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Abstract

Population growth around the world may cause an adverse impact on the environment

and the human life. Thus, modeling the Urban Environmental Quality (UEQ) becomes

indispensable for a better city planning and an efficient urban sprawl control. To evaluate

the impact of city development, this study aims to utilize remote sensing and Geographic

Information System (GIS) techniques to assess the UEQ in two major cities in Ontario,

Canada.

The main objectives of this research are: 1) to examine the relationship of multiple

UEQ parameters derived from remote sensing, GIS and socio-economic data; 2) to evaluate

some of the existing methods (e.g. linear regression, GIS overlay and Principal Component

Analysis (PCA)) for assessing and integrating multiple UEQ parameters; 3) to propose a

new method to weight urban and environmental parameters obtained from different data

sources; 4) to develop a new method to validate the UEQ results with respect to three

socio-economic indicators.

Remote sensing, GIS and census data were first obtained to calculate various environ-

mental, urban parameters and socio-economic indicators. The derived parameters and
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indicators were tested to emphasize their relationship to UEQ. Three Geographically-

Weighted Regression (GWR) techniques were used to integrate all these environmental,

urban parameters and socio-economic indicators. Three key indicators including family

income, the level of education and land value were used as a reference to validate the

outcomes derived from the integration techniques. The results were evaluated by assess-

ing the relationship between the extracted UEQ results and the three indicators. The

findings showed that the GWR with spatial lag model represents an improved precision

and accuracy up to 20% with respect to GIS overlay and PCA techniques. The final

outcomes of the research can help the authorities and decision makers to understand the

empirical relationships among regional science, urban morphology, real estate economics

and economic geography.
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Chapter 1

Introduction

1.1 Research Motivation

The United Nations estimates that the global population will be progressively increased to

a double in the coming 40 years, which may cause an adverse impact on the environment

and human life. Such impact may instigate increased water demand, overuse of power

and anthropogenic noise, etc. One of the key concerns regarding urban planning is to

establish certain development goals, such as the Urban Environmental Quality (UEQ).

The terminology “quality of life” has been continuously discussed in the literature

so as to lay a foundation to serve the subsequent quantification of UEQ. Szalai (1980)

emphasized that quality of life represents the degree of satisfaction with life and the

feeling of well-being, which can be measured by the exogenous and endogenous factors.

Diener and Suh (1997) concluded the meaning of quality of life should be related to the

satisfaction of life. Raphael et al. (1996) further echoed and agreed that quality of life is

more tend to be the enjoyable degree of a person toward the principal responsibilities of

his/her life. However, Van Kamp et al. (2003) described the quality of life by the physical

and immaterial equipment such as health, education, justice, work, family, etc.

UEQ is the consequence of the combination of environmental parameters including

nature, open space, infrastructure, built environment, physical environment amenities

and natural resources, where each parameter has its characteristics and partial quality.

UEQ is also defined as an indicator to generically describe urban, environmental and
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CHAPTER 1. INTRODUCTION

socio-economic condition of an urban area. UEQ can be attributed as a multi-layer

concept that comprises physical, spatial, economic and social parameters at different

scales (Weng and Quattrochi, 2006). Van Kamp et al. (2003) addressed that UEQ is an

essential part of the quality of life, which has the basic concept such as health, safety and

education in addition to the physical and environmental parameters. Weng and Quattrochi

(2006) pointed out that UEQ has the capability to influence many governing aspects,

including urban planning, infrastructure management, economic influence, policymaking

and social studies. Designing a theoretical framework of UEQ linking to the quality of

life is an essential step to understand the urban sustainability and human well-being.

Such a framework may help to choose the parameters and the integration techniques to

evaluate the multidimensional aspects of UEQ (Van Kamp et al., 2003). These integration

techniques are able to assess the current and predict/ estimate the future UEQ, which are

desired by the municipal and city planners (Leidelmijer et al., 2002). Thus, the assessment

of UEQ can be an efficient tool to provide sufficient information about urban conditions,

sustainable development and regional planning (Faisal and Shaker, 2017).

UEQ can be modeled using satellite remote sensing techniques through providing

continuous Earth observation images and analyzing multi-temporal and multi-resolution

data, which are able to give a clear scenario for visualizing and understanding the

land cover, Land Surface Temperature (LST), water conditions and vegetation in urban

areas (Fung and Siu, 2000, 2001; Nichol and Lee, 2005; Nichol and Wong, 2006; Nichol

et al., 2006). However, it is challenging to predict and model the interrelationship and

dependence of all the factors. A few preliminary attempts were found using multi-temporal

and multi-resolution data to model UEQ (Green, 1957; Bederman and Hartshorn, 1984;

Li and Weng, 2007; Nichol and Wong, 2009). As such, UEQ assessment not only provides

more detailed information toward urban conditions, it also serves as an efficient tool in

sustainable development and urban planning. Subsequently, many representative studies

were found in the literature that demonstrated how to use multi-source data to model

and assess the UEQ.
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CHAPTER 1. INTRODUCTION

1.1.1 UEQ parameters

Background

Previously, modeling the urban and environmental parameters mainly relied on the natural

recourse and the effluent disposal areas (Sarmento, 2000; Lo, 1996). Most of the used

parameters were mostly coming from physical and chemical parameters. For instance, the

Government of Chile in 1978 generated a number of parameters to control water quality for

human use as well as the atmospheric emissions that produced by many emissions sources

within the country (Sarmento, 2000). Several countries, including United Kingdom, Japan,

USA, Portugal and Argentine replicated what has been done by the Chilean Government

in 1978. The UK environment department demonstrated the first sustainable development

parameters to assess the UEQ (Smeets and Weterings, 1999). Chemical parameters

including nitrate, phosphorus, and pesticides as well as other parameters such incident

polluted areas, and water distribution and sewage expenses treatment were assigned as

essential to assess the UEQ. In 1980, Nakaguchi (1999) investigated several environmental

parameters for Japanese cities. Physical and chemical parameters that recommended

in the literature were carefully studied to derive adequate parameters in the Japanese

cities. These parameters including Concentration of Paniculate Material in Suspension,

Biological Oxygen Demand were used to assess the air and water quality respectively.

Furthermore, cleanness, noise, the minimum green areas and health resources utilization

were also considered to evaluate the UEQ in the Japanese cities.

In Portugal, the agricultural department (AGRO.GES) developed several agricultural

parameters to promote the Portugal agriculture regions. The parameters mainly represent

structural aspects, conjectural, social and cultural nature to manage the local development

dynamics and assess the risks and timing in these regions. In Argentine, the basic

infrastructure utilities were assigned as important parameters to measure the UEQ

(Sarmento, 2000). The underground supply contamination, public water supply and the

final disposal of sewage were utilized for the UEQ assessment. Moreover, socio-economic

indicators including income, education, poverty, health and mortality were also used in

that study. Other basic utilities including gas, electric energy, drainage and sewerage,

public illumination as well as transport and communication were considered to measure

the UEQ in Argentine. Noriega and Soria (1999) highlighted several parameters at the

3



CHAPTER 1. INTRODUCTION

beginning of years 1990s for UEQ assessment and sustainable cities. The parameters

included air quality, access to green areas, energy consuming, water and generation of

solids wastes, accessibility, public participation, the number of people living under the

line of poverty and the subjective indicator of welfare.

Choosing appropriate urban and environmental parameters

Before moving forward for choosing the appropriate urban and environmental parameters,

we should have a clear definition of the terminologies to better describe the use of

the data set. Parameters can be defined as data that is measured or observed for

UEQ calculations. For example, population density, crime rate and poverty level can

be considered as parameters. Moreover, some other parameters can be also derived

from remote sensing, including Land Surface Temperature (LST), Normalized Difference

Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), built-up areas to

assess the UEQ. On the other hand, Indicator or some time considered as a value derived

from parameters, which provides information about a phenomenon or any environment

areas. These indicators can be used to validate and in the assessment of the final UEQ

outcome. For example, some of the socio-economic data are considered in this study as

UEQ indicators, these include land value, income and education level (Gabrielsen and

Bosch, 2003; Indicators for Sustainable Cities, 2015).

Parameters predominantly are designed to provide information about a particular

location for a specific purpose to support authorities and decision making. Choosing the

appropriate urban and environmental parameters are essential and challenging at the

same time. Generally, it begins by reviewing several case studies of various cities that have

different size and different environment. From these case studies, the common parameters

in several research areas can be assigned. The parameters have to be understandable

and easy to implement, and applicable to cities regardless of location and the size of

the city (Dekker et al., 2003). Urban planners and policymakers, on the other hand,

assigned a sheer number of parameters frameworks, which vary in their approach to

measuring UEQ and their selection of parameters (Zavadskas et al., 2007). Most of

the parameters frameworks are valid and representative for UEQ. However, some of the

parameters frameworks are built for a particular location. For example, the China Urban

Sustainability Index was designed to assess cities ranging from 200,000 people to 20
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CHAPTER 1. INTRODUCTION

million people in China. On the other hand, the European Green Capital Award indicator

frameworks (Berrini and Lorenzo, 2010) was developed to evaluate the current state of

the urban and environmental dimension in European cities. Other parameters frameworks

named Global City Indicator Program can be used to assess UEQ in all regions. Global

City Indicator mainly covers all aspects of urban life, environment and socio-economic,

and it does not measure pollution or air quality. The Global City Indicator broaches the

economy sector by implementing unemployment rates/ jobs and economic growth, mainly

the Annual GDP growth rate. The environment sector also taken into consideration in

this parameters frameworks by fulfilling the green spaces, water quality, the volume of

solid waste generated and mobility. Moreover, social sector was also considered in this

parameters frameworks by including access to local/ neighborhood services within a short

distance, crime rates, measures of income distribution, percentage of social/ affordable/

priority housing, percentage of roadways in good condition, percentage of green space,

number of schools, percentage of population with access to water or sewage infrastructure,

mortality rate and percentage of population with access to health care services (Indicators

for Sustainable Cities, 2015).

The subsequent challenge in choosing parameters frameworks is found in investigating

the most important parameters towards sustainable development and UEQ. Scholars

consensus that the four main parameters including urban, environmental, economic and

social are very vital for UEQ research work (Hiremath et al., 2013). In contrast, some

researchers have observed that social and economic indicators are not robust enough to

represent UEQ (Lynch et al., 2011). Other research workers found that socio-economic

indicators including education level and income are required for UEQ assessment (Adelle

and Pallemaerts, 2009). People with more education and income are more likely to support

high quality environment (Kahn and Matsusaka, 1997; Kahn, 2002). For example, richer

urbanites are more likely to support high quality urban areas and purchase good cars

that produce less pollution per kilometer (Kahn, 2007). Consequently, several studies

showed that income indicator has high relationship up to 0.91 with GDP, car and house

ownership in 158 nations in 1996 (Kahn, 2007; Kahn and Matsusaka, 1997; Kahn, 2002).

Education provides the tools for people to access and understand information about how

environmental hazards affect their wellbeing. As a result, rising educational level can

help increase the awareness of individuals for better quality regions (Becker and Mulligan,
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1997). Studies also observed a high correlation between the level of education and voting,

since people with high education are more likely aware of public/political issues that may

influence their environment quality (Kahn, 2002). Thus, socio-economic indicators are

essential to assess the UEQ for any urban areas.

There are more issues regarding choosing parameters, which are data standardization

and data availability. Since the primary goal of selecting UEQ parameters is to assess the

performance of these parameters to better estimate the UEQ. Therefore, the parameters

are needed to be standardized and addressed to be on the same scale. In this manner, the

selected parameters can be validated and enhanced to serve UEQ precisely (Yigitcanla

and Lönnqvist, 2013). Moreover, standardization can also help understanding of the

parameters (Pires et al., 2014). Data availability is another significant issue that needs

to be considered when parameters are selected for UEQ assessment. Pires et al. (2014)

highlighted that unavailable data sources could cause a biased or unreliable estimate for

UEQ. Researchers consensus that parameters sets need to be locally relevant to the city

or municipality (Campbell, 1999; Camagni, 2002). Another scholars emphasized that

indicators with extensive political support were more successful than those proposed by

academic institutions or non-government agencies (Hiremath et al., 2013). Mega and

Pedersen (1998) suggested that indicators should be clear, understandable and obtainable

at a reasonable cost-benefit ratio and must be able to reflect every aspect of urban

development.

1.2 Research Problem

By reviewing the existing literatures, it was found that there is a lack of quantitative

parameters to assess the UEQ. In addition, there is a paucity of research works that

discussed the UEQ parameters that can be used to assess the UEQ. The majority of the

scholars mainly utilized Principal Component Analysis (PCA), Geographic Information

System (GIS) analysis or Multi-Criteria Evaluation (MCE) techniques to integrate UEQ

parameters (Nichol and Wong, 2009; Fobil et al., 2011; Lo, 1996; Rinner, 2007), where

there exist certain limitations for all these integration techniques. 1) PCA itself produces

unweighted components, which may not highlight the importance of the parameters; 2)

PCA does not work properly in nonlinear relationships; and finally, 3) the minimum

6



CHAPTER 1. INTRODUCTION

number of components is indeterminable, (Faisal and Shaker, 2017). GIS overlay method

does not consider correlation among parameters nor consider data reduction. MCE is a

weighting process that allows decision makers to modify attribute values of the parameters.

Regarding the result validation, most of the UEQ studies (Fobil et al., 2011; Rinner, 2007;

Moore et al., 2006; Lo, 1996; Liang and Weng, 2011) did not perform any field survey

or even result validation, except very few attempts found using e-mail questionnaire or

field-based questionnaire (Nichol and Wong, 2009; Rahman et al., 2011). Collecting field

data is always ideal, but it is also time consuming and budget dependent. Moreover,

these methods can be inaccurate to test the outcomes of UEQ if the data samples being

collected are not representative, which may lead to biased results.

1.3 Research Objectives

The primary objectives of this Ph.D. research can be summarized as follows:

1. To examine the relationship of multiple UEQ parameters derived from remote

sensing, GIS and socio-economic data.

2. To evaluate some of the existing methods (e.g. linear regression, GIS overlay and

PCA) for assessing and integrating multiple UEQ parameters.

3. To propose a new method to weight urban and environmental parameters obtained

from different data sources.

4. To develop a new method to validate urban and environmental parameters with

socio-economic indicators for UEQ assessment.

To broach the first objective, multiple parameters were examined to investigate the

relationship among them. The relationship of the environmental parameters including

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index

(NDWI), built-up area and LST were assessed with urban parameters including land use,

urban density, and public transportation. The environmental and urban parameters was

also evaluated with the socio-economic indicators including real Gross Domestic Product

(GDP), employment rate and population.
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The second objective examines some of the existing methods including linear regression,

GIS overlay and PCA to assess the relationships among multiple parameters as well as UEQ

integration. The findings can help to look for optimal parameters for UEQ integration

and can act as a reference to serve the subsequent comparison of the newly developed

UEQ integration method in objective (3).

The third objective is accomplished by proposing a new method to weight urban and

environmental parameters. Three Geographically-Weighted Regression (GWR) techniques

were investigated to assess the spatial relationship among the parameters. Two major

cities in Canada were used as case study to demonstrate the proposed techniques.

Finally, the research explores the accuracy and precision of the final outcome of UEQ.

Three socio-economic indicators including family income, the higher level of education

and land value were used as a benchmark to validate the final results.

1.4 Dissertation Workflow

Figure 1.1 represents the overall workflow for this dissertation, which can gradually

epitomize the steps from data acquisition, data processing, leading to the final outcome

of this research work. The primary data of this dissertation mainly obtained from remote

sensing, GIS, and census data. The remote sensing and GIS were used to derive the urban

and environmental parameters after normalizing the GIS data and atmospheric correction

for remote sensing data. The urban and environmental parameters were first investigated

and studied to understand its values if they are corresponding to positive or negative

values with respect to UEQ. An individual parameter (built-up areas) was assessed using

seven major cities in Canada mainly because there is no clear conceptualization in the

previous literatures that justify the relationship of built-up regions with respect to UEQ.

Then two cities in Ontario, Canada (City of Toronto and City of Ottawa) were tested to

derive the UEQ. Since all the parameters came from a different source of data; therefore,

all the derived parameters were normalized to be in one scale using Z-score and linear

interpolation. Five different integration methods including GIS overlay, PCA, ordinary

GWR, GWR with spatial lag and GWR with spatial error model were investigated to

derived the final UEQ outcomes. Then three indicators including family income, education
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level and land values that obtained from census data were used to validate the final results

of UEQ.
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Figure 1.1: The overall dissertation workflow.

1.5 Dissertation Outline

This dissertation follows a manuscript style approach.

Chapter 2 mainly approaches objectives (1) and (2) of the research work. This chapter

discusses the relationship between the GDP and built-up area using remote sensing and

GIS data. In this chapter, numerous multi-temporal Landsat TM images and land use

GIS vector datasets obtained from year 2005 to 2010 during the summer season (June,
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July and August) for seven major cities in Canada. The socio-economic data, including

the real GDP, the total population and the total employment, are obtained from the

Metropolitan Housing Outlook during the same period. Both the Normalized Difference

Built-up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) were used to

determine the built-up areas. This chapter presents the first time use of built-up areas

extracted from Remote sensing data in UEQ assessment. Finally, regression analysis was

conducted between the real GDP, the total population, and the total employment with

respect to the built-up area.This chapter was published as:

Faisal, K., Shaker, A. and Habbani, S. 2016. Modeling the relationship between

the Gross Domestic Product (GDP) and built-up area using remote sensing and GIS

Data: a case study of seven major cities in Canada. ISPRS International Journal of

Geo-Information, 5(3), 23.

In addition, the previous journal paper was broadened from the following conference

proceeding:

Faisal, K. and Shaker, A. 2014. The use of remote sensing technique to predict Gross

Domestic Product (GDP): an analysis of built-up index and GDP in nine major cities in

Canada. The International Archives of Photogrammetry, Remote Sensing and Spatial

Information Sciences, 40(7), 85.

Chapter 3 contains objectives (1), (2) and (4) of the overall objectives of the research

work. This chapter investigates the ability to use remote sensing and GIS techniques

to model the UEQ with a case study in the City of Toronto via deriving different

environmental, urban parameters and socio-economic indicators. Various remote sensing

and GIS data were first explored in order to fully understand the concept of UEQ. The

urban, environmental parameters and socio-economic indicators were normalized in this

research in order to evaluate the significance of each parameter. GIS overlay and PCA

(pixel-based and object-based) were introduced to integrate the urban, environmental

parameters and socio-economic indicators with a case study in City of Toronto. Socio-

economic indicators, including family income, the degree of education and land value, were

used as a reference to validate the outcomes derived from the two integration methods.

This chapter was published as:
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Faisal K and Shaker A. 2017. An investigation of GIS overlay and PCA techniques

for urban environmental quality assessment: a case study in Toronto, Ontario, Canada.

Sustainability, 9(3), 380.

In addition, the previous journal paper was broadened from the following conference

proceeding:

Faisal K and Shaker A. 2014. Integration of remote sensing, GIS and census data as a

tool for urban environmental quality assessment. International Conference on Geospatial

Theory, Processing, Modelling and Applications. October 6th to 8th, 2014, Toronto, ON,

Canada.

Chapter 4 discusses objectives (3) and (4) of the overall objectives in this research

work. This chapter, elucidates the use of the GIS, PCA and Geographically-Weighted

Regression (GWR) techniques to integrate various parameters and estimate the UEQ

of two major cities in Ontario, Canada. In this chapter, we attempt to fill several gaps

in UEQ research by: (1) utilizing a new method to normalize the UEQ parameters; (2)

introducing a new approach to weight urban and environmental parameters obtained from

diversity data; and (3) proposing a new method to validate urban and environmental

parameters with socio-economic indicators for UEQ assessment in two cities in Ontario,

Canada. This chapter was published as:

Faisal K and Shaker A. 2017. Improving the accuracy of urban environmental quality

assessment using geographically-weighted regression techniques. Sensors, 17(3), 528.

In addition, the previous journal paper was broadened from the following conference

proceeding:

Faisal K and Shaker A. 2015. Integration of remote sensing, GIS and census data as a

tool for urban environmental quality assessment. IEEE Geoscience and Remote Sensing

Society, the International Geoscience and Remote Sensing Symposium 2015 (IGARSS

2015) Milan/ Italy from July 26th to July 31st , 2015.

Chapter 5 epitomized the overall conclusions of the Ph.D. research work along with

the limitations and future work. In this chapter, several problems and limitations of the
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research work are highlighted followed by the overall objectives and the main contribution

of this study, which shows how the research responded to the stated objectives. Moreover,

this chapter points out the conclusions of the validation and the practical implications of

this research.
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Chapter 2

Modelling the Relationship between

the Gross Domestic Product and

Built-Up Area

2.1 Abstract

City/regional authorities are responsible for designing and structuring the urban mor-

phology based on the desired land use activities. One of the key concerns regarding

urban planning is to establish certain development goals, such as the real gross domestic

product (GDP). In Canada, the gross national income (GNI) mainly relies on the mining

and manufacturing industries. In order to estimate the impact of city development,

this study aims to utilize remote sensing and Geographic Information System (GIS)

techniques to assess the relationship between the built-up area and the reported real GDP

of seven major cities in Canada. The objectives of the study are: (1) to investigate the

use of regression analysis between the built-up area derived from Landsat images and

the industrial area extracted from Geographic Information System (GIS) data; and (2)

to study the relationship between the built-up area and the socio-economic data (i.e.,

real GDP, total population and total employment). The experimental data include 42

multi-temporal Landsat TM images and 42 land use GIS vector datasets obtained from

year 2005 to 2010 during the summer season (June, July and August) for seven major

cities in Canada. The socio-economic data, including the real GDP, the total population
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and the total employment, are obtained from the Metropolitan Housing Outlook during

the same period. Both the Normalized Difference Built-up Index (NDBI) and Normalized

Difference Vegetation Index (NDVI) were used to determine the built-up areas. Those

high built-up values within the industrial areas were acquired for further analysis. Finally,

regression analysis was conducted between the real GDP, the total population, and the

total employment with respect to the built-up area. Preliminary findings showed a strong

linear relationship (R2= 0.82) between the percentage of built-up area and industrial area

within the corresponding city. In addition, a strong linear relationship (R2= 0.8) was

found between the built-up area and socio-economic data. Therefore, the study justifies

the use of remote sensing and GIS data to model the socio-economic data (i.e., real GDP,

total population and total employment). The research findings can contribute to the

federal/municipal authorities and act as a generic indicator for targeting a specific real

GDP with respect to industrial areas.

