calibration was briefly introduced, the concept to achieve stereo vision can be summed

to the derivation of epipolar lines. Epipolar lines, as shown in Figure 2.2 represents the rela-

tionship between two neighbouring cameras. From this point, Figure 2.2 will be referenced to

describe the epipolar equation.
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Figure 2.1: a) Unrectified image. b) rectified image

Figure 2.2: Epipolar lines

12
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If OL and OR are considered as the two camera centers, than XL and XR are the two intersec-

tion points of the projected rays on the image plane on the left and right cameras, respectively.

It is inferred that any 3D point in the real world, X1, X2, or X3, lies on the projecting line of

OLX, the 2D projection of real world coordinates onto the left camera image plane. Similarly,

any of these points lie on a different location defined by the line ORXx, where Xx is defined

by the location of the point in the real world. However, rather then deriving epipolar lines for

each unique real world point, each point in the right image can be derived from OLXL. Prior

to deriving the epipolar equation, it should also be stated that any real world point lying on

the OLX line will have the right image projection of said point within the range of OR and eR.

Similarly, any point lying on ORXR will be projected to the left image within the range of OL

and eL, these relationships between the left and right image are the so-called epipolar lines,

which contain all the projection points from the principle ray of another view point.

Referring back to the derivation of the epipolar equation, [27] and [28] provide an in-depth

derivation for the epipolar equation, here it can be assumed that the transformation equations

of the two cameras can be defined as that in Equation 2.5.

Zc1u1 = M1X = [ M11 m1 ]X

Zc2u2 = M2X = [ M21 m2 ]X
(2.5)

Where X=[XW YW ZW 1]T is the homogeneous real world coordinate point; u1 and u2 rep-

resent the corresponding image points to the real world point X, M11 and M21 are the rotation

matrices of each camera, m1 and m2 are the translation matrices of each camera, and Zc1 and

Zc2 are the scalar factors in the image domain. Defining the 3D coordinate system of X as

x=[XW YW ZW ]T , Equation 2.5 can be expanded to:

13



CHAPTER 2. LITERATURE REVIEW
2.3. REAL WORLD ACQUISITION AND STEREOSCOPIC IMAGES

Zc1u1 = M11x+m1

Zc2u2 = M21x+m2

(2.6)

Canceling x, equation 2.7 yields:

Zc2u2 −Zc1M21M−1
11 u1 = m2 −M21M−1

11 m1 (2.7)

The right hand side of Equation 2.7 defines a vector that corresponds to an inverse sym-

metric matrix, therefore assuming m = m2 −M21M−1
11 m1 and the corresponding matrix is mx,

Equation 2.7 can be written as:

uT
2 mxM21M−1

11 u1 = 0 (2.8)

Which denotes the epipolar equation. Looking at Equation 2.8, it can be seen that assuming

the image points, u1 and u2 are given, the outcome of the equation is determined solely on the

transform matrices, M1 and M2, of the two cameras. This results in a new term that defines the

relationship among the two rotation matrices of the cameras. This term is typically defined as

the Principle Matrix between cameras and can be defined in Equation 2.9.

F = mxM21M−1
11 (2.9)

2.3 Real World Acquisition and Stereoscopic Images

For real world applications, real time video capture of the scene is needed. [29] uses a 100

camera system, although the camera setups can range from a dense configuration [2], as shown

in Figure 2.3, to an intermediate camera configuration [3], as shown in Figure 2.4, to a wide
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Figure 2.3: Dense Camera Configuration [2]

Figure 2.4: Intermediate Camera Configuration [3]

camera distribution [4], as shown in Figure 2.5. As explained in [30], several aspects come into

determining which camera configuration, as well as which camera would best fit the target ap-

plication. A dense camera configuration allows effects such as synthetic aperture and focusing

[31], though due to the amount of cameras needed for the dense camera configuration, there

is a large number of images needed for rendering. Similarly, the wide camera distribution is

the only configuration among the discussed configurations that allow a full 360 degree range

of viewing angles, though due to the separation distance of each camera, occlusions become a

much more apparent problem than that of the other configurations.

Unlike the images that are used for testing, real world images [3] are much more difficult

to deal with, mainly due to the camera placement in uncontrolled environments and the rec-
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Figure 2.5: Wide Camera Configuration [4]

Figure 2.6: Real World Images [3]. (a) and (c) are real world images of the breakdancers image
sequences and (b) is a virtual view. Similarly, (d) and (f) are real world images of the ballerina
image sequence and (e) is a virtual view.

tification that has to be done in real-time. [3] present a set of images that were captured in a

semi-controlled environment. Here, semi-controlled environment is used because the camera

placement in the scene is predetermined and the camera array in Figure 2.4 follows the rules

set in place by the limitations defined in [21]. Figure 2.6 provides an example of the real world

image sequences, breakdancers and ballerina provided by [3].

2.3.1 Ray-Space Representation

The Ray-Space representation mainly used in FTV allows the user to view any 3D scene from

an infinite amount of views, of course, other methods to produce these views are possible as
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Figure 2.7: View geometry representation[5]

seen in Figure 2.7, though the most common method used for view generation is the Ray-space

representation.

There are two typical forms of ray-space that are used in FTV applications; the orthog-

onal ray-space representation, and the spherical ray-space representation. Here, the images

captured in the real world plane are converted to the corresponding ray-space domain, where

transformed images are aligned in parallel. These parallel slices form the 3D environment

which can then be sliced in any direction to obtain the corresponding view. For those wanting

to understand the more about the ray-space representation can look into [5] and [19].

2.4 Survey of Classical Stereo Correspondence Algorithms

There are many different algorithms in [1] that attempt to solve the problems that persist in

depth estimation. There are currently over 140 stereo correspondence algorithms in the mid-
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dlebury database. The Double Belief Propagation (DoubleBP) [6], CoopRegion [7], Adapting

Belief Propagation (AdaptingBP) [8], and the ADCensus [9] algorithms are some of the top

performing algorithms.

2.4.1 DoubleBP

The DoubleBP algorithm proposed by Q. Yang et al. [6] uses an iterative refinement module

based on a weighted color correlation scheme to achieve a confident initial disparity map. The

DoubleBP algorithm can be simplified to three separate modules; (1) the initialization module,

(2) the pixel classification module, and (3) the iterative refinement module. The initialization

module first determined the correlation volume for both the left and right images based on the

color-weighted correlation. The color-weighted correlation that is used in [6] is defined as the

absolute difference of luminance levels between two images , though it is mentioned that other

methods for the volume correlation construction can be used. Equation 2.10 shows the color

difference between pixels x and y in the color channel C. Next, the weight of each pixel is found

within the support window of each other corresponding pixel, as seen in Equation 2.11. Here,

[6] defines βcw = 10 and γcw = 21 which were defined empirically through experimentation.

