
Image Denoising in Spatial and Transform Domains

by

Mina Sharifymoghaddam

Bachelor of Science, Sharif University of Technology, 2012

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2015

c©Mina Sharifymoghaddam 2015



AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my dissertation may be made electronically available to the public.

ii



Image Denoising in Spatial and Transform Domains

Master of Applied Science 2015

Mina Sharifymoghaddam

Electrical and Computer Engineering

Ryerson University

Abstract

Image denoising is an inseparable pre-processing step of many image processing algorithms.

Two mostly used image denoising algorithms are Nonlocal Means (NLM) and Block Matching

and 3D Transform Domain Collaborative Filtering (BM3D). While BM3D outperforms NLM on

variety of natural images, NLM is usually preferred when the algorithm complexity is an issue.

In this thesis, we suggest modified version of these two methods that improve the performance

of the original approaches.

The conventional NLM uses weighted version of all patches in a search neighbourhood to

denoise the center patch. However, it can include some dissimilar patches. Our first contribu-

tion, denoted by Similarity Validation Based Nonlocal Means (NLM-SVB), eliminates some of

those unnecessary dissimilar patches in order to improve the performance of the algorithm. We

propose a hard thresholding pre-processing step based on the exact distribution of distances

of similar patches. Consequently, our method eliminates about 60% of dissimilar patches and

improves NLM in terms of Peak Signal to Noise Ratio (PSNR) and Stracuteral Similarity Index

Measure (SSIM).

Our second contribution, denoted by Probabilistic Weighting BM3D (PW-BM3D), is the
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result of our thorough study of BM3D. BM3D consists of two main steps. One is finding

a basic estimate of the noiseless image by hard thresholding coefficients. The second one is

using this estimate to perform wiener filtering. In both steps the weighting scheme in the

aggregation process plays an important role. The current weighting process depends on the

variance of retrieved coefficients after denoising which results in a biased weighting. In PW-

BM3D, we propose a novel probabilistic weighting scheme which is a function of the probability

of similarity of noiseless patches in each 3D group. The results show improvement over BM3D

in terms of PSNR for an average of about 0.2dB.
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Chapter 1

Introduction

Image denoising is a main problem in image processing and is defined as a process aiming to

recover an original clean image from its observed noisy version. Removing noise is an essential

and the most fundamental pre-processing step in majority of image processing techniques such

as medical and radar image analysis, image segmentation, visual tracking, classification and

3D object recognition where obtaining a good estimate of the clean image is crucial for strong

performance, or it can only be used for the purpose of improving images visual quality.

1.1 Literature review

During the past few decades, several denoising techniques have been proposed. One of the

earliest examples is median filter, where the value of the corrupted pixel is been replaced by

the median value in a window, in order to estimate the noiseless version of the target pixel.

The other one is the linear mean filter implemented by a convolution mask which replaces each

noisy pixel with the average of itself and pixels around it in a neighbourhood [4]. The goal

in some of these methods is to find a scheme to do weighting average instead of calculating

simple mathematical mean. Weights are based on similarity between pixels. In general case,

the spatial distance (relative location of the pixels) and the photometric distance (the difference

in intensity values of the pixels) both affect this similarity measure. How to take into account

these two impacts introduces different denoising algorithms. The classical one is Gaussian
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1.1. LITERATURE REVIEW CHAPTER 1. INTRODUCTION

smoothing filter. They compute weights only by spatial Euclidean distance between pixels in

form of a Gaussian kernel. Lack of considering the structural (photometric) similarity in the

image is the major drawback of this method. Another method is known as bilateral filters

[5]. Authors proposed to consider both kind of distances in a separable manner. Weights

are multiplication of two Gaussian kernels with two adaptable decaying parameters, one for

spatial distance and the other for photometric distance. This approach has advantages over

the previous one, however it is been shown that this filter still does not have good performance

in low signal to noise ratio cases [6]. Another group of image restoration methods are through

Bayesian filters. The main idea is to find the true image given the prior information of the noise

and the observed noisy image. The challenge in this method is to find an appropriate prior [6].

Some methods known as patch based methods attempt to find those weights as a function

of similarity between pre-defined shape patches around the target pixel rather than pixel-wise

calculations. There are two categories in those methods, local and non-local methods. Most

local methods only consider a local patch around the target pixel, assuming adjacent pixels tend

to have similar patches. On the other hand, non local approaches take advantages of existence

of a pattern or similar features in including the non-adjacent pixels in the denoising process [2].

Non-local means (NLM) originally introduced in 2005 by Budaes et al., exploits self-similarities

in the search neighbourhood to estimate the true value of the noisy pixels. Due to its relative

simplicity, NLM is the most well known and used spatial domain denoising methods, specifically

when algorithm complexity is an issue [7]. This method is one of the concentrations of this

work and will be introduced in the next chapter with more details.

Since the introduction of NLM, many other variations have been proposed to further im-

prove the method from various perspectives. For example, nonlocal means with shape adaptive

patches (NLM-SAP) is examined in [8]. They adaptively use shapes such as pie or quarter pie

slices in addition to regular square patches. The main advantage of this approach is reducing

the noise halo produced in high contrast edges. Another recent improvement, probabilistic

nonlocal means (PNLM)[9], implements a new weight function based on the distribution of the

distances of similar patches. This weighting scheme outperforms the Gaussian kernel weights

in traditional NLM. The mathematical assumptions beyond this method is also explained more

2
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in the next chapter.

In probabilistic early termination (NLM-PET) [10] the complexity of calculation in nonlocal

means is decreased by reducing the number of patches involved in weighted averaging step by

a pre-processing hard thresholding. When the partial sum of pixels starting from inner regions

exceeds a probabilistic threshold they remove that candidate pixel from weighted averaging

step. However, the overall performance of this method is worse than that of the traditional

NLM due to not accurate calculation of those probabilistic thresholds.

Transforming signal to other bases may lead to better understanding the structures and

features of it. Therefore, in some cases denoising can be achieved easier and more efficient by

separating noise and signal coefficients in transform domains rather than spatial domain. In

image denoising this is also popular. There are methods that transform image to other bases for

the purpose of denoising such as wavelet or curvelet based methods [11]. The wavelet transform

helps to analyze the signal in its different scales, details and approximation scales. Noise

coefficients are characterized by low amplitude values spread across the wavelet coefficients.

Therefore, thresholding in wavelet domain can remove noise coefficients. In [12], Donoho has

introduced a method that performs denoising by soft thresholding wavelet coefficient on image

affected by AWGN. They apply Haar wavelet transform to the noisy image. Soft threshold

detailed coefficient and applied inverse transform. This threshold is a function of standard

deviation of noise and the length of the wavelet coefficients. [13]

However usually natural images are not really sparse specially in the presence of textures

or sharp transitions. This issue makes it impossible for any fixed 2D transform to achieve

good sparsity for all cases. Recently, a new transform domain image denoising is introduced

which benefits from enhanced sparse representation due to block matching similar fragments

and grouping them in 3D blocks. Denoted by Block Matching and 3D Transform Domain

Collaborative Filtering (BM3D), this method can separate noise by shrinking coefficients much

better than 2D transform based methods and to the best of our knowledge is the state of the

art of denoising methods [1], [14].