2.2 Introduction

Satellite remote sensors acquire images of the Earth’s surface by recording the reflected

energy from objects on the ground. Thus, remote sensing data can be used to retrieve

semantic information of the Earth surface instead of geometric measurements only.

Remote sensing image classification techniques have been used to aid in identifying the

land use/land cover areas (Cihlar, 2000; Yan et al., 2015). Land use/land cover features

include, without limitation: residential, commercial and industrial, water, vegetation

cover and wetland (Selçuk et al., 2003). Applications of remote sensing, particularly

in socio-economic studies, aim to map the spatial extent (Huang et al., 2015), urban

populations (Sutton et al., 2001), intra-urban population density (Sutton et al., 1997,

2003) and economic activities (Sutton and Costanza, 2002). These data can provide

valuable information for the municipal authorities and researchers to aid in urban planning

and city management. Real GDP usually serves as an index of the annual production

on a country/city’s final goods and service. In Canada, the gross national income (GNI)

mainly depends on the mining and manufacturing industries and services (Metropolitan

Housing Outlook, 2013). Canada is one of the top mining countries, as well as one of

the largest producers of minerals and metals. The mining industry contributed 21% of
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the total value of Canadian goods’ exports in 2010, where 28.6% of the industrial sector

contributes to the total real GDP in Canada (The Mining Association of Canada, 2011).

With respect to the mature development of remote sensing techniques, there emerge

several studies using remote sensing data to model the real GDP at a national scale.

Sutton et al. (2007) demonstrated a case study to determine the relationships between

observed changes in night-time satellite images derived from the Defense Meteorological

Satellite Program’s Operational Linescan System (DMSP-OLS) and the changes in total

population and real GDP in four nations (India, China, Turkey and the United States).

Two approaches were used in their research work to model that relationship. First, the

1992 to 1993 and 2000 DMSP OLS night-time images were used to measure the economic

activity within each nation based on the extended light areas. Second, the extended light

areas were used to study the relationship with the total population to compute the real

GDP, where the state level lights were used to model the relationship with the state

level real GDP values based on a linear regression model. However, (Sutton et al., 2007)

illustrated that the proposed method is not preferable to measure the real GDP for the

developed countries. That is mainly because the night-time image somehow depicts the

population density, where the developed countries’ GDP may not have a very strong linear

relationship with the population density. The results found a strong to moderate positive

linear relationship (regression) in this case study (R2= 0.96 for China, 0.84 for India,

0.95 for Turkey and 0.72 for the United States) and demonstrated a good opportunity

to use the remote sensing technique as a tool to map economic activity at national and

sub-national levels.

Ma and Xu (2010) conducted a research study in the City of Guangzhou, China.

The main goal of the case study was: (1) to detect the urban expansion of the built-

up area of the City of Guangzhou in a period of 23 years lasting from 1979 to 2002;

(2) to model its urban expansion; (3) to correlate the built-up area of the City of

Guangzhou with the real GDP, total population, urban resident income and urban

traffic of the city. The supervised image classification technique (maximum likeli-

hood algorithm) was used to classify the image data and extract the built-up areas.

Urban expansion was evaluated by analysing the dynamic change of land use. The results

showed that the City of Guangzhou extended about 4.5-times from year 1979 to 2002.

That gives an indication that the City of Guangzhou expands about 14.2 km2 on average
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every year. An optimized trinomial equation was applied to determine the correlation

between the built-up areas and socio-economic indicators. The correlation coefficient

between the built-up urban area and the total population was found to be about 0.97

within the city. A value of the correlation coefficient of 0.98 was determined between the

per capita GDP and the per capita residence area for urban residents in the city (Ma and

Xu, 2010).

Ghosh and Elvidge (2010) developed a new tool named the Information and Commu-

nication Technology Development Index (IDI) to assess the GDP per capita of different

countries of the World. The main goal of the study is to use IDI to measure the develop-

ment of countries as information societies. The IDI was created by using 11 indicators

from information and communication technology (ICT) use, access and skills. The

ICT index included three usage indicators (Internet users, fixed broadband and mobile

broadband). There are five access indicators, which include in the access index (fixed

telephony, mobile telephony, international internet bandwidth, households with computers

and households with Internet). The skills index is a very important input for the IDI,

because it represents the education within the country. Three indicators (adult literacy,

gross secondary and tertiary enrollment) were proposed to represent the skills index in

the ICT. Night-time imagery of 2006 was combined with a LandScan population grid of

2006 to measure the human activity within different countries. The LandScan population

grid is a method that can be used to determine the total population and the percentage

of the total economic activity of the countries. The 2008 World Development Indicators

Report provided the per capita GDP record for different countries of the World, where the

International Telecommunication Union (ITU) calculated the IDI for the 159 countries.

First, the human activity map, which was derived from DMSP-OLS night-time imagery

and LandScan, was used to assess the per capita GDP. Second, the per capita GDP map,

which was derived from DMSP-OLS night-time imagery and LandScan, were correlated

with per capita GDP records obtained from the 2008 World Development Indicators

report. The results showed that the relationship reached up to 0.9 R2 in terms of the

regression coefficient. Finally, a second order polynomial regression was used to assess

the relationship between the estimated per capita GDP and IDI values, and the results

showed about a 0.89 coefficient of regression. The authors demonstrated that remote

sensing light images collected at night-time and the LandScan population grid can be
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used to represent IDI maps and per capita GDP values at finer resolutions (Ghosh and

Elvidge, 2010).

Yue et al. (2014) proposed another approach in Zhejiang Province located in the

southeast China for real GDP estimation. The main objectives of the study is: (1) to

propose a low-cost and accurate approach for real GDP estimation by using a diversity

source of remote sensing data; and (2) to provide an important database for the government

for future developmental strategies. The real GDP was estimated by combining the Defense

Meteorological Satellite Program Operational Linescan System (DMSP/OLS) night-time

imagery, Global MODIS vegetation indices (MODIS EVI), at a resolution of 250 m, and

land cover data for 2009. An accurate Human Settlement Index (HSI) was derived by

integrating night-time imagery (DMSP/OLS) with the MODIS EVI data in order to

estimate the real GDP of secondary and tertiary industries. The land cover data were

used to provide the agricultural productivity, such as farming, forestry, stockbreeding and

fishery. The land cover data were then used to estimate the real GDP of the primary

industries using a threshold mechanism. The brightness values of the night-time imagery

(DMSP/OLS) were correlated with the real GDP of secondary and tertiary industries

in Zhejiang Province, and the results yielded a correlation coefficient of 0.97. It was

found that primary industries, which mainly consist of farming, forestry, stockbreeding

and fishery, are hard to detect using DMSP/OLS night-time imagery. That is mainly

due to the primary industries only representing 5% of the total real GDP and the coarse

resolution of the image.

Despite the above successful attempts, the majority of the studies utilized satellite

images collected at night-time that are not always available, since the night-time images

are only accessible for National Geophysical Data Centre (NGDC) of National Oceanic

and Atmospheric Administration (NOAA) members. The night-time images have low

spatial resolution (1 km2) with respect to the Landsat images, and the night-time imagery

(DMSP/OLS) may not be the best option for the estimation of total population and urban

areas (Liu et al., 2011). In addition, the above-mentioned studies either focused on the

national scale or a specific city. In this research work, the authors aim to utilize remote

sensing and GIS techniques to assess the relationship between the built-up area and the

reported real GDP in seven major cities in Canada. Instead of using the night-time light

images, we employed the multi-temporal Landsat TM satellite images, which are free to
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the public and have a short revisit time (Yan et al., 2014). As the real GDP of Canada is

mainly made up of mining and manufacturing services, thus we place an emphasis on the

built-up land with industrial use and compare the remote sensing-derived built-up index

with respect to the corresponding real GDP of these seven major cities from 2005 to 2010.

2.3 Datasets and Methods

2.3.1 Datasets

Seven major cities in Canada, i.e., Toronto, Ottawa, Montreal, Québec City, Edmonton,

Calgary and Vancouver, were selected in this study due to the data availability and their

real GDP differences. The datasets used in this study included three categories of data:

(1) Landsat TM satellite images; (2) land use GIS data; and (3) socio-economic data,

including real GDP, total population and total employment. Since the land-use GIS data

are not available after year 2010, therefore, all of the data were collected from the year

2005 to 2010.

A total of 42 Landsat TM Images were downloaded from the USGS Earth Explorer

(United States Geological Survey, 2014). The spatial resolution of the Landsat images is 30

m for the multi-spectral bands and 120 m for the thermal band. All of these images were

imported into PCI Geomatics V10.1 (Geomatica, version 10.1; PCI Geomatics, Markham,

ON, Canada, 2007), an image processing software, clipped and then projected into the

UTM coordinate system. Atmospheric correction was conducted with the consideration

of the sensor parameters data (sensor type, acquisition date, Sun elevation, Sun zenith

and pixel size) and weather conditions (air temperature and visibility). These corrected

images were subsequently used to compute the Normalized Difference Vegetation Index

(NDVI) and Normalized Difference Building Index (NDBI), as described in Section

2.2. We intentionally ignored those data acquired from November to March due to the

appearance of clouds and snow cover, which could affect the experimental results.

A total of 42 land use GIS layer data was acquired from the Scholars GeoPortal

(Scholars GeoPortal, 2014) from 2005 to 2010. These land use layers were imported

into the ArcGIS environment (ArcGIS ; Esri; Redlands, CA, USA) for further analysis.

Similar to the remote sensing data, all of the data were projected to the corresponding

18



CHAPTER 2. MODELLING THE RELATIONSHIP BETWEEN THE GROSS
DOMESTIC PRODUCT AND BUILT-UP AREA

UTM coordinate system. Socio-economic data are provided by the Metropolitan Housing

Outlook (Metropolitan Housing Outlook, 2013) for more than 25 years. The Metropolitan

Housing Outlook measures and records the socio-economic indicators, such as the real

GDP, total employment and total population, for the major cities in Canada. Table 2.1

summarizes the data sources used in this study.

Table 2.1: The data sources for the seven major cities.

City Landsat TM Land Use GIS Data Census Data

Toronto
Path/Row = 18/30

Land use vector data were
obtained from Scholars
GeoPortal in the shapefile
format, where the land
use categories include:
Residential, Commercial,
Industrial, Government,
Parks, Waterbody and
Open Area.

Socio-economic data are
provided by the
Metropolitan Housing
Outlook. Socio-economic
data used in this research
work include real GDP,
total population and total
employment.

Date = June to August

Ottawa
Path/Row = 16/28

Date = June to August

Montreal
Path/Row = 15/28

Date = June to August

Vancouver
Path/Row = 48/26

Date = June to August

Calgary
Path/Row = 42/24

Date = June to August

Edmonton
Path/Row = 42/23

Date = June to August

Québec City
Path/Row = 13/27

Date = June to August

2.3.2 Methodology

Figure 2.1 shows the overall workflow for this research work, which can be summarized in

the following steps. All images were clipped to the study area in each city to speed up

the data processing. All image subsets were projected into the UTM coordinate system.

Then, atmospheric corrections were carried out on all of the multi-temporal Landsat

images. The atmospheric correction model (ATCOR2) developed by (Richter, 1998) was

utilized to remove the effects that change the spectral characteristics of the land features

(Paolini et al., 2006). To implement the ATCOR2 model, weather information (e.g., air

temperature, visibility) were obtained from the Canadian national climate and weather

data archive. The calibration parameters for Landsat TM sensor (biases and gains) were

also used for atmospheric correction. These calibration parameters are very crucial in the

process of atmospheric correction because they provide the bias and gain values in order

to convert the image’s digital number to radiance and subsequently convert the radiance

19



CHAPTER 2. MODELLING THE RELATIONSHIP BETWEEN THE GROSS
DOMESTIC PRODUCT AND BUILT-UP AREA

to top of atmosphere reflectance (Chander et al., 2009). After conducting the atmospheric

correction, the bio-physical parameters were derived from the Landsat images. Bands

3, 4 and 5 of the Landsat multi-spectral image were used to determine the bio-physical

parameters, NDVI and NDBI, of the study area in order to extract the built-up areas on

the images.
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Figure 2.1: The overall workflow for modelling the relationship between the GDP and
built-up area.

Regarding how the built-up area being derived, Zha et al. (2003) proposed a method

to map the urban land (or impervious surface) in the City of Nanjing, China, by using

the Landsat TM image due to its high temporal and spectral resolution with respect

to other sensors. The cloud-free Landsat TM images were used to derive the NDBI,

which represents the built-up regions in the study area. Since some of the vegetation

areas were found to be assigned into the built-up category due to the surrounding
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environments of the vegetation, for that reason, NDVI was calculated to illustrate the

vegetation cover in the City of Nanjing. Subsequently, the adjusted built-up areas

were derived using arithmetic manipulation between NDBI and NDVI, and only those

positive values were classified as built-up areas. Finally, a median filter with a kernel

size of 5 pixels by 5 pixels was used to enhance the appearance of the final built-

up image. The filtered built-up image was converted to vector data to validate the

results using the original colour composite image. It was found that the proposed

method yielded an accuracy of 92.6%, which could lead to it being able to be used to

map urban areas better than using only NDBI (Zha et al., 2003; Bhatti and Tripathi,

2014; He et al., 2010). Therefore, in this study, we followed the proposed method by

Zha et al. (2003) to derive the built-up area. First, the NDBI values (ranging from −1 to

1) are calculated using Equation (2.1):

NDBI =
MIR−NIR
MID +NIR

(2.1)

where MIR is the mid-infrared Band 5 of the Landsat TM image and NIR is the

near infrared Band 4 of Landsat TM image. The NDVI values (ranging from −1 to 1)

refer to an index that is able to monitor the vegetation activity and its annual changes,

which can be are calculated using the following equation (Zha et al., 2003):

NDVI =
NIR−Red
NIR +Red

(2.2)

where NIR is the near infrared Band 4 in Landsat image and Red is the red Band 3 in

the Landsat image. Finally, the built-up areas are defined by subtracting the NDBI layer

from the NDVI layer using the following equation of (Zha et al., 2003):

Built-up area = NDBI −NDV I (2.3)

The same concept as in (Zha et al., 2003) is considered, where the positive values

obtained from textcolorblackEquation 2.3 represent built-up areas, or otherwise, they

refer to non-built-up areas. After that, only those built-up pixels with high positive

values were used. Higher positive built-up pixel values were identified based on the

histogram of the built-up image. The mean of the histogram of the built-up image was

used as a threshold to identify those high values (Faisal and Shaker, 2014). These selected
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positive built-up pixel values were then converted into polygon shapefile layers for further

analysis in ArcGIS (ArcGIS ; Esri; Redlands, CA, USA). The following Figure 2.2 shows

a pictogram to demonstrate how the built-up area is derived.
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Figure 2.2: A pictogram to demonstrate how the built-up area is derived.

The land use GIS data were used to extract the industrial, commercial and residential

areas, and they are used to correlate the Landsat-derived built-up area. All of the GIS

data were clipped to the study area in each city to improve the performance of data

processing. The built-up pixels were overlapped with the land use maps to calculate the

percentage of built-up pixels overlaid on each of the land use areas (industrial, commercial

and residential). Figure 2.3 shows an example of the City of Montreal for the built-up

image extracted from the Landsat image on the left side of the figure and the land use

map extracted from the GIS data on the right side of the figure. The red colour in the

built-up image represents the higher built-up values, which reflect buildings or impervious

surfaces in the City. The blue colour represents a low built-up value, which also covers

some of the vegetation or any green area within the image. Figure 2.4 shows the built-up

pixels that were extracted and overlapped with the land use map for the City of Montreal.
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Figure 2.3: Landsat derived built-up image (left) and land use map (right) for the City of
Montreal.
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Figure 2.4: An illustration of the built-up pixels overlaid on the land use map.
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Finally, the social-economic data obtained from the Metropolitan Housing Outlook

Metropolitan Housing Outlook (2013), including the real GDP, the total employment and

the total population for the seven cities, were plotted and analysed in the GIS platform.

Finally, the built-up areas extracted from the Landsat images were correlated with the

three socio-economic indicators in order to reveal their relationships. The linear regression

analysis was used to depict the relationship between any two parameters, and in this

study, we used the R2, i.e., the coefficient of determination, as an indicator to reveal the

relationship between any of these two parameters. A confidence interval of 95% was used

throughout the linear regression analysis.

2.4 Results and Discussion

2.4.1 Built-Up Areas

In this section, an analysis was first conducted to reveal the relationship between the

Landsat-derived built-up areas and the underneath land cover zones. Figure 2.5 shows

the percentage of the built-up areas derived from the Landsat images correlated with

the land use maps from the GIS data. The total number of pixels in the built-up area

was calculated from each land use (industrial, residential and commercial), where the

percentage of the built-up areas was computed for each land use in the map. Most of

the built-up areas derived from the Landsat images are located in the industrial and

residential zones. However, the built-up areas are mainly occupied in the industrial zones

by 51%–70% in 2005, 52%–70% in 2006, 50%–67% in 2007, 45%–73% in 2008, 51%–75%

in 2009 and 51%–80% in 2010. That is mainly because of the higher reflectance of the

industrial areas that are usually paved with homogeneous concrete and asphalt structures

compared to the residential and commercial areas. The industrial areas are mainly

covered by a large extent of concrete structure without any distinguished vegetation on

site, where the residential areas contain residential buildings and houses. Many of these

residential buildings and houses have vegetation surrounding them, which may influence

their corresponding spectral reflectance values found within the Landsat images.

In 2005, the built-up areas obtained from the Landsat images are consistently located

within the industrial zones in the seven cities. The percentage of the built-up areas found

within big cities, such as the City of Toronto, Montreal and Vancouver, has a higher
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Figure 2.5: Percentage of built-up areas within the land use. (a) 2005; (b) 2006; (c) 2007;
(d) 2008; (e) 2009; (f) 2010.

percentage of the built-up areas compared to small cities, such as Québec City, by 10% to

20%. However, the percentage of the built-up areas within big cities, such as Toronto,

Montreal and Vancouver, is significantly higher than the percentage of the built-up areas

in small cities, such as Québec City, by 30% to 36% for the year 2010. Such findings can

be explained due to the fact that the industrial areas in those big cities occupy more land
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than those industrial areas in the small cities by 70 to 100 km2. The highest percentage

of the built-up areas within the industrial zones in 2010 is found in the City of Toronto

(81%). The lowest percentage of the built-up areas within the industrial zones is located

in Québec City (50%). This could be due to the variation of the manufacturing and

services industries in Toronto, which are found to be more significant than that in Québec

City.

Figure 2.5 shows dramatic changes in the percentage of the built-up areas that are

located within the residential and commercial areas in the cities. The percentage of the

built-up areas that are located within the residential and commercial areas in Québec

City and Ottawa changed from 4.5% to 12% throughout 2005 to 2010, which could be

explained as due to the urban sprawl in those two cities. However, the industrial areas in

the other cities, such as Toronto, Montreal, Vancouver and the City of Calgary, expanded

by 7% to 10% from the year 2005 to 2010. This can be explained by the urban expansion

in the industrial sector that is more than the residential and commercial sector in these

four cities.

The highest percentage of the built-up areas within the industrial zones in 2005 is

located in the City of Toronto (70%). The lowest percentage of the built-up areas within

the industrial zones is located in the City of Ottawa (51%). That is mainly because of

the urban sprawl, where the total population in the City of Toronto is about five million

people. However, the combined total population of Québec City and the City of Ottawa

is about two million people in 2005 (Metropolitan Housing Outlook, 2013). From the

year 2005 to 2010, it was observed that the built-up areas, which are located within

the industrial zones, are significantly higher than the built-up areas, which are located

within the residential and commercial areas zones. For that reason, further analysis was

conducted to determine the linear regression between the percentage of the built-up areas

and the industrial areas from year 2005 to 2010. A strong positive linear relationship was

observed for all of the built-up areas and industrial areas, where R2= 0.82 is detected for

the percentage of the built-up areas found within the industrial zones from 2005 to 2010,

as shown in Figure 2.6. With these findings, one can conclude that the Landsat-derived

built-up areas mainly represent the industrial zones regardless of the cities being analysed.

This thus paves the way for the subsequent analysis, in the following Section 2.4.2 which

aims to model the relationship between the Landsat-derived built-up areas with respect

to the real GDP, the total population and the total employment.
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Figure 2.6: Relationship between the percentage of built-up areas and the industrial areas
from 2005 to 2010.

2.4.2 Regression Analysis between the Socio-Economic indica-

tors and Built-Up Areas

A preliminary analysis was conducted to determine the linear regression between the

real GDP, total employment and total population from socio-economic indicators with

respect to the percentage of the built-up areas derived from the remote sensing images

within the industrial zones from the year 2005 to 2010. Such analyses are found missing

in the existing literature, which adopted Landsat images for industrial land use and

socio-economic indicators.

Figure 2.7 shows the relationship between the percentage of the built-up areas within

the industrial zones and the real GDP, total employment and total population from

2005 to 2010, respectively. Preliminary analysis revealed that a moderate positive linear

relationship exists for both of the socio-economic indicators and the percentage of the

built-up areas within the industrial zones from 2005 to 2010. An R2 of 0.6 was detected

for the percentage of the built-up areas within the industrial zones and real GDP. On

the other hand, an R2 of 0.5 was observed for the percentage of the built-up areas within
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the industrial zones and total population. Furthermore, the linear regression between

the percentage of the built-up areas found within the industrial zones and R2 of total

employment was 0.5.
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Figure 2.7: Relationship between % of built-up areas and the socio-economic indicators
from 2005 to 2010. (a) % of built-up areas vs. GDP; (b) % of built-up areas vs. total
employment; (c) % of built-up areas vs. population.