△xy = |Ic(x)− Ic(y)|/3 (2.10)

ωxy = e−(β−1
cw △xy+γ−1

cw ||x−y||2) (2.11)

Next, the correlation volume matrices of each image are found usign the support window

of each pixel and the Birchfield and Tomasi pixel difference, defined in Equation 2.12, where

Wx is the support window in the x axis, d(yL,yR) is the Birchfield and Tomassi pixel difference.
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Along with the initial disparity maps, D0
L and D0

R, the initial data term is also outputted from

the initialization module. The initial data term is a linear transform based on the correlation

volumes, where the maximum of the correlation volume and a preset volume is taken for each

pixel.

CL,xL(dx) =
∑(yL,yR)∈WXR xWXR

ωWXLyL
ωWXRyR

d(yL,yR)

∑(yL,yR)∈WXR xWXR
ωWXLyL

ωWXRyR

(2.12)

The pixel classification module classifies each pixel as one of three possible labels: oc-

cluded, stable and unstable. A pixel is defined as occluded if the mutual consistency check

defined in Equation 2.13 does not pass, where DR and DL are the right and left disparity maps,

respectively. In order to determine whether a pixel is label as stable or unstable, a correlation

confidence check is performed. Equation 2.14 defines the correlation confidence between the

cost of disparity of the first iteration, C1
L, and the cost of disparity of the second iteration, C2

L.

τ1 defines the preliminary predetermined threshold value needed to defined a pixel as unstable,

where τ2 defines the predetermined threshold needed to achieve a stable classification.

DL(xL) = DR(xL −DL(xL)) (2.13)

τ1 < |C
1
L −C2

L

C2
L

|< τ2 (2.14)

The Iterative Refinement module propagates the stable pixels onto the unstable and oc-

cluded pixels using the hierarchical belief propagation method. This is done by using the main

building blocks of the iterative module, these blocks consist of mean shift color segmentation,

plane fitting, data term formulation, and a hierarchical belief propagation process. The mean

shift color segmentation is also performed on the image. Similarly, plane fitting is done by
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applying the RANSAC method on stable pixels found through the pixel classification module.

The data term formulation is determined from the output of the plane fitting algorithm, Dp f . To

regularize the estimation process of stable, nonstable, and occluded regions for the date term

formulation, Equation 2.15 is first applied, where D(i+1)
L is the disparity map of the left image

after the (ith +1 iteration, and D(i)
p f is the RANSAC output after the ith iteration. The data term

formulation is then defined differently according to the label of each pixel, as defined in 2.16,

where ko,ku, and ks represent the regularization constant needed for data term regularization.

[6] defines each constant as 2.0, 0.5, and 0.05 respectively for occluded, unstable, and stable

constants to reflect the fact that occluded and stable regions require the most regularization.

Lastly, after each iteration, belief propagation is done to achieve a more stable disparity map.

ai = |D(i+1)
L −D(i)

p f | (2.15)

E i+1
D =


koai, occluded

E(0)
D + kuai, unstable

E(0)
D + ksai, stable

(2.16)

The module iterates itself while updating the disparity and data terms until a confident disparity

map is obtained. Figure 2.8a shows the resulting depth map achieved after depth enhancement

of multiple test sets, whereas Figure 2.8b shows the ground truth of each test image respec-

tively.
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Figure 2.8: a) DoubleBP results and b) ground truths [6]

2.4.2 CoopRegion

The CoopRegion proposed by Z. Wang and Z. Zheng [7] achieves an accurate representation of

the disparity map using an image segmentation algorithm and an adaptive correlation method.

The CoopRegion algorithm uses the Mean-Shift algorithm to segment the left image of the

stereo pair. Once the left image is segmented, a stereo matching algorithm is employed. In [7]

a Winner-Take-All strategy is combined with the adaptive correlation window represented in

[32] is used to achieve the initial disparity map of the stereo pair. In order to achieve a more

accurate disparity map, a voting based plane fitting algorithm was developed. The plane fitting

algorithm uses the matching reliability of each pixel to determine the direction of the disparity

plane. After the plane fitting algorithm, some outliers may still be present, thus to remove the

remaining outliers, the RANSAC algorithm presented in [33] is used. Lastly, in order to achieve

an optimized disparity map, a cooperative optimization technique divides a region into several

subregions and optimization is performed on each suberegion looking at each corresponding

energy functional as shown in Equation 2.17, where Ei is the energy functional for sub-region i,

λi is the influence of the target subregion on the entire region, ωi j is the corresponding weight of

adjacent region j to target subregion i, and k represents the kth iteration of the subregion. Thus
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by reducing the total energy function in Equation 2.17 by minimizing the energy functions in

Equation 2.17, a reasonable disparity map can be obtained, iterating through this step until the

total energy function converges.

ψk
i (x) = (1−λi)Ei(x)+σi ∑

j ̸=i
ωi jEx(x) i, j = 1...n (2.17)

Ei = Edata +Eocclude +Esmooth (2.18)

The data cost is computed by looking at direct pixel-wise matching where a penalty cost is

applied depending on the label of the pixel. the occlusion cost is computed by the projection

of pixels as shown in equation 2.20, similar to that of the mutual consistency check described

in the DoubleBP algorithm, where λocc is the penalty constant of an occluded pixel. Once the

occluded energy for each pixel is calculated, the total energy is found through Equation 2.20,

where |OccL| and |OccR| are the total number of left and right occluded pixels, respectively.

The smoothness cost is only added when a difference between two neighboring pixels with

different disparity levels are found, some examples of this are the borders of objects within

the image. Equation 2.21 shows the smoothness energy function, where λs is the smoothness

penalty constant, and Bc is the border pixels of the target region.

Eoccludeq =


λocc, if q is a lect occlusion pixel

λocc, if q is a right occlusion pixel

0, Otherwise

(2.19)

Eocclude = (|OccL + |OccR|)λocc (2.20)
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Figure 2.9: Disparity map through four iteration using CoopRegion [7]

Esmooth = ∑
pεBc


λs, if |d(p)−d(q)| ≥ 1

0, Otherwise
(2.21)

Figure 2.9 shows the progress of the Tsukuba disparity map after four iteration of the coop-

erative optimization algorithm, as it can clearly be seen, the distinction between each segment

becomes more clear after each iteration.