In BM3D with Sigmoid Shrinkage [15], authors suggest a flexible thresholding function based

on mathematical sigmoid function with adjustable parameters instead of hard thresholding for

3
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the first step of BM3D. They can change the thresholding parameters based on the sparsity of

3D blocks coefficients which is a function of noise level. This approach which does not have

the discontinuities result from hard thresholding shows improvement over BM3D specially for

higher noise levels. In BM3D with region growing segmentation [16], image is segmented in two

partitions based on the intensity value of pixels. Block matching is done only on the involved

segment. Then a Sobel edge detector is applied to improve the sharpness of edges.

1.2 Thesis contributions

In nonlocal means methods regardless of choice of the weight functions, many dissimilar patches

in the search neighbourhood are processed through NLM. In order to address this issue, in

Chapter 3 we propose a new hard thresholding pre-processing algorithm based on the exact

distribution of similar patch distances to eliminate dissimilar patches before the weighting

process. By calculating tight boundaries using NIDe technique for similar patch distances,

we validate similarity of the reference patch with each candidate patch to process it through

averaging step. Our proposed method is faithful to the probabilistic distribution of distance of

similar patches. Our simulation results confirm superiority of this approach to the traditional

NLM and the variations of this method.

The state of the art of image denoising methods is BM3D. Despite its superior performance,

BM3D is a relative complex method and many of the theoretical approach behind steps of

BM3D has not been studied yet. We start Chapter 4 by a more in depth study of BM3D.

Then we introduce two main issues with the current weighting process of BM3D in both hard

thresholding and wiener filter denoising steps and propose a probabilistic weighting scheme that

has been shown to outperform the existing method.

The reminder of this thesis is outlined as follows. In Chapter 2 a review of two popular image

denoising methods nonlocal means and BM3D are presented. Also an overview of the original

noise invalidation technique over one dimensional data set has been presented. In Chapter 3,

our work on improving non local means by validating patch similarities is been introduced.

The results and performance comparison are available in corresponding sub sections. In Chap-
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ter 4, we described our method for improving the state of the art BM3D using probabilistic

weights. The related simulation results have also been presented. Finally, Chapter 5 presents

the concluding remarks and offers some suggestions for future work.

5



Chapter 2

Background

Additive White Gaussian Noise (AWGN) is the most common model of the noise considered

in image processing. That is when the power of the noise is constant over all frequencies (a

flat power spectral density), the amplitude of noise follows the probability density of Gaussian

distribution and noise values are been added to the original signal. The probability distribution

of the noise in this scenario can be formalized as follow:

f(n) =
1√
2πσ

exp (−(n− µ)2

2σ2
) (2.1)

y = x+ n; (2.2)

where f is the probability distribution function of the noise amplitude, µ is the mean of the noise

and σ is defined as standard deviation of the noise (constant parameters). Here n is the value

of noise, x and y are the original and corrupted data. Some early methods try to separate the

image into two parts: smooth part (original image) and the oscillatory part (noise). However

images are not truly smooth in structure. They usually have fine details and edges with high

frequencies. When the high frequencies are removed some information of the original image

will be lost along with the noise as well [17]. Buades et al. have developed the Nonlocal Means

image denoising to overcome this issue and somehow differentiate between high frequency noise

6
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and images fine details.

2.1 Nonlocal Means algorithm

Non-Local Means is the most well-known image denoising method and has proved its ability to

challenge other powerful methods such as wavelet based approaches or variational techniques.

It is relatively simple to implement and efficient in practice. It is very similar to bilateral

denoising method, considering both geometric and photometric distance of pixels. However it

takes advantage of similarity between pixels far from the target pixel (non local) in addition

to neighbourhood (local) pixels. It process the similarity measure over a square sub-image

around two candidate pixels called patch. Similar to previous methods patches with higher

similarity measures will have higher weight. Figure 2.1 shows one sample of target patch and

three candidate reference patches. Let’s assume vis are pixels inside the noisy image I. Each

estimated pixel NL(vi) is a weighted average of all pixels in the image:

NL(vi) =
∑
j∈I

w(i, j)vj (2.3)

where w(i, j)s depend on the similarity between pixels at i and j, 0 < w(i, j) < 1 and summation

of w(i, j)s for each reference pixel i is equal one. The similarity between pixels i and j is

measured by the similarity between square neighborhood of fixed sized around them called Pi

and Pj . Weight is a decreasing function of Euclidean distance between patches:

w(i, j) =
1

Zi
e−
−‖Ni−Nj‖

2
2,a

h2 (2.4)

In this formula, ‖ ‖2 is the `−2 norm distance of vectorized patches, a is the standard deviation

of Gaussian kernel multiplied to consider the geometric distance of pixels in the patch and h

is the decaying parameter controls the amount of blurring. Zi is the normalization constant

to make the summation of weights for each pixel equal one [2]. To decrease the computation

complexity of algorithm it has been shown that it is not necessary to investigate the whole

image in order to find the most similar patches. Finding a fair amount of similar patches in a
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2.2. BM3D IMAGE DENOISING CHAPTER 2. BACKGROUND

Figure 2.1: Example of self similarity in an image. Similar pixel neighborhoods give a
large weight, w(p, q1) and w(p, q2), while much different neighborhoods give a small weight
w(p, q3). [2]

smaller neighbourhood called search neighbourhood can work as well as repeating the process

in the whole image.

2.2 BM3D image denoising

Image Denoising by Block Matching and 3D Transform-Domain Collaborative Filtering (BM3D)

is the state of the art image denosing method and is introduced by Dabove et al. in 2007 [1].

It has two main steps. The first one is a wavelet shrinkage process applied on a 3D group of

similar patches called stack. The second step is using this basic estimate to process wiener filter

to 3D groups. This algorithm retrieves the finest details of patches by preserving the unique

features of each individual stack [18]. These steps are well illustrated in Figure 2.2.

8



CHAPTER 2. BACKGROUND 2.2. BM3D IMAGE DENOISING

Figure 2.2: Block Matching and 3D Collaborative Filtering Schematic [1].

2.2.1 First Step: Basic Estimate

The first step in this algorithm is the dominant one. The output of this step is fairly well

retrieved. Parameters in this step are shown with a superscript ht. The idea behind this step

is that by grouping similar patches into 3D arrays, sparsity of data in transform domain is

enhanced. In other words, the difference between signal and noise coefficients become more

visible consequently thresholding leads to better estimation of noiseless data. If y is the true

image and z is the observed noisy one, e denote the basic estimate of the image by ŷbasic and

the final estimate by ŷfinal. We name the patch of size Nht
1 with top left corner at pixel x by

Zx.

Grouping

We call the currently processed patch the reference patch and name it ZxR . Firstly,we find

the blocks that are similar to the reference one within a fixed search neighborhood. The

similarity measure is a function of patches distance. We define the distance as normalized

Euclidean distance of vectorized patches. In order to degrade the effect of noise with high

standard deviation, it is been proposed to apply a 2D transform followed by a hard thresholding
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2.2. BM3D IMAGE DENOISING CHAPTER 2. BACKGROUND

coefficients to pre-smooth patches only for standard deviation of noise greater than 40.

d(ZxR , Zx) =
‖Υ′(τht2D(ZxR))−Υ′(τht2D(Zx))‖22

(Nht
1 )2

(2.5)

In this equation, τht2D is the explained 2D transform and Υ′ is the hard thresholding operator

with threshold λ2Dσ. The grouping is done by comparing this distance by a threshold value and

keeping at most Nht
2 of the most similar patches in the group. The threshold value is τhtmatch.