Since a few outliers were observed in Figure 2.7, which are mainly contributed by the

City of Calgary and Edmonton, if the data of these two cities were eliminated from the

analysis, the linear regression between the socio-economic indicators and the percentage

of the built-up areas within each city were significantly improved. The R2 between the

percentage of the built-up areas within the industrial zones and the real GDP jumped from

0.6 to 0.8. The linear regression between the percentage of the built-up areas within the

industrial zones and total population increased from 0.5 to 0.83. The regression between

the percentage of the built-up areas within the industrial zones and total employment

improved from 0.5 to 0.82, as shown in Figure 2.8. The reason for deducting these

two cities for analysis is mainly because the City of Edmonton and the City of Calgary

are located in the province of Alberta, which is mainly dependent on the oil and gas

industries (Canadian Centre for Energy Information, 2012), where most of the oil and

gas manufacturers are located outside of the cities. For that reason, the industrial areas

within the cities may not accurately represent the real GDP of the cities. As a result, the

cities of Calgary and Edmonton were eliminated from the data due to the low regression

between industrial areas and socio-economic indicators.
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Figure 2.8: Relationship between % of built-up areas and the socio-economic indicators
without Edmonton and Calgary from 2005 to 2010. (a) % of built-up areas vs. GDP; (b)
% of built-up areas vs. total employment; (c) % of built-up areas vs. population.

In spite of these results, all of the fitted regression lines show that the percentage of

the built-up areas within the industrial zones has a direct proportional relationship to

all of the socio-economic indicators that were used in this study. Further analysis was

conducted to determine the linear regression between the industrial area from GIS data

and the real GDP from 2005 to 2010. That is mainly to investigate which city inflates

the overall regression. As noted in the below Figures 2.9 and 2.10, the results vary in

each of the cities.

 

R²	=	0.85

0.027

0.027

0.027

0.027

0.027

0.028

0.028

0.028

0.028

40.00 45.00 50.00 55.00 60.00 65.00

In
d
u
st
ri
al
	a
re
a/
	C
it
y	
ar
ea
	(k
m
²)
	

Real	GDP	in	the	City	of	Ottawa

2005
2006
2007
2008
2009
2010

(a)
 

R²	=	0.91

0.111

0.112

0.113

0.114

0.115

0.116

0.117

0.118

0.119

70.00 80.00 90.00 100.00 110.00

In
d
u
st
ri
al
	a
re
a/
	C
it
y	
ar
ea
	(k
m
²)
	

Real	GDP	in	the	City	of	Vancouver

2005
2006
2007
2008
2009
2010

(b)

Figure 2.9: Relationship between the real GDP and industrial areas from 2005 to 2010.
(a) City of Ottawa; (b) City of Vancouver.
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Figure 2.10: Relationship between the real GDP and industrial areas from 2005 to 2010.
(a) City of Toronto; (b) City of Montreal; (c) City of Edmonton; (d) Québec City; (e)
City of Calgary; (f) all cities.
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A strong positive linear relationship was observed for both of the industrial areas and

real GDP in the City of Ottawa and the City of Vancouver, resulting in a R2 of 0.9 and

0.8 from 2005 to 2010, as shown in Figure 2.9 a,b. A moderate positive linear relationship

(R2= 0.7 and 0.6) was found for the cities of Toronto, Montreal, Edmonton and Québec

City, as shown in Figure 2.10 a to d. The City of Calgary has a weak linear relationship

(R2 = 0.4) between the industrial areas within the cities and the corresponding GDP from

2005 to 2010, as shown in Figure 2.10 e.

Based on the previous observation, the City of Edmonton and Calgary have negative

impact on the overall regression, because these two cities are mainly dependent on the oil

and gas industries (Canadian Centre for Energy Information, 2012), where most of the oil

and gas manufacturers are located outside the cities, as mentioned previously. Therefore,

a moderate positive linear relationship (R2= 0.66) was determined, when Edmonton

and Calgary were involved in the dataset, as shown in Figure 2.10 f. However, a strong

positive linear relationship was observed for both of the industrial areas and real GDP if

the aforementioned two cities were eliminated, resulting in a R2 of 0.81 for the real GDP

from 2005 to 2010, as shown in Figure 2.11.
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Figure 2.11: Real GDP vs. industrial areas without Edmonton and Calgary.
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Despite these moderate/strong regressions being revealed, such a method may not

be replicated at the individual city level, because remote sensing-derived parameters are

unable to explain the large amounts of variance in GDP. Current economic development

studies have already pointed out certain factors influencing the GDP, including energy

consumption, foreign direct investment and CO2 emissions (Pao and Tsai, 2011). In

addition, some parameters that contribute to the GDP, such as retail sales, service sector

and manufacturers’ shipments, are hard to measure (Landefeld et al., 2008). Therefore,

the use of the remote sensing technique to model the GDP only contributes to a certain

degree (in a particular spatial dimension), while other socio-economic and environmental

factors should be considered in order to derive a more universal indicator to predict the

economic development at the country-wide level. Therefore, all of these hidden factors

may affect the regression coefficient (R2) in each city.

2.4.3 Discussion

In summary, this study aims to investigate the ability of using remote sensing technique to

model and predict the real GDP for those cities that are mainly dependent on industrial

and manufacturing incomes. To achieve this, we have to first prove there exists a

relationship between the remote sensing-derived indices (i.e., the built-up areas) with

respect to the industrial zones, which has been reported in Section 2.4.1 With such a high

linear regression (R2= 0.82) between the remote sensing-derived built-up areas, as well as

the industrial areas, one can assume that the built-up areas have a high component of

industrial and manufacturing activities. Therefore, in Section 2.4.2, we investigate the

relationship between the Landsat-derived built-up areas with respect to the real GDP,

the total population and the total employment. A high linear regression was observed

(R2 = 0.8) for the three socio-economic indicators. Thus, the presented approach can be

replicated by any federal authorities in developed countries, where their major incomes

are dependent on the industrial and manufacturing activities. However, there are a few

varieties of limitations in regards to the research study. (1) More up-to-date GIS data are

required to consolidate the findings for different cities and countries. (2) Water bodies

and bare soil all have high built-up index values that may cause confusion with the

impervious surfaces. If this method were being applied elsewhere and no GIS data exists,

it would likely cause problems, as water bodies or bare soil could be classified as built-up
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areas, and the relationship with GDP would be affected. (3) Other regression analyses

(such as nonlinear regression) can be explored depending on the nature of study area and

the socio-economic indicators being studied. The authors have investigated the use of

nonlinear regression to run the relationship between the GIS and remote sensing data,

with respect to the socio-economic data, including real GDP, total population and total

employment. However, there is no consistent trend being found in all of these cities

regardless of the improvement on R2 that thus reveals the inappropriate use of a non-linear

model in this specific case study.

Such an argument is somehow supported in the existing literature (Sutton et al., 2007)

and (Yue et al., 2014), where all of these studies examined the use of the linear regression

approach to analyse the data, which either focused on the national scale or on a specific

city, and the majority of the results represent moderate to strong linear regression between

the remote sensing-derived information with respect to the socio-economic data. Although

the indicators being analysed may not be identical, the use of linear regression somehow

has its grounds in accordance with these existing literatures. In short, the remote sensing

technique can provide fruitful information to model some of the socio-economic indicators.

However, other socio-economic indicators and empirical models should be considered

in order to develop a more universal indicator to predict the GDP. As a result, further

research should be carried out to reveal the relationship with respect to other parameters,

such as energy consumption, foreign direct investment and CO2 emissions (Pao and Tsai,

2011), as well as developing a new technique to retrieve the built-up area for those regions

located in an arid environment and cold region or specifically designed city, like a green

city.

2.5 Conclusions

This study aims to investigate the relationship between the built-up area, as well as three

socio-economic indicators (the real GDP, total population and total employment) in order

to facilitate any new city development and regional planning, with a case study of seven

major cities in Canada. Since not all of the cities have a comprehensive GIS land use

dataset to find out the built-up areas, thus we proposed to utilize remote sensing data to

estimate the built-up areas to achieve such a goal. In this study, we analysed 42 Landsat

33



CHAPTER 2. MODELLING THE RELATIONSHIP BETWEEN THE GROSS
DOMESTIC PRODUCT AND BUILT-UP AREA

images and 42 land use maps in order to study the regression between the percentage

of built-up areas extracted from the satellite image and the reported real GDP in seven

major cities in Canada. The Landsat TM images were first atmospherically corrected,

and the built-up values were computed using the NDBI and NDVI. Those high built-up

values within the industrial areas were derived from the Landsat images for subsequent

analysis. Built-up values within the industrial areas were correlated with industrial zones

within the seven cities with a strong positive linear relationship (R2 = 0.82) found from

the year 2005 to 2010.

A further analysis was conducted to investigate the regression between the real GDP,

population and total employment with respect to the built-up areas. It was found that

the percentage of built-up areas, which are located in the industrial zones, has a moderate

positive linear relationship (R2 = 0.6, and 0.5) with the socio-economic indicators if

all cites were considered in the datasets. However, an improvement of the coefficient

regression (R2 = 0.8, 0.82 and 0.83) was observed when the City of Edmonton and

Calgary were eliminated from the analysis, since these cities have a relative high gross

income from the oil mining industry that does not require a large piece of land for

manufacturing. With the regression found, the results can be used as a generic indication

for the federal/municipal authorities, which are aiming at or targeting a specific real GDP

with respect to the planned industrial areas for city management. Future work can be

focused on developing a new method to accurately extract the built-up area for arid or

cold region environment/country, since the NDBI-NDVI approach may not be applicable

in those area to extract the built-up zone. In addition, the relationship between the real

GDP, as well as other remote sensing-derived indices (such as area of desert or soil) should

be investigated for those regions.
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Chapter 3

An Investigation of GIS Overlay and

PCA Techniques for UEQ

Assessment: A Case Study in

Toronto, Ontario, Canada

3.1 Abstract

The United Nations estimates that the global population is going to be double in the

coming 40 years, which may cause a negative impact on the environment and human life.

Such an impact may instigate increased water demand, overuse of power, anthropogenic

noise, etc. Thus, modelling the Urban Environmental Quality (UEQ) becomes indispens-

able for a better city planning and an efficient urban sprawl control. This study aims

to investigate the ability of using remote sensing and Geographic Information System

(GIS) techniques to model the UEQ with a case study in the city of Toronto via deriving

different environmental, urban parameters and socio-economic indicators. Remote sensing,

GIS and census data were first obtained to derive environmental, urban parameters

and socio-economic indicators. Two techniques, GIS overlay and Principal Component

Analysis (PCA), were used to integrate all of these environmental, urban parameters

and socio-economic indicators. Socio-economic indicators including family income, higher

education and land value were used as a reference to assess the outcomes derived from the
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two integration methods. The outcomes were assessed through evaluating the relation-

ship between the extracted UEQ results and the reference layers. Preliminary findings

showed that the GIS overlay represents a better precision and accuracy (71% and 65%),

respectively, comparing to the PCA technique. The outcomes of the research can serve as

a generic indicator to help the authority for better city planning with consideration of all

possible social, environmental and urban requirements or constraints.

3.2 Introduction

Urban Environmental Quality (UEQ) is defined as an indicator to generically describe

the urban, environmental and socio-economic condition of an urban area. UEQ can

be regarded as a multi-layer concept that comprises physical, spatial, economic and

social parameters at different scales (Weng and Quattrochi, 2006). Weng and Quattrochi

(2006) addressed that UEQ has the capability to influence many governing aspects,

including urban planning, infrastructure management, economic influence, policy-making

and social studies. However, it is challenging to predict and model the inter-relationship

and dependence of all of the factors. Recently, satellite remote sensing techniques can

help in modelling UEQ through providing continuous Earth observation images of the

urban environment at different spatial, spectral and temporal resolutions (Nichol and

Lee, 2005; Nichol and Wong, 2006; Nichol et al., 2006). A few preliminary attempts

were found using multi-temporal and multi-resolution data to model UEQ (Green, 1957;

Bederman and Hartshorn, 1984; Li and Weng, 2007; Nichol and Wong, 2009), since these

data can provide a clear vision for visualizing and understanding the land cover, water

conditions and vegetation in urban areas (Fung and Siu, 2000, 2001). As such, UEQ

assessment not only provides more detailed information toward urban conditions, it also

serves as an efficient tool in sustainable development and urban planning. Subsequently,

a number of representative studies were found in the literature that demonstrated how to

use multi-source data to model and assess the UEQ.

Nichol and Wong (2009) conducted a research study in the Kowloon Peninsula, Hong

Kong. The main goal of the study was to investigate different ways of combining six

parameters (vegetation density, heat island intensity, aerosol optical depth, building

density, building height and noise) in different units into a single integrated UEQ index
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and to establish a suitable mapping scale at which these parameters operated and

interacted. The study was conducted at two scale levels through using a high resolution

IKONOS satellite image and a fine resolution Landsat satellite image. Two approaches,

including Geographic Information System (GIS) overlay analysis and Principal Component

Analysis (PCA), were used to integrate these six parameters. To act as a reference of UEQ

assessment, an email questionnaire survey was conducted with 200 Kowloon Peninsula

residents to weight the parameters. The field-based questionnaire survey was administered

at 70 locations during the summer season to validate the results. The results showed that

the combined parameters, including vegetation density, building density and building

height, are more representative to model the UEQ in Hong Kong. Moreover, the overall

result showed that the UEQ result derived by GIS overlay analysis is deemed to be close

to the residents’ opinion obtained from the questionnaire surveys.

Liang and Weng (2011) introduced various environmental parameters and socio-

economic parameters to assess UEQ changes in Indianapolis, USA, in the past 10 years. A

total of 18 environmental parameters, including cropland and pasture, water, forest, grass,

barren lands, commercial and industrial areas, high density residential areas, medium

density residential areas, low density residential areas, Land Surface Temperature (LST),

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index

(NDWI) and Normalized Difference Built-up Index (NDBI) from transformed bands,

were extracted from two Landsat Thematic Mapper (TM) images taken in 1991 and

2000; among which, 13 socio-economic indicators, including population density, median

age population, household, house unit, owner-occupied house unit, vacant house unit,

median house income, median family income, per capita income, house value, percentage

of college graduate, percentage of family under poverty line and unemployment rate, were

derived from US census of 1990 and 2000. The results demonstrated that four principal

components being extracted can sufficiently represent the 28 parameters. The variance of

each component was used as a weight to compute the UEQ for each year. The derived

UEQ map showed that medium UEQ zone in 1990 was recognized as poor zones in the

2000. High UEQ areas in 1990 were transformed to medium UEQ areas in 2000. The

city centre in 1990 was identified as a mixture of high, medium and poor UEQ. However,

in 2000, the city centre became a medium level UEQ zone. The UEQ was significantly

improved in the south and the southeast zones over the past ten years in Indianapolis,
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USA.

Another representative study covered the city of Delhi, India, conducted by (Rahman

et al., 2011). The city has been suffering from a dramatic increase of population annually,

which has led to environmental and public services degradation. The east district of

Delhi had the largest population with 98.75% of the urban population in 2001. The main

goal of this case study was to investigate the UEQ in the east district of Delhi. The

Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) image of the

year 2003 was obtained to generate the land use/land cover map. The guide map was

used to generate the land use/land cover map of year 1982. Supervised classification

was conducted based on the maximum likelihood method. Five land classes (named

high density residential, medium density residential, low density residential, roads and

open green spaces) were extracted from the ASTER image. Socio-economic indicators

and environmental parameters, such as built-up area, open spaces, household density,

occupancy ratio, population density, accessibility to roads, noise and smell affected area,

were used to assess the UEQ of Delhi. GIS overlay was conducted to integrate the urban

environmental parameters for the years 1982 and 2003. The result showed that in the

year 1982, 89% of the east district of Delhi was in good environmental conditions, while

the remaining areas were in fair conditions or bad alarming conditions. However, in

the year 2003, 75% of the east district of Delhi was in good environmental condition,

while the areas with poor and bad alarming conditions had increased to 22% and 3.5%,

respectively. The reason is mainly due to the unplanned urban extension found within

the east district of Delhi. The study demonstrated that remote sensing and GIS data are

viable techniques for urban environmental management and decision making.

Rinner (2007) investigated the combination of Geographic Visualization (GeoVis) and

Multi-Criteria Evaluation (MCE) methods to assess the UEQ within Toronto. MCE

is a weighting method that allows decision makers to modify attribute values of the

parameters. Numerous socio-economic and demographic indicators, including population

change, population density, ownership of dwellings, family size, average household income,

expenditure on housing, employment status, immigration status and degree of education

were used to assess the UEQ. An analytic method, named the Analytic Hierarchy Process

(AHP), was investigated to estimate the composite measures of quality of life. The AHP

method can be used to visualize the spatial patterns and combine different models for
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UEQ. Interviews with three senior geography students were conducted to validate the

results. The result of this case study is more toward supporting analysts to review their

final decision-making strategies.

Despite the above successful attempts, the majority of the UEQ studies utilized PCA

or GIS analysis techniques to integrate various parameters (Nichol and Wong, 2009; Li

and Weng, 2007; Liang and Weng, 2011; Rahman et al., 2011). Although PCA is an

analytical technique that compresses the main data into lower dimensions that retain

most of the data variance (Jensen, 2005), the method still has several potential drawbacks:

(1) it produces unweighted components, which may not represent meaningful parameters;

(2) PCA does not work properly in nonlinear relationships; and finally, (3) the minimum

number of components is indeterminable. Although some researchers used the GIS overlay

method to integrate different parameters (Nichol and Wong, 2009; Rahman et al., 2011),

the GIS overlay method does not consider the correlation among the parameters. Each

parameter may rank from a certain range, say 1–10, where 10 represents the best condition

and 1 represents the worst condition. The sum of the derived parameters corresponds to

the UEQ ranking. The GIS overlay method can be used effectively to store, analyse and

represent layers from different types of map features (Nichol and Wong, 2009). Regarding

the result validation, most of the UEQ studies (Fobil et al., 2011; Rinner, 2007; Moore

et al., 2006; Lo, 1996; Liang and Weng, 2011) did not perform any field survey or even

result validation, except very few attempts found using e-mail questionnaire or field-based

questionnaires (Nichol and Wong, 2009; Rahman et al., 2011). Collecting field data

is always ideal, but it is also time consuming and budget dependent. Moreover, these

methods can be inaccurate to test the outcomes of UEQ if the data samples being collected

are not representative, which may lead to bias results.

In this research, the main objectives are: (1) to investigate GIS overlay and PCA

techniques to assess UEQ with a case study in the city of Toronto, Ontario, Canada;

(2) to test a new approach to normalize the data derived from remote sensing and GIS

data; and (3) to assess a new approach to validate the final outcomes derived from GIS

overlay and PCA. Thus, various remote sensing and GIS data were first explored in

order to fully understand the concept of UEQ. The urban, environmental parameters

and socio-economic indicators were normalized in this research in order to evaluate the

significance of each parameter. GIS overlay and PCA (pixel-based and object-based)
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were introduced to integrate the urban, environmental parameters and socio-economic

indicators with a case study in Toronto. Socio-economic indicators, including family

income, degree of education and land value, were used as a reference to validate the

outcomes derived from the two integration methods.

3.3 Datasets

In this research, the city of Toronto, Ontario, Canada, was intentionally selected due to

the data availability and the drivers of the population growth within the city during the

past decade. Figure 3.1 shows Toronto, which is the capital of the Province of Ontario

and the largest city in Canada with a total population of 2,615,060 (Martel, 2012). The

datasets being used in this study include three major categories: (1) Landsat TM satellite

images; (2) GIS data layers; and (3) socio-economic data. All of the data were collected

in the years 2010 and 2011, since GIS data and socio-economic are not consistently

available after the year 2011. A Landsat TM image was downloaded from the USGS

Earth Explorer (United States Geological Survey, 2014). The spatial resolution of the

Landsat images is 30 m for the multi-spectral bands and 120 m for the thermal band.

However, the thermal band was resampled to a 30-m resolution from the source of the

data predominantly to align it with the multi-spectral bands (Kjaersgaard and Allen,

2009).

The image was acquired during the summer season (July) in order to avoid the

appearance of clouds and snow cover. On the other hand, a total of 14 GIS data layers

were acquired from (Scholars GeoPortal, 2014) for Toronto during the same period

of time. The GIS layer data including land use, population density, building density,

vegetation and parks, public transportation, historical areas, Central Business District

(CBD), sports areas, religious and cultural zonse, shopping centres, education institutions,

entertainment zones, crime rate and health condition. These layers were first imported

into the ArcGIS platform (ArcGIS ; Esri; Redlands, CA, USA) for further analysis. Similar

to the remote sensing data, all of the data were projected to the Universal Transverse

Mercator (UTM) 17 N coordinate system. Those social-economic indicators were derived

based on the use of Toronto census data that were obtained from the City of Toronto

census bureau at the census tract level. The City of Toronto census bureau archives
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hundreds of information related to socio-economic conditions. In this research, the socio-

economic indicators included education (university certificate, diploma or degree), family

income and land values. Table 4.1 summarizes the data sources being used in this study.

Table 3.1: The data sources for City of Toronto.

City Landsat TM GIS Data Census Data

Path/Row = 18/30 ◦ Land Use Socio-economic data are
provided by the City of
Toronto census bureau.
Socio-economic data used
in the research:

Sensor = Landsat TM ◦ Population Density
Date = 23 June 2011 ◦ Building Density

◦ Vegetation and Parks
Remote sensing
data:

◦ Public Transportation
◦ Historical Areas ◦ Education

◦ LST ◦ Central Business Districts ◦ Family Income
Toronto ◦ NDVI ◦ Sports Areas ◦ Land Values

◦ NDWI ◦ Religious and Cultural Zones
◦ NDBI and Built-up Area ◦ Shopping Centres

◦ Education Institutions
◦ Entertainment Zones
◦ Crime Rate
◦ Health Condition
◦ Areas Close to Water Bodies

LST, Land Surface Temperature; NDVI, Normalized Difference Vegetation Index;
NDWI, Normalized Difference Water Index; NDBI, Normalized Difference Built-up Index
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Figure 3.1: City of Toronto (the study area).

41



CHAPTER 3. AN INVESTIGATION OF GIS OVERLAY AND PCA TECHNIQUES
FOR UEQ ASSESSMENT: A CASE STUDY IN TORONTO, ONTARIO, CANADA

3.4 Methodology

Figure 3.2 shows the overall workflow implemented in this research. The Landsat image was

clipped to the study area to speed up the data processing. The Atmospheric Correction

model (ATCOR2) developed by (Richter, 1998) was utilized to preform radiometric

calibration and remove the effects that change the spectral characteristics of the land

features (Paolini et al., 2006). To implement the ATCOR2 model, weather information

(e.g., air temperature, visibility, etc.) was obtained from historical records at the nearest

weather station at Lester B. Pearson International Airport. The calibration parameters

for Landsat TM sensor (biases and gains) were also incorporated into the atmospheric

correction.
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Figure 3.2: The overall workflow for investigating of GIS overlay and PCA techniques.