2.4.3 AdaptingBP

The AdaptingBP algorithm proposed in A. Klaus et. al [8] applies a combination of techniques

discussed in previous algorithms to achieve a more accurate disparity map. Similar to that of

the CoopRegion, mean-shift color segmentation is first applied, though in the AdaptingBP al-

gorithm, the mean0shift segmentation [34] is applied to both images in the stereo input. Since

the total amount of segments is unknown, its is in best practice to perform over-segmentation,

at which point unnecessary segments will be removed in later steps. The next step is to per-

form local matching on the segmented stereo pair. Typically, one local matching dissimilarity

measure is used to achieve the disparity planes, but in the case of AdaptingBP a combination

of two local matching dissimilarity measures are used; A sum of absolute intensity difference

SAD is used in combination with a gradient based measure were used to perform self-adapting

dissimilarity measure that would outperform any single dissimilarity measure by making the

23



CHAPTER 2. LITERATURE REVIEW
2.4. SURVEY OF CLASSICAL STEREO CORRESPONDENCE ALGORITHMS

combination take the advantages of each difference measure such as the robustness to change

in camera gain and non-lambertian surfaces at the cost of a low discriminating power [8] ob-

tained from the gradient based dissimilarity measure. Equations 3.4 and 3.3 define the SAD

and gradient based dissimilarity measures respectively, where IR is the right image, IL is the left

image, d is the disparity level, and N is the surrounding window of the target pixel. In order to

combine each of the dissimilarity measures, an optimal weight, ω , must be determined by per-

forming a correlation confidence check to maximize the number of reliable correspondences

that are filtered out. Equation 2.22 defines the final cost function that is used for the algorithm.

C(x,y,d) = (1−ω)∗CSAD(x,y,d)+ω ∗CGRAD(x,y,d) (2.22)

Once the disparity planes are found using the reliable correspondences derived from Equa-

tion 2.22, a robust plane fitting algorithm is performed to ensure that a reliable depth map is

achieved. The proposed plane fitting algorithms outperforms a decomposition method to solve

for the parameters, shown in Equation 2.23 , for each disparity plane, where a,b, and c are

plane parameters.

d = a∗ x+b∗ y+ c (2.23)

The proposed method, first, estimates the horizontal slant using all reliable disparities lying

on the same horizontal line of each segment. The derivative of the disparity planes over all

x values is then used to determine the horizontal slant using the convolution of a Gaussian

Kernel. Similarly, the vertical slant is estimated in the same method as that of the horizontal

slant. Once both slants are found, the center disparity of the segment is estimated. Lastly, in

order to optimize the disparity map, the prior steps are iterated to minimize the energy function

in Equation 2.18. Figure 2.10 shows the obtained disparity maps of the Tsukuba and Venus
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Figure 2.10: Ground truh and generated disparity maps for Tsukuba and Venus using Adapt-
ingBP [8]

databases alongside their respective ground truths when using the AdaptingBP algorithm.

2.4.4 ADCensus

The ADCensus algorithm proposed by X. Mei et al. [9] approaches the disparity estimation

problem from a different direction than those earlier discussed. The proposed algorithm first

determines the initial cost of disparity calculation based on a combination of preliminary cost

functions. The first preliminary function is the SAD function defined in Equation 3.4 and the

second cost function if found through the census transform. The census transform encodes

each pixel with a bit string relative to its surrounding pixels. This transform reduces variation

effects experienced in cameras such as gain and bias as well as making the resulting image

more tolerable to potential outliers and image noise. This transformation was first proposed in

[26] where the rank and census transforms are defined. The rank transform is defined as a non-

parametric measure of local intensity. It is a measure of the number of pixels in the local region

whose intensities are lower than that of the target pixel. Similarly, the census transform defined

in [26] maps the local region of the target pixel to a bit string which represents the pixels in the
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local region where pixel intensities were lower than the target pixel. Although both methods

are non-parametric and achieve a measure based on pixel intensities along the local region of

the target pixel, the benefits of the census transform overshadow those of the rank transform.

However, this transform also produces ambiguities in image regions with repetitive or similar

structures. Thus, the SAD and census cost functions form a final cost function defined in

Equation 2.24 and 2.25 where p is the target pixel, and the parameter λ controls the influence

of outliers on the final cost.

C(ρ,d) = ρ(CCensus(ρ ,d),λCensus)+ρ(CSAD(ρ ,d),λSAD) (2.24)

ρ(c,λ ) = 1− exp(− c
λ
) (2.25)

As mentioned in [9], the purpose of this combination is twofold. Firstly, using the func-

tion ρ maps both cost functions to a total range between 0 and 1, such that the outcome isn’t

severely biased by one cost function. Also, with the use of parameter λ , easy control of in-

fluence of parameters is possible for a wide range of stereo pairs. [9] shows the preliminary

disparity results achieved when using this ADCensus cost function, it can clearly be seen that

improvements are achieved for both repetitive structures and textureless regions. The next step

done for the proposed algorithm is cost aggregation to reduce the ambiguities and noise in the

image. The method proposed by Zhang et al. [35] uses a 2-dimensional aggregation method

and a constructed upright cross in determining the new cost of the target pixel. Unlike [35], X.

Mei et al. produced an enhanced set of rules in determining the upright cross. Assuming p is

the target pixel, p1 is an endpoint pixel along the arm, τ1 and τ2 are intensity variations where

τ2 < τ1, and L1 and L2 are arm lengths, where L2 < L1.
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Figure 2.11: Ground truth and generated disparity maps using ADCensus [9]

1. DC(p1, p)¡τ1andDC(p1, p1 +(1,0))¡τ1

2. DS(p1, p)¡L1

3. DC(p1, p)¡τ2, i f DS(p1, p)¡L1

The three enhanced rules are placed when performing cost aggregation to ensure that the color

between pixels are similar, and to allow more flexibility in the production of the arm lengths,

This cost aggregation algorithm is iterated four times to ensure that stable cost values are

obtained. Lastly, scanline optimization presented by Hirschmuller’s semi-global matching

method [36] and a multi-step disparity refinement step is done to reduce the effects of out-

liers and discontinuities present in the disparity map. Figure 2.11 shows the generated dispar-

ity maps for the Tsukuba, Venus, Teddy, and Cones stereo pairs provided by the Middlebury

database [1] along with the errors when compared to the ground truth.
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Algorithm Tsukuba Venus Teddy Cones avg. % of
nonocc all disc nonocc all disc nonocc all disc nonocc all disc bad pixels