We call the set of top left coordinates of these patches ShtxR .

ShtxR = {x|d(ZxR , Zx) < τhtmatch} (2.6)

We stack them in a 3D group and call it ZxR .

Collaborative Hard-thresholding

We apply a 3D transform to the 3D group ZxR , then we hard threshold noise coefficients,

produce estimate of the 3D block, apply inverse transform and return them to their original

places.

ŶbasicxR = τht3D
−1

(Υ(τht3D(ZxR))) (2.7)

In this equation τht3D is the 3D transform usually composed of a 2D transform over patches and

then a 1D transform over the third dimention. The inverse 3D transform is denoted by τht3D
−1

.

The Υ is the hard thresholding operator with a threshold value of λ3Dσ.

Aggregation

Aggregation is defined as a process to weighted average more than one estimate of a pixel. The

block-wise estimations of pixels have overlap. Consequently we need to aggregate them for each

pixel. Proper selection of this weights is very critical [19]. The authors of BM3D suggested

weights should be inversely proportional to the total sample variance of the corresponding block-

wise estimates. More dissimilar or noisy the 3D group estimates are the less the contribution

(weight) is. In this case the total sample variance would be σ2NxR
har, where Nhar is the number

10
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of retained (non-zero) coefficients after hard thresholding. So we assign weights as:

whtxR =
1

σ2NxR
ht

(2.8)

In Chapter 4, the two main problems of this weighting scheme will be discussed and a new

weighting scheme will be proposed to improve BM3D further.

2.2.2 Second Step: Wiener Filtering

In this step, both the basic estimate and the noisy image are used to improve the denoising.

We estimate the true image using power spectrum of the basic estimate and applying wiener

filter shrinkage again in 3D transform domain over stacks. Parameters in this step are shown

with a superscript wie.

Grouping

For each patch in the basic estimate we repeat the block matching process in the first step.

The only difference is that since the image is already pre-filtered the effect of noise with high

standard deviation does not exits any more, so we can calculate the distance of two patches

with size Nwie
1 by Nwie

1 directly on the spatial domain as below:

d(Ŷ basic
xR

, Ŷ basic
x ) =

‖Ŷ basic
xR

− Ŷ basic
x ‖2

2

(Nwie
1 )

2 (2.9)

We again compare this distance by the threshold τwiematch (which obviously should be smaller

than the threshold in the first step) and keep at most Nht
2 of the most similar patches in the

basic estimate. We denote this stack by Ŷ basic
xR . We create another 3D stack in the same

order of the previous one from the noisy image and call it Zbasic
xR .

Wiener Filter Shrinkage

3D transform is applied to both groups. We perform collaborative Wiener filtering on the

noisy group using energy spectrum of the basic estimate as the pilot. Then apply inverse 3D

11
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transform and return patches to their original places. We define wiener coefficients from the

energy of the 3D transform coefficients of the basic estimate group:

W xR =
|τwie3D (Ŷ basic

xR)|2

|τwie3D (Ŷ basic
xR)|2 + σ2

(2.10)

Then we multiply it element-wise by the 3D array of noisy image:

Ŷ wie
xR

= τwie3D
−1

(W xRτ
wie
3D (Zbasic

xR)) (2.11)

Aggregation

Same as the first step, we compute a final estimate of the true image by aggregating all of the

obtained local estimates using a weighted average. Weights for each 3D group are defined as:

wwiexR
=

1

σ2‖W xR‖22
(2.12)

There is also a major drawback in this formulation of aggregation weights which is discussed in

Chapter 4. Default values of BM3D for all the mentioned parameters are presented in Table 2.1

.

2.3 Noise Invalidation Technique

Noise invalidation is an adaptive technique to drive a noise signature from the noise statistics in

order to separate noise from data. This method was originally proposed over one dimensional

data. It does not consider any particular assumption on the structure of the noise-free signal and

performs better than other thresholding denoising methods. A brief overview of this method is

provided here [3]:

For each candidate threshold z, we can define the signature function for one sample of a noise

random variable as below:

g(z, vi) =

 1 if vi ≤ z

0 otherwise
(2.13)

12
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Table 2.1: Notations and default parameters of BM3D algorithm proposed by authors in [1]

Parameter Definition Default Value

zx noisy image pixel located at x

yx true image pixel located at x

ŷbasicx basic estimation pixel located at x

ŷx denoised pixel located at x

ηx noise value added to the pixel located at x

σ standard deviation of the noise

τhtmatch threshold parameter for similar distances in step 1 σ < 40 ? 2500:5000

τwiematch threshold parameter for similar distances in step 2 400

Zx Patch extracted from noisy image located at x

Zx block extracted from noisy image located at x

Nht
1 Patch size in step 1 8

Nwie
1 Patch size in step 2 8

Nht
2 maximum number of patches in 3D group in step 1 16

Nwie
2 maximum number of patches in 3D group in step 2 32

τht3D normalized 3D transform for denoising in step 1 2D-Bior1.5+1D-Walsh

τwie3D normalized 3D transform for denoising in step 2 2D-DCT+1D-Walsh

Υ′ hard-threshold operator with σλ2D for block matching in step 1 λ2D is zero for σ < 40

Υ hard-threshold operator with σλ3D for denoising in step 1 λ3D is 2.7

We name the expected value and variance of this signature as GE(z) and GV ar(z). For a vector

of the noise random variable of length N , we drive the signature as:

g(z, vN ) =
1

N

N∑
i=1

g(z, vi) (2.14)

It is straightforward to show that:

E(g(z, V N )) = GE(z) (2.15)

13
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Figure 2.3: Effect of sorting the absolute value of data: the top figure is 100 runs of a white
Gaussian noise, the bottom figure is the sorted data [3]

and

V ar(g(z, V N )) =
1

N
GV ar(z) (2.16)

It can be shown that for each z, the above signature for the vector of noise samples can also be

written as:

g(z, vN ) =
m

N
(2.17)

where m is the number of samples with absolute value less than z, equivalently when sorting

vis the mth value is the largest vi less than z [20]. The effect of this signature function derived

from sorting is illustrated in Figure 2.3.

As it can be seen in the figure the sorted data are in such a denser area than the unsorted

ones i.e. they have less variance. This property helps us to define a tight boundary around the

mean of the sorted data coefficient to detect noise coefficient which are inside that boundary

with high probability. These boundaries are as below and shown in Figure 2.4. In the next

chapter, a 2D version of this method is used over the vector of patch distances in order to

L(z) = GE(z)− λ
√

1

N
GV ar(z) (2.18)
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Figure 2.4: Solid line is the noisy data, dashed lines are the noise only confidence bound-
aries. The portion of noisy data inside the boundary with high probability belongs to noise
coefficients [3]

U(z) = GE(z) + λ

√
1

N
GV ar(z) (2.19)

2.4 Performance Evaluation Criteria

The quality measurement criteria used for performance evaluations are Peak Signal to Noise Ra-

tio (PSNR) and (Structural Similarity Index Measure) SSIM which both compare the estimated

image and the original true image.