After conducting the atmospheric correction, those bio-physical parameters, including

NDVI, NDWI, built-up index and LST, were derived from the Landsat images. Urban,
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environmental parameters and socio-economic indicators were all extracted from the

remote sensing, GIS and census data to combine all of the parameters together in the

subsequent process. GIS overlay and PCA (pixel-based and object-based approach) were

implemented, respectively, to integrate all of the urban, environmental parameters and

socio-economic indicators. Socio-economic indicators obtained from the City of Toronto

census bureau, including family income, higher education level and land values, were used

as a reference to assess the outcomes from GIS overlay and PCA. The validation was

based on two criteria, including precision and accuracy (refer to Section 3.4.5). The final

stage of the work is to assign the optimal integrated method to determine the best UEQ

location in Toronto.

3.4.1 Environmental Parameters

Land Surface Temperature (LST)

LST is an essential parameter in a variety of disciplines used to study the urban climate

(Norman et al., 1995; Czajkowski et al., 2004), UEQ (Nichol and Wong, 2009), urban

heat island effect (Weng et al., 2004), urban expansion (Huang et al., 2015) and urban

waste management (Yan et al., 2014). LST is the result of a land-surface process that

combines the analysis of all surface-atmosphere interactions and energy fluxes between

the atmosphere and the ground. Mapping the LST from thermal remote sensing sensors

can be useful for large-scale environmental and urban studies. Landsat TM and ETM+

data were substantially used in many urban environmental quality studies to derive the

LST (Nichol and Lee, 2005; Nichol and Wong, 2006; Nichol et al., 2006). Landsat TM

and ETM+ both have: (1) an archive of images that was released free to the public by

the (United States Geological Survey, 2014) in 2008 and (2) a short repeat cycle (16

days), which produces a voluminous data archive for multi-temporal studies. Numerous

researchers discussed the use of LST and the challenges to retrieve the LST using known

and unknown Land Surface Emissivity (LSE) (Li et al., 2013; Sobrino et al., 2004). In this

research, the authors utilized PCI Geomatica (Geomatica, version 10.1; PCI Geomatics,

Markham, ON, Canada, 2007). to derive the LST from the Landsat images. The adopted

method to derive the LST in this research takes into consideration the atmospheric

correction of the thermal band of the image. The computation of LST mainly involves

three steps. The first step is to convert the pixel value of the thermal band into radiance
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using the following Equation (3.1):

Lsat =
[ Lmax − Lmin

(Qcal.max −Qcal.min)

]
(Qcal −Qcal.min) + Lmin (3.1)

where Lsat is the spectral radiance; Lmax is the spectral radiance that is scaled to

Qcal.max; Lmin is the spectral radiance to Qcal.min; Qcal is the quantized calibrated pixel

value in a digital number; and Qcal.max is the maximum quantized calibrated pixel value

corresponding to Lmax. For Landsat TM Band 6, the values for Lmax, Lmin and Qcal.max

are 15.3032 Wm−2·sr−1·µm−1, 1.2378 Wm−2·sr−1·µm−1 and 255, respectively.

The second step is to compute the emissivity value. Many factors, including water

content, chemical composition, structure and roughness, are able to affect the emissivity

of a surface (Snyder et al., 1998). Scholars emphasized that the surface temperature

calculation mainly relies on an assumption of the emissivity value (Richter and Schläpfer,

2005). Some researchers assumed the emissivity value as a constant value (0.95) Coll et al.

(2010). In contrast, other researchers epitomized that a constant emissivity value can be

considered as an option and assigned three classes for the emissivity values, where the

vegetation has ε = 0.97, soil ε = 0.96 and others ε = 0.98 as a rule of thumb (Richter and

Schläpfer, 2005). However, if the emissivity value is unknown, the following Equation

(3.2) can be used to calculate the emissivity value (Giannini et al., 2015):

ε = a+ b× ln(NDV I) (3.2)

where a and b are obtained by a regression analysis based on a large dataset (Moran et al.,

1992). NDVI is the Normalized Difference Vegetation Index, which can be calculated

from the values of the visible and near-infrared bands of the multi-spectral bands, as

shown in Section 3.4.1.

The third step is to conduct the atmospheric correction for the thermal band using

the following Equation (3.3). As mentioned in Section 3.4, weather information (e.g., air

temperature, visibility, etc.) and date and time, latitude and longitude are also needed to

implement atmospheric correction. The equation for the atmospheric correction can be

written as (Barsi et al., 2005):

LC =
Lsat − Lup

ε× τ
− 1− ε

ε
× Ld (3.3)
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where LC is the atmospherically-corrected radiance, Lsat is the spectral radiance (Wm−2·sr−1·µm−1),

Lup and Ld are the upwelling and downwelling radiances (Wm−2·sr−1·µm−1) and ε and τ

are the emissivity and transmittance, respectively.

The fourth step is to convert the calibrated radiance into the at-sensor brightness

temperature using the following Equation (3.4):

LBBT =
[ K2

ln(K1

LC
+ 1)

]
(3.4)

where TBBT is the blackbody temperature in Kelvin (K), K1 is the calibration Constant

1 in Wm−2·sr−1·µm−1 and K2 is the calibration Constant 2 in Kelvin (K). For Landsat

TM, K1 and K2 are 607.76 Wm−2·sr−1·µm−1 and 1260.56 K, respectively Chander et al.

(2009).

The fifth step is to convert temperature from Kelvin into temperature in Celsius using

the following Equation (3.5):

◦C =
[
LBBT − 273.15

]
(3.5)

The computed (◦C) is regarded as the LST derived from the Landsat image.

Normalized Difference Vegetation Index (NDVI)

Prior to the existence of satellite remote sensing, urban vegetation was usually monitored

and mapped by combining colour infrared aerial images and fieldwork. This method

seems to be a unique option to measure the urban vegetation (Nowak et al., 1996). With

the availability of multi-source multi-spectral satellite images, Fung and Siu (2001) used

Landsat and SPOT (Satellite Pour lObservation de la Terre; Satellite for the Observation of

Earth; Spot Image, Toulouse, France) images to quantify urban vegetation as a parameter

for UEQ studies. Many researchers used Landsat images to extract NDVI (Lo et al., 1997;

Nichol and Lee, 2005; Nichol and Wong, 2009). NDVI is a ratio that presents the changes

in the vegetation over time, and it has been applied to various applications, such as

vegetation cover, biomass and Leaf Area Index (LAI) (Curran and Steven, 1983; Lawrence

and Ripple, 1998). Most of the urban environmental studies showed that NDVI is one

of the most important parameters that can be used to assess UEQ, where the higher
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values represent the positive impact on the city (Nichol and Lee, 2005; Nichol and Wong,

2009). The NDVI (ranging from −1 to 1) refers to an index that is able to monitor the

vegetation activity and its annual changes, which can be calculated using Equation (3.6)

(Zha et al., 2003):

NDVI =
NIR−Red
NIR +Red

(3.6)

where NIR is the near infrared Band 4 in the Landsat TM image and Red is the red

Band 3 in the Landsat TM image.

Normalized Difference Water Index (NDWI)

NDWI is another remote sensing-derived biophysical parameter that represents the surface

moisture in vegetation cover, as well as water bodies. Hardisky et al. (1983) found that

NDWI is able to track changes in vegetation biomass and water stress more than NDVI.

NDWI can also be used to measure and assess the turbidity of water bodies from remote

sensing data (McFeeters, 1996), and therefore, Liang and Weng (2011) used NDWI as a

parameter to assess the UEQ where the higher NDWI represents the higher urban quality

(i.e., close to lake shore). The NDWI (ranging from −1 to 1) can be are calculated using

Equation (3.7) (Jensen, 2005):

NDWI =
Green−NIR
Green+NIR

(3.7)

where NIR is the near infrared Band 4 in the Landsat TM image and Green is the green

Band 2 in the Landsat TM image.

Normalized Difference Built-Up Index (NDBI) and Built-Up Index

NDBI is another ratio that represents the spatial distribution of the urban and suburban

areas. NDBI has been used in many urban planning applications. Zha et al. (2003) used

the combination of NDBI and NDVI to identify and monitor the areas in the city of

Nanjing. Chen et al. (2006) shows that land cover types can be represented by utilizing

NDVI, NDWI and NDBI. Moreover, Faisal et al. (2016) and Faisal and Shaker (2014)

show that the built-up index derived from NDBI and NDVI could represent industrial

areas within the city. Therefore, in UEQ studies, the higher NDBI/built-up values may be
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deemed to have a negative impact on the city. To derive the built-up area, first, the NDBI

values (ranging from −1 to 1) are calculated using Equation (3.8) (Zha et al., 2003):

NDBI =
MIR−NIR
MID +NIR

(3.8)

where MIR is the mid-infrared Band 5 of the Landsat TM image and NIR is the near

infrared Band 4 of the Landsat TM image. The NDBI values refer to an index that

represents the urban regions and its annual changes. Finally, the built-up values (ranging

from −1 to 1) are defined by subtracting the NDBI layer from the NDVI layer using the

following Equation (3.9) of Zha et al. (2003):

Built-up area = NDBI −NDV I (3.9)

3.4.2 Urban Planning Parameters

Land Use and Land Cover

The expansion of population can affect the urban environment and urban planning around

the world. Therefore, monitoring land use and land cover should be conducted to avoid

potential problems for sustainable urban and environmental planning. Monitoring land use

and land cover helps planners and decision makers to build better urban environmental

cities in the near future and assess the quality of the urban cities. Various studies

recommended building urban green cities rather than a dense high rise urban environment.

Urban green cities increase the value of UEQ within the city (Irvine et al., 2009; Landorf

et al., 2008; Din Özdemir, 2007). Medium to fine-scale land cover and land use maps

can be derived from remote sensing satellite images (Hansen and Loveland, 2012) or,

recently, airborne LiDAR data (Yan et al., 2015). However, the accuracy of land cover

and land use can change from one satellite to another due to the variation of the spatial

resolutions of the satellites. In order to assess the urban quality of living, physical

environmental parameters should be obtained. Physical environmental parameters, such

as roads, cropland and pasture, water, commercial and industrial, high density residential,

medium density residential, low density residential, forest and grass, are critical and

essential parameters to assess the urban quality of life. The physical environmental

parameters can be used also to extract some of the socio-economic indicators, such as
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population and social conditions (Liang and Weng, 2011).

Urban Density

Around the world, residential areas can be affected by the increase of population and

migration movement. Building density is one of the most important parameters that

contributes to the urban heat island effect and urban quality assessment (Mira et al.,

2005). Building and population density can have a negative influence on the UEQ and

transportation system in the developing cities. That is mainly because a dense high rise

urban environment typically increases LST, noise pollution together with a high demand

of vehicle use (Kahn, 2007). However, most public services, public transportation and jobs

are located within walking distance from high density areas. Remote sensing technique

can aid in determining the density values by extracting the urban areas from the image

(Rahman et al., 2011; Nichol and Wong, 2009). The extracted urban areas can be divided

by the total areas, so as to calculate the building density, as shown in Equation (3.10).

On the other hand, the population density can be calculated by dividing the number of

people over the urban area as shown in Equation (3.11):

Building density =
Urban areas

Total areas
(3.10)

Population density =
Number of people

Urban areas
(3.11)

Public Transportation

The acceleration of population growth may increase car ownership, which may increase

the amount of carbon dioxide emission and subsequently affect the accessibility to roads,

especially in the developing countries (Newman and Kenworthy, 1999). Transportation is

the main sector that works in shaping and connecting the cities. Public transportation

provides a faster, safer and easier way to travel around the city. Public transportation

can help the city through connecting the sub-centres around the railway stations and

building a linear development along the route of the public transit line (Newman and

Kenworthy, 1999). It was found that most of the automobile-dependent cities lose the

traditional community support processes (Newman and Kenworthy, 1999). Therefore,
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public transportation is one of the major parameters for the UEQ.

Open Spaces and Entertainment Zones

Many studies in UEQ justified that open spaces and open green areas are significant factors

contributing to high environmental quality areas (Rahman et al., 2011; Nichol and Wong,

2009). That is mainly because open spaces and parks offer a healthy and comfortable

environment by cooling down the LST and reducing the air pollution especially in high

density areas. Entertainment areas are mainly located in the public parks, plazas and

open space areas for some occasions, such as Christmas and New Year. Famous open

spaces, such as Times Square in the city of New York, Dundas square and Nathan Phillips

Square in Toronto, are so invigorating with a big amount of visitors all over the year,

mainly because they are located within the core of high density areas and thus provide a

vibrant atmosphere. Such a phenomenon supports the argument that high density areas

are more preferable than low density areas.

Historical Areas and Central Business Districts (CBD)

The design of historical cities around the world is mainly based on walking distance.

Those historical cities are usually featured by high density, mixed land use and shaded

streets in central forms, such as Jerusalem, Damascus, Athens and Istanbul. The average

walking distance toward the historical cities is designed to be 5 km apart in order to

be close to other facilitates in the city. A few cities still currently retain the historical

buildings and walking characteristics, such as Society Hill in Philadelphia, the North End

in Boston and the Rocks in Sydney (Newman and Kenworthy, 1999). That is mainly

because historical areas retrieve the worth of past energy and provide a visual and physical

conservation of cultural identity (Leask and Fyall, 2006). Currently, modern cities have

more of a tendency to rebuild and preserve historical areas, such as Arabella Park in

Munich, to attract tourists and provide a vibrant atmosphere for the city (Newman and

Kenworthy, 1999). Historical neighbourhoods, which are always located in the city centre,

have higher positive influence on UEQ, where the historical neighbourhoods and CBD

are the most attractive regions in the city.

49



CHAPTER 3. AN INVESTIGATION OF GIS OVERLAY AND PCA TECHNIQUES
FOR UEQ ASSESSMENT: A CASE STUDY IN TORONTO, ONTARIO, CANADA

Crime Rate

Personal security is one of the most important factors for society regardless of where we

live. Crime can be the reason for physical pain, anxiety and the loss of lives and property

(Initiative, 2011). Anand et al. (2008) illustrated that the biggest influence of crime is the

feeling of vulnerability in people’s lives, and thus, the crime rate is negatively related to

UEQ. It was reported that people move to live in more suburban and low density areas for

the desire for new and better public schools and a low crime rate. However, in some cases,

the low cost of housing may cause a demand for more housing per person, which may

form new clusters for new urban crime (Cullen and Levitt, 1999). Increasing the physical

distance between the poor and the rich is not always the best way to reduce urban crime,

particularly in the city centre. Instead, it is preferable to increase the community services

and the quality of life in those areas to make them more vibrant and reduce the crime

rate (Kahn, 2007). The crime rate can be calculated by dividing the number of crimes

over the total population, as shown in Equation (3.12):

Crime rate =
Number of crime

Total population
(3.12)

3.4.3 Socio-Economic indicators

Education and Income

Education and income are two related factors among relevant socio-economic indicators.

Research shows that wealthier urbanites tend to invest more in high quality properties and

services. That is mainly because they have higher income and receive higher education,

which gives them the tools to access and process more data about the high quality areas.

In addition, people with high income and high education have the ability to invest in

higher quality areas, compared to people with less education and less income (Becker and

Mulligan, 1997). Moreover, Kahn (2007) pointed out that people with higher education

and income are more interested in supporting UEQ-related issues. Wealthier and educated

urbanites also tend to participate in politics and the community in order to enhance the

quality of living in their living areas. Based on the above argument, the areas that have

more highly-educated and wealthier urbanites are considered to have higher UEQ areas.

Therefore, these areas are used as the first category of reference for our study.
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Land Values

Knowing the parameters that influence the UEQ is an important advantage to design

and assess the future urban development. UEQ is assessed by using various urban

and environmental parameters. Reginster and Goffette-Nagot (2005) conducted a study

in two Belgian cities to investigate the relationship between the UEQ with respect to

the residential location. It was revealed that UEQ may affect positively the land rent

location and income in the city. Other research discussed the relationship between the

real estate evaluation model and the environmental parameters in the city of Geneva,

Switzerland (Din et al., 2001). It was found that urban and environmental parameters

have an influence on the price within the city of Geneva. Topcu and Kubat (2009) also

examined the relationship between urban and spatial factors that might influence the

urban land values in the city of Istanbul. It was found that the distance from the sea, the

distances from the central business district, universities and sanitary facilities, as well

as the variable of the colour of building facades all have a predominant impact on the

residential land values. As a result, our experiment assigned the land values as the second

category of reference for this research.

3.4.4 Ranking the Parameters

Since the aforementioned parameters are extracted from different data sources, they may

have different scale levels and cannot be combined to a specific unit. Therefore, all of the

obtained data (parameters), including raster, census and GIS data, were first transformed

into one scale (sub-neighbour), as shown in Figure 3.3. Then, all of the parameters were

ranked from 1 to 10 to normalize the observation value for each parameter.

To normalize the parameters and represent the significant level of each polygon in the

parameter, the Z-score method was performed for all parameters. The Z-score model is a

statistical measurement that is able to standardize a wide range of data to represent the

significant changes across the data (Cheadle et al., 2003). Equation (3.13) shows the first

step to normalize the parameters using the Z-score:

Zi =
[xi − µ

σ

]
(3.13)

where x is the observation values (polygons) (refer to the GIS polygons of the parameters
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as shown in Figure 3.4), i is the parameter, µ is the mean value of the parameter and σ is

the standard deviation of the parameter.
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Figure 3.3: (a) NDVI image derived from Landsat image (raster data); (b) NDVI map
after transformation (vector data); (c) population layer at the census tract level; (d)
population layer after transformation to sub-neighbour level.

The second step is to use linear interpolation to rank the parameters from 1 to 10 as

shown in Figure 3.5. The polygon within the parameter that has a high Z-score number

will represent high values, for example 10. The polygon that has a low Z-score will

result in a value of 1. The following Equation (3.14) shows how linear interpolation was

calculated:

Rank =
[(Obs−Obsmax)(Rankmin −Rankmax)

(Obsmin −Obsmax)

]
+Rankmax (3.14)

where Obs is the current observation value, Obsmax is the maximum observation value,
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Figure 3.4: The GIS polygons of the parameters.

Obsmin is the minimum observation value, Rankmax is the maximum ranking value, Rank

is the determined ranking value and Rankmin is the minimum ranking value.

110 Rank

GIS overlay analysis

(a) (b)

614000

614000

622000

622000

630000

630000

638000

638000

646000

646000

48
26

50
0

48
26

50
0

48
32

50
0

48
32

50
0

48
38

50
0

48
38

50
0

48
44

50
0

48
44

50
0

48
50

50
0

48
50

50
0

48
56

50
0

48
56

50
0

1 10

±
0 4 8 12 162

Km

LST

614000

614000

622000

622000

630000

630000

638000

638000

646000

646000

48
26

50
0

48
26

50
0

48
32

50
0

48
32

50
0

48
38

50
0

48
38

50
0

48
44

50
0

48
44

50
0

48
50

50
0

48
50

50
0

48
56

50
0

48
56

50
0

2439

±
0 4 8 12 162

Km

LST

Figure 3.5: (a) The LST layer in degrees Celsius before ranking the parameter; (b) the
ranking of LST after the normalization.

3.4.5 Data Integration of Multiple Environmental and Urban

Parameters

Integration techniques can be used to combine remote sensing and GIS data and have been

applied for urban modelling and analysis (Weng, 2002). Previous studies demonstrated

two integration techniques, namely PCA and GIS overlay, which are able to combine any

type of parameter. In this research, three approaches were demonstrated to integrate the

above-mentioned environmental and urban parameters.
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Geographic Information System (GIS) Overlay

GIS overlay is a multi-criteria application that uses data layers for specific environmental

thresholds. Remote sensing data are presented as digital data in raster format. However,

census data are presented in GIS vector format. Remote sensing data can thus be

integrated with socio-economic data by converting remote sensing data from raster to

vector data (Li and Weng, 2007). In this research, the GIS overlay integration method

was used to combine the urban and environmental parameters in order to serve for the

UEQ assessment. All of the parameters were converted from raster to vector data in

order to be presented as attribute data, as shown in Figure 3.3 in Section 3.4.4. While

each parameter has a range of values ranked from 1 to 10, the sum of the data layers

can thus present the result of UEQ values. Ranking the parameters was mainly based

on the observation values; where the highest value is assigned 10 and the lowest value is

assigned 1. However, some parameters, including crime rate, industrial areas and LST,

are inversely presented (e.g., the highest crime rate or LST value will be assigned 1, and

the lowest crime rate or LST value will be assigned 10), as shown in Figure 3.5. Then, all

of the ranks are summed up to compute the UEQ as shown in Figure 3.6.

 

Figure 3.6: The summed up ranks for all of the parameters.
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Principal Component Analysis (PCA)

PCA is an analysis technique that compresses the high dimension of data into a lower

dimension of data that has most of the variance of the data (Jensen, 2005). PCA is

commonly used in many remote sensing applications. The covariance matrix of standard

PCA may not be the best option for data that have different measurement units. The

correlation matrix can be used instead of the covariance matrix to standardize each

parameter to the variance unit or zero mean. In this research, pixel-based and object-

based methods were used to assess the UEQ in Toronto. In pixel-based approach, all of

the parameters were converted to raster format to extract pixel values for each parameters.

Then, the pixel values were used in the PCA model to compute the components that

have most of the variance of the data. In object-based PCA, the covariance matrix or

correlation matrix mainly is derived from the observation values of the GIS polygons.

Then, the covariance matrix or correlation matrix will be used to compute the components

in the PCA model to assess the UEQ.

Accuracy Assessment

Several researchers attempted to assess the accuracy of the UEQ results using different

methods, including e-mail questionnaires, field-based questionnaires and factor analyses.

Regardless of the considerable amount of e-mail questionnaires or field-based question-

naires, both methods require overheads for data collection. In addition, factor analysis used

in previous work was preformed using the same parameters that have been incorporated

to compute the UEQ, which make it unreliable and biased. Several researchers illustrated

that education level, including university certificate or diploma, family income and land

values, represents the UEQ in the economic and social aspects (Becker and Mulligan,

1997; Kahn, 2007; Reginster and Goffette-Nagot, 2005; Din et al., 2001). Since there is

a lack of ground truth to validate the results, we propose to use these socio-economic

indicators for data validation and to assess the UEQ results. All of the observation data

of the three socio-economic indicators were normalized to be in the same scale from 1

to 10. Then, the sum of the socio-economic indicators can thus present the result of

reference, as shown in Table 3.2.
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Table 3.2: The sum of the socio-economic indicators.