DoubleBP 0.88 1.29 4.76 0.13 0.45 1.87 3.53 8.30 9.63 2.90 8.78 7.79 4.19
CoopRegion 0.87 1.16 4.61 0.11 0.21 1.54 5.16 8.31 13.0 2.79 7.18 8.01 4.41
AdaptingBP 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32 4.23
ADCensus 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.9 2.42 7.25 6.95 3.97

Table 2.1: Middlebury Test Bench for discussed algorithms

2.4.5 Analysis

The four discussed algorithms presented in Sections 2.4.1 through 2.4.4, demonstrate various

methods of which an accurate disparity map can be constructed. Figures 2.8 through 2.11

give a visual representation of the accuracy achieved by each algorithm. Though there is no

mistaking that each discussed algorithm performs extremely well, one other concern that arises

is the computation time of each algorithm. Discussing the DoubleBP algorithm, [6] does not

specify the computation time or hardware used in their experiments, though it is mentioned that

the algorithm was designed to be best suited for parallel hardware acceleration, e.g. the GPU

or the IBM’s Cell Processor. [6] also states that the computational time of the system depends

highly on the total number of iterations taken for the energy function to converge, in the case

of the Tsukuba data set, depending on the belief propagation method used, the runtime varies

from 3 seconds to 30 seconds when 50 iterations are performed.

The CoopRegion algorithm discussed in [7] achieves slightly less accuracy than that of the

DoubleBP algorithm though the computational time of the algorithm is slightly shorter than

that of the DoubleBP algorithm. [7] run their algorithm on a notebook computer with a CPU of

PM1.6G, but does not clarify whether their algorithm was performed using parallel computing.

Similar to that of the DoubleBP, the total computational time of the system is dependant on

the total number of iterations done. For the Tsukuba stereo data set, the processing time was

approximately 20 seconds, where 4 iterations were done, in addition to the 8 seconds needed
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for image segmentation.

The AdaptingBP algorithm presented in [8] is ranked one of the top performing algorithms

when the error threshold is set to 1. The AdpatingBP algorithm was run on a 2.21GHz Athlon

64 computer, at which, all four stereo pairs required a time of 14 to 25 seconds of computation

time, where the most time consuming process occurred during the mean-shift segmentation

step. Again, whether the computational time was computed with parallel computing is not

discussed

The ADCensus algorithm presented in [9] achieved the highest accuracy of the four dis-

cussed algorithms. ADCensus was tested on a PC with Core2Duo 2.20GHz CPU with a

NVIDIA GeForce GTX 480 graphics card. When testing the algorithm over the four stereo

pairs in the Middlebury dataset a computation time of 2.5 seconds for Tsukuba, 4.5 seconds

for Venus, 15 seconds for Teddy, and 15 seconds for Cones was achieved when CPU imple-

mentation was done. Similarly, 0.0016 seconds for Tsukuba, 0.0032 seconds for Venus, 0.0095

seconds for Teddy, and 0.0095 seconds for Cones was needed when GPU implementation was

done. For the ADCensus algorithm, the runtime process was mostly consumed by the iterative

cost aggregation step and scanline optimization process.

Table 2.1 shows the MiddleBury evaluation table for each algorithm as well as their aver-

age error for certain segmnts of each evaluation. Covering the steps taken from each algorithm,

majority of the preliminary steps in achieving a confident depth map are similar between each

algorithm. Each discussed algorithm employs some method of belief propagation in order to

refine the inaccuracies present in preliminary depth maps. Although each discussed algorithm

uses a different method of belief propagation, similar results were achieved between each al-

gorithm. Similarly, image segmentation is common among the CoopRegion and AdaptingBP

algorithms, where both algorithms implement the mean-shift segmentation algorithm. Simi-

larly, the AdaptingBP and ADCensus algorithms both use a combination of two or more cost
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functions to achieve a more accurate result when determining the depth map. By using more

than one cost function, the algorithm is capable of achieving higher accuracies by allowing one

cost function to progress at portions where typically one cost function would fail. Thus, when

choosing two cost functions, the cost functions that are typically chosen tend to compliment

one another by having each of them perform better in different scenarios of an image.

2.5 Summary

This chapter discussed several stereo correspondence techniques as well as provided an in depth

description of some of the top performing stereo correspondence algorithms. This chapter also

provides an analysis of these algorithms, showcasing what differentiates each of them from

one another. As seen in Table 2.1, a compilation of each of the algorithms results are made to

provide a side by side comparison of all the discussed algorithms.
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Chapter 3

Stereo Correspondence using an Assisted

Discrete Cosine Transform Method

3.1 Introduction

Stereo matching has become one of the most extensively researched topics in computer vi-

sion [6]. For upcoming applications such as Free-viewpoint TV (FTV) and Multiview TV

(MTV) stereo matching plays an extremely important role in achieving a high quality experi-

ence. There are two major problems that arise with a stereo correspondence algorithm. The

first is the matching accuracy of the algorithm, and the second is the computational time. Both

FTV and MTV require high accuracy and fast computational time.

This chapter focuses on the adaptation of frequency based features for stereo based match-

ing [10]. The proposed algorithm searches for the top frequency components of each segment,

which are then taken and compared across a database as an indicator as to which segment in

the database matches the input segment. The top performing algorithms explained in Section

2.4 use color intensity comparisons to determine the preliminary disparity map whereas the
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3.2. MOTIVATION

Frequency in Hz Time in Seconds
823.44 1.054

1892.31 1.321
712.84 1.703

... ...
819.71 9.943

Table 3.1: Example of Fingerprinting a 10 second sample

proposed algorithm uses top magnitude frequency components for the same task. Thus, this

section introduces a new initialization to stereo correspondence that deviates from the tradi-

tional initial step of common stereo correspondence algorithms to demonstrate the ability of

frequency components to accurately find high detailed segments of the image as frequency

components provide a more reliable indicator within a target window.

3.2 Motivation

As previously stated, the algorithm presented in [10] determines an audio source by relying on

the spectrogram and fingerprinting. A spectrograph is a time-frequency graph and fingerprint-

ing is explained in [10] as identifying the peak intensities and keeping track of the frequency

and the amount of time from the beginning of the track that specific frequency occurred at.

Table 3.1 provides an example of fingerprinting over a 10 second audio clip. Experiments were

done in [10] and conclusions were made that a minimum of 30 points per second were needed

for sufficient audio classification, though the number of points can vary.

Figure 3.1 provides an example of a spectrograph and its corresponding constellation map

over a 13 second audio clip. As demonstrated, the amount of feature points present within the

small audio clip provides plenty of points to use for classification.