2.4.1 Peak Signal to Noise Ratio

Peak Signal to Noise Ratio (PSNR) is the most popular quantitative metric in analysing re-

trieved images and it is a function of Mean Square Error (MSE). The Mean Square Error is
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defined as squared Euclidean distance of two images. Larger PSNR values mean better denois-

ing and it does not depend on any visual structure and details. With the condition of pixel

intensities between zero and one we have the following equation for calculating PSNR between

two images X and X̂ [21]:

PSNR(X, X̂) = 20 log10(
1

‖X − X̂‖2
) (2.20)

2.4.2 Structural Similarity Index

Structural Similarity Index Measurement (SSIM) shows edges and fine details preservance in

the denoised image and it indicates more visual similarity between two images than PSNR. The

following equations show the formulas for the mentioned quality criteria,[22]:

SSIM(X, X̂) =
(2µXµX̂ + k2

1)(2σXX̂ + k2
2)

(µ2
Xµ

2
X̂

+ k2
1)(σ2

Xσ
2
X̂

+ k2
2)

(2.21)

where µX and µX̂ are the mean values of the images, σ2
X and σ2

X̂
are the variance of the

images, σXX̂ is the covariance of two images and k1 and k2 are two constants.
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Chapter 3

Similarity Validation Based NLM

3.1 Problem Formulation

We consider an image corrupted with an additive white Gaussian noise (AWGN) with zero

mean and variance σ2, where yi is the ith noisy pixel value and xi is the ith true pixel value:

yi = xi + ni; ∀i : ni ∼ N (0, σ2) (3.1)

The goal is to recover the noise free image from the observed noisy image. In the conventional

NLM methods, each estimated pixel, x̂i, is a weighted average of other pixels in a search

neighbourhood Si:

x̂i =

∑
j∈Si wi,jyj∑
j∈Si wi,j

(3.2)

where wi,j is the weight between square patches centered at pixels i and j. The weight is a

function of squared value of `2-norm distance between two local patches Pi and Pj with centers

at pixels i and j:

di,j = ‖Pi − Pj‖22 (3.3)

wi,j = e−di,j/h (3.4)
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PNLM

denoising

Residual

smoothing

process

Noise

Invalidation
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Similar

patches

Pre-filtered

imageNoisy image Denoised image

Figure 3.1: Similarity validation based nonlocal means (NLM-SVB)

Where ‖.‖2 is Euclidean distance of vectorized patches difference. This weight, used in tradi-

tional NLM, is a Gaussian kernel weight, where h is a decaying parameter and is usually set to

10σ [2].1

3.2 Proposed Method

Our proposed method, denoted by similarity validation based nonlocal means (NLM-SVB),

consists of three steps shown in Figure 3.1. In the following these three steps are explained in

detail.

3.2.1 Step One: Patch Similarity Validation

Using fundamentals of NLM, for each reference patch the distance of that patch and the patches

in searching area Si is first calculated. The goal is to keep similar patches in this area for further

processing in next steps. Two patches are considered similar if their distance is only due to

additive noise. Due to the nature of the distance, di, j in (3.3) this distance has a chi-squared

distribution where the distribution for x is defined as:

χ2
k(x) =

x(k/2−1)e−x/2

2(k/2)Γ(k/2)
(3.5)

1In the original formulation, they multiply this function by a neighbourhood Gaussian kernel to consider the
geometric distance between pixels in a search neighborhood.
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where Γ denotes the Gamma function and k is the order of the distribution. Motivated by this

definition of similarity in the first step, our goal is to hard threshold as many dissimilar patches

as possible. The procedure is as follows:

For any ith center patch, we first sort all the di,js in its search neighborhood Si. In this

case, similar patches with di,js following Chi-squared distribution fall within a probabilistic

boundaries that can be pre-calculated based on that Chi-squared distribution. Details of cal-

culation of these boundaries are provided in Appendix 1. Using this probabilistic boundaries

an example of the hard thresholding, that is also explained in Appendix 1, is as follows:

Figure 3.2 shows the probabilistic bounds and sorted di,js for three cases of a flat, an edge

and a pattern search neighbourhood respectively. Red squares show the reference patch Pi. Note

that these boundaries are fixed for all three cases and only function of the σ and the size of Si.

Consequently, the hard thresholding process considers any jth patch with its di,j out of this

boundary as a dissimilar patch to the ith patch. For example, after sorting the patch distances,

at index j = 1000 the probabilistic upperbound and lowerbound with probability 99.8% (3σ

probabilistic confidence) are 0.9114 and 0.6546. As the figure shows for the flat scenario, di,j at

index j = 1000 is 0.8962, which falls within the boundaries. However, this value is 1.0116 and

1.1483 for edge and pattern scenarios respectively that are out of the boundaries. Therefore,

1000th sorted pixel is passed to step 2 for the first scenario, while being discarded (set to zero)

for the second and third scenarios.

3.2.2 Step Two: Weighting Process

After elimination of dissimilar patches through the hard thresholding, the remaining patches

are processed in the weighting stage. For this stage, our weights in (3.2) are consistent with

the corresponding Chi-squared distribution in (3.5) [9]:

wi,j = χ2
ηi,j (d

n
i,j/γi,j) (3.6)

where:

γi,j = (2|Pi|+ |Oi,j |)/2|Pi|; ηi,j = |Pi|/γi,j (3.7)
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Figure 3.2: Three scenarios of search neighbourhood Si: (a) flat, (b) edge, (c) pattern (σ=25).
Little red square in the middle is Pi. Right column: sorted distances of candidate patches, di,js,
and pre-calculated probabilistic boundaries in (1.9)

and |Pi| is the number of pixels in Pi and |Oi,j | is the number of overlapping pixels between

Pi and Pj . This step can be considered as a soft thresholding stage after a hard thresholding

stage, both consistent and faithful to the exact distribution of di,js for similar patches.
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Figure 3.3: For search neighbourhood Sis in Figure 3.2, First column: weights of PNLM, second
column: weights of hard thresholding+PNLM, third and fourth columns: denoised versions of
the images by PNLM and hard thresholding+PNLM respectively.

Advantages of pre-processing thresholding before weighting process

Figure 3.3 shows how our additional hard thresholding benefits the existing soft thresholding

(PNLM) for the same scenarios as in Figure 3.2. The first column shows the associated weights

of PNLM while the second column shows the weights for hard thresholding+PNLM. The ad-

ditional zero weighted ones are shown in yellow in the second column. Comparing these two
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columns, the additional hard thresholding has zeroed the weights of many dissimilar patches

(18% for flat case, 95% for edge case and 96% for pattern case). As the figures show, the

remaining pixels are highly related (very similar) to the center pixel. The third and forth

columns show the denoised results. As these two columns show elimination of the dissimilar

patches resulted better denoised image, specially for the cases of edge and pattern structure,

where with the additional hard thresholding fine details are well retrieved [23].

3.2.3 Step Three: Smoothing Process

This stage uses the conventional smoothing filter [24]:

x̂newi = x̂i + λD(yi − x̂i) (3.8)

where D is the smoothing denoising function and λ is the added percentage of smoothed residu-

als. A mean filtering is applied over residuals, yi− x̂i, [25]. For each pixel of the residual image,

the mean value of pixels in a 3×3 neighbourhood is calculated to replace the center value and

λ = 10% [26].

3.3 Simulation Results

Our test images are boat, man, cameraman, house, barbara and couple shown in Figure 3.4.