Polygon ID Income Education Land Value Reference Layer

1 8 5 7 20

In addition, the evaluation of the binary classifiers approach was used to assess the

UEQ based on the following two performance measures through data interpretation:

precision and accuracy.

Precision (P ) is a measure that evaluates the probability that a positive outcome is

correct using Equation (3.15):

P =
[ | TP |
| TP | + | FP |

]
(3.15)

Accuracy (Acc) evaluates the effectiveness of the classifier by its percentage of correct

predictions using Equation (3.16):

Acc =
[ | TN | + | TP |
| FN | + | FP | + | TN | + | TP |

]
(3.16)

where TP refers to “True Positive”, which means the polygon from the proposed method

is located physically in the reference layer; TN refers to “True Negative”, which represents

the polygons that are not detected in the proposed method and reference layer; FP refers

to “False Positive”, which means that the polygon of the proposed method does not really

exist in the reference layer; and FN refers to “False Negative”, which means the reference

polygons do not exist in the proposed method. With these three indicators, we assessed

the UEQ layer from the results of each proposed method including GIS overlay, and PCA

assessed the best method for our datasets.

3.5 Results and Analysis

3.5.1 GIS Overlay Analysis

Figure 3.7 shows the UEQ derived in Toronto using the GIS overlay. The distribution

of UEQ in Toronto shows that the highest UEQ zones were found in the zones A, B, C
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and D in green colour, while the lowest UEQ zones are indicated as red colour in the

city. The highest UEQ zones are the consequences of the summation of all of the positive

parameters including (high vegetation areas, historical areas, areas supported by public

transportation, etc.) that are located within Zones A to D. However, negative values of

the parameters, including crime, industrial areas and high LST, are constantly located on

the red zones within the city. In contrast, the highest values of UEQ areas were found in

the high and moderate density areas, while the lowest values were found in the industrial

and low density areas.
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Figure 3.7: The UEQ derived using the GIS overlay method.

3.5.2 Principal Component Analysis

Pixel-Based PCA

In this section, an analysis was first conducted to investigate the relationship among all of

the parameters. In pixel-based PCA, all of the parameters were converted from vector to
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raster in order to compute the spatial correlation among the parameters. Some parameters,

including built-up areas, LST layer, industrial areas and crime rate regions, were reversed

in order to avoid any negative values in the correlation matrix. Pearson’s correlation

coefficient was computed to investigate the dependence among all of the parameters, which

is going to help in the subsequent PCA. Table 3.3 represents the correlation coefficient

matrix among all of the parameters. The green vegetation parameter shows a strong

positive relationship with NDVI (0.85), NDWI (0.85), reverse built-up areas (0.81) and

reverse LST (0.90), as well as the areas close to water bodies (0.8). The green areas

parameter also has a moderate correlation with the reverse industrial areas (0.69) and

the reverse crime rate parameter (0.75). On the other hand, NDVI has a strong positive

relationship with NDWI (0.98), reverse built-up areas parameter (0.96), reverse LST

(0.91), green vegetation (0.85), the areas close to water bodies (0.80), reverse industrial

areas (0.84) and the reverse crime rate parameter (0.80).

The reverse built-up areas parameter has a strong positive correlation with NDVI

(0.96), NDWI (0.96), reverse LST (0.87), green vegetation (0.81) and reverse industrial

areas (0.83). The areas that are close to water bodies (0.76) and the reverse crime rate

parameter (0.80) both have a moderate correlation (0.76 and 0.77), respectively, with

the reverse built-up areas parameter. The reverse crime rate parameter has a strong

positive relationship with NDVI (0.80), NDWI (0.82), reverse LST (0.79) and the areas

close to water bodies (0.82). On the other hand, the reverse crime rate also has a

moderate correlation with reverse industrial areas (0.77), reverse built-up areas (0.77),

green vegetation (0.75) and the public transportation parameter (0.70). Based on these

observations, one can indicate that the high vegetation areas are usually located at low

crime rate and low industrial areas within the city. The parameter of low crime rate is also

influenced by the transportation within the city because of a high correlation observed

between these two parameters. The areas that are covered by public transportation are

usually crowded with people, which thus influences the crime rate within the city. These

observations also indicate that the built-up areas have a high correlation with industrial

areas, which could help to derive the industrial areas using remote sensing data. The high

correlation between the parameters may cause redundancy and slow down the processing

steps. Therefore, data reduction can help to improve the data processing and cost.
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Table 3.3: The correlation coefficient matrix among all of the parameters derived using
the pixel-based method.

PD BD PT Veg NDVI NDWI rBU rLST H rInd CBD Sc Ent He Rel SP Sea rCRSH

PD 1.00 0.68 0.57 0.33 0.39 0.40 0.42 0.32 0.67 0.52 0.56 0.33 0.46 0.40 0.22 0.33 0.44 0.43 0.42
BD 1.00 0.62 0.33 0.40 0.42 0.60 0.36 0.48 0.52 0.40 0.43 0.32 0.44 0.45 0.33 0.59 0.60 0.41
PT 1.00 0.48 0.52 0.54 0.47 0.50 0.31 0.60 0.27 0.41 0.22 0.41 0.41 0.29 0.70 0.70 0.34
Veg 1.00 0.85 0.85 0.81 0.90 0.25 0.69 0.25 0.51 0.28 0.35 0.44 0.49 0.80 0.75 0.35
NDVI 1.00 0.98 0.96 0.91 0.21 0.84 0.16 0.52 0.18 0.33 0.33 0.43 0.80 0.80 0.22
NDWI 1.00 0.96 0.91 0.21 0.86 0.17 0.51 0.16 0.32 0.32 0.42 0.81 0.82 0.20
rBU 1.00 0.87 0.26 0.83 0.20 0.49 0.17 0.34 0.27 0.42 0.76 0.77 0.22
rLST 1.00 0.22 0.75 0.24 0.52 0.25 0.35 0.44 0.46 0.83 0.79 0.31
H 1.00 0.26 0.82 0.39 0.64 0.43 0.31 0.41 0.26 0.21 0.55
rInd 1.00 0.22 0.38 0.17 0.30 0.19 0.26 0.76 0.77 0.20
CBD 1.00 0.30 0.53 0.35 0.23 0.32 0.28 0.17 0.48
Sc 1.00 0.35 0.46 0.62 0.68 0.43 0.51 0.44
Ent 1.00 0.37 0.48 0.40 0.24 0.19 0.74
He 1.00 0.37 0.39 0.41 0.35 0.48
Rel 1.00 0.58 0.42 0.46 0.57
SP 1.00 0.38 0.41 0.43
Sea 1.00 0.82 0.34
rCR 1.00 0.33
SH 1.00

PD, Population Density; BD, Building Density; PT, Public Transportation; Veg, Vegetation
areas; rBU, reverse Built-Up areas; rLST, reverse LST; H, Historical areas; rInd, reverse
Industrial areas; Sc, School areas; Ent, Entertainment areas; He, Health condition; Rel,
Religion areas; SP, Sport areas; Sea, areas close to the Sea; rCR, reverse Crime Rate areas;
SH, Shopping areas.

Four components were extracted from all of the parameters using the pixel-based

PCA approach. Figure 3.8 shows the UEQ derived using the pixel-based PCA method.

PC1 represents the largest percentage of the variance of the data, with 95% of the total

variance. However, the combination of Components 2, 3 and 4 contains only 5% of the

total variance. Due to the higher variance of Component 1, it represents most of the

parameters, including crime rate, NDVI, NDWI, reverse LST, areas close to water bodies,

reverse industrial areas, reverse built-up areas, green vegetation and public transportation

parameter, as shown in Table 3.4. The low variance found in Components 2, 3 and 4

showed that the used pixel-based PCA relied only on the first components, as shown in

Figure 3.9.
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Table 3.4: The parameters vs. the components in the pixel-based PCA.

Component 1 Component 2 Component 3 Component 4

Population Density 0.63 0.59 −0.35 −0.03
Building Density 0.31 0.46 0.16 −0.59

Public Transportation 0.90 0.01 −0.11 0.20
Vegetation areas 0.35 0.53 0.19 −0.60

NDVI 0.46 0.43 0.18 −0.23
NDWI 0.87 −0.19 −0.25 −0.22

Reverse Built-up areas 0.91 −0.22 0.20 0.04
Reverse Industrial 0.90 −0.31 0.08 −0.14

Reverse LST 0.93 −0.29 0.08 −0.04
Historical 0.93 −0.29 0.04 −0.04

CBD 0.54 0.42 −0.19 −0.48
School 0.73 0.44 −0.44 0.15

Entertainment 0.49 0.51 0.47 0.40
Health Condition 0.60 0.31 0.42 0.07

Religion 0.91 0.01 −0.10 0.09
Sport 0.40 0.56 0.36 −0.16
Sea 0.51 0.30 0.53 0.03

Reverse Crime rate 0.31 0.50 0.39 −0.34
Shopping 0.87 −0.17 0.25 0.05

Variance 95.00 2.53 2.36 0.11
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Figure 3.8: The UEQ derived using the first component of the pixel-based PCA method.
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Figure 3.9: The UEQ parameters versus PCA Component 1.

Object-Based PCA

In the object-based approach, the polygons of each parameter were used in the PCA

model to assess the UEQ. Table 3.5 represents the correlation coefficient matrix among all

of the parameters. Population density has a moderate positive correlation coefficient with

the historical areas parameter (0.66), where building density has a moderate negative

correlation with green vegetation (−0.61), NDVI (−0.68), NDWI (−0.67) and a positive

correlation with built-up areas (0.67) and LST (0.78). NDVI has a strong positive

relationship with NDWI (0.88) and a moderate negative correlation with green vegetation

(0.66). However, NDVI has a high negative correlation with the built-up areas parameter

(−0.90) and LST (-0.80) and also has a moderate negative correlation with building

density (−0.68). The built-up areas parameter has a strong positive correlation with

building density (0.67) and LST (0.79). In addition, the built-up areas parameter has

a negative correlation with NDVI (−0.90) and NDWI (−0.89). NDVI has a very high

correlation with NDWI and a negative correlation with the built-up areas parameter

and LST, as well as having a moderate negative correlation with building density, which

indicates that high NDVI values represent low LST and low high building density areas

with more green areas. As mentioned in the previous section, data reduction can improve

the data processing and cost. Therefore, the object-based approach was used to reduce

the size of the data.
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Table 3.5: The correlation coefficient matrix among all of the parameters for the object-
based method.

PD BD PT Veg NDVI NDWI BU LST H Ind CBD Sc Ent He Rel SP Sea CR SH

PD 1.00 0.34 0.14 −0.14 −0.11 0.11 0.12 0.12 0.66 −0.04 0.08 −0.17 −0.02 0.03 −0.11 −0.04 −0.06 0.02 −0.04
BD 1.00 0.40 −0.61 −0.68 −0.67 0.67 0.78 0.44 0.07 0.39 −0.05 0.14 0.11 0.16 0.02 0.21 0.22 0.05
PT 1.00 −0.37 −0.37 −0.36 0.38 0.46 0.12 0.15 0.16 −0.09 −0.04 −0.01 0.05 −0.03 0.12 0.12 0.04
Veg 1.00 0.66 0.55 −0.56 −0.66 −0.11 −0.13 −0.09 −0.03 0.05 −0.03 −0.13 0.03 −0.30 −0.11 −0.02
NDVI 1.00 0.88 −0.90 −0.80 −0.30 −0.37 −0.37 0.02 −0.27 −0.10 −0.29 −0.09 −0.27 −0.35 −0.23
NDWI 1.00 −0.89 −0.77 −0.31 −0.39 0.37 −0.02 0.29 0.11 0.31 0.10 0.25 −0.35 0.26
BU 1.00 0.79 0.30 0.50 0.35 −0.01 0.27 0.10 0.31 0.09 0.27 0.35 0.24
LST 1.00 0.18 0.19 0.25 −0.02 0.05 0.05 0.14 0.00 0.31 0.19 0.06
H 1.00 −0.01 0.50 −0.05 0.43 0.24 0.09 0.16 −0.05 0.33 0.19
Ind 1.00 0.03 0.02 0.08 −0.01 0.31 0.05 0.06 0.12 0.14
CBD 1.00 −0.05 0.37 0.19 0.07 0.09 −0.07 0.38 0.16
Sc 1.00 0.04 0.12 0.25 0.05 0.21 0.00 0.03
Ent 1.00 0.30 0.26 0.39 0.00 0.38 0.49
He 1.00 0.30 0.49 -

0.03
0.21 0.38

Rel 1.00 0.44 0.11 0.15 0.41
SP 1.00 0.02 0.18 0.62
Sea 1.00 0.01 0.03
CR 1.00 0.27
SH 1.00

PD, Population Density; BD, Building Density; PT, Public Transportation; Veg, Vegetation
areas; BU, Built-Up areas; LST, LST; H, Historical areas; Ind, Industrial areas; Sc, School
areas; Ent, Entertainment areas; He, Health condition; Rel, Religion areas; SP, Sport
areas; Sea, areas close to the Sea; CR, Crime Rate areas; SH, Shopping areas.

In this study, five components were extracted in the object-based PCA approach,

which have eigenvalues larger than one, as shown in Figure 3.10. The total variance of the

five components is 75% of the overall variance of the data. Preliminary analysis revealed

that Component 1 has 36% of the total variance of the dataset. Component 1 shows

strong positive loadings with NDVI (0.88), NDWI (0.86), building density (0.80) and

historical areas (0.86) and strong negative loadings with LST (−0.86) and built-up areas

(−0.86). In addition, Component 1 is the best to represent the green areas within the city.

Component 2 reveals about 16% of the dataset, which mainly represents industrial areas

with a positive correlation of 0.63 and CBD with a positive correlation of 0.76. Component

2 can be used to represent more about the urban areas. Component 3 represents 9% of

the dataset, which mainly represents only sports areas with a positive correlation of (0.81).

Component 4 reveals 7% of the dataset, which mainly represents public transportation

with a positive correlation of 0.70. Table 3.6 shows the overall map produced from

Components 1 to 5, which represents 75% of the overall variance in the data.
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Figure 3.10: The UEQ derived using four components of the object-based PCA method.

Table 3.6: The parameters vs. the components in the object-based PCA.

Component 1 Component 2 Component 3 Component 4 Component 5

Population Density −0.41 0.04 −0.46 0.14 0.16
Building Density 0.80 −0.09 −0.08 0.10 0.13

Public Transportation 0.49 0.00 0.00 0.70 −0.24
Veg 0.69 0.42 0.17 −0.07 −0.11

NDVI 0.88 0.12 −0.06 0.26 −0.09
NDWI 0.86 −0.13 0.08 0.27 0.08

Built-up areas −0.86 0.18 −0.07 0.27 −0.09
Industrial −0.59 0.63 0.00 0.16 0.08

LST −0.86 0.34 0.05 0.03 −0.11
Historical 0.86 0.35 0.05 0.29 −0.13

CBD 0.56 0.76 −0.02 0.15 0.06
School 0.04 −0.11 0.54 0.02 −0.29

Entertainment −0.28 0.43 0.31 −0.07 −0.02
Health Condition −0.14 0.21 0.17 −0.08 −0.01

Religion −0.26 −0.07 0.48 −0.20 −0.01
Sport 0.02 0.04 0.81 0.22 0.40
Sea −0.36 −0.42 0.29 0.34 −0.54

Crime rate 0.44 −0.35 −0.04 0.48 0.53
Shopping −0.18 0.14 0.33 −0.11 0.07

Variance 35.83 15.97 8.97 7.24 6.83

63



CHAPTER 3. AN INVESTIGATION OF GIS OVERLAY AND PCA TECHNIQUES
FOR UEQ ASSESSMENT: A CASE STUDY IN TORONTO, ONTARIO, CANADA

3.5.3 UEQ Validation Results

As mentioned in the previous section, three socioeconomic indicators were derived from

census data. The combination of education level, family income and land values was

used to validate the UEQ results. The evaluation of binary classifiers approach was used

to evaluate the UEQ, as mentioned in Section 3.4.5. The results of GIS overlay and

PCA (pixel-based and object-based) were validated using socioeconomic indicators as a

reference for this study. Since we are looking to highlight the higher UEQ areas, the mean

values were used as a threshold to derive the higher UEQ areas. Figure 3.11 shows the

reference layer and the high value of the reference layer. The distribution of the reference

layer revealed that the highest values are found in the city centre, the west portions of the

city, while most of the low UEQ values are found in the east and down town of the city.
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Figure 3.11: The reference layer and the results of the reference layer higher than the
mean. (a) The reference layer; (b) results of the reference layer higher than the mean.

Figure 3.12 shows the GIS overlay analysis and the higher values of GIS overlay. There

exist a few areas having high UEQ values located in the north and east of the city. The

precision and accuracy measured were found to be 71% and 65%, respectively, for the GIS

overlay method. That is mainly because the GIS overlay method uses all of the parameters

where some of the parameters may have a negative correlation with the reference layer,

which may influence the overall result.
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Figure 3.12: The UEQ derived using the GIS overlay method. (a) The derived UEQ; (b)
UEQ zones higher than the mean.

Figure 3.13 shows higher UEQ ranking derived using the pixel-based PCA method.

The highest values of pixel-based PCA are mainly located in the centre, north, northwest

and northeast portions of the city. Since the pixel-based PCA used 95% of the data, the

result of the pixel-based PCA shows lower precision and accuracy with respect to GIS

overlay. The precision and accuracy are reported to be 68% and 63%, respectively, for

pixel-based PCA. Apparently, the pixel-based PCA reveals a lower precision and accuracy

than GIS overlay, mainly because the pixel-based PCA considered only nine parameters

to generate 95% of the data, and some of these parameters have low correlation with the

reference layer.

Figure 3.14 shows the object-based PCA and the higher values of the object-based

PCA. The result of the object-based PCA represents high UEQ values in the centre,

north, northwest and northeast portions of the city. The overall result of object-based

PCA reveals a slightly better precision and accuracy by 1% than the pixel-based PCA

method. The main reason why the object-based PCA results were slightly better than

the pixel-based PCA is mainly because the object-based PCA method considered five

components in the analysis, which have more variation of the parameters. However, only

one component was considered in the analysis in pixel-based PCA. One more reason could
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be because in pixel-based PCA, all of the vector data were converted to raster data. That

step may cause a certain loss of spatial information, which may affect the overall results.
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Figure 3.13: The UEQ derived using the pixel-based method. (a) The derived UEQ; (b)
UEQ zones higher than the mean.
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Figure 3.14: The UEQ derived using the object-based method. (a) The derived UEQ; (b)
UEQ zones higher than the mean.

The overall result of the object-based PCA method yielded a lower precision and

accuracy by 1% than the GIS overlay method, as shown in Figure 3.15, and that is mainly
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because of the same reason for pixel-based PCA, which is the object-based PCA method

used only 75% of the total variance. However, the GIS overlay method used all of the

parameters.
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Figure 3.15: The UEQ validation.

3.6 Conclusions

In summary, this study aimed to utilize remote sensing and GIS techniques to assess

UEQ with a case study in the city of Toronto, Ontario, Canada, through evaluating two

methods: GIS overlay and PCA. One of the issues for the UEQ integration method is

that remote sensing, GIS and census data are collected at different scales and in different

formats, which may require data normalization before further analysis. In this study, The

Z-score model was performed as a first step to normalize all of the parameters. Then,

linear interpolation was implemented to rank all of the Z-score values from 1 to 10.

Integration techniques including GIS overlay and PCA (both pixel-based and object-

based methods) were used to integrate the environmental, urban parameters and socio-

economic indicators. GIS overlay is one of the effective tools for integrating different

datasets from different data sources. GIS overlay offers an intelligent platform for creating

a comprehensive database to evaluate the UEQ. Correlation analysis investigates the

dependence found among urban, environmental parameters and socioeconomic indicators.
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In our case study, it was found that green areas have a strong positive correlation with

NDVI and NDWI. There was a negative relationship with the built-up areas parameter,

LST, industrial areas, crime rate and building density. Alternatively, PCA provides an

efficient method to reduce the data dimension and redundancy. Four components that

have eigenvalues over one were derived from the 19 parameters that represented the urban

and environmental aspects in the pixel-based PCA method. Five components that have

eigenvalues over one were derived from the 19 parameters that represent the urban and

environmental aspects in the object-based PCA method. The two methods (pixel-based

and object-based) were tested due to the data availability. Other studies can only consider

one method of PCA, since they do not have significant contrast in the results with respect

to UEQ parameters.

One of the key concerns in UEQ research is to validate the final results derived from

different socio-economic references. Despite that some of the existing UEQ studies utilized

email or questionnaire surveys to collect the public’s opinion for UEQ assessment, this

study proposed to use three socio-economic indicators (university certificate or diploma,

family income and land values) as a reference for result assessment. The results showed

that the precision was 71% for the GIS overlay method, and the accuracy was measured as

65%. The precision level of the pixel-based PCA method yielded 68%, and the accuracy

was reported to be 63%, respectively. The precision level of the object-based PCA was

70%, where the accuracy was reported to be 64%. In this study, GIS overlay represented

better results than PCA (pixel-based and object-based) with respect to the UEQ results

parameters, which may suggest that GIS overlay can be a better method in terms of the

integration of multiple parameters.

Although the presented approach can be used by any federal authorities and municipal-

ities in developing and developed countries, where there is a need to improve and design

the new areas within the city, there are a few recommendations for similar future studies:

(1) more up-to-date remote sensing and GIS data are required to consolidate the findings;

(2) census socioeconomic data usually relate to administrative units and can be changed in

a shorter period of time, which makes it difficult to be available worldwide; (3) integration

among remote sensing, GIS and socioeconomic data needs conversion between data, such

as from raster to vector or from vector to raster, a step that may cause a certain loss of
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spatial information. To conclude, remote sensing and GIS techniques can provide fruitful

information to model UEQ. However, other urban and environmental parameters, as well

as empirical models (such as different geographically-weighted approaches) should be

considered in order to develop a more universal indicator to predict the UEQ. As a result,

further research is under way to study different approaches to narrow down the variety of

parameters, as well as developing a new technique to retrieve the UEQ in different cities

located in Canada.
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Chapter 4

Improving the Accuracy of UEQ

Assessment Using

Geographically-Weighted Regression

Techniques

4.1 Abstract

Urban Environmental Quality (UEQ) can be treated as a generic indicator that objectively

represents the physical and socio-economic condition of the urban and built environment.