As [10] presents a method of constellation maps for the use of audio searching, this method
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Figure 3.1: Spectrograph example [10]

provided the motivation of using a similar method to that of constellation maps in the image

domain. Thus, by taking the concept [10] applied to the audio domain, the proposed algorithm

aims to achieve acceptable results in inter-frame stereo correspondence.

3.3 Common Measures

In order to determine corresponding pixels between two images, a form of measuring the sim-

ilarity or dissimilarity of the target regions must be assessed. Typically, in depth estimation, a

dissimilarity measure is used [15]. In this case, a matching cost function, which increases as

the similarity between regions decreases. The common notation for matching cost functions

are given by C(x,y,d), where (x,y) is the initial position of the target pixel, and d is the disparity

between matching stereoscopic images.
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3.3. COMMON MEASURES

Common measures used in pixel matching include the absolute difference (AD), squared

intensity difference (SD), and the absolute gradient difference (GRAD), as show in equations

3.1-3.3, respectively.

CAD(x,y,d) = |IL(x,y)− IR(x−d,y)| (3.1)

CSD(x,y,d) = |IL(x,y)− IR(x−d,y)|2 (3.2)

CGRAD(x,y,d) = |∇xIR(x,y)−∇xIL(x+d,y|+ |∇yIR(x,y)−∇yIL(x+d,y| (3.3)

Similarly, common measures used in window based matching include the sum of absolute

difference (SAD), sum of squared intensity difference (SSD), and the sum of absolute differ-

ence SGRAD, shown in equations 3.4-3.6, respectively. The SAD equation takes the sum of

the difference between pixels in the original block and the target block. This sum, as seen in

Equation 3.4, represents the L1 norm of the block. Although this is a common method, the

main downfall of this cost function is its inability to distinguish lighting variations.

CSAD(x,y,d) = ∑
(u,v)∈W (x,y)

|IL(u,v)− IR(u−d,v)| (3.4)

The SSD finds the sum of the squared difference values, thus providing emphasis on error

allowing it to play a larger role in comparisons than that of the the SAD.

CSSD(x,y,d) = ∑
(u,v)∈W (x,y)

|IL(u,v)− IR(u−d,v)|2 (3.5)

Lastly, the SGRAD uses the gradient of the stereoscopic pair to find the similarity between
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blocks. Since it uses the gradient, the SGRAD focuses on object edges rather than the textures

of the object.

CSGRAD(x,y,d)= ∑
(u,v)∈W (x,y)

|∇xIR(u,v)−∇xIL(u+d,v|+ ∑
(u,v)∈W (x,y)

|∇yIR(u,v)−∇yIL(u+d,v|

(3.6)

3.4 Relationship between disparity and depth

Theoretically, the position and orientation of both cameras can be freely chosen, as long as the

transformation matrices of both cameras can be found. Then the epipolar lines describing the

relationship between both cameras can be easily found through the Principle Matrix as defined

in Equation 2.9. In real world applications that incorporate stereo vision, it is necessary to de-

termine the depth of each pixel within a frame as the disparity value only provides an arbitrary

value that relates the pixel difference of matching pixels from a pair of stereo images. Thus,

this calculation from disparity to depth is particularly trivial assuming accurate disparities are

found, as seen in Figure 3.2.

Here, the origins of the left and right camera are defined as OL and OR, respectively, and the

disparity between corresponding pixels within each frame are defined as d = xl −xr. Assuming

the focal lengths of each camera are equal, it can be seen that the triangle plane is parallel to

the ground, and due to the rectification step described in subsection 2.2.1, the vertical position

of the projected pixels are the same. Thus, due to this property, the depth of point P from

both cameras is only related to the horizontal disparity d, by applying the properties of similar

triangles, Equation 3.7 can easily be obtained.
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d= x l
- x r

Figure 3.2: Relationship between Disparity and Depth

T − (xl − xr)

T
=

Z − f
Z

(3.7)

Here, by replacing the term (xl − xr) with d, and simplifying, Equation 3.7 turns into 3.8.

d
T

=
f
Z

(3.8)

Thus, by simplifying Equation 3.8 to isolate for Z, it becomes quite trivial that the final

equation obtained is that shown in Equation 3.9.

Z = f
T
d

(3.9)

As seen in Equation 3.9, the depth of point P, Z, can be found through the relationship

between the real world distance, T, the disparity d, and the focal length, f of the left and right

cameras.
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Stereoscopic Pair Input Blockify 2D-DCT Frequency Component Search

Disparity: Frequency Components Disparity: Intensity Components

Cost function ComparisonOcclusion FillingStray Disparity RemovalDisparity Map Output

Cost Aggregation

Figure 3.3: Proposed Algorithm Pipeline

3.5 Proposed Method

The proposed algorithm, as shown in Algorithm 1, is designed to follow the similar common

pipeline as that of the aforementioned algorithms with a few modifications to improve the

performance similar to that of [37, 22, 23], where the full algorithm is schematically presented

in Figure 3.3. Conventional algorithms use color intensity of a neighborhood of pixels in

determining the most probable disparity, though the accuracy of color intensity comparisons

of highly detailed regions of an image can vary. This introduces the deviation of the proposed

algorithm from classical algorithms by determining the initial disparity through the frequency

component positions and magnitudes of the group of pixels. This allows the disparity of high

detailed segments of the image to be found more accurately as frequency components provide a

more reliable indicator of the behavior within the target window, this can ultimately be used as

a more authentic measure in determining matching pixels. The common intensity comparison

is known as a cost function, where the disparity of each target segment is determined by the

smallest value among a predetermined search range. These comparisons were discussed in

Section 3.3.
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Algorithm 1 Proposed Algorithm
DATA: Input Stereo Pair

METHOD: Blockify and DCT
METHOD: Disparity Calculation(Ile f t ,Iright)
METHOD: Cost Aggregation

for all blocks do
if C f req ≤Cmag then

D at block position = D f req
else if C f req ≥Cmag then

D at block position = Dmag
else

D f req+Dmag
2

end if
end for
for each pixel in disparity map do

if occluded pixel then
pixel equals previous horizontal pixel

else
next pixel

end if
end for
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3.5.1 Discrete Cosine Transform

As explained in [38, 39], the Discrete Cosine Transform (DCT) can be used on an area of

an image for feature selection, where the computational time of the DCT is considered to be

optimal. The DCT is a special subset of the Discrete Fourier Transform (DFT), where the phase

information of the transform is discarded to favor the amplitude information of the image. The

DCT feature selection is shown in Equations 3.10,

r(x,y,u,v) = α(u)α(v)cos[
(2x+1)uπ

2n
]cos[

(2y+1)vπ
2n

] (3.10)

where u and v are the pixel locations of the target pixel, n is the size of the target window, x

and y are the resulting pixel locations, and α(u) and α(v) are the coefficients defined in 3.11.