Parameter λ in the invalidation step, shows the width of those probabilistic boundaries. If

we choose a higher value not many of the pixels will be eliminated from the averaging step.

Therefore, the effect of NIDe selection will become lower. If we choose a smaller value some

related patches with their distance only because of the noise will be eliminated. In the following

simulation, we changed the value of λ over test image of boat (512×512). Table 3.1 shows that

λ around 3 gives us higher PSNR.

Parameters kNIDe and k show the radius of patches in the NIDe filtering and applying

probabilistic weights steps respectively. Large patches lead to unwanted smoothing and lose

of many details, while too small patch sizes cause many low frequency variation in the image.

Here it should be mentioned that in the proposed PNLM method authors suggest using patches
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Test images: (a) boat (512×512), (b) man (512×512), (c) cameraman (256×256),
(d) house (256× 256), (e) barbara (512× 512), (f) couple (512× 512)

Table 3.1: Performance Comparison for Different Values of λ kNIDe = 3 , k = 2 & σ = 25
On Test Image Boat (512× 512)

λ 0.5 1 1.5 2 2.5

PSNR(dB) 28.77 28.78 28.78 28.79 28.79

λ 3 3.5 4 4.5 5

PSNR(dB) 28.79 28.78 28.77 28.76 28.76
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of size 3×3. However, our results show patches of size 5×5 or k equals 2 gives us higher PSNR

in all of our test images (size 512× 512).

Table 3.2: Performance Comparison (PSNR) for Different Patch Sizes for λ = 3 & σ = 25 On
Test Image Boat (512× 512)

k/kNIDe 1 2 3 4

1 28.36 28.68 28.64 28.53

2 28.52 28.75 28.79 28.73

3 28.43 28.60 28.62 28.60

4 28.18 28.32 28.35 28.34

The resulted percentage of patch elimination due to hard-thresholding for σ = 25 is provided

in Table 3.3. As the table shows, on average around 60% of patches are being discarded before

the weighting process. Note that this percentage is higher in images with fine details such as

man and barbara, while it is lower for images with less details such as house.

Table 3.3: Percentage of the eliminated patches by hard thresholding

σ boat man cameraman house barbara couple

25 63.5% 65.6% 57.7% 51.4% 64.0% 61.6%

The quality measurement criteria used for the performance evaluation are PSNR [21] and

SSIM [22]. The proposed method is compared to NLM and NLM-PET[10], NLM-SAP[8], Fast

NLM[27] and PNLM[9] that are variations of NLM. For all these methods the tuning parameters

in their referenced papers are used. While PNLM patches have a 3×3 size, our optimum patch

size in combined approach is 5×5 as explained. The search neighbourhood Siis a square window

of size 21× 21.

Table 3.4 shows the results for boat and man over a wide range of noise standard deviations.

The column with title ”Intermediate” is our algorithm without the third step of smoothing. As

24



CHAPTER 3. SIMILARITY VALIDATION BASED NLM 3.3. SIMULATION RESULTS

it can be seen, the performance of NLM-PET is worse than that of the traditional NLM. The

hard thresholding used in this approach eliminates even some similar patches. NLM-SAP on

the other hand, outperforms NLM as in this method patch shapes are adaptive.

PNLM outperforms NLM, since it uses the weight function based on the true distribution of

similar patches. The Fast NLM method in [27], outperforms the NLM by removing dissimilar

patches based on their gradient. As the table shows, NLM-SVB outperforms all the above

methods as it takes advantage of PNLM weights, as well as exploiting the additional pre-

processing hard thresholding. Comparing the last two columns shows that hard thresholding

step contributes drastically more than smoothing process in the overall improvement. The

results for all other images, cameraman, house, barbara and couple are similar to what is

shown for boat and man. Due to the space limitation, those results are shown only for σ = 30

in Table 3.5. Figures 3.5- 3.16 show the visual quality of all studied methods. By comparing

NLM-SVB with PNLM and NLM denoised images, it can be seen that sharper edges are more

visible in our method. So this method can be used in scenarios when edge preservance is more

important than actual denoising such as features extraction.

With ignoring different implementation methods which can speed up the algorithms and by

fixing patch sizes in all the methods, our algorithm has less order of complexity than method

such as NLM-SAP. However, due to sorting its complexity is comparable to methods such as

NLM-PET and Fast NLM. Note that a more advanced smoothing process (a new weighting

scheme) is used in [26] which is currently comparable with our method. Combining this post-

processing step with our existing method in future can further improves the overall performance.
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CHAPTER 3. SIMILARITY VALIDATION BASED NLM 3.3. SIMULATION RESULTS

Figure 3.5: Estimation of the noiseless
Cameraman (size 256 × 256) with noise
standard deviation of 20 by NLM method.
The PSNR is 29.17

Figure 3.6: Estimation of the noiseless
Cameraman (size 256 × 256) with noise
standard deviation of 20 by NLM-PET
method. The PSNR is 28.65

Figure 3.7: Estimation of the noiseless
Cameraman (size 256 × 256) with noise
standard deviation of 20 by NLM-SAP
method. The PSNR is 29.55

Figure 3.8: Estimation of the noiseless
Cameraman (size 256 × 256) with noise
standard deviation of 20 by Fast-NLM
method. The PSNR is 29.49
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3.3. SIMULATION RESULTS CHAPTER 3. SIMILARITY VALIDATION BASED NLM

Figure 3.9: Estimation of the noise-
less Cameraman (size 256 × 256) with
noise standard deviation of 20 by PNLM
method. The PSNR is 29.51

Figure 3.10: Estimation of the noiseless
Cameraman (size 256 × 256) with noise
standard deviation of 20 by NLM-SVB
method. The PSNR is 29.58

Figure 3.11: Estimation of the noiseless
Barbara (size 512 × 512) with noise stan-
dard deviation of 30 by NLM method. The
PSNR is 27.26

Figure 3.12: Estimation of the noiseless
Barbara (size 512 × 512) with noise stan-
dard deviation of 30 by NLM-PET method.
The PSNR is 26.91
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Figure 3.13: Estimation of the noiseless
Barbara (size 512 × 512) with noise stan-
dard deviation of 30 by NLM-SAP method.
The PSNR is 27.90

Figure 3.14: Estimation of the noiseless
Barbara (size 512 × 512) with noise stan-
dard deviation of 30 by Fast-NLM method.
The PSNR is 27.50

Figure 3.15: Estimation of the noiseless
Barbara (size 512 × 512) with noise stan-
dard deviation of 30 by PNLM method.
The PSNR is 27.61

Figure 3.16: Estimation of the noiseless
Barbara (size 512 × 512) with noise stan-
dard deviation of 30 by NLM-SVB method.
The PSNR is 27.94
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Chapter 4

Probabilistic Weighting BM3D

The signature method of grouping and collaborative filtering is the key of BM3D algorithm.

It benefits from two principal properties of natural images very efficiently. The first one is the

existence of similar patches within a neighborhood and the second one is the local correlation

of pixel values in a single patch. They state that collaborative 3D filtering allows us to exploit

both intra-patch correlation and inter-patch correlation based on the above two assumptions.

This high degree of correlation leads to a very high sparse representation of the image in the

transform domain. This sparseness can be interpreted as the fact that most of the image

details are represented by few large coefficients while noise is the many small coefficients. This

representation allows us to separate the noise from the true signal by applying thresholding on

the coefficients in transform domain [28].