The value of UEQ illustrates a sense of satisfaction to its population through assessing

different environmental, urban parameters and socio-economic indicators. This chapter

elucidates the use of the Geographic Information System (GIS), Principal Component

Analysis (PCA) and Geographically-Weighted Regression (GWR) techniques to integrate

various parameters and estimate the UEQ of two major cities in Ontario, Canada. Remote

sensing, GIS and census data were first obtained to derive various environmental, urban

parameters and socio-economic indicators. The aforementioned techniques were used to

integrate all of these environmental, urban and socio-economic parameters. Three key

indicators, including family income, higher level of education and land value, were used

as a reference to validate the outcomes derived from the integration techniques. The

results were evaluated by assessing the relationship between the extracted UEQ results
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and the reference layers. Initial findings showed that the GWR with the spatial lag model

represents an improved precision and accuracy by up to 20% with respect to those derived

by using GIS overlay and PCA techniques for the City of Toronto and the City of Ottawa.

The findings of the research can help the authorities and decision makers to understand

the empirical relationships among environmental factors, urban morphology and real

estate and decide for more environmental justice.

4.2 Introduction

The terminology “quality of life” has been continuously discussed in the literature, so

as to lay a foundation to serve the subsequent quantification of Urban Environmental

Quality (UEQ). Szalai (1980) emphasized that quality of life represents the degree of

satisfaction with life and the feeling of well-being, which can be measured by exogenous

and endogenous factors. Diener and Suh (1997) concluded the meaning of the quality

of life by the satisfaction of life. Raphael et al. (1996) further echoed and agreed that

quality of life tends more to be the enjoyable degree of a person toward the important

responsibilities of his/her life. However, Van Kamp et al. (2003) described the quality

of life by physical and immaterial equipment, such as health, education, justice, work,

family, etc.

UEQ is the consequence of the combination of environmental parameters, including

nature, open space, infrastructure, built environment, physical environment amenities

and natural resources, and each parameter has its own characteristics and partial quality.

Van Kamp et al. (2003) addressed that UEQ is an essential part of the quality of life,

which has basic concepts, such as health, safety and education, in addition to the physical

and environmental parameters. Designing a theoretical framework of UEQ linking to the

quality of life is an essential step to understand urban sustainability and human well-being.

Such a framework may help to choose the parameters and the integration techniques to

evaluate the multidimensional aspects of UEQ. These integration techniques are able

to assess the current and predict/estimate the future UEQ, which are modelled by the

municipal and city planners (Van Kamp et al., 2003). Thus, the assessment of UEQ

can be an efficient tool to provide effective information of urban conditions, sustainable

development and regional planning (Faisal and Shaker, 2017). UEQ can be modelled using
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satellite remote sensing techniques through analysing multi-temporal and multi-resolution

data, which are able to give a clear vision for visualizing and understanding the land

cover, Land Surface Temperature (LST), water conditions and vegetation in urban areas

(Fung and Siu, 2000, 2001). Consequently, several studies in the literatures demonstrated

the use of multi-source data to model and assess the UEQ (Nichol and Lee, 2005; Nichol

and Wong, 2006; Nichol et al., 2006).

Moore et al. (2006) conducted a research study in three U.K. city centre areas, including

Clerkenwell in London, Devonshire Quarter in Sheffield and the city centre of Manchester.

The main goal of the study was to investigate and understand the UEQ in both subjective

and objective bases, which mainly represent the city in mind and the city physically in

reality, respectively. The case study divided the project into three sections: (1) outdoor

environmental quality, which represents the physical, environmental conditions in the city;

(2) perceived environmental quality, which represents the experiences of city residents;

and (3) indoor environmental quality, which represents the physical and environmental

conditions of residential buildings. Noise levels, carbon monoxide and air temperature

were observed over a summer and winter period for the outdoor environmental quality

assessment. For the perceived environmental quality, residents from each city were hired

to conduct a photo survey and a semi-structured interview to assess residents’ experiences

within each case study. The levels of carbon dioxide (CO2), carbon monoxide (CO),

thermal conditions (◦C) and light intensity were measured for the indoor environmental

monitoring. The findings of this case study illustrated the local environmental quality maps

and spatial urban environmental factors that represent the environmental quality within

the city. The combination of subjective and objective approaches enabled encouraging

people to think about how they understand the environment. The proposed method can

provide an efficient way for residents worldwide to highlight their concerns, wishes and

positive aspects of their local area to support decision makers.

Fobil et al. (2011) presented a case study of UEQ in the City of Accra, Ghana.

The primary goal of the study was to investigate the relationship between the urban

environmental quality and death locations, which was commonly caused by malaria and

infectious diarrhoea in low-income countries. First, a total of 65 environmental parameters,

such as population and waste generation, water supply and sanitation, hygiene conditions

and building structure material, were obtained from the Ghana Census 2000 database. The

births and deaths registry in Accra provided the mortality data over the period 1998–2002.
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Second, Principal Component Analysis (PCA) was used to integrate the environmental

parameters’ data and the mortality data of the study area. PCA was used to first

compute the correlation among all pairwise parameters. Data reduction was subsequently

conducted to reduce the environmental parameters. The results showed that all of the

zones were labelled with good, bad or terrible environmental conditions. Third, analysis

of variance was used to compare the differences in malaria and diarrhoea mortality

levels in the three environmental zones. Fourth, a linear association was conducted

between the environmental parameters and malaria and diarrhoea mortalities by using

Generalized Linear Models (GLMs). The result demonstrated a strong relationship

between environmental parameters and the mortality of malaria. However, there was no

strong correlation found between environmental parameters and mortality from diarrhoea.

The study illustrated that urban environmental management can be used to reduce the

risk of infectious disease in low-income countries.

Lo (1996) introduced the Landsat Thematic Mapper (TM) and social data to assess the

quality of life in the city of Athens. The Landsat TM image was first obtained to generate

the land use/land cover map and to extract biophysical information from it, including

the Normalize Difference Vegetation Index (NDVI) and LST. Socio-economic data were

obtained from U.S. census, including population density, per capita income, median

home value and percent of college graduates. The maximum likelihood classification was

implemented to extract low and high density residential areas, commercial and industrial

areas, water, roads, forests and agriculture areas. Principal Component Analysis (PCA)

and GIS overlay were used to integrate the land use/land cover, biophysical and socio-

economic data. The results showed that NDVI has a strong correlation with per capita

income, median home value and percent of college graduates. However, it indicates that

NDVI has relatively low correlation with population density, land surface temperature,

high density of residential areas, commercial areas and industrial areas. The study

showed that the integration of land use/land cover, biophysical and social data can aid in

predicting a realistic UEQ for the city.

Another representative study was found in U.S. counties, conducted by (Shoff et al.,

2014). The main goal of this case study was to investigate the place-specific risk factors

for prenatal care utilization in the U.S. using Spatially-Lagged Geographically-Weighted

Regression (GWR-SL). The dependent variable, including late or no prenatal care, was

first extracted from the Women’s Health Quick Health Data Online from 1999–2001. The
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late or no prenatal care mainly represents the percentage of women who received prenatal

care during their second or third period of pregnancy or did not receive prenatal care at all.

The racial composition variables, including the percentage of black females of childbearing

age, the percentage of American Indian/Alaskan Native (AIAN) females of childbearing

age, the percentage of Asian females of childbearing age and the percentage of Hispanic

females of childbearing age were obtained from the above mentioned health data to be

included in the analysis. Additionally, the nativity status composition, including the

percentage foreign-born, was obtained for the same period and included in the analysis.

GWR-SL was implemented in this case study to model the spatial location of prenatal

care utilization in U.S. counties. The results of the GWR-SL approach were compared

with some of the existing methods, including ordinary least squares and the spatial lag

regression model, and the GWR-SL approach showed a better understanding of prenatal

care utilization in U.S. counties than the previously mentioned existing approaches. That

is mainly because the GWR-SL approach takes into consideration the spatial nature of

the data. The findings of this case study help to better estimate and understand the

spatial prenatal care utilization in the U.S.

Despite the above successful attempts, the majority of the scholars mainly utilized

PCA, GIS analysis or MCE techniques to integrate UEQ parameters (Nichol and Wong,

2009; Fobil et al., 2011; Lo, 1996; Rinner, 2007). The PCA analytical technique has several

potential disadvantages: (1) it produces unweighted components, which may not highlight

those important parameters; (2) PCA does not work properly in nonlinear relationships;

and finally, (3) the minimum number of components is indeterminable (Faisal and Shaker,

2017). The GIS overlay method does not consider correlation among parameters, nor give

weight to the parameters. MCE is a weighting process that allows decision makers to

modify attribute values of the parameters, which may lead to biased opinions. Numerous

researchers (Nichol and Wong, 2009; Liang and Weng, 2011; Rahman et al., 2011; Rinner,

2007) attempted to validate the UEQ results using e-mail questionnaire, field-based

questionnaire, interviews with experts and factor analysis. However, these methods can

be inaccurate to test the outcomes of UEQ; as a result, it may cause tendentious results.

In this research, we attempt to fill several gaps in UEQ research by: (1) utilizing a new

method to normalize the UEQ parameters; (2) introducing a new method to weight urban

and environmental parameters obtained from diversity data; and (3) proposing a new

method to validate urban and environmental parameters with socio-economic indicators
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for UEQ assessment in two cities in Ontario, Canada.

4.3 Datasets

In this research, the City of Toronto and the City of Ottawa were intentionally selected

as case studies due to the data availability and the rapid population growth in these

two cities. The datasets used in this study include three broad categories: (1) Landsat

TM satellite images; (2) GIS data layers; and (3) socio-economic data. All of the data

were collected between the years 2010 and 2011 since GIS data and socio-economic are

not consistently available to support the two case studies. A Landsat TM image was

downloaded from the United States Geological Survey (2014). The spatial resolution of

the Landsat images is 30 m for the multi-spectral bands and 120 m for the thermal band.

However, the thermal bands were resampled to a 30-m pixel size from the source of data

predominantly to align the thermal band with the multi-spectral bands (Kjaersgaard and

Allen, 2009). The image was acquired during the summer season (July) to avoid the

appearance of clouds and snow cover.

On the other hand, a total of 14 GIS data layers were acquired from the Scholars

GeoPortal (2014) for both cities during the same duration of time. The GIS layer data

include land use, population density, building density, vegetation and parks, public

transportation, historical areas, Central Business District (CBD), sports area, religious

and cultural zone, shopping centres, education institution, entertainment zones, crime rate

and health condition. These layers were imported into the ArcGIS platform (ArcGIS, Esri,

Redlands, CA, USA) for further analysis. Similar to the remote sensing data, all of the

data were projected to the UTM 17 N coordinate system for the City of Toronto and the

UTM 18 N coordinate system for the City of Ottawa. Lastly, the socio-economic indicators

were derived based on the used census data that were obtained from the census bureau.

The census bureau archives hundreds of indicators/information related to socio-economic

conditions. In this research, socio-economic indicators, including education (university

certificate, diploma or degree), family income and land values, were also obtained for the

result validation. Table 4.1 summarizes the data sources being used in this study.
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Table 4.1: The data sources for City of Toronto and City Of Ottawa.

City Landsat TM GIS Data Census Data

Toronto ◦ Land Use
Socio-economic data were
provided by the census bureau.
Socio-economic data:

Path/Row = 18/30 ◦ Population Density
Sensor = Landsat TM ◦ Building Density
Date = 23 June 2011 ◦ Vegetation and Parks

◦ Public Transportation
Toronto Ottawa ◦ Historical Areas ◦ Education

Path/Row = 16/28 ◦ Central Business Districts (CBD) ◦ Family Income
Ottawa Sensor = Landsat TM ◦ Sports Areas ◦ Land Values

Date = 11 September 2011 ◦ Religious and Cultural Zones
◦ Shopping Centres

Remote sensing data:
◦ Education Institutions
◦ Entertainment Zones

◦ LST ◦ Crime Rate
◦ NDVI ◦ Health Condition
◦ NDWI ◦ Areas Close to Water Bodies
◦ NDBI and Built-up Area

4.4 Methodology

Figure 4.1 shows the overall workflow for the two case studies (the City of Toronto and

the City of Ottawa), which can be summarized by the following steps. The Landsat

images were imported into PCI Geomatics V10.1(Geomatica, version 10.1, PCI Geomatics,

Markham, ON, Canada, 2007), clipped and then projected into the UTM coordinate

system. The absolute atmospheric correction model, ATCOR2 (Atmospheric Correction

and Haze Reduction), built-in PCI Geomatics software was used to compute the results

for several bio-physical parameters (NDVI, NDWI, built-up index and LST) (Richter,

1998). ATCOR2 was utilized to first perform radiometric calibration and to remove the

effects that change the spectral characteristics of the land features (Paolini et al., 2006).

Sensor parameters, including sensor type, acquisition date, Sun elevation, Sun zenith

and pixel size, were obtained in addition to weather conditions (air temperature and

visibility) to conduct the subsequent atmospheric correction. The calibration parameters

for Landsat TM sensor (biases and gains) were also incorporated into the atmospheric

correction, as is described in (Richter, 1990). In this research, biophysical parameters,

including NDVI, NDWI, built-up index and LST, were derived from the Landsat images.

Urban, environmental parameters and socio-economic indicators were all derived from

GIS and census data to combine all of the parameters together for further analysis. The

methodological contribution of this research work is to implement the GIS overlay, PCA

and GWR (ordinary GWR, GWR with spatial error model and the GWR with spatial lag
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model) to integrate all urban, environmental parameters and socio-economic indicators.

Then, socio-economic indicators, including family income, higher education level and land

values, were investigated to validate the final outcomes from the integration methods.

The evaluation of the binary classifiers algorithm was performed to assess the precision

and accuracy of each integration method. Based on the precision and accuracy of the

integration methods, the optimal integrated method can be determined to estimate the

best UEQ location in the two case studies.
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Figure 4.1: The overall workflow for improving the accuracy of UEQ assessment.

4.4.1 Ranking the Parameters

Since the parameters as mentioned earlier were extracted from different data sources, they

may have different scale levels and cannot be combined into a particular unit. Therefore,
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all of the obtained data (parameters), including raster, census and GIS data, were first

transformed into one scale (sub-neighbour), as shown in Figure 4.2. To standardize the

parameters and represent the significant level of each polygon in the parameter, the

Z-score method was performed for all of the parameters. The Z-score model is a statistical

measurement that is able to standardize a wide range of data to represent the significant

changes across data Cheadle et al. (2003).
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Figure 4.2: (a) NDVI image derived from the Landsat image (raster data); (b) NDVI
map after transformation (vector data); (c) population layer at the census tract level; (d)
population layer after transformation to the sub-neighbour level.

The following Equation (4.1) shows the first step to normalize the parameters using
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the Z-score:

Zi =
[xi − µ

σ

]
(4.1)

where x is the observation values (polygons), i is the parameter, µ is the mean value of

the parameter and σ is the standard derivation of the parameter. The second step is

to use linear interpolation to rank the parameters from 1–10. The polygon within the

parameter that has a high Z-score number will represent high values, for example 10. The

polygon that has a low Z-score will result in a value of 1. However, for those parameters

having negative relationships with respect to UEQ, such as crime rate, industrial areas,

LST, etc., these parameters are inversely presented (e.g., the highest LST will take a

value of 1, and the lowest LST value will get 10), as shown in Figure 4.3. The following

Equation (4.2) shows how linear interpolation was calculated:

Rank =
[(Obs−Obsmax)(Rankmin −Rankmax)

(Obsmin −Obsmax)

]
+Rankmax (4.2)

where Obs is the current observation value, Obsmax is the maximum observation value,

Obsmin is the minimum observation value, Rankmax is the maximum ranking value, Rank

is the determined ranking value and Rankmin is the minimum ranking value.
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Figure 4.3: (a) The LST layer in degrees Celsius before ranking the parameter; (b) the
ranking LST after the normalization.
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4.4.2 Data Integration of Multiple Environmental and Urban

Parameters

Integration techniques can be used to combine remote sensing and GIS data for urban

modelling and analysis (Weng, 2002). Previous studies demonstrated two integration

methods, mainly PCA and GIS overlay, which are able to combine various parameters

from a diverse source of data. In this research work, three approaches were demonstrated

to integrate the aforementioned environmental and urban parameters. These two existing

approaches (PCA and GIS overlay) were first implemented, and subsequently, we investi-

gated the use of GWR techniques (ordinary GWR, the GWR with spatial lag model and

the GWR with spatial error model) to integrate all of the aforementioned parameters,

which can lead to an improved estimation of UEQ.

Geographic Information System Overlay

GIS overlay is a multi-criteria application that uses data layers for specific environmental

thresholds. Remote sensing data are commonly presented as digital data in raster format.

However, census data are usually stored in GIS vector format. Remote sensing data can

thus be integrated with socio-economic data by converting remote sensing data from raster

to vector data (Li and Weng, 2007). In this research work, the GIS overlay integration

method was used to combine the urban and environmental parameters to serve for the

UEQ assessment. After, we transform all of the obtained data into sub-neighbours and

rank the parameters from 1–10 using Equations (4.1) and (4.2). The sum of the data

layers can thus illustrate the result of UEQ.

Principal Component Analysis

PCA is an analysis technique that compresses high dimensional data into a small size

of data and retains most of the variance of the data (Jensen, 2005). PCA is commonly

used in many remote sensing applications. The covariance matrix of standard PCA may

not be the best option for data that have different measurement units. The correlation

matrix can be used instead of the covariance matrix to standardize each parameter to

the variance unit or zero means. In this research work, two case studies were conducted

to assess the UEQ in the City of Toronto and the City of Ottawa, respectively. The
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observation values of the GIS polygons of each parameter were employed in the PCA

model to determine the UEQ, as shown in Figure 4.4.

 

 

 

 

   

Figure 4.4: The GIS polygons of the parameters.

PCA can be computed by determining the eigenvectors and eigenvalues of the correla-

tion matrix. The first step to compute PCA is to calculate the correlation matrix. The

correlation of two random parameters can be computed by using the following Equation

(4.3):

ry1,y2 =
[ cov(y1i,y2i)
σ(y1i).σ(y2i)

]
(4.3)

where r is the correlation matrix for parameters y1 and y2, respectively, cov(y1i) and cov(y2i)

are the covariance matrix for parameter y1 and y2, respectively, and σ(y1i) and σ(y2i) are

the standard deviation for parameter y1 and y2, respectively, at location i.

The second step is to calculate the eigenvalues of the correlation matrix. The eigenvalue

measures the scale of the data. The parameters that have eigenvalues greater than one

will be a good rule of thumb to represent most of the variance of the data (Cliff, 1988).

Eigenvalues can be computed by using the following Equation (4.4):

det(A− λI) = 0 (4.4)

where A is the correlation, λ is the eigenvalues and I is an N by N identity matrix.

The third step is to calculate the eigenvector of the correlation matrix. The eigenvector
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measures the direction of the data. Eigenvectors can be computed by using the following

Equation (4.5):

(A− λI)X = 0 (4.5)

where A is the correlation matrix, λ is the eigenvalues and X is the eigenvector.

The new Obs (observation number) for the new image can be determined using the

following Equation (4.6) (Jensen, 2005):

New(Obsi) =
n∑

i=1

akp ∗Obsi (4.6)

where akp is the eigenvector for parameter k component p and Obs is the observation

number in polygon i.

Ordinary Geographically-Weighted Regression

One of the limitations of using PCA is that it produces unweighted components. GWR

can be used to weight the spatial location of each parameter. The dependent parameter

indicates the UEQ outcome, which was derived from GIS overlay method. That is mainly

because the GIS overlay was found to be more emblematic for UEQ in some previous

studies and one of our parallel studies (Nichol and Wong, 2009; Faisal and Shaker, 2017).

The independent parameters are the urban and environmental parameters, which were

derived from the remote sensing and GIS data, such as population density, building

density, NDVI, public transportation, etc. The weight can be given to some location

based on the nearness and similarity of the estimated parameters at some location. Thus,

the observations that are located nearer to the estimated location would have a higher

weight. However, the observations that are located far from the estimated location would

have a lower weight. Assume we have a dataset that consists of a dependent variable y

and a set of independent variables (x1, x2, x3...xn), and for each of the i observations in

the dataset, a measurement of its position is available in a suitable coordinate system

(Charlton et al., 2009). Equation (4.7) shows the ordinary GWR model:

yi = a1ix1 + a2ix2 + a3ix3 ....+ anixn (4.7)
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where a1i...ani refer to the coefficients that define a spatial relationship with respect to its

surroundings at location i. The outcomes of yi indicates a new dependent variable if we

have the dataset of the independent variables x at location i. The GWR mathematical

model thus considers the weights with respect to the surroundings at location i to estimate

coefficients a1i...ani that define a spatial relationship with respect to its surroundings at

location i. The following form (4.8) represents the coefficients (ai) at location i:

ai = (XTWiX)−1XTWiY (4.8)

where Wi is a square matrix of weights relative to the position of i in the study area; X

is the independent variables matrix; and Y is the dependent variable. The Wi matrix

captures dependency relations between the observations, which represent the geographical

weights in the diagonal and 0 in its off diagonal matrix Borst and McCluskey (2007).

In this research work, the distance-based weights algorithm was implemented to

create the diagonal weighted matrix. This method can be used to avoid non-weighted

isolated polygons and polygons that are located inside other polygons. An optimum

bandwidth can be defined through using certain techniques, including the Cross-Validation

(CV) and Akaike Information Criterion (AIC), to derive the goodness of fit (Lu et al.,

2014). However, numerous researchers suggested different kernel functions to derive

the bandwidth, such as the distance based on the taxicab geometry (Krause, 1987),

the chamfer distance designed for a lattice or grid space (Leymarie and Levine, 1992;

De Smith, 2004), the shortest path distance (Smith, 1989) and the qualitative distance by

translating an absolute distance metric to linguistic terms (Guesgen and Albrecht, 2000;

Yao and Thill, 2005). In this study, the first step to compute the weighted matrix is to

determine the neighbours, mainly based on the k-nearest neighbour weighted method.