α(u) =


√

1
n for u=0√
2
n for u=1,2...n-1

(3.11)

3.5.2 Pixel Matching

The proposed method represents the combined array shown in Equations 3.12 through 3.14

where N is the window size, λ is the weight that determines the amount of influence the position

of the maximum frequency components have on the comparison of target arrays. With the

concatenated array of frequency positions and magnitudes, an accurate disparity map for highly

detailed regions can be found. To ensure that frequency components are only effected by the

pixels within the window, the two dimensional DCT is taken within the target pixel window.

Thus, I f reqL is the two dimensional DCT window of the target pixel. Similarly, Equations 3.12

through 3.14 are also performed on the target two dimensional DCT window in the right image.
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positionL(u,v) = pos(maxN(I f reqL)) (3.12)

magnitudeL(u,v) = mag(maxN(I f reqL)) (3.13)

arrL(u,v) = concat(λ ∗ positionL(u,v),(1−λ )∗magnitudeL(u,v)) (3.14)

Once each target array is determined, Equations 3.15 and 3.16 are calculated over each

window to determine the initial disparity map derived from frequency components, where C f req

is the frequency cost function and D f req is the corresponding disparity map.

C f req(u,v,d) = |arrL(u,v)−arrR(u−d,v)| (3.15)

D f req(u,v) = min(C f req(u,v, :)) (3.16)

The resulting disparity map is still very inconsistent in regions of low details. To accommo-

date for these low detailed regions, the intensity value SAD is implemented. In order to ensure

the stability of each cost function, the cost aggregation algorithm proposed in [9], which was

described in Section 2.4.4, is adopted. The three enhanced rules in [9] are placed when per-

forming cost aggregation to ensure that the color between pixels are similar, and to allow more

flexibility in the production of the arm lengths. This cost aggregation algorithm is iterated four

times to ensure that stable cost values are obtained, although it is possible to reduce the amount

of iterations to achieve faster computational times.
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Figure 3.4: Cost Aggregation

3.5.3 Cost Aggregation

Cost Aggregation as proposed in [35] looks to find an appropriate local support region for each

pixel. This local support region contains neighboring pixels from the same disparity as the

target pixel. The assumption behind this is that pixels with similar intensity values within a

local area are commonly from the same structure, therefore having similar disparity values.

This upright cross, a search area defined by the same disparity values in the horizontal and

vertical directions, have a big potential to reduce computation redundancy. An example of an

upright cross for a target pixel, p, is shown in Figure 3.4. Here, the upright cross for the target

pixel, p, shown by the dark gray arrays, where the stopping point of the cross is determined by

differentiating pixel values.

3.5.4 Cost Normalization

In order to ensure that the intensity cost function does not interfere with the calculated fre-

quency regions, each cost function is normalized and compared. Here 3.17 normalizes the

magnitude cost function, where CMag is the intensity cost function found through the magni-

tude comparisons performed through one of the Equations in Section 3.3.
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Cmag =CMag/max(CMag) (3.17)

3.18 normalizes the DCT cost function, where C f req is the frequency intensity cost function.

C f req =C f req/max(C f req) (3.18)

Once each cost function is normalized, D, the resulting proposed disparity map is found

through the cases defined in 3.19. Here, DMag is the corresponding magnitude disparity map,

Davg is the average of DMag and D f req at the target pixel, and τ is the predetermined difference

threshold set by the user. Thus, by normalizing each cost function to 1, the cases shown in

Equation 3.19 provide the optimal disparity decision for the target pixel.

D(u,v) =


D f req(u,v) C f req <CMag(u,v)

DMag(u,v) CMag <C f req(u,v)

Davg(u,v) |CMag −C f req(u,v)|< τ

(3.19)

3.5.5 Occlusion Filling

As described in Section 1.4.1, occlusions can become a big problem when trying to achieve

accurate depth maps. In order to alleviate this problem, [40] presents several occlusion filling

methods. Here, occlusion filling is the term used as most, if not all, algorithms handle oc-

clusions through the projection of known pixels onto the occluded regions. [40] describes four

different occlusion filling methods ranging from simple neighborhood comparisons to complex

probability statistics.

Occlusion filling is carried out to remove any occlusions that are present between the two

pairs of stereo images [41]. The process uses the determined disparity map from the previous

42



3.5. PROPOSED METHOD

CHAPTER 3. STEREO CORRESPONDENCE USING AN ASSISTED DISCRETE
COSINE TRANSFORM METHOD

step and shift each pixel in the left image by the corresponding pixel defined by the disparity

map, as shown in equation 3.20, where Imright is the virtually generated right image, and Ile f t

is the original stereo image.

Imright(u,v) = Ile f t(u+d,v) (3.20)

Once the virtual right image is generated, it is subtracted from the original right image,

and an occlusion map is formed based on the difference matrix as defined in equation 3.21

and 3.22, where diff is the difference matrix determined by the subtraction of the virtual image

from the real image, occ is the defined occlusion map, and τocc is the pixel difference needed

to define an occlusion.

di f f = |Iright − Imright | (3.21)

occ(u,v) =


1 di f f (u,v)> τocc

0 otherwise
(3.22)

After the occlusion map is found, the Neighbor’s Disparity Assignment (NDA) occlusion

method defined in [42] is used. As described in section 1.4.1, the two occlusion types, border

occlusions and non-border occlusions are handled by the NDA occlusion method explained in

[42].

3.5.6 Noise Removal

The last step in the proposed algorithm is to remove any stray disparities that were neglected

through the previous steps of the algorithm. This removal process is done using a one dimen-
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sional filter that compares the target pixel with its two horizontal neighbors. The comparison

is performed based on three cases, as shown in equations 3.23 and 3.24.

Dx(u,v) =
D(u−1,v)+D(u+1,v)

2
(3.23)

D(u,v) =


D(u,v) D(u,v) ̸= D(u−1,v),D(u,v) = D(u−1,v)

D(u,v) D(u,v) = D(u−1,v),D(u,v) ̸= D(u−1,v)

Dx(u,v) D(u,v) ̸= D(u−1,v),D(u,v) ̸= D(u−1,v)

(3.24)

The first case shown in equation 3.24 is that the disparity of the target pixel is the same

as that of the pixel to its right. In this case the disparity value is left alone. Similarly, if the

disparity value of the target pixel is the same as that of the pixel to its left, it is also left alone.