In this chapter we study BM3D in more details. We go over all parameters and design

elements and try to discuss their optimality. Then we propose a new weighting scheme to

improve the algorithm.

As it is been explained in Chapter 2, Block matching 3D transform domain collaborative

filtering consists of two nearly identical transform domain denoising. The first one is hard

thresholding coefficient by exploiting additional sparsity in coefficients of 3D blocks and creat-

ing an estimate of the noiseless image. The second step is using this estimate as pilot to perform

wiener filtering again on 3D blocks. There are three different processes in these steps. One

30



CHAPTER 4. PROBABILISTIC WEIGHTING BM3D 4.1. GROUPING

is finding similar patches for each reference patch by a similarity measure close to Euclidean

distance of patches and then transforming them into another domain (wavelet or discrete co-

sine transform). The other one is to shrinking the coefficients in the transformed 3D data to

attenuate the noise (once by hard thresholding in the final step by wiener filter) and the last

one is applying inverse 3D transform to the remaining coefficients, returning the 2D estimates

of the grouped blocks to their original position and aggregating them according to a proper

weighting scheme [1].

4.1 Grouping

As it has been explained in detail in the background chapter, the grouping step is performed

to increase the sparsity of coefficients in transform domain. For each reference patch, they find

similar patches in a search neighbourhood and group them in 3D stacks to denoise them using

collaborative filtering. The similarity measure is the same as many other denoising algorithm

and is based on Euclidean distance of vectorized patches.

4.1.1 Block Matching on Noisy Image

The formula for matching criteria is in (2.5). For high value of noises, Euclidean distance

has been proved to be not working well which leads to inaccurate block matching and in the

literatures is called ”block effect” [29]. Due to this issue, authors propose a pre-filtering hard

thresholding step denoted by operator Υ′ of the coefficients for noise standard deviation greater

than 40. They also consider two different threshold values for measure of similarity between

patches. For sigma less than 40, this parameter τhtmatch is set to 2500, for higher values of sigma

it is set to 5000 due to more dissimilarity coming from additive noise. In [30], authors define

three different levels of noise, low less than 30, medium between 30 and 50 and high more than

50 and adjust parameters of BM3D specifically the distance threshold for those three cases.
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4.2. DENOISING CHAPTER 4. PROBABILISTIC WEIGHTING BM3D

4.1.2 Block Matching on Basic Estimate

Block matching in the second step is not different than the first step 2.9. However it is done

twice, once over the basic estimate image and the second time over the noisy observed image

in exactly the same order. The similarity measure threshold τwiematch, is proposed to be 400.

There is always possibility to improve the accuracy of grouping by exploiting other sim-

ilarity measures like the gradient of patches or average gray value as it is discussed in [27].

Or using noise invalidation approach similar to what is presented in the previous chapter to

distinguish between dissimilar patches and patches that are similar in the noiseless version and

are dissimilar only because of the additive noise. In this method similar to Chapter 3, one can

find the distribution of distance of exactly the same patches after additive noise and compare its

sorted version with distances of all candidate patches with the reference patch then eliminate

unnecessary patches.

4.2 Denoising

The next step is collaborative filtering or 3D denoising. Transform domain denoising includes

hard or soft thresholding of coefficients. Wiener filtering is another coefficient shrinkage method

that performs well when there exists an estimate of the noiseless signal. The choice of 3D trans-

form is a concern in this step. The DCT transform does not perform well for representing sharp

edges and corners, while wavelet transform is not good for textures and smooth transitions.

Thus authors suggest using two different transforms in hard thresholding and wiener filtering

step to compensate each others flaws [31].

4.2.1 Hard Thresholding

Here the 3D noisy blocks are being denoised. A 3D transform over patches followed by hard

thresholding coefficients is formalized in (2.7). The proposed 3D transform is a 2D wavelet on

patches surface followed by a 1D Walsh-Hadamard transform on the third dimension. It seems

that the choice of these transform does not affect the final result considerably [14]. However,

the thresholding parameter λ3D plays an important role in the amount of denoising or blurring.
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Authors suggest the value of 2.7 for this parameter, it seems optimal but the reason is not clear.

Changing this value leads to losing many dBs in the final PSNR.

4.2.2 Wiener Filtering

The role of wiener filtering is not presented in the original work and to the best of our knowledge

it is not been discussed in any other analytical work. Therefore in this section we review this

step in more details:

For each reference patch xR we have a 3D block (consist of many similar patches) that we

aim to apply collaborative wiener filtering to denoise them. That filter is a linear FIR filter

which we name it QxR , a 3D matrix in spatial domain where:

ŶxR = QT
xR

ZxR = (ZT
xR

QxR)
T

(4.1)

The error would be as (4.2), another 3D matrix in spatial domain:

exR = YxR − ŶxR (4.2)

We aim to minimize the mean square error which is defined as:

C(QxR) = E[exRexR
T ] = E[(YxR −QT

xR
ZxR)(YxR

T −ZT
xR

QxR)] (4.3)

for simplification of notations:

C(Q) = E[(Y −QTZ)(Y T − ZTQ)]

= E(Y Y T )−QTE(ZY T )− E(Y ZT )Q+QTE(ZZT )Q

= σ2
y −QTRZY −RTZYQ+QTRZZQ

(4.4)

where RZY is the cross correlation matrix between observation and original signal and RZZ

is the auto correlation matrix for the observation and σ2
y is the variance of original image. The

mean square error is a second order equation. Therefore the equation has a global minimum
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which can be identified by differentiating to Q and solving for zero:

dC(Q)

dQ
=

d

dQ
(σ2
y −QTRZY −RTZYQ+QTRZZQ) = −2RZY + 2RZZQ (4.5)

The filter coefficients are easily solved. Wiener-Hopf equation:

Q = (RZZ)−1RZY (4.6)

Since noise is additive and it is independent of signal (RNY = 0) we can show:

Q = (RY Y +RNN )−1RY Y = (RY Y + σ2)−1RY Y (4.7)

In transform domain, auto correlation matrix will become power spectral density (PSD), so the

shrinkage coefficient would be:

W = τwie3D (Q) =
SY Y

SY Y + σ2
(4.8)

Power Spectrum Estimation

The periodogram is an estimate of the spectral density of a signal. In practice, the periodogram

is often computed from a finite-length Discrete Fourier Transform (DFT). The raw periodogram

is not a good spectral estimate because of spectral bias and the fact that the variance at a

given frequency does not decrease as the number of samples used in the computation increases.

However, as the following proof shows, in the case of FIR signals (like our image blocks) we

can calculate the exact spectrum density: Assume we have a 1D signal x[n] which has values

where n = 0 : N and it is zero otherwise. We can vectorized any higher dimension signal and

extend the theory. We define its auto correlation sequence as:

rxx[k] =

N∑
n=0

x[n]x[n− k] for k = −N : N (4.9)
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We take the DFT of the auto correlation and we get the power spectral density as:

Sxx[K] =
N∑

k=−N
rxx[k]e

−j2πKk
2N+1 for K = −N : N (4.10)

If we substitute (4.9) in (4.10):

Sxx[K] =
N∑

k=−N

N∑
n=0

x[n]x[n− k]e
−j2πKk
2N+1 for K = −N : N (4.11)

We define a new variable l = n− k:

Sxx[K] =
2N∑

l=−N

N∑
n=0

x[n]x[l]e
−j2πK(n−l)

2N+1 =
N∑

l=−N
x[l]e

j2πKl
2N+1

N∑
n=−N

x[n]e
−j2πKn
2N+1 (4.12)

And by definition of DFT:

Sxx[K] = X(K)X(−K) = |X(K)|2 (4.13)

Using a similar proof, we can show the equation holds for DCT too. Therefore, ( 4.8) will result

in ( 2.10).