For instance, we could generate centre points of a 10 × 10 lattice as a mean point location

or regression point to measure the distances, as shown in Figure 4.5a. In addition, the

polygons can be computed based on a weighting scheme known as a kernel, and in this

study, we used the Gaussian shape kernel, as shown in Figure 4.5b. The following form

(4.9) represents the weighting scheme for the distance-based method (Lu et al., 2014;
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Fotheringham et al., 2003).

wij = exp
[
−0.5(dij/h)2

]
(4.9)

where wij is the spatial weight between observation point j and regression point i, dij

is the distance between observation point j and regression point i and h is the kernel

bandwidth defined by the distance between the regression location and the k-th nearest

observation.
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Figure 4.5: Weighted distance method. (a) k-nearest neighbour; (b) Gaussian shape
kernel.

Geographically-Weighted Regression with Spatial Lag Model

The spatial lag model is one of the dominant spatial autoregressive regression models that

has been used in many research studies (Ward and Gleditsch, 2008; Páez et al., 2002).

Shoff et al. (2012) used the GWR with spatial lag approach to model and predict the U.S.

prenatal care utilization at the county level dataset. The spatial lag model essentially

heals spatial heterogeneity by including an autocorrelation coefficient and spatial weight

matrix in the weighted regression model. The SLM is expressed as the following Equation

(4.10):

Yi = ρiWiyi + Xkβi + ε (4.10)
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where Y is an N by 1 vector of observations on the dependent variable, i is the location

coordinates (centroid of the county), W is an N by N specifying spatial weights matrix,

which indicates the distance relationship between locations i and j, and ρi is the spatial

lag dependence between county level percentages of UEQ at location i. For a given

location, say j, ρ indicates the relationship between j’s dependent variable (UEQ) and

the dependent variable of j’s neighbours defined by the distance weight matrix. Positive

ρ refers to a positive spatial autocorrelation; and if ρ is negative, then negative spatial

autocorrelation is determined. βi is a K by 1 vector of regression coefficients associated

with Xk at location i. ε is an N by 1 vector of the error term.

Geographically-Weighted Regression with Spatial Error Model

The GWR with spatial error model is appropriate when we are interested in correcting

spatial autocorrelation due to the use of spatial data. In this case, the structure or

spatial heterogeneity of the spatial relationship is missing. Therefore, we include the

spatial autoregressive error term due to unobservable features or omitted variables that

are related to locations (Anselin and Bera, 1998). The GWR with spatial error model is

expressed as the following Equations (4.11) and (4.12):

Yi = Xkβi + ε (4.11)

ε = λiWiε+ ζ (4.12)

where λi is the spatial autoregressive coefficient for the error lag Wiε and ζ is a vector of

independent identically distributed errors.

Accuracy Assessment

Data validation is one of the major concerns in UEQ research work. Several researchers

attempted to assess the accuracy of the UEQ results using different methods, including

e-mail questionnaire, field-based questionnaire, asking experts and factor analysis. Re-

gardless of the considerable amount of e-mail surveys or field-based questionnaires, both

approaches are time consuming and budget dependent. Besides, factor analysis used in

the previous work was performed using the same parameters that have been incorporated
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to compute the UEQ, which make it unreliable and biased. Numerous UEQ studies did

not perform any field survey or even results validation (Lo, 1996; Moore et al., 2006; Fobil

et al., 2011). On the other hand, some of the literatures highlighted a high correlation

between socio-economic indicators including (university certificate or diploma, family

income and land values) and the quality of living (Becker and Mulligan, 1997; Kahn, 2007;

Reginster and Goffette-Nagot, 2005; Din et al., 2001). Since there is a lack of ground

reference to validate the results in this study, we propose to use these socio-economic

indicators for data validation and to assess the UEQ results. All observed data of the

three socio-economic indicators were normalized to be in the same scale from 1–10. Then,

the sum of the socio-economic indicators can thus present the result of the reference, as

shown in Table 4.2.

Table 4.2: The sum of the socio-economic indicators.

Polygon ID Income Education Land Value Reference Layer

1 8 5 7 20

The first step to validate the results is to extract the observation’s values that are

higher than the mean in each parameter and reference layer. That is mainly because in

this study, we need to highlight the higher UEQ areas. Second, the evaluation of binary

classifiers approach was used to evaluate the UEQ based on the following two performance

measures through data interpretation: Precision and Accuracy (Powers, 2011).

Precision(P ) is a measure that evaluates the probability that a positive outcome is

correct using Equation (4.13):

P =
| TP |

| TP | + | FP |
(4.13)

Accuracy(Acc) evaluates the effectiveness of the classifier by its percentage of correct

predictions using Equation (4.14):

Acc =
| TN | + | TP |

| FN | + | FP | + | TN | + | TP |
(4.14)

where TP refers to “True Positive”, which means the above mean polygons derived from

the proposed method are being matched physically in the reference layer; TN refers to
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“True Negative”, which represents the above mean polygons that are not detected in the

proposed method and the reference layer; FP refers to “False Positive”, which means

the above mean polygon derived from the proposed method does not really exist in the

reference layer; and FN refers to “False Negative”, which means the above mean reference

polygons do not exist in the proposed method. With these three indicators, we assessed

the UEQ layer from the results of each proposed method, including GIS overlay, and PCA

assessed the best method for our datasets.

4.5 Results and Discussion

4.5.1 GIS Overlay Analysis

Figure 4.6a shows the UEQ derived in the City of Toronto using the GIS overlay. The

distribution of UEQ in the City of Toronto shows that the highest UEQ zones were found

in areas (A, B, C and D) in green colour, while the lowest UEQ zones are indicated as

brown colour in the city.
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Figure 4.6: The Urban Environmental Quality (UEQ) derived using the GIS overlay
method. (a) The UEQ in the City of Toronto; (b) the UEQ in the City of Ottawa.

The highest UEQ zones are the consequence of the summation of all of the positive

parameters that are located within Zones A–D. However, negative values of the parameters,

including crime, industrial areas and high LST, are consistently located in the brown
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zones within the city. In contrast, the highest values of UEQ areas were found in the

high and moderate density areas, while the lowest values were found in the industrial and

low density areas. Figure 4.6b shows the UEQ derived in the City of Ottawa using the

same method. Apparently, the distribution of UEQ in the City of Ottawa showed that

the highest UEQ zones were found in Zones A and B. These areas are mainly located in

the down town of the city and the new urban area in Zone B. The highest values of UEQ

areas were consistently found in the high and moderate density areas. However, some

suburban areas located in Zone B showed high UEQ values, and that could be due to

the increase of income of the household, resulting in a move to the suburbs, especially in

automobile-dependent cities, such as the City of Ottawa (Kahn, 2007; Turcotte, 2008).

4.5.2 Principal Component Analysis

Table 4.3 represents the correlation coefficient matrix among all of the parameters in the

City of Toronto. Population density reported a moderate positive correlation coefficient

with historical areas parameter (0.66).

Table 4.3: The correlation coefficient matrix among all of the parameters derived from
the PCA method in the City of Toronto.

PD BD PT Veg NDVINDWIBU LST H Ind CBD Sc Ent He Rel SP Sea CR SH

PD 1.00 0.34 0.14 −0.14 −0.11 0.11 0.12 0.12 0.66 −0.04 0.08 −0.17 −0.02 0.03 −0.11 −0.04 −0.06 0.02 −0.04
BD 1.00 0.40 −0.61 −0.68 −0.67 0.67 0.78 0.44 0.07 0.39 −0.05 0.14 0.11 0.16 0.02 0.21 0.22 0.05
PT 1.00 −0.37 −0.37 −0.36 0.38 0.46 0.12 0.15 0.16 −0.09 −0.04 −0.01 0.05 −0.03 0.12 0.12 0.04
Veg 1.00 0.66 0.55 −0.56 −0.66 −0.11 −0.13 −0.09 −0.03 0.05 −0.03 −0.13 0.03 −0.30 −0.11 −0.02
NDVI 1.00 0.88 −0.90 −0.80 −0.30 −0.37 −0.37 0.02 −0.27 −0.10 −0.29 −0.09 −0.27 −0.35 −0.23
NDWI 1.00 −0.89 −0.77 −0.31 −0.39 0.37 −0.02 0.29 0.11 0.31 0.10 0.25 −0.35 0.26
BU 1.00 0.79 0.30 0.50 0.35 −0.01 0.27 0.10 0.31 0.09 0.27 0.35 0.24
LST 1.00 0.18 0.19 0.25 −0.02 0.05 0.05 0.14 0.00 0.31 0.19 0.06
H 1.00 −0.01 0.50 −0.05 0.43 0.24 0.09 0.16 −0.05 0.33 0.19
Ind 1.00 0.03 0.02 0.08 −0.01 0.31 0.05 0.06 0.12 0.14
CBD 1.00 −0.05 0.37 0.19 0.07 0.09 −0.07 0.38 0.16
Sc 1.00 0.04 0.12 0.25 0.05 0.21 0.00 0.03
Ent 1.00 0.30 0.26 0.39 0.00 0.38 0.49
He 1.00 0.30 0.49 −0.03 0.21 0.38
Rel 1.00 0.44 0.11 0.15 0.41
SP 1.00 0.02 0.18 0.62
Sea 1.00 0.01 0.03
CR 1.00 0.27
SH 1.00

PD: Population Density; BD: Building Density; PT: Public Transportation; Veg: Vegetation
Areas; BU: Built-up Areas; LST: LST; H: Historical Areas; Ind: Industrial Areas; Sc: School
Areas; Ent: Entertainment Areas; He: Health Condition; Rel: Religion Areas; SP: Sport Areas;
Sea: Areas Close to a Water Body; CR: Crime Rate Areas; SH: Shopping Areas.

Where building density showed a moderate negative correlation with green vegetation
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(−0.61), NDVI (−0.68), NDWI (−0.67) and a positive correlation with built-up areas (0.67)

and LST (0.78). NDVI exposed a strong positive relationship with NDWI (0.88) and a

moderate negative correlation with green vegetation (0.66). However, NDVI demonstrated

a high negative correlation with the built-up areas parameter (−0.90) and LST (−0.80)

and also revealed a moderate negative correlation with building density (−0.68). The

built-up areas parameter reported a strong positive correlation with building density (0.67)

and LST (0.79). The built-up areas parameter revealed a negative correlation with NDVI

(−0.90) and NDWI (−0.89). NDVI stated a very high correlation with NDWI and a

negative correlation with the built-up areas parameter and LST. NDVI also demonstrated

a moderate negative correlation with building density, which indicates that high NDVI

values represent low LST and low high building density areas with more green areas.

In the City of Ottawa, the building density parameter reported a moderate negative

correlation coefficient with green vegetation (−0.61), NDVI (−0.66) and NDWI (−0.64)

and a positive correlation with built-up areas (0.64) and LST (0.73).

Table 4.4: The correlation coefficient matrix among all of the parameters derived from
the PCA method in the City of Ottawa.

PD BD PT Veg NDVINDWIBU LST H Ind CBD Sc Ent He Rel SP Sea CR SH

PD 1.00 0.46 0.29 −0.36 −0.28 −0.25 0.28 0.36 0.36 0.30 0.25 0.35 0.06 −0.02 −0.27 −0.18 −0.05 0.13 −0.11
BD 1.00 0.41 −0.61 −0.66 −0.64 0.64 0.73 0.22 0.45 0.38 0.06 0.14 0.13 0.20 −0.02 0.24 0.22 −0.05
PT 1.00 −0.31 −0.25 −0.24 −0.23 −0.37 −0.36 0.33 0.57 −0.05 0.12 0.03 0.02 0.01 0.36 −0.13 0.06
Veg 1.00 0.57 0.56 −0.57 −0.68 −0.17 −0.17 −0.10 0.04 0.04 0.01 −0.14 −0.09 −0.30 0.11 −0.01
NDVI 1.00 0.97 −0.95 −0.77 0.16 −0.40 −0.37 0.03 −0.27 −0.10 −0.30 0.01 −0.29 0.36 −0.24
NDWI 1.00 −0.96 −0.75 −0.24 −0.39 −0.34 −0.03 0.28 0.09 0.32 0.01 0.29 −0.35 0.25
BU 1.00 0.77 −0.16 0.55 0.51 0.02 −0.24 −0.09 −0.30 −0.01 −0.30 0.33 −0.23
LST 1.00 0.21 0.29 −0.23 0.02 −0.04 −0.05 −0.20 0.03 −0.35 0.23 −0.07
H 1.00 −0.29 0.43 0.02 −0.04 −0.04 −0.19 0.02 −0.34 0.21 −0.07
Ind 1.00 0.78 −0.07 0.47 0.23 0.11 0.01 −0.02 −0.33 0.17
CBD 1.00 −0.06 0.38 0.19 0.07 −0.01 −0.06 −0.36 0.15
Sc 1.00 0.04 0.10 0.23 0.14 0.21 0.02 0.04
Ent 1.00 0.27 0.19 0.18 0.01 −0.27 0.41
He 1.00 0.17 0.07 −0.03 −0.15 0.19
Rel 1.00 0.19 0.17 −0.11 0.25
SP 1.00 0.01 0.05 0.23
Sea 1.00 −0.08 0.04
CR 1.00 −0.12
SH 1.00

The green areas parameter also exposed a moderate negative correlation with LST.

The data derived from remote sensing data, including NDVI, NDWI, the built-up areas

parameter and LST, have high to moderate correlation with each other. NDVI has a high

positive correlation with NDWI (0.97) and a high negative correlation with the built-up

areas parameter (−0.95). However, NDVI established a moderate negative correlation

89



CHAPTER 4. IMPROVING THE ACCURACY OF UEQ ASSESSMENT USING
GEOGRAPHICALLY-WEIGHTED REGRESSION TECHNIQUES

with LST (−0.77). LST also showed a moderate negative correlation with the green

areas parameter (−0.68) and NDWI (−0.75), but a moderate negative correlation with

the built-up areas parameter (0.77). The industrial areas parameter revealed a notable

moderate positive correlation with CBD (0.78) as shown in Table 4.4. In addition, these

observations determined that the above-mentioned remote sensing parameters represented

high to moderate correlation among each other. The results also indicated that there

are some industrial areas located close to the down town zone that may affect the final

results of the UEQ. As mentioned in Section 4.4.2, data reduction can improve the data

processing and cost. Therefore, the PCA approach was used to reduce the size of the

data.

In this study, five components were extracted in the PCA approach for the City of

Toronto, which have an eigenvalue greater than one, as shown in Figure 4.7(a). The

total variance of the five components is 75% of the overall variance of the data. The

preliminary analysis revealed that Component 1 has 36% of the total variance of the

dataset. Component 1 shows strong positive loadings with NDVI (0.88), NDWI (0.86),

building density (0.80), LST and historical areas (0.86) and strong negative loadings

with LST (−0.86) and built-up areas (−0.86). In addition, Component 1 is the best to

represent the green areas within the city. Component 2 reveals about 16% of the dataset,

which mainly represents industrial areas with a positive correlation of 0.63 and CBD with

a positive correlation of 0.76. Component 2 can be used to describe more about the urban

areas. Component 3 represents 9% of the dataset, which mainly represents only sports

areas with a positive correlation of (0.81). Component 4 reveals 7% of the dataset, which

basically represents public transportation with a positive correlation of 0.70. The final

map has a higher correlation (0.7) with the combination of Components 1 and 2. Such

findings can reveal that the parameters, which are represented in Components 1 and 2,

can be used to reveal the UEQ within the city.

In the City of Ottawa, six components were extracted in the PCA approach that has

an eigenvalue larger than one, as shown in Figure 4.7(b). The outcome revealed that

Components 1 and 2 have 56% and Components 3, 4, 5 and 6 have 21.1% of the total

variance of the dataset. The results showed that Component 1 was highly correlated

with NDVI (0.88), NDWI (0.86) and green vegetation (0.80) and has a strong negative
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correlation with LST (−0.84) and built-up areas (−0.86). Similar to the City of Toronto

case study, Component 1 can be used predominantly to derive the green areas within the

City of Ottawa. On the other hand, Component 2 detects about 18.4% of the dataset,

which mainly represents industrial areas with a positive correlation of 0.72, CBD with a

positive correlation of 0.66 and LST with a positive correlation of 0.70. Component 2 can

be used to represent more about the urban areas. The findings of the City of Ottawa

case study can reveal that the parameters, which are described in Components 1 and 2,

can be used to represent the UEQ within the city.
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Figure 4.7: The UEQ derived using the PCA method. (a) The UEQ in the City of
Toronto; (b) the UEQ in the City of Ottawa.

4.5.3 Geographically-Weighted Regression
Ordinary Geographically-Weighted Regression

Figure 4.8(a) shows the derived UEQ using the ordinary GWR in the City of Toronto.

The distribution of UEQ in the City of Toronto showed that the highest UEQ zones were

mainly found in Zones A, B and C displayed in green colour, which are mainly located

in the north and middle of town, as well as the west of the city. However, the lowest

UEQ zones are located in the northwest and northeast of the city. The ordinary GWR

investigates the spatial weight with respect to the city’s polygons and its surrounding
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polygons. Thus, the outcome showed the highest UEQ zones clustered in the middle,

north and west of the city. The highest UEQ values can be ascribed by all of the positive

parameters as previously mentions in the result of the GIS overlay. Figure 4.8(b) reveals

the derived UEQ for the City of Ottawa using the ordinary GWR. The distribution of

the higher values mainly is located in the city centre and the middle of town, as shown in

Zone A in Figure 4.8(b). The lowest UEQ zones mostly are located in the remote areas

of the city. That could be again because the City of Ottawa is not a high dense city, and

many positive parameters are located in the down town and middle of town of the city.
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Figure 4.8: The UEQ derived using the ordinary GWR method. (a) The UEQ in the
City of Toronto; (b) the UEQ in the City of Ottawa.

Geographically-Weighted Regression with Spatial Lag Model

Figure 4.9(a) shows the derived UEQ using the GWR with spatial lag model in the City

of Toronto. The distribution of UEQ in the City of Toronto shows that the highest UEQ

zones were found in Zone A and Zone B with respect to the UEQ values within the city,

while those UEQ zones with low values were located in the northwest and northeast of

the city. Since the spatial lag model mainly heals the spatial heterogeneity by including

an autocorrelation coefficient and spatial weights matrix in the weighted regression, thus

the outcome of the spatial lag model clustered the highest UEQ zones in the middle and
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north of town of the city as shown in Zones A and B. That is mainly because all of the

positive parameters, including (high vegetation areas, historical areas, areas supported

by public transportation, low crime rate, etc.), are officially located within Zones A and

B. In the City of Ottawa, the results of the GWR with spatial lag model revealed high

UEQ values in the city down town and middle of town, as shown in Figure 4.9(b). On

the other hand, the lowest UEQ values are located in the suburban areas where there is a

lack of public transportation, schools, hospitals and city activity.
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Figure 4.9: The UEQ derived using the GWR with spatial lag method. (a) The UEQ in
the City of Toronto; (b) the UEQ in the City of Ottawa.

Geographically-Weighted Regression with Spatial Error Model

The distribution of UEQ derived from using the GWR with spatial error model in the

City of Toronto shows that the highest UEQ zones were clustered on Yonge Street, as

shown in Figure 4.10(a). The lowest UEQ zones are also indicated in the northwest and

northeast of the city. GWR with spatial error is able to correct the spatial autocorrelation

of spatial data. Thus, the outcome shows the highest UEQ zones located on the most

active street within the City of Toronto. That is mainly because most of the positive

parameters are located along Yonge Street. Figure 4.10(b) revealed the distribution of

UEQ derived from using the GWR with the spatial error model in the City of Ottawa.
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The results of the GWR with spatial error showed a similar outcome as the GWR with

spatial lag model, where the high UEQ values are located in the city down town and

middle of town and the low UEQ values are located in the remote areas for the same

reasons mentioned in the GWR with spatial lag model.
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Figure 4.10: The UEQ derived using the GWR with spatial error method. (a) The UEQ
in the City of Toronto; (b) the UEQ in the City of Ottawa.

4.5.4 UEQ Results Validation

As mentioned in Section 4.4.2, three socioeconomic parameters, including education level,

family income and land values, were used to validate the UEQ results. The evaluation

of binary classifiers approach was used to evaluate the UEQ. The results of GIS overlay,

PCA and GWR (ordinary GWR, the GWR with spatial lag model and the GWR with

spatial error model) were validated using socioeconomic parameters as a reference for this

study. Since we are looking to highlight the higher UEQ areas, the mean values were

used as a threshold to derive the higher UEQ areas. Figure 4.11 emphasizes the overall

precision and accuracy of the aforementioned methods with respect to reference in this

study.
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Figure 4.11: The UEQ results validation. (a) The City of Toronto; (b) the City of Ottawa.

Figure 4.12 shows the reference layer and the high value of the reference layer in

the two cities (the City of Toronto and the City of Ottawa). The distribution of the

reference layer in the City of Toronto revealed that the highest values were found in the

city centre and the west side of the city, while most of the low UEQ values were found

in the northeast and northwest of the city. On the other hand, the distribution of the

reference layer in the City of Ottawa revealed that the highest values were found in the

city centre and the middle portions of the city, while the majority of the low UEQ values

were found in the west side of the city.
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Figure 4.12: The reference layer and the higher than the mean of reference layer: (a) the
reference layer in the City of Toronto; (b) the reference layer higher than the mean in
the City of Toronto; (c) the reference layer in the City of Ottawa; (d) the reference layer
higher than the mean in the City of Ottawa.

Figure 4.13 shows the GIS overlay analysis and the higher values of GIS overlay in the

two cities. A few areas that have high UEQ values were located in the north and east of

the city, as mentioned in Section 4.5.1. The precision and accuracy measured were found

to be 71% and 65%, respectively, for the GIS overlay method in the City of Toronto. The

precision and accuracy measured were found to be 75% and 63%, respectively, for the

GIS overlay method in the City of Ottawa. That is mainly because that GIS overlay

method considered all of the parameters, which have a negative and a positive relationship

with respect to the reference layer. In addition, the parameters that have a negative
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relationship with respect to the reference layer might influence the overall result.
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Figure 4.13: The UEQ derived using the GIS overlay method: (a) the derived UEQ in
the City of Toronto; (b) UEQ zones higher than the mean in the City of Toronto; (c) the
derived UEQ in the City of Ottawa; (d) UEQ zones higher than the mean in the City of
Ottawa.