The third case in which the target pixel disparity is not the same as either of its neighbors, the

average disparity of the two horizontal neighbors is taken. Here average is preferred to taking

the median of the filter because the stray disparity value of the target pixel becomes very

unpredictable, thus taking the median of the filter can result in the disparity value not changing

whereas taking the average of the two neighbors will result in a more accurate disparity value

assuming that the neighboring pixels are correct.

3.6 Summary

This chapter introduced the proposed method that uses frequency components in determining

the disparity map. As described over the chapter, the proposed algorithm uses an assisted

Discrete Cosine Transform in determining the disparity map of a stereo pair. This chapter also

explained the other necessary steps to achieve the proposed algorithm as seen in Figure 3.3.
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Experimentation and Discussion

4.1 Steresocopic images

There are plenty of images that can be used for disparity matching, though the most common

stereoscopic pairs used for algorithm analysis are the 2001, 2003, 2005, and 2006 datasets

found in the Middlebury database [1]. Figure 4.1 displays several stereoscopic pairs found

in [1] that are typically used. Here, these images are normalized to have matching intensities

between each stereoscopic pair, removing any noise and biasing that may occur from individual

cameras. Secondly, all these images are rectified to remove any vertical ambiguity between the

pairs for reasons previously mentioned in section 2.2.1.

These images were chosen due to their popularity of testing among the stereo correspon-

dence community surveyed in [1], the ease of accessibility, and the lack of need to perform

any preprocessing, rectification, and camera calibration. Additionally, these four images are

regarded as the golden standard benchmark for stereo correspondence algorithms, thus making

the availability of comparisons and maximum disparities much more accessible then those of

other stereo pairs.

45



CHAPTER 4. EXPERIMENTATION AND DISCUSSION
4.1. STERESOCOPIC IMAGES

a) b)

c) d)

e) f)

g) h)

Figure 4.1: a) b) Tsukuba stereoscopic pair, c) d) Venus stereoscopic pair, e) f) Teddy stereo-
scopic pair, g) h) Cones stereoscopic pair
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4.2 Ground Truth Evaluation

The error evaluation of the proposed algorithm was determined using the ground truth depth

maps and the maximum disparity levels for each stereoscopic pair provided by the Middlebury

Stereo homepage [1]. The ground truth disparity maps of some of the images are shown in Fig-

ure 4.2. Here, the disparity errors are found by scaling the ground truth image to the maximum

disparity of the stereo pair and subtracting it from the disparity map found from the proposed

method, as shown in Equation 4.1.

Dc = MD∗ Dt

255
−Dp (4.1)

Where Dc is the resulting difference disparity map, MD is the Maximum disparity of the

stereoscopic pair, Dt is the ground truth disparity map, and Dp is the proposed disparity map.

Once the ground truth image is subtracted from the proposed disparity map, any absolute dif-

ference greater than one is regarded as an error whereas any absolute difference smaller than

one is regarded as correct, these cases can be seen in Equation 4.2, where Ddi f f is the difference

error disparity map and αocc. is the disparity marginal error.

Ddi f f (x,y) =


0 Dc(x,y)> αocc

255 Dc(x,y)< αocc

(4.2)

This disparity marginal error is flexible, though the evaluation of algorithms in [1] also

changes. Therefore, increasing the acceptable threshold for correct pixels not only reduces the

top performing pixel error rate but it may also change the top performing algorithm. For the
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evaluation carried out in this thesis, the threshold pixel difference for acceptable disparities is

locked to one.

4.3 Results and Discussion

In order to verify the effectiveness of the proposed algorithm, it was implemented in Math-

works MATLAB and several variable values were tested to ensure the optimal results were

achieved. Variable values of τ and τocc were experimentally determined as 0.2 and 25, respec-

tively to give optimal performance. The algorithm was tested on the four different stereoscopic

pairs in Figure 4.1 which are provided by the Middlebury database [1]. Table 4.1 summarizes

the variables for each set of stereoscopic pairs. In the table, τ is the predetermined difference

threshold determined by the user when each cost function is normalized to 1, τocc is the pixel

difference needed to define an occlusion, the weight column defines the weight of the position

of the maximum frequency against the weight of the magnitude of the maximum frequency

point, and maximum disparity and scale are the maximum accurate disparity available for each

stereo pair and the appropriate scaling factor, respectively. The four stereoscopic pairs are the

Teddy, Venus, Tsukuba, and Sawtooth pairs, where each stereoscopic pair achieved an average

pixel error rate of 7.1%, 4.5%, 5.2%, and 2.6% respectively. Figure 4.3 shows the disparity map

obtained from the proposed algorithm for the Venus stereoscopic pair alongside the Venus dis-

parity results for the discussed algorithms in section 2.4, where the slight increase in error rate

compared to these algorithms are caused by the miniscule changes between disparities. Figure

4.4 demonstrates the resulting disparity maps for the Cones and Teddy stereo pairs beside each

of their respective ground truth disparity maps. Figure 4.5 shows the incorrect disparity values

in the Teddy and Cones datasets when compared with the ground truth disparity maps. As

shown in black, the areas that cause the algorithm to misclassify the target pixel are caused
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a)

b)

c)

d)

Figure 4.2: Ground Truths of the left image for a) Tsukuba, b) Venus, c) Teddy , d) Cones
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Figure 4.3: Comparison of the Venus Stereoscopic pair: a) Result from DoubleBP. b) Result
from CoopRegion. c) Result from AdaptingBP. d) Result from ADCensus. e) Result from
Proposed Algorithm f)Ground Truth Disparity Map

Stereo Pair τ τocc Weight (τ) Maximum Disparity Scale
Tsukuba 0.2 25 0.75 16 16

Venus 0.2 25 0.9 20 8
Teddy 0.2 25 0.9 60 4
Cones 0.2 25 0.6 60 4

Table 4.1: Variable Definitions and Values

mainly by the regions that converge from one disparity to the next due to the use of integer

disparities in the proposed algorithm, though it is believed that these misclassifications can be

corrected if more robust methods for occlusion filling and noise filtering are used.