4.3 Aggregation

4.3.1 Weighting in Hard Thresholding

After denoising 3D groups each patch is transferred to its original location. Overlapping pixels

needs to be aggregated in order to produce a unique estimate of the noisy pixel. Dabov et al. in

[1] propose a scalar value for each 3D group which plays the role of the weight of each individual

patch in that group on its original location. This aggregation step gives a basic estimate of the

noisy image which by itself is better than some previously introduced methods.

The weighting scheme is based on the variance of patches in each 3D group in transform do-

main. This variance is either calculated by considering all coefficients of 3D group in transform
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domain, or is estimated by simply comparing number or value of retrieved coefficients after

denoising. For weighting in hard thresholding, estimating the variance by counting number of

non-zero coefficients in each 3D group after hard thresholding is proposed as in (2.8).

4.3.2 Weighting in Wiener Filtering

There is a very similar approach in aggregation in Wiener filtering step and it is to estimate

the variance of noiseless 3D stacks by sum of the squared coefficient values after shrinkage as in

( 2.12 ). It seems there are two main issues with this approach. The first one is that it seems

low variance in the retrieved 3D stacks does not guarantee the accuracy of denoised version.

For patches that are naturally with sharp edges and transitions, even in the perfect denoised

scenarios this variance is still high. The second issue is ignoring the number of patches in

each group. The method limits this number by maximum of 32 and a power of two. If two

groups have the same variations, the number of retrieved coefficients in the bigger one would

be larger consequently the assigned weight for all denoised patches in that group would be

larger. This puts more weight on the patches coming from smoother regions which have more

similar candidate patches and does not seem realistic. In the next section, we propose a new

probabilistic framework to improve the weighting schema of BM3D.

4.4 Proposed Weighting

The idea behind this weightings scheme is that the impact of denoised 3D groups on each pixel

can be approximated by the the probability that the entire 3D group are the noisy version of

the same noiseless patches stacked in one group. It means there distance is only because of the

additive noise. Following is the exact calculation of this probability:

If two patches centered at x and xR are exactly the same their distance which is summation

of some squared Gaussian random variables (additive noise values) follows a Chi-squared dis-

tribution. In the previous chapter and in [9] this probability which we denote it by PS(Dx,xR)
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is shown to be:

PS(Dx,xR) = χ2
ηx,xR

(Dx,xR/γx,xR) =
(Dx,xR/γx,xR)ηx,xR/2−1 exp(−Dx,xR/2γx,xR)

2ηx,xR/2Γ(ηx,xR/2)
(4.14)

where Γ denotes the Gamma function and:

γx,xR = (2|Zx|+ |Ox,xR |)/2|Zx|; (4.15)

ηx,xR = |Zx|/γx,xR (4.16)

and |Zx| is the number of pixels in patch Zx and |Ox,xR | is the number of overlapping pixels

between Zx and ZxR . Since selection of patches in a group are independent from each other,

their distances are also independent. So the probability of perfect similarity in a 3D group

of noisy patches are equal to multiplication of those individual probabilities. We propose to

assign the a scalar as weight for the whole group equals to this probability. To make this weight

independent of the number of patches involved in the 3D stack, we normalize this probability

by taking Nth root of it , where N is the number of patches in the 3D group. Note that this

adaptation can happen in both two steps of BM3D. Consequently we have (2.8) and (2.12)

modified as below:

whtxR or wwiexR
= (Πx∈SxRPS(Dx,xR))( 1

N
) (4.17)

where Π is the multiplication notation and PS is defined in ( 4.14 ). This weighting scheme

has proved to perform better than the current variance based scheme. Next section shows the

simulation results.

4.5 Simulation Result

Our test images are boat, man, cameraman, house, barbara and couple shown in Figure 3.4 the

same as Chapter 3. The quality measurement criteria used for the performance evaluation is
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PSNR [21].

Tables 4.1 and 4.2 shows the result for barbara and cameraman test images over a wide range

of standard deviation of noise respectively. First column is the PSNR values for noisy images.

Next column is the studied BM3D. Third column is a method introduced in [16] (Segmented-

BM3D) . The idea is to choose the search neighbourhood a bit more wisely. They segment

the image to two parts based on the intensity value of the pixels and for choose candidate

similar pixels from those within the segment. It acts as a pre-filtering step over patches before

calculating the distance this step does not improve the original method considerably since the

intensity has already been considered in Euclidean distance somehow. However, it decrease

the computational complexity by eliminating some unnecessary candidate patches. The next

method Sigmoid-BM3D is introduced in [15]. Authors suggest a new thresholding function

based on the mathematical sigmoid function instead of hard thresholding that causes sharp

drop in coefficients in transform domain.

Our method PW-BM3D outperforms BM3D and Segmented-BM3D in most of the cases

and it is compatible with Sigmoid-BM3D. The results for all other images, boat, man, house

and couple are similar to what is shown for boat and man and are shown only for σ = 30 in

Table 4.3. Figures 4.1- 4.8 show the visual quality of all studied methods.

Table 4.1: Performance Comparison Over Test Image of Barbara (PSNR)

σ Noisy Image BM3D Segmented-BM3D Sigmoid-BM3D PW-BM3D

10 29.03 34.81 34.78 34.88 34.91

30 18.59 29.61 29.60 29.63 29.64

50 14.82 27.18 27.23 27.30 27.34

70 11.70 25.46 25.53 25.61 25.60

90 10.09 23.90 24.01 24.18 24.08
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Figure 4.1: Estimation of the noiseless
House (size 256× 256) with noise standard
deviation of 20 by BM3D method. The
PSNR is 33.53

Figure 4.2: Estimation of the noiseless
House (size 256 × 256) with noise stan-
dard deviation of 20 by Segmented-BM3D
method. The PSNR is 33.50

Figure 4.3: Estimation of the noiseless
House (size 256× 256) with noise standard
deviation of 20 by Sigmoid-BM3D method.
The PSNR is 33.58

Figure 4.4: Estimation of the noiseless
House (size 256× 265) with noise standard
deviation of 20 by PW-BM3D method.
The PSNR is 33.63
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Figure 4.5: Estimation of the noiseless
Boat (size 512 × 512) with noise standard
deviation of 30 by BM3D method. The
PSNR is 29.03

Figure 4.6: Estimation of the noiseless
Boat (size 512 × 512) with noise stan-
dard deviation of 30 by Segmented-BM3D
method. The PSNR is 29.06

Figure 4.7: Estimation of the noiseless
Boat (size 512 × 512) with noise standard
deviation of 30 by Sigmoid-BM3D method.
The PSNR is 29.05

Figure 4.8: Estimation of the noiseless
Boat (size 512 × 512) with noise standard
deviation of 30 by PW-BM3D method.
The PSNR is 29.14
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Table 4.2: Performance Comparison Over Test Image of Cameraman (PSNR)