Figure 4.14(b) shows higher UEQ ranking derived using the PCA in the City of

Toronto and the higher values of the PCA found in the centre, north, northwest and

northeast portions of the city. The overall result of the PCA method yielded a lower

precision and accuracy by 1% than the GIS overlay method and 6%–15% than GWR,

GWR with spatial error and GWR with spatial lag, respectively, as shown in Figure

4.11(a). That is mainly because the PCA method does not consider 100% of the total

variance. However, the rest of the methods mentioned above, including the GIS overlay
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method, ordinary GWR, GWR with spatial error and GWR with spatial lag, used all

of the parameters. In the City of Ottawa, the PCA reported a lower precision 5% and

higher accuracy by 10% than the GIS overlay method. However, PCA reported a lower

precision and accuracy by 20%–25% with respect to ordinary GWR, GWR with spatial

error and GWR with spatial lag for the same, as shown in Figure 4.11(b).
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Figure 4.14: The UEQ derived using the PCA method: (a) the derived UEQ in the City
of Toronto; (b) UEQ zones higher than the mean in the City of Toronto; (c) the derived
UEQ in the City of Ottawa; (d) UEQ zones higher than the mean in the City of Ottawa.

In the City of Toronto, the ordinary GWR revealed higher precision and accuracy

than the GIS overlay method and PCA method up to 14% and 7%, respectively, as shown

in Figure 4.11(a). Moreover, the ordinary GWR represented higher precision up to 1%

than the GWR with spatial lag model and 9% precision with respect to the GWR with
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spatial error model. However, the accuracy of ordinary GWR reported a lower precision

up to 5% with respect to the GWR with spatial lag model and the GWR with spatial

error model. That occurred by investigating the ordinary GWR and the higher values of

ordinary GWR with respect to the reference layer and the higher values of the reference

layer. The ordinary GWR in the City of Toronto showed that the higher values of UEQ

are located in the centre, north and west of the city, as shown in Figure 4.15(b), which is

visually correlated with the reference layer.
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Figure 4.15: The UEQ derived using the ordinary GWR method: (a) the derived UEQ in
the City of Toronto; (b) UEQ zones higher than the mean in the City of Toronto; (c) the
derived UEQ in the City of Ottawa; (d) UEQ zones higher than the mean in the City of
Ottawa.

On the other hand, in the City of Ottawa, the ordinary GWR demonstrated higher
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precision and accuracy than the GIS overlay method and PCA method up to 20% and

17%, respectively, as shown in Figure 4.11(b). However, the ordinary GWR revealed

lower precision and accuracy up to 4% than the GWR with spatial lag model and 1%

precision and accuracy with respect to the GWR with spatial error model. The ordinary

GWR showed better results than GIS overlay and PCA mainly because ordinary GWR

considers the spatial weight component in the method.

Figure 4.16 a and b shows the GWR with spatial lag model and the higher values of

GWR with spatial lag model in the City of Toronto.
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Figure 4.16: The UEQ derived using the GWR with spatial lag method: (a) the derived
UEQ in the City of Toronto; (b) UEQ zones higher than the mean in the City of Toronto;
(c) the derived UEQ in the City of Ottawa; (d) UEQ zones higher than the mean in the
City of Ottawa.
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As shown in Figure 4.16(b) the higher UEQ values are located in the centre, north

and west of the city, which is also visually correlated with the reference layer. Thus, the

precision and accuracy of the GWR with spatial lag model reported better results than

GIS overlay and PCA by 15% and 8%, respectively, and 1%–5% with respect to GWR

with spatial error and ordinary GWR, respectively. That is mainly because the GWR

with spatial lag model adjusts the spatial heterogeneity by including an autocorrelation

coefficient as mentioned previously in Geographically-Weighted Regression with Spatial

Lag Model Section. The results of the City of Ottawa, on the other hand, yielded higher

UEQ values that are located in the centre and the middle of the city, as the ordinary

GWR. The precision and accuracy of the GWR with spatial lag model reported better

results than GIS overlay and PCA by 15% and 20%, respectively, and 5% with respect to

both GWR with spatial error and ordinary GWR.

The precision and accuracy of the GWR with spatial error model both revealed 76%

in the City of Toronto, but 94% and 81%, respectively, in the City of Ottawa, as shown

in Figure 4.11. The higher values of the GWR with spatial error model in the City of

Ottawa were located in the centre and the middle of the city, the same as the ordinary

GWR and the GWR with spatial lag model, as shown in Figure 4.17(d). On the other

hand, the higher values of the GWR with spatial error model in the City of Toronto

emerged along Yonge Street, as shown in Figure 4.17(b). Figure 4.11 shows that the

GWR with spatial error model revealed better precision and accuracy than GIS overlay

and PCA. However, the GWR with spatial error model represents lower precision and

accuracy with respect to the GWR with spatial lag model.
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Figure 4.17: The UEQ derived using the GWR with spatial error method: (a) the derived
UEQ in the City of Toronto; (b) UEQ zones higher than the mean in the City of Toronto;
(c) the derived UEQ in the City of Ottawa; (d) UEQ zones higher than the mean in the
City of Ottawa.

Besides the successful attempted methods used in this research work, there are several

potential draw backs: (1) the lack of data is always an issue that may influence the

final results; (2) census socioeconomic data are usually related to administrative units

and can be changed in a short period, which makes it difficult to have them available

worldwide; (3) remote sensing, GIS and socioeconomic data need data transformation

from raster to vector or from vector to raster, which could cause an individual loss of

spatial information; (4) the distance-based weighted algorithm is more applicable to a flat

surface, so all of the polygons need to be projected in advance for the output to be correct;
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(5) the authors have previously investigated the use of linear and nonlinear regression to

run the relationship between the derived UEQ with respect to the socio-economic data

(reference data). However, there is no meaningful trend found in the two cities that thus

reveals the inappropriate use of a linear or non-linear model in this particular case study.

4.6 Conclusions

This paper epitomizes the use of the GIS overlay, PCA and GWR techniques to assess

UEQ with two case studies in Ontario, Canada. The main contribution of this research

work is to investigate a new method to normalize various data derived from remote

sensing, GIS and census data. New approaches of GWR techniques, including the GWR

with spatial lag model and the GWR with spatial error model, were tested to assess the

UEQ. The new approach was evaluated to validate the final outcomes derived from the

above-mentioned methods. GWR is an intellectual framework that considers the spatial

relationship among the polygons in each parameter. The GWR with spatial lag model

was mainly used to provide homogeneous results by incorporating the spatial lag of the

dependent variable into the GWR. Therefore, the GWR with spatial lag model is capable

of producing better outcomes than other unweighted integration techniques.

The GWR with spatial error model was used in this study to correct the spatial

autocorrelation in the spatial data. It was found that the middle of town, north of town

and southwest areas have high UEQ in the City of Toronto. However, higher UEQ was

found in the city centre and middle of town within the City of Ottawa. The results

illustrated that the GWR with spatial lag model significantly improved the final outcomes

with respect to unweighted methods, including GIS overlay and PCA up to 15% (precision)

and 8% (accuracy) in the City of Toronto and 15% (precision) and 20% (accuracy) in

the City of Ottawa. Moreover, the GWR with spatial lag model also improved the final

outcomes with respect to weighted methods, including ordinary GWR and GWR with

spatial error model up to 1% (precision) to 5% (accuracy) in the City of Toronto and 5%

(precision and accuracy) in the City of Ottawa. Thus, the GWR with spatial lag model

can be used to integrate multiple parameters for UEQ purposes more accurately than the

unweighted integration techniques.
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Besides the success of the attempted methods used in this research work, there are

several potential draw backs: (1) the lack of data is always an issue that may influence

the final results; (2) census socioeconomic data are usually related to administrative units

and can be changed in a short period, which makes it difficult to have them available

worldwide; (3) remote sensing, GIS and socioeconomic data need data transformation

from raster to vector or from vector to raster, which could cause an individual loss of

spatial information; (4) the distance-based weighted algorithm is more applicable to a flat

surface, so all of the polygons need to be projected in advance for the output to be correct;

(5) the authors have previously investigated the use of linear and nonlinear regression to

run the relationship between the derived UEQ with respect to the socio-economic data

(reference data). However, there is no meaningful trend found in the two cities that thus

reveals the inappropriate use of a linear or non-linear model in this particular case study.

Municipalities and decision makers can consider the proposed approach to derive

the UEQ for sustainable planning in many countries. However, there is always a need

for new improvement to derive better precision and accuracy in the future. Therefore,

updated remote sensing and GIS data are important for better results; also, integration

between weighted and GWR can be a promising method to enhance the final outcomes

of UEQ; future work can be focused on modelling UEQ for an arid or cold region

environment/country since there are some parameters that may not be applicable in those

areas. In conclusion, remote sensing and GIS techniques are useful tools to model UEQ.

Spatial weighting methods further can enhance the capability to estimate UEQ in a more

accurate manner.
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Chapter 5

Conclusions and Future Work

This chapter concludes the findings of this research. In addition, further recommendations

are proposed in this section for future research.

5.1 Conclusions

As mentioned in chapter one, there is a lack of researches that provided an in-depth

discussion on the UEQ parameters , which can be used to assess the UEQ. The majority of

the scholars mainly utilized Principal Component Analysis (PCA), Geographic Information

System (GIS) analysis or Multi-Criteria Evaluation (MCE) techniques to integrate UEQ

parameters (Nichol and Wong, 2009; Fobil et al., 2011; Lo, 1996; Rinner, 2007), where

there exist certain limitations for all these integration techniques. 1) PCA itself produces

unweighted components, which may not highlight those important parameters; 2) PCA

does not work properly in nonlinear relationships; and finally, 3) the minimum number of

components is indeterminable (Faisal and Shaker, 2017). GIS overlay method does not

consider correlation among parameters nor give weight to the parameters. MCE mainly

relies on the user’s input of the attribute values of the parameters. Normalizing the

parameters is indeed essential to standardize the observations of each parameter. Several

research work including (Fobil et al., 2011; Rinner, 2007; Moore et al., 2006; Lo, 1996; Liang

and Weng, 2011) did not highlight the importance or consider the data normalization.

The result validation of the UEQ studies have not been fully investigated. Though a

few existing research addressed result validation (Nichol and Wong, 2009; Rahman et al.,
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2011) using e-mail questionnaire or field-based questionnaire. However, most of the UEQ

studies (Fobil et al., 2011; Rinner, 2007; Moore et al., 2006; Lo, 1996; Liang and Weng,

2011) did not perform any field survey or even result validation. That is mainly because

collecting field data is time consuming and budget dependent. Furthermore, these field

data can be inaccurate to test the outcomes of UEQ if the data samples being collected

are not representative, which may lead to bias results. In this regard, several goals were

proposed in this dissertation in order to fill the current gaps found in previous studies. 1)

To examine the relationship of multiple UEQ parameters derived from remote sensing,

GIS and socio-economic data; 2) to evaluate some of the existing methods (e.g. linear

regression, GIS overlay and PCA) for assessing and integrating multiple UEQ parameters;

3) to propose a new method to weight urban and environmental parameters obtained from

different data sources; 4) to develop a new method to validate urban and environmental

parameters with socio-economic indicators for UEQ assessment in two cities in Ontario,

Canada. The methodological contribution of this research work can be summarized as

the following:

� A new method was designed to highlight the industrial agglomeration

within urban areas and to estimate the socio-economic data (i.e., real

GDP, total population and total employment) based on remote sensing

data. Built-up index parameter was investigated to identify the industrial areas

using remote sensing and GIS techniques. The results showed that built-up index can

be investigated to compute the socio-economic data (i.e., real GDP, total population

and total employment) in Canada and these results showed promising coefficient

regression up to 0.83 (R2) in most of the large cities in Canada. However, some

cities including Calgary and Edmonton have a rapid expansion of gross income from

the oil mining industry that does not require a large piece of land for manufacturing

within the city. Therefore, the built-up index cannot adequately represent the

aforementioned socio-economic data in cities that mainly depend on oil mining

industry. Taken together, our results can be used as a general indication for the

federal/municipal authorities, which are aiming at or targeting a specific real GDP

with respect to the planned industrial areas for city management.

� Evaluate the urban, environmental parameters and socio-economic in-

dicators obtained from a different source of data. Several remote sensing
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and GIS data were explored in order to fully understand the concept of UEQ. As

mentioned in chapter 1, several scholars have discussed the optimal urban and envi-

ronmental parameters for the UEQ assessment (Zavadskas et al., 2007; Gabrielsen

and Bosch, 2003; Indicators for Sustainable Cities, 2015). Urban planners and

policymakers, assigned a sheer number of indicator frameworks, which vary in

their approach for measuring UEQ and their selection of indicators (Zavadskas

et al., 2007). Most of the indicator frameworks are valid and representative for

UEQ. However, some of the indicator frameworks are built for a particular location

(Berrini and Lorenzo, 2010; Dekker et al., 2003; Indicators for Sustainable Cities,

2015). Since the urban and environmental parameters and socio-economic indicators

were obtained in various scale level, data normalization is needed to evaluate the

significance of each parameter.

� A new approach was examined to normalize the data derived from re-

mote sensing and GIS data using Z-score model and linear interpolation

technique. The primary goal of selecting UEQ indicators is to assess the perfor-

mance of these indicators. Therefore, the indicators are needed to be standardized

and addressed so that they are presented on the same scale. In this manner, the

selected indicators can be validated and enhanced to serve UEQ (Yigitcanla and

Lönnqvist, 2013). Moreover, standardization can also help understanding of the

indicators (Pires et al., 2014). In this dissertation, the normalized data were inte-

grated using GIS overlay, PCA and weighted methods including ordinary GWR,

GWR with spatial lag model and the GWR with spatial error model to compute

the UEQ outcomes.

� A new approach was designed to validate the final results that calculated

from the above mentioned methods. Socio-economic indicators, includ-

ing family income, the degree of education and land value, were used

as a reference to validate the outcomes derived from the five integra-

tion methods. Several existing researchers found that socio-economic indicators

including education level and income are required for UEQ assessment (Adelle

and Pallemaerts, 2009). People with more education and income are more likely

to support high quality environment (Kahn and Matsusaka, 1997; Kahn, 2002).
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For example, richer urbanites are more likely to support high quality urban areas

and purchase good cars that produce less pollution per kilometer (Kahn, 2007).

Consequently, several studies showed that income indicator has high relationship

up to 0.91 with GDP, car and house ownership in 158 nations in 1996 (Kahn,

2007; Kahn and Matsusaka, 1997; Kahn, 2002). Education provides the tools for

people to access and understand information about how environmental hazards

affect their wellbeing. As a result, rising educational level can help increase the

awareness of individuals for better quality regions (Becker and Mulligan, 1997).

Studies also observed a high correlation between the level of education and voting,

since people with high education are more likely aware of public/political issues

that may influence their environment quality (Kahn, 2002). Thus, socio-economic

indicators are essential to assess the UEQ for any urban areas. The finding of this

research work showed that weighted methods represented up to 20% better results

than unweighted methods and GIS overlay approach showed better outcomes than

PCA up to 4% (precision) and 2% (accuracy) in the City of Toronto and City of

Ottawa. These finding suggested that GIS overlay can be presented as a better

method than PCA concerning the integration of multiple parameters. Moreover,

geographically weighted methods are deemed to be a better method with respect to

weighted methods including GIS overlay and PCA.

� New methods were proposed to weight urban and environmental pa-

rameters that obtained from a different source of data. GWR techniques,

including the ordinary GWR, GWR with spatial lag model and the GWR with

spatial error model were tested to assess the UEQ in the City of Toronto and City of

Ottawa. The observed results showed that GWR with spatial lag model significantly

improved the final outcomes with respect to unweighted methods, including GIS

overlay and PCA for up to 15% (precision) and 8% (accuracy) in the City of Toronto

and 15% (precision) and 20% (accuracy) in the City of Ottawa. Moreover, the

GWR with spatial lag model also improved the final outcomes with respect to

weighted methods, including ordinary GWR and GWR with spatial error model for

up to 1% (precision) to 5% (accuracy) in the City of Toronto and 5% (precision

and accuracy) in the City of Ottawa. Thus, the GWR with spatial lag model can

be used to integrate multiple parameters for UEQ assessment more accurately than
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the unweighted integration techniques. In conclusion, municipalities and decision

makers can consider the proposed approach to derive the UEQ for sustainable

planning in many countries. Remote sensing and GIS techniques are useful tools

to model UEQ. Spatial weighting methods further can enhance the capability to

estimate UEQ in a more accurate manner.

In conclusion, this research work broached the term UEQ for urban planners and

decision making. The research work exuberance scientific methods that investigate data

acquisition, data processing, leading to the final outcome. Choosing the parameters

or indicators is generally not relied on the individual or the researcher. The sets of

indicators are shared among international stakeholders and institutions (Delsante, 2016).

Previously several international agencies such as Environmental Sustainability Index

(ESI), Environmental Performance Index (EPI), European Green Cities Index, China

Urban Sustainability Index and Global City Indicator have progressively developed

different set of indicator frameworks that serve different location worldwide (Indicators for

Sustainable Cities, 2015). In this research work, the proposed set of parameters for urban

quality evaluation allows for comparison between the various locations under specific

circumstances. The investigated study areas should be chosen based on specific local

conditions (Delsante, 2016).

The final outcomes showed that the suggested methods can be an essential tool for

concisely assessing urban environment quality in Canada. The proposed methods can be

beneficial regarding sustainability for urban planners and decision making by evaluating

performances of UEQ for each metropolitan regions and adopting the best political

actions. The higher UEQ areas represent the good locations within the urban areas

that can be used as a reference to promote all the other low UEQ regions. The research

work, also highlighted that remote sensing technique could be utilized as a tool to derive

some of the socio-economic indicators such as GDP, population and employment rate as

representing in chapter 2. These socio-economic indicators including GDP, population

and employment rate also showed high correlation with respect to income (Kahn, 2007;

Kahn and Matsusaka, 1997; Kahn, 2002), which was generated as one of the indicators to

validate the final UEQ outcomes in this research work. In context, the UEQ assessment

is an intellectual tool for the disciplines of architecture and urban design. If the UEQ

evaluation is monitored over time and/or compared with other study areas, the results

109



CHAPTER 5. CONCLUSIONS AND FUTURE WORK

can help public authorities and other relevant stakeholders for proper actions.

5.2 Limitations and Future Work

Besides the success of the attempted methods used in this research work, there are few

limitations in regards to the research study that needed to be considered in the near

future:

1. Water bodies and bare soil all have high built-up index values that may cause

confusion with the impervious surfaces. If the method presented in Chapter 2 is

applied elsewhere and no GIS data exists, it would likely cause problems, as water

bodies or bare soil could be classified as built-up areas, and the relationship with

GDP would be affected.

2. The lack of data is always an issue that may influence the final results. Data

availability is another significant issue that needs to be considered when indicators

are selected for UEQ assessment. Pires et al. (2014) highlighted that unavailable data

sources could cause a biased or unreliable estimate for UEQ. Researchers consensus

that indicator sets need to be locally relevant to the city or municipality (Campbell,

1999; Camagni, 2002). Therefore, the indicators should be clear, understandable

and obtainable at a reasonable cost-benefit ratio and must be able to reflect every

aspect of urban development (Mega and Pedersen, 1998).

3. Census socioeconomic data are usually related to administrative units and can be

changed in a short period, which makes it difficult to have them available worldwide.

Some scholars emphasized that indicators with extensive political support were

more successful than those proposed by academic institutions or non-government

agencies (Hiremath et al., 2013).

4. Remote sensing, GIS and socioeconomic data need data transformation from raster

to vector or from vector to raster, which could cause an individual loss of spatial

information. Most of the current vectorization software are time consuming, budget

dependence and some time may steered to unreliable results. That is mainly because

of the current vectorization software that are semi-automatic and predominantly

require an intervention from human (Taie et al., 2011).
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5. The distance-based weighted algorithm is more applicable to a flat surface, so all of

the polygons need to be projected in advance for the output to be correct. Distance-

based weight method may not be applicable for unprojected geospatial datasets

mainly because they are located on the three-dimensional geodetic coordinate

system. In addition, some study areas such as Canada or USA are too wide, and

the geospatial datasets are distributed within a wide range from the East Coast to

the West Coast. In that case, the line distance method may not also be applicable

due to the curvature of the earth (Luc and Sergio, 2014).

6. The authors have previously investigated the use of linear and nonlinear regression

to run the relationship between the derived UEQ with respect to the socio-economic

data (reference data). However, there is no meaningful trend found in the two cities

(City of Toronto and City of Ottawa) that thus reveals the inappropriate use of a

linear or non-linear model in this particular case study.

To further improve the findings of this research work, future research may be required

to be studied in the following areas:

1. Updated remote sensing and GIS data are essential for better results. In addition,

several parameters can be further investigated to help authorities and decision

making derived more trustworthy UEQ results. Plans of flood risk, traffic volumes

and pollution levels, which include water and air pollution are very important to

improve the overall UEQ outcomes.

2. Integration between weighted and GWR can be a promising method to enhance the

final outcomes of UEQ.

3. Other regression analyses (such as nonlinear regression) can be explored depending

on the nature of study area and the socio-economic indicators being studied.

4. Other statistical algorithm, such as stepwise regression can be utilized to narrow

down the variety of parameters

5. Logistic regression can be further investigated for the binary classification of each

parameter to compute the significant of each observation.

111



CHAPTER 5. CONCLUSIONS AND FUTURE WORK

6. Future work can be focused on modeling UEQ for an arid or cold region environ-

ment/country since some parameters being used in this dissertation may not be

applicable to those areas. Moreover, some countries/ cities does not have proper

GIS data. Therefore, remote sensing can be an essential technique to derive some

of the UEQ parameters.
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Zavadskas, E., Kaklauskas, A., Šaparauskas, J. and Kalibatas, D., 2007. Vilnius

urban sustainability assessment with an emphasis on pollution. Ecology, 53, 64–72.

Zha, Y., Gao, J. and Ni, S., 2003. Use of normalized difference built-up index in

automatically mapping urban areas from TM imagery. International Journal of

Remote Sensing, 24 (3), 583–594.

125