Table 4.2 compares the average pixel error rate of the proposed algorithm with the top

performing algorithms in the Middlebury evaluation [1]. Experimentation was done using a

window size of 9x9, thus a maximum of 9 frequency points were taken for frequency com-

Figure 4.4: Comparing the results of the proposed algorithm on the Cones and Teddy stereo
pairs with the ground truths a), c)Results of proposed algorithm. b), d)Ground truth disparity
maps

50



4.3. RESULTS AND DISCUSSION
CHAPTER 4. EXPERIMENTATION AND DISCUSSION

Figure 4.5: Incorrect disparity values of the a)Teddy stereo pair and b)Cones stereo pair marked
as a black pixel

parisons, whereas compared to the algorithm proposed by [7], the algorithm takes up to 30

frequency components per second. Table 4.2 also compares the average computational time of

the proposed algorithm with the classical stereoscopic algorithms. As seen, the computational

time of the proposed algorithm is significantly lower than that of the traditional stereo corre-

spondence algorithms. This is mainly due to the elimination of the computationally expensive

algorithms, such as mean-shift segmentation and belief propagation, present in the other algo-

rithms. The computational time can be further reduced through careful GPU implementation

of the proposed method.

Computation times in brackets in Table 4.2 are the normalized computational times of the

proposed and traditional stereo correspondence methods. This was done using the benchmark-

ing method in Matlab alongside the available system specifications provided in [6], [7], [8],

and [9]. Normalization was done by normalizing all other algorithms to the algorithm with

the lowest system specifications. As seen, even after normalization, the proposed method still

outperforms the computation time of the traditional methods.
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Algorithm Teddy Venus Tsukuba Cones Avg. pixel error rate (%) Avg. Computation Time (Normalized)
DoubleBP 8.30% 0.45% 1.28% 8.78% 4.19% 15 sec (15 sec)

CoopRegion 8.31% 0.21% 1.16% 7.18% 4.41% 20 sec (20 sec)
AdaptingBP 7.06% 0.21% 1.37% 7.92% 4.23% 18 sec (19 sec)
ADCensus 6.22% 0.25% 1.37% 7.25% 3.97% 10 sec (11 sec)

Proposed Algorithm 7.1% 0.3% 1.5% 7.4% 4.07% 5 sec (8 sec)

Table 4.2: Comparison of pixel error rates and computation times

a) b)

Figure 4.6: Bull Stereo Pair

4.4 Additional Test Images

In addition to the four golden standard images used in typical stereo correspondence algo-

rithms, the proposed algorithm was also tested on additional images to verify the applicability

of the algorithm to a wider range of stereo image pairs. The Bull stereoscopic pair is shown

in Figure 4.6, and the comparison of the proposed disparity map alongside the ground truth

disparity map are illustrated in Figure 4.7. It should be noted that the process of calculating an

accurate disparity map for images outside of the four golden standard images are quite difficult

due to the lack of available information. In the case of the Bull stereo pair, a maximum dis-

parity value of 20 was used, with τ and τocc being the same as those from the golden standard

images, and a weight value of 0.9. As illustrated in Figure 4.7, the majority of the errors come

from the transition of one disparity to another.

The second example is the sawtooth stereoscopic pair shown in Figure 4.8, which uses a

maximum disparity value of 12, with τ and τocc being the same as those from the golden stan-
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Figure 4.7: Bull Comparison

a) b)

Figure 4.8: Sawtooth Stereo Pair

dard images. The maximum disparity values for both the bull stereo pair and the sawtooth

stereo pair are not given in the stereo correspondence database in [1], thus they must be man-

ually calculated based on the assumptions that were discussed in Section 1.4.3. The disparity

map of the sawtooth stereoscopic pair obtained from the proposed method is given in Figure

4.9.

a)
b)

Figure 4.9: Sawtooth Comparison
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Stereo Pair τ τocc Weight (τ) Maximum Disparity Scale
Bull 0.2 25 0.75 12 22

Sawtooth 0.2 25 0.9 12 22

Table 4.3: Variable Definitions for additional images

Table 4.3 shows the variable definitions for the extra images that the proposed method was

tested on. The maximum disparity, and scale columns are both experimentally found based

on the 3% restriction that was discussed in Section1.4.3. The scale value was determined by

finding the closest integer value that would scale the disparity map from its maximum disparity

to the usual 255 that is seen in images.

4.5 Summary

This chapter first discussed the stereo image pairs used for testing. It then presented experi-

ments that were conducted using the proposed algorithm and compared them with the results

of traditional methods explained in Chapter 2. As shown in Table 4.2, the proposed algorithm

performs well when compared with the other algorithms. The differentiating factor of the pro-

posed algorithm, in cotnrast to classical stereo correspondence algorithms is the computational

time for a disparity map to be made, where the proposed method achieves a disparity map in at

least half the time of the next competing algorithm.

In addition to the 4 golden standard images used for testing in stereo correspondence algo-

rithms, the algorithm was also tested on a set of additional images to demonstrate its feasibility

for a wider range of videos. The resulting disparity maps for these additional images were

shown in Figures 4.7 and 4.9 with their variable declarations summarized in Table 4.3.
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Conclusions

This thesis studied into detail explaining key aspects that must be considered to achieve a

successful disparity map. Then it presented the top performing algorithms found [1] and dis-

cusses their advantages and shortcomings. The central part of the thesis is the proposal and

implementation of a stereo correspondence algorithm which is capable of providing results

that are comparable to the state-of-the-art algorithms found in the Middlebury database [1]

for the typical four images used for stereo correspondence testing which significantly reduced

computation times. These four images being the Teddy, Cones, Tsukuba, and Venus stereo

pairs.

As shown in Chapter 4, the use of a block based DCT parallel to the traditional color in-

tensity cost function demonstrates that the quality of results are on par with the top performing

algorithms while achieving a computational time that is at least half of that of the next fastest

algorithm. The proposed algorithm uses aspects from the DoubleBP [6], CoopRegion [7],

AdaptingBP [8], and ADCensus [9] algorithms. To expand on this more, the proposed algo-

rithm takes contributing factors that distinguish each of the state-of-the-art algorithms and uses

them to improve the overall performance.
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Future work to be done is to implement an occlusion filling method that is more robust

and is capable of determining occlusions based off the probability of surrounding pixels [42].

Currently, an NDA occlusion filling method is used but [40] provides a set of other occlu-

sion methods that may provide better disparity results. Such occlusion methods include the

Weighted Least Squares (WLS) method, Diffusion in Intensity Space (DIS), and Segmentation-

based Least Squares (SLS) occlusion methods. Additionally, a method to achieve more fre-

quency points within a given window which would potentially lead to a more discriminative

selection of matching pixels. This study would align more with the motivating work proposed

in [10].
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