σ Noisy Image BM3D Segmented-BM3D Sigmoid-BM3D- PW-BM3D

10 28.98 33.99 33.96 33.94 34.12

30 18.56 28.47 28.46 28.45 28.63

50 14.01 26.12 26.19 26.15 26.30

70 11.54 24.54 24.61 24.60 24.72

90 9.89 23.39 23.51 23.58 23.64

Table 4.3: Performance Comparison For Noise Standard Deviation of 30 (PSNR)

Image Noisy Image BM3D Segmented-BM3D Sigmoid-BM3D PW-BM3D

boat 18.59 29.03 29.00 29.05 29.14

man 18.59 28.87 28.90 28.93 29.00

house 18.56 31.91 31.88 31.99 32.05

couple 18.59 28.75 28.81 28.84 28.92
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Chapter 5

Conclusions and Future Work

In this thesis, we studied the two most well-known and used image denosing techniques: Nonlo-

cal Means (NLM) and Block Matching 3D Transform Domain Collaborative Filtering (BM3D).

We started Chapter 1 with an overview of these two methods and discussed some other works

that have been done on their improvements. In Chapter 2 we presented a brief overview of

NLM and BM3D steps. The noise invalidation technique for data denoising was reviewed, and

our criteria measures for performance evaluations, SSIM and PSNR, were discussed.

In Chapter 3 we introduced Similarity Validation Based Nonlocal Means technique which

is an improvement over NLM and showed the simulation results. By adding an additional

pre-processing stage in form of a hard thresholding, we have improved the performance of the

traditional nonlocal means. This pre-processing step attempts to eliminate dissimilar patches

prior to the weighting process. As our simulation result shows this step can eliminate about 60%

of the patches that are used in traditional nonlocal means. As it is shown this percentage is lower

for the flat neighbourhoods and higher for the neighbourhood with fine details. Our proposed

method (NLM-SVB) considers the exact distribution of similar patches distances in both the

hard thresholding step and weighting process. In addition, we use the same distribution in the

weighting process. Our simulation results illustrate the advantages of the proposed method

over the traditional nonlocal means, probabilistic nonlocal means, fast nonlocal means, NLM

with early termination and shape adaptive NLM that are variations of NLM. The combination
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of the noise invalidation technique with those variations of NLM can be considered for a future

works. For example, pre-filtering techniques based on the gradient or average gray-value of

the patches can be added to the noise invalidation technique to completely remove unnecessary

patches.

In Chapter 4 we studied BM3D in details. This algorithm has a large number of parameters

and design elements and is relatively more complex than other existing methods. We had a

thorough analysis on the theoretical aspects of BM3D, specifically we studied the estimation

of power spectrum of basic estimated 3D groups that are used in calculation of wiener filter

coefficients and were not explained in the original paper and, to the best of our knowledge, in

any other analytical works in the field of image processing. As explained in details there are

many parameters that their optimal value are found by trial and error and the algorithm can

be sensitive to them. Future work can analyze and discover theoretical reasoning behind the

optimality of those parameters.

Then, we introduced the two main issues with the current weighting scheme which leads

to a bias scheme and puts more weights on smoother patches. We suggested a new weighting

scheme based on the probability distribution of the distance of noisy similar patches. Our sim-

ulation results confirmed superiority of our approach (PW-BM3D) over the traditional BM3D

for an average of about 0.2dB in PSNR. There are still some aspects of BM3D that can be

improved, specifically for generating the estimate in the first step. Some iterative methods can

be considered to improve the basic estimate that will be used as the pilot for wiener filtering

step. Also some denoising techniques in transform domain other than hard thresholding can be

explored to retrieve the data coefficient of 3D blocks in a more efficient way in the future.
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Appendix 1

Calculation of boundaries for

validating patches

The idea used for elimination of dissimilar patches is inspired by noise invalidation threshold-

ing [3]. For reference patch Pi, in search neighbour Si, we denote the non overlapping patches

in Si by S̄i. If Pi and Pj are similar and both are corrupted by AWGN, we denote their distance

by dni,j . We also denote the set of all dni,js in S̄i by {dni,j}. Defining the following function for

any given z:

g(z, dni,j) =

 1 if dni,j ≤ z

0 otherwise
(1.1)

the expected value of this random variable is:

E(g(z,Dn
i,j)) = 1× Pr(Dn

i,j ≤ z) + 0× Pr(Dn
i,j > z)

= Pr(Dn
i,j ≤ z) = F (z)

(1.2)

where F is the cumulative distribution function (CDF) of the random variable Dn
i,j (we denote

dni,j as a sample of random variable Dn
i,j). Note that F is a Chi-squared distribution of order
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|Pi| calculated in [9]. With variance of this random variable we have:

V ar(g(z,Dn
i,j)) = E(g(z,Dn

i,j)
2)− E(g(z,Dn

i,j))
2

= F (z)− F (z)2 = F (z)(1− F (z))
(1.3)

where:

E(g(z,Dn
i,j)

2) = 1× Pr(Dn
i,j ≤ z) + 0× Pr(Dn

i,j > z)

= Pr(Dn
i,j ≤ z) = F (z)

(1.4)

and E(g(z,Dn
i,j)) is defined in (1.2). The following function:

ḡ(z, {dni,j}) =
1

|S̄i|
∑
j∈S̄i

g(z, dni,j) (1.5)

calculates the number of pixels with patch distance less than z; equivalently when sorting dni,js,

if m number of them is less than or equal to z, then ḡ(z, {dni,j}) = m/|S̄i|. This function

represents the index of sorted version of dni,js [3]:

E(ḡ(z, {Dn
i,j})) = E(g(z,Dn

i,j)) = F (z) (1.6)

V ar(ḡ(z, {Dn
i,j})) =

1

|S̄i|
V ar(g(z,Dn

i,j))

=
1

|S̄i|
F (z)(1− F (z))

(1.7)

Note that |S̄i| is a considerably large number. For example, if the search neighbourhood has

size of 21×21 and patches are 5×5 squares, this number is 360. This will cause the variance of

ḡ(z, {Dn
i,j}) to be considerably less than its mean. In addition, ḡ in (1.5) is a summation of |S̄i|

numbers random variables. Consequently, using Central Limit Theorem we can estimate this

random variable with a Gaussian distribution. Therefore the following probabilistic boundaries
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hold for di,j :

Pr(L(i) < ḡ(dni,j , {Dn
i,j}) < U(i)) ≈ erf(λ/

√
2) (1.8)

where U(i) and L(i) are:

E(ḡ(dni,j , {Dn
i,j}))± λ

√
V ar(ḡ(dni,j , D

n
i,j)) (1.9)

For the choice of λ, the conventional three times standard deviations rule can be used that

results in a confidence probability of 99.8%. To implement this approach, first upperbound

and lowerbound in (1.9) are pre-calculated as a function of σ. We then compare whether the

available values of ḡ(di,j , {di,j}) are within these boundaries. The threshold is the value of the

point from which this number gets out of the boundaries. From that index j∗, the structure

of these distances do not follow that of due to pure AWGN only. Therefore, Pjs for j > j∗

represent dissimilar patches. Middle plot in Figure 3.2 shows an example of such j∗ to be 135.
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